Marlin_main.cpp 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. char snmm_filaments_used = 0;
  244. float distance_from_min[3];
  245. float angleDiff;
  246. bool volumetric_enabled = false;
  247. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  248. #if EXTRUDERS > 1
  249. , DEFAULT_NOMINAL_FILAMENT_DIA
  250. #if EXTRUDERS > 2
  251. , DEFAULT_NOMINAL_FILAMENT_DIA
  252. #endif
  253. #endif
  254. };
  255. float volumetric_multiplier[EXTRUDERS] = {1.0
  256. #if EXTRUDERS > 1
  257. , 1.0
  258. #if EXTRUDERS > 2
  259. , 1.0
  260. #endif
  261. #endif
  262. };
  263. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  264. float add_homing[3]={0,0,0};
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. bool axis_known_position[3] = {false, false, false};
  268. float zprobe_zoffset;
  269. // Extruder offset
  270. #if EXTRUDERS > 1
  271. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  272. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  273. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  274. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  275. #endif
  276. };
  277. #endif
  278. uint8_t active_extruder = 0;
  279. int fanSpeed=0;
  280. #ifdef FWRETRACT
  281. bool autoretract_enabled=false;
  282. bool retracted[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. bool retracted_swap[EXTRUDERS]={false
  291. #if EXTRUDERS > 1
  292. , false
  293. #if EXTRUDERS > 2
  294. , false
  295. #endif
  296. #endif
  297. };
  298. float retract_length = RETRACT_LENGTH;
  299. float retract_length_swap = RETRACT_LENGTH_SWAP;
  300. float retract_feedrate = RETRACT_FEEDRATE;
  301. float retract_zlift = RETRACT_ZLIFT;
  302. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  303. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  304. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  305. #endif
  306. #ifdef ULTIPANEL
  307. #ifdef PS_DEFAULT_OFF
  308. bool powersupply = false;
  309. #else
  310. bool powersupply = true;
  311. #endif
  312. #endif
  313. bool cancel_heatup = false ;
  314. #ifdef FILAMENT_SENSOR
  315. //Variables for Filament Sensor input
  316. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  317. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  318. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  319. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  320. int delay_index1=0; //index into ring buffer
  321. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  322. float delay_dist=0; //delay distance counter
  323. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. //===========================================================================
  328. //=============================Private Variables=============================
  329. //===========================================================================
  330. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  331. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  332. static float delta[3] = {0.0, 0.0, 0.0};
  333. // For tracing an arc
  334. static float offset[3] = {0.0, 0.0, 0.0};
  335. static bool home_all_axis = true;
  336. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  337. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  338. // Determines Absolute or Relative Coordinates.
  339. // Also there is bool axis_relative_modes[] per axis flag.
  340. static bool relative_mode = false;
  341. // String circular buffer. Commands may be pushed to the buffer from both sides:
  342. // Chained commands will be pushed to the front, interactive (from LCD menu)
  343. // and printing commands (from serial line or from SD card) are pushed to the tail.
  344. // First character of each entry indicates the type of the entry:
  345. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  346. // Command in cmdbuffer was sent over USB.
  347. #define CMDBUFFER_CURRENT_TYPE_USB 1
  348. // Command in cmdbuffer was read from SDCARD.
  349. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  350. // Command in cmdbuffer was generated by the UI.
  351. #define CMDBUFFER_CURRENT_TYPE_UI 3
  352. // Command in cmdbuffer was generated by another G-code.
  353. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  354. // How much space to reserve for the chained commands
  355. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  356. // which are pushed to the front of the queue?
  357. // Maximum 5 commands of max length 20 + null terminator.
  358. #define CMDBUFFER_RESERVE_FRONT (5*21)
  359. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  360. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  361. // Head of the circular buffer, where to read.
  362. static int bufindr = 0;
  363. // Tail of the buffer, where to write.
  364. static int bufindw = 0;
  365. // Number of lines in cmdbuffer.
  366. static int buflen = 0;
  367. // Flag for processing the current command inside the main Arduino loop().
  368. // If a new command was pushed to the front of a command buffer while
  369. // processing another command, this replaces the command on the top.
  370. // Therefore don't remove the command from the queue in the loop() function.
  371. static bool cmdbuffer_front_already_processed = false;
  372. // Type of a command, which is to be executed right now.
  373. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  374. // String of a command, which is to be executed right now.
  375. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  376. // Enable debugging of the command buffer.
  377. // Debugging information will be sent to serial line.
  378. // #define CMDBUFFER_DEBUG
  379. static int serial_count = 0; //index of character read from serial line
  380. static boolean comment_mode = false;
  381. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  382. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  383. //static float tt = 0;
  384. //static float bt = 0;
  385. //Inactivity shutdown variables
  386. static unsigned long previous_millis_cmd = 0;
  387. unsigned long max_inactive_time = 0;
  388. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  389. unsigned long starttime=0;
  390. unsigned long stoptime=0;
  391. unsigned long _usb_timer = 0;
  392. static uint8_t tmp_extruder;
  393. bool Stopped=false;
  394. #if NUM_SERVOS > 0
  395. Servo servos[NUM_SERVOS];
  396. #endif
  397. bool CooldownNoWait = true;
  398. bool target_direction;
  399. //Insert variables if CHDK is defined
  400. #ifdef CHDK
  401. unsigned long chdkHigh = 0;
  402. boolean chdkActive = false;
  403. #endif
  404. //===========================================================================
  405. //=============================Routines======================================
  406. //===========================================================================
  407. void get_arc_coordinates();
  408. bool setTargetedHotend(int code);
  409. void serial_echopair_P(const char *s_P, float v)
  410. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  411. void serial_echopair_P(const char *s_P, double v)
  412. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. void serial_echopair_P(const char *s_P, unsigned long v)
  414. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  415. #ifdef SDSUPPORT
  416. #include "SdFatUtil.h"
  417. int freeMemory() { return SdFatUtil::FreeRam(); }
  418. #else
  419. extern "C" {
  420. extern unsigned int __bss_end;
  421. extern unsigned int __heap_start;
  422. extern void *__brkval;
  423. int freeMemory() {
  424. int free_memory;
  425. if ((int)__brkval == 0)
  426. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  427. else
  428. free_memory = ((int)&free_memory) - ((int)__brkval);
  429. return free_memory;
  430. }
  431. }
  432. #endif //!SDSUPPORT
  433. // Pop the currently processed command from the queue.
  434. // It is expected, that there is at least one command in the queue.
  435. bool cmdqueue_pop_front()
  436. {
  437. if (buflen > 0) {
  438. #ifdef CMDBUFFER_DEBUG
  439. SERIAL_ECHOPGM("Dequeing ");
  440. SERIAL_ECHO(cmdbuffer+bufindr+1);
  441. SERIAL_ECHOLNPGM("");
  442. SERIAL_ECHOPGM("Old indices: buflen ");
  443. SERIAL_ECHO(buflen);
  444. SERIAL_ECHOPGM(", bufindr ");
  445. SERIAL_ECHO(bufindr);
  446. SERIAL_ECHOPGM(", bufindw ");
  447. SERIAL_ECHO(bufindw);
  448. SERIAL_ECHOPGM(", serial_count ");
  449. SERIAL_ECHO(serial_count);
  450. SERIAL_ECHOPGM(", bufsize ");
  451. SERIAL_ECHO(sizeof(cmdbuffer));
  452. SERIAL_ECHOLNPGM("");
  453. #endif /* CMDBUFFER_DEBUG */
  454. if (-- buflen == 0) {
  455. // Empty buffer.
  456. if (serial_count == 0)
  457. // No serial communication is pending. Reset both pointers to zero.
  458. bufindw = 0;
  459. bufindr = bufindw;
  460. } else {
  461. // There is at least one ready line in the buffer.
  462. // First skip the current command ID and iterate up to the end of the string.
  463. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  464. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  465. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  466. // If the end of the buffer was empty,
  467. if (bufindr == sizeof(cmdbuffer)) {
  468. // skip to the start and find the nonzero command.
  469. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  470. }
  471. #ifdef CMDBUFFER_DEBUG
  472. SERIAL_ECHOPGM("New indices: buflen ");
  473. SERIAL_ECHO(buflen);
  474. SERIAL_ECHOPGM(", bufindr ");
  475. SERIAL_ECHO(bufindr);
  476. SERIAL_ECHOPGM(", bufindw ");
  477. SERIAL_ECHO(bufindw);
  478. SERIAL_ECHOPGM(", serial_count ");
  479. SERIAL_ECHO(serial_count);
  480. SERIAL_ECHOPGM(" new command on the top: ");
  481. SERIAL_ECHO(cmdbuffer+bufindr+1);
  482. SERIAL_ECHOLNPGM("");
  483. #endif /* CMDBUFFER_DEBUG */
  484. }
  485. return true;
  486. }
  487. return false;
  488. }
  489. void cmdqueue_reset()
  490. {
  491. while (cmdqueue_pop_front()) ;
  492. }
  493. // How long a string could be pushed to the front of the command queue?
  494. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  495. // len_asked does not contain the zero terminator size.
  496. bool cmdqueue_could_enqueue_front(int len_asked)
  497. {
  498. // MAX_CMD_SIZE has to accommodate the zero terminator.
  499. if (len_asked >= MAX_CMD_SIZE)
  500. return false;
  501. // Remove the currently processed command from the queue.
  502. if (! cmdbuffer_front_already_processed) {
  503. cmdqueue_pop_front();
  504. cmdbuffer_front_already_processed = true;
  505. }
  506. if (bufindr == bufindw && buflen > 0)
  507. // Full buffer.
  508. return false;
  509. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  510. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  511. if (bufindw < bufindr) {
  512. int bufindr_new = bufindr - len_asked - 2;
  513. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  514. if (endw <= bufindr_new) {
  515. bufindr = bufindr_new;
  516. return true;
  517. }
  518. } else {
  519. // Otherwise the free space is split between the start and end.
  520. if (len_asked + 2 <= bufindr) {
  521. // Could fit at the start.
  522. bufindr -= len_asked + 2;
  523. return true;
  524. }
  525. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  526. if (endw <= bufindr_new) {
  527. memset(cmdbuffer, 0, bufindr);
  528. bufindr = bufindr_new;
  529. return true;
  530. }
  531. }
  532. return false;
  533. }
  534. // Could one enqueue a command of lenthg len_asked into the buffer,
  535. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  536. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  537. // len_asked does not contain the zero terminator size.
  538. bool cmdqueue_could_enqueue_back(int len_asked)
  539. {
  540. // MAX_CMD_SIZE has to accommodate the zero terminator.
  541. if (len_asked >= MAX_CMD_SIZE)
  542. return false;
  543. if (bufindr == bufindw && buflen > 0)
  544. // Full buffer.
  545. return false;
  546. if (serial_count > 0) {
  547. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  548. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  549. // serial data.
  550. // How much memory to reserve for the commands pushed to the front?
  551. // End of the queue, when pushing to the end.
  552. int endw = bufindw + len_asked + 2;
  553. if (bufindw < bufindr)
  554. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  555. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  556. // Otherwise the free space is split between the start and end.
  557. if (// Could one fit to the end, including the reserve?
  558. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  559. // Could one fit to the end, and the reserve to the start?
  560. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  561. return true;
  562. // Could one fit both to the start?
  563. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  564. // Mark the rest of the buffer as used.
  565. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  566. // and point to the start.
  567. bufindw = 0;
  568. return true;
  569. }
  570. } else {
  571. // How much memory to reserve for the commands pushed to the front?
  572. // End of the queue, when pushing to the end.
  573. int endw = bufindw + len_asked + 2;
  574. if (bufindw < bufindr)
  575. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  576. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  577. // Otherwise the free space is split between the start and end.
  578. if (// Could one fit to the end, including the reserve?
  579. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  580. // Could one fit to the end, and the reserve to the start?
  581. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  582. return true;
  583. // Could one fit both to the start?
  584. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  585. // Mark the rest of the buffer as used.
  586. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  587. // and point to the start.
  588. bufindw = 0;
  589. return true;
  590. }
  591. }
  592. return false;
  593. }
  594. #ifdef CMDBUFFER_DEBUG
  595. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  596. {
  597. SERIAL_ECHOPGM("Entry nr: ");
  598. SERIAL_ECHO(nr);
  599. SERIAL_ECHOPGM(", type: ");
  600. SERIAL_ECHO(int(*p));
  601. SERIAL_ECHOPGM(", cmd: ");
  602. SERIAL_ECHO(p+1);
  603. SERIAL_ECHOLNPGM("");
  604. }
  605. static void cmdqueue_dump_to_serial()
  606. {
  607. if (buflen == 0) {
  608. SERIAL_ECHOLNPGM("The command buffer is empty.");
  609. } else {
  610. SERIAL_ECHOPGM("Content of the buffer: entries ");
  611. SERIAL_ECHO(buflen);
  612. SERIAL_ECHOPGM(", indr ");
  613. SERIAL_ECHO(bufindr);
  614. SERIAL_ECHOPGM(", indw ");
  615. SERIAL_ECHO(bufindw);
  616. SERIAL_ECHOLNPGM("");
  617. int nr = 0;
  618. if (bufindr < bufindw) {
  619. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  620. cmdqueue_dump_to_serial_single_line(nr, p);
  621. // Skip the command.
  622. for (++p; *p != 0; ++ p);
  623. // Skip the gaps.
  624. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  625. }
  626. } else {
  627. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  628. cmdqueue_dump_to_serial_single_line(nr, p);
  629. // Skip the command.
  630. for (++p; *p != 0; ++ p);
  631. // Skip the gaps.
  632. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  633. }
  634. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  640. }
  641. }
  642. SERIAL_ECHOLNPGM("End of the buffer.");
  643. }
  644. }
  645. #endif /* CMDBUFFER_DEBUG */
  646. //adds an command to the main command buffer
  647. //thats really done in a non-safe way.
  648. //needs overworking someday
  649. // Currently the maximum length of a command piped through this function is around 20 characters
  650. void enquecommand(const char *cmd, bool from_progmem)
  651. {
  652. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  653. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  654. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  655. if (cmdqueue_could_enqueue_back(len)) {
  656. // This is dangerous if a mixing of serial and this happens
  657. // This may easily be tested: If serial_count > 0, we have a problem.
  658. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  659. if (from_progmem)
  660. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  661. else
  662. strcpy(cmdbuffer + bufindw + 1, cmd);
  663. SERIAL_ECHO_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  666. SERIAL_ECHOLNPGM("\"");
  667. bufindw += len + 2;
  668. if (bufindw == sizeof(cmdbuffer))
  669. bufindw = 0;
  670. ++ buflen;
  671. #ifdef CMDBUFFER_DEBUG
  672. cmdqueue_dump_to_serial();
  673. #endif /* CMDBUFFER_DEBUG */
  674. } else {
  675. SERIAL_ERROR_START;
  676. SERIAL_ECHORPGM(MSG_Enqueing);
  677. if (from_progmem)
  678. SERIAL_PROTOCOLRPGM(cmd);
  679. else
  680. SERIAL_ECHO(cmd);
  681. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. }
  686. }
  687. void enquecommand_front(const char *cmd, bool from_progmem)
  688. {
  689. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  690. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  691. if (cmdqueue_could_enqueue_front(len)) {
  692. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  693. if (from_progmem)
  694. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  695. else
  696. strcpy(cmdbuffer + bufindr + 1, cmd);
  697. ++ buflen;
  698. SERIAL_ECHO_START;
  699. SERIAL_ECHOPGM("Enqueing to the front: \"");
  700. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  701. SERIAL_ECHOLNPGM("\"");
  702. #ifdef CMDBUFFER_DEBUG
  703. cmdqueue_dump_to_serial();
  704. #endif /* CMDBUFFER_DEBUG */
  705. } else {
  706. SERIAL_ERROR_START;
  707. SERIAL_ECHOPGM("Enqueing to the front: \"");
  708. if (from_progmem)
  709. SERIAL_PROTOCOLRPGM(cmd);
  710. else
  711. SERIAL_ECHO(cmd);
  712. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  713. #ifdef CMDBUFFER_DEBUG
  714. cmdqueue_dump_to_serial();
  715. #endif /* CMDBUFFER_DEBUG */
  716. }
  717. }
  718. // Mark the command at the top of the command queue as new.
  719. // Therefore it will not be removed from the queue.
  720. void repeatcommand_front()
  721. {
  722. cmdbuffer_front_already_processed = true;
  723. }
  724. bool is_buffer_empty()
  725. {
  726. if (buflen == 0) return true;
  727. else return false;
  728. }
  729. void setup_killpin()
  730. {
  731. #if defined(KILL_PIN) && KILL_PIN > -1
  732. SET_INPUT(KILL_PIN);
  733. WRITE(KILL_PIN,HIGH);
  734. #endif
  735. }
  736. // Set home pin
  737. void setup_homepin(void)
  738. {
  739. #if defined(HOME_PIN) && HOME_PIN > -1
  740. SET_INPUT(HOME_PIN);
  741. WRITE(HOME_PIN,HIGH);
  742. #endif
  743. }
  744. void setup_photpin()
  745. {
  746. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  747. SET_OUTPUT(PHOTOGRAPH_PIN);
  748. WRITE(PHOTOGRAPH_PIN, LOW);
  749. #endif
  750. }
  751. void setup_powerhold()
  752. {
  753. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  754. SET_OUTPUT(SUICIDE_PIN);
  755. WRITE(SUICIDE_PIN, HIGH);
  756. #endif
  757. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  758. SET_OUTPUT(PS_ON_PIN);
  759. #if defined(PS_DEFAULT_OFF)
  760. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  761. #else
  762. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  763. #endif
  764. #endif
  765. }
  766. void suicide()
  767. {
  768. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  769. SET_OUTPUT(SUICIDE_PIN);
  770. WRITE(SUICIDE_PIN, LOW);
  771. #endif
  772. }
  773. void servo_init()
  774. {
  775. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  776. servos[0].attach(SERVO0_PIN);
  777. #endif
  778. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  779. servos[1].attach(SERVO1_PIN);
  780. #endif
  781. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  782. servos[2].attach(SERVO2_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  785. servos[3].attach(SERVO3_PIN);
  786. #endif
  787. #if (NUM_SERVOS >= 5)
  788. #error "TODO: enter initalisation code for more servos"
  789. #endif
  790. }
  791. static void lcd_language_menu();
  792. #ifdef MESH_BED_LEVELING
  793. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  794. #endif
  795. // Factory reset function
  796. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  797. // Level input parameter sets depth of reset
  798. // Quiet parameter masks all waitings for user interact.
  799. int er_progress = 0;
  800. void factory_reset(char level, bool quiet)
  801. {
  802. lcd_implementation_clear();
  803. int cursor_pos = 0;
  804. switch (level) {
  805. // Level 0: Language reset
  806. case 0:
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. lcd_force_language_selection();
  811. break;
  812. //Level 1: Reset statistics
  813. case 1:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  818. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  819. lcd_menu_statistics();
  820. break;
  821. // Level 2: Prepare for shipping
  822. case 2:
  823. //lcd_printPGM(PSTR("Factory RESET"));
  824. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  825. // Force language selection at the next boot up.
  826. lcd_force_language_selection();
  827. // Force the "Follow calibration flow" message at the next boot up.
  828. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  829. farm_no = 0;
  830. farm_mode == false;
  831. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  832. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  833. WRITE(BEEPER, HIGH);
  834. _delay_ms(100);
  835. WRITE(BEEPER, LOW);
  836. //_delay_ms(2000);
  837. break;
  838. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  839. case 3:
  840. lcd_printPGM(PSTR("Factory RESET"));
  841. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. er_progress = 0;
  846. lcd_print_at_PGM(3, 3, PSTR(" "));
  847. lcd_implementation_print_at(3, 3, er_progress);
  848. // Erase EEPROM
  849. for (int i = 0; i < 4096; i++) {
  850. eeprom_write_byte((uint8_t*)i, 0xFF);
  851. if (i % 41 == 0) {
  852. er_progress++;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. lcd_printPGM(PSTR("%"));
  856. }
  857. }
  858. break;
  859. case 4:
  860. bowden_menu();
  861. break;
  862. default:
  863. break;
  864. }
  865. }
  866. // "Setup" function is called by the Arduino framework on startup.
  867. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  868. // are initialized by the main() routine provided by the Arduino framework.
  869. void setup()
  870. {
  871. setup_killpin();
  872. setup_powerhold();
  873. MYSERIAL.begin(BAUDRATE);
  874. SERIAL_PROTOCOLLNPGM("start");
  875. SERIAL_ECHO_START;
  876. #if 0
  877. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  878. for (int i = 0; i < 4096; ++i) {
  879. int b = eeprom_read_byte((unsigned char*)i);
  880. if (b != 255) {
  881. SERIAL_ECHO(i);
  882. SERIAL_ECHO(":");
  883. SERIAL_ECHO(b);
  884. SERIAL_ECHOLN("");
  885. }
  886. }
  887. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  888. #endif
  889. // Check startup - does nothing if bootloader sets MCUSR to 0
  890. byte mcu = MCUSR;
  891. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  892. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  893. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  894. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  895. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  896. MCUSR = 0;
  897. //SERIAL_ECHORPGM(MSG_MARLIN);
  898. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  899. #ifdef STRING_VERSION_CONFIG_H
  900. #ifdef STRING_CONFIG_H_AUTHOR
  901. SERIAL_ECHO_START;
  902. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  903. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  904. SERIAL_ECHORPGM(MSG_AUTHOR);
  905. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  906. SERIAL_ECHOPGM("Compiled: ");
  907. SERIAL_ECHOLNPGM(__DATE__);
  908. #endif
  909. #endif
  910. SERIAL_ECHO_START;
  911. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  912. SERIAL_ECHO(freeMemory());
  913. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  914. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  915. lcd_update_enable(false);
  916. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  917. Config_RetrieveSettings();
  918. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  919. tp_init(); // Initialize temperature loop
  920. plan_init(); // Initialize planner;
  921. watchdog_init();
  922. st_init(); // Initialize stepper, this enables interrupts!
  923. setup_photpin();
  924. servo_init();
  925. // Reset the machine correction matrix.
  926. // It does not make sense to load the correction matrix until the machine is homed.
  927. world2machine_reset();
  928. lcd_init();
  929. if (!READ(BTN_ENC))
  930. {
  931. _delay_ms(1000);
  932. if (!READ(BTN_ENC))
  933. {
  934. lcd_implementation_clear();
  935. lcd_printPGM(PSTR("Factory RESET"));
  936. SET_OUTPUT(BEEPER);
  937. WRITE(BEEPER, HIGH);
  938. while (!READ(BTN_ENC));
  939. WRITE(BEEPER, LOW);
  940. _delay_ms(2000);
  941. char level = reset_menu();
  942. factory_reset(level, false);
  943. switch (level) {
  944. case 0: _delay_ms(0); break;
  945. case 1: _delay_ms(0); break;
  946. case 2: _delay_ms(0); break;
  947. case 3: _delay_ms(0); break;
  948. }
  949. // _delay_ms(100);
  950. /*
  951. #ifdef MESH_BED_LEVELING
  952. _delay_ms(2000);
  953. if (!READ(BTN_ENC))
  954. {
  955. WRITE(BEEPER, HIGH);
  956. _delay_ms(100);
  957. WRITE(BEEPER, LOW);
  958. _delay_ms(200);
  959. WRITE(BEEPER, HIGH);
  960. _delay_ms(100);
  961. WRITE(BEEPER, LOW);
  962. int _z = 0;
  963. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  964. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  965. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  966. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  967. }
  968. else
  969. {
  970. WRITE(BEEPER, HIGH);
  971. _delay_ms(100);
  972. WRITE(BEEPER, LOW);
  973. }
  974. #endif // mesh */
  975. }
  976. }
  977. else
  978. {
  979. _delay_ms(1000); // wait 1sec to display the splash screen
  980. }
  981. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  982. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  983. #endif
  984. #ifdef DIGIPOT_I2C
  985. digipot_i2c_init();
  986. #endif
  987. setup_homepin();
  988. #if defined(Z_AXIS_ALWAYS_ON)
  989. enable_z();
  990. #endif
  991. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  992. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  993. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  994. if (farm_no == 0xFFFF) farm_no = 0;
  995. if (farm_mode)
  996. {
  997. prusa_statistics(8);
  998. }
  999. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1000. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1001. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1002. // but this times out if a blocking dialog is shown in setup().
  1003. card.initsd();
  1004. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1005. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1006. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1007. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1008. // where all the EEPROM entries are set to 0x0ff.
  1009. // Once a firmware boots up, it forces at least a language selection, which changes
  1010. // EEPROM_LANG to number lower than 0x0ff.
  1011. // 1) Set a high power mode.
  1012. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1013. }
  1014. #ifdef SNMM
  1015. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1016. int _z = BOWDEN_LENGTH;
  1017. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1018. }
  1019. #endif
  1020. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1021. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1022. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1023. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1024. if (lang_selected >= LANG_NUM){
  1025. lcd_mylang();
  1026. }
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1028. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1029. temp_cal_active = false;
  1030. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1031. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1032. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1033. }
  1034. check_babystep(); //checking if Z babystep is in allowed range
  1035. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1036. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1037. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1038. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1039. // Show the message.
  1040. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1041. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1042. // Show the message.
  1043. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1044. lcd_update_enable(true);
  1045. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1047. lcd_update_enable(true);
  1048. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1049. // Show the message.
  1050. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1051. }
  1052. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1053. lcd_update_enable(true);
  1054. // Store the currently running firmware into an eeprom,
  1055. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1056. update_current_firmware_version_to_eeprom();
  1057. }
  1058. void trace();
  1059. #define CHUNK_SIZE 64 // bytes
  1060. #define SAFETY_MARGIN 1
  1061. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1062. int chunkHead = 0;
  1063. int serial_read_stream() {
  1064. setTargetHotend(0, 0);
  1065. setTargetBed(0);
  1066. lcd_implementation_clear();
  1067. lcd_printPGM(PSTR(" Upload in progress"));
  1068. // first wait for how many bytes we will receive
  1069. uint32_t bytesToReceive;
  1070. // receive the four bytes
  1071. char bytesToReceiveBuffer[4];
  1072. for (int i=0; i<4; i++) {
  1073. int data;
  1074. while ((data = MYSERIAL.read()) == -1) {};
  1075. bytesToReceiveBuffer[i] = data;
  1076. }
  1077. // make it a uint32
  1078. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1079. // we're ready, notify the sender
  1080. MYSERIAL.write('+');
  1081. // lock in the routine
  1082. uint32_t receivedBytes = 0;
  1083. while (prusa_sd_card_upload) {
  1084. int i;
  1085. for (i=0; i<CHUNK_SIZE; i++) {
  1086. int data;
  1087. // check if we're not done
  1088. if (receivedBytes == bytesToReceive) {
  1089. break;
  1090. }
  1091. // read the next byte
  1092. while ((data = MYSERIAL.read()) == -1) {};
  1093. receivedBytes++;
  1094. // save it to the chunk
  1095. chunk[i] = data;
  1096. }
  1097. // write the chunk to SD
  1098. card.write_command_no_newline(&chunk[0]);
  1099. // notify the sender we're ready for more data
  1100. MYSERIAL.write('+');
  1101. // for safety
  1102. manage_heater();
  1103. // check if we're done
  1104. if(receivedBytes == bytesToReceive) {
  1105. trace(); // beep
  1106. card.closefile();
  1107. prusa_sd_card_upload = false;
  1108. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1109. return 0;
  1110. }
  1111. }
  1112. }
  1113. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1114. // Before loop(), the setup() function is called by the main() routine.
  1115. void loop()
  1116. {
  1117. bool stack_integrity = true;
  1118. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1119. {
  1120. is_usb_printing = true;
  1121. usb_printing_counter--;
  1122. _usb_timer = millis();
  1123. }
  1124. if (usb_printing_counter == 0)
  1125. {
  1126. is_usb_printing = false;
  1127. }
  1128. if (prusa_sd_card_upload)
  1129. {
  1130. //we read byte-by byte
  1131. serial_read_stream();
  1132. } else
  1133. {
  1134. get_command();
  1135. #ifdef SDSUPPORT
  1136. card.checkautostart(false);
  1137. #endif
  1138. if(buflen)
  1139. {
  1140. #ifdef SDSUPPORT
  1141. if(card.saving)
  1142. {
  1143. // Saving a G-code file onto an SD-card is in progress.
  1144. // Saving starts with M28, saving until M29 is seen.
  1145. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1146. card.write_command(CMDBUFFER_CURRENT_STRING);
  1147. if(card.logging)
  1148. process_commands();
  1149. else
  1150. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1151. } else {
  1152. card.closefile();
  1153. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1154. }
  1155. } else {
  1156. process_commands();
  1157. }
  1158. #else
  1159. process_commands();
  1160. #endif //SDSUPPORT
  1161. if (! cmdbuffer_front_already_processed)
  1162. cmdqueue_pop_front();
  1163. cmdbuffer_front_already_processed = false;
  1164. }
  1165. }
  1166. //check heater every n milliseconds
  1167. manage_heater();
  1168. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1169. checkHitEndstops();
  1170. lcd_update();
  1171. }
  1172. void get_command()
  1173. {
  1174. // Test and reserve space for the new command string.
  1175. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1176. return;
  1177. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1178. while (MYSERIAL.available() > 0) {
  1179. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1180. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1181. rx_buffer_full = true; //sets flag that buffer was full
  1182. }
  1183. char serial_char = MYSERIAL.read();
  1184. TimeSent = millis();
  1185. TimeNow = millis();
  1186. if (serial_char < 0)
  1187. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1188. // and Marlin does not support such file names anyway.
  1189. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1190. // to a hang-up of the print process from an SD card.
  1191. continue;
  1192. if(serial_char == '\n' ||
  1193. serial_char == '\r' ||
  1194. (serial_char == ':' && comment_mode == false) ||
  1195. serial_count >= (MAX_CMD_SIZE - 1) )
  1196. {
  1197. if(!serial_count) { //if empty line
  1198. comment_mode = false; //for new command
  1199. return;
  1200. }
  1201. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1202. if(!comment_mode){
  1203. comment_mode = false; //for new command
  1204. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1205. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1206. {
  1207. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1208. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1209. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1210. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1211. // M110 - set current line number.
  1212. // Line numbers not sent in succession.
  1213. SERIAL_ERROR_START;
  1214. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1215. SERIAL_ERRORLN(gcode_LastN);
  1216. //Serial.println(gcode_N);
  1217. FlushSerialRequestResend();
  1218. serial_count = 0;
  1219. return;
  1220. }
  1221. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1222. {
  1223. byte checksum = 0;
  1224. char *p = cmdbuffer+bufindw+1;
  1225. while (p != strchr_pointer)
  1226. checksum = checksum^(*p++);
  1227. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1228. SERIAL_ERROR_START;
  1229. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1230. SERIAL_ERRORLN(gcode_LastN);
  1231. FlushSerialRequestResend();
  1232. serial_count = 0;
  1233. return;
  1234. }
  1235. // If no errors, remove the checksum and continue parsing.
  1236. *strchr_pointer = 0;
  1237. }
  1238. else
  1239. {
  1240. SERIAL_ERROR_START;
  1241. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1242. SERIAL_ERRORLN(gcode_LastN);
  1243. FlushSerialRequestResend();
  1244. serial_count = 0;
  1245. return;
  1246. }
  1247. gcode_LastN = gcode_N;
  1248. //if no errors, continue parsing
  1249. } // end of 'N' command
  1250. }
  1251. else // if we don't receive 'N' but still see '*'
  1252. {
  1253. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1254. {
  1255. SERIAL_ERROR_START;
  1256. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1257. SERIAL_ERRORLN(gcode_LastN);
  1258. serial_count = 0;
  1259. return;
  1260. }
  1261. } // end of '*' command
  1262. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1263. if (! IS_SD_PRINTING) {
  1264. usb_printing_counter = 10;
  1265. is_usb_printing = true;
  1266. }
  1267. if (Stopped == true) {
  1268. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1269. if (gcode >= 0 && gcode <= 3) {
  1270. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1271. LCD_MESSAGERPGM(MSG_STOPPED);
  1272. }
  1273. }
  1274. } // end of 'G' command
  1275. //If command was e-stop process now
  1276. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1277. kill();
  1278. // Store the current line into buffer, move to the next line.
  1279. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1280. #ifdef CMDBUFFER_DEBUG
  1281. SERIAL_ECHO_START;
  1282. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1283. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1284. SERIAL_ECHOLNPGM("");
  1285. #endif /* CMDBUFFER_DEBUG */
  1286. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1287. if (bufindw == sizeof(cmdbuffer))
  1288. bufindw = 0;
  1289. ++ buflen;
  1290. #ifdef CMDBUFFER_DEBUG
  1291. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1292. SERIAL_ECHO(buflen);
  1293. SERIAL_ECHOLNPGM("");
  1294. #endif /* CMDBUFFER_DEBUG */
  1295. } // end of 'not comment mode'
  1296. serial_count = 0; //clear buffer
  1297. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1298. // in the queue, as this function will reserve the memory.
  1299. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1300. return;
  1301. } // end of "end of line" processing
  1302. else {
  1303. // Not an "end of line" symbol. Store the new character into a buffer.
  1304. if(serial_char == ';') comment_mode = true;
  1305. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1306. }
  1307. } // end of serial line processing loop
  1308. if(farm_mode){
  1309. TimeNow = millis();
  1310. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1311. cmdbuffer[bufindw+serial_count+1] = 0;
  1312. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1313. if (bufindw == sizeof(cmdbuffer))
  1314. bufindw = 0;
  1315. ++ buflen;
  1316. serial_count = 0;
  1317. SERIAL_ECHOPGM("TIMEOUT:");
  1318. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1319. return;
  1320. }
  1321. }
  1322. //add comment
  1323. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1324. rx_buffer_full = false;
  1325. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1326. serial_count = 0;
  1327. }
  1328. #ifdef SDSUPPORT
  1329. if(!card.sdprinting || serial_count!=0){
  1330. // If there is a half filled buffer from serial line, wait until return before
  1331. // continuing with the serial line.
  1332. return;
  1333. }
  1334. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1335. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1336. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1337. static bool stop_buffering=false;
  1338. if(buflen==0) stop_buffering=false;
  1339. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1340. while( !card.eof() && !stop_buffering) {
  1341. int16_t n=card.get();
  1342. char serial_char = (char)n;
  1343. if(serial_char == '\n' ||
  1344. serial_char == '\r' ||
  1345. (serial_char == '#' && comment_mode == false) ||
  1346. (serial_char == ':' && comment_mode == false) ||
  1347. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1348. {
  1349. if(card.eof()){
  1350. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1351. stoptime=millis();
  1352. char time[30];
  1353. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1354. pause_time = 0;
  1355. int hours, minutes;
  1356. minutes=(t/60)%60;
  1357. hours=t/60/60;
  1358. save_statistics(total_filament_used, t);
  1359. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1360. SERIAL_ECHO_START;
  1361. SERIAL_ECHOLN(time);
  1362. lcd_setstatus(time);
  1363. card.printingHasFinished();
  1364. card.checkautostart(true);
  1365. if (farm_mode)
  1366. {
  1367. prusa_statistics(6);
  1368. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1369. }
  1370. }
  1371. if(serial_char=='#')
  1372. stop_buffering=true;
  1373. if(!serial_count)
  1374. {
  1375. comment_mode = false; //for new command
  1376. return; //if empty line
  1377. }
  1378. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1379. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1380. ++ buflen;
  1381. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1382. if (bufindw == sizeof(cmdbuffer))
  1383. bufindw = 0;
  1384. comment_mode = false; //for new command
  1385. serial_count = 0; //clear buffer
  1386. // The following line will reserve buffer space if available.
  1387. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1388. return;
  1389. }
  1390. else
  1391. {
  1392. if(serial_char == ';') comment_mode = true;
  1393. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1394. }
  1395. }
  1396. #endif //SDSUPPORT
  1397. }
  1398. // Return True if a character was found
  1399. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1400. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1401. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1402. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1403. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1404. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1405. #define DEFINE_PGM_READ_ANY(type, reader) \
  1406. static inline type pgm_read_any(const type *p) \
  1407. { return pgm_read_##reader##_near(p); }
  1408. DEFINE_PGM_READ_ANY(float, float);
  1409. DEFINE_PGM_READ_ANY(signed char, byte);
  1410. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1411. static const PROGMEM type array##_P[3] = \
  1412. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1413. static inline type array(int axis) \
  1414. { return pgm_read_any(&array##_P[axis]); } \
  1415. type array##_ext(int axis) \
  1416. { return pgm_read_any(&array##_P[axis]); }
  1417. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1418. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1419. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1420. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1421. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1422. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1423. static void axis_is_at_home(int axis) {
  1424. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1425. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1426. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1427. }
  1428. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1429. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1430. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1431. saved_feedrate = feedrate;
  1432. saved_feedmultiply = feedmultiply;
  1433. feedmultiply = 100;
  1434. previous_millis_cmd = millis();
  1435. enable_endstops(enable_endstops_now);
  1436. }
  1437. static void clean_up_after_endstop_move() {
  1438. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1439. enable_endstops(false);
  1440. #endif
  1441. feedrate = saved_feedrate;
  1442. feedmultiply = saved_feedmultiply;
  1443. previous_millis_cmd = millis();
  1444. }
  1445. #ifdef ENABLE_AUTO_BED_LEVELING
  1446. #ifdef AUTO_BED_LEVELING_GRID
  1447. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1448. {
  1449. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1450. planeNormal.debug("planeNormal");
  1451. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1452. //bedLevel.debug("bedLevel");
  1453. //plan_bed_level_matrix.debug("bed level before");
  1454. //vector_3 uncorrected_position = plan_get_position_mm();
  1455. //uncorrected_position.debug("position before");
  1456. vector_3 corrected_position = plan_get_position();
  1457. // corrected_position.debug("position after");
  1458. current_position[X_AXIS] = corrected_position.x;
  1459. current_position[Y_AXIS] = corrected_position.y;
  1460. current_position[Z_AXIS] = corrected_position.z;
  1461. // put the bed at 0 so we don't go below it.
  1462. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1463. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1464. }
  1465. #else // not AUTO_BED_LEVELING_GRID
  1466. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1467. plan_bed_level_matrix.set_to_identity();
  1468. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1469. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1470. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1471. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1472. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1473. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1474. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1475. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1476. vector_3 corrected_position = plan_get_position();
  1477. current_position[X_AXIS] = corrected_position.x;
  1478. current_position[Y_AXIS] = corrected_position.y;
  1479. current_position[Z_AXIS] = corrected_position.z;
  1480. // put the bed at 0 so we don't go below it.
  1481. current_position[Z_AXIS] = zprobe_zoffset;
  1482. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1483. }
  1484. #endif // AUTO_BED_LEVELING_GRID
  1485. static void run_z_probe() {
  1486. plan_bed_level_matrix.set_to_identity();
  1487. feedrate = homing_feedrate[Z_AXIS];
  1488. // move down until you find the bed
  1489. float zPosition = -10;
  1490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. // we have to let the planner know where we are right now as it is not where we said to go.
  1493. zPosition = st_get_position_mm(Z_AXIS);
  1494. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1495. // move up the retract distance
  1496. zPosition += home_retract_mm(Z_AXIS);
  1497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1498. st_synchronize();
  1499. // move back down slowly to find bed
  1500. feedrate = homing_feedrate[Z_AXIS]/4;
  1501. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1503. st_synchronize();
  1504. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1505. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. }
  1508. static void do_blocking_move_to(float x, float y, float z) {
  1509. float oldFeedRate = feedrate;
  1510. feedrate = homing_feedrate[Z_AXIS];
  1511. current_position[Z_AXIS] = z;
  1512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1513. st_synchronize();
  1514. feedrate = XY_TRAVEL_SPEED;
  1515. current_position[X_AXIS] = x;
  1516. current_position[Y_AXIS] = y;
  1517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. feedrate = oldFeedRate;
  1520. }
  1521. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1522. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1523. }
  1524. /// Probe bed height at position (x,y), returns the measured z value
  1525. static float probe_pt(float x, float y, float z_before) {
  1526. // move to right place
  1527. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1528. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1529. run_z_probe();
  1530. float measured_z = current_position[Z_AXIS];
  1531. SERIAL_PROTOCOLRPGM(MSG_BED);
  1532. SERIAL_PROTOCOLPGM(" x: ");
  1533. SERIAL_PROTOCOL(x);
  1534. SERIAL_PROTOCOLPGM(" y: ");
  1535. SERIAL_PROTOCOL(y);
  1536. SERIAL_PROTOCOLPGM(" z: ");
  1537. SERIAL_PROTOCOL(measured_z);
  1538. SERIAL_PROTOCOLPGM("\n");
  1539. return measured_z;
  1540. }
  1541. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1542. void homeaxis(int axis) {
  1543. #define HOMEAXIS_DO(LETTER) \
  1544. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1545. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1546. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1547. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1548. 0) {
  1549. int axis_home_dir = home_dir(axis);
  1550. current_position[axis] = 0;
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1552. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1553. feedrate = homing_feedrate[axis];
  1554. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. current_position[axis] = 0;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1562. feedrate = homing_feedrate[axis]/2 ;
  1563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1564. st_synchronize();
  1565. axis_is_at_home(axis);
  1566. destination[axis] = current_position[axis];
  1567. feedrate = 0.0;
  1568. endstops_hit_on_purpose();
  1569. axis_known_position[axis] = true;
  1570. }
  1571. }
  1572. void home_xy()
  1573. {
  1574. set_destination_to_current();
  1575. homeaxis(X_AXIS);
  1576. homeaxis(Y_AXIS);
  1577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1578. endstops_hit_on_purpose();
  1579. }
  1580. void refresh_cmd_timeout(void)
  1581. {
  1582. previous_millis_cmd = millis();
  1583. }
  1584. #ifdef FWRETRACT
  1585. void retract(bool retracting, bool swapretract = false) {
  1586. if(retracting && !retracted[active_extruder]) {
  1587. destination[X_AXIS]=current_position[X_AXIS];
  1588. destination[Y_AXIS]=current_position[Y_AXIS];
  1589. destination[Z_AXIS]=current_position[Z_AXIS];
  1590. destination[E_AXIS]=current_position[E_AXIS];
  1591. if (swapretract) {
  1592. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1593. } else {
  1594. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1595. }
  1596. plan_set_e_position(current_position[E_AXIS]);
  1597. float oldFeedrate = feedrate;
  1598. feedrate=retract_feedrate*60;
  1599. retracted[active_extruder]=true;
  1600. prepare_move();
  1601. current_position[Z_AXIS]-=retract_zlift;
  1602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1603. prepare_move();
  1604. feedrate = oldFeedrate;
  1605. } else if(!retracting && retracted[active_extruder]) {
  1606. destination[X_AXIS]=current_position[X_AXIS];
  1607. destination[Y_AXIS]=current_position[Y_AXIS];
  1608. destination[Z_AXIS]=current_position[Z_AXIS];
  1609. destination[E_AXIS]=current_position[E_AXIS];
  1610. current_position[Z_AXIS]+=retract_zlift;
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. //prepare_move();
  1613. if (swapretract) {
  1614. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1615. } else {
  1616. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1617. }
  1618. plan_set_e_position(current_position[E_AXIS]);
  1619. float oldFeedrate = feedrate;
  1620. feedrate=retract_recover_feedrate*60;
  1621. retracted[active_extruder]=false;
  1622. prepare_move();
  1623. feedrate = oldFeedrate;
  1624. }
  1625. } //retract
  1626. #endif //FWRETRACT
  1627. void trace() {
  1628. tone(BEEPER, 440);
  1629. delay(25);
  1630. noTone(BEEPER);
  1631. delay(20);
  1632. }
  1633. /*
  1634. void ramming() {
  1635. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1636. if (current_temperature[0] < 230) {
  1637. //PLA
  1638. max_feedrate[E_AXIS] = 50;
  1639. //current_position[E_AXIS] -= 8;
  1640. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1641. //current_position[E_AXIS] += 8;
  1642. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1643. current_position[E_AXIS] += 5.4;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1645. current_position[E_AXIS] += 3.2;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1647. current_position[E_AXIS] += 3;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1649. st_synchronize();
  1650. max_feedrate[E_AXIS] = 80;
  1651. current_position[E_AXIS] -= 82;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1653. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1654. current_position[E_AXIS] -= 20;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1656. current_position[E_AXIS] += 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1658. current_position[E_AXIS] += 5;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] -= 10;
  1661. st_synchronize();
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1663. current_position[E_AXIS] += 10;
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1665. current_position[E_AXIS] -= 10;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1667. current_position[E_AXIS] += 10;
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1669. current_position[E_AXIS] -= 10;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1671. st_synchronize();
  1672. }
  1673. else {
  1674. //ABS
  1675. max_feedrate[E_AXIS] = 50;
  1676. //current_position[E_AXIS] -= 8;
  1677. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1678. //current_position[E_AXIS] += 8;
  1679. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1680. current_position[E_AXIS] += 3.1;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1682. current_position[E_AXIS] += 3.1;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1684. current_position[E_AXIS] += 4;
  1685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1686. st_synchronize();
  1687. //current_position[X_AXIS] += 23; //delay
  1688. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1689. //current_position[X_AXIS] -= 23; //delay
  1690. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1691. delay(4700);
  1692. max_feedrate[E_AXIS] = 80;
  1693. current_position[E_AXIS] -= 92;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1695. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1696. current_position[E_AXIS] -= 5;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1698. current_position[E_AXIS] += 5;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1700. current_position[E_AXIS] -= 5;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1702. st_synchronize();
  1703. current_position[E_AXIS] += 5;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1705. current_position[E_AXIS] -= 5;
  1706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1707. current_position[E_AXIS] += 5;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1709. current_position[E_AXIS] -= 5;
  1710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1711. st_synchronize();
  1712. }
  1713. }
  1714. */
  1715. void process_commands()
  1716. {
  1717. #ifdef FILAMENT_RUNOUT_SUPPORT
  1718. SET_INPUT(FR_SENS);
  1719. #endif
  1720. #ifdef CMDBUFFER_DEBUG
  1721. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1722. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1723. SERIAL_ECHOLNPGM("");
  1724. SERIAL_ECHOPGM("In cmdqueue: ");
  1725. SERIAL_ECHO(buflen);
  1726. SERIAL_ECHOLNPGM("");
  1727. #endif /* CMDBUFFER_DEBUG */
  1728. unsigned long codenum; //throw away variable
  1729. char *starpos = NULL;
  1730. #ifdef ENABLE_AUTO_BED_LEVELING
  1731. float x_tmp, y_tmp, z_tmp, real_z;
  1732. #endif
  1733. // PRUSA GCODES
  1734. #ifdef SNMM
  1735. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1736. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1737. int8_t SilentMode;
  1738. #endif
  1739. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1740. starpos = (strchr(strchr_pointer + 5, '*'));
  1741. if (starpos != NULL)
  1742. *(starpos) = '\0';
  1743. lcd_setstatus(strchr_pointer + 5);
  1744. }
  1745. else if(code_seen("PRUSA")){
  1746. if (code_seen("Ping")) { //PRUSA Ping
  1747. if (farm_mode) {
  1748. PingTime = millis();
  1749. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1750. }
  1751. }
  1752. else if (code_seen("PRN")) {
  1753. MYSERIAL.println(status_number);
  1754. }else if (code_seen("fn")) {
  1755. if (farm_mode) {
  1756. MYSERIAL.println(farm_no);
  1757. }
  1758. else {
  1759. MYSERIAL.println("Not in farm mode.");
  1760. }
  1761. }else if (code_seen("fv")) {
  1762. // get file version
  1763. #ifdef SDSUPPORT
  1764. card.openFile(strchr_pointer + 3,true);
  1765. while (true) {
  1766. uint16_t readByte = card.get();
  1767. MYSERIAL.write(readByte);
  1768. if (readByte=='\n') {
  1769. break;
  1770. }
  1771. }
  1772. card.closefile();
  1773. #endif // SDSUPPORT
  1774. } else if (code_seen("M28")) {
  1775. trace();
  1776. prusa_sd_card_upload = true;
  1777. card.openFile(strchr_pointer+4,false);
  1778. } else if(code_seen("Fir")){
  1779. SERIAL_PROTOCOLLN(FW_version);
  1780. } else if(code_seen("Rev")){
  1781. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1782. } else if(code_seen("Lang")) {
  1783. lcd_force_language_selection();
  1784. } else if(code_seen("Lz")) {
  1785. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1786. } else if (code_seen("SERIAL LOW")) {
  1787. MYSERIAL.println("SERIAL LOW");
  1788. MYSERIAL.begin(BAUDRATE);
  1789. return;
  1790. } else if (code_seen("SERIAL HIGH")) {
  1791. MYSERIAL.println("SERIAL HIGH");
  1792. MYSERIAL.begin(1152000);
  1793. return;
  1794. } else if(code_seen("Beat")) {
  1795. // Kick farm link timer
  1796. kicktime = millis();
  1797. } else if(code_seen("FR")) {
  1798. // Factory full reset
  1799. factory_reset(0,true);
  1800. }
  1801. //else if (code_seen('Cal')) {
  1802. // lcd_calibration();
  1803. // }
  1804. }
  1805. else if (code_seen('^')) {
  1806. // nothing, this is a version line
  1807. } else if(code_seen('G'))
  1808. {
  1809. switch((int)code_value())
  1810. {
  1811. case 0: // G0 -> G1
  1812. case 1: // G1
  1813. if(Stopped == false) {
  1814. #ifdef FILAMENT_RUNOUT_SUPPORT
  1815. if(READ(FR_SENS)){
  1816. feedmultiplyBckp=feedmultiply;
  1817. float target[4];
  1818. float lastpos[4];
  1819. target[X_AXIS]=current_position[X_AXIS];
  1820. target[Y_AXIS]=current_position[Y_AXIS];
  1821. target[Z_AXIS]=current_position[Z_AXIS];
  1822. target[E_AXIS]=current_position[E_AXIS];
  1823. lastpos[X_AXIS]=current_position[X_AXIS];
  1824. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1825. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1826. lastpos[E_AXIS]=current_position[E_AXIS];
  1827. //retract by E
  1828. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1830. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1832. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1833. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1835. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1837. //finish moves
  1838. st_synchronize();
  1839. //disable extruder steppers so filament can be removed
  1840. disable_e0();
  1841. disable_e1();
  1842. disable_e2();
  1843. delay(100);
  1844. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1845. uint8_t cnt=0;
  1846. int counterBeep = 0;
  1847. lcd_wait_interact();
  1848. while(!lcd_clicked()){
  1849. cnt++;
  1850. manage_heater();
  1851. manage_inactivity(true);
  1852. //lcd_update();
  1853. if(cnt==0)
  1854. {
  1855. #if BEEPER > 0
  1856. if (counterBeep== 500){
  1857. counterBeep = 0;
  1858. }
  1859. SET_OUTPUT(BEEPER);
  1860. if (counterBeep== 0){
  1861. WRITE(BEEPER,HIGH);
  1862. }
  1863. if (counterBeep== 20){
  1864. WRITE(BEEPER,LOW);
  1865. }
  1866. counterBeep++;
  1867. #else
  1868. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1869. lcd_buzz(1000/6,100);
  1870. #else
  1871. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1872. #endif
  1873. #endif
  1874. }
  1875. }
  1876. WRITE(BEEPER,LOW);
  1877. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1879. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1881. lcd_change_fil_state = 0;
  1882. lcd_loading_filament();
  1883. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1884. lcd_change_fil_state = 0;
  1885. lcd_alright();
  1886. switch(lcd_change_fil_state){
  1887. case 2:
  1888. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1890. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1892. lcd_loading_filament();
  1893. break;
  1894. case 3:
  1895. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1897. lcd_loading_color();
  1898. break;
  1899. default:
  1900. lcd_change_success();
  1901. break;
  1902. }
  1903. }
  1904. target[E_AXIS]+= 5;
  1905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1906. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1908. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1909. //plan_set_e_position(current_position[E_AXIS]);
  1910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1911. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1912. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1913. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1914. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1915. plan_set_e_position(lastpos[E_AXIS]);
  1916. feedmultiply=feedmultiplyBckp;
  1917. char cmd[9];
  1918. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1919. enquecommand(cmd);
  1920. }
  1921. #endif
  1922. get_coordinates(); // For X Y Z E F
  1923. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1924. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1925. }
  1926. #ifdef FWRETRACT
  1927. if(autoretract_enabled)
  1928. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1929. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1930. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1931. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1932. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1933. retract(!retracted);
  1934. return;
  1935. }
  1936. }
  1937. #endif //FWRETRACT
  1938. prepare_move();
  1939. //ClearToSend();
  1940. }
  1941. break;
  1942. case 2: // G2 - CW ARC
  1943. if(Stopped == false) {
  1944. get_arc_coordinates();
  1945. prepare_arc_move(true);
  1946. }
  1947. break;
  1948. case 3: // G3 - CCW ARC
  1949. if(Stopped == false) {
  1950. get_arc_coordinates();
  1951. prepare_arc_move(false);
  1952. }
  1953. break;
  1954. case 4: // G4 dwell
  1955. codenum = 0;
  1956. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1957. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1958. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1959. st_synchronize();
  1960. codenum += millis(); // keep track of when we started waiting
  1961. previous_millis_cmd = millis();
  1962. while(millis() < codenum) {
  1963. manage_heater();
  1964. manage_inactivity();
  1965. lcd_update();
  1966. }
  1967. break;
  1968. #ifdef FWRETRACT
  1969. case 10: // G10 retract
  1970. #if EXTRUDERS > 1
  1971. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1972. retract(true,retracted_swap[active_extruder]);
  1973. #else
  1974. retract(true);
  1975. #endif
  1976. break;
  1977. case 11: // G11 retract_recover
  1978. #if EXTRUDERS > 1
  1979. retract(false,retracted_swap[active_extruder]);
  1980. #else
  1981. retract(false);
  1982. #endif
  1983. break;
  1984. #endif //FWRETRACT
  1985. case 28: //G28 Home all Axis one at a time
  1986. homing_flag = true;
  1987. #ifdef ENABLE_AUTO_BED_LEVELING
  1988. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1989. #endif //ENABLE_AUTO_BED_LEVELING
  1990. // For mesh bed leveling deactivate the matrix temporarily
  1991. #ifdef MESH_BED_LEVELING
  1992. mbl.active = 0;
  1993. #endif
  1994. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1995. // the planner will not perform any adjustments in the XY plane.
  1996. // Wait for the motors to stop and update the current position with the absolute values.
  1997. world2machine_revert_to_uncorrected();
  1998. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1999. // consumed during the first movements following this statement.
  2000. babystep_undo();
  2001. saved_feedrate = feedrate;
  2002. saved_feedmultiply = feedmultiply;
  2003. feedmultiply = 100;
  2004. previous_millis_cmd = millis();
  2005. enable_endstops(true);
  2006. for(int8_t i=0; i < NUM_AXIS; i++)
  2007. destination[i] = current_position[i];
  2008. feedrate = 0.0;
  2009. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2010. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2011. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2012. homeaxis(Z_AXIS);
  2013. }
  2014. #endif
  2015. #ifdef QUICK_HOME
  2016. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2017. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2018. {
  2019. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2020. int x_axis_home_dir = home_dir(X_AXIS);
  2021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2022. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2023. feedrate = homing_feedrate[X_AXIS];
  2024. if(homing_feedrate[Y_AXIS]<feedrate)
  2025. feedrate = homing_feedrate[Y_AXIS];
  2026. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2027. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2028. } else {
  2029. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2030. }
  2031. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2032. st_synchronize();
  2033. axis_is_at_home(X_AXIS);
  2034. axis_is_at_home(Y_AXIS);
  2035. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2036. destination[X_AXIS] = current_position[X_AXIS];
  2037. destination[Y_AXIS] = current_position[Y_AXIS];
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2039. feedrate = 0.0;
  2040. st_synchronize();
  2041. endstops_hit_on_purpose();
  2042. current_position[X_AXIS] = destination[X_AXIS];
  2043. current_position[Y_AXIS] = destination[Y_AXIS];
  2044. current_position[Z_AXIS] = destination[Z_AXIS];
  2045. }
  2046. #endif /* QUICK_HOME */
  2047. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2048. homeaxis(X_AXIS);
  2049. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2050. homeaxis(Y_AXIS);
  2051. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2052. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2053. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2054. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2055. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2056. #ifndef Z_SAFE_HOMING
  2057. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2058. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2059. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2060. feedrate = max_feedrate[Z_AXIS];
  2061. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2062. st_synchronize();
  2063. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2064. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2065. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2066. {
  2067. homeaxis(X_AXIS);
  2068. homeaxis(Y_AXIS);
  2069. }
  2070. // 1st mesh bed leveling measurement point, corrected.
  2071. world2machine_initialize();
  2072. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2073. world2machine_reset();
  2074. if (destination[Y_AXIS] < Y_MIN_POS)
  2075. destination[Y_AXIS] = Y_MIN_POS;
  2076. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2077. feedrate = homing_feedrate[Z_AXIS]/10;
  2078. current_position[Z_AXIS] = 0;
  2079. enable_endstops(false);
  2080. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2081. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2082. st_synchronize();
  2083. current_position[X_AXIS] = destination[X_AXIS];
  2084. current_position[Y_AXIS] = destination[Y_AXIS];
  2085. enable_endstops(true);
  2086. endstops_hit_on_purpose();
  2087. homeaxis(Z_AXIS);
  2088. #else // MESH_BED_LEVELING
  2089. homeaxis(Z_AXIS);
  2090. #endif // MESH_BED_LEVELING
  2091. }
  2092. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2093. if(home_all_axis) {
  2094. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2095. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2096. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2097. feedrate = XY_TRAVEL_SPEED/60;
  2098. current_position[Z_AXIS] = 0;
  2099. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2101. st_synchronize();
  2102. current_position[X_AXIS] = destination[X_AXIS];
  2103. current_position[Y_AXIS] = destination[Y_AXIS];
  2104. homeaxis(Z_AXIS);
  2105. }
  2106. // Let's see if X and Y are homed and probe is inside bed area.
  2107. if(code_seen(axis_codes[Z_AXIS])) {
  2108. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2109. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2110. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2111. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2112. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2113. current_position[Z_AXIS] = 0;
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2116. feedrate = max_feedrate[Z_AXIS];
  2117. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2118. st_synchronize();
  2119. homeaxis(Z_AXIS);
  2120. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2121. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2122. SERIAL_ECHO_START;
  2123. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2124. } else {
  2125. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2126. SERIAL_ECHO_START;
  2127. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2128. }
  2129. }
  2130. #endif // Z_SAFE_HOMING
  2131. #endif // Z_HOME_DIR < 0
  2132. if(code_seen(axis_codes[Z_AXIS])) {
  2133. if(code_value_long() != 0) {
  2134. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2135. }
  2136. }
  2137. #ifdef ENABLE_AUTO_BED_LEVELING
  2138. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2139. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2140. }
  2141. #endif
  2142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2143. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2144. enable_endstops(false);
  2145. #endif
  2146. feedrate = saved_feedrate;
  2147. feedmultiply = saved_feedmultiply;
  2148. previous_millis_cmd = millis();
  2149. endstops_hit_on_purpose();
  2150. #ifndef MESH_BED_LEVELING
  2151. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2152. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2153. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2154. lcd_adjust_z();
  2155. #endif
  2156. // Load the machine correction matrix
  2157. world2machine_initialize();
  2158. // and correct the current_position to match the transformed coordinate system.
  2159. world2machine_update_current();
  2160. #ifdef MESH_BED_LEVELING
  2161. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2162. {
  2163. }
  2164. else
  2165. {
  2166. st_synchronize();
  2167. homing_flag = false;
  2168. // Push the commands to the front of the message queue in the reverse order!
  2169. // There shall be always enough space reserved for these commands.
  2170. // enquecommand_front_P((PSTR("G80")));
  2171. goto case_G80;
  2172. }
  2173. #endif
  2174. if (farm_mode) { prusa_statistics(20); };
  2175. homing_flag = false;
  2176. break;
  2177. #ifdef ENABLE_AUTO_BED_LEVELING
  2178. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2179. {
  2180. #if Z_MIN_PIN == -1
  2181. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2182. #endif
  2183. // Prevent user from running a G29 without first homing in X and Y
  2184. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2185. {
  2186. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2187. SERIAL_ECHO_START;
  2188. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2189. break; // abort G29, since we don't know where we are
  2190. }
  2191. st_synchronize();
  2192. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2193. //vector_3 corrected_position = plan_get_position_mm();
  2194. //corrected_position.debug("position before G29");
  2195. plan_bed_level_matrix.set_to_identity();
  2196. vector_3 uncorrected_position = plan_get_position();
  2197. //uncorrected_position.debug("position durring G29");
  2198. current_position[X_AXIS] = uncorrected_position.x;
  2199. current_position[Y_AXIS] = uncorrected_position.y;
  2200. current_position[Z_AXIS] = uncorrected_position.z;
  2201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2202. setup_for_endstop_move();
  2203. feedrate = homing_feedrate[Z_AXIS];
  2204. #ifdef AUTO_BED_LEVELING_GRID
  2205. // probe at the points of a lattice grid
  2206. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2207. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2208. // solve the plane equation ax + by + d = z
  2209. // A is the matrix with rows [x y 1] for all the probed points
  2210. // B is the vector of the Z positions
  2211. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2212. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2213. // "A" matrix of the linear system of equations
  2214. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2215. // "B" vector of Z points
  2216. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2217. int probePointCounter = 0;
  2218. bool zig = true;
  2219. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2220. {
  2221. int xProbe, xInc;
  2222. if (zig)
  2223. {
  2224. xProbe = LEFT_PROBE_BED_POSITION;
  2225. //xEnd = RIGHT_PROBE_BED_POSITION;
  2226. xInc = xGridSpacing;
  2227. zig = false;
  2228. } else // zag
  2229. {
  2230. xProbe = RIGHT_PROBE_BED_POSITION;
  2231. //xEnd = LEFT_PROBE_BED_POSITION;
  2232. xInc = -xGridSpacing;
  2233. zig = true;
  2234. }
  2235. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2236. {
  2237. float z_before;
  2238. if (probePointCounter == 0)
  2239. {
  2240. // raise before probing
  2241. z_before = Z_RAISE_BEFORE_PROBING;
  2242. } else
  2243. {
  2244. // raise extruder
  2245. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2246. }
  2247. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2248. eqnBVector[probePointCounter] = measured_z;
  2249. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2250. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2251. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2252. probePointCounter++;
  2253. xProbe += xInc;
  2254. }
  2255. }
  2256. clean_up_after_endstop_move();
  2257. // solve lsq problem
  2258. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2259. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2260. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2261. SERIAL_PROTOCOLPGM(" b: ");
  2262. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2263. SERIAL_PROTOCOLPGM(" d: ");
  2264. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2265. set_bed_level_equation_lsq(plane_equation_coefficients);
  2266. free(plane_equation_coefficients);
  2267. #else // AUTO_BED_LEVELING_GRID not defined
  2268. // Probe at 3 arbitrary points
  2269. // probe 1
  2270. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2271. // probe 2
  2272. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2273. // probe 3
  2274. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2275. clean_up_after_endstop_move();
  2276. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2277. #endif // AUTO_BED_LEVELING_GRID
  2278. st_synchronize();
  2279. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2280. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2281. // When the bed is uneven, this height must be corrected.
  2282. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2283. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2284. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2285. z_tmp = current_position[Z_AXIS];
  2286. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2287. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2289. }
  2290. break;
  2291. #ifndef Z_PROBE_SLED
  2292. case 30: // G30 Single Z Probe
  2293. {
  2294. st_synchronize();
  2295. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2296. setup_for_endstop_move();
  2297. feedrate = homing_feedrate[Z_AXIS];
  2298. run_z_probe();
  2299. SERIAL_PROTOCOLPGM(MSG_BED);
  2300. SERIAL_PROTOCOLPGM(" X: ");
  2301. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2302. SERIAL_PROTOCOLPGM(" Y: ");
  2303. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2304. SERIAL_PROTOCOLPGM(" Z: ");
  2305. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2306. SERIAL_PROTOCOLPGM("\n");
  2307. clean_up_after_endstop_move();
  2308. }
  2309. break;
  2310. #else
  2311. case 31: // dock the sled
  2312. dock_sled(true);
  2313. break;
  2314. case 32: // undock the sled
  2315. dock_sled(false);
  2316. break;
  2317. #endif // Z_PROBE_SLED
  2318. #endif // ENABLE_AUTO_BED_LEVELING
  2319. #ifdef MESH_BED_LEVELING
  2320. case 30: // G30 Single Z Probe
  2321. {
  2322. st_synchronize();
  2323. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2324. setup_for_endstop_move();
  2325. feedrate = homing_feedrate[Z_AXIS];
  2326. find_bed_induction_sensor_point_z(-10.f, 3);
  2327. SERIAL_PROTOCOLRPGM(MSG_BED);
  2328. SERIAL_PROTOCOLPGM(" X: ");
  2329. MYSERIAL.print(current_position[X_AXIS], 5);
  2330. SERIAL_PROTOCOLPGM(" Y: ");
  2331. MYSERIAL.print(current_position[Y_AXIS], 5);
  2332. SERIAL_PROTOCOLPGM(" Z: ");
  2333. MYSERIAL.print(current_position[Z_AXIS], 5);
  2334. SERIAL_PROTOCOLPGM("\n");
  2335. clean_up_after_endstop_move();
  2336. }
  2337. break;
  2338. case 75:
  2339. {
  2340. for (int i = 40; i <= 110; i++) {
  2341. MYSERIAL.print(i);
  2342. MYSERIAL.print(" ");
  2343. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2344. }
  2345. }
  2346. break;
  2347. case 76: //PINDA probe temperature calibration
  2348. {
  2349. setTargetBed(PINDA_MIN_T);
  2350. float zero_z;
  2351. int z_shift = 0; //unit: steps
  2352. int t_c; // temperature
  2353. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2354. // We don't know where we are! HOME!
  2355. // Push the commands to the front of the message queue in the reverse order!
  2356. // There shall be always enough space reserved for these commands.
  2357. repeatcommand_front(); // repeat G76 with all its parameters
  2358. enquecommand_front_P((PSTR("G28 W0")));
  2359. break;
  2360. }
  2361. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2362. custom_message = true;
  2363. custom_message_type = 4;
  2364. custom_message_state = 1;
  2365. custom_message = MSG_TEMP_CALIBRATION;
  2366. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2367. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2368. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2370. st_synchronize();
  2371. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2372. delay_keep_alive(1000);
  2373. serialecho_temperatures();
  2374. }
  2375. //enquecommand_P(PSTR("M190 S50"));
  2376. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2377. delay_keep_alive(1000);
  2378. serialecho_temperatures();
  2379. }
  2380. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2381. current_position[Z_AXIS] = 5;
  2382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2383. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2384. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2386. st_synchronize();
  2387. find_bed_induction_sensor_point_z(-1.f);
  2388. zero_z = current_position[Z_AXIS];
  2389. //current_position[Z_AXIS]
  2390. SERIAL_ECHOLNPGM("");
  2391. SERIAL_ECHOPGM("ZERO: ");
  2392. MYSERIAL.print(current_position[Z_AXIS]);
  2393. SERIAL_ECHOLNPGM("");
  2394. for (int i = 0; i<5; i++) {
  2395. SERIAL_ECHOPGM("Step: ");
  2396. MYSERIAL.print(i+2);
  2397. SERIAL_ECHOLNPGM("/6");
  2398. custom_message_state = i + 2;
  2399. t_c = 60 + i * 10;
  2400. setTargetBed(t_c);
  2401. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2402. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2403. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2405. st_synchronize();
  2406. while (degBed() < t_c) {
  2407. delay_keep_alive(1000);
  2408. serialecho_temperatures();
  2409. }
  2410. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2411. delay_keep_alive(1000);
  2412. serialecho_temperatures();
  2413. }
  2414. current_position[Z_AXIS] = 5;
  2415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2416. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2417. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2419. st_synchronize();
  2420. find_bed_induction_sensor_point_z(-1.f);
  2421. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2422. SERIAL_ECHOLNPGM("");
  2423. SERIAL_ECHOPGM("Temperature: ");
  2424. MYSERIAL.print(t_c);
  2425. SERIAL_ECHOPGM(" Z shift (mm):");
  2426. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2427. SERIAL_ECHOLNPGM("");
  2428. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2429. }
  2430. custom_message_type = 0;
  2431. custom_message = false;
  2432. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2433. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2434. disable_x();
  2435. disable_y();
  2436. disable_z();
  2437. disable_e0();
  2438. disable_e1();
  2439. disable_e2();
  2440. setTargetBed(0); //set bed target temperature back to 0
  2441. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2442. lcd_update_enable(true);
  2443. lcd_update(2);
  2444. }
  2445. break;
  2446. #ifdef DIS
  2447. case 77:
  2448. {
  2449. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2450. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2451. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2452. float dimension_x = 40;
  2453. float dimension_y = 40;
  2454. int points_x = 40;
  2455. int points_y = 40;
  2456. float offset_x = 74;
  2457. float offset_y = 33;
  2458. if (code_seen('X')) dimension_x = code_value();
  2459. if (code_seen('Y')) dimension_y = code_value();
  2460. if (code_seen('XP')) points_x = code_value();
  2461. if (code_seen('YP')) points_y = code_value();
  2462. if (code_seen('XO')) offset_x = code_value();
  2463. if (code_seen('YO')) offset_y = code_value();
  2464. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2465. } break;
  2466. #endif
  2467. /**
  2468. * G80: Mesh-based Z probe, probes a grid and produces a
  2469. * mesh to compensate for variable bed height
  2470. *
  2471. * The S0 report the points as below
  2472. *
  2473. * +----> X-axis
  2474. * |
  2475. * |
  2476. * v Y-axis
  2477. *
  2478. */
  2479. case 80:
  2480. case_G80:
  2481. {
  2482. mesh_bed_leveling_flag = true;
  2483. int8_t verbosity_level = 0;
  2484. static bool run = false;
  2485. if (code_seen('V')) {
  2486. // Just 'V' without a number counts as V1.
  2487. char c = strchr_pointer[1];
  2488. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2489. }
  2490. // Firstly check if we know where we are
  2491. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2492. // We don't know where we are! HOME!
  2493. // Push the commands to the front of the message queue in the reverse order!
  2494. // There shall be always enough space reserved for these commands.
  2495. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2496. repeatcommand_front(); // repeat G80 with all its parameters
  2497. enquecommand_front_P((PSTR("G28 W0")));
  2498. }
  2499. else {
  2500. mesh_bed_leveling_flag = false;
  2501. }
  2502. break;
  2503. }
  2504. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2505. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2506. temp_compensation_start();
  2507. run = true;
  2508. repeatcommand_front(); // repeat G80 with all its parameters
  2509. enquecommand_front_P((PSTR("G28 W0")));
  2510. }
  2511. else {
  2512. mesh_bed_leveling_flag = false;
  2513. }
  2514. break;
  2515. }
  2516. run = false;
  2517. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2518. mesh_bed_leveling_flag = false;
  2519. break;
  2520. }
  2521. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2522. bool custom_message_old = custom_message;
  2523. unsigned int custom_message_type_old = custom_message_type;
  2524. unsigned int custom_message_state_old = custom_message_state;
  2525. custom_message = true;
  2526. custom_message_type = 1;
  2527. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2528. lcd_update(1);
  2529. mbl.reset(); //reset mesh bed leveling
  2530. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2531. // consumed during the first movements following this statement.
  2532. babystep_undo();
  2533. // Cycle through all points and probe them
  2534. // First move up. During this first movement, the babystepping will be reverted.
  2535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2537. // The move to the first calibration point.
  2538. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2539. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2540. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2541. if (verbosity_level >= 1) {
  2542. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2543. }
  2544. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2546. // Wait until the move is finished.
  2547. st_synchronize();
  2548. int mesh_point = 0; //index number of calibration point
  2549. int ix = 0;
  2550. int iy = 0;
  2551. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2552. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2553. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2554. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2555. if (verbosity_level >= 1) {
  2556. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2557. }
  2558. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2559. const char *kill_message = NULL;
  2560. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2561. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2562. // Get coords of a measuring point.
  2563. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2564. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2565. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2566. float z0 = 0.f;
  2567. if (has_z && mesh_point > 0) {
  2568. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2569. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2570. //#if 0
  2571. if (verbosity_level >= 1) {
  2572. SERIAL_ECHOPGM("Bed leveling, point: ");
  2573. MYSERIAL.print(mesh_point);
  2574. SERIAL_ECHOPGM(", calibration z: ");
  2575. MYSERIAL.print(z0, 5);
  2576. SERIAL_ECHOLNPGM("");
  2577. }
  2578. //#endif
  2579. }
  2580. // Move Z up to MESH_HOME_Z_SEARCH.
  2581. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2583. st_synchronize();
  2584. // Move to XY position of the sensor point.
  2585. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2586. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2587. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2588. if (verbosity_level >= 1) {
  2589. SERIAL_PROTOCOL(mesh_point);
  2590. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2591. }
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2593. st_synchronize();
  2594. // Go down until endstop is hit
  2595. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2596. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2597. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2598. break;
  2599. }
  2600. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2601. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2602. break;
  2603. }
  2604. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2605. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2606. break;
  2607. }
  2608. if (verbosity_level >= 10) {
  2609. SERIAL_ECHOPGM("X: ");
  2610. MYSERIAL.print(current_position[X_AXIS], 5);
  2611. SERIAL_ECHOLNPGM("");
  2612. SERIAL_ECHOPGM("Y: ");
  2613. MYSERIAL.print(current_position[Y_AXIS], 5);
  2614. SERIAL_PROTOCOLPGM("\n");
  2615. }
  2616. if (verbosity_level >= 1) {
  2617. SERIAL_ECHOPGM("mesh bed leveling: ");
  2618. MYSERIAL.print(current_position[Z_AXIS], 5);
  2619. SERIAL_ECHOLNPGM("");
  2620. }
  2621. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2622. custom_message_state--;
  2623. mesh_point++;
  2624. lcd_update(1);
  2625. }
  2626. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2628. if (verbosity_level >= 20) {
  2629. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2630. MYSERIAL.print(current_position[Z_AXIS], 5);
  2631. }
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2633. st_synchronize();
  2634. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2635. kill(kill_message);
  2636. SERIAL_ECHOLNPGM("killed");
  2637. }
  2638. clean_up_after_endstop_move();
  2639. SERIAL_ECHOLNPGM("clean up finished ");
  2640. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2641. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2642. SERIAL_ECHOLNPGM("babystep applied");
  2643. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2644. if (verbosity_level >= 1) {
  2645. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2646. }
  2647. for (uint8_t i = 0; i < 4; ++i) {
  2648. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2649. long correction = 0;
  2650. if (code_seen(codes[i]))
  2651. correction = code_value_long();
  2652. else if (eeprom_bed_correction_valid) {
  2653. unsigned char *addr = (i < 2) ?
  2654. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2655. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2656. correction = eeprom_read_int8(addr);
  2657. }
  2658. if (correction == 0)
  2659. continue;
  2660. float offset = float(correction) * 0.001f;
  2661. if (fabs(offset) > 0.101f) {
  2662. SERIAL_ERROR_START;
  2663. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2664. SERIAL_ECHO(offset);
  2665. SERIAL_ECHOLNPGM(" microns");
  2666. }
  2667. else {
  2668. switch (i) {
  2669. case 0:
  2670. for (uint8_t row = 0; row < 3; ++row) {
  2671. mbl.z_values[row][1] += 0.5f * offset;
  2672. mbl.z_values[row][0] += offset;
  2673. }
  2674. break;
  2675. case 1:
  2676. for (uint8_t row = 0; row < 3; ++row) {
  2677. mbl.z_values[row][1] += 0.5f * offset;
  2678. mbl.z_values[row][2] += offset;
  2679. }
  2680. break;
  2681. case 2:
  2682. for (uint8_t col = 0; col < 3; ++col) {
  2683. mbl.z_values[1][col] += 0.5f * offset;
  2684. mbl.z_values[0][col] += offset;
  2685. }
  2686. break;
  2687. case 3:
  2688. for (uint8_t col = 0; col < 3; ++col) {
  2689. mbl.z_values[1][col] += 0.5f * offset;
  2690. mbl.z_values[2][col] += offset;
  2691. }
  2692. break;
  2693. }
  2694. }
  2695. }
  2696. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2697. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2698. SERIAL_ECHOLNPGM("Upsample finished");
  2699. mbl.active = 1; //activate mesh bed leveling
  2700. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2701. go_home_with_z_lift();
  2702. SERIAL_ECHOLNPGM("Go home finished");
  2703. //unretract (after PINDA preheat retraction)
  2704. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2705. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2707. }
  2708. // Restore custom message state
  2709. custom_message = custom_message_old;
  2710. custom_message_type = custom_message_type_old;
  2711. custom_message_state = custom_message_state_old;
  2712. mesh_bed_leveling_flag = false;
  2713. mesh_bed_run_from_menu = false;
  2714. lcd_update(2);
  2715. }
  2716. break;
  2717. /**
  2718. * G81: Print mesh bed leveling status and bed profile if activated
  2719. */
  2720. case 81:
  2721. if (mbl.active) {
  2722. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2723. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2724. SERIAL_PROTOCOLPGM(",");
  2725. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2726. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2727. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2728. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2729. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2730. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2731. SERIAL_PROTOCOLPGM(" ");
  2732. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2733. }
  2734. SERIAL_PROTOCOLPGM("\n");
  2735. }
  2736. }
  2737. else
  2738. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2739. break;
  2740. #if 0
  2741. /**
  2742. * G82: Single Z probe at current location
  2743. *
  2744. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2745. *
  2746. */
  2747. case 82:
  2748. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2749. setup_for_endstop_move();
  2750. find_bed_induction_sensor_point_z();
  2751. clean_up_after_endstop_move();
  2752. SERIAL_PROTOCOLPGM("Bed found at: ");
  2753. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2754. SERIAL_PROTOCOLPGM("\n");
  2755. break;
  2756. /**
  2757. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2758. */
  2759. case 83:
  2760. {
  2761. int babystepz = code_seen('S') ? code_value() : 0;
  2762. int BabyPosition = code_seen('P') ? code_value() : 0;
  2763. if (babystepz != 0) {
  2764. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2765. // Is the axis indexed starting with zero or one?
  2766. if (BabyPosition > 4) {
  2767. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2768. }else{
  2769. // Save it to the eeprom
  2770. babystepLoadZ = babystepz;
  2771. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2772. // adjust the Z
  2773. babystepsTodoZadd(babystepLoadZ);
  2774. }
  2775. }
  2776. }
  2777. break;
  2778. /**
  2779. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2780. */
  2781. case 84:
  2782. babystepsTodoZsubtract(babystepLoadZ);
  2783. // babystepLoadZ = 0;
  2784. break;
  2785. /**
  2786. * G85: Prusa3D specific: Pick best babystep
  2787. */
  2788. case 85:
  2789. lcd_pick_babystep();
  2790. break;
  2791. #endif
  2792. /**
  2793. * G86: Prusa3D specific: Disable babystep correction after home.
  2794. * This G-code will be performed at the start of a calibration script.
  2795. */
  2796. case 86:
  2797. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2798. break;
  2799. /**
  2800. * G87: Prusa3D specific: Enable babystep correction after home
  2801. * This G-code will be performed at the end of a calibration script.
  2802. */
  2803. case 87:
  2804. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2805. break;
  2806. /**
  2807. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2808. */
  2809. case 88:
  2810. break;
  2811. #endif // ENABLE_MESH_BED_LEVELING
  2812. case 90: // G90
  2813. relative_mode = false;
  2814. break;
  2815. case 91: // G91
  2816. relative_mode = true;
  2817. break;
  2818. case 92: // G92
  2819. if(!code_seen(axis_codes[E_AXIS]))
  2820. st_synchronize();
  2821. for(int8_t i=0; i < NUM_AXIS; i++) {
  2822. if(code_seen(axis_codes[i])) {
  2823. if(i == E_AXIS) {
  2824. current_position[i] = code_value();
  2825. plan_set_e_position(current_position[E_AXIS]);
  2826. }
  2827. else {
  2828. current_position[i] = code_value()+add_homing[i];
  2829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2830. }
  2831. }
  2832. }
  2833. break;
  2834. case 98: //activate farm mode
  2835. farm_mode = 1;
  2836. PingTime = millis();
  2837. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2838. break;
  2839. case 99: //deactivate farm mode
  2840. farm_mode = 0;
  2841. lcd_printer_connected();
  2842. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2843. lcd_update(2);
  2844. break;
  2845. }
  2846. } // end if(code_seen('G'))
  2847. else if(code_seen('M'))
  2848. {
  2849. int index;
  2850. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2851. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2852. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2853. SERIAL_ECHOLNPGM("Invalid M code");
  2854. } else
  2855. switch((int)code_value())
  2856. {
  2857. #ifdef ULTIPANEL
  2858. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2859. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2860. {
  2861. char *src = strchr_pointer + 2;
  2862. codenum = 0;
  2863. bool hasP = false, hasS = false;
  2864. if (code_seen('P')) {
  2865. codenum = code_value(); // milliseconds to wait
  2866. hasP = codenum > 0;
  2867. }
  2868. if (code_seen('S')) {
  2869. codenum = code_value() * 1000; // seconds to wait
  2870. hasS = codenum > 0;
  2871. }
  2872. starpos = strchr(src, '*');
  2873. if (starpos != NULL) *(starpos) = '\0';
  2874. while (*src == ' ') ++src;
  2875. if (!hasP && !hasS && *src != '\0') {
  2876. lcd_setstatus(src);
  2877. } else {
  2878. LCD_MESSAGERPGM(MSG_USERWAIT);
  2879. }
  2880. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2881. st_synchronize();
  2882. previous_millis_cmd = millis();
  2883. if (codenum > 0){
  2884. codenum += millis(); // keep track of when we started waiting
  2885. while(millis() < codenum && !lcd_clicked()){
  2886. manage_heater();
  2887. manage_inactivity(true);
  2888. lcd_update();
  2889. }
  2890. lcd_ignore_click(false);
  2891. }else{
  2892. if (!lcd_detected())
  2893. break;
  2894. while(!lcd_clicked()){
  2895. manage_heater();
  2896. manage_inactivity(true);
  2897. lcd_update();
  2898. }
  2899. }
  2900. if (IS_SD_PRINTING)
  2901. LCD_MESSAGERPGM(MSG_RESUMING);
  2902. else
  2903. LCD_MESSAGERPGM(WELCOME_MSG);
  2904. }
  2905. break;
  2906. #endif
  2907. case 17:
  2908. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2909. enable_x();
  2910. enable_y();
  2911. enable_z();
  2912. enable_e0();
  2913. enable_e1();
  2914. enable_e2();
  2915. break;
  2916. #ifdef SDSUPPORT
  2917. case 20: // M20 - list SD card
  2918. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2919. card.ls();
  2920. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2921. break;
  2922. case 21: // M21 - init SD card
  2923. card.initsd();
  2924. break;
  2925. case 22: //M22 - release SD card
  2926. card.release();
  2927. break;
  2928. case 23: //M23 - Select file
  2929. starpos = (strchr(strchr_pointer + 4,'*'));
  2930. if(starpos!=NULL)
  2931. *(starpos)='\0';
  2932. card.openFile(strchr_pointer + 4,true);
  2933. break;
  2934. case 24: //M24 - Start SD print
  2935. card.startFileprint();
  2936. starttime=millis();
  2937. break;
  2938. case 25: //M25 - Pause SD print
  2939. card.pauseSDPrint();
  2940. break;
  2941. case 26: //M26 - Set SD index
  2942. if(card.cardOK && code_seen('S')) {
  2943. card.setIndex(code_value_long());
  2944. }
  2945. break;
  2946. case 27: //M27 - Get SD status
  2947. card.getStatus();
  2948. break;
  2949. case 28: //M28 - Start SD write
  2950. starpos = (strchr(strchr_pointer + 4,'*'));
  2951. if(starpos != NULL){
  2952. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2953. strchr_pointer = strchr(npos,' ') + 1;
  2954. *(starpos) = '\0';
  2955. }
  2956. card.openFile(strchr_pointer+4,false);
  2957. break;
  2958. case 29: //M29 - Stop SD write
  2959. //processed in write to file routine above
  2960. //card,saving = false;
  2961. break;
  2962. case 30: //M30 <filename> Delete File
  2963. if (card.cardOK){
  2964. card.closefile();
  2965. starpos = (strchr(strchr_pointer + 4,'*'));
  2966. if(starpos != NULL){
  2967. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2968. strchr_pointer = strchr(npos,' ') + 1;
  2969. *(starpos) = '\0';
  2970. }
  2971. card.removeFile(strchr_pointer + 4);
  2972. }
  2973. break;
  2974. case 32: //M32 - Select file and start SD print
  2975. {
  2976. if(card.sdprinting) {
  2977. st_synchronize();
  2978. }
  2979. starpos = (strchr(strchr_pointer + 4,'*'));
  2980. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2981. if(namestartpos==NULL)
  2982. {
  2983. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2984. }
  2985. else
  2986. namestartpos++; //to skip the '!'
  2987. if(starpos!=NULL)
  2988. *(starpos)='\0';
  2989. bool call_procedure=(code_seen('P'));
  2990. if(strchr_pointer>namestartpos)
  2991. call_procedure=false; //false alert, 'P' found within filename
  2992. if( card.cardOK )
  2993. {
  2994. card.openFile(namestartpos,true,!call_procedure);
  2995. if(code_seen('S'))
  2996. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2997. card.setIndex(code_value_long());
  2998. card.startFileprint();
  2999. if(!call_procedure)
  3000. starttime=millis(); //procedure calls count as normal print time.
  3001. }
  3002. } break;
  3003. case 928: //M928 - Start SD write
  3004. starpos = (strchr(strchr_pointer + 5,'*'));
  3005. if(starpos != NULL){
  3006. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3007. strchr_pointer = strchr(npos,' ') + 1;
  3008. *(starpos) = '\0';
  3009. }
  3010. card.openLogFile(strchr_pointer+5);
  3011. break;
  3012. #endif //SDSUPPORT
  3013. case 31: //M31 take time since the start of the SD print or an M109 command
  3014. {
  3015. stoptime=millis();
  3016. char time[30];
  3017. unsigned long t=(stoptime-starttime)/1000;
  3018. int sec,min;
  3019. min=t/60;
  3020. sec=t%60;
  3021. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3022. SERIAL_ECHO_START;
  3023. SERIAL_ECHOLN(time);
  3024. lcd_setstatus(time);
  3025. autotempShutdown();
  3026. }
  3027. break;
  3028. case 42: //M42 -Change pin status via gcode
  3029. if (code_seen('S'))
  3030. {
  3031. int pin_status = code_value();
  3032. int pin_number = LED_PIN;
  3033. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3034. pin_number = code_value();
  3035. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3036. {
  3037. if (sensitive_pins[i] == pin_number)
  3038. {
  3039. pin_number = -1;
  3040. break;
  3041. }
  3042. }
  3043. #if defined(FAN_PIN) && FAN_PIN > -1
  3044. if (pin_number == FAN_PIN)
  3045. fanSpeed = pin_status;
  3046. #endif
  3047. if (pin_number > -1)
  3048. {
  3049. pinMode(pin_number, OUTPUT);
  3050. digitalWrite(pin_number, pin_status);
  3051. analogWrite(pin_number, pin_status);
  3052. }
  3053. }
  3054. break;
  3055. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3056. // Reset the baby step value and the baby step applied flag.
  3057. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3058. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3059. // Reset the skew and offset in both RAM and EEPROM.
  3060. reset_bed_offset_and_skew();
  3061. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3062. // the planner will not perform any adjustments in the XY plane.
  3063. // Wait for the motors to stop and update the current position with the absolute values.
  3064. world2machine_revert_to_uncorrected();
  3065. break;
  3066. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3067. {
  3068. // Only Z calibration?
  3069. bool onlyZ = code_seen('Z');
  3070. if (!onlyZ) {
  3071. setTargetBed(0);
  3072. setTargetHotend(0, 0);
  3073. setTargetHotend(0, 1);
  3074. setTargetHotend(0, 2);
  3075. adjust_bed_reset(); //reset bed level correction
  3076. }
  3077. // Disable the default update procedure of the display. We will do a modal dialog.
  3078. lcd_update_enable(false);
  3079. // Let the planner use the uncorrected coordinates.
  3080. mbl.reset();
  3081. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3082. // the planner will not perform any adjustments in the XY plane.
  3083. // Wait for the motors to stop and update the current position with the absolute values.
  3084. world2machine_revert_to_uncorrected();
  3085. // Reset the baby step value applied without moving the axes.
  3086. babystep_reset();
  3087. // Mark all axes as in a need for homing.
  3088. memset(axis_known_position, 0, sizeof(axis_known_position));
  3089. // Let the user move the Z axes up to the end stoppers.
  3090. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3091. refresh_cmd_timeout();
  3092. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3093. lcd_wait_for_cool_down();
  3094. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3095. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3096. lcd_implementation_print_at(0, 2, 1);
  3097. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3098. }
  3099. // Move the print head close to the bed.
  3100. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3102. st_synchronize();
  3103. // Home in the XY plane.
  3104. set_destination_to_current();
  3105. setup_for_endstop_move();
  3106. home_xy();
  3107. int8_t verbosity_level = 0;
  3108. if (code_seen('V')) {
  3109. // Just 'V' without a number counts as V1.
  3110. char c = strchr_pointer[1];
  3111. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3112. }
  3113. if (onlyZ) {
  3114. clean_up_after_endstop_move();
  3115. // Z only calibration.
  3116. // Load the machine correction matrix
  3117. world2machine_initialize();
  3118. // and correct the current_position to match the transformed coordinate system.
  3119. world2machine_update_current();
  3120. //FIXME
  3121. bool result = sample_mesh_and_store_reference();
  3122. if (result) {
  3123. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3124. // Shipped, the nozzle height has been set already. The user can start printing now.
  3125. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3126. // babystep_apply();
  3127. }
  3128. } else {
  3129. // Reset the baby step value and the baby step applied flag.
  3130. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3131. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3132. // Complete XYZ calibration.
  3133. uint8_t point_too_far_mask = 0;
  3134. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3135. clean_up_after_endstop_move();
  3136. // Print head up.
  3137. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3139. st_synchronize();
  3140. if (result >= 0) {
  3141. point_too_far_mask = 0;
  3142. // Second half: The fine adjustment.
  3143. // Let the planner use the uncorrected coordinates.
  3144. mbl.reset();
  3145. world2machine_reset();
  3146. // Home in the XY plane.
  3147. setup_for_endstop_move();
  3148. home_xy();
  3149. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3150. clean_up_after_endstop_move();
  3151. // Print head up.
  3152. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3154. st_synchronize();
  3155. // if (result >= 0) babystep_apply();
  3156. }
  3157. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3158. if (result >= 0) {
  3159. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3160. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3161. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3162. }
  3163. }
  3164. } else {
  3165. // Timeouted.
  3166. }
  3167. lcd_update_enable(true);
  3168. break;
  3169. }
  3170. /*
  3171. case 46:
  3172. {
  3173. // M46: Prusa3D: Show the assigned IP address.
  3174. uint8_t ip[4];
  3175. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3176. if (hasIP) {
  3177. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3178. SERIAL_ECHO(int(ip[0]));
  3179. SERIAL_ECHOPGM(".");
  3180. SERIAL_ECHO(int(ip[1]));
  3181. SERIAL_ECHOPGM(".");
  3182. SERIAL_ECHO(int(ip[2]));
  3183. SERIAL_ECHOPGM(".");
  3184. SERIAL_ECHO(int(ip[3]));
  3185. SERIAL_ECHOLNPGM("");
  3186. } else {
  3187. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3188. }
  3189. break;
  3190. }
  3191. */
  3192. case 47:
  3193. // M47: Prusa3D: Show end stops dialog on the display.
  3194. lcd_diag_show_end_stops();
  3195. break;
  3196. #if 0
  3197. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3198. {
  3199. // Disable the default update procedure of the display. We will do a modal dialog.
  3200. lcd_update_enable(false);
  3201. // Let the planner use the uncorrected coordinates.
  3202. mbl.reset();
  3203. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3204. // the planner will not perform any adjustments in the XY plane.
  3205. // Wait for the motors to stop and update the current position with the absolute values.
  3206. world2machine_revert_to_uncorrected();
  3207. // Move the print head close to the bed.
  3208. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3210. st_synchronize();
  3211. // Home in the XY plane.
  3212. set_destination_to_current();
  3213. setup_for_endstop_move();
  3214. home_xy();
  3215. int8_t verbosity_level = 0;
  3216. if (code_seen('V')) {
  3217. // Just 'V' without a number counts as V1.
  3218. char c = strchr_pointer[1];
  3219. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3220. }
  3221. bool success = scan_bed_induction_points(verbosity_level);
  3222. clean_up_after_endstop_move();
  3223. // Print head up.
  3224. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3226. st_synchronize();
  3227. lcd_update_enable(true);
  3228. break;
  3229. }
  3230. #endif
  3231. // M48 Z-Probe repeatability measurement function.
  3232. //
  3233. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3234. //
  3235. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3236. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3237. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3238. // regenerated.
  3239. //
  3240. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3241. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3242. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3243. //
  3244. #ifdef ENABLE_AUTO_BED_LEVELING
  3245. #ifdef Z_PROBE_REPEATABILITY_TEST
  3246. case 48: // M48 Z-Probe repeatability
  3247. {
  3248. #if Z_MIN_PIN == -1
  3249. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3250. #endif
  3251. double sum=0.0;
  3252. double mean=0.0;
  3253. double sigma=0.0;
  3254. double sample_set[50];
  3255. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3256. double X_current, Y_current, Z_current;
  3257. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3258. if (code_seen('V') || code_seen('v')) {
  3259. verbose_level = code_value();
  3260. if (verbose_level<0 || verbose_level>4 ) {
  3261. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3262. goto Sigma_Exit;
  3263. }
  3264. }
  3265. if (verbose_level > 0) {
  3266. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3267. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3268. }
  3269. if (code_seen('n')) {
  3270. n_samples = code_value();
  3271. if (n_samples<4 || n_samples>50 ) {
  3272. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3273. goto Sigma_Exit;
  3274. }
  3275. }
  3276. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3277. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3278. Z_current = st_get_position_mm(Z_AXIS);
  3279. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3280. ext_position = st_get_position_mm(E_AXIS);
  3281. if (code_seen('X') || code_seen('x') ) {
  3282. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3283. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3284. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3285. goto Sigma_Exit;
  3286. }
  3287. }
  3288. if (code_seen('Y') || code_seen('y') ) {
  3289. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3290. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3291. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3292. goto Sigma_Exit;
  3293. }
  3294. }
  3295. if (code_seen('L') || code_seen('l') ) {
  3296. n_legs = code_value();
  3297. if ( n_legs==1 )
  3298. n_legs = 2;
  3299. if ( n_legs<0 || n_legs>15 ) {
  3300. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3301. goto Sigma_Exit;
  3302. }
  3303. }
  3304. //
  3305. // Do all the preliminary setup work. First raise the probe.
  3306. //
  3307. st_synchronize();
  3308. plan_bed_level_matrix.set_to_identity();
  3309. plan_buffer_line( X_current, Y_current, Z_start_location,
  3310. ext_position,
  3311. homing_feedrate[Z_AXIS]/60,
  3312. active_extruder);
  3313. st_synchronize();
  3314. //
  3315. // Now get everything to the specified probe point So we can safely do a probe to
  3316. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3317. // use that as a starting point for each probe.
  3318. //
  3319. if (verbose_level > 2)
  3320. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3321. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3322. ext_position,
  3323. homing_feedrate[X_AXIS]/60,
  3324. active_extruder);
  3325. st_synchronize();
  3326. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3327. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3328. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3329. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3330. //
  3331. // OK, do the inital probe to get us close to the bed.
  3332. // Then retrace the right amount and use that in subsequent probes
  3333. //
  3334. setup_for_endstop_move();
  3335. run_z_probe();
  3336. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3337. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3338. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3339. ext_position,
  3340. homing_feedrate[X_AXIS]/60,
  3341. active_extruder);
  3342. st_synchronize();
  3343. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3344. for( n=0; n<n_samples; n++) {
  3345. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3346. if ( n_legs) {
  3347. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3348. int rotational_direction, l;
  3349. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3350. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3351. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3352. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3353. //SERIAL_ECHOPAIR(" theta: ",theta);
  3354. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3355. //SERIAL_PROTOCOLLNPGM("");
  3356. for( l=0; l<n_legs-1; l++) {
  3357. if (rotational_direction==1)
  3358. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3359. else
  3360. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3361. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3362. if ( radius<0.0 )
  3363. radius = -radius;
  3364. X_current = X_probe_location + cos(theta) * radius;
  3365. Y_current = Y_probe_location + sin(theta) * radius;
  3366. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3367. X_current = X_MIN_POS;
  3368. if ( X_current>X_MAX_POS)
  3369. X_current = X_MAX_POS;
  3370. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3371. Y_current = Y_MIN_POS;
  3372. if ( Y_current>Y_MAX_POS)
  3373. Y_current = Y_MAX_POS;
  3374. if (verbose_level>3 ) {
  3375. SERIAL_ECHOPAIR("x: ", X_current);
  3376. SERIAL_ECHOPAIR("y: ", Y_current);
  3377. SERIAL_PROTOCOLLNPGM("");
  3378. }
  3379. do_blocking_move_to( X_current, Y_current, Z_current );
  3380. }
  3381. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3382. }
  3383. setup_for_endstop_move();
  3384. run_z_probe();
  3385. sample_set[n] = current_position[Z_AXIS];
  3386. //
  3387. // Get the current mean for the data points we have so far
  3388. //
  3389. sum=0.0;
  3390. for( j=0; j<=n; j++) {
  3391. sum = sum + sample_set[j];
  3392. }
  3393. mean = sum / (double (n+1));
  3394. //
  3395. // Now, use that mean to calculate the standard deviation for the
  3396. // data points we have so far
  3397. //
  3398. sum=0.0;
  3399. for( j=0; j<=n; j++) {
  3400. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3401. }
  3402. sigma = sqrt( sum / (double (n+1)) );
  3403. if (verbose_level > 1) {
  3404. SERIAL_PROTOCOL(n+1);
  3405. SERIAL_PROTOCOL(" of ");
  3406. SERIAL_PROTOCOL(n_samples);
  3407. SERIAL_PROTOCOLPGM(" z: ");
  3408. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3409. }
  3410. if (verbose_level > 2) {
  3411. SERIAL_PROTOCOL(" mean: ");
  3412. SERIAL_PROTOCOL_F(mean,6);
  3413. SERIAL_PROTOCOL(" sigma: ");
  3414. SERIAL_PROTOCOL_F(sigma,6);
  3415. }
  3416. if (verbose_level > 0)
  3417. SERIAL_PROTOCOLPGM("\n");
  3418. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3419. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3420. st_synchronize();
  3421. }
  3422. delay(1000);
  3423. clean_up_after_endstop_move();
  3424. // enable_endstops(true);
  3425. if (verbose_level > 0) {
  3426. SERIAL_PROTOCOLPGM("Mean: ");
  3427. SERIAL_PROTOCOL_F(mean, 6);
  3428. SERIAL_PROTOCOLPGM("\n");
  3429. }
  3430. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3431. SERIAL_PROTOCOL_F(sigma, 6);
  3432. SERIAL_PROTOCOLPGM("\n\n");
  3433. Sigma_Exit:
  3434. break;
  3435. }
  3436. #endif // Z_PROBE_REPEATABILITY_TEST
  3437. #endif // ENABLE_AUTO_BED_LEVELING
  3438. case 104: // M104
  3439. if(setTargetedHotend(104)){
  3440. break;
  3441. }
  3442. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3443. setWatch();
  3444. break;
  3445. case 112: // M112 -Emergency Stop
  3446. kill();
  3447. break;
  3448. case 140: // M140 set bed temp
  3449. if (code_seen('S')) setTargetBed(code_value());
  3450. break;
  3451. case 105 : // M105
  3452. if(setTargetedHotend(105)){
  3453. break;
  3454. }
  3455. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3456. SERIAL_PROTOCOLPGM("ok T:");
  3457. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3458. SERIAL_PROTOCOLPGM(" /");
  3459. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3460. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3461. SERIAL_PROTOCOLPGM(" B:");
  3462. SERIAL_PROTOCOL_F(degBed(),1);
  3463. SERIAL_PROTOCOLPGM(" /");
  3464. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3465. #endif //TEMP_BED_PIN
  3466. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3467. SERIAL_PROTOCOLPGM(" T");
  3468. SERIAL_PROTOCOL(cur_extruder);
  3469. SERIAL_PROTOCOLPGM(":");
  3470. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3471. SERIAL_PROTOCOLPGM(" /");
  3472. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3473. }
  3474. #else
  3475. SERIAL_ERROR_START;
  3476. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3477. #endif
  3478. SERIAL_PROTOCOLPGM(" @:");
  3479. #ifdef EXTRUDER_WATTS
  3480. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3481. SERIAL_PROTOCOLPGM("W");
  3482. #else
  3483. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3484. #endif
  3485. SERIAL_PROTOCOLPGM(" B@:");
  3486. #ifdef BED_WATTS
  3487. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3488. SERIAL_PROTOCOLPGM("W");
  3489. #else
  3490. SERIAL_PROTOCOL(getHeaterPower(-1));
  3491. #endif
  3492. #ifdef SHOW_TEMP_ADC_VALUES
  3493. {float raw = 0.0;
  3494. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3495. SERIAL_PROTOCOLPGM(" ADC B:");
  3496. SERIAL_PROTOCOL_F(degBed(),1);
  3497. SERIAL_PROTOCOLPGM("C->");
  3498. raw = rawBedTemp();
  3499. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3500. SERIAL_PROTOCOLPGM(" Rb->");
  3501. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3502. SERIAL_PROTOCOLPGM(" Rxb->");
  3503. SERIAL_PROTOCOL_F(raw, 5);
  3504. #endif
  3505. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3506. SERIAL_PROTOCOLPGM(" T");
  3507. SERIAL_PROTOCOL(cur_extruder);
  3508. SERIAL_PROTOCOLPGM(":");
  3509. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3510. SERIAL_PROTOCOLPGM("C->");
  3511. raw = rawHotendTemp(cur_extruder);
  3512. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3513. SERIAL_PROTOCOLPGM(" Rt");
  3514. SERIAL_PROTOCOL(cur_extruder);
  3515. SERIAL_PROTOCOLPGM("->");
  3516. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3517. SERIAL_PROTOCOLPGM(" Rx");
  3518. SERIAL_PROTOCOL(cur_extruder);
  3519. SERIAL_PROTOCOLPGM("->");
  3520. SERIAL_PROTOCOL_F(raw, 5);
  3521. }}
  3522. #endif
  3523. SERIAL_PROTOCOLLN("");
  3524. return;
  3525. break;
  3526. case 109:
  3527. {// M109 - Wait for extruder heater to reach target.
  3528. if(setTargetedHotend(109)){
  3529. break;
  3530. }
  3531. LCD_MESSAGERPGM(MSG_HEATING);
  3532. heating_status = 1;
  3533. if (farm_mode) { prusa_statistics(1); };
  3534. #ifdef AUTOTEMP
  3535. autotemp_enabled=false;
  3536. #endif
  3537. if (code_seen('S')) {
  3538. setTargetHotend(code_value(), tmp_extruder);
  3539. CooldownNoWait = true;
  3540. } else if (code_seen('R')) {
  3541. setTargetHotend(code_value(), tmp_extruder);
  3542. CooldownNoWait = false;
  3543. }
  3544. #ifdef AUTOTEMP
  3545. if (code_seen('S')) autotemp_min=code_value();
  3546. if (code_seen('B')) autotemp_max=code_value();
  3547. if (code_seen('F'))
  3548. {
  3549. autotemp_factor=code_value();
  3550. autotemp_enabled=true;
  3551. }
  3552. #endif
  3553. setWatch();
  3554. codenum = millis();
  3555. /* See if we are heating up or cooling down */
  3556. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3557. cancel_heatup = false;
  3558. wait_for_heater(codenum); //loops until target temperature is reached
  3559. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3560. heating_status = 2;
  3561. if (farm_mode) { prusa_statistics(2); };
  3562. //starttime=millis();
  3563. previous_millis_cmd = millis();
  3564. }
  3565. break;
  3566. case 190: // M190 - Wait for bed heater to reach target.
  3567. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3568. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3569. heating_status = 3;
  3570. if (farm_mode) { prusa_statistics(1); };
  3571. if (code_seen('S'))
  3572. {
  3573. setTargetBed(code_value());
  3574. CooldownNoWait = true;
  3575. }
  3576. else if (code_seen('R'))
  3577. {
  3578. setTargetBed(code_value());
  3579. CooldownNoWait = false;
  3580. }
  3581. codenum = millis();
  3582. cancel_heatup = false;
  3583. target_direction = isHeatingBed(); // true if heating, false if cooling
  3584. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3585. {
  3586. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3587. {
  3588. if (!farm_mode) {
  3589. float tt = degHotend(active_extruder);
  3590. SERIAL_PROTOCOLPGM("T:");
  3591. SERIAL_PROTOCOL(tt);
  3592. SERIAL_PROTOCOLPGM(" E:");
  3593. SERIAL_PROTOCOL((int)active_extruder);
  3594. SERIAL_PROTOCOLPGM(" B:");
  3595. SERIAL_PROTOCOL_F(degBed(), 1);
  3596. SERIAL_PROTOCOLLN("");
  3597. }
  3598. codenum = millis();
  3599. }
  3600. manage_heater();
  3601. manage_inactivity();
  3602. lcd_update();
  3603. }
  3604. LCD_MESSAGERPGM(MSG_BED_DONE);
  3605. heating_status = 4;
  3606. previous_millis_cmd = millis();
  3607. #endif
  3608. break;
  3609. #if defined(FAN_PIN) && FAN_PIN > -1
  3610. case 106: //M106 Fan On
  3611. if (code_seen('S')){
  3612. fanSpeed=constrain(code_value(),0,255);
  3613. }
  3614. else {
  3615. fanSpeed=255;
  3616. }
  3617. break;
  3618. case 107: //M107 Fan Off
  3619. fanSpeed = 0;
  3620. break;
  3621. #endif //FAN_PIN
  3622. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3623. case 80: // M80 - Turn on Power Supply
  3624. SET_OUTPUT(PS_ON_PIN); //GND
  3625. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3626. // If you have a switch on suicide pin, this is useful
  3627. // if you want to start another print with suicide feature after
  3628. // a print without suicide...
  3629. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3630. SET_OUTPUT(SUICIDE_PIN);
  3631. WRITE(SUICIDE_PIN, HIGH);
  3632. #endif
  3633. #ifdef ULTIPANEL
  3634. powersupply = true;
  3635. LCD_MESSAGERPGM(WELCOME_MSG);
  3636. lcd_update();
  3637. #endif
  3638. break;
  3639. #endif
  3640. case 81: // M81 - Turn off Power Supply
  3641. disable_heater();
  3642. st_synchronize();
  3643. disable_e0();
  3644. disable_e1();
  3645. disable_e2();
  3646. finishAndDisableSteppers();
  3647. fanSpeed = 0;
  3648. delay(1000); // Wait a little before to switch off
  3649. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3650. st_synchronize();
  3651. suicide();
  3652. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3653. SET_OUTPUT(PS_ON_PIN);
  3654. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3655. #endif
  3656. #ifdef ULTIPANEL
  3657. powersupply = false;
  3658. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3659. /*
  3660. MACHNAME = "Prusa i3"
  3661. MSGOFF = "Vypnuto"
  3662. "Prusai3"" ""vypnuto""."
  3663. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3664. */
  3665. lcd_update();
  3666. #endif
  3667. break;
  3668. case 82:
  3669. axis_relative_modes[3] = false;
  3670. break;
  3671. case 83:
  3672. axis_relative_modes[3] = true;
  3673. break;
  3674. case 18: //compatibility
  3675. case 84: // M84
  3676. if(code_seen('S')){
  3677. stepper_inactive_time = code_value() * 1000;
  3678. }
  3679. else
  3680. {
  3681. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3682. if(all_axis)
  3683. {
  3684. st_synchronize();
  3685. disable_e0();
  3686. disable_e1();
  3687. disable_e2();
  3688. finishAndDisableSteppers();
  3689. }
  3690. else
  3691. {
  3692. st_synchronize();
  3693. if (code_seen('X')) disable_x();
  3694. if (code_seen('Y')) disable_y();
  3695. if (code_seen('Z')) disable_z();
  3696. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3697. if (code_seen('E')) {
  3698. disable_e0();
  3699. disable_e1();
  3700. disable_e2();
  3701. }
  3702. #endif
  3703. }
  3704. }
  3705. snmm_filaments_used = 0;
  3706. break;
  3707. case 85: // M85
  3708. if(code_seen('S')) {
  3709. max_inactive_time = code_value() * 1000;
  3710. }
  3711. break;
  3712. case 92: // M92
  3713. for(int8_t i=0; i < NUM_AXIS; i++)
  3714. {
  3715. if(code_seen(axis_codes[i]))
  3716. {
  3717. if(i == 3) { // E
  3718. float value = code_value();
  3719. if(value < 20.0) {
  3720. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3721. max_jerk[E_AXIS] *= factor;
  3722. max_feedrate[i] *= factor;
  3723. axis_steps_per_sqr_second[i] *= factor;
  3724. }
  3725. axis_steps_per_unit[i] = value;
  3726. }
  3727. else {
  3728. axis_steps_per_unit[i] = code_value();
  3729. }
  3730. }
  3731. }
  3732. break;
  3733. case 115: // M115
  3734. if (code_seen('V')) {
  3735. // Report the Prusa version number.
  3736. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3737. } else if (code_seen('U')) {
  3738. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3739. // pause the print and ask the user to upgrade the firmware.
  3740. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3741. } else {
  3742. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3743. }
  3744. break;
  3745. /* case 117: // M117 display message
  3746. starpos = (strchr(strchr_pointer + 5,'*'));
  3747. if(starpos!=NULL)
  3748. *(starpos)='\0';
  3749. lcd_setstatus(strchr_pointer + 5);
  3750. break;*/
  3751. case 114: // M114
  3752. SERIAL_PROTOCOLPGM("X:");
  3753. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3754. SERIAL_PROTOCOLPGM(" Y:");
  3755. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3756. SERIAL_PROTOCOLPGM(" Z:");
  3757. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3758. SERIAL_PROTOCOLPGM(" E:");
  3759. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3760. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3761. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3762. SERIAL_PROTOCOLPGM(" Y:");
  3763. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3764. SERIAL_PROTOCOLPGM(" Z:");
  3765. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3766. SERIAL_PROTOCOLLN("");
  3767. break;
  3768. case 120: // M120
  3769. enable_endstops(false) ;
  3770. break;
  3771. case 121: // M121
  3772. enable_endstops(true) ;
  3773. break;
  3774. case 119: // M119
  3775. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3776. SERIAL_PROTOCOLLN("");
  3777. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3778. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3779. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3781. }else{
  3782. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3783. }
  3784. SERIAL_PROTOCOLLN("");
  3785. #endif
  3786. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3787. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3788. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3790. }else{
  3791. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3792. }
  3793. SERIAL_PROTOCOLLN("");
  3794. #endif
  3795. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3796. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3797. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3799. }else{
  3800. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3801. }
  3802. SERIAL_PROTOCOLLN("");
  3803. #endif
  3804. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3805. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3806. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3808. }else{
  3809. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3810. }
  3811. SERIAL_PROTOCOLLN("");
  3812. #endif
  3813. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3814. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3815. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3817. }else{
  3818. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3819. }
  3820. SERIAL_PROTOCOLLN("");
  3821. #endif
  3822. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3823. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3824. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3825. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3826. }else{
  3827. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3828. }
  3829. SERIAL_PROTOCOLLN("");
  3830. #endif
  3831. break;
  3832. //TODO: update for all axis, use for loop
  3833. #ifdef BLINKM
  3834. case 150: // M150
  3835. {
  3836. byte red;
  3837. byte grn;
  3838. byte blu;
  3839. if(code_seen('R')) red = code_value();
  3840. if(code_seen('U')) grn = code_value();
  3841. if(code_seen('B')) blu = code_value();
  3842. SendColors(red,grn,blu);
  3843. }
  3844. break;
  3845. #endif //BLINKM
  3846. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3847. {
  3848. tmp_extruder = active_extruder;
  3849. if(code_seen('T')) {
  3850. tmp_extruder = code_value();
  3851. if(tmp_extruder >= EXTRUDERS) {
  3852. SERIAL_ECHO_START;
  3853. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3854. break;
  3855. }
  3856. }
  3857. float area = .0;
  3858. if(code_seen('D')) {
  3859. float diameter = (float)code_value();
  3860. if (diameter == 0.0) {
  3861. // setting any extruder filament size disables volumetric on the assumption that
  3862. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3863. // for all extruders
  3864. volumetric_enabled = false;
  3865. } else {
  3866. filament_size[tmp_extruder] = (float)code_value();
  3867. // make sure all extruders have some sane value for the filament size
  3868. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3869. #if EXTRUDERS > 1
  3870. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3871. #if EXTRUDERS > 2
  3872. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3873. #endif
  3874. #endif
  3875. volumetric_enabled = true;
  3876. }
  3877. } else {
  3878. //reserved for setting filament diameter via UFID or filament measuring device
  3879. break;
  3880. }
  3881. calculate_volumetric_multipliers();
  3882. }
  3883. break;
  3884. case 201: // M201
  3885. for(int8_t i=0; i < NUM_AXIS; i++)
  3886. {
  3887. if(code_seen(axis_codes[i]))
  3888. {
  3889. max_acceleration_units_per_sq_second[i] = code_value();
  3890. }
  3891. }
  3892. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3893. reset_acceleration_rates();
  3894. break;
  3895. #if 0 // Not used for Sprinter/grbl gen6
  3896. case 202: // M202
  3897. for(int8_t i=0; i < NUM_AXIS; i++) {
  3898. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3899. }
  3900. break;
  3901. #endif
  3902. case 203: // M203 max feedrate mm/sec
  3903. for(int8_t i=0; i < NUM_AXIS; i++) {
  3904. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3905. }
  3906. break;
  3907. case 204: // M204 acclereration S normal moves T filmanent only moves
  3908. {
  3909. if(code_seen('S')) acceleration = code_value() ;
  3910. if(code_seen('T')) retract_acceleration = code_value() ;
  3911. }
  3912. break;
  3913. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3914. {
  3915. if(code_seen('S')) minimumfeedrate = code_value();
  3916. if(code_seen('T')) mintravelfeedrate = code_value();
  3917. if(code_seen('B')) minsegmenttime = code_value() ;
  3918. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3919. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3920. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3921. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3922. }
  3923. break;
  3924. case 206: // M206 additional homing offset
  3925. for(int8_t i=0; i < 3; i++)
  3926. {
  3927. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3928. }
  3929. break;
  3930. #ifdef FWRETRACT
  3931. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3932. {
  3933. if(code_seen('S'))
  3934. {
  3935. retract_length = code_value() ;
  3936. }
  3937. if(code_seen('F'))
  3938. {
  3939. retract_feedrate = code_value()/60 ;
  3940. }
  3941. if(code_seen('Z'))
  3942. {
  3943. retract_zlift = code_value() ;
  3944. }
  3945. }break;
  3946. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3947. {
  3948. if(code_seen('S'))
  3949. {
  3950. retract_recover_length = code_value() ;
  3951. }
  3952. if(code_seen('F'))
  3953. {
  3954. retract_recover_feedrate = code_value()/60 ;
  3955. }
  3956. }break;
  3957. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3958. {
  3959. if(code_seen('S'))
  3960. {
  3961. int t= code_value() ;
  3962. switch(t)
  3963. {
  3964. case 0:
  3965. {
  3966. autoretract_enabled=false;
  3967. retracted[0]=false;
  3968. #if EXTRUDERS > 1
  3969. retracted[1]=false;
  3970. #endif
  3971. #if EXTRUDERS > 2
  3972. retracted[2]=false;
  3973. #endif
  3974. }break;
  3975. case 1:
  3976. {
  3977. autoretract_enabled=true;
  3978. retracted[0]=false;
  3979. #if EXTRUDERS > 1
  3980. retracted[1]=false;
  3981. #endif
  3982. #if EXTRUDERS > 2
  3983. retracted[2]=false;
  3984. #endif
  3985. }break;
  3986. default:
  3987. SERIAL_ECHO_START;
  3988. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3989. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3990. SERIAL_ECHOLNPGM("\"");
  3991. }
  3992. }
  3993. }break;
  3994. #endif // FWRETRACT
  3995. #if EXTRUDERS > 1
  3996. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3997. {
  3998. if(setTargetedHotend(218)){
  3999. break;
  4000. }
  4001. if(code_seen('X'))
  4002. {
  4003. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4004. }
  4005. if(code_seen('Y'))
  4006. {
  4007. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4008. }
  4009. SERIAL_ECHO_START;
  4010. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4011. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4012. {
  4013. SERIAL_ECHO(" ");
  4014. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4015. SERIAL_ECHO(",");
  4016. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4017. }
  4018. SERIAL_ECHOLN("");
  4019. }break;
  4020. #endif
  4021. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4022. {
  4023. if(code_seen('S'))
  4024. {
  4025. feedmultiply = code_value() ;
  4026. }
  4027. }
  4028. break;
  4029. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4030. {
  4031. if(code_seen('S'))
  4032. {
  4033. int tmp_code = code_value();
  4034. if (code_seen('T'))
  4035. {
  4036. if(setTargetedHotend(221)){
  4037. break;
  4038. }
  4039. extruder_multiply[tmp_extruder] = tmp_code;
  4040. }
  4041. else
  4042. {
  4043. extrudemultiply = tmp_code ;
  4044. }
  4045. }
  4046. }
  4047. break;
  4048. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4049. {
  4050. if(code_seen('P')){
  4051. int pin_number = code_value(); // pin number
  4052. int pin_state = -1; // required pin state - default is inverted
  4053. if(code_seen('S')) pin_state = code_value(); // required pin state
  4054. if(pin_state >= -1 && pin_state <= 1){
  4055. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4056. {
  4057. if (sensitive_pins[i] == pin_number)
  4058. {
  4059. pin_number = -1;
  4060. break;
  4061. }
  4062. }
  4063. if (pin_number > -1)
  4064. {
  4065. int target = LOW;
  4066. st_synchronize();
  4067. pinMode(pin_number, INPUT);
  4068. switch(pin_state){
  4069. case 1:
  4070. target = HIGH;
  4071. break;
  4072. case 0:
  4073. target = LOW;
  4074. break;
  4075. case -1:
  4076. target = !digitalRead(pin_number);
  4077. break;
  4078. }
  4079. while(digitalRead(pin_number) != target){
  4080. manage_heater();
  4081. manage_inactivity();
  4082. lcd_update();
  4083. }
  4084. }
  4085. }
  4086. }
  4087. }
  4088. break;
  4089. #if NUM_SERVOS > 0
  4090. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4091. {
  4092. int servo_index = -1;
  4093. int servo_position = 0;
  4094. if (code_seen('P'))
  4095. servo_index = code_value();
  4096. if (code_seen('S')) {
  4097. servo_position = code_value();
  4098. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4099. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4100. servos[servo_index].attach(0);
  4101. #endif
  4102. servos[servo_index].write(servo_position);
  4103. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4104. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4105. servos[servo_index].detach();
  4106. #endif
  4107. }
  4108. else {
  4109. SERIAL_ECHO_START;
  4110. SERIAL_ECHO("Servo ");
  4111. SERIAL_ECHO(servo_index);
  4112. SERIAL_ECHOLN(" out of range");
  4113. }
  4114. }
  4115. else if (servo_index >= 0) {
  4116. SERIAL_PROTOCOL(MSG_OK);
  4117. SERIAL_PROTOCOL(" Servo ");
  4118. SERIAL_PROTOCOL(servo_index);
  4119. SERIAL_PROTOCOL(": ");
  4120. SERIAL_PROTOCOL(servos[servo_index].read());
  4121. SERIAL_PROTOCOLLN("");
  4122. }
  4123. }
  4124. break;
  4125. #endif // NUM_SERVOS > 0
  4126. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4127. case 300: // M300
  4128. {
  4129. int beepS = code_seen('S') ? code_value() : 110;
  4130. int beepP = code_seen('P') ? code_value() : 1000;
  4131. if (beepS > 0)
  4132. {
  4133. #if BEEPER > 0
  4134. tone(BEEPER, beepS);
  4135. delay(beepP);
  4136. noTone(BEEPER);
  4137. #elif defined(ULTRALCD)
  4138. lcd_buzz(beepS, beepP);
  4139. #elif defined(LCD_USE_I2C_BUZZER)
  4140. lcd_buzz(beepP, beepS);
  4141. #endif
  4142. }
  4143. else
  4144. {
  4145. delay(beepP);
  4146. }
  4147. }
  4148. break;
  4149. #endif // M300
  4150. #ifdef PIDTEMP
  4151. case 301: // M301
  4152. {
  4153. if(code_seen('P')) Kp = code_value();
  4154. if(code_seen('I')) Ki = scalePID_i(code_value());
  4155. if(code_seen('D')) Kd = scalePID_d(code_value());
  4156. #ifdef PID_ADD_EXTRUSION_RATE
  4157. if(code_seen('C')) Kc = code_value();
  4158. #endif
  4159. updatePID();
  4160. SERIAL_PROTOCOLRPGM(MSG_OK);
  4161. SERIAL_PROTOCOL(" p:");
  4162. SERIAL_PROTOCOL(Kp);
  4163. SERIAL_PROTOCOL(" i:");
  4164. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4165. SERIAL_PROTOCOL(" d:");
  4166. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4167. #ifdef PID_ADD_EXTRUSION_RATE
  4168. SERIAL_PROTOCOL(" c:");
  4169. //Kc does not have scaling applied above, or in resetting defaults
  4170. SERIAL_PROTOCOL(Kc);
  4171. #endif
  4172. SERIAL_PROTOCOLLN("");
  4173. }
  4174. break;
  4175. #endif //PIDTEMP
  4176. #ifdef PIDTEMPBED
  4177. case 304: // M304
  4178. {
  4179. if(code_seen('P')) bedKp = code_value();
  4180. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4181. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4182. updatePID();
  4183. SERIAL_PROTOCOLRPGM(MSG_OK);
  4184. SERIAL_PROTOCOL(" p:");
  4185. SERIAL_PROTOCOL(bedKp);
  4186. SERIAL_PROTOCOL(" i:");
  4187. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4188. SERIAL_PROTOCOL(" d:");
  4189. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4190. SERIAL_PROTOCOLLN("");
  4191. }
  4192. break;
  4193. #endif //PIDTEMP
  4194. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4195. {
  4196. #ifdef CHDK
  4197. SET_OUTPUT(CHDK);
  4198. WRITE(CHDK, HIGH);
  4199. chdkHigh = millis();
  4200. chdkActive = true;
  4201. #else
  4202. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4203. const uint8_t NUM_PULSES=16;
  4204. const float PULSE_LENGTH=0.01524;
  4205. for(int i=0; i < NUM_PULSES; i++) {
  4206. WRITE(PHOTOGRAPH_PIN, HIGH);
  4207. _delay_ms(PULSE_LENGTH);
  4208. WRITE(PHOTOGRAPH_PIN, LOW);
  4209. _delay_ms(PULSE_LENGTH);
  4210. }
  4211. delay(7.33);
  4212. for(int i=0; i < NUM_PULSES; i++) {
  4213. WRITE(PHOTOGRAPH_PIN, HIGH);
  4214. _delay_ms(PULSE_LENGTH);
  4215. WRITE(PHOTOGRAPH_PIN, LOW);
  4216. _delay_ms(PULSE_LENGTH);
  4217. }
  4218. #endif
  4219. #endif //chdk end if
  4220. }
  4221. break;
  4222. #ifdef DOGLCD
  4223. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4224. {
  4225. if (code_seen('C')) {
  4226. lcd_setcontrast( ((int)code_value())&63 );
  4227. }
  4228. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4229. SERIAL_PROTOCOL(lcd_contrast);
  4230. SERIAL_PROTOCOLLN("");
  4231. }
  4232. break;
  4233. #endif
  4234. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4235. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4236. {
  4237. float temp = .0;
  4238. if (code_seen('S')) temp=code_value();
  4239. set_extrude_min_temp(temp);
  4240. }
  4241. break;
  4242. #endif
  4243. case 303: // M303 PID autotune
  4244. {
  4245. float temp = 150.0;
  4246. int e=0;
  4247. int c=5;
  4248. if (code_seen('E')) e=code_value();
  4249. if (e<0)
  4250. temp=70;
  4251. if (code_seen('S')) temp=code_value();
  4252. if (code_seen('C')) c=code_value();
  4253. PID_autotune(temp, e, c);
  4254. }
  4255. break;
  4256. case 400: // M400 finish all moves
  4257. {
  4258. st_synchronize();
  4259. }
  4260. break;
  4261. #ifdef FILAMENT_SENSOR
  4262. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4263. {
  4264. #if (FILWIDTH_PIN > -1)
  4265. if(code_seen('N')) filament_width_nominal=code_value();
  4266. else{
  4267. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4268. SERIAL_PROTOCOLLN(filament_width_nominal);
  4269. }
  4270. #endif
  4271. }
  4272. break;
  4273. case 405: //M405 Turn on filament sensor for control
  4274. {
  4275. if(code_seen('D')) meas_delay_cm=code_value();
  4276. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4277. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4278. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4279. {
  4280. int temp_ratio = widthFil_to_size_ratio();
  4281. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4282. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4283. }
  4284. delay_index1=0;
  4285. delay_index2=0;
  4286. }
  4287. filament_sensor = true ;
  4288. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4289. //SERIAL_PROTOCOL(filament_width_meas);
  4290. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4291. //SERIAL_PROTOCOL(extrudemultiply);
  4292. }
  4293. break;
  4294. case 406: //M406 Turn off filament sensor for control
  4295. {
  4296. filament_sensor = false ;
  4297. }
  4298. break;
  4299. case 407: //M407 Display measured filament diameter
  4300. {
  4301. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4302. SERIAL_PROTOCOLLN(filament_width_meas);
  4303. }
  4304. break;
  4305. #endif
  4306. case 500: // M500 Store settings in EEPROM
  4307. {
  4308. Config_StoreSettings();
  4309. }
  4310. break;
  4311. case 501: // M501 Read settings from EEPROM
  4312. {
  4313. Config_RetrieveSettings();
  4314. }
  4315. break;
  4316. case 502: // M502 Revert to default settings
  4317. {
  4318. Config_ResetDefault();
  4319. }
  4320. break;
  4321. case 503: // M503 print settings currently in memory
  4322. {
  4323. Config_PrintSettings();
  4324. }
  4325. break;
  4326. case 509: //M509 Force language selection
  4327. {
  4328. lcd_force_language_selection();
  4329. SERIAL_ECHO_START;
  4330. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4331. }
  4332. break;
  4333. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4334. case 540:
  4335. {
  4336. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4337. }
  4338. break;
  4339. #endif
  4340. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4341. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4342. {
  4343. float value;
  4344. if (code_seen('Z'))
  4345. {
  4346. value = code_value();
  4347. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4348. {
  4349. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4350. SERIAL_ECHO_START;
  4351. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4352. SERIAL_PROTOCOLLN("");
  4353. }
  4354. else
  4355. {
  4356. SERIAL_ECHO_START;
  4357. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4358. SERIAL_ECHORPGM(MSG_Z_MIN);
  4359. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4360. SERIAL_ECHORPGM(MSG_Z_MAX);
  4361. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4362. SERIAL_PROTOCOLLN("");
  4363. }
  4364. }
  4365. else
  4366. {
  4367. SERIAL_ECHO_START;
  4368. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4369. SERIAL_ECHO(-zprobe_zoffset);
  4370. SERIAL_PROTOCOLLN("");
  4371. }
  4372. break;
  4373. }
  4374. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4375. #ifdef FILAMENTCHANGEENABLE
  4376. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4377. {
  4378. st_synchronize();
  4379. float target[4];
  4380. float lastpos[4];
  4381. if (farm_mode)
  4382. {
  4383. prusa_statistics(22);
  4384. }
  4385. feedmultiplyBckp=feedmultiply;
  4386. int8_t TooLowZ = 0;
  4387. target[X_AXIS]=current_position[X_AXIS];
  4388. target[Y_AXIS]=current_position[Y_AXIS];
  4389. target[Z_AXIS]=current_position[Z_AXIS];
  4390. target[E_AXIS]=current_position[E_AXIS];
  4391. lastpos[X_AXIS]=current_position[X_AXIS];
  4392. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4393. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4394. lastpos[E_AXIS]=current_position[E_AXIS];
  4395. //Restract extruder
  4396. if(code_seen('E'))
  4397. {
  4398. target[E_AXIS]+= code_value();
  4399. }
  4400. else
  4401. {
  4402. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4403. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4404. #endif
  4405. }
  4406. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4407. //Lift Z
  4408. if(code_seen('Z'))
  4409. {
  4410. target[Z_AXIS]+= code_value();
  4411. }
  4412. else
  4413. {
  4414. #ifdef FILAMENTCHANGE_ZADD
  4415. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4416. if(target[Z_AXIS] < 10){
  4417. target[Z_AXIS]+= 10 ;
  4418. TooLowZ = 1;
  4419. }else{
  4420. TooLowZ = 0;
  4421. }
  4422. #endif
  4423. }
  4424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4425. //Move XY to side
  4426. if(code_seen('X'))
  4427. {
  4428. target[X_AXIS]+= code_value();
  4429. }
  4430. else
  4431. {
  4432. #ifdef FILAMENTCHANGE_XPOS
  4433. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4434. #endif
  4435. }
  4436. if(code_seen('Y'))
  4437. {
  4438. target[Y_AXIS]= code_value();
  4439. }
  4440. else
  4441. {
  4442. #ifdef FILAMENTCHANGE_YPOS
  4443. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4444. #endif
  4445. }
  4446. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4447. st_synchronize();
  4448. custom_message = true;
  4449. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4450. // Unload filament
  4451. if(code_seen('L'))
  4452. {
  4453. target[E_AXIS]+= code_value();
  4454. }
  4455. else
  4456. {
  4457. #ifdef SNMM
  4458. #else
  4459. #ifdef FILAMENTCHANGE_FINALRETRACT
  4460. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4461. #endif
  4462. #endif // SNMM
  4463. }
  4464. #ifdef SNMM
  4465. target[E_AXIS] += 12;
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4467. target[E_AXIS] += 6;
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4469. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4471. st_synchronize();
  4472. target[E_AXIS] += (FIL_COOLING);
  4473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4474. target[E_AXIS] += (FIL_COOLING*-1);
  4475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4476. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4478. st_synchronize();
  4479. #else
  4480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4481. #endif // SNMM
  4482. //finish moves
  4483. st_synchronize();
  4484. //disable extruder steppers so filament can be removed
  4485. disable_e0();
  4486. disable_e1();
  4487. disable_e2();
  4488. delay(100);
  4489. //Wait for user to insert filament
  4490. uint8_t cnt=0;
  4491. int counterBeep = 0;
  4492. lcd_wait_interact();
  4493. load_filament_time = millis();
  4494. while(!lcd_clicked()){
  4495. cnt++;
  4496. manage_heater();
  4497. manage_inactivity(true);
  4498. /*#ifdef SNMM
  4499. target[E_AXIS] += 0.002;
  4500. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4501. #endif // SNMM*/
  4502. if(cnt==0)
  4503. {
  4504. #if BEEPER > 0
  4505. if (counterBeep== 500){
  4506. counterBeep = 0;
  4507. }
  4508. SET_OUTPUT(BEEPER);
  4509. if (counterBeep== 0){
  4510. WRITE(BEEPER,HIGH);
  4511. }
  4512. if (counterBeep== 20){
  4513. WRITE(BEEPER,LOW);
  4514. }
  4515. counterBeep++;
  4516. #else
  4517. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4518. lcd_buzz(1000/6,100);
  4519. #else
  4520. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4521. #endif
  4522. #endif
  4523. }
  4524. }
  4525. #ifdef SNMM
  4526. display_loading();
  4527. do {
  4528. target[E_AXIS] += 0.002;
  4529. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4530. delay_keep_alive(2);
  4531. } while (!lcd_clicked());
  4532. /*if (millis() - load_filament_time > 2) {
  4533. load_filament_time = millis();
  4534. target[E_AXIS] += 0.001;
  4535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4536. }*/
  4537. #endif
  4538. //Filament inserted
  4539. WRITE(BEEPER,LOW);
  4540. //Feed the filament to the end of nozzle quickly
  4541. #ifdef SNMM
  4542. st_synchronize();
  4543. target[E_AXIS] += bowden_length[snmm_extruder];
  4544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4545. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4547. target[E_AXIS] += 40;
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4549. target[E_AXIS] += 10;
  4550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4551. #else
  4552. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4553. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4554. #endif // SNMM
  4555. //Extrude some filament
  4556. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4557. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4558. //Wait for user to check the state
  4559. lcd_change_fil_state = 0;
  4560. lcd_loading_filament();
  4561. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4562. lcd_change_fil_state = 0;
  4563. lcd_alright();
  4564. switch(lcd_change_fil_state){
  4565. // Filament failed to load so load it again
  4566. case 2:
  4567. #ifdef SNMM
  4568. display_loading();
  4569. do {
  4570. target[E_AXIS] += 0.002;
  4571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4572. delay_keep_alive(2);
  4573. } while (!lcd_clicked());
  4574. st_synchronize();
  4575. target[E_AXIS] += bowden_length[snmm_extruder];
  4576. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4577. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4579. target[E_AXIS] += 40;
  4580. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4581. target[E_AXIS] += 10;
  4582. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4583. #else
  4584. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4586. #endif
  4587. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4589. lcd_loading_filament();
  4590. break;
  4591. // Filament loaded properly but color is not clear
  4592. case 3:
  4593. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4595. lcd_loading_color();
  4596. break;
  4597. // Everything good
  4598. default:
  4599. lcd_change_success();
  4600. lcd_update_enable(true);
  4601. break;
  4602. }
  4603. }
  4604. //Not let's go back to print
  4605. //Feed a little of filament to stabilize pressure
  4606. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4608. //Retract
  4609. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4611. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4612. //Move XY back
  4613. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4614. //Move Z back
  4615. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4616. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4617. //Unretract
  4618. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4619. //Set E position to original
  4620. plan_set_e_position(lastpos[E_AXIS]);
  4621. //Recover feed rate
  4622. feedmultiply=feedmultiplyBckp;
  4623. char cmd[9];
  4624. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4625. enquecommand(cmd);
  4626. lcd_setstatuspgm(WELCOME_MSG);
  4627. custom_message = false;
  4628. custom_message_type = 0;
  4629. }
  4630. break;
  4631. #endif //FILAMENTCHANGEENABLE
  4632. case 601: {
  4633. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4634. }
  4635. break;
  4636. case 602: {
  4637. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4638. }
  4639. break;
  4640. case 907: // M907 Set digital trimpot motor current using axis codes.
  4641. {
  4642. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4643. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4644. if(code_seen('B')) digipot_current(4,code_value());
  4645. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4646. #endif
  4647. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4648. if(code_seen('X')) digipot_current(0, code_value());
  4649. #endif
  4650. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4651. if(code_seen('Z')) digipot_current(1, code_value());
  4652. #endif
  4653. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4654. if(code_seen('E')) digipot_current(2, code_value());
  4655. #endif
  4656. #ifdef DIGIPOT_I2C
  4657. // this one uses actual amps in floating point
  4658. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4659. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4660. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4661. #endif
  4662. }
  4663. break;
  4664. case 908: // M908 Control digital trimpot directly.
  4665. {
  4666. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4667. uint8_t channel,current;
  4668. if(code_seen('P')) channel=code_value();
  4669. if(code_seen('S')) current=code_value();
  4670. digitalPotWrite(channel, current);
  4671. #endif
  4672. }
  4673. break;
  4674. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4675. {
  4676. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4677. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4678. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4679. if(code_seen('B')) microstep_mode(4,code_value());
  4680. microstep_readings();
  4681. #endif
  4682. }
  4683. break;
  4684. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4685. {
  4686. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4687. if(code_seen('S')) switch((int)code_value())
  4688. {
  4689. case 1:
  4690. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4691. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4692. break;
  4693. case 2:
  4694. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4695. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4696. break;
  4697. }
  4698. microstep_readings();
  4699. #endif
  4700. }
  4701. break;
  4702. case 701: //M701: load filament
  4703. {
  4704. enable_z();
  4705. custom_message = true;
  4706. custom_message_type = 2;
  4707. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4708. current_position[E_AXIS] += 70;
  4709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4710. current_position[E_AXIS] += 25;
  4711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4712. st_synchronize();
  4713. if (!farm_mode && loading_flag) {
  4714. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4715. while (!clean) {
  4716. lcd_update_enable(true);
  4717. lcd_update(2);
  4718. current_position[E_AXIS] += 25;
  4719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4720. st_synchronize();
  4721. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4722. }
  4723. }
  4724. lcd_update_enable(true);
  4725. lcd_update(2);
  4726. lcd_setstatuspgm(WELCOME_MSG);
  4727. disable_z();
  4728. loading_flag = false;
  4729. custom_message = false;
  4730. custom_message_type = 0;
  4731. }
  4732. break;
  4733. case 702:
  4734. {
  4735. #ifdef SNMM
  4736. if (code_seen('U')) {
  4737. extr_unload_used(); //unload all filaments which were used in current print
  4738. }
  4739. else if (code_seen('C')) {
  4740. extr_unload(); //unload just current filament
  4741. }
  4742. else {
  4743. extr_unload_all(); //unload all filaments
  4744. }
  4745. #else
  4746. custom_message = true;
  4747. custom_message_type = 2;
  4748. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4749. current_position[E_AXIS] -= 80;
  4750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4751. st_synchronize();
  4752. lcd_setstatuspgm(WELCOME_MSG);
  4753. custom_message = false;
  4754. custom_message_type = 0;
  4755. #endif
  4756. }
  4757. break;
  4758. case 999: // M999: Restart after being stopped
  4759. Stopped = false;
  4760. lcd_reset_alert_level();
  4761. gcode_LastN = Stopped_gcode_LastN;
  4762. FlushSerialRequestResend();
  4763. break;
  4764. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4765. }
  4766. } // end if(code_seen('M')) (end of M codes)
  4767. else if(code_seen('T'))
  4768. {
  4769. int index;
  4770. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4771. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4772. SERIAL_ECHOLNPGM("Invalid T code.");
  4773. }
  4774. else {
  4775. if (*(strchr_pointer + index) == '?') {
  4776. tmp_extruder = choose_extruder_menu();
  4777. }
  4778. else {
  4779. tmp_extruder = code_value();
  4780. }
  4781. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4782. #ifdef SNMM
  4783. snmm_extruder = tmp_extruder;
  4784. st_synchronize();
  4785. delay(100);
  4786. disable_e0();
  4787. disable_e1();
  4788. disable_e2();
  4789. pinMode(E_MUX0_PIN, OUTPUT);
  4790. pinMode(E_MUX1_PIN, OUTPUT);
  4791. pinMode(E_MUX2_PIN, OUTPUT);
  4792. delay(100);
  4793. SERIAL_ECHO_START;
  4794. SERIAL_ECHO("T:");
  4795. SERIAL_ECHOLN((int)tmp_extruder);
  4796. switch (tmp_extruder) {
  4797. case 1:
  4798. WRITE(E_MUX0_PIN, HIGH);
  4799. WRITE(E_MUX1_PIN, LOW);
  4800. WRITE(E_MUX2_PIN, LOW);
  4801. break;
  4802. case 2:
  4803. WRITE(E_MUX0_PIN, LOW);
  4804. WRITE(E_MUX1_PIN, HIGH);
  4805. WRITE(E_MUX2_PIN, LOW);
  4806. break;
  4807. case 3:
  4808. WRITE(E_MUX0_PIN, HIGH);
  4809. WRITE(E_MUX1_PIN, HIGH);
  4810. WRITE(E_MUX2_PIN, LOW);
  4811. break;
  4812. default:
  4813. WRITE(E_MUX0_PIN, LOW);
  4814. WRITE(E_MUX1_PIN, LOW);
  4815. WRITE(E_MUX2_PIN, LOW);
  4816. break;
  4817. }
  4818. delay(100);
  4819. #else
  4820. if (tmp_extruder >= EXTRUDERS) {
  4821. SERIAL_ECHO_START;
  4822. SERIAL_ECHOPGM("T");
  4823. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4824. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4825. }
  4826. else {
  4827. boolean make_move = false;
  4828. if (code_seen('F')) {
  4829. make_move = true;
  4830. next_feedrate = code_value();
  4831. if (next_feedrate > 0.0) {
  4832. feedrate = next_feedrate;
  4833. }
  4834. }
  4835. #if EXTRUDERS > 1
  4836. if (tmp_extruder != active_extruder) {
  4837. // Save current position to return to after applying extruder offset
  4838. memcpy(destination, current_position, sizeof(destination));
  4839. // Offset extruder (only by XY)
  4840. int i;
  4841. for (i = 0; i < 2; i++) {
  4842. current_position[i] = current_position[i] -
  4843. extruder_offset[i][active_extruder] +
  4844. extruder_offset[i][tmp_extruder];
  4845. }
  4846. // Set the new active extruder and position
  4847. active_extruder = tmp_extruder;
  4848. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4849. // Move to the old position if 'F' was in the parameters
  4850. if (make_move && Stopped == false) {
  4851. prepare_move();
  4852. }
  4853. }
  4854. #endif
  4855. SERIAL_ECHO_START;
  4856. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4857. SERIAL_PROTOCOLLN((int)active_extruder);
  4858. }
  4859. #endif
  4860. }
  4861. } // end if(code_seen('T')) (end of T codes)
  4862. else
  4863. {
  4864. SERIAL_ECHO_START;
  4865. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4866. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4867. SERIAL_ECHOLNPGM("\"");
  4868. }
  4869. ClearToSend();
  4870. }
  4871. void FlushSerialRequestResend()
  4872. {
  4873. //char cmdbuffer[bufindr][100]="Resend:";
  4874. MYSERIAL.flush();
  4875. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4876. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4877. ClearToSend();
  4878. }
  4879. // Confirm the execution of a command, if sent from a serial line.
  4880. // Execution of a command from a SD card will not be confirmed.
  4881. void ClearToSend()
  4882. {
  4883. previous_millis_cmd = millis();
  4884. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4885. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4886. }
  4887. void get_coordinates()
  4888. {
  4889. bool seen[4]={false,false,false,false};
  4890. for(int8_t i=0; i < NUM_AXIS; i++) {
  4891. if(code_seen(axis_codes[i]))
  4892. {
  4893. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4894. seen[i]=true;
  4895. }
  4896. else destination[i] = current_position[i]; //Are these else lines really needed?
  4897. }
  4898. if(code_seen('F')) {
  4899. next_feedrate = code_value();
  4900. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4901. }
  4902. }
  4903. void get_arc_coordinates()
  4904. {
  4905. #ifdef SF_ARC_FIX
  4906. bool relative_mode_backup = relative_mode;
  4907. relative_mode = true;
  4908. #endif
  4909. get_coordinates();
  4910. #ifdef SF_ARC_FIX
  4911. relative_mode=relative_mode_backup;
  4912. #endif
  4913. if(code_seen('I')) {
  4914. offset[0] = code_value();
  4915. }
  4916. else {
  4917. offset[0] = 0.0;
  4918. }
  4919. if(code_seen('J')) {
  4920. offset[1] = code_value();
  4921. }
  4922. else {
  4923. offset[1] = 0.0;
  4924. }
  4925. }
  4926. void clamp_to_software_endstops(float target[3])
  4927. {
  4928. world2machine_clamp(target[0], target[1]);
  4929. // Clamp the Z coordinate.
  4930. if (min_software_endstops) {
  4931. float negative_z_offset = 0;
  4932. #ifdef ENABLE_AUTO_BED_LEVELING
  4933. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4934. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4935. #endif
  4936. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4937. }
  4938. if (max_software_endstops) {
  4939. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4940. }
  4941. }
  4942. #ifdef MESH_BED_LEVELING
  4943. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4944. float dx = x - current_position[X_AXIS];
  4945. float dy = y - current_position[Y_AXIS];
  4946. float dz = z - current_position[Z_AXIS];
  4947. int n_segments = 0;
  4948. if (mbl.active) {
  4949. float len = abs(dx) + abs(dy);
  4950. if (len > 0)
  4951. // Split to 3cm segments or shorter.
  4952. n_segments = int(ceil(len / 30.f));
  4953. }
  4954. if (n_segments > 1) {
  4955. float de = e - current_position[E_AXIS];
  4956. for (int i = 1; i < n_segments; ++ i) {
  4957. float t = float(i) / float(n_segments);
  4958. plan_buffer_line(
  4959. current_position[X_AXIS] + t * dx,
  4960. current_position[Y_AXIS] + t * dy,
  4961. current_position[Z_AXIS] + t * dz,
  4962. current_position[E_AXIS] + t * de,
  4963. feed_rate, extruder);
  4964. }
  4965. }
  4966. // The rest of the path.
  4967. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4968. current_position[X_AXIS] = x;
  4969. current_position[Y_AXIS] = y;
  4970. current_position[Z_AXIS] = z;
  4971. current_position[E_AXIS] = e;
  4972. }
  4973. #endif // MESH_BED_LEVELING
  4974. void prepare_move()
  4975. {
  4976. clamp_to_software_endstops(destination);
  4977. previous_millis_cmd = millis();
  4978. // Do not use feedmultiply for E or Z only moves
  4979. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4981. }
  4982. else {
  4983. #ifdef MESH_BED_LEVELING
  4984. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4985. #else
  4986. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4987. #endif
  4988. }
  4989. for(int8_t i=0; i < NUM_AXIS; i++) {
  4990. current_position[i] = destination[i];
  4991. }
  4992. }
  4993. void prepare_arc_move(char isclockwise) {
  4994. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4995. // Trace the arc
  4996. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4997. // As far as the parser is concerned, the position is now == target. In reality the
  4998. // motion control system might still be processing the action and the real tool position
  4999. // in any intermediate location.
  5000. for(int8_t i=0; i < NUM_AXIS; i++) {
  5001. current_position[i] = destination[i];
  5002. }
  5003. previous_millis_cmd = millis();
  5004. }
  5005. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5006. #if defined(FAN_PIN)
  5007. #if CONTROLLERFAN_PIN == FAN_PIN
  5008. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5009. #endif
  5010. #endif
  5011. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5012. unsigned long lastMotorCheck = 0;
  5013. void controllerFan()
  5014. {
  5015. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5016. {
  5017. lastMotorCheck = millis();
  5018. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5019. #if EXTRUDERS > 2
  5020. || !READ(E2_ENABLE_PIN)
  5021. #endif
  5022. #if EXTRUDER > 1
  5023. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5024. || !READ(X2_ENABLE_PIN)
  5025. #endif
  5026. || !READ(E1_ENABLE_PIN)
  5027. #endif
  5028. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5029. {
  5030. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5031. }
  5032. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5033. {
  5034. digitalWrite(CONTROLLERFAN_PIN, 0);
  5035. analogWrite(CONTROLLERFAN_PIN, 0);
  5036. }
  5037. else
  5038. {
  5039. // allows digital or PWM fan output to be used (see M42 handling)
  5040. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5041. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5042. }
  5043. }
  5044. }
  5045. #endif
  5046. #ifdef TEMP_STAT_LEDS
  5047. static bool blue_led = false;
  5048. static bool red_led = false;
  5049. static uint32_t stat_update = 0;
  5050. void handle_status_leds(void) {
  5051. float max_temp = 0.0;
  5052. if(millis() > stat_update) {
  5053. stat_update += 500; // Update every 0.5s
  5054. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5055. max_temp = max(max_temp, degHotend(cur_extruder));
  5056. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5057. }
  5058. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5059. max_temp = max(max_temp, degTargetBed());
  5060. max_temp = max(max_temp, degBed());
  5061. #endif
  5062. if((max_temp > 55.0) && (red_led == false)) {
  5063. digitalWrite(STAT_LED_RED, 1);
  5064. digitalWrite(STAT_LED_BLUE, 0);
  5065. red_led = true;
  5066. blue_led = false;
  5067. }
  5068. if((max_temp < 54.0) && (blue_led == false)) {
  5069. digitalWrite(STAT_LED_RED, 0);
  5070. digitalWrite(STAT_LED_BLUE, 1);
  5071. red_led = false;
  5072. blue_led = true;
  5073. }
  5074. }
  5075. }
  5076. #endif
  5077. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5078. {
  5079. #if defined(KILL_PIN) && KILL_PIN > -1
  5080. static int killCount = 0; // make the inactivity button a bit less responsive
  5081. const int KILL_DELAY = 10000;
  5082. #endif
  5083. if(buflen < (BUFSIZE-1)){
  5084. get_command();
  5085. }
  5086. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5087. if(max_inactive_time)
  5088. kill();
  5089. if(stepper_inactive_time) {
  5090. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5091. {
  5092. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5093. disable_x();
  5094. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5095. disable_y();
  5096. disable_z();
  5097. disable_e0();
  5098. disable_e1();
  5099. disable_e2();
  5100. }
  5101. }
  5102. }
  5103. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5104. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5105. {
  5106. chdkActive = false;
  5107. WRITE(CHDK, LOW);
  5108. }
  5109. #endif
  5110. #if defined(KILL_PIN) && KILL_PIN > -1
  5111. // Check if the kill button was pressed and wait just in case it was an accidental
  5112. // key kill key press
  5113. // -------------------------------------------------------------------------------
  5114. if( 0 == READ(KILL_PIN) )
  5115. {
  5116. killCount++;
  5117. }
  5118. else if (killCount > 0)
  5119. {
  5120. killCount--;
  5121. }
  5122. // Exceeded threshold and we can confirm that it was not accidental
  5123. // KILL the machine
  5124. // ----------------------------------------------------------------
  5125. if ( killCount >= KILL_DELAY)
  5126. {
  5127. kill();
  5128. }
  5129. #endif
  5130. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5131. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5132. #endif
  5133. #ifdef EXTRUDER_RUNOUT_PREVENT
  5134. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5135. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5136. {
  5137. bool oldstatus=READ(E0_ENABLE_PIN);
  5138. enable_e0();
  5139. float oldepos=current_position[E_AXIS];
  5140. float oldedes=destination[E_AXIS];
  5141. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5142. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5143. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5144. current_position[E_AXIS]=oldepos;
  5145. destination[E_AXIS]=oldedes;
  5146. plan_set_e_position(oldepos);
  5147. previous_millis_cmd=millis();
  5148. st_synchronize();
  5149. WRITE(E0_ENABLE_PIN,oldstatus);
  5150. }
  5151. #endif
  5152. #ifdef TEMP_STAT_LEDS
  5153. handle_status_leds();
  5154. #endif
  5155. check_axes_activity();
  5156. }
  5157. void kill(const char *full_screen_message)
  5158. {
  5159. cli(); // Stop interrupts
  5160. disable_heater();
  5161. disable_x();
  5162. // SERIAL_ECHOLNPGM("kill - disable Y");
  5163. disable_y();
  5164. disable_z();
  5165. disable_e0();
  5166. disable_e1();
  5167. disable_e2();
  5168. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5169. pinMode(PS_ON_PIN,INPUT);
  5170. #endif
  5171. SERIAL_ERROR_START;
  5172. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5173. if (full_screen_message != NULL) {
  5174. SERIAL_ERRORLNRPGM(full_screen_message);
  5175. lcd_display_message_fullscreen_P(full_screen_message);
  5176. } else {
  5177. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5178. }
  5179. // FMC small patch to update the LCD before ending
  5180. sei(); // enable interrupts
  5181. for ( int i=5; i--; lcd_update())
  5182. {
  5183. delay(200);
  5184. }
  5185. cli(); // disable interrupts
  5186. suicide();
  5187. while(1) { /* Intentionally left empty */ } // Wait for reset
  5188. }
  5189. void Stop()
  5190. {
  5191. disable_heater();
  5192. if(Stopped == false) {
  5193. Stopped = true;
  5194. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5195. SERIAL_ERROR_START;
  5196. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5197. LCD_MESSAGERPGM(MSG_STOPPED);
  5198. }
  5199. }
  5200. bool IsStopped() { return Stopped; };
  5201. #ifdef FAST_PWM_FAN
  5202. void setPwmFrequency(uint8_t pin, int val)
  5203. {
  5204. val &= 0x07;
  5205. switch(digitalPinToTimer(pin))
  5206. {
  5207. #if defined(TCCR0A)
  5208. case TIMER0A:
  5209. case TIMER0B:
  5210. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5211. // TCCR0B |= val;
  5212. break;
  5213. #endif
  5214. #if defined(TCCR1A)
  5215. case TIMER1A:
  5216. case TIMER1B:
  5217. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5218. // TCCR1B |= val;
  5219. break;
  5220. #endif
  5221. #if defined(TCCR2)
  5222. case TIMER2:
  5223. case TIMER2:
  5224. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5225. TCCR2 |= val;
  5226. break;
  5227. #endif
  5228. #if defined(TCCR2A)
  5229. case TIMER2A:
  5230. case TIMER2B:
  5231. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5232. TCCR2B |= val;
  5233. break;
  5234. #endif
  5235. #if defined(TCCR3A)
  5236. case TIMER3A:
  5237. case TIMER3B:
  5238. case TIMER3C:
  5239. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5240. TCCR3B |= val;
  5241. break;
  5242. #endif
  5243. #if defined(TCCR4A)
  5244. case TIMER4A:
  5245. case TIMER4B:
  5246. case TIMER4C:
  5247. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5248. TCCR4B |= val;
  5249. break;
  5250. #endif
  5251. #if defined(TCCR5A)
  5252. case TIMER5A:
  5253. case TIMER5B:
  5254. case TIMER5C:
  5255. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5256. TCCR5B |= val;
  5257. break;
  5258. #endif
  5259. }
  5260. }
  5261. #endif //FAST_PWM_FAN
  5262. bool setTargetedHotend(int code){
  5263. tmp_extruder = active_extruder;
  5264. if(code_seen('T')) {
  5265. tmp_extruder = code_value();
  5266. if(tmp_extruder >= EXTRUDERS) {
  5267. SERIAL_ECHO_START;
  5268. switch(code){
  5269. case 104:
  5270. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5271. break;
  5272. case 105:
  5273. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5274. break;
  5275. case 109:
  5276. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5277. break;
  5278. case 218:
  5279. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5280. break;
  5281. case 221:
  5282. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5283. break;
  5284. }
  5285. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5286. return true;
  5287. }
  5288. }
  5289. return false;
  5290. }
  5291. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5292. {
  5293. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5294. {
  5295. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5296. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5297. }
  5298. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5299. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5300. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5301. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5302. total_filament_used = 0;
  5303. }
  5304. float calculate_volumetric_multiplier(float diameter) {
  5305. float area = .0;
  5306. float radius = .0;
  5307. radius = diameter * .5;
  5308. if (! volumetric_enabled || radius == 0) {
  5309. area = 1;
  5310. }
  5311. else {
  5312. area = M_PI * pow(radius, 2);
  5313. }
  5314. return 1.0 / area;
  5315. }
  5316. void calculate_volumetric_multipliers() {
  5317. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5318. #if EXTRUDERS > 1
  5319. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5320. #if EXTRUDERS > 2
  5321. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5322. #endif
  5323. #endif
  5324. }
  5325. void delay_keep_alive(unsigned int ms)
  5326. {
  5327. for (;;) {
  5328. manage_heater();
  5329. // Manage inactivity, but don't disable steppers on timeout.
  5330. manage_inactivity(true);
  5331. lcd_update();
  5332. if (ms == 0)
  5333. break;
  5334. else if (ms >= 50) {
  5335. delay(50);
  5336. ms -= 50;
  5337. } else {
  5338. delay(ms);
  5339. ms = 0;
  5340. }
  5341. }
  5342. }
  5343. void wait_for_heater(long codenum) {
  5344. #ifdef TEMP_RESIDENCY_TIME
  5345. long residencyStart;
  5346. residencyStart = -1;
  5347. /* continue to loop until we have reached the target temp
  5348. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5349. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5350. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5351. #else
  5352. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5353. #endif //TEMP_RESIDENCY_TIME
  5354. if ((millis() - codenum) > 1000UL)
  5355. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5356. if (!farm_mode) {
  5357. SERIAL_PROTOCOLPGM("T:");
  5358. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5359. SERIAL_PROTOCOLPGM(" E:");
  5360. SERIAL_PROTOCOL((int)tmp_extruder);
  5361. #ifdef TEMP_RESIDENCY_TIME
  5362. SERIAL_PROTOCOLPGM(" W:");
  5363. if (residencyStart > -1)
  5364. {
  5365. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5366. SERIAL_PROTOCOLLN(codenum);
  5367. }
  5368. else
  5369. {
  5370. SERIAL_PROTOCOLLN("?");
  5371. }
  5372. }
  5373. #else
  5374. SERIAL_PROTOCOLLN("");
  5375. #endif
  5376. codenum = millis();
  5377. }
  5378. manage_heater();
  5379. manage_inactivity();
  5380. lcd_update();
  5381. #ifdef TEMP_RESIDENCY_TIME
  5382. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5383. or when current temp falls outside the hysteresis after target temp was reached */
  5384. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5385. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5386. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5387. {
  5388. residencyStart = millis();
  5389. }
  5390. #endif //TEMP_RESIDENCY_TIME
  5391. }
  5392. }
  5393. void check_babystep() {
  5394. int babystep_z;
  5395. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5396. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5397. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5398. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5399. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5400. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5401. lcd_update_enable(true);
  5402. }
  5403. }
  5404. #ifdef DIS
  5405. void d_setup()
  5406. {
  5407. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5408. pinMode(D_DATA, INPUT_PULLUP);
  5409. pinMode(D_REQUIRE, OUTPUT);
  5410. digitalWrite(D_REQUIRE, HIGH);
  5411. }
  5412. float d_ReadData()
  5413. {
  5414. int digit[13];
  5415. String mergeOutput;
  5416. float output;
  5417. digitalWrite(D_REQUIRE, HIGH);
  5418. for (int i = 0; i<13; i++)
  5419. {
  5420. for (int j = 0; j < 4; j++)
  5421. {
  5422. while (digitalRead(D_DATACLOCK) == LOW) {}
  5423. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5424. bitWrite(digit[i], j, digitalRead(D_DATA));
  5425. }
  5426. }
  5427. digitalWrite(D_REQUIRE, LOW);
  5428. mergeOutput = "";
  5429. output = 0;
  5430. for (int r = 5; r <= 10; r++) //Merge digits
  5431. {
  5432. mergeOutput += digit[r];
  5433. }
  5434. output = mergeOutput.toFloat();
  5435. if (digit[4] == 8) //Handle sign
  5436. {
  5437. output *= -1;
  5438. }
  5439. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5440. {
  5441. output /= 10;
  5442. }
  5443. return output;
  5444. }
  5445. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5446. int t1 = 0;
  5447. int t_delay = 0;
  5448. int digit[13];
  5449. int m;
  5450. char str[3];
  5451. //String mergeOutput;
  5452. char mergeOutput[15];
  5453. float output;
  5454. int mesh_point = 0; //index number of calibration point
  5455. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5456. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5457. float mesh_home_z_search = 4;
  5458. float row[x_points_num];
  5459. int ix = 0;
  5460. int iy = 0;
  5461. char* filename_wldsd = "wldsd.txt";
  5462. char data_wldsd[70];
  5463. char numb_wldsd[10];
  5464. d_setup();
  5465. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5466. // We don't know where we are! HOME!
  5467. // Push the commands to the front of the message queue in the reverse order!
  5468. // There shall be always enough space reserved for these commands.
  5469. repeatcommand_front(); // repeat G80 with all its parameters
  5470. enquecommand_front_P((PSTR("G28 W0")));
  5471. enquecommand_front_P((PSTR("G1 Z5")));
  5472. return;
  5473. }
  5474. bool custom_message_old = custom_message;
  5475. unsigned int custom_message_type_old = custom_message_type;
  5476. unsigned int custom_message_state_old = custom_message_state;
  5477. custom_message = true;
  5478. custom_message_type = 1;
  5479. custom_message_state = (x_points_num * y_points_num) + 10;
  5480. lcd_update(1);
  5481. mbl.reset();
  5482. babystep_undo();
  5483. card.openFile(filename_wldsd, false);
  5484. current_position[Z_AXIS] = mesh_home_z_search;
  5485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5486. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5487. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5488. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5489. setup_for_endstop_move(false);
  5490. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5491. SERIAL_PROTOCOL(x_points_num);
  5492. SERIAL_PROTOCOLPGM(",");
  5493. SERIAL_PROTOCOL(y_points_num);
  5494. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5495. SERIAL_PROTOCOL(mesh_home_z_search);
  5496. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5497. SERIAL_PROTOCOL(x_dimension);
  5498. SERIAL_PROTOCOLPGM(",");
  5499. SERIAL_PROTOCOL(y_dimension);
  5500. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5501. while (mesh_point != x_points_num * y_points_num) {
  5502. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5503. iy = mesh_point / x_points_num;
  5504. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5505. float z0 = 0.f;
  5506. current_position[Z_AXIS] = mesh_home_z_search;
  5507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5508. st_synchronize();
  5509. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5510. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5512. st_synchronize();
  5513. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5514. break;
  5515. card.closefile();
  5516. }
  5517. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5518. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5519. //strcat(data_wldsd, numb_wldsd);
  5520. //MYSERIAL.println(data_wldsd);
  5521. //delay(1000);
  5522. //delay(3000);
  5523. //t1 = millis();
  5524. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5525. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5526. memset(digit, 0, sizeof(digit));
  5527. //cli();
  5528. digitalWrite(D_REQUIRE, LOW);
  5529. for (int i = 0; i<13; i++)
  5530. {
  5531. //t1 = millis();
  5532. for (int j = 0; j < 4; j++)
  5533. {
  5534. while (digitalRead(D_DATACLOCK) == LOW) {}
  5535. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5536. bitWrite(digit[i], j, digitalRead(D_DATA));
  5537. }
  5538. //t_delay = (millis() - t1);
  5539. //SERIAL_PROTOCOLPGM(" ");
  5540. //SERIAL_PROTOCOL_F(t_delay, 5);
  5541. //SERIAL_PROTOCOLPGM(" ");
  5542. }
  5543. //sei();
  5544. digitalWrite(D_REQUIRE, HIGH);
  5545. mergeOutput[0] = '\0';
  5546. output = 0;
  5547. for (int r = 5; r <= 10; r++) //Merge digits
  5548. {
  5549. sprintf(str, "%d", digit[r]);
  5550. strcat(mergeOutput, str);
  5551. }
  5552. output = atof(mergeOutput);
  5553. if (digit[4] == 8) //Handle sign
  5554. {
  5555. output *= -1;
  5556. }
  5557. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5558. {
  5559. output *= 0.1;
  5560. }
  5561. //output = d_ReadData();
  5562. //row[ix] = current_position[Z_AXIS];
  5563. memset(data_wldsd, 0, sizeof(data_wldsd));
  5564. for (int i = 0; i <3; i++) {
  5565. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5566. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5567. strcat(data_wldsd, numb_wldsd);
  5568. strcat(data_wldsd, ";");
  5569. }
  5570. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5571. dtostrf(output, 8, 5, numb_wldsd);
  5572. strcat(data_wldsd, numb_wldsd);
  5573. //strcat(data_wldsd, ";");
  5574. card.write_command(data_wldsd);
  5575. //row[ix] = d_ReadData();
  5576. row[ix] = output; // current_position[Z_AXIS];
  5577. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5578. for (int i = 0; i < x_points_num; i++) {
  5579. SERIAL_PROTOCOLPGM(" ");
  5580. SERIAL_PROTOCOL_F(row[i], 5);
  5581. }
  5582. SERIAL_PROTOCOLPGM("\n");
  5583. }
  5584. custom_message_state--;
  5585. mesh_point++;
  5586. lcd_update(1);
  5587. }
  5588. card.closefile();
  5589. }
  5590. #endif
  5591. void temp_compensation_start() {
  5592. custom_message = true;
  5593. custom_message_type = 5;
  5594. custom_message_state = PINDA_HEAT_T + 1;
  5595. lcd_update(2);
  5596. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5597. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5598. }
  5599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5600. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5601. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5602. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5604. st_synchronize();
  5605. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5606. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5607. delay_keep_alive(1000);
  5608. custom_message_state = PINDA_HEAT_T - i;
  5609. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5610. else lcd_update(1);
  5611. }
  5612. custom_message_type = 0;
  5613. custom_message_state = 0;
  5614. custom_message = false;
  5615. }
  5616. void temp_compensation_apply() {
  5617. int i_add;
  5618. int compensation_value;
  5619. int z_shift = 0;
  5620. float z_shift_mm;
  5621. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5622. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5623. i_add = (target_temperature_bed - 60) / 10;
  5624. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5625. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5626. }else {
  5627. //interpolation
  5628. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5629. }
  5630. SERIAL_PROTOCOLPGM("\n");
  5631. SERIAL_PROTOCOLPGM("Z shift applied:");
  5632. MYSERIAL.print(z_shift_mm);
  5633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5634. st_synchronize();
  5635. plan_set_z_position(current_position[Z_AXIS]);
  5636. }
  5637. else {
  5638. //we have no temp compensation data
  5639. }
  5640. }
  5641. float temp_comp_interpolation(float inp_temperature) {
  5642. //cubic spline interpolation
  5643. int n, i, j, k;
  5644. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5645. int shift[10];
  5646. int temp_C[10];
  5647. n = 6; //number of measured points
  5648. shift[0] = 0;
  5649. for (i = 0; i < n; i++) {
  5650. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5651. temp_C[i] = 50 + i * 10; //temperature in C
  5652. x[i] = (float)temp_C[i];
  5653. f[i] = (float)shift[i];
  5654. }
  5655. if (inp_temperature < x[0]) return 0;
  5656. for (i = n - 1; i>0; i--) {
  5657. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5658. h[i - 1] = x[i] - x[i - 1];
  5659. }
  5660. //*********** formation of h, s , f matrix **************
  5661. for (i = 1; i<n - 1; i++) {
  5662. m[i][i] = 2 * (h[i - 1] + h[i]);
  5663. if (i != 1) {
  5664. m[i][i - 1] = h[i - 1];
  5665. m[i - 1][i] = h[i - 1];
  5666. }
  5667. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5668. }
  5669. //*********** forward elimination **************
  5670. for (i = 1; i<n - 2; i++) {
  5671. temp = (m[i + 1][i] / m[i][i]);
  5672. for (j = 1; j <= n - 1; j++)
  5673. m[i + 1][j] -= temp*m[i][j];
  5674. }
  5675. //*********** backward substitution *********
  5676. for (i = n - 2; i>0; i--) {
  5677. sum = 0;
  5678. for (j = i; j <= n - 2; j++)
  5679. sum += m[i][j] * s[j];
  5680. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5681. }
  5682. for (i = 0; i<n - 1; i++)
  5683. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5684. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5685. b = s[i] / 2;
  5686. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5687. d = f[i];
  5688. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5689. }
  5690. return sum;
  5691. }
  5692. void long_pause() //long pause print
  5693. {
  5694. st_synchronize();
  5695. //save currently set parameters to global variables
  5696. saved_feedmultiply = feedmultiply;
  5697. HotendTempBckp = degTargetHotend(active_extruder);
  5698. fanSpeedBckp = fanSpeed;
  5699. start_pause_print = millis();
  5700. //save position
  5701. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5702. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5703. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5704. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5705. //retract
  5706. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5708. //lift z
  5709. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5710. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5712. //set nozzle target temperature to 0
  5713. setTargetHotend(0, 0);
  5714. setTargetHotend(0, 1);
  5715. setTargetHotend(0, 2);
  5716. //Move XY to side
  5717. current_position[X_AXIS] = X_PAUSE_POS;
  5718. current_position[Y_AXIS] = Y_PAUSE_POS;
  5719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5720. // Turn off the print fan
  5721. fanSpeed = 0;
  5722. st_synchronize();
  5723. }
  5724. void serialecho_temperatures() {
  5725. float tt = degHotend(active_extruder);
  5726. SERIAL_PROTOCOLPGM("T:");
  5727. SERIAL_PROTOCOL(tt);
  5728. SERIAL_PROTOCOLPGM(" E:");
  5729. SERIAL_PROTOCOL((int)active_extruder);
  5730. SERIAL_PROTOCOLPGM(" B:");
  5731. SERIAL_PROTOCOL_F(degBed(), 1);
  5732. SERIAL_PROTOCOLLN("");
  5733. }