planner.cpp 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. //===========================================================================
  47. //=============================public variables ============================
  48. //===========================================================================
  49. unsigned long minsegmenttime;
  50. float max_feedrate[NUM_AXIS]; // set the max speeds
  51. float axis_steps_per_unit[NUM_AXIS];
  52. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  53. float minimumfeedrate;
  54. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  55. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  56. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  57. float max_z_jerk;
  58. float max_e_jerk;
  59. float mintravelfeedrate;
  60. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  61. #ifdef ENABLE_AUTO_BED_LEVELING
  62. // this holds the required transform to compensate for bed level
  63. matrix_3x3 plan_bed_level_matrix = {
  64. 1.0, 0.0, 0.0,
  65. 0.0, 1.0, 0.0,
  66. 0.0, 0.0, 1.0,
  67. };
  68. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  69. // The current position of the tool in absolute steps
  70. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  71. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  72. static float previous_nominal_speed; // Nominal speed of previous path line segment
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. //===========================================================================
  87. //=============================private variables ============================
  88. //===========================================================================
  89. #ifdef PREVENT_DANGEROUS_EXTRUDE
  90. float extrude_min_temp=EXTRUDE_MINTEMP;
  91. #endif
  92. #ifdef XY_FREQUENCY_LIMIT
  93. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  94. // Used for the frequency limit
  95. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  96. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  97. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  98. #endif
  99. #ifdef FILAMENT_SENSOR
  100. static char meas_sample; //temporary variable to hold filament measurement sample
  101. #endif
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static int8_t next_block_index(int8_t block_index) {
  105. block_index++;
  106. if (block_index == BLOCK_BUFFER_SIZE) {
  107. block_index = 0;
  108. }
  109. return(block_index);
  110. }
  111. // Returns the index of the previous block in the ring buffer
  112. static int8_t prev_block_index(int8_t block_index) {
  113. if (block_index == 0) {
  114. block_index = BLOCK_BUFFER_SIZE;
  115. }
  116. block_index--;
  117. return(block_index);
  118. }
  119. //===========================================================================
  120. //=============================functions ============================
  121. //===========================================================================
  122. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  123. // given acceleration:
  124. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  125. {
  126. if (acceleration!=0) {
  127. return((target_rate*target_rate-initial_rate*initial_rate)/
  128. (2.0*acceleration));
  129. }
  130. else {
  131. return 0.0; // acceleration was 0, set acceleration distance to 0
  132. }
  133. }
  134. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  135. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  136. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  137. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  138. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  139. {
  140. if (acceleration!=0) {
  141. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  142. (4.0*acceleration) );
  143. }
  144. else {
  145. return 0.0; // acceleration was 0, set intersection distance to 0
  146. }
  147. }
  148. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  149. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  150. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  151. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  152. // Limit minimal step rate (Otherwise the timer will overflow.)
  153. if(initial_rate <120) {
  154. initial_rate=120;
  155. }
  156. if(final_rate < 120) {
  157. final_rate=120;
  158. }
  159. long acceleration = block->acceleration_st;
  160. int32_t accelerate_steps =
  161. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  162. int32_t decelerate_steps =
  163. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  164. // Calculate the size of Plateau of Nominal Rate.
  165. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  166. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  167. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  168. // in order to reach the final_rate exactly at the end of this block.
  169. if (plateau_steps < 0) {
  170. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  171. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  172. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  173. plateau_steps = 0;
  174. }
  175. #ifdef ADVANCE
  176. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  177. volatile long final_advance = block->advance*exit_factor*exit_factor;
  178. #endif // ADVANCE
  179. // block->accelerate_until = accelerate_steps;
  180. // block->decelerate_after = accelerate_steps+plateau_steps;
  181. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  182. if(block->busy == false) { // Don't update variables if block is busy.
  183. block->accelerate_until = accelerate_steps;
  184. block->decelerate_after = accelerate_steps+plateau_steps;
  185. block->initial_rate = initial_rate;
  186. block->final_rate = final_rate;
  187. #ifdef ADVANCE
  188. block->initial_advance = initial_advance;
  189. block->final_advance = final_advance;
  190. #endif //ADVANCE
  191. }
  192. CRITICAL_SECTION_END;
  193. }
  194. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  195. // acceleration within the allotted distance.
  196. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  197. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  198. }
  199. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  200. // This method will calculate the junction jerk as the euclidean distance between the nominal
  201. // velocities of the respective blocks.
  202. //inline float junction_jerk(block_t *before, block_t *after) {
  203. // return sqrt(
  204. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  205. //}
  206. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  207. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  208. if(!current) {
  209. return;
  210. }
  211. if (next) {
  212. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  213. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  214. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  215. if (current->entry_speed != current->max_entry_speed) {
  216. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  217. // for max allowable speed if block is decelerating and nominal length is false.
  218. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  219. current->entry_speed = min( current->max_entry_speed,
  220. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  221. }
  222. else {
  223. current->entry_speed = current->max_entry_speed;
  224. }
  225. current->recalculate_flag = true;
  226. }
  227. } // Skip last block. Already initialized and set for recalculation.
  228. }
  229. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  230. // implements the reverse pass.
  231. void planner_reverse_pass() {
  232. uint8_t block_index = block_buffer_head;
  233. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  234. CRITICAL_SECTION_START;
  235. unsigned char tail = block_buffer_tail;
  236. CRITICAL_SECTION_END
  237. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  238. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  239. block_t *block[3] = {
  240. NULL, NULL, NULL };
  241. while(block_index != tail) {
  242. block_index = prev_block_index(block_index);
  243. block[2]= block[1];
  244. block[1]= block[0];
  245. block[0] = &block_buffer[block_index];
  246. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  247. }
  248. }
  249. }
  250. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  251. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  252. if(!previous) {
  253. return;
  254. }
  255. // If the previous block is an acceleration block, but it is not long enough to complete the
  256. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  257. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  258. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  259. if (!previous->nominal_length_flag) {
  260. if (previous->entry_speed < current->entry_speed) {
  261. double entry_speed = min( current->entry_speed,
  262. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  263. // Check for junction speed change
  264. if (current->entry_speed != entry_speed) {
  265. current->entry_speed = entry_speed;
  266. current->recalculate_flag = true;
  267. }
  268. }
  269. }
  270. }
  271. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  272. // implements the forward pass.
  273. void planner_forward_pass() {
  274. uint8_t block_index = block_buffer_tail;
  275. block_t *block[3] = {
  276. NULL, NULL, NULL };
  277. while(block_index != block_buffer_head) {
  278. block[0] = block[1];
  279. block[1] = block[2];
  280. block[2] = &block_buffer[block_index];
  281. planner_forward_pass_kernel(block[0],block[1],block[2]);
  282. block_index = next_block_index(block_index);
  283. }
  284. planner_forward_pass_kernel(block[1], block[2], NULL);
  285. }
  286. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  287. // entry_factor for each junction. Must be called by planner_recalculate() after
  288. // updating the blocks.
  289. void planner_recalculate_trapezoids() {
  290. int8_t block_index = block_buffer_tail;
  291. block_t *current;
  292. block_t *next = NULL;
  293. while(block_index != block_buffer_head) {
  294. current = next;
  295. next = &block_buffer[block_index];
  296. if (current) {
  297. // Recalculate if current block entry or exit junction speed has changed.
  298. if (current->recalculate_flag || next->recalculate_flag) {
  299. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  300. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  301. next->entry_speed/current->nominal_speed);
  302. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  303. }
  304. }
  305. block_index = next_block_index( block_index );
  306. }
  307. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  308. if(next != NULL) {
  309. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  310. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  311. next->recalculate_flag = false;
  312. }
  313. }
  314. // Recalculates the motion plan according to the following algorithm:
  315. //
  316. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  317. // so that:
  318. // a. The junction jerk is within the set limit
  319. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  320. // acceleration.
  321. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  322. // a. The speed increase within one block would require faster accelleration than the one, true
  323. // constant acceleration.
  324. //
  325. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  326. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  327. // the set limit. Finally it will:
  328. //
  329. // 3. Recalculate trapezoids for all blocks.
  330. void planner_recalculate() {
  331. planner_reverse_pass();
  332. planner_forward_pass();
  333. planner_recalculate_trapezoids();
  334. }
  335. void plan_init() {
  336. block_buffer_head = 0;
  337. block_buffer_tail = 0;
  338. memset(position, 0, sizeof(position)); // clear position
  339. previous_speed[0] = 0.0;
  340. previous_speed[1] = 0.0;
  341. previous_speed[2] = 0.0;
  342. previous_speed[3] = 0.0;
  343. previous_nominal_speed = 0.0;
  344. }
  345. #ifdef AUTOTEMP
  346. void getHighESpeed()
  347. {
  348. static float oldt=0;
  349. if(!autotemp_enabled){
  350. return;
  351. }
  352. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  353. return; //do nothing
  354. }
  355. float high=0.0;
  356. uint8_t block_index = block_buffer_tail;
  357. while(block_index != block_buffer_head) {
  358. if((block_buffer[block_index].steps_x != 0) ||
  359. (block_buffer[block_index].steps_y != 0) ||
  360. (block_buffer[block_index].steps_z != 0)) {
  361. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  362. //se; mm/sec;
  363. if(se>high)
  364. {
  365. high=se;
  366. }
  367. }
  368. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  369. }
  370. float g=autotemp_min+high*autotemp_factor;
  371. float t=g;
  372. if(t<autotemp_min)
  373. t=autotemp_min;
  374. if(t>autotemp_max)
  375. t=autotemp_max;
  376. if(oldt>t)
  377. {
  378. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  379. }
  380. oldt=t;
  381. setTargetHotend0(t);
  382. }
  383. #endif
  384. void check_axes_activity()
  385. {
  386. unsigned char x_active = 0;
  387. unsigned char y_active = 0;
  388. unsigned char z_active = 0;
  389. unsigned char e_active = 0;
  390. unsigned char tail_fan_speed = fanSpeed;
  391. block_t *block;
  392. if(block_buffer_tail != block_buffer_head)
  393. {
  394. uint8_t block_index = block_buffer_tail;
  395. tail_fan_speed = block_buffer[block_index].fan_speed;
  396. while(block_index != block_buffer_head)
  397. {
  398. block = &block_buffer[block_index];
  399. if(block->steps_x != 0) x_active++;
  400. if(block->steps_y != 0) y_active++;
  401. if(block->steps_z != 0) z_active++;
  402. if(block->steps_e != 0) e_active++;
  403. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  404. }
  405. }
  406. if((DISABLE_X) && (x_active == 0)) disable_x();
  407. if((DISABLE_Y) && (y_active == 0)) disable_y();
  408. if((DISABLE_Z) && (z_active == 0)) disable_z();
  409. if((DISABLE_E) && (e_active == 0))
  410. {
  411. disable_e0();
  412. disable_e1();
  413. disable_e2();
  414. }
  415. #if defined(FAN_PIN) && FAN_PIN > -1
  416. #ifdef FAN_KICKSTART_TIME
  417. static unsigned long fan_kick_end;
  418. if (tail_fan_speed) {
  419. if (fan_kick_end == 0) {
  420. // Just starting up fan - run at full power.
  421. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  422. tail_fan_speed = 255;
  423. } else if (fan_kick_end > millis())
  424. // Fan still spinning up.
  425. tail_fan_speed = 255;
  426. } else {
  427. fan_kick_end = 0;
  428. }
  429. #endif//FAN_KICKSTART_TIME
  430. #ifdef FAN_SOFT_PWM
  431. fanSpeedSoftPwm = tail_fan_speed;
  432. #else
  433. analogWrite(FAN_PIN,tail_fan_speed);
  434. #endif//!FAN_SOFT_PWM
  435. #endif//FAN_PIN > -1
  436. #ifdef AUTOTEMP
  437. getHighESpeed();
  438. #endif
  439. }
  440. float junction_deviation = 0.1;
  441. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  442. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  443. // calculation the caller must also provide the physical length of the line in millimeters.
  444. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  445. {
  446. // Calculate the buffer head after we push this byte
  447. int next_buffer_head = next_block_index(block_buffer_head);
  448. // If the buffer is full: good! That means we are well ahead of the robot.
  449. // Rest here until there is room in the buffer.
  450. while(block_buffer_tail == next_buffer_head)
  451. {
  452. manage_heater();
  453. // Vojtech: Don't disable motors inside the planner!
  454. manage_inactivity(false);
  455. lcd_update();
  456. }
  457. #ifdef ENABLE_AUTO_BED_LEVELING
  458. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  459. #endif // ENABLE_AUTO_BED_LEVELING
  460. // Apply the machine correction matrix.
  461. {
  462. #if 0
  463. SERIAL_ECHOPGM("Planner, current position - servos: ");
  464. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  465. SERIAL_ECHOPGM(", ");
  466. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  467. SERIAL_ECHOPGM(", ");
  468. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  469. SERIAL_ECHOLNPGM("");
  470. SERIAL_ECHOPGM("Planner, target position, initial: ");
  471. MYSERIAL.print(x, 5);
  472. SERIAL_ECHOPGM(", ");
  473. MYSERIAL.print(y, 5);
  474. SERIAL_ECHOLNPGM("");
  475. SERIAL_ECHOPGM("Planner, world2machine: ");
  476. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  477. SERIAL_ECHOPGM(", ");
  478. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  479. SERIAL_ECHOPGM(", ");
  480. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  481. SERIAL_ECHOPGM(", ");
  482. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  483. SERIAL_ECHOLNPGM("");
  484. SERIAL_ECHOPGM("Planner, offset: ");
  485. MYSERIAL.print(world2machine_shift[0], 5);
  486. SERIAL_ECHOPGM(", ");
  487. MYSERIAL.print(world2machine_shift[1], 5);
  488. SERIAL_ECHOLNPGM("");
  489. #endif
  490. world2machine(x, y);
  491. #if 0
  492. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  493. MYSERIAL.print(x, 5);
  494. SERIAL_ECHOPGM(", ");
  495. MYSERIAL.print(y, 5);
  496. SERIAL_ECHOLNPGM("");
  497. #endif
  498. }
  499. // The target position of the tool in absolute steps
  500. // Calculate target position in absolute steps
  501. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  502. long target[4];
  503. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  504. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  505. #ifdef MESH_BED_LEVELING
  506. if (mbl.active){
  507. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  508. }else{
  509. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  510. }
  511. #else
  512. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  513. #endif // ENABLE_MESH_BED_LEVELING
  514. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  515. #ifdef PREVENT_DANGEROUS_EXTRUDE
  516. if(target[E_AXIS]!=position[E_AXIS])
  517. {
  518. if(degHotend(active_extruder)<extrude_min_temp)
  519. {
  520. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  521. SERIAL_ECHO_START;
  522. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  523. }
  524. #ifdef PREVENT_LENGTHY_EXTRUDE
  525. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  526. {
  527. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  528. SERIAL_ECHO_START;
  529. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  530. }
  531. #endif
  532. }
  533. #endif
  534. // Prepare to set up new block
  535. block_t *block = &block_buffer[block_buffer_head];
  536. // Mark block as not busy (Not executed by the stepper interrupt)
  537. block->busy = false;
  538. // Number of steps for each axis
  539. #ifndef COREXY
  540. // default non-h-bot planning
  541. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  542. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  543. #else
  544. // corexy planning
  545. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  546. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  547. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  548. #endif
  549. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  550. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  551. block->steps_e *= volumetric_multiplier[active_extruder];
  552. block->steps_e *= extrudemultiply;
  553. block->steps_e /= 100;
  554. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  555. // Bail if this is a zero-length block
  556. if (block->step_event_count <= dropsegments)
  557. {
  558. return;
  559. }
  560. block->fan_speed = fanSpeed;
  561. // Compute direction bits for this block
  562. block->direction_bits = 0;
  563. #ifndef COREXY
  564. if (target[X_AXIS] < position[X_AXIS])
  565. {
  566. block->direction_bits |= (1<<X_AXIS);
  567. }
  568. if (target[Y_AXIS] < position[Y_AXIS])
  569. {
  570. block->direction_bits |= (1<<Y_AXIS);
  571. }
  572. #else
  573. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  574. {
  575. block->direction_bits |= (1<<X_AXIS);
  576. }
  577. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  578. {
  579. block->direction_bits |= (1<<Y_AXIS);
  580. }
  581. #endif
  582. if (target[Z_AXIS] < position[Z_AXIS])
  583. {
  584. block->direction_bits |= (1<<Z_AXIS);
  585. }
  586. if (target[E_AXIS] < position[E_AXIS])
  587. {
  588. block->direction_bits |= (1<<E_AXIS);
  589. }
  590. block->active_extruder = extruder;
  591. //enable active axes
  592. #ifdef COREXY
  593. if((block->steps_x != 0) || (block->steps_y != 0))
  594. {
  595. enable_x();
  596. enable_y();
  597. }
  598. #else
  599. if(block->steps_x != 0) enable_x();
  600. if(block->steps_y != 0) enable_y();
  601. #endif
  602. #ifndef Z_LATE_ENABLE
  603. if(block->steps_z != 0) enable_z();
  604. #endif
  605. // Enable extruder(s)
  606. if(block->steps_e != 0)
  607. {
  608. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  609. {
  610. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  611. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  612. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  613. switch(extruder)
  614. {
  615. case 0:
  616. enable_e0();
  617. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  618. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  619. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  620. break;
  621. case 1:
  622. enable_e1();
  623. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  624. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  625. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  626. break;
  627. case 2:
  628. enable_e2();
  629. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  630. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  631. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  632. break;
  633. }
  634. }
  635. else //enable all
  636. {
  637. enable_e0();
  638. enable_e1();
  639. enable_e2();
  640. }
  641. }
  642. if (block->steps_e == 0)
  643. {
  644. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  645. }
  646. else
  647. {
  648. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  649. }
  650. /* This part of the code calculates the total length of the movement.
  651. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  652. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  653. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  654. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  655. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  656. */
  657. #ifndef COREXY
  658. float delta_mm[4];
  659. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  660. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  661. #else
  662. float delta_mm[6];
  663. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  664. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  665. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  666. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  667. #endif
  668. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  669. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  670. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  671. {
  672. block->millimeters = fabs(delta_mm[E_AXIS]);
  673. }
  674. else
  675. {
  676. #ifndef COREXY
  677. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  678. #else
  679. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  680. #endif
  681. }
  682. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  683. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  684. float inverse_second = feed_rate * inverse_millimeters;
  685. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  686. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  687. #ifdef OLD_SLOWDOWN
  688. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  689. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  690. #endif
  691. #ifdef SLOWDOWN
  692. // segment time im micro seconds
  693. unsigned long segment_time = lround(1000000.0/inverse_second);
  694. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  695. {
  696. if (segment_time < minsegmenttime)
  697. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  698. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  699. #ifdef XY_FREQUENCY_LIMIT
  700. segment_time = lround(1000000.0/inverse_second);
  701. #endif
  702. }
  703. }
  704. #endif
  705. // END OF SLOW DOWN SECTION
  706. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  707. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  708. #ifdef FILAMENT_SENSOR
  709. //FMM update ring buffer used for delay with filament measurements
  710. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  711. {
  712. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  713. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  714. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  715. while (delay_dist<0)
  716. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  717. delay_index1=delay_dist/10.0; //calculate index
  718. //ensure the number is within range of the array after converting from floating point
  719. if(delay_index1<0)
  720. delay_index1=0;
  721. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  722. delay_index1=MAX_MEASUREMENT_DELAY;
  723. if(delay_index1 != delay_index2) //moved index
  724. {
  725. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  726. }
  727. while( delay_index1 != delay_index2)
  728. {
  729. delay_index2 = delay_index2 + 1;
  730. if(delay_index2>MAX_MEASUREMENT_DELAY)
  731. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  732. if(delay_index2<0)
  733. delay_index2=0;
  734. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  735. delay_index2=MAX_MEASUREMENT_DELAY;
  736. measurement_delay[delay_index2]=meas_sample;
  737. }
  738. }
  739. #endif
  740. // Calculate and limit speed in mm/sec for each axis
  741. float current_speed[4];
  742. float speed_factor = 1.0; //factor <=1 do decrease speed
  743. for(int i=0; i < 4; i++)
  744. {
  745. current_speed[i] = delta_mm[i] * inverse_second;
  746. if(fabs(current_speed[i]) > max_feedrate[i])
  747. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  748. }
  749. // Max segement time in us.
  750. #ifdef XY_FREQUENCY_LIMIT
  751. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  752. // Check and limit the xy direction change frequency
  753. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  754. old_direction_bits = block->direction_bits;
  755. segment_time = lround((float)segment_time / speed_factor);
  756. if((direction_change & (1<<X_AXIS)) == 0)
  757. {
  758. x_segment_time[0] += segment_time;
  759. }
  760. else
  761. {
  762. x_segment_time[2] = x_segment_time[1];
  763. x_segment_time[1] = x_segment_time[0];
  764. x_segment_time[0] = segment_time;
  765. }
  766. if((direction_change & (1<<Y_AXIS)) == 0)
  767. {
  768. y_segment_time[0] += segment_time;
  769. }
  770. else
  771. {
  772. y_segment_time[2] = y_segment_time[1];
  773. y_segment_time[1] = y_segment_time[0];
  774. y_segment_time[0] = segment_time;
  775. }
  776. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  777. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  778. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  779. if(min_xy_segment_time < MAX_FREQ_TIME)
  780. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  781. #endif
  782. // Correct the speed
  783. if( speed_factor < 1.0)
  784. {
  785. for(unsigned char i=0; i < 4; i++)
  786. {
  787. current_speed[i] *= speed_factor;
  788. }
  789. block->nominal_speed *= speed_factor;
  790. block->nominal_rate *= speed_factor;
  791. }
  792. // Compute and limit the acceleration rate for the trapezoid generator.
  793. float steps_per_mm = block->step_event_count/block->millimeters;
  794. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  795. {
  796. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  797. }
  798. else
  799. {
  800. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  801. // Limit acceleration per axis
  802. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  803. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  804. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  805. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  806. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  807. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  808. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  809. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  810. }
  811. block->acceleration = block->acceleration_st / steps_per_mm;
  812. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  813. #if 0 // Use old jerk for now
  814. // Compute path unit vector
  815. double unit_vec[3];
  816. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  817. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  818. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  819. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  820. // Let a circle be tangent to both previous and current path line segments, where the junction
  821. // deviation is defined as the distance from the junction to the closest edge of the circle,
  822. // colinear with the circle center. The circular segment joining the two paths represents the
  823. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  824. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  825. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  826. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  827. // nonlinearities of both the junction angle and junction velocity.
  828. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  829. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  830. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  831. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  832. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  833. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  834. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  835. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  836. // Skip and use default max junction speed for 0 degree acute junction.
  837. if (cos_theta < 0.95) {
  838. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  839. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  840. if (cos_theta > -0.95) {
  841. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  842. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  843. vmax_junction = min(vmax_junction,
  844. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  845. }
  846. }
  847. }
  848. #endif
  849. // Start with a safe speed
  850. float vmax_junction = max_xy_jerk/2;
  851. float vmax_junction_factor = 1.0;
  852. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  853. vmax_junction = min(vmax_junction, max_z_jerk/2);
  854. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  855. vmax_junction = min(vmax_junction, max_e_jerk/2);
  856. vmax_junction = min(vmax_junction, block->nominal_speed);
  857. float safe_speed = vmax_junction;
  858. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  859. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  860. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  861. vmax_junction = block->nominal_speed;
  862. // }
  863. if (jerk > max_xy_jerk) {
  864. vmax_junction_factor = (max_xy_jerk/jerk);
  865. }
  866. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  867. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  868. }
  869. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  870. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  871. }
  872. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  873. }
  874. block->max_entry_speed = vmax_junction;
  875. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  876. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  877. block->entry_speed = min(vmax_junction, v_allowable);
  878. // Initialize planner efficiency flags
  879. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  880. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  881. // the current block and next block junction speeds are guaranteed to always be at their maximum
  882. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  883. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  884. // the reverse and forward planners, the corresponding block junction speed will always be at the
  885. // the maximum junction speed and may always be ignored for any speed reduction checks.
  886. if (block->nominal_speed <= v_allowable) {
  887. block->nominal_length_flag = true;
  888. }
  889. else {
  890. block->nominal_length_flag = false;
  891. }
  892. block->recalculate_flag = true; // Always calculate trapezoid for new block
  893. // Update previous path unit_vector and nominal speed
  894. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  895. previous_nominal_speed = block->nominal_speed;
  896. #ifdef ADVANCE
  897. // Calculate advance rate
  898. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  899. block->advance_rate = 0;
  900. block->advance = 0;
  901. }
  902. else {
  903. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  904. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  905. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
  906. block->advance = advance;
  907. if(acc_dist == 0) {
  908. block->advance_rate = 0;
  909. }
  910. else {
  911. block->advance_rate = advance / (float)acc_dist;
  912. }
  913. }
  914. /*
  915. SERIAL_ECHO_START;
  916. SERIAL_ECHOPGM("advance :");
  917. SERIAL_ECHO(block->advance/256.0);
  918. SERIAL_ECHOPGM("advance rate :");
  919. SERIAL_ECHOLN(block->advance_rate/256.0);
  920. */
  921. #endif // ADVANCE
  922. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  923. safe_speed/block->nominal_speed);
  924. // Move buffer head
  925. block_buffer_head = next_buffer_head;
  926. // Update position
  927. memcpy(position, target, sizeof(target)); // position[] = target[]
  928. planner_recalculate();
  929. st_wake_up();
  930. }
  931. #ifdef ENABLE_AUTO_BED_LEVELING
  932. vector_3 plan_get_position() {
  933. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  934. //position.debug("in plan_get position");
  935. //plan_bed_level_matrix.debug("in plan_get bed_level");
  936. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  937. //inverse.debug("in plan_get inverse");
  938. position.apply_rotation(inverse);
  939. //position.debug("after rotation");
  940. return position;
  941. }
  942. #endif // ENABLE_AUTO_BED_LEVELING
  943. void plan_set_position(float x, float y, float z, const float &e)
  944. {
  945. #ifdef ENABLE_AUTO_BED_LEVELING
  946. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  947. #endif // ENABLE_AUTO_BED_LEVELING
  948. // Apply the machine correction matrix.
  949. {
  950. float tmpx = x;
  951. float tmpy = y;
  952. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  953. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  954. }
  955. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  956. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  957. #ifdef MESH_BED_LEVELING
  958. if (mbl.active){
  959. position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  960. }else{
  961. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  962. }
  963. #else
  964. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  965. #endif // ENABLE_MESH_BED_LEVELING
  966. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  967. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  968. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  969. previous_speed[0] = 0.0;
  970. previous_speed[1] = 0.0;
  971. previous_speed[2] = 0.0;
  972. previous_speed[3] = 0.0;
  973. }
  974. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  975. void plan_set_z_position(const float &z)
  976. {
  977. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  978. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  979. }
  980. void plan_set_e_position(const float &e)
  981. {
  982. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  983. st_set_e_position(position[E_AXIS]);
  984. }
  985. uint8_t movesplanned()
  986. {
  987. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  988. }
  989. #ifdef PREVENT_DANGEROUS_EXTRUDE
  990. void set_extrude_min_temp(float temp)
  991. {
  992. extrude_min_temp=temp;
  993. }
  994. #endif
  995. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  996. void reset_acceleration_rates()
  997. {
  998. for(int8_t i=0; i < NUM_AXIS; i++)
  999. {
  1000. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1001. }
  1002. }