fsensor.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "cmdqueue.h"
  8. #include "ultralcd.h"
  9. #include "mmu2.h"
  10. #include "cardreader.h"
  11. #include "adc.h"
  12. #include "temperature.h"
  13. #include "config.h"
  14. //! @name Basic parameters
  15. //! @{
  16. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  17. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  18. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  19. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  20. //! @}
  21. //! @name Optical quality measurement parameters
  22. //! @{
  23. #define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
  24. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
  25. #define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
  26. #define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
  27. //! @}
  28. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  29. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  30. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  31. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  32. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  33. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  34. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  35. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  36. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  37. //! enabled = initialized and sampled every chunk event
  38. static bool enabled = true;
  39. bool fsensor_enabled() { return enabled; }
  40. //! runout watching is done in fsensor_update (called from main loop)
  41. static bool fsensor_watch_runout = true;
  42. //! not responding - is set if any communication error occurred during initialization or readout
  43. static bool not_responding = false;
  44. bool fsensor_not_responding(){ return not_responding; }
  45. void fsensor_set_responding_ok() { not_responding = false; }
  46. /// This flag was originally located in mmu.cpp. Not sure what it was supposed to do, but it looks like
  47. /// it was holding "true" all the time on MK3S.
  48. #ifndef IR_SENSOR
  49. static bool ir_sensor_detected = false;
  50. bool check_for_ir_sensor(); ///< detects IR sensor and updates ir_sensor_detected
  51. bool fsensor_IR_detected() {
  52. return ir_sensor_detected;
  53. }
  54. #endif
  55. #ifdef PAT9125
  56. uint8_t fsensor_int_pin_old = 0;
  57. //! optical checking "chunk lenght" (already in steps)
  58. int16_t fsensor_chunk_len = 0;
  59. //! enable/disable quality meassurement
  60. bool fsensor_oq_meassure_enabled = false;
  61. //! number of errors, updated in ISR
  62. uint8_t fsensor_err_cnt = 0;
  63. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  64. int16_t fsensor_st_cnt = 0;
  65. //! count of total sensor "soft" failures (filament status checks)
  66. uint8_t fsensor_softfail = 0;
  67. //! timestamp of last soft failure
  68. unsigned long fsensor_softfail_last = 0;
  69. //! count of soft failures within the configured time
  70. uint8_t fsensor_softfail_ccnt = 0;
  71. #endif
  72. #ifdef DEBUG_FSENSOR_LOG
  73. //! log flag: 0=log disabled, 1=log enabled
  74. uint8_t fsensor_log = 1;
  75. #endif //DEBUG_FSENSOR_LOG
  76. //! @name filament autoload variables
  77. //! @{
  78. //! autoload feature enabled
  79. static bool autoload_enabled = true;
  80. bool fsensor_autoload_enabled() { return autoload_enabled; }
  81. //! autoload watching enable/disable flag
  82. static bool watch_autoload = false;
  83. #ifdef PAT9125
  84. //
  85. uint16_t fsensor_autoload_y;
  86. //
  87. uint8_t fsensor_autoload_c;
  88. //
  89. uint32_t fsensor_autoload_last_millis;
  90. //
  91. uint8_t fsensor_autoload_sum;
  92. //! @}
  93. #endif
  94. //! @name filament optical quality measurement variables
  95. //! @{
  96. //! Measurement enable/disable flag
  97. bool fsensor_oq_meassure = false;
  98. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  99. uint8_t fsensor_oq_skipchunk;
  100. //! number of samples from start of measurement
  101. uint8_t fsensor_oq_samples;
  102. //! sum of steps in positive direction movements
  103. uint16_t fsensor_oq_st_sum;
  104. //! sum of deltas in positive direction movements
  105. uint16_t fsensor_oq_yd_sum;
  106. //! sum of errors during measurement
  107. uint16_t fsensor_oq_er_sum;
  108. //! max error counter value during measurement
  109. uint8_t fsensor_oq_er_max;
  110. //! minimum delta value
  111. int16_t fsensor_oq_yd_min;
  112. //! maximum delta value
  113. int16_t fsensor_oq_yd_max;
  114. //! sum of shutter value
  115. uint16_t fsensor_oq_sh_sum;
  116. //! @}
  117. #ifdef IR_SENSOR_ANALOG
  118. ClFsensorPCB oFsensorPCB;
  119. ClFsensorActionNA oFsensorActionNA;
  120. bool bIRsensorStateFlag=false;
  121. ShortTimer tIRsensorCheckTimer;
  122. #endif //IR_SENSOR_ANALOG
  123. void fsensor_stop_and_save_print(void)
  124. {
  125. puts_P(PSTR("fsensor_stop_and_save_print"));
  126. stop_and_save_print_to_ram(0, 0);
  127. fsensor_watch_runout = false;
  128. }
  129. #ifdef PAT9125
  130. // Reset all internal counters to zero, including stepper callbacks
  131. void fsensor_reset_err_cnt()
  132. {
  133. fsensor_err_cnt = 0;
  134. pat9125_y = 0;
  135. st_reset_fsensor();
  136. }
  137. void fsensor_set_axis_steps_per_unit(float u)
  138. {
  139. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  140. }
  141. #endif
  142. void fsensor_restore_print_and_continue(void)
  143. {
  144. puts_P(PSTR("fsensor_restore_print_and_continue"));
  145. fsensor_watch_runout = true;
  146. #ifdef PAT9125
  147. fsensor_reset_err_cnt();
  148. #endif
  149. restore_print_from_ram_and_continue(0);
  150. }
  151. // fsensor_checkpoint_print cuts the current print job at the current position,
  152. // allowing new instructions to be inserted in the middle
  153. void fsensor_checkpoint_print(void)
  154. {
  155. puts_P(PSTR("fsensor_checkpoint_print"));
  156. stop_and_save_print_to_ram(0, 0);
  157. restore_print_from_ram_and_continue(0);
  158. }
  159. #ifdef IR_SENSOR_ANALOG
  160. const char* FsensorIRVersionText()
  161. {
  162. switch(oFsensorPCB)
  163. {
  164. case ClFsensorPCB::_Old:
  165. return _T(MSG_IR_03_OR_OLDER);
  166. case ClFsensorPCB::_Rev04:
  167. return _T(MSG_IR_04_OR_NEWER);
  168. default:
  169. return _T(MSG_IR_UNKNOWN);
  170. }
  171. }
  172. #endif //IR_SENSOR_ANALOG
  173. void fsensor_init(void)
  174. {
  175. #ifdef PAT9125
  176. uint8_t pat9125 = pat9125_init();
  177. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  178. #endif //PAT9125
  179. uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  180. autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  181. not_responding = false;
  182. #ifdef PAT9125
  183. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  184. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  185. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  186. if (!pat9125){
  187. fsensor_enabled = 0; //disable sensor
  188. fsensor_not_responding = true;
  189. }
  190. #endif //PAT9125
  191. #ifdef IR_SENSOR_ANALOG
  192. bIRsensorStateFlag=false;
  193. oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  194. oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  195. // If the fsensor is not responding even at the start of the printer,
  196. // set this flag accordingly to show N/A in Settings->Filament sensor.
  197. // This is even valid for both fsensor board revisions (0.3 or older and 0.4).
  198. // Must be done after reading what type of fsensor board we have
  199. not_responding = ! fsensor_IR_check();
  200. #endif //IR_SENSOR_ANALOG
  201. if (fsensor_enabled){
  202. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  203. } else {
  204. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  205. }
  206. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  207. #ifdef IR_SENSOR_ANALOG
  208. printf_P(PSTR(" (sensor board revision:%S)\n"), FsensorIRVersionText());
  209. #else //IR_SENSOR_ANALOG
  210. MYSERIAL.println();
  211. #endif //IR_SENSOR_ANALOG
  212. #ifndef IR_SENSOR
  213. ir_sensor_detected = check_for_ir_sensor();
  214. #endif
  215. }
  216. bool fsensor_enable(bool bUpdateEEPROM)
  217. {
  218. #ifdef PAT9125
  219. (void)bUpdateEEPROM; // silence unused warning in this variant
  220. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  221. uint8_t pat9125 = pat9125_init();
  222. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  223. if (pat9125)
  224. fsensor_not_responding = false;
  225. else
  226. fsensor_not_responding = true;
  227. fsensor_enabled = pat9125 ? true : false;
  228. fsensor_watch_runout = true;
  229. fsensor_oq_meassure = false;
  230. fsensor_reset_err_cnt();
  231. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  232. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  233. }
  234. else //filament sensor is FINDA, always enable
  235. {
  236. fsensor_enabled = true;
  237. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  238. FSensorStateMenu = 1;
  239. }
  240. #else // PAT9125
  241. #ifdef IR_SENSOR_ANALOG
  242. if(!fsensor_IR_check())
  243. {
  244. bUpdateEEPROM=true;
  245. enabled=false;
  246. not_responding=true;
  247. FSensorStateMenu=0;
  248. }
  249. else {
  250. #endif //IR_SENSOR_ANALOG
  251. enabled=true;
  252. not_responding=false;
  253. FSensorStateMenu=1;
  254. #ifdef IR_SENSOR_ANALOG
  255. }
  256. #endif //IR_SENSOR_ANALOG
  257. if(bUpdateEEPROM)
  258. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  259. #endif //PAT9125
  260. return enabled;
  261. }
  262. void fsensor_disable(bool bUpdateEEPROM)
  263. {
  264. enabled = false;
  265. FSensorStateMenu = 0;
  266. if(bUpdateEEPROM)
  267. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  268. }
  269. void fsensor_autoload_set(bool State)
  270. {
  271. #ifdef PAT9125
  272. if (!State) fsensor_autoload_check_stop();
  273. #endif //PAT9125
  274. autoload_enabled = State;
  275. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, autoload_enabled);
  276. }
  277. void pciSetup(byte pin)
  278. {
  279. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  280. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  281. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  282. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  283. }
  284. #ifdef PAT9125
  285. void fsensor_autoload_check_start(void)
  286. {
  287. // puts_P(_N("fsensor_autoload_check_start\n"));
  288. if (!fsensor_enabled) return;
  289. if (!fsensor_autoload_enabled) return;
  290. if (fsensor_watch_autoload) return;
  291. if (!pat9125_update()) //update sensor
  292. {
  293. fsensor_disable();
  294. fsensor_not_responding = true;
  295. fsensor_watch_autoload = false;
  296. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  297. return;
  298. }
  299. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED"));
  300. fsensor_autoload_y = pat9125_y; //save current y value
  301. fsensor_autoload_c = 0; //reset number of changes counter
  302. fsensor_autoload_sum = 0;
  303. fsensor_autoload_last_millis = _millis();
  304. fsensor_watch_runout = false;
  305. fsensor_watch_autoload = true;
  306. }
  307. void fsensor_autoload_check_stop(void)
  308. {
  309. // puts_P(_N("fsensor_autoload_check_stop\n"));
  310. if (!fsensor_enabled) return;
  311. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  312. if (!fsensor_autoload_enabled) return;
  313. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  314. if (!fsensor_watch_autoload) return;
  315. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED"));
  316. fsensor_autoload_sum = 0;
  317. fsensor_watch_autoload = false;
  318. fsensor_watch_runout = true;
  319. fsensor_reset_err_cnt();
  320. }
  321. #endif //PAT9125
  322. bool fsensor_check_autoload(void)
  323. {
  324. if (!enabled) return false;
  325. if (!autoload_enabled) return false;
  326. if (fsensor_IR_detected()) {
  327. if (READ(IR_SENSOR_PIN)) {
  328. watch_autoload = true;
  329. }
  330. else if (watch_autoload == true) {
  331. watch_autoload = false;
  332. return true;
  333. }
  334. }
  335. #ifdef PAT9125
  336. if (!fsensor_watch_autoload)
  337. {
  338. fsensor_autoload_check_start();
  339. return false;
  340. }
  341. #if 0
  342. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  343. #endif
  344. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  345. fsensor_autoload_last_millis = _millis();
  346. if (!pat9125_update_y()) //update sensor
  347. {
  348. fsensor_disable();
  349. fsensor_not_responding = true;
  350. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  351. return false;
  352. }
  353. int16_t dy = pat9125_y - fsensor_autoload_y;
  354. if (dy) //? dy value is nonzero
  355. {
  356. if (dy > 0) //? delta-y value is positive (inserting)
  357. {
  358. fsensor_autoload_sum += dy;
  359. fsensor_autoload_c += 3; //increment change counter by 3
  360. }
  361. else if (fsensor_autoload_c > 1)
  362. fsensor_autoload_c -= 2; //decrement change counter by 2
  363. fsensor_autoload_y = pat9125_y; //save current value
  364. }
  365. else if (fsensor_autoload_c > 0)
  366. fsensor_autoload_c--;
  367. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  368. #if 0
  369. puts_P(_N("fsensor_check_autoload\n"));
  370. if (fsensor_autoload_c != fsensor_autoload_c_old)
  371. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  372. #endif
  373. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  374. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  375. {
  376. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  377. return true;
  378. }
  379. #endif //PAT9125
  380. return false;
  381. }
  382. #ifdef PAT9125
  383. void fsensor_oq_meassure_set(bool State)
  384. {
  385. fsensor_oq_meassure_enabled = State;
  386. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  387. }
  388. void fsensor_oq_meassure_start(uint8_t skip)
  389. {
  390. if (!fsensor_enabled) return;
  391. if (!fsensor_oq_meassure_enabled) return;
  392. puts_P(PSTR("fsensor_oq_meassure_start"));
  393. fsensor_oq_skipchunk = skip;
  394. fsensor_oq_samples = 0;
  395. fsensor_oq_st_sum = 0;
  396. fsensor_oq_yd_sum = 0;
  397. fsensor_oq_er_sum = 0;
  398. fsensor_oq_er_max = 0;
  399. fsensor_oq_yd_min = INT16_MAX;
  400. fsensor_oq_yd_max = 0;
  401. fsensor_oq_sh_sum = 0;
  402. pat9125_update();
  403. pat9125_y = 0;
  404. fsensor_oq_meassure = true;
  405. }
  406. void fsensor_oq_meassure_stop(void)
  407. {
  408. if (!fsensor_enabled) return;
  409. if (!fsensor_oq_meassure_enabled) return;
  410. printf_P(PSTR("fsensor_oq_meassure_stop, %u samples\n"), fsensor_oq_samples);
  411. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  412. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  413. fsensor_oq_meassure = false;
  414. }
  415. #ifdef FSENSOR_QUALITY
  416. const char _OK[] PROGMEM = "OK";
  417. const char _NG[] PROGMEM = "NG!";
  418. bool fsensor_oq_result(void)
  419. {
  420. if (!fsensor_enabled) return true;
  421. if (!fsensor_oq_meassure_enabled) return true;
  422. puts_P(_N("fsensor_oq_result"));
  423. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  424. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  425. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  426. printf_P(_N(" er_max = %u %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  427. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  428. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  429. printf_P(_N(" yd_avg = %u %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  430. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  431. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  432. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  433. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  434. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  435. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  436. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  437. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  438. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  439. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  440. if (yd_qua >= 8) res_sh_avg = true;
  441. printf_P(_N(" sh_avg = %u %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  442. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  443. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  444. return res;
  445. }
  446. #endif //FSENSOR_QUALITY
  447. FORCE_INLINE static void fsensor_isr(int st_cnt)
  448. {
  449. uint8_t old_err_cnt = fsensor_err_cnt;
  450. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  451. if (!pat9125_res)
  452. {
  453. fsensor_disable();
  454. fsensor_not_responding = true;
  455. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  456. }
  457. if (st_cnt != 0)
  458. {
  459. // movement was planned, check for sensor movement
  460. int8_t st_dir = st_cnt >= 0;
  461. int8_t pat9125_dir = pat9125_y >= 0;
  462. if (pat9125_y == 0)
  463. {
  464. if (st_dir)
  465. {
  466. // no movement detected: we might be within a blind sensor range,
  467. // update the frame and shutter parameters we didn't earlier
  468. if (!fsensor_oq_meassure)
  469. pat9125_update_bs();
  470. // increment the error count only if underexposed: filament likely missing
  471. if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
  472. {
  473. // check for a dark frame (<30% avg brightness) with long exposure
  474. ++fsensor_err_cnt;
  475. }
  476. else
  477. {
  478. // good frame, filament likely present
  479. if(fsensor_err_cnt) --fsensor_err_cnt;
  480. }
  481. }
  482. }
  483. else if (pat9125_dir != st_dir)
  484. {
  485. // detected direction opposite of motor movement
  486. if (st_dir) ++fsensor_err_cnt;
  487. }
  488. else if (pat9125_dir == st_dir)
  489. {
  490. // direction agreeing with planned movement
  491. if (fsensor_err_cnt) --fsensor_err_cnt;
  492. }
  493. if (st_dir && fsensor_oq_meassure)
  494. {
  495. // extruding with quality assessment
  496. if (fsensor_oq_skipchunk)
  497. {
  498. fsensor_oq_skipchunk--;
  499. fsensor_err_cnt = 0;
  500. }
  501. else
  502. {
  503. if (st_cnt == fsensor_chunk_len)
  504. {
  505. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  506. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  507. }
  508. fsensor_oq_samples++;
  509. fsensor_oq_st_sum += st_cnt;
  510. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  511. if (fsensor_err_cnt > old_err_cnt)
  512. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  513. if (fsensor_oq_er_max < fsensor_err_cnt)
  514. fsensor_oq_er_max = fsensor_err_cnt;
  515. fsensor_oq_sh_sum += pat9125_s;
  516. }
  517. }
  518. }
  519. #ifdef DEBUG_FSENSOR_LOG
  520. if (fsensor_log)
  521. {
  522. printf_P(_N("FSENSOR cnt=%d dy=%d err=%u %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  523. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%u yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  524. }
  525. #endif //DEBUG_FSENSOR_LOG
  526. pat9125_y = 0;
  527. }
  528. ISR(FSENSOR_INT_PIN_VECT)
  529. {
  530. if (mmu_enabled || fsensor_IR_detected()) return;
  531. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  532. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  533. // prevent isr re-entry
  534. static bool _lock = false;
  535. if (!_lock)
  536. {
  537. // fetch fsensor_st_cnt atomically
  538. int st_cnt = fsensor_st_cnt;
  539. fsensor_st_cnt = 0;
  540. _lock = true;
  541. sei();
  542. fsensor_isr(st_cnt);
  543. cli();
  544. _lock = false;
  545. }
  546. }
  547. void fsensor_setup_interrupt(void)
  548. {
  549. WRITE(FSENSOR_INT_PIN, 0);
  550. SET_OUTPUT(FSENSOR_INT_PIN);
  551. fsensor_int_pin_old = 0;
  552. //pciSetup(FSENSOR_INT_PIN);
  553. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  554. // so interrupt registers settings:
  555. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  556. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  557. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  558. }
  559. void fsensor_st_block_chunk(int cnt)
  560. {
  561. if (!fsensor_enabled) return;
  562. fsensor_st_cnt += cnt;
  563. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  564. WRITE(FSENSOR_INT_PIN, !READ(FSENSOR_INT_PIN));
  565. }
  566. #endif //PAT9125
  567. //! Common code for enqueing M600 and supplemental codes into the command queue.
  568. //! Used both for the IR sensor and the PAT9125
  569. void fsensor_enque_M600(){
  570. puts_P(PSTR("fsensor_update - M600"));
  571. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  572. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  573. enquecommand_front_P((PSTR("M600")));
  574. }
  575. //! @brief filament sensor update (perform M600 on filament runout)
  576. //!
  577. //! Works only if filament sensor is enabled.
  578. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  579. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  580. void fsensor_update(void)
  581. {
  582. #ifdef PAT9125
  583. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  584. {
  585. fsensor_stop_and_save_print();
  586. KEEPALIVE_STATE(IN_HANDLER);
  587. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  588. fsensor_autoload_enabled = false;
  589. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  590. fsensor_oq_meassure_enabled = true;
  591. // move the nozzle away while checking the filament
  592. current_position[Z_AXIS] += 0.8;
  593. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  594. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  595. st_synchronize();
  596. // check the filament in isolation
  597. fsensor_reset_err_cnt();
  598. fsensor_oq_meassure_start(0);
  599. float e_tmp = current_position[E_AXIS];
  600. current_position[E_AXIS] -= 3;
  601. plan_buffer_line_curposXYZE(250/60);
  602. current_position[E_AXIS] = e_tmp;
  603. plan_buffer_line_curposXYZE(200/60);
  604. st_synchronize();
  605. fsensor_oq_meassure_stop();
  606. bool err = false;
  607. err |= (fsensor_err_cnt > 0); // final error count is non-zero
  608. err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
  609. err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
  610. fsensor_restore_print_and_continue();
  611. fsensor_autoload_enabled = autoload_enabled_tmp;
  612. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  613. unsigned long now = _millis();
  614. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  615. fsensor_softfail_ccnt = 0;
  616. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  617. {
  618. puts_P(PSTR("fsensor_err_cnt = 0"));
  619. ++fsensor_softfail;
  620. ++fsensor_softfail_ccnt;
  621. fsensor_softfail_last = now;
  622. }
  623. else
  624. {
  625. fsensor_softfail_ccnt = 0;
  626. fsensor_softfail_last = 0;
  627. fsensor_enque_M600();
  628. }
  629. }
  630. #else //PAT9125
  631. if (CHECK_FSENSOR && fsensor_IR_detected())
  632. {
  633. if (READ(IR_SENSOR_PIN))
  634. { // IR_SENSOR_PIN ~ H
  635. #ifdef IR_SENSOR_ANALOG
  636. if(!bIRsensorStateFlag)
  637. {
  638. bIRsensorStateFlag=true;
  639. tIRsensorCheckTimer.start();
  640. }
  641. else
  642. {
  643. if(tIRsensorCheckTimer.expired(IR_SENSOR_STEADY))
  644. {
  645. uint8_t nMUX1,nMUX2;
  646. uint16_t nADC;
  647. bIRsensorStateFlag=false;
  648. // sequence for direct data reading from AD converter
  649. DISABLE_TEMPERATURE_INTERRUPT();
  650. nMUX1=ADMUX; // ADMUX saving
  651. nMUX2=ADCSRB;
  652. adc_setmux(VOLT_IR_PIN);
  653. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  654. while(ADCSRA&(1<<ADSC))
  655. ;
  656. ADCSRA|=(1<<ADSC); // second conversion used
  657. while(ADCSRA&(1<<ADSC))
  658. ;
  659. nADC=ADC;
  660. ADMUX=nMUX1; // ADMUX restoring
  661. ADCSRB=nMUX2;
  662. ENABLE_TEMPERATURE_INTERRUPT();
  663. // end of sequence for ...
  664. // Detection of correct function of fsensor v04 - it must NOT read >4.6V
  665. // If it does, it means a disconnected cables or faulty board
  666. if( (oFsensorPCB == ClFsensorPCB::_Rev04) && ( (nADC*OVERSAMPLENR) > IRsensor_Hopen_TRESHOLD ) )
  667. {
  668. fsensor_disable();
  669. not_responding = true;
  670. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  671. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  672. // if we are printing and FS action is set to "Pause", force pause the print
  673. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  674. lcd_pause_print();
  675. }
  676. else
  677. {
  678. #endif //IR_SENSOR_ANALOG
  679. fsensor_checkpoint_print();
  680. fsensor_enque_M600();
  681. #ifdef IR_SENSOR_ANALOG
  682. }
  683. }
  684. }
  685. }
  686. else
  687. { // IR_SENSOR_PIN ~ L
  688. bIRsensorStateFlag=false;
  689. #endif //IR_SENSOR_ANALOG
  690. }
  691. }
  692. #endif //PAT9125
  693. }
  694. #ifdef IR_SENSOR_ANALOG
  695. /// This is called only upon start of the printer or when switching the fsensor ON in the menu
  696. /// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
  697. bool fsensor_IR_check(){
  698. if( IRsensor_Lmax_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_Hmin_TRESHOLD ){
  699. /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
  700. /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
  701. /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
  702. /// and would have been considered more like a sabotage than normal printer operation
  703. puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));
  704. return false;
  705. }
  706. if( oFsensorPCB == ClFsensorPCB::_Rev04 ){
  707. /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
  708. if( IRsensor_Hopen_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_VMax_TRESHOLD ){
  709. puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));
  710. return false;
  711. }
  712. /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure
  713. #if 0 //Disabled as it has to be decided if we gonna use this or not.
  714. if( IRsensor_Hopen_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_VMax_TRESHOLD ){
  715. puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));
  716. return false;
  717. }
  718. #endif
  719. }
  720. /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false
  721. #if 0
  722. if( (oFsensorPCB == ClFsensorPCB::_Undef) && ( current_voltage_raw_IR > IRsensor_Lmax_TRESHOLD ) ){
  723. puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));
  724. return false;
  725. }
  726. #endif
  727. // otherwise the IR fsensor is considered working correctly
  728. return true;
  729. }
  730. #endif //IR_SENSOR_ANALOG
  731. /// if IR_SENSOR is NOT defined, it tries to locate it.
  732. /// @returns true if idler IR sensor was detected, otherwise returns false
  733. #ifndef IR_SENSOR
  734. bool check_for_ir_sensor() {
  735. bool detected = false;
  736. // if IR_SENSOR_PIN input is low and pat9125sensor is not present we detected idler sensor
  737. if ((READ(IR_SENSOR_PIN) == 0)
  738. #ifdef PAT9125
  739. && fsensor_not_responding
  740. #endif // PAT9125
  741. ) {
  742. detected = true;
  743. // printf_P(PSTR("Idler IR sensor detected\n"));
  744. } else {
  745. // printf_P(PSTR("Idler IR sensor not detected\n"));
  746. }
  747. return detected;
  748. }
  749. #endif // IR_SENSOR