mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. #define MMU_REQUIRED_FW_BUILDNR 81
  20. bool mmu_enabled = false;
  21. bool mmu_ready = false;
  22. int8_t mmu_state = 0;
  23. uint8_t mmu_cmd = 0;
  24. uint8_t mmu_extruder = 0;
  25. uint8_t tmp_extruder = 0;
  26. int8_t mmu_finda = -1;
  27. int16_t mmu_version = -1;
  28. int16_t mmu_buildnr = -1;
  29. uint32_t mmu_last_request = 0;
  30. uint32_t mmu_last_response = 0;
  31. //clear rx buffer
  32. void mmu_clr_rx_buf(void)
  33. {
  34. while (fgetc(uart2io) >= 0);
  35. }
  36. //send command - puts
  37. int mmu_puts_P(const char* str)
  38. {
  39. mmu_clr_rx_buf(); //clear rx buffer
  40. int r = fputs_P(str, uart2io); //send command
  41. mmu_last_request = millis();
  42. return r;
  43. }
  44. //send command - printf
  45. int mmu_printf_P(const char* format, ...)
  46. {
  47. va_list args;
  48. va_start(args, format);
  49. mmu_clr_rx_buf(); //clear rx buffer
  50. int r = vfprintf_P(uart2io, format, args); //send command
  51. va_end(args);
  52. mmu_last_request = millis();
  53. return r;
  54. }
  55. //check 'ok' response
  56. int8_t mmu_rx_ok(void)
  57. {
  58. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  59. if (res == 1) mmu_last_response = millis();
  60. return res;
  61. }
  62. //check 'start' response
  63. int8_t mmu_rx_start(void)
  64. {
  65. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  66. if (res == 1) mmu_last_response = millis();
  67. return res;
  68. }
  69. //initialize mmu2 unit - first part - should be done at begining of startup process
  70. void mmu_init(void)
  71. {
  72. digitalWrite(MMU_RST_PIN, HIGH);
  73. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  74. uart2_init(); //init uart2
  75. _delay_ms(10); //wait 10ms for sure
  76. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  77. mmu_state = -1;
  78. }
  79. //mmu main loop - state machine processing
  80. void mmu_loop(void)
  81. {
  82. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  83. switch (mmu_state)
  84. {
  85. case 0:
  86. return;
  87. case -1:
  88. if (mmu_rx_start() > 0)
  89. {
  90. puts_P(PSTR("MMU => 'start'"));
  91. puts_P(PSTR("MMU <= 'S1'"));
  92. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  93. mmu_state = -2;
  94. }
  95. else if (millis() > 30000) //30sec after reset disable mmu
  96. {
  97. puts_P(PSTR("MMU not responding - DISABLED"));
  98. mmu_state = 0;
  99. }
  100. return;
  101. case -2:
  102. if (mmu_rx_ok() > 0)
  103. {
  104. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  105. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  106. puts_P(PSTR("MMU <= 'S2'"));
  107. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  108. mmu_state = -3;
  109. }
  110. return;
  111. case -3:
  112. if (mmu_rx_ok() > 0)
  113. {
  114. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  115. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  116. bool version_valid = mmu_check_version();
  117. if (!version_valid) mmu_show_warning();
  118. else puts_P(PSTR("MMU version valid"));
  119. puts_P(PSTR("MMU <= 'P0'"));
  120. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  121. mmu_state = -4;
  122. }
  123. return;
  124. case -4:
  125. if (mmu_rx_ok() > 0)
  126. {
  127. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  128. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  129. puts_P(PSTR("MMU - ENABLED"));
  130. mmu_enabled = true;
  131. mmu_state = 1;
  132. }
  133. return;
  134. case 1:
  135. if (mmu_cmd) //command request ?
  136. {
  137. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  138. {
  139. int extruder = mmu_cmd - MMU_CMD_T0;
  140. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  141. mmu_printf_P(PSTR("T%d\n"), extruder);
  142. mmu_state = 3; // wait for response
  143. }
  144. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  145. {
  146. int filament = mmu_cmd - MMU_CMD_L0;
  147. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  148. mmu_printf_P(PSTR("L%d\n"), filament);
  149. mmu_state = 3; // wait for response
  150. }
  151. else if (mmu_cmd == MMU_CMD_C0)
  152. {
  153. printf_P(PSTR("MMU <= 'C0'\n"));
  154. mmu_puts_P(PSTR("C0\n")); //send continue loading
  155. mmu_state = 3;
  156. }
  157. mmu_cmd = 0;
  158. }
  159. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  160. {
  161. puts_P(PSTR("MMU <= 'P0'"));
  162. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  163. mmu_state = 2;
  164. }
  165. return;
  166. case 2: //response to command P0
  167. if (mmu_rx_ok() > 0)
  168. {
  169. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  170. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  171. mmu_state = 1;
  172. if (mmu_cmd == 0)
  173. mmu_ready = true;
  174. }
  175. else if ((mmu_last_request + 30000) < millis())
  176. { //resend request after timeout (30s)
  177. mmu_state = 1;
  178. }
  179. return;
  180. case 3: //response to commands T0-T4
  181. if (mmu_rx_ok() > 0)
  182. {
  183. printf_P(PSTR("MMU => 'ok'\n"));
  184. mmu_ready = true;
  185. mmu_state = 1;
  186. }
  187. else if ((mmu_last_request + 30000) < millis())
  188. { //resend request after timeout (30s)
  189. mmu_state = 1;
  190. }
  191. return;
  192. }
  193. }
  194. void mmu_reset(void)
  195. {
  196. #ifdef MMU_HWRESET //HW - pulse reset pin
  197. digitalWrite(MMU_RST_PIN, LOW);
  198. _delay_us(100);
  199. digitalWrite(MMU_RST_PIN, HIGH);
  200. #else //SW - send X0 command
  201. mmu_puts_P(PSTR("X0\n"));
  202. #endif
  203. }
  204. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  205. {
  206. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  207. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  208. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  209. while ((mmu_rx_ok() <= 0) && (--timeout))
  210. delay_keep_alive(MMU_TODELAY);
  211. return timeout?1:0;
  212. }
  213. void mmu_command(uint8_t cmd)
  214. {
  215. mmu_cmd = cmd;
  216. mmu_ready = false;
  217. }
  218. bool mmu_get_response(void)
  219. {
  220. // printf_P(PSTR("mmu_get_response - begin\n"));
  221. KEEPALIVE_STATE(IN_PROCESS);
  222. while (mmu_cmd != 0)
  223. {
  224. // mmu_loop();
  225. delay_keep_alive(100);
  226. }
  227. while (!mmu_ready)
  228. {
  229. // mmu_loop();
  230. if (mmu_state != 3)
  231. break;
  232. delay_keep_alive(100);
  233. }
  234. bool ret = mmu_ready;
  235. mmu_ready = false;
  236. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  237. return ret;
  238. /* //waits for "ok" from mmu
  239. //function returns true if "ok" was received
  240. //if timeout is set to true function return false if there is no "ok" received before timeout
  241. bool response = true;
  242. LongTimer mmu_get_reponse_timeout;
  243. KEEPALIVE_STATE(IN_PROCESS);
  244. mmu_get_reponse_timeout.start();
  245. while (mmu_rx_ok() <= 0)
  246. {
  247. delay_keep_alive(100);
  248. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  249. { //5 minutes timeout
  250. response = false;
  251. break;
  252. }
  253. }
  254. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  255. return response;*/
  256. }
  257. void manage_response(bool move_axes, bool turn_off_nozzle)
  258. {
  259. bool response = false;
  260. mmu_print_saved = false;
  261. bool lcd_update_was_enabled = false;
  262. float hotend_temp_bckp = degTargetHotend(active_extruder);
  263. float z_position_bckp = current_position[Z_AXIS];
  264. float x_position_bckp = current_position[X_AXIS];
  265. float y_position_bckp = current_position[Y_AXIS];
  266. while(!response)
  267. {
  268. response = mmu_get_response(); //wait for "ok" from mmu
  269. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  270. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  271. if (lcd_update_enabled) {
  272. lcd_update_was_enabled = true;
  273. lcd_update_enable(false);
  274. }
  275. st_synchronize();
  276. mmu_print_saved = true;
  277. hotend_temp_bckp = degTargetHotend(active_extruder);
  278. if (move_axes) {
  279. z_position_bckp = current_position[Z_AXIS];
  280. x_position_bckp = current_position[X_AXIS];
  281. y_position_bckp = current_position[Y_AXIS];
  282. //lift z
  283. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  284. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  286. st_synchronize();
  287. //Move XY to side
  288. current_position[X_AXIS] = X_PAUSE_POS;
  289. current_position[Y_AXIS] = Y_PAUSE_POS;
  290. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  291. st_synchronize();
  292. }
  293. if (turn_off_nozzle) {
  294. //set nozzle target temperature to 0
  295. setAllTargetHotends(0);
  296. printf_P(PSTR("MMU not responding\n"));
  297. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  298. setTargetHotend(hotend_temp_bckp, active_extruder);
  299. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  300. delay_keep_alive(1000);
  301. lcd_wait_for_heater();
  302. }
  303. }
  304. }
  305. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  306. delay_keep_alive(1000);
  307. }
  308. else if (mmu_print_saved) {
  309. printf_P(PSTR("MMU start responding\n"));
  310. lcd_clear();
  311. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  312. if (move_axes) {
  313. current_position[X_AXIS] = x_position_bckp;
  314. current_position[Y_AXIS] = y_position_bckp;
  315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  316. st_synchronize();
  317. current_position[Z_AXIS] = z_position_bckp;
  318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  319. st_synchronize();
  320. }
  321. else {
  322. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  323. }
  324. }
  325. }
  326. if (lcd_update_was_enabled) lcd_update_enable(true);
  327. }
  328. void mmu_load_to_nozzle()
  329. {
  330. st_synchronize();
  331. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  332. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  333. current_position[E_AXIS] += 7.2f;
  334. float feedrate = 562;
  335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  336. st_synchronize();
  337. current_position[E_AXIS] += 14.4f;
  338. feedrate = 871;
  339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  340. st_synchronize();
  341. current_position[E_AXIS] += 36.0f;
  342. feedrate = 1393;
  343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  344. st_synchronize();
  345. current_position[E_AXIS] += 14.4f;
  346. feedrate = 871;
  347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  348. st_synchronize();
  349. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  350. }
  351. void mmu_M600_load_filament(bool automatic)
  352. {
  353. //load filament for mmu v2
  354. bool response = false;
  355. bool yes = false;
  356. if (!automatic) {
  357. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  358. if(yes) tmp_extruder = choose_extruder_menu();
  359. else tmp_extruder = mmu_extruder;
  360. }
  361. else {
  362. tmp_extruder = (tmp_extruder+1)%5;
  363. }
  364. lcd_update_enable(false);
  365. lcd_clear();
  366. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  367. lcd_print(" ");
  368. lcd_print(tmp_extruder + 1);
  369. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  370. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  371. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  372. mmu_command(MMU_CMD_T0 + tmp_extruder);
  373. manage_response(false, true);
  374. mmu_command(MMU_CMD_C0);
  375. mmu_extruder = tmp_extruder; //filament change is finished
  376. mmu_load_to_nozzle();
  377. st_synchronize();
  378. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  380. }
  381. void extr_mov(float shift, float feed_rate)
  382. { //move extruder no matter what the current heater temperature is
  383. set_extrude_min_temp(.0);
  384. current_position[E_AXIS] += shift;
  385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  386. set_extrude_min_temp(EXTRUDE_MINTEMP);
  387. }
  388. void change_extr(int extr) { //switches multiplexer for extruders
  389. #ifdef SNMM
  390. st_synchronize();
  391. delay(100);
  392. disable_e0();
  393. disable_e1();
  394. disable_e2();
  395. mmu_extruder = extr;
  396. pinMode(E_MUX0_PIN, OUTPUT);
  397. pinMode(E_MUX1_PIN, OUTPUT);
  398. switch (extr) {
  399. case 1:
  400. WRITE(E_MUX0_PIN, HIGH);
  401. WRITE(E_MUX1_PIN, LOW);
  402. break;
  403. case 2:
  404. WRITE(E_MUX0_PIN, LOW);
  405. WRITE(E_MUX1_PIN, HIGH);
  406. break;
  407. case 3:
  408. WRITE(E_MUX0_PIN, HIGH);
  409. WRITE(E_MUX1_PIN, HIGH);
  410. break;
  411. default:
  412. WRITE(E_MUX0_PIN, LOW);
  413. WRITE(E_MUX1_PIN, LOW);
  414. break;
  415. }
  416. delay(100);
  417. #endif
  418. }
  419. int get_ext_nr()
  420. { //reads multiplexer input pins and return current extruder number (counted from 0)
  421. #ifndef SNMM
  422. return(mmu_extruder); //update needed
  423. #else
  424. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  425. #endif
  426. }
  427. void display_loading()
  428. {
  429. switch (mmu_extruder)
  430. {
  431. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  432. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  433. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  434. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  435. }
  436. }
  437. void extr_adj(int extruder) //loading filament for SNMM
  438. {
  439. #ifndef SNMM
  440. uint8_t cmd = MMU_CMD_L0 + extruder;
  441. if (cmd > MMU_CMD_L4)
  442. {
  443. printf_P(PSTR("Filament out of range %d \n"),extruder);
  444. return;
  445. }
  446. mmu_command(cmd);
  447. //show which filament is currently loaded
  448. lcd_update_enable(false);
  449. lcd_clear();
  450. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  451. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  452. //else lcd.print(" ");
  453. lcd_print(" ");
  454. lcd_print(extruder + 1);
  455. // get response
  456. manage_response(false, false);
  457. lcd_update_enable(true);
  458. //lcd_return_to_status();
  459. #else
  460. bool correct;
  461. max_feedrate[E_AXIS] =80;
  462. //max_feedrate[E_AXIS] = 50;
  463. START:
  464. lcd_clear();
  465. lcd_set_cursor(0, 0);
  466. switch (extruder) {
  467. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  468. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  469. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  470. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  471. }
  472. KEEPALIVE_STATE(PAUSED_FOR_USER);
  473. do{
  474. extr_mov(0.001,1000);
  475. delay_keep_alive(2);
  476. } while (!lcd_clicked());
  477. //delay_keep_alive(500);
  478. KEEPALIVE_STATE(IN_HANDLER);
  479. st_synchronize();
  480. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  481. //if (!correct) goto START;
  482. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  483. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  484. extr_mov(bowden_length[extruder], 500);
  485. lcd_clear();
  486. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  487. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  488. else lcd_print(" ");
  489. lcd_print(mmu_extruder + 1);
  490. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  491. st_synchronize();
  492. max_feedrate[E_AXIS] = 50;
  493. lcd_update_enable(true);
  494. lcd_return_to_status();
  495. lcdDrawUpdate = 2;
  496. #endif
  497. }
  498. void extr_unload()
  499. { //unload just current filament for multimaterial printers
  500. #ifdef SNMM
  501. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  502. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  503. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  504. #endif
  505. if (degHotend0() > EXTRUDE_MINTEMP)
  506. {
  507. #ifndef SNMM
  508. st_synchronize();
  509. //show which filament is currently unloaded
  510. lcd_update_enable(false);
  511. lcd_clear();
  512. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  513. lcd_print(" ");
  514. lcd_print(mmu_extruder + 1);
  515. current_position[E_AXIS] -= 80;
  516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  517. st_synchronize();
  518. printf_P(PSTR("U0\n"));
  519. fprintf_P(uart2io, PSTR("U0\n"));
  520. // get response
  521. manage_response(false, true);
  522. lcd_update_enable(true);
  523. #else //SNMM
  524. lcd_clear();
  525. lcd_display_message_fullscreen_P(PSTR(""));
  526. max_feedrate[E_AXIS] = 50;
  527. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  528. lcd_print(" ");
  529. lcd_print(mmu_extruder + 1);
  530. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  531. if (current_position[Z_AXIS] < 15) {
  532. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  534. }
  535. current_position[E_AXIS] += 10; //extrusion
  536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  537. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  538. if (current_temperature[0] < 230) { //PLA & all other filaments
  539. current_position[E_AXIS] += 5.4;
  540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  541. current_position[E_AXIS] += 3.2;
  542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  543. current_position[E_AXIS] += 3;
  544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  545. }
  546. else { //ABS
  547. current_position[E_AXIS] += 3.1;
  548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  549. current_position[E_AXIS] += 3.1;
  550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  551. current_position[E_AXIS] += 4;
  552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  553. /*current_position[X_AXIS] += 23; //delay
  554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  555. current_position[X_AXIS] -= 23; //delay
  556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  557. delay_keep_alive(4700);
  558. }
  559. max_feedrate[E_AXIS] = 80;
  560. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  562. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  564. st_synchronize();
  565. //st_current_init();
  566. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  567. else st_current_set(2, tmp_motor_loud[2]);
  568. lcd_update_enable(true);
  569. lcd_return_to_status();
  570. max_feedrate[E_AXIS] = 50;
  571. #endif //SNMM
  572. }
  573. else
  574. {
  575. lcd_clear();
  576. lcd_set_cursor(0, 0);
  577. lcd_puts_P(_T(MSG_ERROR));
  578. lcd_set_cursor(0, 2);
  579. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  580. delay(2000);
  581. lcd_clear();
  582. }
  583. //lcd_return_to_status();
  584. }
  585. //wrapper functions for loading filament
  586. void extr_adj_0()
  587. {
  588. #ifndef SNMM
  589. enquecommand_P(PSTR("M701 E0"));
  590. #else
  591. change_extr(0);
  592. extr_adj(0);
  593. #endif
  594. }
  595. void extr_adj_1()
  596. {
  597. #ifndef SNMM
  598. enquecommand_P(PSTR("M701 E1"));
  599. #else
  600. change_extr(1);
  601. extr_adj(1);
  602. #endif
  603. }
  604. void extr_adj_2()
  605. {
  606. #ifndef SNMM
  607. enquecommand_P(PSTR("M701 E2"));
  608. #else
  609. change_extr(2);
  610. extr_adj(2);
  611. #endif
  612. }
  613. void extr_adj_3()
  614. {
  615. #ifndef SNMM
  616. enquecommand_P(PSTR("M701 E3"));
  617. #else
  618. change_extr(3);
  619. extr_adj(3);
  620. #endif
  621. }
  622. void extr_adj_4()
  623. {
  624. #ifndef SNMM
  625. enquecommand_P(PSTR("M701 E4"));
  626. #else
  627. change_extr(4);
  628. extr_adj(4);
  629. #endif
  630. }
  631. void load_all()
  632. {
  633. #ifndef SNMM
  634. enquecommand_P(PSTR("M701 E0"));
  635. enquecommand_P(PSTR("M701 E1"));
  636. enquecommand_P(PSTR("M701 E2"));
  637. enquecommand_P(PSTR("M701 E3"));
  638. enquecommand_P(PSTR("M701 E4"));
  639. #else
  640. for (int i = 0; i < 4; i++)
  641. {
  642. change_extr(i);
  643. extr_adj(i);
  644. }
  645. #endif
  646. }
  647. //wrapper functions for changing extruders
  648. void extr_change_0()
  649. {
  650. change_extr(0);
  651. lcd_return_to_status();
  652. }
  653. void extr_change_1()
  654. {
  655. change_extr(1);
  656. lcd_return_to_status();
  657. }
  658. void extr_change_2()
  659. {
  660. change_extr(2);
  661. lcd_return_to_status();
  662. }
  663. void extr_change_3()
  664. {
  665. change_extr(3);
  666. lcd_return_to_status();
  667. }
  668. //wrapper functions for unloading filament
  669. void extr_unload_all()
  670. {
  671. if (degHotend0() > EXTRUDE_MINTEMP)
  672. {
  673. for (int i = 0; i < 4; i++)
  674. {
  675. change_extr(i);
  676. extr_unload();
  677. }
  678. }
  679. else
  680. {
  681. lcd_clear();
  682. lcd_set_cursor(0, 0);
  683. lcd_puts_P(_T(MSG_ERROR));
  684. lcd_set_cursor(0, 2);
  685. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  686. delay(2000);
  687. lcd_clear();
  688. lcd_return_to_status();
  689. }
  690. }
  691. //unloading just used filament (for snmm)
  692. void extr_unload_used()
  693. {
  694. if (degHotend0() > EXTRUDE_MINTEMP) {
  695. for (int i = 0; i < 4; i++) {
  696. if (snmm_filaments_used & (1 << i)) {
  697. change_extr(i);
  698. extr_unload();
  699. }
  700. }
  701. snmm_filaments_used = 0;
  702. }
  703. else {
  704. lcd_clear();
  705. lcd_set_cursor(0, 0);
  706. lcd_puts_P(_T(MSG_ERROR));
  707. lcd_set_cursor(0, 2);
  708. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  709. delay(2000);
  710. lcd_clear();
  711. lcd_return_to_status();
  712. }
  713. }
  714. void extr_unload_0()
  715. {
  716. change_extr(0);
  717. extr_unload();
  718. }
  719. void extr_unload_1()
  720. {
  721. change_extr(1);
  722. extr_unload();
  723. }
  724. void extr_unload_2()
  725. {
  726. change_extr(2);
  727. extr_unload();
  728. }
  729. void extr_unload_3()
  730. {
  731. change_extr(3);
  732. extr_unload();
  733. }
  734. void extr_unload_4()
  735. {
  736. change_extr(4);
  737. extr_unload();
  738. }
  739. bool mmu_check_version()
  740. {
  741. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  742. }
  743. void mmu_show_warning()
  744. {
  745. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  746. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  747. }