Marlin_main.cpp 210 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // P Y - Starts filament allignment process for multicolor
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. unsigned long PingTime = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. int8_t FarmMode = 0;
  225. bool prusa_sd_card_upload = false;
  226. unsigned int status_number = 0;
  227. unsigned long total_filament_used;
  228. unsigned int heating_status;
  229. unsigned int heating_status_counter;
  230. bool custom_message;
  231. bool loading_flag = false;
  232. unsigned int custom_message_type;
  233. unsigned int custom_message_state;
  234. bool volumetric_enabled = false;
  235. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 1
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #if EXTRUDERS > 2
  239. , DEFAULT_NOMINAL_FILAMENT_DIA
  240. #endif
  241. #endif
  242. };
  243. float volumetric_multiplier[EXTRUDERS] = {1.0
  244. #if EXTRUDERS > 1
  245. , 1.0
  246. #if EXTRUDERS > 2
  247. , 1.0
  248. #endif
  249. #endif
  250. };
  251. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  252. float add_homing[3]={0,0,0};
  253. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  254. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  255. bool axis_known_position[3] = {false, false, false};
  256. float zprobe_zoffset;
  257. // Extruder offset
  258. #if EXTRUDERS > 1
  259. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  260. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  261. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  262. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  263. #endif
  264. };
  265. #endif
  266. uint8_t active_extruder = 0;
  267. int fanSpeed=0;
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled=false;
  270. bool retracted[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. bool retracted_swap[EXTRUDERS]={false
  279. #if EXTRUDERS > 1
  280. , false
  281. #if EXTRUDERS > 2
  282. , false
  283. #endif
  284. #endif
  285. };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif
  294. #ifdef ULTIPANEL
  295. #ifdef PS_DEFAULT_OFF
  296. bool powersupply = false;
  297. #else
  298. bool powersupply = true;
  299. #endif
  300. #endif
  301. bool cancel_heatup = false ;
  302. #ifdef FILAMENT_SENSOR
  303. //Variables for Filament Sensor input
  304. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  305. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  306. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  307. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  308. int delay_index1=0; //index into ring buffer
  309. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  310. float delay_dist=0; //delay distance counter
  311. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  312. #endif
  313. const char errormagic[] PROGMEM = "Error:";
  314. const char echomagic[] PROGMEM = "echo:";
  315. //===========================================================================
  316. //=============================Private Variables=============================
  317. //===========================================================================
  318. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  319. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  320. static float delta[3] = {0.0, 0.0, 0.0};
  321. // For tracing an arc
  322. static float offset[3] = {0.0, 0.0, 0.0};
  323. static bool home_all_axis = true;
  324. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  325. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  326. // Determines Absolute or Relative Coordinates.
  327. // Also there is bool axis_relative_modes[] per axis flag.
  328. static bool relative_mode = false;
  329. // String circular buffer. Commands may be pushed to the buffer from both sides:
  330. // Chained commands will be pushed to the front, interactive (from LCD menu)
  331. // and printing commands (from serial line or from SD card) are pushed to the tail.
  332. // First character of each entry indicates the type of the entry:
  333. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  334. // Command in cmdbuffer was sent over USB.
  335. #define CMDBUFFER_CURRENT_TYPE_USB 1
  336. // Command in cmdbuffer was read from SDCARD.
  337. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  338. // Command in cmdbuffer was generated by the UI.
  339. #define CMDBUFFER_CURRENT_TYPE_UI 3
  340. // Command in cmdbuffer was generated by another G-code.
  341. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  342. // How much space to reserve for the chained commands
  343. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  344. // which are pushed to the front of the queue?
  345. // Maximum 5 commands of max length 20 + null terminator.
  346. #define CMDBUFFER_RESERVE_FRONT (5*21)
  347. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  348. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  349. // Head of the circular buffer, where to read.
  350. static int bufindr = 0;
  351. // Tail of the buffer, where to write.
  352. static int bufindw = 0;
  353. // Number of lines in cmdbuffer.
  354. static int buflen = 0;
  355. // Flag for processing the current command inside the main Arduino loop().
  356. // If a new command was pushed to the front of a command buffer while
  357. // processing another command, this replaces the command on the top.
  358. // Therefore don't remove the command from the queue in the loop() function.
  359. static bool cmdbuffer_front_already_processed = false;
  360. // Type of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  362. // String of a command, which is to be executed right now.
  363. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  364. // Enable debugging of the command buffer.
  365. // Debugging information will be sent to serial line.
  366. // #define CMDBUFFER_DEBUG
  367. static int serial_count = 0; //index of character read from serial line
  368. static boolean comment_mode = false;
  369. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  370. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  371. //static float tt = 0;
  372. //static float bt = 0;
  373. //Inactivity shutdown variables
  374. static unsigned long previous_millis_cmd = 0;
  375. unsigned long max_inactive_time = 0;
  376. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  377. unsigned long starttime=0;
  378. unsigned long stoptime=0;
  379. unsigned long _usb_timer = 0;
  380. static uint8_t tmp_extruder;
  381. bool Stopped=false;
  382. #if NUM_SERVOS > 0
  383. Servo servos[NUM_SERVOS];
  384. #endif
  385. bool CooldownNoWait = true;
  386. bool target_direction;
  387. //Insert variables if CHDK is defined
  388. #ifdef CHDK
  389. unsigned long chdkHigh = 0;
  390. boolean chdkActive = false;
  391. #endif
  392. //===========================================================================
  393. //=============================Routines======================================
  394. //===========================================================================
  395. void get_arc_coordinates();
  396. bool setTargetedHotend(int code);
  397. void serial_echopair_P(const char *s_P, float v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, double v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, unsigned long v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. #ifdef SDSUPPORT
  404. #include "SdFatUtil.h"
  405. int freeMemory() { return SdFatUtil::FreeRam(); }
  406. #else
  407. extern "C" {
  408. extern unsigned int __bss_end;
  409. extern unsigned int __heap_start;
  410. extern void *__brkval;
  411. int freeMemory() {
  412. int free_memory;
  413. if ((int)__brkval == 0)
  414. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  415. else
  416. free_memory = ((int)&free_memory) - ((int)__brkval);
  417. return free_memory;
  418. }
  419. }
  420. #endif //!SDSUPPORT
  421. // Pop the currently processed command from the queue.
  422. // It is expected, that there is at least one command in the queue.
  423. bool cmdqueue_pop_front()
  424. {
  425. if (buflen > 0) {
  426. #ifdef CMDBUFFER_DEBUG
  427. SERIAL_ECHOPGM("Dequeing ");
  428. SERIAL_ECHO(cmdbuffer+bufindr+1);
  429. SERIAL_ECHOLNPGM("");
  430. SERIAL_ECHOPGM("Old indices: buflen ");
  431. SERIAL_ECHO(buflen);
  432. SERIAL_ECHOPGM(", bufindr ");
  433. SERIAL_ECHO(bufindr);
  434. SERIAL_ECHOPGM(", bufindw ");
  435. SERIAL_ECHO(bufindw);
  436. SERIAL_ECHOPGM(", serial_count ");
  437. SERIAL_ECHO(serial_count);
  438. SERIAL_ECHOPGM(", bufsize ");
  439. SERIAL_ECHO(sizeof(cmdbuffer));
  440. SERIAL_ECHOLNPGM("");
  441. #endif /* CMDBUFFER_DEBUG */
  442. if (-- buflen == 0) {
  443. // Empty buffer.
  444. if (serial_count == 0)
  445. // No serial communication is pending. Reset both pointers to zero.
  446. bufindw = 0;
  447. bufindr = bufindw;
  448. } else {
  449. // There is at least one ready line in the buffer.
  450. // First skip the current command ID and iterate up to the end of the string.
  451. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  452. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  453. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. // If the end of the buffer was empty,
  455. if (bufindr == sizeof(cmdbuffer)) {
  456. // skip to the start and find the nonzero command.
  457. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  458. }
  459. #ifdef CMDBUFFER_DEBUG
  460. SERIAL_ECHOPGM("New indices: buflen ");
  461. SERIAL_ECHO(buflen);
  462. SERIAL_ECHOPGM(", bufindr ");
  463. SERIAL_ECHO(bufindr);
  464. SERIAL_ECHOPGM(", bufindw ");
  465. SERIAL_ECHO(bufindw);
  466. SERIAL_ECHOPGM(", serial_count ");
  467. SERIAL_ECHO(serial_count);
  468. SERIAL_ECHOPGM(" new command on the top: ");
  469. SERIAL_ECHO(cmdbuffer+bufindr+1);
  470. SERIAL_ECHOLNPGM("");
  471. #endif /* CMDBUFFER_DEBUG */
  472. }
  473. return true;
  474. }
  475. return false;
  476. }
  477. void cmdqueue_reset()
  478. {
  479. while (cmdqueue_pop_front()) ;
  480. }
  481. // How long a string could be pushed to the front of the command queue?
  482. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  483. // len_asked does not contain the zero terminator size.
  484. bool cmdqueue_could_enqueue_front(int len_asked)
  485. {
  486. // MAX_CMD_SIZE has to accommodate the zero terminator.
  487. if (len_asked >= MAX_CMD_SIZE)
  488. return false;
  489. // Remove the currently processed command from the queue.
  490. if (! cmdbuffer_front_already_processed) {
  491. cmdqueue_pop_front();
  492. cmdbuffer_front_already_processed = true;
  493. }
  494. if (bufindr == bufindw && buflen > 0)
  495. // Full buffer.
  496. return false;
  497. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  498. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  499. if (bufindw < bufindr) {
  500. int bufindr_new = bufindr - len_asked - 2;
  501. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  502. if (endw <= bufindr_new) {
  503. bufindr = bufindr_new;
  504. return true;
  505. }
  506. } else {
  507. // Otherwise the free space is split between the start and end.
  508. if (len_asked + 2 <= bufindr) {
  509. // Could fit at the start.
  510. bufindr -= len_asked + 2;
  511. return true;
  512. }
  513. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  514. if (endw <= bufindr_new) {
  515. memset(cmdbuffer, 0, bufindr);
  516. bufindr = bufindr_new;
  517. return true;
  518. }
  519. }
  520. return false;
  521. }
  522. // Could one enqueue a command of lenthg len_asked into the buffer,
  523. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  524. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  525. // len_asked does not contain the zero terminator size.
  526. bool cmdqueue_could_enqueue_back(int len_asked)
  527. {
  528. // MAX_CMD_SIZE has to accommodate the zero terminator.
  529. if (len_asked >= MAX_CMD_SIZE)
  530. return false;
  531. if (bufindr == bufindw && buflen > 0)
  532. // Full buffer.
  533. return false;
  534. if (serial_count > 0) {
  535. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  536. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  537. // serial data.
  538. // How much memory to reserve for the commands pushed to the front?
  539. // End of the queue, when pushing to the end.
  540. int endw = bufindw + len_asked + 2;
  541. if (bufindw < bufindr)
  542. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  543. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  544. // Otherwise the free space is split between the start and end.
  545. if (// Could one fit to the end, including the reserve?
  546. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  547. // Could one fit to the end, and the reserve to the start?
  548. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  549. return true;
  550. // Could one fit both to the start?
  551. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  552. // Mark the rest of the buffer as used.
  553. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  554. // and point to the start.
  555. bufindw = 0;
  556. return true;
  557. }
  558. } else {
  559. // How much memory to reserve for the commands pushed to the front?
  560. // End of the queue, when pushing to the end.
  561. int endw = bufindw + len_asked + 2;
  562. if (bufindw < bufindr)
  563. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  564. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  565. // Otherwise the free space is split between the start and end.
  566. if (// Could one fit to the end, including the reserve?
  567. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  568. // Could one fit to the end, and the reserve to the start?
  569. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  570. return true;
  571. // Could one fit both to the start?
  572. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  573. // Mark the rest of the buffer as used.
  574. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  575. // and point to the start.
  576. bufindw = 0;
  577. return true;
  578. }
  579. }
  580. return false;
  581. }
  582. #ifdef CMDBUFFER_DEBUG
  583. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  584. {
  585. SERIAL_ECHOPGM("Entry nr: ");
  586. SERIAL_ECHO(nr);
  587. SERIAL_ECHOPGM(", type: ");
  588. SERIAL_ECHO(int(*p));
  589. SERIAL_ECHOPGM(", cmd: ");
  590. SERIAL_ECHO(p+1);
  591. SERIAL_ECHOLNPGM("");
  592. }
  593. static void cmdqueue_dump_to_serial()
  594. {
  595. if (buflen == 0) {
  596. SERIAL_ECHOLNPGM("The command buffer is empty.");
  597. } else {
  598. SERIAL_ECHOPGM("Content of the buffer: entries ");
  599. SERIAL_ECHO(buflen);
  600. SERIAL_ECHOPGM(", indr ");
  601. SERIAL_ECHO(bufindr);
  602. SERIAL_ECHOPGM(", indw ");
  603. SERIAL_ECHO(bufindw);
  604. SERIAL_ECHOLNPGM("");
  605. int nr = 0;
  606. if (bufindr < bufindw) {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  613. }
  614. } else {
  615. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  616. cmdqueue_dump_to_serial_single_line(nr, p);
  617. // Skip the command.
  618. for (++p; *p != 0; ++ p);
  619. // Skip the gaps.
  620. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  621. }
  622. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  623. cmdqueue_dump_to_serial_single_line(nr, p);
  624. // Skip the command.
  625. for (++p; *p != 0; ++ p);
  626. // Skip the gaps.
  627. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  628. }
  629. }
  630. SERIAL_ECHOLNPGM("End of the buffer.");
  631. }
  632. }
  633. #endif /* CMDBUFFER_DEBUG */
  634. //adds an command to the main command buffer
  635. //thats really done in a non-safe way.
  636. //needs overworking someday
  637. // Currently the maximum length of a command piped through this function is around 20 characters
  638. void enquecommand(const char *cmd, bool from_progmem)
  639. {
  640. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  641. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  642. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  643. if (cmdqueue_could_enqueue_back(len)) {
  644. // This is dangerous if a mixing of serial and this happens
  645. // This may easily be tested: If serial_count > 0, we have a problem.
  646. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  647. if (from_progmem)
  648. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  649. else
  650. strcpy(cmdbuffer + bufindw + 1, cmd);
  651. SERIAL_ECHO_START;
  652. SERIAL_ECHORPGM(MSG_Enqueing);
  653. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  654. SERIAL_ECHOLNPGM("\"");
  655. bufindw += len + 2;
  656. if (bufindw == sizeof(cmdbuffer))
  657. bufindw = 0;
  658. ++ buflen;
  659. #ifdef CMDBUFFER_DEBUG
  660. cmdqueue_dump_to_serial();
  661. #endif /* CMDBUFFER_DEBUG */
  662. } else {
  663. SERIAL_ERROR_START;
  664. SERIAL_ECHORPGM(MSG_Enqueing);
  665. if (from_progmem)
  666. SERIAL_PROTOCOLRPGM(cmd);
  667. else
  668. SERIAL_ECHO(cmd);
  669. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  670. #ifdef CMDBUFFER_DEBUG
  671. cmdqueue_dump_to_serial();
  672. #endif /* CMDBUFFER_DEBUG */
  673. }
  674. }
  675. void enquecommand_front(const char *cmd, bool from_progmem)
  676. {
  677. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  678. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  679. if (cmdqueue_could_enqueue_front(len)) {
  680. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  681. if (from_progmem)
  682. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  683. else
  684. strcpy(cmdbuffer + bufindr + 1, cmd);
  685. ++ buflen;
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  689. SERIAL_ECHOLNPGM("\"");
  690. #ifdef CMDBUFFER_DEBUG
  691. cmdqueue_dump_to_serial();
  692. #endif /* CMDBUFFER_DEBUG */
  693. } else {
  694. SERIAL_ERROR_START;
  695. SERIAL_ECHOPGM("Enqueing to the front: \"");
  696. if (from_progmem)
  697. SERIAL_PROTOCOLRPGM(cmd);
  698. else
  699. SERIAL_ECHO(cmd);
  700. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  701. #ifdef CMDBUFFER_DEBUG
  702. cmdqueue_dump_to_serial();
  703. #endif /* CMDBUFFER_DEBUG */
  704. }
  705. }
  706. // Mark the command at the top of the command queue as new.
  707. // Therefore it will not be removed from the queue.
  708. void repeatcommand_front()
  709. {
  710. cmdbuffer_front_already_processed = true;
  711. }
  712. bool is_buffer_empty()
  713. {
  714. if (buflen == 0) return true;
  715. else return false;
  716. }
  717. void setup_killpin()
  718. {
  719. #if defined(KILL_PIN) && KILL_PIN > -1
  720. SET_INPUT(KILL_PIN);
  721. WRITE(KILL_PIN,HIGH);
  722. #endif
  723. }
  724. // Set home pin
  725. void setup_homepin(void)
  726. {
  727. #if defined(HOME_PIN) && HOME_PIN > -1
  728. SET_INPUT(HOME_PIN);
  729. WRITE(HOME_PIN,HIGH);
  730. #endif
  731. }
  732. void setup_photpin()
  733. {
  734. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  735. SET_OUTPUT(PHOTOGRAPH_PIN);
  736. WRITE(PHOTOGRAPH_PIN, LOW);
  737. #endif
  738. }
  739. void setup_powerhold()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, HIGH);
  744. #endif
  745. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  746. SET_OUTPUT(PS_ON_PIN);
  747. #if defined(PS_DEFAULT_OFF)
  748. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  749. #else
  750. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  751. #endif
  752. #endif
  753. }
  754. void suicide()
  755. {
  756. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  757. SET_OUTPUT(SUICIDE_PIN);
  758. WRITE(SUICIDE_PIN, LOW);
  759. #endif
  760. }
  761. void servo_init()
  762. {
  763. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  764. servos[0].attach(SERVO0_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  767. servos[1].attach(SERVO1_PIN);
  768. #endif
  769. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  770. servos[2].attach(SERVO2_PIN);
  771. #endif
  772. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  773. servos[3].attach(SERVO3_PIN);
  774. #endif
  775. #if (NUM_SERVOS >= 5)
  776. #error "TODO: enter initalisation code for more servos"
  777. #endif
  778. }
  779. static void lcd_language_menu();
  780. #ifdef MESH_BED_LEVELING
  781. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  782. #endif
  783. // Factory reset function
  784. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  785. // Level input parameter sets depth of reset
  786. // Quiet parameter masks all waitings for user interact.
  787. int er_progress = 0;
  788. void factory_reset(char level, bool quiet)
  789. {
  790. lcd_implementation_clear();
  791. switch (level) {
  792. // Level 0: Language reset
  793. case 0:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. lcd_force_language_selection();
  798. break;
  799. //Level 1: Reset statistics
  800. case 1:
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  805. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  806. lcd_menu_statistics();
  807. break;
  808. // Level 2: Prepare for shipping
  809. case 2:
  810. //lcd_printPGM(PSTR("Factory RESET"));
  811. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  812. // Force language selection at the next boot up.
  813. lcd_force_language_selection();
  814. // Force the "Follow calibration flow" message at the next boot up.
  815. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  816. farm_no = 0;
  817. farm_mode == false;
  818. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  819. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. //_delay_ms(2000);
  824. break;
  825. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  826. case 3:
  827. lcd_printPGM(PSTR("Factory RESET"));
  828. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  829. WRITE(BEEPER, HIGH);
  830. _delay_ms(100);
  831. WRITE(BEEPER, LOW);
  832. er_progress = 0;
  833. lcd_print_at_PGM(3, 3, PSTR(" "));
  834. lcd_implementation_print_at(3, 3, er_progress);
  835. // Erase EEPROM
  836. for (int i = 0; i < 4096; i++) {
  837. eeprom_write_byte((uint8_t*)i, 0xFF);
  838. if (i % 41 == 0) {
  839. er_progress++;
  840. lcd_print_at_PGM(3, 3, PSTR(" "));
  841. lcd_implementation_print_at(3, 3, er_progress);
  842. lcd_printPGM(PSTR("%"));
  843. }
  844. }
  845. break;
  846. default:
  847. break;
  848. }
  849. }
  850. // "Setup" function is called by the Arduino framework on startup.
  851. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  852. // are initialized by the main() routine provided by the Arduino framework.
  853. void setup()
  854. {
  855. setup_killpin();
  856. setup_powerhold();
  857. MYSERIAL.begin(BAUDRATE);
  858. SERIAL_PROTOCOLLNPGM("start");
  859. SERIAL_ECHO_START;
  860. #if 0
  861. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  862. for (int i = 0; i < 4096; ++ i) {
  863. int b = eeprom_read_byte((unsigned char*)i);
  864. if (b != 255) {
  865. SERIAL_ECHO(i);
  866. SERIAL_ECHO(":");
  867. SERIAL_ECHO(b);
  868. SERIAL_ECHOLN("");
  869. }
  870. }
  871. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  872. #endif
  873. // Check startup - does nothing if bootloader sets MCUSR to 0
  874. byte mcu = MCUSR;
  875. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  876. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  877. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  878. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  879. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  880. MCUSR=0;
  881. //SERIAL_ECHORPGM(MSG_MARLIN);
  882. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  883. #ifdef STRING_VERSION_CONFIG_H
  884. #ifdef STRING_CONFIG_H_AUTHOR
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  887. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  888. SERIAL_ECHORPGM(MSG_AUTHOR);
  889. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  890. SERIAL_ECHOPGM("Compiled: ");
  891. SERIAL_ECHOLNPGM(__DATE__);
  892. #endif
  893. #endif
  894. SERIAL_ECHO_START;
  895. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  896. SERIAL_ECHO(freeMemory());
  897. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  898. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  899. lcd_update_enable(false);
  900. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  901. Config_RetrieveSettings();
  902. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  903. tp_init(); // Initialize temperature loop
  904. plan_init(); // Initialize planner;
  905. watchdog_init();
  906. st_init(); // Initialize stepper, this enables interrupts!
  907. setup_photpin();
  908. servo_init();
  909. // Reset the machine correction matrix.
  910. // It does not make sense to load the correction matrix until the machine is homed.
  911. world2machine_reset();
  912. lcd_init();
  913. if (!READ(BTN_ENC))
  914. {
  915. _delay_ms(1000);
  916. if (!READ(BTN_ENC))
  917. {
  918. lcd_implementation_clear();
  919. lcd_printPGM(PSTR("Factory RESET"));
  920. SET_OUTPUT(BEEPER);
  921. WRITE(BEEPER, HIGH);
  922. while (!READ(BTN_ENC));
  923. WRITE(BEEPER, LOW);
  924. _delay_ms(2000);
  925. char level = reset_menu();
  926. factory_reset(level, false);
  927. switch (level) {
  928. case 0: _delay_ms(0); break;
  929. case 1: _delay_ms(0); break;
  930. case 2: _delay_ms(0); break;
  931. case 3: _delay_ms(0); break;
  932. }
  933. // _delay_ms(100);
  934. /*
  935. #ifdef MESH_BED_LEVELING
  936. _delay_ms(2000);
  937. if (!READ(BTN_ENC))
  938. {
  939. WRITE(BEEPER, HIGH);
  940. _delay_ms(100);
  941. WRITE(BEEPER, LOW);
  942. _delay_ms(200);
  943. WRITE(BEEPER, HIGH);
  944. _delay_ms(100);
  945. WRITE(BEEPER, LOW);
  946. int _z = 0;
  947. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  948. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  949. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  950. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  951. }
  952. else
  953. {
  954. WRITE(BEEPER, HIGH);
  955. _delay_ms(100);
  956. WRITE(BEEPER, LOW);
  957. }
  958. #endif // mesh */
  959. }
  960. }
  961. else
  962. {
  963. _delay_ms(1000); // wait 1sec to display the splash screen
  964. }
  965. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  966. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  967. #endif
  968. #ifdef DIGIPOT_I2C
  969. digipot_i2c_init();
  970. #endif
  971. setup_homepin();
  972. #if defined(Z_AXIS_ALWAYS_ON)
  973. enable_z();
  974. #endif
  975. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  976. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  977. if (farm_mode == 0xFF && farm_no == 0) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero, deactivate farm mode
  978. if (farm_mode)
  979. {
  980. prusa_statistics(8);
  981. }
  982. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  983. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  984. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  985. // but this times out if a blocking dialog is shown in setup().
  986. card.initsd();
  987. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  988. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  989. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  990. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  991. // where all the EEPROM entries are set to 0x0ff.
  992. // Once a firmware boots up, it forces at least a language selection, which changes
  993. // EEPROM_LANG to number lower than 0x0ff.
  994. // 1) Set a high power mode.
  995. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  996. }
  997. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  998. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  999. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1000. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1001. if (lang_selected >= LANG_NUM){
  1002. lcd_mylang();
  1003. }
  1004. check_babystep(); //checking if Z babystep is in allowed range
  1005. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1006. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1007. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1008. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1009. // Show the message.
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1011. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1012. // Show the message.
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1014. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1015. // Show the message.
  1016. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1017. }
  1018. lcd_update_enable(true);
  1019. // Store the currently running firmware into an eeprom,
  1020. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1021. update_current_firmware_version_to_eeprom();
  1022. }
  1023. void trace();
  1024. #define CHUNK_SIZE 64 // bytes
  1025. #define SAFETY_MARGIN 1
  1026. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1027. int chunkHead = 0;
  1028. int serial_read_stream() {
  1029. setTargetHotend(0, 0);
  1030. setTargetBed(0);
  1031. lcd_implementation_clear();
  1032. lcd_printPGM(PSTR(" Upload in progress"));
  1033. // first wait for how many bytes we will receive
  1034. uint32_t bytesToReceive;
  1035. // receive the four bytes
  1036. char bytesToReceiveBuffer[4];
  1037. for (int i=0; i<4; i++) {
  1038. int data;
  1039. while ((data = MYSERIAL.read()) == -1) {};
  1040. bytesToReceiveBuffer[i] = data;
  1041. }
  1042. // make it a uint32
  1043. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1044. // we're ready, notify the sender
  1045. MYSERIAL.write('+');
  1046. // lock in the routine
  1047. uint32_t receivedBytes = 0;
  1048. while (prusa_sd_card_upload) {
  1049. int i;
  1050. for (i=0; i<CHUNK_SIZE; i++) {
  1051. int data;
  1052. // check if we're not done
  1053. if (receivedBytes == bytesToReceive) {
  1054. break;
  1055. }
  1056. // read the next byte
  1057. while ((data = MYSERIAL.read()) == -1) {};
  1058. receivedBytes++;
  1059. // save it to the chunk
  1060. chunk[i] = data;
  1061. }
  1062. // write the chunk to SD
  1063. card.write_command_no_newline(&chunk[0]);
  1064. // notify the sender we're ready for more data
  1065. MYSERIAL.write('+');
  1066. // for safety
  1067. manage_heater();
  1068. // check if we're done
  1069. if(receivedBytes == bytesToReceive) {
  1070. trace(); // beep
  1071. card.closefile();
  1072. prusa_sd_card_upload = false;
  1073. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1074. return 0;
  1075. }
  1076. }
  1077. }
  1078. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1079. // Before loop(), the setup() function is called by the main() routine.
  1080. void loop()
  1081. {
  1082. bool stack_integrity = true;
  1083. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1084. {
  1085. is_usb_printing = true;
  1086. usb_printing_counter--;
  1087. _usb_timer = millis();
  1088. }
  1089. if (usb_printing_counter == 0)
  1090. {
  1091. is_usb_printing = false;
  1092. }
  1093. if (prusa_sd_card_upload)
  1094. {
  1095. //we read byte-by byte
  1096. serial_read_stream();
  1097. } else
  1098. {
  1099. get_command();
  1100. #ifdef SDSUPPORT
  1101. card.checkautostart(false);
  1102. #endif
  1103. if(buflen)
  1104. {
  1105. #ifdef SDSUPPORT
  1106. if(card.saving)
  1107. {
  1108. // Saving a G-code file onto an SD-card is in progress.
  1109. // Saving starts with M28, saving until M29 is seen.
  1110. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1111. card.write_command(CMDBUFFER_CURRENT_STRING);
  1112. if(card.logging)
  1113. process_commands();
  1114. else
  1115. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1116. } else {
  1117. card.closefile();
  1118. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1119. }
  1120. } else {
  1121. process_commands();
  1122. }
  1123. #else
  1124. process_commands();
  1125. #endif //SDSUPPORT
  1126. if (! cmdbuffer_front_already_processed)
  1127. cmdqueue_pop_front();
  1128. cmdbuffer_front_already_processed = false;
  1129. }
  1130. }
  1131. //check heater every n milliseconds
  1132. manage_heater();
  1133. manage_inactivity();
  1134. checkHitEndstops();
  1135. lcd_update();
  1136. tmc2130_check_overtemp();
  1137. }
  1138. void get_command()
  1139. {
  1140. // Test and reserve space for the new command string.
  1141. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1142. return;
  1143. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1144. while (MYSERIAL.available() > 0) {
  1145. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1146. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1147. rx_buffer_full = true; //sets flag that buffer was full
  1148. }
  1149. char serial_char = MYSERIAL.read();
  1150. TimeSent = millis();
  1151. TimeNow = millis();
  1152. if (serial_char < 0)
  1153. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1154. // and Marlin does not support such file names anyway.
  1155. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1156. // to a hang-up of the print process from an SD card.
  1157. continue;
  1158. if(serial_char == '\n' ||
  1159. serial_char == '\r' ||
  1160. (serial_char == ':' && comment_mode == false) ||
  1161. serial_count >= (MAX_CMD_SIZE - 1) )
  1162. {
  1163. if(!serial_count) { //if empty line
  1164. comment_mode = false; //for new command
  1165. return;
  1166. }
  1167. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1168. if(!comment_mode){
  1169. comment_mode = false; //for new command
  1170. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1171. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1172. {
  1173. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1174. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1175. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1176. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1177. // M110 - set current line number.
  1178. // Line numbers not sent in succession.
  1179. SERIAL_ERROR_START;
  1180. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1181. SERIAL_ERRORLN(gcode_LastN);
  1182. //Serial.println(gcode_N);
  1183. FlushSerialRequestResend();
  1184. serial_count = 0;
  1185. return;
  1186. }
  1187. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1188. {
  1189. byte checksum = 0;
  1190. char *p = cmdbuffer+bufindw+1;
  1191. while (p != strchr_pointer)
  1192. checksum = checksum^(*p++);
  1193. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1194. SERIAL_ERROR_START;
  1195. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1196. SERIAL_ERRORLN(gcode_LastN);
  1197. FlushSerialRequestResend();
  1198. serial_count = 0;
  1199. return;
  1200. }
  1201. // If no errors, remove the checksum and continue parsing.
  1202. *strchr_pointer = 0;
  1203. }
  1204. else
  1205. {
  1206. SERIAL_ERROR_START;
  1207. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1208. SERIAL_ERRORLN(gcode_LastN);
  1209. FlushSerialRequestResend();
  1210. serial_count = 0;
  1211. return;
  1212. }
  1213. gcode_LastN = gcode_N;
  1214. //if no errors, continue parsing
  1215. } // end of 'N' command
  1216. }
  1217. else // if we don't receive 'N' but still see '*'
  1218. {
  1219. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1220. {
  1221. SERIAL_ERROR_START;
  1222. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1223. SERIAL_ERRORLN(gcode_LastN);
  1224. serial_count = 0;
  1225. return;
  1226. }
  1227. } // end of '*' command
  1228. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1229. if (! IS_SD_PRINTING) {
  1230. usb_printing_counter = 10;
  1231. is_usb_printing = true;
  1232. }
  1233. if (Stopped == true) {
  1234. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1235. if (gcode >= 0 && gcode <= 3) {
  1236. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1237. LCD_MESSAGERPGM(MSG_STOPPED);
  1238. }
  1239. }
  1240. } // end of 'G' command
  1241. //If command was e-stop process now
  1242. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1243. kill();
  1244. // Store the current line into buffer, move to the next line.
  1245. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1246. #ifdef CMDBUFFER_DEBUG
  1247. SERIAL_ECHO_START;
  1248. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1249. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1250. SERIAL_ECHOLNPGM("");
  1251. #endif /* CMDBUFFER_DEBUG */
  1252. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1253. if (bufindw == sizeof(cmdbuffer))
  1254. bufindw = 0;
  1255. ++ buflen;
  1256. #ifdef CMDBUFFER_DEBUG
  1257. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1258. SERIAL_ECHO(buflen);
  1259. SERIAL_ECHOLNPGM("");
  1260. #endif /* CMDBUFFER_DEBUG */
  1261. } // end of 'not comment mode'
  1262. serial_count = 0; //clear buffer
  1263. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1264. // in the queue, as this function will reserve the memory.
  1265. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1266. return;
  1267. } // end of "end of line" processing
  1268. else {
  1269. // Not an "end of line" symbol. Store the new character into a buffer.
  1270. if(serial_char == ';') comment_mode = true;
  1271. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1272. }
  1273. } // end of serial line processing loop
  1274. if(farm_mode){
  1275. TimeNow = millis();
  1276. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1277. cmdbuffer[bufindw+serial_count+1] = 0;
  1278. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1279. if (bufindw == sizeof(cmdbuffer))
  1280. bufindw = 0;
  1281. ++ buflen;
  1282. serial_count = 0;
  1283. SERIAL_ECHOPGM("TIMEOUT:");
  1284. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1285. return;
  1286. }
  1287. }
  1288. //add comment
  1289. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1290. rx_buffer_full = false;
  1291. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1292. serial_count = 0;
  1293. }
  1294. #ifdef SDSUPPORT
  1295. if(!card.sdprinting || serial_count!=0){
  1296. // If there is a half filled buffer from serial line, wait until return before
  1297. // continuing with the serial line.
  1298. return;
  1299. }
  1300. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1301. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1302. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1303. static bool stop_buffering=false;
  1304. if(buflen==0) stop_buffering=false;
  1305. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1306. while( !card.eof() && !stop_buffering) {
  1307. int16_t n=card.get();
  1308. char serial_char = (char)n;
  1309. if(serial_char == '\n' ||
  1310. serial_char == '\r' ||
  1311. (serial_char == '#' && comment_mode == false) ||
  1312. (serial_char == ':' && comment_mode == false) ||
  1313. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1314. {
  1315. if(card.eof()){
  1316. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1317. stoptime=millis();
  1318. char time[30];
  1319. unsigned long t=(stoptime-starttime)/1000;
  1320. int hours, minutes;
  1321. minutes=(t/60)%60;
  1322. hours=t/60/60;
  1323. save_statistics(total_filament_used, t);
  1324. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1325. SERIAL_ECHO_START;
  1326. SERIAL_ECHOLN(time);
  1327. lcd_setstatus(time);
  1328. card.printingHasFinished();
  1329. card.checkautostart(true);
  1330. if (farm_mode)
  1331. {
  1332. prusa_statistics(6);
  1333. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1334. }
  1335. }
  1336. if(serial_char=='#')
  1337. stop_buffering=true;
  1338. if(!serial_count)
  1339. {
  1340. comment_mode = false; //for new command
  1341. return; //if empty line
  1342. }
  1343. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1344. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1345. ++ buflen;
  1346. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1347. if (bufindw == sizeof(cmdbuffer))
  1348. bufindw = 0;
  1349. comment_mode = false; //for new command
  1350. serial_count = 0; //clear buffer
  1351. // The following line will reserve buffer space if available.
  1352. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1353. return;
  1354. }
  1355. else
  1356. {
  1357. if(serial_char == ';') comment_mode = true;
  1358. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1359. }
  1360. }
  1361. #endif //SDSUPPORT
  1362. }
  1363. // Return True if a character was found
  1364. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1365. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1366. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1367. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1368. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1369. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1370. #define DEFINE_PGM_READ_ANY(type, reader) \
  1371. static inline type pgm_read_any(const type *p) \
  1372. { return pgm_read_##reader##_near(p); }
  1373. DEFINE_PGM_READ_ANY(float, float);
  1374. DEFINE_PGM_READ_ANY(signed char, byte);
  1375. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1376. static const PROGMEM type array##_P[3] = \
  1377. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1378. static inline type array(int axis) \
  1379. { return pgm_read_any(&array##_P[axis]); } \
  1380. type array##_ext(int axis) \
  1381. { return pgm_read_any(&array##_P[axis]); }
  1382. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1383. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1384. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1385. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1386. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1387. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1388. static void axis_is_at_home(int axis) {
  1389. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1390. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1391. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1392. }
  1393. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1394. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1395. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1396. saved_feedrate = feedrate;
  1397. saved_feedmultiply = feedmultiply;
  1398. feedmultiply = 100;
  1399. previous_millis_cmd = millis();
  1400. enable_endstops(enable_endstops_now);
  1401. }
  1402. static void clean_up_after_endstop_move() {
  1403. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1404. enable_endstops(false);
  1405. #endif
  1406. feedrate = saved_feedrate;
  1407. feedmultiply = saved_feedmultiply;
  1408. previous_millis_cmd = millis();
  1409. }
  1410. #ifdef ENABLE_AUTO_BED_LEVELING
  1411. #ifdef AUTO_BED_LEVELING_GRID
  1412. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1413. {
  1414. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1415. planeNormal.debug("planeNormal");
  1416. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1417. //bedLevel.debug("bedLevel");
  1418. //plan_bed_level_matrix.debug("bed level before");
  1419. //vector_3 uncorrected_position = plan_get_position_mm();
  1420. //uncorrected_position.debug("position before");
  1421. vector_3 corrected_position = plan_get_position();
  1422. // corrected_position.debug("position after");
  1423. current_position[X_AXIS] = corrected_position.x;
  1424. current_position[Y_AXIS] = corrected_position.y;
  1425. current_position[Z_AXIS] = corrected_position.z;
  1426. // put the bed at 0 so we don't go below it.
  1427. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. }
  1430. #else // not AUTO_BED_LEVELING_GRID
  1431. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1432. plan_bed_level_matrix.set_to_identity();
  1433. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1434. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1435. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1436. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1437. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1438. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1439. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1440. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1441. vector_3 corrected_position = plan_get_position();
  1442. current_position[X_AXIS] = corrected_position.x;
  1443. current_position[Y_AXIS] = corrected_position.y;
  1444. current_position[Z_AXIS] = corrected_position.z;
  1445. // put the bed at 0 so we don't go below it.
  1446. current_position[Z_AXIS] = zprobe_zoffset;
  1447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. }
  1449. #endif // AUTO_BED_LEVELING_GRID
  1450. static void run_z_probe() {
  1451. plan_bed_level_matrix.set_to_identity();
  1452. feedrate = homing_feedrate[Z_AXIS];
  1453. // move down until you find the bed
  1454. float zPosition = -10;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1456. st_synchronize();
  1457. // we have to let the planner know where we are right now as it is not where we said to go.
  1458. zPosition = st_get_position_mm(Z_AXIS);
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1460. // move up the retract distance
  1461. zPosition += home_retract_mm(Z_AXIS);
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // move back down slowly to find bed
  1465. feedrate = homing_feedrate[Z_AXIS]/4;
  1466. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1470. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. }
  1473. static void do_blocking_move_to(float x, float y, float z) {
  1474. float oldFeedRate = feedrate;
  1475. feedrate = homing_feedrate[Z_AXIS];
  1476. current_position[Z_AXIS] = z;
  1477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1478. st_synchronize();
  1479. feedrate = XY_TRAVEL_SPEED;
  1480. current_position[X_AXIS] = x;
  1481. current_position[Y_AXIS] = y;
  1482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. feedrate = oldFeedRate;
  1485. }
  1486. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1487. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1488. }
  1489. /// Probe bed height at position (x,y), returns the measured z value
  1490. static float probe_pt(float x, float y, float z_before) {
  1491. // move to right place
  1492. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1493. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1494. run_z_probe();
  1495. float measured_z = current_position[Z_AXIS];
  1496. SERIAL_PROTOCOLRPGM(MSG_BED);
  1497. SERIAL_PROTOCOLPGM(" x: ");
  1498. SERIAL_PROTOCOL(x);
  1499. SERIAL_PROTOCOLPGM(" y: ");
  1500. SERIAL_PROTOCOL(y);
  1501. SERIAL_PROTOCOLPGM(" z: ");
  1502. SERIAL_PROTOCOL(measured_z);
  1503. SERIAL_PROTOCOLPGM("\n");
  1504. return measured_z;
  1505. }
  1506. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1507. void homeaxis(int axis) {
  1508. #define HOMEAXIS_DO(LETTER) \
  1509. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1510. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1511. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1512. 0) {
  1513. int axis_home_dir = home_dir(axis);
  1514. #ifdef HAVE_TMC2130_DRIVERS
  1515. st_setSGHoming(axis);
  1516. // Configuration to spreadCycle
  1517. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x01);
  1518. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x6D,0,SG_THRESHOLD,0,0);
  1519. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x14,0,0,0,TCOOLTHRS);
  1520. #endif
  1521. current_position[axis] = 0;
  1522. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1523. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1524. feedrate = homing_feedrate[axis];
  1525. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1526. st_synchronize();
  1527. current_position[axis] = 0;
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1533. if(st_didLastHomingStall())
  1534. feedrate = homing_feedrate[axis];
  1535. else
  1536. feedrate = homing_feedrate[axis]/2 ;
  1537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1538. st_synchronize();
  1539. axis_is_at_home(axis);
  1540. destination[axis] = current_position[axis];
  1541. feedrate = 0.0;
  1542. endstops_hit_on_purpose();
  1543. axis_known_position[axis] = true;
  1544. #ifdef HAVE_TMC2130_DRIVERS
  1545. // Configuration back to stealthChop
  1546. tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x05);
  1547. st_setSGHoming(0xFF);
  1548. st_resetSGflags();
  1549. #endif
  1550. }
  1551. else if (axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1552. 0) {
  1553. int axis_home_dir = home_dir(axis);
  1554. current_position[axis] = 0;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1557. feedrate = homing_feedrate[axis];
  1558. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1559. st_synchronize();
  1560. current_position[axis] = 0;
  1561. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1562. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1564. st_synchronize();
  1565. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1566. feedrate = homing_feedrate[axis]/2 ;
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. axis_is_at_home(axis);
  1570. destination[axis] = current_position[axis];
  1571. feedrate = 0.0;
  1572. endstops_hit_on_purpose();
  1573. axis_known_position[axis] = true;
  1574. }
  1575. }
  1576. void home_xy()
  1577. {
  1578. set_destination_to_current();
  1579. homeaxis(X_AXIS);
  1580. homeaxis(Y_AXIS);
  1581. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1582. endstops_hit_on_purpose();
  1583. }
  1584. void refresh_cmd_timeout(void)
  1585. {
  1586. previous_millis_cmd = millis();
  1587. }
  1588. #ifdef FWRETRACT
  1589. void retract(bool retracting, bool swapretract = false) {
  1590. if(retracting && !retracted[active_extruder]) {
  1591. destination[X_AXIS]=current_position[X_AXIS];
  1592. destination[Y_AXIS]=current_position[Y_AXIS];
  1593. destination[Z_AXIS]=current_position[Z_AXIS];
  1594. destination[E_AXIS]=current_position[E_AXIS];
  1595. if (swapretract) {
  1596. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1597. } else {
  1598. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1599. }
  1600. plan_set_e_position(current_position[E_AXIS]);
  1601. float oldFeedrate = feedrate;
  1602. feedrate=retract_feedrate*60;
  1603. retracted[active_extruder]=true;
  1604. prepare_move();
  1605. current_position[Z_AXIS]-=retract_zlift;
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. prepare_move();
  1608. feedrate = oldFeedrate;
  1609. } else if(!retracting && retracted[active_extruder]) {
  1610. destination[X_AXIS]=current_position[X_AXIS];
  1611. destination[Y_AXIS]=current_position[Y_AXIS];
  1612. destination[Z_AXIS]=current_position[Z_AXIS];
  1613. destination[E_AXIS]=current_position[E_AXIS];
  1614. current_position[Z_AXIS]+=retract_zlift;
  1615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1616. //prepare_move();
  1617. if (swapretract) {
  1618. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1619. } else {
  1620. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1621. }
  1622. plan_set_e_position(current_position[E_AXIS]);
  1623. float oldFeedrate = feedrate;
  1624. feedrate=retract_recover_feedrate*60;
  1625. retracted[active_extruder]=false;
  1626. prepare_move();
  1627. feedrate = oldFeedrate;
  1628. }
  1629. } //retract
  1630. #endif //FWRETRACT
  1631. void trace() {
  1632. tone(BEEPER, 440);
  1633. delay(25);
  1634. noTone(BEEPER);
  1635. delay(20);
  1636. }
  1637. void ramming() {
  1638. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1639. if (current_temperature[0] < 230) {
  1640. //PLA
  1641. max_feedrate[E_AXIS] = 50;
  1642. //current_position[E_AXIS] -= 8;
  1643. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1644. //current_position[E_AXIS] += 8;
  1645. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1646. current_position[E_AXIS] += 5.4;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1648. current_position[E_AXIS] += 3.2;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1650. current_position[E_AXIS] += 3;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1652. st_synchronize();
  1653. max_feedrate[E_AXIS] = 80;
  1654. current_position[E_AXIS] -= 82;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1656. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1657. current_position[E_AXIS] -= 20;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1659. current_position[E_AXIS] += 5;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1661. current_position[E_AXIS] += 5;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1663. current_position[E_AXIS] -= 10;
  1664. st_synchronize();
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. current_position[E_AXIS] += 10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1668. current_position[E_AXIS] -= 10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1670. current_position[E_AXIS] += 10;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1672. current_position[E_AXIS] -= 10;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1674. st_synchronize();
  1675. }
  1676. else {
  1677. //ABS
  1678. max_feedrate[E_AXIS] = 50;
  1679. //current_position[E_AXIS] -= 8;
  1680. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1681. //current_position[E_AXIS] += 8;
  1682. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1683. current_position[E_AXIS] += 3.1;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1685. current_position[E_AXIS] += 3.1;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1687. current_position[E_AXIS] += 4;
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1689. st_synchronize();
  1690. /*current_position[X_AXIS] += 23; //delay
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1692. current_position[X_AXIS] -= 23; //delay
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1694. delay(4700);
  1695. max_feedrate[E_AXIS] = 80;
  1696. current_position[E_AXIS] -= 92;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1698. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1699. current_position[E_AXIS] -= 5;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1701. current_position[E_AXIS] += 5;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1703. current_position[E_AXIS] -= 5;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1705. st_synchronize();
  1706. current_position[E_AXIS] += 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. current_position[E_AXIS] -= 5;
  1709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1710. current_position[E_AXIS] += 5;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1712. current_position[E_AXIS] -= 5;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1714. st_synchronize();
  1715. }
  1716. }
  1717. void process_commands()
  1718. {
  1719. #ifdef FILAMENT_RUNOUT_SUPPORT
  1720. SET_INPUT(FR_SENS);
  1721. #endif
  1722. #ifdef CMDBUFFER_DEBUG
  1723. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1724. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1725. SERIAL_ECHOLNPGM("");
  1726. SERIAL_ECHOPGM("In cmdqueue: ");
  1727. SERIAL_ECHO(buflen);
  1728. SERIAL_ECHOLNPGM("");
  1729. #endif /* CMDBUFFER_DEBUG */
  1730. unsigned long codenum; //throw away variable
  1731. char *starpos = NULL;
  1732. #ifdef ENABLE_AUTO_BED_LEVELING
  1733. float x_tmp, y_tmp, z_tmp, real_z;
  1734. #endif
  1735. // PRUSA GCODES
  1736. #ifdef SNMM
  1737. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1738. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1739. int8_t SilentMode;
  1740. #endif
  1741. if(code_seen("PRUSA")){
  1742. if (code_seen("Ping")) { //PRUSA Ping
  1743. if (farm_mode) {
  1744. PingTime = millis();
  1745. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1746. }
  1747. }
  1748. else if (code_seen("PRN")) {
  1749. MYSERIAL.println(status_number);
  1750. }else if (code_seen("fn")) {
  1751. if (farm_mode) {
  1752. MYSERIAL.println(farm_no);
  1753. }
  1754. else {
  1755. MYSERIAL.println("Not in farm mode.");
  1756. }
  1757. }else if (code_seen("fv")) {
  1758. // get file version
  1759. #ifdef SDSUPPORT
  1760. card.openFile(strchr_pointer + 3,true);
  1761. while (true) {
  1762. uint16_t readByte = card.get();
  1763. MYSERIAL.write(readByte);
  1764. if (readByte=='\n') {
  1765. break;
  1766. }
  1767. }
  1768. card.closefile();
  1769. #endif // SDSUPPORT
  1770. } else if (code_seen("M28")) {
  1771. trace();
  1772. prusa_sd_card_upload = true;
  1773. card.openFile(strchr_pointer+4,false);
  1774. } else if(code_seen("Fir")){
  1775. SERIAL_PROTOCOLLN(FW_version);
  1776. } else if(code_seen("Rev")){
  1777. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1778. } else if(code_seen("Lang")) {
  1779. lcd_force_language_selection();
  1780. } else if(code_seen("Lz")) {
  1781. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1782. } else if (code_seen("SERIAL LOW")) {
  1783. MYSERIAL.println("SERIAL LOW");
  1784. MYSERIAL.begin(BAUDRATE);
  1785. return;
  1786. } else if (code_seen("SERIAL HIGH")) {
  1787. MYSERIAL.println("SERIAL HIGH");
  1788. MYSERIAL.begin(1152000);
  1789. return;
  1790. } else if(code_seen("Beat")) {
  1791. // Kick farm link timer
  1792. kicktime = millis();
  1793. } else if(code_seen("FR")) {
  1794. // Factory full reset
  1795. factory_reset(0,true);
  1796. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1797. #ifdef SNMM
  1798. int extr;
  1799. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1800. lcd_implementation_clear();
  1801. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1802. current_position[Z_AXIS] = 100;
  1803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1804. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1805. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1806. change_extr(extr);
  1807. ramming();
  1808. }
  1809. change_extr(0);
  1810. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1812. st_synchronize();
  1813. for (extr = 1; extr < 4; extr++) {
  1814. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1815. change_extr(extr);
  1816. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1818. st_synchronize();
  1819. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1820. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1822. st_synchronize();
  1823. }
  1824. change_extr(0);
  1825. current_position[E_AXIS] += 25;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1827. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1828. ramming();
  1829. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1830. else digipot_current(2, tmp_motor_loud[2]);
  1831. st_synchronize();
  1832. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1833. lcd_implementation_clear();
  1834. lcd_printPGM(MSG_PLEASE_WAIT);
  1835. current_position[Z_AXIS] = 0;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1837. st_synchronize();
  1838. lcd_update_enable(true);
  1839. #endif
  1840. }
  1841. else if (code_seen("SetF")) {
  1842. #ifdef SNMM
  1843. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1844. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1845. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1846. #endif
  1847. }
  1848. else if (code_seen("ResF")) {
  1849. #ifdef SNMM
  1850. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1851. #endif
  1852. }
  1853. //else if (code_seen('Cal')) {
  1854. // lcd_calibration();
  1855. // }
  1856. }
  1857. else if (code_seen('^')) {
  1858. // nothing, this is a version line
  1859. } else if(code_seen('G'))
  1860. {
  1861. switch((int)code_value())
  1862. {
  1863. case 0: // G0 -> G1
  1864. case 1: // G1
  1865. if(Stopped == false) {
  1866. #ifdef FILAMENT_RUNOUT_SUPPORT
  1867. if(READ(FR_SENS)){
  1868. feedmultiplyBckp=feedmultiply;
  1869. float target[4];
  1870. float lastpos[4];
  1871. target[X_AXIS]=current_position[X_AXIS];
  1872. target[Y_AXIS]=current_position[Y_AXIS];
  1873. target[Z_AXIS]=current_position[Z_AXIS];
  1874. target[E_AXIS]=current_position[E_AXIS];
  1875. lastpos[X_AXIS]=current_position[X_AXIS];
  1876. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1877. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1878. lastpos[E_AXIS]=current_position[E_AXIS];
  1879. //retract by E
  1880. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1881. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1882. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1884. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1885. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1887. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1889. //finish moves
  1890. st_synchronize();
  1891. //disable extruder steppers so filament can be removed
  1892. disable_e0();
  1893. disable_e1();
  1894. disable_e2();
  1895. delay(100);
  1896. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1897. uint8_t cnt=0;
  1898. int counterBeep = 0;
  1899. lcd_wait_interact();
  1900. while(!lcd_clicked()){
  1901. cnt++;
  1902. manage_heater();
  1903. manage_inactivity(true);
  1904. //lcd_update();
  1905. if(cnt==0)
  1906. {
  1907. #if BEEPER > 0
  1908. if (counterBeep== 500){
  1909. counterBeep = 0;
  1910. }
  1911. SET_OUTPUT(BEEPER);
  1912. if (counterBeep== 0){
  1913. WRITE(BEEPER,HIGH);
  1914. }
  1915. if (counterBeep== 20){
  1916. WRITE(BEEPER,LOW);
  1917. }
  1918. counterBeep++;
  1919. #else
  1920. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1921. lcd_buzz(1000/6,100);
  1922. #else
  1923. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1924. #endif
  1925. #endif
  1926. }
  1927. }
  1928. WRITE(BEEPER,LOW);
  1929. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1930. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1931. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1933. lcd_change_fil_state = 0;
  1934. lcd_loading_filament();
  1935. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1936. lcd_change_fil_state = 0;
  1937. lcd_alright();
  1938. switch(lcd_change_fil_state){
  1939. case 2:
  1940. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1942. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1943. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1944. lcd_loading_filament();
  1945. break;
  1946. case 3:
  1947. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1949. lcd_loading_color();
  1950. break;
  1951. default:
  1952. lcd_change_success();
  1953. break;
  1954. }
  1955. }
  1956. target[E_AXIS]+= 5;
  1957. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1958. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1959. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1960. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1961. //plan_set_e_position(current_position[E_AXIS]);
  1962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1963. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1964. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1965. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1966. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1967. plan_set_e_position(lastpos[E_AXIS]);
  1968. feedmultiply=feedmultiplyBckp;
  1969. char cmd[9];
  1970. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1971. enquecommand(cmd);
  1972. }
  1973. #endif
  1974. get_coordinates(); // For X Y Z E F
  1975. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1976. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1977. }
  1978. #ifdef FWRETRACT
  1979. if(autoretract_enabled)
  1980. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1981. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1982. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1983. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1984. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1985. retract(!retracted);
  1986. return;
  1987. }
  1988. }
  1989. #endif //FWRETRACT
  1990. prepare_move();
  1991. //ClearToSend();
  1992. }
  1993. break;
  1994. case 2: // G2 - CW ARC
  1995. if(Stopped == false) {
  1996. get_arc_coordinates();
  1997. prepare_arc_move(true);
  1998. }
  1999. break;
  2000. case 3: // G3 - CCW ARC
  2001. if(Stopped == false) {
  2002. get_arc_coordinates();
  2003. prepare_arc_move(false);
  2004. }
  2005. break;
  2006. case 4: // G4 dwell
  2007. LCD_MESSAGERPGM(MSG_DWELL);
  2008. codenum = 0;
  2009. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2010. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2011. st_synchronize();
  2012. codenum += millis(); // keep track of when we started waiting
  2013. previous_millis_cmd = millis();
  2014. while(millis() < codenum) {
  2015. manage_heater();
  2016. manage_inactivity();
  2017. lcd_update();
  2018. }
  2019. break;
  2020. #ifdef FWRETRACT
  2021. case 10: // G10 retract
  2022. #if EXTRUDERS > 1
  2023. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2024. retract(true,retracted_swap[active_extruder]);
  2025. #else
  2026. retract(true);
  2027. #endif
  2028. break;
  2029. case 11: // G11 retract_recover
  2030. #if EXTRUDERS > 1
  2031. retract(false,retracted_swap[active_extruder]);
  2032. #else
  2033. retract(false);
  2034. #endif
  2035. break;
  2036. #endif //FWRETRACT
  2037. case 28: //G28 Home all Axis one at a time
  2038. homing_flag = true;
  2039. #ifdef ENABLE_AUTO_BED_LEVELING
  2040. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2041. #endif //ENABLE_AUTO_BED_LEVELING
  2042. // For mesh bed leveling deactivate the matrix temporarily
  2043. #ifdef MESH_BED_LEVELING
  2044. mbl.active = 0;
  2045. #endif
  2046. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2047. // the planner will not perform any adjustments in the XY plane.
  2048. // Wait for the motors to stop and update the current position with the absolute values.
  2049. world2machine_revert_to_uncorrected();
  2050. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2051. // consumed during the first movements following this statement.
  2052. babystep_undo();
  2053. saved_feedrate = feedrate;
  2054. saved_feedmultiply = feedmultiply;
  2055. feedmultiply = 100;
  2056. previous_millis_cmd = millis();
  2057. enable_endstops(true);
  2058. for(int8_t i=0; i < NUM_AXIS; i++)
  2059. destination[i] = current_position[i];
  2060. feedrate = 0.0;
  2061. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2062. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2063. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2064. homeaxis(Z_AXIS);
  2065. }
  2066. #endif
  2067. #ifdef QUICK_HOME
  2068. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2069. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2070. {
  2071. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2072. int x_axis_home_dir = home_dir(X_AXIS);
  2073. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2074. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2075. feedrate = homing_feedrate[X_AXIS];
  2076. if(homing_feedrate[Y_AXIS]<feedrate)
  2077. feedrate = homing_feedrate[Y_AXIS];
  2078. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2079. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2080. } else {
  2081. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2082. }
  2083. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2084. st_synchronize();
  2085. axis_is_at_home(X_AXIS);
  2086. axis_is_at_home(Y_AXIS);
  2087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2088. destination[X_AXIS] = current_position[X_AXIS];
  2089. destination[Y_AXIS] = current_position[Y_AXIS];
  2090. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2091. feedrate = 0.0;
  2092. st_synchronize();
  2093. endstops_hit_on_purpose();
  2094. current_position[X_AXIS] = destination[X_AXIS];
  2095. current_position[Y_AXIS] = destination[Y_AXIS];
  2096. current_position[Z_AXIS] = destination[Z_AXIS];
  2097. }
  2098. #endif /* QUICK_HOME */
  2099. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2100. homeaxis(X_AXIS);
  2101. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2102. homeaxis(Y_AXIS);
  2103. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2104. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2105. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2106. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2107. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2108. #ifndef Z_SAFE_HOMING
  2109. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2110. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2111. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2112. feedrate = max_feedrate[Z_AXIS];
  2113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2114. st_synchronize();
  2115. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2116. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2117. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2118. {
  2119. homeaxis(X_AXIS);
  2120. homeaxis(Y_AXIS);
  2121. }
  2122. // 1st mesh bed leveling measurement point, corrected.
  2123. world2machine_initialize();
  2124. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2125. world2machine_reset();
  2126. if (destination[Y_AXIS] < Y_MIN_POS)
  2127. destination[Y_AXIS] = Y_MIN_POS;
  2128. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2129. feedrate = homing_feedrate[Z_AXIS]/10;
  2130. current_position[Z_AXIS] = 0;
  2131. enable_endstops(false);
  2132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2133. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2134. st_synchronize();
  2135. current_position[X_AXIS] = destination[X_AXIS];
  2136. current_position[Y_AXIS] = destination[Y_AXIS];
  2137. enable_endstops(true);
  2138. endstops_hit_on_purpose();
  2139. homeaxis(Z_AXIS);
  2140. #else // MESH_BED_LEVELING
  2141. homeaxis(Z_AXIS);
  2142. #endif // MESH_BED_LEVELING
  2143. }
  2144. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2145. if(home_all_axis) {
  2146. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2147. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2148. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2149. feedrate = XY_TRAVEL_SPEED/60;
  2150. current_position[Z_AXIS] = 0;
  2151. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2152. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2153. st_synchronize();
  2154. current_position[X_AXIS] = destination[X_AXIS];
  2155. current_position[Y_AXIS] = destination[Y_AXIS];
  2156. homeaxis(Z_AXIS);
  2157. }
  2158. // Let's see if X and Y are homed and probe is inside bed area.
  2159. if(code_seen(axis_codes[Z_AXIS])) {
  2160. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2161. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2162. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2163. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2164. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2165. current_position[Z_AXIS] = 0;
  2166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2167. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2168. feedrate = max_feedrate[Z_AXIS];
  2169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2170. st_synchronize();
  2171. homeaxis(Z_AXIS);
  2172. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2173. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2174. SERIAL_ECHO_START;
  2175. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2176. } else {
  2177. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2178. SERIAL_ECHO_START;
  2179. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2180. }
  2181. }
  2182. #endif // Z_SAFE_HOMING
  2183. #endif // Z_HOME_DIR < 0
  2184. if(code_seen(axis_codes[Z_AXIS])) {
  2185. if(code_value_long() != 0) {
  2186. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2187. }
  2188. }
  2189. #ifdef ENABLE_AUTO_BED_LEVELING
  2190. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2191. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2192. }
  2193. #endif
  2194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2195. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2196. enable_endstops(false);
  2197. #endif
  2198. feedrate = saved_feedrate;
  2199. feedmultiply = saved_feedmultiply;
  2200. previous_millis_cmd = millis();
  2201. endstops_hit_on_purpose();
  2202. #ifndef MESH_BED_LEVELING
  2203. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2204. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2205. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2206. lcd_adjust_z();
  2207. #endif
  2208. // Load the machine correction matrix
  2209. world2machine_initialize();
  2210. // and correct the current_position to match the transformed coordinate system.
  2211. world2machine_update_current();
  2212. #ifdef MESH_BED_LEVELING
  2213. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2214. {
  2215. }
  2216. else
  2217. {
  2218. st_synchronize();
  2219. homing_flag = false;
  2220. // Push the commands to the front of the message queue in the reverse order!
  2221. // There shall be always enough space reserved for these commands.
  2222. // enquecommand_front_P((PSTR("G80")));
  2223. goto case_G80;
  2224. }
  2225. #endif
  2226. if (farm_mode) { prusa_statistics(20); };
  2227. homing_flag = false;
  2228. break;
  2229. #ifdef ENABLE_AUTO_BED_LEVELING
  2230. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2231. {
  2232. #if Z_MIN_PIN == -1
  2233. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2234. #endif
  2235. // Prevent user from running a G29 without first homing in X and Y
  2236. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2237. {
  2238. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2239. SERIAL_ECHO_START;
  2240. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2241. break; // abort G29, since we don't know where we are
  2242. }
  2243. st_synchronize();
  2244. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2245. //vector_3 corrected_position = plan_get_position_mm();
  2246. //corrected_position.debug("position before G29");
  2247. plan_bed_level_matrix.set_to_identity();
  2248. vector_3 uncorrected_position = plan_get_position();
  2249. //uncorrected_position.debug("position durring G29");
  2250. current_position[X_AXIS] = uncorrected_position.x;
  2251. current_position[Y_AXIS] = uncorrected_position.y;
  2252. current_position[Z_AXIS] = uncorrected_position.z;
  2253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2254. setup_for_endstop_move();
  2255. feedrate = homing_feedrate[Z_AXIS];
  2256. #ifdef AUTO_BED_LEVELING_GRID
  2257. // probe at the points of a lattice grid
  2258. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2259. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2260. // solve the plane equation ax + by + d = z
  2261. // A is the matrix with rows [x y 1] for all the probed points
  2262. // B is the vector of the Z positions
  2263. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2264. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2265. // "A" matrix of the linear system of equations
  2266. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2267. // "B" vector of Z points
  2268. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2269. int probePointCounter = 0;
  2270. bool zig = true;
  2271. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2272. {
  2273. int xProbe, xInc;
  2274. if (zig)
  2275. {
  2276. xProbe = LEFT_PROBE_BED_POSITION;
  2277. //xEnd = RIGHT_PROBE_BED_POSITION;
  2278. xInc = xGridSpacing;
  2279. zig = false;
  2280. } else // zag
  2281. {
  2282. xProbe = RIGHT_PROBE_BED_POSITION;
  2283. //xEnd = LEFT_PROBE_BED_POSITION;
  2284. xInc = -xGridSpacing;
  2285. zig = true;
  2286. }
  2287. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2288. {
  2289. float z_before;
  2290. if (probePointCounter == 0)
  2291. {
  2292. // raise before probing
  2293. z_before = Z_RAISE_BEFORE_PROBING;
  2294. } else
  2295. {
  2296. // raise extruder
  2297. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2298. }
  2299. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2300. eqnBVector[probePointCounter] = measured_z;
  2301. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2302. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2303. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2304. probePointCounter++;
  2305. xProbe += xInc;
  2306. }
  2307. }
  2308. clean_up_after_endstop_move();
  2309. // solve lsq problem
  2310. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2311. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2312. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2313. SERIAL_PROTOCOLPGM(" b: ");
  2314. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2315. SERIAL_PROTOCOLPGM(" d: ");
  2316. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2317. set_bed_level_equation_lsq(plane_equation_coefficients);
  2318. free(plane_equation_coefficients);
  2319. #else // AUTO_BED_LEVELING_GRID not defined
  2320. // Probe at 3 arbitrary points
  2321. // probe 1
  2322. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2323. // probe 2
  2324. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2325. // probe 3
  2326. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2327. clean_up_after_endstop_move();
  2328. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2329. #endif // AUTO_BED_LEVELING_GRID
  2330. st_synchronize();
  2331. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2332. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2333. // When the bed is uneven, this height must be corrected.
  2334. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2335. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2336. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2337. z_tmp = current_position[Z_AXIS];
  2338. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2339. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2341. }
  2342. break;
  2343. #ifndef Z_PROBE_SLED
  2344. case 30: // G30 Single Z Probe
  2345. {
  2346. st_synchronize();
  2347. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2348. setup_for_endstop_move();
  2349. feedrate = homing_feedrate[Z_AXIS];
  2350. run_z_probe();
  2351. SERIAL_PROTOCOLPGM(MSG_BED);
  2352. SERIAL_PROTOCOLPGM(" X: ");
  2353. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2354. SERIAL_PROTOCOLPGM(" Y: ");
  2355. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2356. SERIAL_PROTOCOLPGM(" Z: ");
  2357. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2358. SERIAL_PROTOCOLPGM("\n");
  2359. clean_up_after_endstop_move();
  2360. }
  2361. break;
  2362. #else
  2363. case 31: // dock the sled
  2364. dock_sled(true);
  2365. break;
  2366. case 32: // undock the sled
  2367. dock_sled(false);
  2368. break;
  2369. #endif // Z_PROBE_SLED
  2370. #endif // ENABLE_AUTO_BED_LEVELING
  2371. #ifdef MESH_BED_LEVELING
  2372. case 30: // G30 Single Z Probe
  2373. {
  2374. st_synchronize();
  2375. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2376. setup_for_endstop_move();
  2377. feedrate = homing_feedrate[Z_AXIS];
  2378. find_bed_induction_sensor_point_z(-10.f, 3);
  2379. SERIAL_PROTOCOLRPGM(MSG_BED);
  2380. SERIAL_PROTOCOLPGM(" X: ");
  2381. MYSERIAL.print(current_position[X_AXIS], 5);
  2382. SERIAL_PROTOCOLPGM(" Y: ");
  2383. MYSERIAL.print(current_position[Y_AXIS], 5);
  2384. SERIAL_PROTOCOLPGM(" Z: ");
  2385. MYSERIAL.print(current_position[Z_AXIS], 5);
  2386. SERIAL_PROTOCOLPGM("\n");
  2387. clean_up_after_endstop_move();
  2388. }
  2389. break;
  2390. #ifdef DIS
  2391. case 77:
  2392. {
  2393. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2394. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2395. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2396. float dimension_x = 40;
  2397. float dimension_y = 40;
  2398. int points_x = 40;
  2399. int points_y = 40;
  2400. float offset_x = 74;
  2401. float offset_y = 33;
  2402. if (code_seen('X')) dimension_x = code_value();
  2403. if (code_seen('Y')) dimension_y = code_value();
  2404. if (code_seen('XP')) points_x = code_value();
  2405. if (code_seen('YP')) points_y = code_value();
  2406. if (code_seen('XO')) offset_x = code_value();
  2407. if (code_seen('YO')) offset_y = code_value();
  2408. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2409. } break;
  2410. #endif
  2411. /**
  2412. * G80: Mesh-based Z probe, probes a grid and produces a
  2413. * mesh to compensate for variable bed height
  2414. *
  2415. * The S0 report the points as below
  2416. *
  2417. * +----> X-axis
  2418. * |
  2419. * |
  2420. * v Y-axis
  2421. *
  2422. */
  2423. case 80:
  2424. case_G80:
  2425. {
  2426. // Firstly check if we know where we are
  2427. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2428. // We don't know where we are! HOME!
  2429. // Push the commands to the front of the message queue in the reverse order!
  2430. // There shall be always enough space reserved for these commands.
  2431. repeatcommand_front(); // repeat G80 with all its parameters
  2432. enquecommand_front_P((PSTR("G28 W0")));
  2433. break;
  2434. }
  2435. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2436. bool custom_message_old = custom_message;
  2437. unsigned int custom_message_type_old = custom_message_type;
  2438. unsigned int custom_message_state_old = custom_message_state;
  2439. custom_message = true;
  2440. custom_message_type = 1;
  2441. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2442. lcd_update(1);
  2443. mbl.reset();
  2444. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2445. // consumed during the first movements following this statement.
  2446. babystep_undo();
  2447. // Cycle through all points and probe them
  2448. // First move up. During this first movement, the babystepping will be reverted.
  2449. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2451. // The move to the first calibration point.
  2452. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2453. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2454. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2455. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2457. // Wait until the move is finished.
  2458. st_synchronize();
  2459. int mesh_point = 0;
  2460. int ix = 0;
  2461. int iy = 0;
  2462. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2463. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2464. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2465. bool has_z = is_bed_z_jitter_data_valid();
  2466. setup_for_endstop_move(false);
  2467. const char *kill_message = NULL;
  2468. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2469. // Get coords of a measuring point.
  2470. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2471. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2472. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2473. float z0 = 0.f;
  2474. if (has_z && mesh_point > 0) {
  2475. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2476. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2477. #if 0
  2478. SERIAL_ECHOPGM("Bed leveling, point: ");
  2479. MYSERIAL.print(mesh_point);
  2480. SERIAL_ECHOPGM(", calibration z: ");
  2481. MYSERIAL.print(z0, 5);
  2482. SERIAL_ECHOLNPGM("");
  2483. #endif
  2484. }
  2485. // Move Z up to MESH_HOME_Z_SEARCH.
  2486. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2488. st_synchronize();
  2489. // Move to XY position of the sensor point.
  2490. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2491. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2492. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2494. st_synchronize();
  2495. // Go down until endstop is hit
  2496. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2497. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2498. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2499. break;
  2500. }
  2501. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2502. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2503. break;
  2504. }
  2505. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2506. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2507. break;
  2508. }
  2509. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2510. custom_message_state--;
  2511. mesh_point++;
  2512. lcd_update(1);
  2513. }
  2514. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2516. st_synchronize();
  2517. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2518. kill(kill_message);
  2519. }
  2520. clean_up_after_endstop_move();
  2521. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2522. babystep_apply();
  2523. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2524. for (uint8_t i = 0; i < 4; ++ i) {
  2525. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2526. long correction = 0;
  2527. if (code_seen(codes[i]))
  2528. correction = code_value_long();
  2529. else if (eeprom_bed_correction_valid) {
  2530. unsigned char *addr = (i < 2) ?
  2531. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2532. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2533. correction = eeprom_read_int8(addr);
  2534. }
  2535. if (correction == 0)
  2536. continue;
  2537. float offset = float(correction) * 0.001f;
  2538. if (fabs(offset) > 0.101f) {
  2539. SERIAL_ERROR_START;
  2540. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2541. SERIAL_ECHO(offset);
  2542. SERIAL_ECHOLNPGM(" microns");
  2543. } else {
  2544. switch (i) {
  2545. case 0:
  2546. for (uint8_t row = 0; row < 3; ++ row) {
  2547. mbl.z_values[row][1] += 0.5f * offset;
  2548. mbl.z_values[row][0] += offset;
  2549. }
  2550. break;
  2551. case 1:
  2552. for (uint8_t row = 0; row < 3; ++ row) {
  2553. mbl.z_values[row][1] += 0.5f * offset;
  2554. mbl.z_values[row][2] += offset;
  2555. }
  2556. break;
  2557. case 2:
  2558. for (uint8_t col = 0; col < 3; ++ col) {
  2559. mbl.z_values[1][col] += 0.5f * offset;
  2560. mbl.z_values[0][col] += offset;
  2561. }
  2562. break;
  2563. case 3:
  2564. for (uint8_t col = 0; col < 3; ++ col) {
  2565. mbl.z_values[1][col] += 0.5f * offset;
  2566. mbl.z_values[2][col] += offset;
  2567. }
  2568. break;
  2569. }
  2570. }
  2571. }
  2572. mbl.upsample_3x3();
  2573. mbl.active = 1;
  2574. go_home_with_z_lift();
  2575. // Restore custom message state
  2576. custom_message = custom_message_old;
  2577. custom_message_type = custom_message_type_old;
  2578. custom_message_state = custom_message_state_old;
  2579. lcd_update(1);
  2580. }
  2581. break;
  2582. /**
  2583. * G81: Print mesh bed leveling status and bed profile if activated
  2584. */
  2585. case 81:
  2586. if (mbl.active) {
  2587. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2588. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2589. SERIAL_PROTOCOLPGM(",");
  2590. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2591. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2592. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2593. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2594. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2595. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2596. SERIAL_PROTOCOLPGM(" ");
  2597. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2598. }
  2599. SERIAL_PROTOCOLPGM("\n");
  2600. }
  2601. }
  2602. else
  2603. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2604. break;
  2605. #if 0
  2606. /**
  2607. * G82: Single Z probe at current location
  2608. *
  2609. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2610. *
  2611. */
  2612. case 82:
  2613. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2614. setup_for_endstop_move();
  2615. find_bed_induction_sensor_point_z();
  2616. clean_up_after_endstop_move();
  2617. SERIAL_PROTOCOLPGM("Bed found at: ");
  2618. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2619. SERIAL_PROTOCOLPGM("\n");
  2620. break;
  2621. /**
  2622. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2623. */
  2624. case 83:
  2625. {
  2626. int babystepz = code_seen('S') ? code_value() : 0;
  2627. int BabyPosition = code_seen('P') ? code_value() : 0;
  2628. if (babystepz != 0) {
  2629. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2630. // Is the axis indexed starting with zero or one?
  2631. if (BabyPosition > 4) {
  2632. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2633. }else{
  2634. // Save it to the eeprom
  2635. babystepLoadZ = babystepz;
  2636. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2637. // adjust the Z
  2638. babystepsTodoZadd(babystepLoadZ);
  2639. }
  2640. }
  2641. }
  2642. break;
  2643. /**
  2644. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2645. */
  2646. case 84:
  2647. babystepsTodoZsubtract(babystepLoadZ);
  2648. // babystepLoadZ = 0;
  2649. break;
  2650. /**
  2651. * G85: Prusa3D specific: Pick best babystep
  2652. */
  2653. case 85:
  2654. lcd_pick_babystep();
  2655. break;
  2656. #endif
  2657. /**
  2658. * G86: Prusa3D specific: Disable babystep correction after home.
  2659. * This G-code will be performed at the start of a calibration script.
  2660. */
  2661. case 86:
  2662. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2663. break;
  2664. /**
  2665. * G87: Prusa3D specific: Enable babystep correction after home
  2666. * This G-code will be performed at the end of a calibration script.
  2667. */
  2668. case 87:
  2669. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2670. break;
  2671. /**
  2672. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2673. */
  2674. case 88:
  2675. break;
  2676. #endif // ENABLE_MESH_BED_LEVELING
  2677. case 90: // G90
  2678. relative_mode = false;
  2679. break;
  2680. case 91: // G91
  2681. relative_mode = true;
  2682. break;
  2683. case 92: // G92
  2684. if(!code_seen(axis_codes[E_AXIS]))
  2685. st_synchronize();
  2686. for(int8_t i=0; i < NUM_AXIS; i++) {
  2687. if(code_seen(axis_codes[i])) {
  2688. if(i == E_AXIS) {
  2689. current_position[i] = code_value();
  2690. plan_set_e_position(current_position[E_AXIS]);
  2691. }
  2692. else {
  2693. current_position[i] = code_value()+add_homing[i];
  2694. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2695. }
  2696. }
  2697. }
  2698. break;
  2699. case 98: //activate farm mode
  2700. farm_mode = 1;
  2701. PingTime = millis();
  2702. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2703. break;
  2704. case 99: //deactivate farm mode
  2705. farm_mode = 0;
  2706. lcd_printer_connected();
  2707. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2708. lcd_update(2);
  2709. break;
  2710. }
  2711. } // end if(code_seen('G'))
  2712. else if(code_seen('M'))
  2713. {
  2714. int index;
  2715. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2716. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2717. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2718. SERIAL_ECHOLNPGM("Invalid M code");
  2719. } else
  2720. switch((int)code_value())
  2721. {
  2722. #ifdef ULTIPANEL
  2723. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2724. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2725. {
  2726. char *src = strchr_pointer + 2;
  2727. codenum = 0;
  2728. bool hasP = false, hasS = false;
  2729. if (code_seen('P')) {
  2730. codenum = code_value(); // milliseconds to wait
  2731. hasP = codenum > 0;
  2732. }
  2733. if (code_seen('S')) {
  2734. codenum = code_value() * 1000; // seconds to wait
  2735. hasS = codenum > 0;
  2736. }
  2737. starpos = strchr(src, '*');
  2738. if (starpos != NULL) *(starpos) = '\0';
  2739. while (*src == ' ') ++src;
  2740. if (!hasP && !hasS && *src != '\0') {
  2741. lcd_setstatus(src);
  2742. } else {
  2743. LCD_MESSAGERPGM(MSG_USERWAIT);
  2744. }
  2745. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2746. st_synchronize();
  2747. previous_millis_cmd = millis();
  2748. if (codenum > 0){
  2749. codenum += millis(); // keep track of when we started waiting
  2750. while(millis() < codenum && !lcd_clicked()){
  2751. manage_heater();
  2752. manage_inactivity(true);
  2753. lcd_update();
  2754. }
  2755. lcd_ignore_click(false);
  2756. }else{
  2757. if (!lcd_detected())
  2758. break;
  2759. while(!lcd_clicked()){
  2760. manage_heater();
  2761. manage_inactivity(true);
  2762. lcd_update();
  2763. }
  2764. }
  2765. if (IS_SD_PRINTING)
  2766. LCD_MESSAGERPGM(MSG_RESUMING);
  2767. else
  2768. LCD_MESSAGERPGM(WELCOME_MSG);
  2769. }
  2770. break;
  2771. #endif
  2772. case 17:
  2773. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2774. enable_x();
  2775. enable_y();
  2776. enable_z();
  2777. enable_e0();
  2778. enable_e1();
  2779. enable_e2();
  2780. break;
  2781. #ifdef SDSUPPORT
  2782. case 20: // M20 - list SD card
  2783. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2784. card.ls();
  2785. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2786. break;
  2787. case 21: // M21 - init SD card
  2788. card.initsd();
  2789. break;
  2790. case 22: //M22 - release SD card
  2791. card.release();
  2792. break;
  2793. case 23: //M23 - Select file
  2794. starpos = (strchr(strchr_pointer + 4,'*'));
  2795. if(starpos!=NULL)
  2796. *(starpos)='\0';
  2797. card.openFile(strchr_pointer + 4,true);
  2798. break;
  2799. case 24: //M24 - Start SD print
  2800. card.startFileprint();
  2801. starttime=millis();
  2802. break;
  2803. case 25: //M25 - Pause SD print
  2804. card.pauseSDPrint();
  2805. break;
  2806. case 26: //M26 - Set SD index
  2807. if(card.cardOK && code_seen('S')) {
  2808. card.setIndex(code_value_long());
  2809. }
  2810. break;
  2811. case 27: //M27 - Get SD status
  2812. card.getStatus();
  2813. break;
  2814. case 28: //M28 - Start SD write
  2815. starpos = (strchr(strchr_pointer + 4,'*'));
  2816. if(starpos != NULL){
  2817. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2818. strchr_pointer = strchr(npos,' ') + 1;
  2819. *(starpos) = '\0';
  2820. }
  2821. card.openFile(strchr_pointer+4,false);
  2822. break;
  2823. case 29: //M29 - Stop SD write
  2824. //processed in write to file routine above
  2825. //card,saving = false;
  2826. break;
  2827. case 30: //M30 <filename> Delete File
  2828. if (card.cardOK){
  2829. card.closefile();
  2830. starpos = (strchr(strchr_pointer + 4,'*'));
  2831. if(starpos != NULL){
  2832. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2833. strchr_pointer = strchr(npos,' ') + 1;
  2834. *(starpos) = '\0';
  2835. }
  2836. card.removeFile(strchr_pointer + 4);
  2837. }
  2838. break;
  2839. case 32: //M32 - Select file and start SD print
  2840. {
  2841. if(card.sdprinting) {
  2842. st_synchronize();
  2843. }
  2844. starpos = (strchr(strchr_pointer + 4,'*'));
  2845. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2846. if(namestartpos==NULL)
  2847. {
  2848. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2849. }
  2850. else
  2851. namestartpos++; //to skip the '!'
  2852. if(starpos!=NULL)
  2853. *(starpos)='\0';
  2854. bool call_procedure=(code_seen('P'));
  2855. if(strchr_pointer>namestartpos)
  2856. call_procedure=false; //false alert, 'P' found within filename
  2857. if( card.cardOK )
  2858. {
  2859. card.openFile(namestartpos,true,!call_procedure);
  2860. if(code_seen('S'))
  2861. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2862. card.setIndex(code_value_long());
  2863. card.startFileprint();
  2864. if(!call_procedure)
  2865. starttime=millis(); //procedure calls count as normal print time.
  2866. }
  2867. } break;
  2868. case 928: //M928 - Start SD write
  2869. starpos = (strchr(strchr_pointer + 5,'*'));
  2870. if(starpos != NULL){
  2871. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2872. strchr_pointer = strchr(npos,' ') + 1;
  2873. *(starpos) = '\0';
  2874. }
  2875. card.openLogFile(strchr_pointer+5);
  2876. break;
  2877. #endif //SDSUPPORT
  2878. case 31: //M31 take time since the start of the SD print or an M109 command
  2879. {
  2880. stoptime=millis();
  2881. char time[30];
  2882. unsigned long t=(stoptime-starttime)/1000;
  2883. int sec,min;
  2884. min=t/60;
  2885. sec=t%60;
  2886. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2887. SERIAL_ECHO_START;
  2888. SERIAL_ECHOLN(time);
  2889. lcd_setstatus(time);
  2890. autotempShutdown();
  2891. }
  2892. break;
  2893. case 42: //M42 -Change pin status via gcode
  2894. if (code_seen('S'))
  2895. {
  2896. int pin_status = code_value();
  2897. int pin_number = LED_PIN;
  2898. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2899. pin_number = code_value();
  2900. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2901. {
  2902. if (sensitive_pins[i] == pin_number)
  2903. {
  2904. pin_number = -1;
  2905. break;
  2906. }
  2907. }
  2908. #if defined(FAN_PIN) && FAN_PIN > -1
  2909. if (pin_number == FAN_PIN)
  2910. fanSpeed = pin_status;
  2911. #endif
  2912. if (pin_number > -1)
  2913. {
  2914. pinMode(pin_number, OUTPUT);
  2915. digitalWrite(pin_number, pin_status);
  2916. analogWrite(pin_number, pin_status);
  2917. }
  2918. }
  2919. break;
  2920. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2921. // Reset the baby step value and the baby step applied flag.
  2922. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2923. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2924. // Reset the skew and offset in both RAM and EEPROM.
  2925. reset_bed_offset_and_skew();
  2926. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2927. // the planner will not perform any adjustments in the XY plane.
  2928. // Wait for the motors to stop and update the current position with the absolute values.
  2929. world2machine_revert_to_uncorrected();
  2930. break;
  2931. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2932. {
  2933. // Only Z calibration?
  2934. bool onlyZ = code_seen('Z');
  2935. if (!onlyZ) {
  2936. setTargetBed(0);
  2937. setTargetHotend(0, 0);
  2938. setTargetHotend(0, 1);
  2939. setTargetHotend(0, 2);
  2940. adjust_bed_reset(); //reset bed level correction
  2941. }
  2942. // Disable the default update procedure of the display. We will do a modal dialog.
  2943. lcd_update_enable(false);
  2944. // Let the planner use the uncorrected coordinates.
  2945. mbl.reset();
  2946. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2947. // the planner will not perform any adjustments in the XY plane.
  2948. // Wait for the motors to stop and update the current position with the absolute values.
  2949. world2machine_revert_to_uncorrected();
  2950. // Reset the baby step value applied without moving the axes.
  2951. babystep_reset();
  2952. // Mark all axes as in a need for homing.
  2953. memset(axis_known_position, 0, sizeof(axis_known_position));
  2954. // Let the user move the Z axes up to the end stoppers.
  2955. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2956. refresh_cmd_timeout();
  2957. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  2958. lcd_wait_for_cool_down();
  2959. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2960. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2961. lcd_implementation_print_at(0, 2, 1);
  2962. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2963. }
  2964. // Move the print head close to the bed.
  2965. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2967. st_synchronize();
  2968. // Home in the XY plane.
  2969. set_destination_to_current();
  2970. setup_for_endstop_move();
  2971. home_xy();
  2972. int8_t verbosity_level = 0;
  2973. if (code_seen('V')) {
  2974. // Just 'V' without a number counts as V1.
  2975. char c = strchr_pointer[1];
  2976. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2977. }
  2978. if (onlyZ) {
  2979. clean_up_after_endstop_move();
  2980. // Z only calibration.
  2981. // Load the machine correction matrix
  2982. world2machine_initialize();
  2983. // and correct the current_position to match the transformed coordinate system.
  2984. world2machine_update_current();
  2985. //FIXME
  2986. bool result = sample_mesh_and_store_reference();
  2987. if (result) {
  2988. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2989. // Shipped, the nozzle height has been set already. The user can start printing now.
  2990. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2991. // babystep_apply();
  2992. }
  2993. } else {
  2994. // Reset the baby step value and the baby step applied flag.
  2995. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2996. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2997. // Complete XYZ calibration.
  2998. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2999. uint8_t point_too_far_mask = 0;
  3000. clean_up_after_endstop_move();
  3001. // Print head up.
  3002. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3004. st_synchronize();
  3005. if (result >= 0) {
  3006. // Second half: The fine adjustment.
  3007. // Let the planner use the uncorrected coordinates.
  3008. mbl.reset();
  3009. world2machine_reset();
  3010. // Home in the XY plane.
  3011. setup_for_endstop_move();
  3012. home_xy();
  3013. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3014. clean_up_after_endstop_move();
  3015. // Print head up.
  3016. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3018. st_synchronize();
  3019. // if (result >= 0) babystep_apply();
  3020. }
  3021. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3022. if (result >= 0) {
  3023. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3024. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3025. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3026. }
  3027. }
  3028. } else {
  3029. // Timeouted.
  3030. }
  3031. lcd_update_enable(true);
  3032. break;
  3033. }
  3034. /*
  3035. case 46:
  3036. {
  3037. // M46: Prusa3D: Show the assigned IP address.
  3038. uint8_t ip[4];
  3039. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3040. if (hasIP) {
  3041. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3042. SERIAL_ECHO(int(ip[0]));
  3043. SERIAL_ECHOPGM(".");
  3044. SERIAL_ECHO(int(ip[1]));
  3045. SERIAL_ECHOPGM(".");
  3046. SERIAL_ECHO(int(ip[2]));
  3047. SERIAL_ECHOPGM(".");
  3048. SERIAL_ECHO(int(ip[3]));
  3049. SERIAL_ECHOLNPGM("");
  3050. } else {
  3051. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3052. }
  3053. break;
  3054. }
  3055. */
  3056. case 47:
  3057. // M47: Prusa3D: Show end stops dialog on the display.
  3058. lcd_diag_show_end_stops();
  3059. break;
  3060. #if 0
  3061. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3062. {
  3063. // Disable the default update procedure of the display. We will do a modal dialog.
  3064. lcd_update_enable(false);
  3065. // Let the planner use the uncorrected coordinates.
  3066. mbl.reset();
  3067. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3068. // the planner will not perform any adjustments in the XY plane.
  3069. // Wait for the motors to stop and update the current position with the absolute values.
  3070. world2machine_revert_to_uncorrected();
  3071. // Move the print head close to the bed.
  3072. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3074. st_synchronize();
  3075. // Home in the XY plane.
  3076. set_destination_to_current();
  3077. setup_for_endstop_move();
  3078. home_xy();
  3079. int8_t verbosity_level = 0;
  3080. if (code_seen('V')) {
  3081. // Just 'V' without a number counts as V1.
  3082. char c = strchr_pointer[1];
  3083. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3084. }
  3085. bool success = scan_bed_induction_points(verbosity_level);
  3086. clean_up_after_endstop_move();
  3087. // Print head up.
  3088. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3090. st_synchronize();
  3091. lcd_update_enable(true);
  3092. break;
  3093. }
  3094. #endif
  3095. // M48 Z-Probe repeatability measurement function.
  3096. //
  3097. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3098. //
  3099. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3100. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3101. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3102. // regenerated.
  3103. //
  3104. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3105. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3106. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3107. //
  3108. #ifdef ENABLE_AUTO_BED_LEVELING
  3109. #ifdef Z_PROBE_REPEATABILITY_TEST
  3110. case 48: // M48 Z-Probe repeatability
  3111. {
  3112. #if Z_MIN_PIN == -1
  3113. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3114. #endif
  3115. double sum=0.0;
  3116. double mean=0.0;
  3117. double sigma=0.0;
  3118. double sample_set[50];
  3119. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3120. double X_current, Y_current, Z_current;
  3121. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3122. if (code_seen('V') || code_seen('v')) {
  3123. verbose_level = code_value();
  3124. if (verbose_level<0 || verbose_level>4 ) {
  3125. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3126. goto Sigma_Exit;
  3127. }
  3128. }
  3129. if (verbose_level > 0) {
  3130. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3131. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3132. }
  3133. if (code_seen('n')) {
  3134. n_samples = code_value();
  3135. if (n_samples<4 || n_samples>50 ) {
  3136. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3137. goto Sigma_Exit;
  3138. }
  3139. }
  3140. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3141. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3142. Z_current = st_get_position_mm(Z_AXIS);
  3143. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3144. ext_position = st_get_position_mm(E_AXIS);
  3145. if (code_seen('X') || code_seen('x') ) {
  3146. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3147. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3148. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3149. goto Sigma_Exit;
  3150. }
  3151. }
  3152. if (code_seen('Y') || code_seen('y') ) {
  3153. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3154. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3155. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3156. goto Sigma_Exit;
  3157. }
  3158. }
  3159. if (code_seen('L') || code_seen('l') ) {
  3160. n_legs = code_value();
  3161. if ( n_legs==1 )
  3162. n_legs = 2;
  3163. if ( n_legs<0 || n_legs>15 ) {
  3164. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3165. goto Sigma_Exit;
  3166. }
  3167. }
  3168. //
  3169. // Do all the preliminary setup work. First raise the probe.
  3170. //
  3171. st_synchronize();
  3172. plan_bed_level_matrix.set_to_identity();
  3173. plan_buffer_line( X_current, Y_current, Z_start_location,
  3174. ext_position,
  3175. homing_feedrate[Z_AXIS]/60,
  3176. active_extruder);
  3177. st_synchronize();
  3178. //
  3179. // Now get everything to the specified probe point So we can safely do a probe to
  3180. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3181. // use that as a starting point for each probe.
  3182. //
  3183. if (verbose_level > 2)
  3184. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3185. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3186. ext_position,
  3187. homing_feedrate[X_AXIS]/60,
  3188. active_extruder);
  3189. st_synchronize();
  3190. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3191. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3192. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3193. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3194. //
  3195. // OK, do the inital probe to get us close to the bed.
  3196. // Then retrace the right amount and use that in subsequent probes
  3197. //
  3198. setup_for_endstop_move();
  3199. run_z_probe();
  3200. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3201. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3202. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3203. ext_position,
  3204. homing_feedrate[X_AXIS]/60,
  3205. active_extruder);
  3206. st_synchronize();
  3207. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3208. for( n=0; n<n_samples; n++) {
  3209. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3210. if ( n_legs) {
  3211. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3212. int rotational_direction, l;
  3213. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3214. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3215. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3216. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3217. //SERIAL_ECHOPAIR(" theta: ",theta);
  3218. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3219. //SERIAL_PROTOCOLLNPGM("");
  3220. for( l=0; l<n_legs-1; l++) {
  3221. if (rotational_direction==1)
  3222. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3223. else
  3224. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3225. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3226. if ( radius<0.0 )
  3227. radius = -radius;
  3228. X_current = X_probe_location + cos(theta) * radius;
  3229. Y_current = Y_probe_location + sin(theta) * radius;
  3230. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3231. X_current = X_MIN_POS;
  3232. if ( X_current>X_MAX_POS)
  3233. X_current = X_MAX_POS;
  3234. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3235. Y_current = Y_MIN_POS;
  3236. if ( Y_current>Y_MAX_POS)
  3237. Y_current = Y_MAX_POS;
  3238. if (verbose_level>3 ) {
  3239. SERIAL_ECHOPAIR("x: ", X_current);
  3240. SERIAL_ECHOPAIR("y: ", Y_current);
  3241. SERIAL_PROTOCOLLNPGM("");
  3242. }
  3243. do_blocking_move_to( X_current, Y_current, Z_current );
  3244. }
  3245. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3246. }
  3247. setup_for_endstop_move();
  3248. run_z_probe();
  3249. sample_set[n] = current_position[Z_AXIS];
  3250. //
  3251. // Get the current mean for the data points we have so far
  3252. //
  3253. sum=0.0;
  3254. for( j=0; j<=n; j++) {
  3255. sum = sum + sample_set[j];
  3256. }
  3257. mean = sum / (double (n+1));
  3258. //
  3259. // Now, use that mean to calculate the standard deviation for the
  3260. // data points we have so far
  3261. //
  3262. sum=0.0;
  3263. for( j=0; j<=n; j++) {
  3264. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3265. }
  3266. sigma = sqrt( sum / (double (n+1)) );
  3267. if (verbose_level > 1) {
  3268. SERIAL_PROTOCOL(n+1);
  3269. SERIAL_PROTOCOL(" of ");
  3270. SERIAL_PROTOCOL(n_samples);
  3271. SERIAL_PROTOCOLPGM(" z: ");
  3272. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3273. }
  3274. if (verbose_level > 2) {
  3275. SERIAL_PROTOCOL(" mean: ");
  3276. SERIAL_PROTOCOL_F(mean,6);
  3277. SERIAL_PROTOCOL(" sigma: ");
  3278. SERIAL_PROTOCOL_F(sigma,6);
  3279. }
  3280. if (verbose_level > 0)
  3281. SERIAL_PROTOCOLPGM("\n");
  3282. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3283. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3284. st_synchronize();
  3285. }
  3286. delay(1000);
  3287. clean_up_after_endstop_move();
  3288. // enable_endstops(true);
  3289. if (verbose_level > 0) {
  3290. SERIAL_PROTOCOLPGM("Mean: ");
  3291. SERIAL_PROTOCOL_F(mean, 6);
  3292. SERIAL_PROTOCOLPGM("\n");
  3293. }
  3294. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3295. SERIAL_PROTOCOL_F(sigma, 6);
  3296. SERIAL_PROTOCOLPGM("\n\n");
  3297. Sigma_Exit:
  3298. break;
  3299. }
  3300. #endif // Z_PROBE_REPEATABILITY_TEST
  3301. #endif // ENABLE_AUTO_BED_LEVELING
  3302. case 104: // M104
  3303. if(setTargetedHotend(104)){
  3304. break;
  3305. }
  3306. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3307. setWatch();
  3308. break;
  3309. case 112: // M112 -Emergency Stop
  3310. kill();
  3311. break;
  3312. case 140: // M140 set bed temp
  3313. if (code_seen('S')) setTargetBed(code_value());
  3314. break;
  3315. case 105 : // M105
  3316. if(setTargetedHotend(105)){
  3317. break;
  3318. }
  3319. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3320. SERIAL_PROTOCOLPGM("ok T:");
  3321. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3322. SERIAL_PROTOCOLPGM(" /");
  3323. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3324. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3325. SERIAL_PROTOCOLPGM(" B:");
  3326. SERIAL_PROTOCOL_F(degBed(),1);
  3327. SERIAL_PROTOCOLPGM(" /");
  3328. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3329. #endif //TEMP_BED_PIN
  3330. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3331. SERIAL_PROTOCOLPGM(" T");
  3332. SERIAL_PROTOCOL(cur_extruder);
  3333. SERIAL_PROTOCOLPGM(":");
  3334. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3335. SERIAL_PROTOCOLPGM(" /");
  3336. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3337. }
  3338. #else
  3339. SERIAL_ERROR_START;
  3340. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3341. #endif
  3342. SERIAL_PROTOCOLPGM(" @:");
  3343. #ifdef EXTRUDER_WATTS
  3344. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3345. SERIAL_PROTOCOLPGM("W");
  3346. #else
  3347. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3348. #endif
  3349. SERIAL_PROTOCOLPGM(" B@:");
  3350. #ifdef BED_WATTS
  3351. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3352. SERIAL_PROTOCOLPGM("W");
  3353. #else
  3354. SERIAL_PROTOCOL(getHeaterPower(-1));
  3355. #endif
  3356. #ifdef SHOW_TEMP_ADC_VALUES
  3357. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3358. SERIAL_PROTOCOLPGM(" ADC B:");
  3359. SERIAL_PROTOCOL_F(degBed(),1);
  3360. SERIAL_PROTOCOLPGM("C->");
  3361. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3362. #endif
  3363. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3364. SERIAL_PROTOCOLPGM(" T");
  3365. SERIAL_PROTOCOL(cur_extruder);
  3366. SERIAL_PROTOCOLPGM(":");
  3367. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3368. SERIAL_PROTOCOLPGM("C->");
  3369. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3370. }
  3371. #endif
  3372. SERIAL_PROTOCOLLN("");
  3373. return;
  3374. break;
  3375. case 109:
  3376. {// M109 - Wait for extruder heater to reach target.
  3377. if(setTargetedHotend(109)){
  3378. break;
  3379. }
  3380. LCD_MESSAGERPGM(MSG_HEATING);
  3381. heating_status = 1;
  3382. if (farm_mode) { prusa_statistics(1); };
  3383. #ifdef AUTOTEMP
  3384. autotemp_enabled=false;
  3385. #endif
  3386. if (code_seen('S')) {
  3387. setTargetHotend(code_value(), tmp_extruder);
  3388. CooldownNoWait = true;
  3389. } else if (code_seen('R')) {
  3390. setTargetHotend(code_value(), tmp_extruder);
  3391. CooldownNoWait = false;
  3392. }
  3393. #ifdef AUTOTEMP
  3394. if (code_seen('S')) autotemp_min=code_value();
  3395. if (code_seen('B')) autotemp_max=code_value();
  3396. if (code_seen('F'))
  3397. {
  3398. autotemp_factor=code_value();
  3399. autotemp_enabled=true;
  3400. }
  3401. #endif
  3402. setWatch();
  3403. codenum = millis();
  3404. /* See if we are heating up or cooling down */
  3405. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3406. cancel_heatup = false;
  3407. #ifdef TEMP_RESIDENCY_TIME
  3408. long residencyStart;
  3409. residencyStart = -1;
  3410. /* continue to loop until we have reached the target temp
  3411. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3412. while((!cancel_heatup)&&((residencyStart == -1) ||
  3413. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3414. #else
  3415. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3416. #endif //TEMP_RESIDENCY_TIME
  3417. if( (millis() - codenum) > 1000UL )
  3418. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3419. if (!farm_mode) {
  3420. SERIAL_PROTOCOLPGM("T:");
  3421. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  3422. SERIAL_PROTOCOLPGM(" E:");
  3423. SERIAL_PROTOCOL((int)tmp_extruder);
  3424. #ifdef TEMP_RESIDENCY_TIME
  3425. SERIAL_PROTOCOLPGM(" W:");
  3426. if (residencyStart > -1)
  3427. {
  3428. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3429. SERIAL_PROTOCOLLN(codenum);
  3430. }
  3431. else
  3432. {
  3433. SERIAL_PROTOCOLLN("?");
  3434. }
  3435. }
  3436. #else
  3437. SERIAL_PROTOCOLLN("");
  3438. #endif
  3439. codenum = millis();
  3440. }
  3441. manage_heater();
  3442. manage_inactivity();
  3443. lcd_update();
  3444. #ifdef TEMP_RESIDENCY_TIME
  3445. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3446. or when current temp falls outside the hysteresis after target temp was reached */
  3447. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3448. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3449. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3450. {
  3451. residencyStart = millis();
  3452. }
  3453. #endif //TEMP_RESIDENCY_TIME
  3454. }
  3455. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3456. heating_status = 2;
  3457. if (farm_mode) { prusa_statistics(2); };
  3458. starttime=millis();
  3459. previous_millis_cmd = millis();
  3460. }
  3461. break;
  3462. case 190: // M190 - Wait for bed heater to reach target.
  3463. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3464. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3465. heating_status = 3;
  3466. if (farm_mode) { prusa_statistics(1); };
  3467. if (code_seen('S'))
  3468. {
  3469. setTargetBed(code_value());
  3470. CooldownNoWait = true;
  3471. }
  3472. else if (code_seen('R'))
  3473. {
  3474. setTargetBed(code_value());
  3475. CooldownNoWait = false;
  3476. }
  3477. codenum = millis();
  3478. cancel_heatup = false;
  3479. target_direction = isHeatingBed(); // true if heating, false if cooling
  3480. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3481. {
  3482. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3483. {
  3484. if (!farm_mode) {
  3485. float tt = degHotend(active_extruder);
  3486. SERIAL_PROTOCOLPGM("T:");
  3487. SERIAL_PROTOCOL(tt);
  3488. SERIAL_PROTOCOLPGM(" E:");
  3489. SERIAL_PROTOCOL((int)active_extruder);
  3490. SERIAL_PROTOCOLPGM(" B:");
  3491. SERIAL_PROTOCOL_F(degBed(), 1);
  3492. SERIAL_PROTOCOLLN("");
  3493. }
  3494. codenum = millis();
  3495. }
  3496. manage_heater();
  3497. manage_inactivity();
  3498. lcd_update();
  3499. }
  3500. LCD_MESSAGERPGM(MSG_BED_DONE);
  3501. heating_status = 4;
  3502. previous_millis_cmd = millis();
  3503. #endif
  3504. break;
  3505. #if defined(FAN_PIN) && FAN_PIN > -1
  3506. case 106: //M106 Fan On
  3507. if (code_seen('S')){
  3508. fanSpeed=constrain(code_value(),0,255);
  3509. }
  3510. else {
  3511. fanSpeed=255;
  3512. }
  3513. break;
  3514. case 107: //M107 Fan Off
  3515. fanSpeed = 0;
  3516. break;
  3517. #endif //FAN_PIN
  3518. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3519. case 80: // M80 - Turn on Power Supply
  3520. SET_OUTPUT(PS_ON_PIN); //GND
  3521. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3522. // If you have a switch on suicide pin, this is useful
  3523. // if you want to start another print with suicide feature after
  3524. // a print without suicide...
  3525. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3526. SET_OUTPUT(SUICIDE_PIN);
  3527. WRITE(SUICIDE_PIN, HIGH);
  3528. #endif
  3529. #ifdef ULTIPANEL
  3530. powersupply = true;
  3531. LCD_MESSAGERPGM(WELCOME_MSG);
  3532. lcd_update();
  3533. #endif
  3534. break;
  3535. #endif
  3536. case 81: // M81 - Turn off Power Supply
  3537. disable_heater();
  3538. st_synchronize();
  3539. disable_e0();
  3540. disable_e1();
  3541. disable_e2();
  3542. finishAndDisableSteppers();
  3543. fanSpeed = 0;
  3544. delay(1000); // Wait a little before to switch off
  3545. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3546. st_synchronize();
  3547. suicide();
  3548. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3549. SET_OUTPUT(PS_ON_PIN);
  3550. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3551. #endif
  3552. #ifdef ULTIPANEL
  3553. powersupply = false;
  3554. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3555. /*
  3556. MACHNAME = "Prusa i3"
  3557. MSGOFF = "Vypnuto"
  3558. "Prusai3"" ""vypnuto""."
  3559. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3560. */
  3561. lcd_update();
  3562. #endif
  3563. break;
  3564. case 82:
  3565. axis_relative_modes[3] = false;
  3566. break;
  3567. case 83:
  3568. axis_relative_modes[3] = true;
  3569. break;
  3570. case 18: //compatibility
  3571. case 84: // M84
  3572. if(code_seen('S')){
  3573. stepper_inactive_time = code_value() * 1000;
  3574. }
  3575. else
  3576. {
  3577. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3578. if(all_axis)
  3579. {
  3580. st_synchronize();
  3581. disable_e0();
  3582. disable_e1();
  3583. disable_e2();
  3584. finishAndDisableSteppers();
  3585. }
  3586. else
  3587. {
  3588. st_synchronize();
  3589. if(code_seen('X')) disable_x();
  3590. if(code_seen('Y')) disable_y();
  3591. if(code_seen('Z')) disable_z();
  3592. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3593. if(code_seen('E')) {
  3594. disable_e0();
  3595. disable_e1();
  3596. disable_e2();
  3597. }
  3598. #endif
  3599. }
  3600. }
  3601. break;
  3602. case 85: // M85
  3603. if(code_seen('S')) {
  3604. max_inactive_time = code_value() * 1000;
  3605. }
  3606. break;
  3607. case 92: // M92
  3608. for(int8_t i=0; i < NUM_AXIS; i++)
  3609. {
  3610. if(code_seen(axis_codes[i]))
  3611. {
  3612. if(i == 3) { // E
  3613. float value = code_value();
  3614. if(value < 20.0) {
  3615. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3616. max_jerk[E_AXIS] *= factor;
  3617. max_feedrate[i] *= factor;
  3618. axis_steps_per_sqr_second[i] *= factor;
  3619. }
  3620. axis_steps_per_unit[i] = value;
  3621. }
  3622. else {
  3623. axis_steps_per_unit[i] = code_value();
  3624. }
  3625. }
  3626. }
  3627. break;
  3628. case 115: // M115
  3629. if (code_seen('V')) {
  3630. // Report the Prusa version number.
  3631. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3632. } else if (code_seen('U')) {
  3633. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3634. // pause the print and ask the user to upgrade the firmware.
  3635. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3636. } else {
  3637. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3638. }
  3639. break;
  3640. case 117: // M117 display message
  3641. starpos = (strchr(strchr_pointer + 5,'*'));
  3642. if(starpos!=NULL)
  3643. *(starpos)='\0';
  3644. lcd_setstatus(strchr_pointer + 5);
  3645. break;
  3646. case 114: // M114
  3647. SERIAL_PROTOCOLPGM("X:");
  3648. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3649. SERIAL_PROTOCOLPGM(" Y:");
  3650. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3651. SERIAL_PROTOCOLPGM(" Z:");
  3652. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3653. SERIAL_PROTOCOLPGM(" E:");
  3654. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3655. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3656. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3657. SERIAL_PROTOCOLPGM(" Y:");
  3658. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3659. SERIAL_PROTOCOLPGM(" Z:");
  3660. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3661. SERIAL_PROTOCOLLN("");
  3662. break;
  3663. case 120: // M120
  3664. enable_endstops(false) ;
  3665. break;
  3666. case 121: // M121
  3667. enable_endstops(true) ;
  3668. break;
  3669. case 119: // M119
  3670. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3671. SERIAL_PROTOCOLLN("");
  3672. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3673. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3674. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3675. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3676. }else{
  3677. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3678. }
  3679. SERIAL_PROTOCOLLN("");
  3680. #endif
  3681. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3682. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3683. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3684. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3685. }else{
  3686. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3687. }
  3688. SERIAL_PROTOCOLLN("");
  3689. #endif
  3690. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3691. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3692. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3693. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3694. }else{
  3695. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3696. }
  3697. SERIAL_PROTOCOLLN("");
  3698. #endif
  3699. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3700. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3701. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3702. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3703. }else{
  3704. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3705. }
  3706. SERIAL_PROTOCOLLN("");
  3707. #endif
  3708. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3709. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3710. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3711. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3712. }else{
  3713. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3714. }
  3715. SERIAL_PROTOCOLLN("");
  3716. #endif
  3717. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3718. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3719. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3720. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3721. }else{
  3722. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3723. }
  3724. SERIAL_PROTOCOLLN("");
  3725. #endif
  3726. break;
  3727. //TODO: update for all axis, use for loop
  3728. #ifdef BLINKM
  3729. case 150: // M150
  3730. {
  3731. byte red;
  3732. byte grn;
  3733. byte blu;
  3734. if(code_seen('R')) red = code_value();
  3735. if(code_seen('U')) grn = code_value();
  3736. if(code_seen('B')) blu = code_value();
  3737. SendColors(red,grn,blu);
  3738. }
  3739. break;
  3740. #endif //BLINKM
  3741. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3742. {
  3743. tmp_extruder = active_extruder;
  3744. if(code_seen('T')) {
  3745. tmp_extruder = code_value();
  3746. if(tmp_extruder >= EXTRUDERS) {
  3747. SERIAL_ECHO_START;
  3748. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3749. break;
  3750. }
  3751. }
  3752. float area = .0;
  3753. if(code_seen('D')) {
  3754. float diameter = (float)code_value();
  3755. if (diameter == 0.0) {
  3756. // setting any extruder filament size disables volumetric on the assumption that
  3757. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3758. // for all extruders
  3759. volumetric_enabled = false;
  3760. } else {
  3761. filament_size[tmp_extruder] = (float)code_value();
  3762. // make sure all extruders have some sane value for the filament size
  3763. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3764. #if EXTRUDERS > 1
  3765. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3766. #if EXTRUDERS > 2
  3767. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3768. #endif
  3769. #endif
  3770. volumetric_enabled = true;
  3771. }
  3772. } else {
  3773. //reserved for setting filament diameter via UFID or filament measuring device
  3774. break;
  3775. }
  3776. calculate_volumetric_multipliers();
  3777. }
  3778. break;
  3779. case 201: // M201
  3780. for(int8_t i=0; i < NUM_AXIS; i++)
  3781. {
  3782. if(code_seen(axis_codes[i]))
  3783. {
  3784. max_acceleration_units_per_sq_second[i] = code_value();
  3785. }
  3786. }
  3787. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3788. reset_acceleration_rates();
  3789. break;
  3790. #if 0 // Not used for Sprinter/grbl gen6
  3791. case 202: // M202
  3792. for(int8_t i=0; i < NUM_AXIS; i++) {
  3793. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3794. }
  3795. break;
  3796. #endif
  3797. case 203: // M203 max feedrate mm/sec
  3798. for(int8_t i=0; i < NUM_AXIS; i++) {
  3799. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3800. }
  3801. break;
  3802. case 204: // M204 acclereration S normal moves T filmanent only moves
  3803. {
  3804. if(code_seen('S')) acceleration = code_value() ;
  3805. if(code_seen('T')) retract_acceleration = code_value() ;
  3806. }
  3807. break;
  3808. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3809. {
  3810. if(code_seen('S')) minimumfeedrate = code_value();
  3811. if(code_seen('T')) mintravelfeedrate = code_value();
  3812. if(code_seen('B')) minsegmenttime = code_value() ;
  3813. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3814. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3815. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3816. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3817. }
  3818. break;
  3819. case 206: // M206 additional homing offset
  3820. for(int8_t i=0; i < 3; i++)
  3821. {
  3822. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3823. }
  3824. break;
  3825. #ifdef FWRETRACT
  3826. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3827. {
  3828. if(code_seen('S'))
  3829. {
  3830. retract_length = code_value() ;
  3831. }
  3832. if(code_seen('F'))
  3833. {
  3834. retract_feedrate = code_value()/60 ;
  3835. }
  3836. if(code_seen('Z'))
  3837. {
  3838. retract_zlift = code_value() ;
  3839. }
  3840. }break;
  3841. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3842. {
  3843. if(code_seen('S'))
  3844. {
  3845. retract_recover_length = code_value() ;
  3846. }
  3847. if(code_seen('F'))
  3848. {
  3849. retract_recover_feedrate = code_value()/60 ;
  3850. }
  3851. }break;
  3852. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3853. {
  3854. if(code_seen('S'))
  3855. {
  3856. int t= code_value() ;
  3857. switch(t)
  3858. {
  3859. case 0:
  3860. {
  3861. autoretract_enabled=false;
  3862. retracted[0]=false;
  3863. #if EXTRUDERS > 1
  3864. retracted[1]=false;
  3865. #endif
  3866. #if EXTRUDERS > 2
  3867. retracted[2]=false;
  3868. #endif
  3869. }break;
  3870. case 1:
  3871. {
  3872. autoretract_enabled=true;
  3873. retracted[0]=false;
  3874. #if EXTRUDERS > 1
  3875. retracted[1]=false;
  3876. #endif
  3877. #if EXTRUDERS > 2
  3878. retracted[2]=false;
  3879. #endif
  3880. }break;
  3881. default:
  3882. SERIAL_ECHO_START;
  3883. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3884. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3885. SERIAL_ECHOLNPGM("\"");
  3886. }
  3887. }
  3888. }break;
  3889. #endif // FWRETRACT
  3890. #if EXTRUDERS > 1
  3891. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3892. {
  3893. if(setTargetedHotend(218)){
  3894. break;
  3895. }
  3896. if(code_seen('X'))
  3897. {
  3898. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3899. }
  3900. if(code_seen('Y'))
  3901. {
  3902. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3903. }
  3904. SERIAL_ECHO_START;
  3905. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3906. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3907. {
  3908. SERIAL_ECHO(" ");
  3909. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3910. SERIAL_ECHO(",");
  3911. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3912. }
  3913. SERIAL_ECHOLN("");
  3914. }break;
  3915. #endif
  3916. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3917. {
  3918. if(code_seen('S'))
  3919. {
  3920. feedmultiply = code_value() ;
  3921. }
  3922. }
  3923. break;
  3924. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3925. {
  3926. if(code_seen('S'))
  3927. {
  3928. int tmp_code = code_value();
  3929. if (code_seen('T'))
  3930. {
  3931. if(setTargetedHotend(221)){
  3932. break;
  3933. }
  3934. extruder_multiply[tmp_extruder] = tmp_code;
  3935. }
  3936. else
  3937. {
  3938. extrudemultiply = tmp_code ;
  3939. }
  3940. }
  3941. }
  3942. break;
  3943. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3944. {
  3945. if(code_seen('P')){
  3946. int pin_number = code_value(); // pin number
  3947. int pin_state = -1; // required pin state - default is inverted
  3948. if(code_seen('S')) pin_state = code_value(); // required pin state
  3949. if(pin_state >= -1 && pin_state <= 1){
  3950. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3951. {
  3952. if (sensitive_pins[i] == pin_number)
  3953. {
  3954. pin_number = -1;
  3955. break;
  3956. }
  3957. }
  3958. if (pin_number > -1)
  3959. {
  3960. int target = LOW;
  3961. st_synchronize();
  3962. pinMode(pin_number, INPUT);
  3963. switch(pin_state){
  3964. case 1:
  3965. target = HIGH;
  3966. break;
  3967. case 0:
  3968. target = LOW;
  3969. break;
  3970. case -1:
  3971. target = !digitalRead(pin_number);
  3972. break;
  3973. }
  3974. while(digitalRead(pin_number) != target){
  3975. manage_heater();
  3976. manage_inactivity();
  3977. lcd_update();
  3978. }
  3979. }
  3980. }
  3981. }
  3982. }
  3983. break;
  3984. #if NUM_SERVOS > 0
  3985. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3986. {
  3987. int servo_index = -1;
  3988. int servo_position = 0;
  3989. if (code_seen('P'))
  3990. servo_index = code_value();
  3991. if (code_seen('S')) {
  3992. servo_position = code_value();
  3993. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3994. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3995. servos[servo_index].attach(0);
  3996. #endif
  3997. servos[servo_index].write(servo_position);
  3998. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3999. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4000. servos[servo_index].detach();
  4001. #endif
  4002. }
  4003. else {
  4004. SERIAL_ECHO_START;
  4005. SERIAL_ECHO("Servo ");
  4006. SERIAL_ECHO(servo_index);
  4007. SERIAL_ECHOLN(" out of range");
  4008. }
  4009. }
  4010. else if (servo_index >= 0) {
  4011. SERIAL_PROTOCOL(MSG_OK);
  4012. SERIAL_PROTOCOL(" Servo ");
  4013. SERIAL_PROTOCOL(servo_index);
  4014. SERIAL_PROTOCOL(": ");
  4015. SERIAL_PROTOCOL(servos[servo_index].read());
  4016. SERIAL_PROTOCOLLN("");
  4017. }
  4018. }
  4019. break;
  4020. #endif // NUM_SERVOS > 0
  4021. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4022. case 300: // M300
  4023. {
  4024. int beepS = code_seen('S') ? code_value() : 110;
  4025. int beepP = code_seen('P') ? code_value() : 1000;
  4026. if (beepS > 0)
  4027. {
  4028. #if BEEPER > 0
  4029. tone(BEEPER, beepS);
  4030. delay(beepP);
  4031. noTone(BEEPER);
  4032. #elif defined(ULTRALCD)
  4033. lcd_buzz(beepS, beepP);
  4034. #elif defined(LCD_USE_I2C_BUZZER)
  4035. lcd_buzz(beepP, beepS);
  4036. #endif
  4037. }
  4038. else
  4039. {
  4040. delay(beepP);
  4041. }
  4042. }
  4043. break;
  4044. #endif // M300
  4045. #ifdef PIDTEMP
  4046. case 301: // M301
  4047. {
  4048. if(code_seen('P')) Kp = code_value();
  4049. if(code_seen('I')) Ki = scalePID_i(code_value());
  4050. if(code_seen('D')) Kd = scalePID_d(code_value());
  4051. #ifdef PID_ADD_EXTRUSION_RATE
  4052. if(code_seen('C')) Kc = code_value();
  4053. #endif
  4054. updatePID();
  4055. SERIAL_PROTOCOLRPGM(MSG_OK);
  4056. SERIAL_PROTOCOL(" p:");
  4057. SERIAL_PROTOCOL(Kp);
  4058. SERIAL_PROTOCOL(" i:");
  4059. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4060. SERIAL_PROTOCOL(" d:");
  4061. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4062. #ifdef PID_ADD_EXTRUSION_RATE
  4063. SERIAL_PROTOCOL(" c:");
  4064. //Kc does not have scaling applied above, or in resetting defaults
  4065. SERIAL_PROTOCOL(Kc);
  4066. #endif
  4067. SERIAL_PROTOCOLLN("");
  4068. }
  4069. break;
  4070. #endif //PIDTEMP
  4071. #ifdef PIDTEMPBED
  4072. case 304: // M304
  4073. {
  4074. if(code_seen('P')) bedKp = code_value();
  4075. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4076. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4077. updatePID();
  4078. SERIAL_PROTOCOLRPGM(MSG_OK);
  4079. SERIAL_PROTOCOL(" p:");
  4080. SERIAL_PROTOCOL(bedKp);
  4081. SERIAL_PROTOCOL(" i:");
  4082. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4083. SERIAL_PROTOCOL(" d:");
  4084. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4085. SERIAL_PROTOCOLLN("");
  4086. }
  4087. break;
  4088. #endif //PIDTEMP
  4089. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4090. {
  4091. #ifdef CHDK
  4092. SET_OUTPUT(CHDK);
  4093. WRITE(CHDK, HIGH);
  4094. chdkHigh = millis();
  4095. chdkActive = true;
  4096. #else
  4097. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4098. const uint8_t NUM_PULSES=16;
  4099. const float PULSE_LENGTH=0.01524;
  4100. for(int i=0; i < NUM_PULSES; i++) {
  4101. WRITE(PHOTOGRAPH_PIN, HIGH);
  4102. _delay_ms(PULSE_LENGTH);
  4103. WRITE(PHOTOGRAPH_PIN, LOW);
  4104. _delay_ms(PULSE_LENGTH);
  4105. }
  4106. delay(7.33);
  4107. for(int i=0; i < NUM_PULSES; i++) {
  4108. WRITE(PHOTOGRAPH_PIN, HIGH);
  4109. _delay_ms(PULSE_LENGTH);
  4110. WRITE(PHOTOGRAPH_PIN, LOW);
  4111. _delay_ms(PULSE_LENGTH);
  4112. }
  4113. #endif
  4114. #endif //chdk end if
  4115. }
  4116. break;
  4117. #ifdef DOGLCD
  4118. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4119. {
  4120. if (code_seen('C')) {
  4121. lcd_setcontrast( ((int)code_value())&63 );
  4122. }
  4123. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4124. SERIAL_PROTOCOL(lcd_contrast);
  4125. SERIAL_PROTOCOLLN("");
  4126. }
  4127. break;
  4128. #endif
  4129. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4130. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4131. {
  4132. float temp = .0;
  4133. if (code_seen('S')) temp=code_value();
  4134. set_extrude_min_temp(temp);
  4135. }
  4136. break;
  4137. #endif
  4138. case 303: // M303 PID autotune
  4139. {
  4140. float temp = 150.0;
  4141. int e=0;
  4142. int c=5;
  4143. if (code_seen('E')) e=code_value();
  4144. if (e<0)
  4145. temp=70;
  4146. if (code_seen('S')) temp=code_value();
  4147. if (code_seen('C')) c=code_value();
  4148. PID_autotune(temp, e, c);
  4149. }
  4150. break;
  4151. case 400: // M400 finish all moves
  4152. {
  4153. st_synchronize();
  4154. }
  4155. break;
  4156. #ifdef FILAMENT_SENSOR
  4157. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4158. {
  4159. #if (FILWIDTH_PIN > -1)
  4160. if(code_seen('N')) filament_width_nominal=code_value();
  4161. else{
  4162. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4163. SERIAL_PROTOCOLLN(filament_width_nominal);
  4164. }
  4165. #endif
  4166. }
  4167. break;
  4168. case 405: //M405 Turn on filament sensor for control
  4169. {
  4170. if(code_seen('D')) meas_delay_cm=code_value();
  4171. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4172. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4173. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4174. {
  4175. int temp_ratio = widthFil_to_size_ratio();
  4176. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4177. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4178. }
  4179. delay_index1=0;
  4180. delay_index2=0;
  4181. }
  4182. filament_sensor = true ;
  4183. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4184. //SERIAL_PROTOCOL(filament_width_meas);
  4185. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4186. //SERIAL_PROTOCOL(extrudemultiply);
  4187. }
  4188. break;
  4189. case 406: //M406 Turn off filament sensor for control
  4190. {
  4191. filament_sensor = false ;
  4192. }
  4193. break;
  4194. case 407: //M407 Display measured filament diameter
  4195. {
  4196. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4197. SERIAL_PROTOCOLLN(filament_width_meas);
  4198. }
  4199. break;
  4200. #endif
  4201. case 500: // M500 Store settings in EEPROM
  4202. {
  4203. Config_StoreSettings();
  4204. }
  4205. break;
  4206. case 501: // M501 Read settings from EEPROM
  4207. {
  4208. Config_RetrieveSettings();
  4209. }
  4210. break;
  4211. case 502: // M502 Revert to default settings
  4212. {
  4213. Config_ResetDefault();
  4214. }
  4215. break;
  4216. case 503: // M503 print settings currently in memory
  4217. {
  4218. Config_PrintSettings();
  4219. }
  4220. break;
  4221. case 509: //M509 Force language selection
  4222. {
  4223. lcd_force_language_selection();
  4224. SERIAL_ECHO_START;
  4225. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4226. }
  4227. break;
  4228. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4229. case 540:
  4230. {
  4231. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4232. }
  4233. break;
  4234. #endif
  4235. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4236. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4237. {
  4238. float value;
  4239. if (code_seen('Z'))
  4240. {
  4241. value = code_value();
  4242. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4243. {
  4244. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4245. SERIAL_ECHO_START;
  4246. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4247. SERIAL_PROTOCOLLN("");
  4248. }
  4249. else
  4250. {
  4251. SERIAL_ECHO_START;
  4252. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4253. SERIAL_ECHORPGM(MSG_Z_MIN);
  4254. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4255. SERIAL_ECHORPGM(MSG_Z_MAX);
  4256. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4257. SERIAL_PROTOCOLLN("");
  4258. }
  4259. }
  4260. else
  4261. {
  4262. SERIAL_ECHO_START;
  4263. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4264. SERIAL_ECHO(-zprobe_zoffset);
  4265. SERIAL_PROTOCOLLN("");
  4266. }
  4267. break;
  4268. }
  4269. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4270. #ifdef FILAMENTCHANGEENABLE
  4271. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4272. {
  4273. st_synchronize();
  4274. if (farm_mode)
  4275. {
  4276. prusa_statistics(22);
  4277. }
  4278. feedmultiplyBckp=feedmultiply;
  4279. int8_t TooLowZ = 0;
  4280. float target[4];
  4281. float lastpos[4];
  4282. target[X_AXIS]=current_position[X_AXIS];
  4283. target[Y_AXIS]=current_position[Y_AXIS];
  4284. target[Z_AXIS]=current_position[Z_AXIS];
  4285. target[E_AXIS]=current_position[E_AXIS];
  4286. lastpos[X_AXIS]=current_position[X_AXIS];
  4287. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4288. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4289. lastpos[E_AXIS]=current_position[E_AXIS];
  4290. //Restract extruder
  4291. if(code_seen('E'))
  4292. {
  4293. target[E_AXIS]+= code_value();
  4294. }
  4295. else
  4296. {
  4297. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4298. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4299. #endif
  4300. }
  4301. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4302. //Lift Z
  4303. if(code_seen('Z'))
  4304. {
  4305. target[Z_AXIS]+= code_value();
  4306. }
  4307. else
  4308. {
  4309. #ifdef FILAMENTCHANGE_ZADD
  4310. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4311. if(target[Z_AXIS] < 10){
  4312. target[Z_AXIS]+= 10 ;
  4313. TooLowZ = 1;
  4314. }else{
  4315. TooLowZ = 0;
  4316. }
  4317. #endif
  4318. }
  4319. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4320. //Move XY to side
  4321. if(code_seen('X'))
  4322. {
  4323. target[X_AXIS]+= code_value();
  4324. }
  4325. else
  4326. {
  4327. #ifdef FILAMENTCHANGE_XPOS
  4328. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4329. #endif
  4330. }
  4331. if(code_seen('Y'))
  4332. {
  4333. target[Y_AXIS]= code_value();
  4334. }
  4335. else
  4336. {
  4337. #ifdef FILAMENTCHANGE_YPOS
  4338. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4339. #endif
  4340. }
  4341. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4342. // Unload filament
  4343. if(code_seen('L'))
  4344. {
  4345. target[E_AXIS]+= code_value();
  4346. }
  4347. else
  4348. {
  4349. #ifdef FILAMENTCHANGE_FINALRETRACT
  4350. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4351. #endif
  4352. }
  4353. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4354. //finish moves
  4355. st_synchronize();
  4356. //disable extruder steppers so filament can be removed
  4357. disable_e0();
  4358. disable_e1();
  4359. disable_e2();
  4360. delay(100);
  4361. //Wait for user to insert filament
  4362. uint8_t cnt=0;
  4363. int counterBeep = 0;
  4364. lcd_wait_interact();
  4365. while(!lcd_clicked()){
  4366. cnt++;
  4367. manage_heater();
  4368. manage_inactivity(true);
  4369. if(cnt==0)
  4370. {
  4371. #if BEEPER > 0
  4372. if (counterBeep== 500){
  4373. counterBeep = 0;
  4374. }
  4375. SET_OUTPUT(BEEPER);
  4376. if (counterBeep== 0){
  4377. WRITE(BEEPER,HIGH);
  4378. }
  4379. if (counterBeep== 20){
  4380. WRITE(BEEPER,LOW);
  4381. }
  4382. counterBeep++;
  4383. #else
  4384. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4385. lcd_buzz(1000/6,100);
  4386. #else
  4387. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4388. #endif
  4389. #endif
  4390. }
  4391. }
  4392. //Filament inserted
  4393. WRITE(BEEPER,LOW);
  4394. //Feed the filament to the end of nozzle quickly
  4395. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4397. //Extrude some filament
  4398. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4400. //Wait for user to check the state
  4401. lcd_change_fil_state = 0;
  4402. lcd_loading_filament();
  4403. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4404. lcd_change_fil_state = 0;
  4405. lcd_alright();
  4406. switch(lcd_change_fil_state){
  4407. // Filament failed to load so load it again
  4408. case 2:
  4409. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4410. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4411. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4413. lcd_loading_filament();
  4414. break;
  4415. // Filament loaded properly but color is not clear
  4416. case 3:
  4417. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4419. lcd_loading_color();
  4420. break;
  4421. // Everything good
  4422. default:
  4423. lcd_change_success();
  4424. break;
  4425. }
  4426. }
  4427. //Not let's go back to print
  4428. //Feed a little of filament to stabilize pressure
  4429. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4431. //Retract
  4432. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4434. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4435. //Move XY back
  4436. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4437. //Move Z back
  4438. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4439. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4440. //Unretract
  4441. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4442. //Set E position to original
  4443. plan_set_e_position(lastpos[E_AXIS]);
  4444. //Recover feed rate
  4445. feedmultiply=feedmultiplyBckp;
  4446. char cmd[9];
  4447. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4448. enquecommand(cmd);
  4449. }
  4450. break;
  4451. #endif //FILAMENTCHANGEENABLE
  4452. case 907: // M907 Set digital trimpot motor current using axis codes.
  4453. {
  4454. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4455. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4456. if(code_seen('B')) digipot_current(4,code_value());
  4457. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4458. #endif
  4459. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4460. if(code_seen('X')) digipot_current(0, code_value());
  4461. #endif
  4462. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4463. if(code_seen('Z')) digipot_current(1, code_value());
  4464. #endif
  4465. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4466. if(code_seen('E')) digipot_current(2, code_value());
  4467. #endif
  4468. #ifdef DIGIPOT_I2C
  4469. // this one uses actual amps in floating point
  4470. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4471. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4472. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4473. #endif
  4474. }
  4475. break;
  4476. case 908: // M908 Control digital trimpot directly.
  4477. {
  4478. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4479. uint8_t channel,current;
  4480. if(code_seen('P')) channel=code_value();
  4481. if(code_seen('S')) current=code_value();
  4482. digitalPotWrite(channel, current);
  4483. #endif
  4484. }
  4485. break;
  4486. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4487. {
  4488. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4489. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4490. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4491. if(code_seen('B')) microstep_mode(4,code_value());
  4492. microstep_readings();
  4493. #endif
  4494. }
  4495. break;
  4496. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4497. {
  4498. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4499. if(code_seen('S')) switch((int)code_value())
  4500. {
  4501. case 1:
  4502. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4503. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4504. break;
  4505. case 2:
  4506. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4507. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4508. break;
  4509. }
  4510. microstep_readings();
  4511. #endif
  4512. }
  4513. break;
  4514. case 701: //M701: load filament
  4515. {
  4516. enable_z();
  4517. custom_message = true;
  4518. custom_message_type = 2;
  4519. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4520. current_position[E_AXIS] += 65;
  4521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4522. current_position[E_AXIS] += 40;
  4523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4524. st_synchronize();
  4525. if (!farm_mode && loading_flag) {
  4526. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4527. while (!clean) {
  4528. lcd_update_enable(true);
  4529. lcd_update(2);
  4530. current_position[E_AXIS] += 40;
  4531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4532. st_synchronize();
  4533. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4534. }
  4535. }
  4536. lcd_update_enable(true);
  4537. lcd_update(2);
  4538. lcd_setstatuspgm(WELCOME_MSG);
  4539. disable_z();
  4540. loading_flag = false;
  4541. custom_message = false;
  4542. custom_message_type = 0;
  4543. }
  4544. break;
  4545. case 702:
  4546. {
  4547. custom_message = true;
  4548. custom_message_type = 2;
  4549. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4550. current_position[E_AXIS] -= 80;
  4551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4552. st_synchronize();
  4553. lcd_setstatuspgm(WELCOME_MSG);
  4554. custom_message = false;
  4555. custom_message_type = 0;
  4556. }
  4557. break;
  4558. case 999: // M999: Restart after being stopped
  4559. Stopped = false;
  4560. lcd_reset_alert_level();
  4561. gcode_LastN = Stopped_gcode_LastN;
  4562. FlushSerialRequestResend();
  4563. break;
  4564. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4565. }
  4566. } // end if(code_seen('M')) (end of M codes)
  4567. else if(code_seen('T'))
  4568. {
  4569. int index;
  4570. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4571. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4572. SERIAL_ECHOLNPGM("Invalid T code.");
  4573. }
  4574. else {
  4575. tmp_extruder = code_value();
  4576. #ifdef SNMM
  4577. st_synchronize();
  4578. delay(100);
  4579. disable_e0();
  4580. disable_e1();
  4581. disable_e2();
  4582. pinMode(E_MUX0_PIN, OUTPUT);
  4583. pinMode(E_MUX1_PIN, OUTPUT);
  4584. pinMode(E_MUX2_PIN, OUTPUT);
  4585. delay(100);
  4586. SERIAL_ECHO_START;
  4587. SERIAL_ECHO("T:");
  4588. SERIAL_ECHOLN((int)tmp_extruder);
  4589. switch (tmp_extruder) {
  4590. case 1:
  4591. WRITE(E_MUX0_PIN, HIGH);
  4592. WRITE(E_MUX1_PIN, LOW);
  4593. WRITE(E_MUX2_PIN, LOW);
  4594. break;
  4595. case 2:
  4596. WRITE(E_MUX0_PIN, LOW);
  4597. WRITE(E_MUX1_PIN, HIGH);
  4598. WRITE(E_MUX2_PIN, LOW);
  4599. break;
  4600. case 3:
  4601. WRITE(E_MUX0_PIN, HIGH);
  4602. WRITE(E_MUX1_PIN, HIGH);
  4603. WRITE(E_MUX2_PIN, LOW);
  4604. break;
  4605. default:
  4606. WRITE(E_MUX0_PIN, LOW);
  4607. WRITE(E_MUX1_PIN, LOW);
  4608. WRITE(E_MUX2_PIN, LOW);
  4609. break;
  4610. }
  4611. delay(100);
  4612. #else
  4613. if (tmp_extruder >= EXTRUDERS) {
  4614. SERIAL_ECHO_START;
  4615. SERIAL_ECHOPGM("T");
  4616. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4617. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4618. }
  4619. else {
  4620. boolean make_move = false;
  4621. if (code_seen('F')) {
  4622. make_move = true;
  4623. next_feedrate = code_value();
  4624. if (next_feedrate > 0.0) {
  4625. feedrate = next_feedrate;
  4626. }
  4627. }
  4628. #if EXTRUDERS > 1
  4629. if (tmp_extruder != active_extruder) {
  4630. // Save current position to return to after applying extruder offset
  4631. memcpy(destination, current_position, sizeof(destination));
  4632. // Offset extruder (only by XY)
  4633. int i;
  4634. for (i = 0; i < 2; i++) {
  4635. current_position[i] = current_position[i] -
  4636. extruder_offset[i][active_extruder] +
  4637. extruder_offset[i][tmp_extruder];
  4638. }
  4639. // Set the new active extruder and position
  4640. active_extruder = tmp_extruder;
  4641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4642. // Move to the old position if 'F' was in the parameters
  4643. if (make_move && Stopped == false) {
  4644. prepare_move();
  4645. }
  4646. }
  4647. #endif
  4648. SERIAL_ECHO_START;
  4649. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4650. SERIAL_PROTOCOLLN((int)active_extruder);
  4651. }
  4652. #endif
  4653. }
  4654. } // end if(code_seen('T')) (end of T codes)
  4655. else
  4656. {
  4657. SERIAL_ECHO_START;
  4658. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4659. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4660. SERIAL_ECHOLNPGM("\"");
  4661. }
  4662. ClearToSend();
  4663. }
  4664. void FlushSerialRequestResend()
  4665. {
  4666. //char cmdbuffer[bufindr][100]="Resend:";
  4667. MYSERIAL.flush();
  4668. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4669. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4670. ClearToSend();
  4671. }
  4672. // Confirm the execution of a command, if sent from a serial line.
  4673. // Execution of a command from a SD card will not be confirmed.
  4674. void ClearToSend()
  4675. {
  4676. previous_millis_cmd = millis();
  4677. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4678. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4679. }
  4680. void get_coordinates()
  4681. {
  4682. bool seen[4]={false,false,false,false};
  4683. for(int8_t i=0; i < NUM_AXIS; i++) {
  4684. if(code_seen(axis_codes[i]))
  4685. {
  4686. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4687. seen[i]=true;
  4688. }
  4689. else destination[i] = current_position[i]; //Are these else lines really needed?
  4690. }
  4691. if(code_seen('F')) {
  4692. next_feedrate = code_value();
  4693. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4694. }
  4695. }
  4696. void get_arc_coordinates()
  4697. {
  4698. #ifdef SF_ARC_FIX
  4699. bool relative_mode_backup = relative_mode;
  4700. relative_mode = true;
  4701. #endif
  4702. get_coordinates();
  4703. #ifdef SF_ARC_FIX
  4704. relative_mode=relative_mode_backup;
  4705. #endif
  4706. if(code_seen('I')) {
  4707. offset[0] = code_value();
  4708. }
  4709. else {
  4710. offset[0] = 0.0;
  4711. }
  4712. if(code_seen('J')) {
  4713. offset[1] = code_value();
  4714. }
  4715. else {
  4716. offset[1] = 0.0;
  4717. }
  4718. }
  4719. void clamp_to_software_endstops(float target[3])
  4720. {
  4721. world2machine_clamp(target[0], target[1]);
  4722. // Clamp the Z coordinate.
  4723. if (min_software_endstops) {
  4724. float negative_z_offset = 0;
  4725. #ifdef ENABLE_AUTO_BED_LEVELING
  4726. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4727. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4728. #endif
  4729. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4730. }
  4731. if (max_software_endstops) {
  4732. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4733. }
  4734. }
  4735. #ifdef MESH_BED_LEVELING
  4736. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4737. float dx = x - current_position[X_AXIS];
  4738. float dy = y - current_position[Y_AXIS];
  4739. float dz = z - current_position[Z_AXIS];
  4740. int n_segments = 0;
  4741. if (mbl.active) {
  4742. float len = abs(dx) + abs(dy);
  4743. if (len > 0)
  4744. // Split to 3cm segments or shorter.
  4745. n_segments = int(ceil(len / 30.f));
  4746. }
  4747. if (n_segments > 1) {
  4748. float de = e - current_position[E_AXIS];
  4749. for (int i = 1; i < n_segments; ++ i) {
  4750. float t = float(i) / float(n_segments);
  4751. plan_buffer_line(
  4752. current_position[X_AXIS] + t * dx,
  4753. current_position[Y_AXIS] + t * dy,
  4754. current_position[Z_AXIS] + t * dz,
  4755. current_position[E_AXIS] + t * de,
  4756. feed_rate, extruder);
  4757. }
  4758. }
  4759. // The rest of the path.
  4760. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4761. current_position[X_AXIS] = x;
  4762. current_position[Y_AXIS] = y;
  4763. current_position[Z_AXIS] = z;
  4764. current_position[E_AXIS] = e;
  4765. }
  4766. #endif // MESH_BED_LEVELING
  4767. void prepare_move()
  4768. {
  4769. clamp_to_software_endstops(destination);
  4770. previous_millis_cmd = millis();
  4771. // Do not use feedmultiply for E or Z only moves
  4772. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4774. }
  4775. else {
  4776. #ifdef MESH_BED_LEVELING
  4777. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4778. #else
  4779. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4780. #endif
  4781. }
  4782. for(int8_t i=0; i < NUM_AXIS; i++) {
  4783. current_position[i] = destination[i];
  4784. }
  4785. }
  4786. void prepare_arc_move(char isclockwise) {
  4787. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4788. // Trace the arc
  4789. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4790. // As far as the parser is concerned, the position is now == target. In reality the
  4791. // motion control system might still be processing the action and the real tool position
  4792. // in any intermediate location.
  4793. for(int8_t i=0; i < NUM_AXIS; i++) {
  4794. current_position[i] = destination[i];
  4795. }
  4796. previous_millis_cmd = millis();
  4797. }
  4798. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4799. #if defined(FAN_PIN)
  4800. #if CONTROLLERFAN_PIN == FAN_PIN
  4801. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4802. #endif
  4803. #endif
  4804. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4805. unsigned long lastMotorCheck = 0;
  4806. void controllerFan()
  4807. {
  4808. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4809. {
  4810. lastMotorCheck = millis();
  4811. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4812. #if EXTRUDERS > 2
  4813. || !READ(E2_ENABLE_PIN)
  4814. #endif
  4815. #if EXTRUDER > 1
  4816. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4817. || !READ(X2_ENABLE_PIN)
  4818. #endif
  4819. || !READ(E1_ENABLE_PIN)
  4820. #endif
  4821. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4822. {
  4823. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4824. }
  4825. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4826. {
  4827. digitalWrite(CONTROLLERFAN_PIN, 0);
  4828. analogWrite(CONTROLLERFAN_PIN, 0);
  4829. }
  4830. else
  4831. {
  4832. // allows digital or PWM fan output to be used (see M42 handling)
  4833. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4834. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4835. }
  4836. }
  4837. }
  4838. #endif
  4839. #ifdef TEMP_STAT_LEDS
  4840. static bool blue_led = false;
  4841. static bool red_led = false;
  4842. static uint32_t stat_update = 0;
  4843. void handle_status_leds(void) {
  4844. float max_temp = 0.0;
  4845. if(millis() > stat_update) {
  4846. stat_update += 500; // Update every 0.5s
  4847. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4848. max_temp = max(max_temp, degHotend(cur_extruder));
  4849. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4850. }
  4851. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4852. max_temp = max(max_temp, degTargetBed());
  4853. max_temp = max(max_temp, degBed());
  4854. #endif
  4855. if((max_temp > 55.0) && (red_led == false)) {
  4856. digitalWrite(STAT_LED_RED, 1);
  4857. digitalWrite(STAT_LED_BLUE, 0);
  4858. red_led = true;
  4859. blue_led = false;
  4860. }
  4861. if((max_temp < 54.0) && (blue_led == false)) {
  4862. digitalWrite(STAT_LED_RED, 0);
  4863. digitalWrite(STAT_LED_BLUE, 1);
  4864. red_led = false;
  4865. blue_led = true;
  4866. }
  4867. }
  4868. }
  4869. #endif
  4870. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4871. {
  4872. #if defined(KILL_PIN) && KILL_PIN > -1
  4873. static int killCount = 0; // make the inactivity button a bit less responsive
  4874. const int KILL_DELAY = 10000;
  4875. #endif
  4876. if(buflen < (BUFSIZE-1)){
  4877. get_command();
  4878. }
  4879. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4880. if(max_inactive_time)
  4881. kill();
  4882. if(stepper_inactive_time) {
  4883. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4884. {
  4885. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4886. disable_x();
  4887. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4888. disable_y();
  4889. disable_z();
  4890. disable_e0();
  4891. disable_e1();
  4892. disable_e2();
  4893. }
  4894. }
  4895. }
  4896. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4897. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4898. {
  4899. chdkActive = false;
  4900. WRITE(CHDK, LOW);
  4901. }
  4902. #endif
  4903. #if defined(KILL_PIN) && KILL_PIN > -1
  4904. // Check if the kill button was pressed and wait just in case it was an accidental
  4905. // key kill key press
  4906. // -------------------------------------------------------------------------------
  4907. if( 0 == READ(KILL_PIN) )
  4908. {
  4909. killCount++;
  4910. }
  4911. else if (killCount > 0)
  4912. {
  4913. killCount--;
  4914. }
  4915. // Exceeded threshold and we can confirm that it was not accidental
  4916. // KILL the machine
  4917. // ----------------------------------------------------------------
  4918. if ( killCount >= KILL_DELAY)
  4919. {
  4920. kill();
  4921. }
  4922. #endif
  4923. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4924. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4925. #endif
  4926. #ifdef EXTRUDER_RUNOUT_PREVENT
  4927. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4928. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4929. {
  4930. bool oldstatus=READ(E0_ENABLE_PIN);
  4931. enable_e0();
  4932. float oldepos=current_position[E_AXIS];
  4933. float oldedes=destination[E_AXIS];
  4934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4935. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4936. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4937. current_position[E_AXIS]=oldepos;
  4938. destination[E_AXIS]=oldedes;
  4939. plan_set_e_position(oldepos);
  4940. previous_millis_cmd=millis();
  4941. st_synchronize();
  4942. WRITE(E0_ENABLE_PIN,oldstatus);
  4943. }
  4944. #endif
  4945. #ifdef TEMP_STAT_LEDS
  4946. handle_status_leds();
  4947. #endif
  4948. check_axes_activity();
  4949. }
  4950. void kill(const char *full_screen_message)
  4951. {
  4952. cli(); // Stop interrupts
  4953. disable_heater();
  4954. disable_x();
  4955. // SERIAL_ECHOLNPGM("kill - disable Y");
  4956. disable_y();
  4957. disable_z();
  4958. disable_e0();
  4959. disable_e1();
  4960. disable_e2();
  4961. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4962. pinMode(PS_ON_PIN,INPUT);
  4963. #endif
  4964. SERIAL_ERROR_START;
  4965. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4966. if (full_screen_message != NULL) {
  4967. SERIAL_ERRORLNRPGM(full_screen_message);
  4968. lcd_display_message_fullscreen_P(full_screen_message);
  4969. } else {
  4970. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4971. }
  4972. // FMC small patch to update the LCD before ending
  4973. sei(); // enable interrupts
  4974. for ( int i=5; i--; lcd_update())
  4975. {
  4976. delay(200);
  4977. }
  4978. cli(); // disable interrupts
  4979. suicide();
  4980. while(1) { /* Intentionally left empty */ } // Wait for reset
  4981. }
  4982. void Stop()
  4983. {
  4984. disable_heater();
  4985. if(Stopped == false) {
  4986. Stopped = true;
  4987. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4988. SERIAL_ERROR_START;
  4989. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4990. LCD_MESSAGERPGM(MSG_STOPPED);
  4991. }
  4992. }
  4993. bool IsStopped() { return Stopped; };
  4994. #ifdef FAST_PWM_FAN
  4995. void setPwmFrequency(uint8_t pin, int val)
  4996. {
  4997. val &= 0x07;
  4998. switch(digitalPinToTimer(pin))
  4999. {
  5000. #if defined(TCCR0A)
  5001. case TIMER0A:
  5002. case TIMER0B:
  5003. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5004. // TCCR0B |= val;
  5005. break;
  5006. #endif
  5007. #if defined(TCCR1A)
  5008. case TIMER1A:
  5009. case TIMER1B:
  5010. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5011. // TCCR1B |= val;
  5012. break;
  5013. #endif
  5014. #if defined(TCCR2)
  5015. case TIMER2:
  5016. case TIMER2:
  5017. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5018. TCCR2 |= val;
  5019. break;
  5020. #endif
  5021. #if defined(TCCR2A)
  5022. case TIMER2A:
  5023. case TIMER2B:
  5024. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5025. TCCR2B |= val;
  5026. break;
  5027. #endif
  5028. #if defined(TCCR3A)
  5029. case TIMER3A:
  5030. case TIMER3B:
  5031. case TIMER3C:
  5032. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5033. TCCR3B |= val;
  5034. break;
  5035. #endif
  5036. #if defined(TCCR4A)
  5037. case TIMER4A:
  5038. case TIMER4B:
  5039. case TIMER4C:
  5040. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5041. TCCR4B |= val;
  5042. break;
  5043. #endif
  5044. #if defined(TCCR5A)
  5045. case TIMER5A:
  5046. case TIMER5B:
  5047. case TIMER5C:
  5048. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5049. TCCR5B |= val;
  5050. break;
  5051. #endif
  5052. }
  5053. }
  5054. #endif //FAST_PWM_FAN
  5055. bool setTargetedHotend(int code){
  5056. tmp_extruder = active_extruder;
  5057. if(code_seen('T')) {
  5058. tmp_extruder = code_value();
  5059. if(tmp_extruder >= EXTRUDERS) {
  5060. SERIAL_ECHO_START;
  5061. switch(code){
  5062. case 104:
  5063. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5064. break;
  5065. case 105:
  5066. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5067. break;
  5068. case 109:
  5069. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5070. break;
  5071. case 218:
  5072. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5073. break;
  5074. case 221:
  5075. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5076. break;
  5077. }
  5078. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5079. return true;
  5080. }
  5081. }
  5082. return false;
  5083. }
  5084. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5085. {
  5086. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5087. {
  5088. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5089. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5090. }
  5091. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5092. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5093. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5094. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5095. total_filament_used = 0;
  5096. }
  5097. float calculate_volumetric_multiplier(float diameter) {
  5098. float area = .0;
  5099. float radius = .0;
  5100. radius = diameter * .5;
  5101. if (! volumetric_enabled || radius == 0) {
  5102. area = 1;
  5103. }
  5104. else {
  5105. area = M_PI * pow(radius, 2);
  5106. }
  5107. return 1.0 / area;
  5108. }
  5109. void calculate_volumetric_multipliers() {
  5110. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5111. #if EXTRUDERS > 1
  5112. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5113. #if EXTRUDERS > 2
  5114. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5115. #endif
  5116. #endif
  5117. }
  5118. void delay_keep_alive(int ms)
  5119. {
  5120. for (;;) {
  5121. manage_heater();
  5122. // Manage inactivity, but don't disable steppers on timeout.
  5123. manage_inactivity(true);
  5124. lcd_update();
  5125. if (ms == 0)
  5126. break;
  5127. else if (ms >= 50) {
  5128. delay(50);
  5129. ms -= 50;
  5130. } else {
  5131. delay(ms);
  5132. ms = 0;
  5133. }
  5134. }
  5135. }
  5136. void check_babystep() {
  5137. int babystep_z;
  5138. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5139. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5140. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5141. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5142. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5143. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5144. lcd_update_enable(true);
  5145. }
  5146. }
  5147. #ifdef DIS
  5148. void d_setup()
  5149. {
  5150. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5151. pinMode(D_DATA, INPUT_PULLUP);
  5152. pinMode(D_REQUIRE, OUTPUT);
  5153. digitalWrite(D_REQUIRE, HIGH);
  5154. }
  5155. float d_ReadData()
  5156. {
  5157. int digit[13];
  5158. String mergeOutput;
  5159. float output;
  5160. digitalWrite(D_REQUIRE, HIGH);
  5161. for (int i = 0; i<13; i++)
  5162. {
  5163. for (int j = 0; j < 4; j++)
  5164. {
  5165. while (digitalRead(D_DATACLOCK) == LOW) {}
  5166. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5167. bitWrite(digit[i], j, digitalRead(D_DATA));
  5168. }
  5169. }
  5170. digitalWrite(D_REQUIRE, LOW);
  5171. mergeOutput = "";
  5172. output = 0;
  5173. for (int r = 5; r <= 10; r++) //Merge digits
  5174. {
  5175. mergeOutput += digit[r];
  5176. }
  5177. output = mergeOutput.toFloat();
  5178. if (digit[4] == 8) //Handle sign
  5179. {
  5180. output *= -1;
  5181. }
  5182. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5183. {
  5184. output /= 10;
  5185. }
  5186. return output;
  5187. }
  5188. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5189. int t1 = 0;
  5190. int t_delay = 0;
  5191. int digit[13];
  5192. int m;
  5193. char str[3];
  5194. //String mergeOutput;
  5195. char mergeOutput[15];
  5196. float output;
  5197. int mesh_point = 0; //index number of calibration point
  5198. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5199. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5200. float mesh_home_z_search = 4;
  5201. float row[x_points_num];
  5202. int ix = 0;
  5203. int iy = 0;
  5204. char* filename_wldsd = "wldsd.txt";
  5205. char data_wldsd[70];
  5206. char numb_wldsd[10];
  5207. d_setup();
  5208. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5209. // We don't know where we are! HOME!
  5210. // Push the commands to the front of the message queue in the reverse order!
  5211. // There shall be always enough space reserved for these commands.
  5212. repeatcommand_front(); // repeat G80 with all its parameters
  5213. enquecommand_front_P((PSTR("G28 W0")));
  5214. enquecommand_front_P((PSTR("G1 Z5")));
  5215. return;
  5216. }
  5217. bool custom_message_old = custom_message;
  5218. unsigned int custom_message_type_old = custom_message_type;
  5219. unsigned int custom_message_state_old = custom_message_state;
  5220. custom_message = true;
  5221. custom_message_type = 1;
  5222. custom_message_state = (x_points_num * y_points_num) + 10;
  5223. lcd_update(1);
  5224. mbl.reset();
  5225. babystep_undo();
  5226. card.openFile(filename_wldsd, false);
  5227. current_position[Z_AXIS] = mesh_home_z_search;
  5228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5229. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5230. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5231. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5232. setup_for_endstop_move(false);
  5233. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5234. SERIAL_PROTOCOL(x_points_num);
  5235. SERIAL_PROTOCOLPGM(",");
  5236. SERIAL_PROTOCOL(y_points_num);
  5237. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5238. SERIAL_PROTOCOL(mesh_home_z_search);
  5239. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5240. SERIAL_PROTOCOL(x_dimension);
  5241. SERIAL_PROTOCOLPGM(",");
  5242. SERIAL_PROTOCOL(y_dimension);
  5243. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5244. while (mesh_point != x_points_num * y_points_num) {
  5245. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5246. iy = mesh_point / x_points_num;
  5247. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5248. float z0 = 0.f;
  5249. current_position[Z_AXIS] = mesh_home_z_search;
  5250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5251. st_synchronize();
  5252. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5253. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5255. st_synchronize();
  5256. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5257. break;
  5258. card.closefile();
  5259. }
  5260. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5261. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5262. //strcat(data_wldsd, numb_wldsd);
  5263. //MYSERIAL.println(data_wldsd);
  5264. //delay(1000);
  5265. //delay(3000);
  5266. //t1 = millis();
  5267. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5268. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5269. memset(digit, 0, sizeof(digit));
  5270. //cli();
  5271. digitalWrite(D_REQUIRE, LOW);
  5272. for (int i = 0; i<13; i++)
  5273. {
  5274. //t1 = millis();
  5275. for (int j = 0; j < 4; j++)
  5276. {
  5277. while (digitalRead(D_DATACLOCK) == LOW) {}
  5278. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5279. bitWrite(digit[i], j, digitalRead(D_DATA));
  5280. }
  5281. //t_delay = (millis() - t1);
  5282. //SERIAL_PROTOCOLPGM(" ");
  5283. //SERIAL_PROTOCOL_F(t_delay, 5);
  5284. //SERIAL_PROTOCOLPGM(" ");
  5285. }
  5286. //sei();
  5287. digitalWrite(D_REQUIRE, HIGH);
  5288. mergeOutput[0] = '\0';
  5289. output = 0;
  5290. for (int r = 5; r <= 10; r++) //Merge digits
  5291. {
  5292. sprintf(str, "%d", digit[r]);
  5293. strcat(mergeOutput, str);
  5294. }
  5295. output = atof(mergeOutput);
  5296. if (digit[4] == 8) //Handle sign
  5297. {
  5298. output *= -1;
  5299. }
  5300. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5301. {
  5302. output *= 0.1;
  5303. }
  5304. //output = d_ReadData();
  5305. //row[ix] = current_position[Z_AXIS];
  5306. memset(data_wldsd, 0, sizeof(data_wldsd));
  5307. for (int i = 0; i <3; i++) {
  5308. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5309. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5310. strcat(data_wldsd, numb_wldsd);
  5311. strcat(data_wldsd, ";");
  5312. }
  5313. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5314. dtostrf(output, 8, 5, numb_wldsd);
  5315. strcat(data_wldsd, numb_wldsd);
  5316. //strcat(data_wldsd, ";");
  5317. card.write_command(data_wldsd);
  5318. //row[ix] = d_ReadData();
  5319. row[ix] = output; // current_position[Z_AXIS];
  5320. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5321. for (int i = 0; i < x_points_num; i++) {
  5322. SERIAL_PROTOCOLPGM(" ");
  5323. SERIAL_PROTOCOL_F(row[i], 5);
  5324. }
  5325. SERIAL_PROTOCOLPGM("\n");
  5326. }
  5327. custom_message_state--;
  5328. mesh_point++;
  5329. lcd_update(1);
  5330. }
  5331. card.closefile();
  5332. }
  5333. #endif