Marlin_main.cpp 264 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(WELCOME_MSG);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X"));
  552. enquecommand_P(PSTR("G28 Y"));
  553. enquecommand_P(PSTR("CRASH_RECOVER"));
  554. }
  555. else
  556. {
  557. enquecommand_P(PSTR("CRASH_CANCEL"));
  558. }
  559. }
  560. void crashdet_recover()
  561. {
  562. crashdet_restore_print_and_continue();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. void crashdet_cancel()
  566. {
  567. card.sdprinting = false;
  568. card.closefile();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. #ifdef MESH_BED_LEVELING
  572. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  573. #endif
  574. // Factory reset function
  575. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  576. // Level input parameter sets depth of reset
  577. // Quiet parameter masks all waitings for user interact.
  578. int er_progress = 0;
  579. void factory_reset(char level, bool quiet)
  580. {
  581. lcd_implementation_clear();
  582. int cursor_pos = 0;
  583. switch (level) {
  584. // Level 0: Language reset
  585. case 0:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. lcd_force_language_selection();
  590. break;
  591. //Level 1: Reset statistics
  592. case 1:
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  597. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  601. lcd_menu_statistics();
  602. break;
  603. // Level 2: Prepare for shipping
  604. case 2:
  605. //lcd_printPGM(PSTR("Factory RESET"));
  606. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  607. // Force language selection at the next boot up.
  608. lcd_force_language_selection();
  609. // Force the "Follow calibration flow" message at the next boot up.
  610. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  611. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  612. farm_no = 0;
  613. farm_mode == false;
  614. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  615. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  616. WRITE(BEEPER, HIGH);
  617. _delay_ms(100);
  618. WRITE(BEEPER, LOW);
  619. //_delay_ms(2000);
  620. break;
  621. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  622. case 3:
  623. lcd_printPGM(PSTR("Factory RESET"));
  624. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. er_progress = 0;
  629. lcd_print_at_PGM(3, 3, PSTR(" "));
  630. lcd_implementation_print_at(3, 3, er_progress);
  631. // Erase EEPROM
  632. for (int i = 0; i < 4096; i++) {
  633. eeprom_write_byte((uint8_t*)i, 0xFF);
  634. if (i % 41 == 0) {
  635. er_progress++;
  636. lcd_print_at_PGM(3, 3, PSTR(" "));
  637. lcd_implementation_print_at(3, 3, er_progress);
  638. lcd_printPGM(PSTR("%"));
  639. }
  640. }
  641. break;
  642. case 4:
  643. bowden_menu();
  644. break;
  645. default:
  646. break;
  647. }
  648. }
  649. #include "LiquidCrystal.h"
  650. extern LiquidCrystal lcd;
  651. FILE _lcdout = {0};
  652. int lcd_putchar(char c, FILE *stream)
  653. {
  654. lcd.write(c);
  655. return 0;
  656. }
  657. FILE _uartout = {0};
  658. int uart_putchar(char c, FILE *stream)
  659. {
  660. MYSERIAL.write(c);
  661. return 0;
  662. }
  663. void lcd_splash()
  664. {
  665. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  666. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  667. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  668. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  669. }
  670. void factory_reset()
  671. {
  672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  673. if (!READ(BTN_ENC))
  674. {
  675. _delay_ms(1000);
  676. if (!READ(BTN_ENC))
  677. {
  678. lcd_implementation_clear();
  679. lcd_printPGM(PSTR("Factory RESET"));
  680. SET_OUTPUT(BEEPER);
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level, false);
  687. switch (level) {
  688. case 0: _delay_ms(0); break;
  689. case 1: _delay_ms(0); break;
  690. case 2: _delay_ms(0); break;
  691. case 3: _delay_ms(0); break;
  692. }
  693. // _delay_ms(100);
  694. /*
  695. #ifdef MESH_BED_LEVELING
  696. _delay_ms(2000);
  697. if (!READ(BTN_ENC))
  698. {
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(200);
  703. WRITE(BEEPER, HIGH);
  704. _delay_ms(100);
  705. WRITE(BEEPER, LOW);
  706. int _z = 0;
  707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  708. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  711. }
  712. else
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. }
  718. #endif // mesh */
  719. }
  720. }
  721. else
  722. {
  723. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  724. }
  725. KEEPALIVE_STATE(IN_HANDLER);
  726. }
  727. // "Setup" function is called by the Arduino framework on startup.
  728. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  729. // are initialized by the main() routine provided by the Arduino framework.
  730. void setup()
  731. {
  732. lcd_init();
  733. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  734. lcd_splash();
  735. setup_killpin();
  736. setup_powerhold();
  737. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  738. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  739. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  740. if (farm_no == 0xFFFF) farm_no = 0;
  741. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  742. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  743. if (farm_mode)
  744. {
  745. prusa_statistics(8);
  746. selectedSerialPort = 1;
  747. }
  748. MYSERIAL.begin(BAUDRATE);
  749. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  750. stdout = uartout;
  751. SERIAL_PROTOCOLLNPGM("start");
  752. SERIAL_ECHO_START;
  753. printf_P(PSTR(" "FW_version_build"\n"));
  754. #if 0
  755. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  756. for (int i = 0; i < 4096; ++i) {
  757. int b = eeprom_read_byte((unsigned char*)i);
  758. if (b != 255) {
  759. SERIAL_ECHO(i);
  760. SERIAL_ECHO(":");
  761. SERIAL_ECHO(b);
  762. SERIAL_ECHOLN("");
  763. }
  764. }
  765. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  766. #endif
  767. // Check startup - does nothing if bootloader sets MCUSR to 0
  768. byte mcu = MCUSR;
  769. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  770. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  771. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  772. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  773. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  774. if (mcu & 1) puts_P(MSG_POWERUP);
  775. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  776. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  777. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  778. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  779. MCUSR = 0;
  780. //SERIAL_ECHORPGM(MSG_MARLIN);
  781. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  782. #ifdef STRING_VERSION_CONFIG_H
  783. #ifdef STRING_CONFIG_H_AUTHOR
  784. SERIAL_ECHO_START;
  785. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  786. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  787. SERIAL_ECHORPGM(MSG_AUTHOR);
  788. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  789. SERIAL_ECHOPGM("Compiled: ");
  790. SERIAL_ECHOLNPGM(__DATE__);
  791. #endif
  792. #endif
  793. SERIAL_ECHO_START;
  794. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  795. SERIAL_ECHO(freeMemory());
  796. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  797. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  798. //lcd_update_enable(false); // why do we need this?? - andre
  799. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  800. Config_RetrieveSettings(EEPROM_OFFSET);
  801. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  802. tp_init(); // Initialize temperature loop
  803. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  804. plan_init(); // Initialize planner;
  805. watchdog_init();
  806. factory_reset();
  807. #ifdef TMC2130
  808. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  809. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  810. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  811. if (crashdet)
  812. {
  813. crashdet_enable();
  814. MYSERIAL.println("CrashDetect ENABLED!");
  815. }
  816. else
  817. {
  818. crashdet_disable();
  819. MYSERIAL.println("CrashDetect DISABLED");
  820. }
  821. #endif //TMC2130
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. #ifdef PAT9125
  829. fsensor_init();
  830. #endif //PAT9125
  831. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  832. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  833. #endif
  834. #ifdef DIGIPOT_I2C
  835. digipot_i2c_init();
  836. #endif
  837. setup_homepin();
  838. if (1) {
  839. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  840. // try to run to zero phase before powering the Z motor.
  841. // Move in negative direction
  842. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  843. // Round the current micro-micro steps to micro steps.
  844. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  845. // Until the phase counter is reset to zero.
  846. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  847. delay(2);
  848. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  849. delay(2);
  850. }
  851. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  852. }
  853. #if defined(Z_AXIS_ALWAYS_ON)
  854. enable_z();
  855. #endif
  856. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  857. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  858. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  859. if (farm_no == 0xFFFF) farm_no = 0;
  860. if (farm_mode)
  861. {
  862. prusa_statistics(8);
  863. }
  864. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  865. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  866. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  867. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  868. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  869. // where all the EEPROM entries are set to 0x0ff.
  870. // Once a firmware boots up, it forces at least a language selection, which changes
  871. // EEPROM_LANG to number lower than 0x0ff.
  872. // 1) Set a high power mode.
  873. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  874. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  875. }
  876. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  877. // but this times out if a blocking dialog is shown in setup().
  878. card.initsd();
  879. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  880. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  881. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  882. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  883. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  884. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  885. #ifdef SNMM
  886. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  887. int _z = BOWDEN_LENGTH;
  888. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  889. }
  890. #endif
  891. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  892. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  893. // is being written into the EEPROM, so the update procedure will be triggered only once.
  894. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  895. if (lang_selected >= LANG_NUM){
  896. lcd_mylang();
  897. }
  898. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  899. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  900. temp_cal_active = false;
  901. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  902. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  903. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  904. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  905. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  906. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  907. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  908. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  909. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  910. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  911. temp_cal_active = true;
  912. }
  913. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  914. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  915. }
  916. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  917. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  918. }
  919. check_babystep(); //checking if Z babystep is in allowed range
  920. setup_uvlo_interrupt();
  921. #ifndef DEBUG_DISABLE_FANCHECK
  922. setup_fan_interrupt();
  923. #endif //DEBUG_DISABLE_FANCHECK
  924. #ifndef DEBUG_DISABLE_FSENSORCHECK
  925. fsensor_setup_interrupt();
  926. #endif //DEBUG_DISABLE_FSENSORCHECK
  927. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  928. #ifndef DEBUG_DISABLE_STARTMSGS
  929. KEEPALIVE_STATE(PAUSED_FOR_USER);
  930. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  931. lcd_wizard(0);
  932. }
  933. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  934. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  935. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  936. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  937. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  938. // Show the message.
  939. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  940. }
  941. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  942. // Show the message.
  943. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  944. lcd_update_enable(true);
  945. }
  946. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  947. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  948. lcd_update_enable(true);
  949. }
  950. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  951. // Show the message.
  952. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  953. }
  954. }
  955. KEEPALIVE_STATE(IN_PROCESS);
  956. #endif //DEBUG_DISABLE_STARTMSGS
  957. lcd_update_enable(true);
  958. lcd_implementation_clear();
  959. lcd_update(2);
  960. // Store the currently running firmware into an eeprom,
  961. // so the next time the firmware gets updated, it will know from which version it has been updated.
  962. update_current_firmware_version_to_eeprom();
  963. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  964. /*
  965. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  966. else {
  967. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  968. lcd_update_enable(true);
  969. lcd_update(2);
  970. lcd_setstatuspgm(WELCOME_MSG);
  971. }
  972. */
  973. manage_heater(); // Update temperatures
  974. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  975. MYSERIAL.println("Power panic detected!");
  976. MYSERIAL.print("Current bed temp:");
  977. MYSERIAL.println(degBed());
  978. MYSERIAL.print("Saved bed temp:");
  979. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  980. #endif
  981. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  982. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  983. MYSERIAL.println("Automatic recovery!");
  984. #endif
  985. recover_print(1);
  986. }
  987. else{
  988. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  989. MYSERIAL.println("Normal recovery!");
  990. #endif
  991. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  992. else {
  993. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  994. lcd_update_enable(true);
  995. lcd_update(2);
  996. lcd_setstatuspgm(WELCOME_MSG);
  997. }
  998. }
  999. }
  1000. KEEPALIVE_STATE(NOT_BUSY);
  1001. wdt_enable(WDTO_4S);
  1002. }
  1003. #ifdef PAT9125
  1004. void fsensor_init() {
  1005. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1006. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1007. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1008. if (!pat9125)
  1009. {
  1010. fsensor = 0; //disable sensor
  1011. fsensor_not_responding = true;
  1012. }
  1013. else {
  1014. fsensor_not_responding = false;
  1015. }
  1016. puts_P(PSTR("FSensor "));
  1017. if (fsensor)
  1018. {
  1019. puts_P(PSTR("ENABLED\n"));
  1020. fsensor_enable();
  1021. }
  1022. else
  1023. {
  1024. puts_P(PSTR("DISABLED\n"));
  1025. fsensor_disable();
  1026. }
  1027. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1028. filament_autoload_enabled = false;
  1029. fsensor_disable();
  1030. #endif //DEBUG_DISABLE_FSENSORCHECK
  1031. }
  1032. #endif //PAT9125
  1033. void trace();
  1034. #define CHUNK_SIZE 64 // bytes
  1035. #define SAFETY_MARGIN 1
  1036. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1037. int chunkHead = 0;
  1038. int serial_read_stream() {
  1039. setTargetHotend(0, 0);
  1040. setTargetBed(0);
  1041. lcd_implementation_clear();
  1042. lcd_printPGM(PSTR(" Upload in progress"));
  1043. // first wait for how many bytes we will receive
  1044. uint32_t bytesToReceive;
  1045. // receive the four bytes
  1046. char bytesToReceiveBuffer[4];
  1047. for (int i=0; i<4; i++) {
  1048. int data;
  1049. while ((data = MYSERIAL.read()) == -1) {};
  1050. bytesToReceiveBuffer[i] = data;
  1051. }
  1052. // make it a uint32
  1053. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1054. // we're ready, notify the sender
  1055. MYSERIAL.write('+');
  1056. // lock in the routine
  1057. uint32_t receivedBytes = 0;
  1058. while (prusa_sd_card_upload) {
  1059. int i;
  1060. for (i=0; i<CHUNK_SIZE; i++) {
  1061. int data;
  1062. // check if we're not done
  1063. if (receivedBytes == bytesToReceive) {
  1064. break;
  1065. }
  1066. // read the next byte
  1067. while ((data = MYSERIAL.read()) == -1) {};
  1068. receivedBytes++;
  1069. // save it to the chunk
  1070. chunk[i] = data;
  1071. }
  1072. // write the chunk to SD
  1073. card.write_command_no_newline(&chunk[0]);
  1074. // notify the sender we're ready for more data
  1075. MYSERIAL.write('+');
  1076. // for safety
  1077. manage_heater();
  1078. // check if we're done
  1079. if(receivedBytes == bytesToReceive) {
  1080. trace(); // beep
  1081. card.closefile();
  1082. prusa_sd_card_upload = false;
  1083. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1084. return 0;
  1085. }
  1086. }
  1087. }
  1088. #ifdef HOST_KEEPALIVE_FEATURE
  1089. /**
  1090. * Output a "busy" message at regular intervals
  1091. * while the machine is not accepting commands.
  1092. */
  1093. void host_keepalive() {
  1094. if (farm_mode) return;
  1095. long ms = millis();
  1096. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1097. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1098. switch (busy_state) {
  1099. case IN_HANDLER:
  1100. case IN_PROCESS:
  1101. SERIAL_ECHO_START;
  1102. SERIAL_ECHOLNPGM("busy: processing");
  1103. break;
  1104. case PAUSED_FOR_USER:
  1105. SERIAL_ECHO_START;
  1106. SERIAL_ECHOLNPGM("busy: paused for user");
  1107. break;
  1108. case PAUSED_FOR_INPUT:
  1109. SERIAL_ECHO_START;
  1110. SERIAL_ECHOLNPGM("busy: paused for input");
  1111. break;
  1112. default:
  1113. break;
  1114. }
  1115. }
  1116. prev_busy_signal_ms = ms;
  1117. }
  1118. #endif
  1119. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1120. // Before loop(), the setup() function is called by the main() routine.
  1121. void loop()
  1122. {
  1123. KEEPALIVE_STATE(NOT_BUSY);
  1124. bool stack_integrity = true;
  1125. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1126. {
  1127. is_usb_printing = true;
  1128. usb_printing_counter--;
  1129. _usb_timer = millis();
  1130. }
  1131. if (usb_printing_counter == 0)
  1132. {
  1133. is_usb_printing = false;
  1134. }
  1135. if (prusa_sd_card_upload)
  1136. {
  1137. //we read byte-by byte
  1138. serial_read_stream();
  1139. } else
  1140. {
  1141. get_command();
  1142. #ifdef SDSUPPORT
  1143. card.checkautostart(false);
  1144. #endif
  1145. if(buflen)
  1146. {
  1147. cmdbuffer_front_already_processed = false;
  1148. #ifdef SDSUPPORT
  1149. if(card.saving)
  1150. {
  1151. // Saving a G-code file onto an SD-card is in progress.
  1152. // Saving starts with M28, saving until M29 is seen.
  1153. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1154. card.write_command(CMDBUFFER_CURRENT_STRING);
  1155. if(card.logging)
  1156. process_commands();
  1157. else
  1158. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1159. } else {
  1160. card.closefile();
  1161. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1162. }
  1163. } else {
  1164. process_commands();
  1165. }
  1166. #else
  1167. process_commands();
  1168. #endif //SDSUPPORT
  1169. if (! cmdbuffer_front_already_processed && buflen)
  1170. {
  1171. cli();
  1172. union {
  1173. struct {
  1174. char lo;
  1175. char hi;
  1176. } lohi;
  1177. uint16_t value;
  1178. } sdlen;
  1179. sdlen.value = 0;
  1180. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1181. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1182. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1183. }
  1184. cmdqueue_pop_front();
  1185. planner_add_sd_length(sdlen.value);
  1186. sei();
  1187. }
  1188. host_keepalive();
  1189. }
  1190. }
  1191. //check heater every n milliseconds
  1192. manage_heater();
  1193. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1194. checkHitEndstops();
  1195. lcd_update();
  1196. #ifdef PAT9125
  1197. fsensor_update();
  1198. #endif //PAT9125
  1199. #ifdef TMC2130
  1200. tmc2130_check_overtemp();
  1201. if (tmc2130_sg_crash)
  1202. {
  1203. tmc2130_sg_crash = false;
  1204. // crashdet_stop_and_save_print();
  1205. enquecommand_P((PSTR("CRASH_DETECTED")));
  1206. }
  1207. #endif //TMC2130
  1208. }
  1209. #define DEFINE_PGM_READ_ANY(type, reader) \
  1210. static inline type pgm_read_any(const type *p) \
  1211. { return pgm_read_##reader##_near(p); }
  1212. DEFINE_PGM_READ_ANY(float, float);
  1213. DEFINE_PGM_READ_ANY(signed char, byte);
  1214. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1215. static const PROGMEM type array##_P[3] = \
  1216. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1217. static inline type array(int axis) \
  1218. { return pgm_read_any(&array##_P[axis]); } \
  1219. type array##_ext(int axis) \
  1220. { return pgm_read_any(&array##_P[axis]); }
  1221. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1222. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1223. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1224. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1225. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1226. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1227. static void axis_is_at_home(int axis) {
  1228. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1229. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1230. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1231. }
  1232. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1233. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1234. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1235. saved_feedrate = feedrate;
  1236. saved_feedmultiply = feedmultiply;
  1237. feedmultiply = 100;
  1238. previous_millis_cmd = millis();
  1239. enable_endstops(enable_endstops_now);
  1240. }
  1241. static void clean_up_after_endstop_move() {
  1242. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1243. enable_endstops(false);
  1244. #endif
  1245. feedrate = saved_feedrate;
  1246. feedmultiply = saved_feedmultiply;
  1247. previous_millis_cmd = millis();
  1248. }
  1249. #ifdef ENABLE_AUTO_BED_LEVELING
  1250. #ifdef AUTO_BED_LEVELING_GRID
  1251. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1252. {
  1253. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1254. planeNormal.debug("planeNormal");
  1255. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1256. //bedLevel.debug("bedLevel");
  1257. //plan_bed_level_matrix.debug("bed level before");
  1258. //vector_3 uncorrected_position = plan_get_position_mm();
  1259. //uncorrected_position.debug("position before");
  1260. vector_3 corrected_position = plan_get_position();
  1261. // corrected_position.debug("position after");
  1262. current_position[X_AXIS] = corrected_position.x;
  1263. current_position[Y_AXIS] = corrected_position.y;
  1264. current_position[Z_AXIS] = corrected_position.z;
  1265. // put the bed at 0 so we don't go below it.
  1266. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1268. }
  1269. #else // not AUTO_BED_LEVELING_GRID
  1270. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1271. plan_bed_level_matrix.set_to_identity();
  1272. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1273. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1274. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1275. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1276. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1277. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1278. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1279. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1280. vector_3 corrected_position = plan_get_position();
  1281. current_position[X_AXIS] = corrected_position.x;
  1282. current_position[Y_AXIS] = corrected_position.y;
  1283. current_position[Z_AXIS] = corrected_position.z;
  1284. // put the bed at 0 so we don't go below it.
  1285. current_position[Z_AXIS] = zprobe_zoffset;
  1286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1287. }
  1288. #endif // AUTO_BED_LEVELING_GRID
  1289. static void run_z_probe() {
  1290. plan_bed_level_matrix.set_to_identity();
  1291. feedrate = homing_feedrate[Z_AXIS];
  1292. // move down until you find the bed
  1293. float zPosition = -10;
  1294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. // we have to let the planner know where we are right now as it is not where we said to go.
  1297. zPosition = st_get_position_mm(Z_AXIS);
  1298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1299. // move up the retract distance
  1300. zPosition += home_retract_mm(Z_AXIS);
  1301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. // move back down slowly to find bed
  1304. feedrate = homing_feedrate[Z_AXIS]/4;
  1305. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1307. st_synchronize();
  1308. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1309. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1311. }
  1312. static void do_blocking_move_to(float x, float y, float z) {
  1313. float oldFeedRate = feedrate;
  1314. feedrate = homing_feedrate[Z_AXIS];
  1315. current_position[Z_AXIS] = z;
  1316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1317. st_synchronize();
  1318. feedrate = XY_TRAVEL_SPEED;
  1319. current_position[X_AXIS] = x;
  1320. current_position[Y_AXIS] = y;
  1321. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1322. st_synchronize();
  1323. feedrate = oldFeedRate;
  1324. }
  1325. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1326. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1327. }
  1328. /// Probe bed height at position (x,y), returns the measured z value
  1329. static float probe_pt(float x, float y, float z_before) {
  1330. // move to right place
  1331. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1332. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1333. run_z_probe();
  1334. float measured_z = current_position[Z_AXIS];
  1335. SERIAL_PROTOCOLRPGM(MSG_BED);
  1336. SERIAL_PROTOCOLPGM(" x: ");
  1337. SERIAL_PROTOCOL(x);
  1338. SERIAL_PROTOCOLPGM(" y: ");
  1339. SERIAL_PROTOCOL(y);
  1340. SERIAL_PROTOCOLPGM(" z: ");
  1341. SERIAL_PROTOCOL(measured_z);
  1342. SERIAL_PROTOCOLPGM("\n");
  1343. return measured_z;
  1344. }
  1345. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1346. #ifdef LIN_ADVANCE
  1347. /**
  1348. * M900: Set and/or Get advance K factor and WH/D ratio
  1349. *
  1350. * K<factor> Set advance K factor
  1351. * R<ratio> Set ratio directly (overrides WH/D)
  1352. * W<width> H<height> D<diam> Set ratio from WH/D
  1353. */
  1354. inline void gcode_M900() {
  1355. st_synchronize();
  1356. const float newK = code_seen('K') ? code_value_float() : -1;
  1357. if (newK >= 0) extruder_advance_k = newK;
  1358. float newR = code_seen('R') ? code_value_float() : -1;
  1359. if (newR < 0) {
  1360. const float newD = code_seen('D') ? code_value_float() : -1,
  1361. newW = code_seen('W') ? code_value_float() : -1,
  1362. newH = code_seen('H') ? code_value_float() : -1;
  1363. if (newD >= 0 && newW >= 0 && newH >= 0)
  1364. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1365. }
  1366. if (newR >= 0) advance_ed_ratio = newR;
  1367. SERIAL_ECHO_START;
  1368. SERIAL_ECHOPGM("Advance K=");
  1369. SERIAL_ECHOLN(extruder_advance_k);
  1370. SERIAL_ECHOPGM(" E/D=");
  1371. const float ratio = advance_ed_ratio;
  1372. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1373. }
  1374. #endif // LIN_ADVANCE
  1375. bool check_commands() {
  1376. bool end_command_found = false;
  1377. while (buflen)
  1378. {
  1379. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1380. if (!cmdbuffer_front_already_processed)
  1381. cmdqueue_pop_front();
  1382. cmdbuffer_front_already_processed = false;
  1383. }
  1384. return end_command_found;
  1385. }
  1386. #ifdef TMC2130
  1387. bool calibrate_z_auto()
  1388. {
  1389. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1390. lcd_implementation_clear();
  1391. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1392. bool endstops_enabled = enable_endstops(true);
  1393. int axis_up_dir = -home_dir(Z_AXIS);
  1394. tmc2130_home_enter(Z_AXIS_MASK);
  1395. current_position[Z_AXIS] = 0;
  1396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. set_destination_to_current();
  1398. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1399. feedrate = homing_feedrate[Z_AXIS];
  1400. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1401. st_synchronize();
  1402. // current_position[axis] = 0;
  1403. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1404. tmc2130_home_exit();
  1405. enable_endstops(false);
  1406. current_position[Z_AXIS] = 0;
  1407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1408. set_destination_to_current();
  1409. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1410. feedrate = homing_feedrate[Z_AXIS] / 2;
  1411. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1412. st_synchronize();
  1413. enable_endstops(endstops_enabled);
  1414. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1416. return true;
  1417. }
  1418. #endif //TMC2130
  1419. void homeaxis(int axis)
  1420. {
  1421. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1422. #define HOMEAXIS_DO(LETTER) \
  1423. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1424. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1425. {
  1426. int axis_home_dir = home_dir(axis);
  1427. feedrate = homing_feedrate[axis];
  1428. #ifdef TMC2130
  1429. tmc2130_home_enter(X_AXIS_MASK << axis);
  1430. #endif
  1431. // Move right a bit, so that the print head does not touch the left end position,
  1432. // and the following left movement has a chance to achieve the required velocity
  1433. // for the stall guard to work.
  1434. current_position[axis] = 0;
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. // destination[axis] = 11.f;
  1437. destination[axis] = 3.f;
  1438. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1439. st_synchronize();
  1440. // Move left away from the possible collision with the collision detection disabled.
  1441. endstops_hit_on_purpose();
  1442. enable_endstops(false);
  1443. current_position[axis] = 0;
  1444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1445. destination[axis] = - 1.;
  1446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1447. st_synchronize();
  1448. // Now continue to move up to the left end stop with the collision detection enabled.
  1449. enable_endstops(true);
  1450. destination[axis] = - 1.1 * max_length(axis);
  1451. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1452. st_synchronize();
  1453. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1454. endstops_hit_on_purpose();
  1455. enable_endstops(false);
  1456. current_position[axis] = 0;
  1457. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1458. destination[axis] = 10.f;
  1459. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1460. st_synchronize();
  1461. endstops_hit_on_purpose();
  1462. // Now move left up to the collision, this time with a repeatable velocity.
  1463. enable_endstops(true);
  1464. destination[axis] = - 15.f;
  1465. feedrate = homing_feedrate[axis]/2;
  1466. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. axis_is_at_home(axis);
  1469. axis_known_position[axis] = true;
  1470. #ifdef TMC2130
  1471. tmc2130_home_exit();
  1472. #endif
  1473. // Move the X carriage away from the collision.
  1474. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1475. endstops_hit_on_purpose();
  1476. enable_endstops(false);
  1477. {
  1478. // Two full periods (4 full steps).
  1479. float gap = 0.32f * 2.f;
  1480. current_position[axis] -= gap;
  1481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1482. current_position[axis] += gap;
  1483. }
  1484. destination[axis] = current_position[axis];
  1485. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1486. st_synchronize();
  1487. feedrate = 0.0;
  1488. }
  1489. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1490. {
  1491. int axis_home_dir = home_dir(axis);
  1492. current_position[axis] = 0;
  1493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1495. feedrate = homing_feedrate[axis];
  1496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1497. st_synchronize();
  1498. current_position[axis] = 0;
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1502. st_synchronize();
  1503. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1504. feedrate = homing_feedrate[axis]/2 ;
  1505. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1506. st_synchronize();
  1507. axis_is_at_home(axis);
  1508. destination[axis] = current_position[axis];
  1509. feedrate = 0.0;
  1510. endstops_hit_on_purpose();
  1511. axis_known_position[axis] = true;
  1512. }
  1513. enable_endstops(endstops_enabled);
  1514. }
  1515. /**/
  1516. void home_xy()
  1517. {
  1518. set_destination_to_current();
  1519. homeaxis(X_AXIS);
  1520. homeaxis(Y_AXIS);
  1521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1522. endstops_hit_on_purpose();
  1523. }
  1524. void refresh_cmd_timeout(void)
  1525. {
  1526. previous_millis_cmd = millis();
  1527. }
  1528. #ifdef FWRETRACT
  1529. void retract(bool retracting, bool swapretract = false) {
  1530. if(retracting && !retracted[active_extruder]) {
  1531. destination[X_AXIS]=current_position[X_AXIS];
  1532. destination[Y_AXIS]=current_position[Y_AXIS];
  1533. destination[Z_AXIS]=current_position[Z_AXIS];
  1534. destination[E_AXIS]=current_position[E_AXIS];
  1535. if (swapretract) {
  1536. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1537. } else {
  1538. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1539. }
  1540. plan_set_e_position(current_position[E_AXIS]);
  1541. float oldFeedrate = feedrate;
  1542. feedrate=retract_feedrate*60;
  1543. retracted[active_extruder]=true;
  1544. prepare_move();
  1545. current_position[Z_AXIS]-=retract_zlift;
  1546. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1547. prepare_move();
  1548. feedrate = oldFeedrate;
  1549. } else if(!retracting && retracted[active_extruder]) {
  1550. destination[X_AXIS]=current_position[X_AXIS];
  1551. destination[Y_AXIS]=current_position[Y_AXIS];
  1552. destination[Z_AXIS]=current_position[Z_AXIS];
  1553. destination[E_AXIS]=current_position[E_AXIS];
  1554. current_position[Z_AXIS]+=retract_zlift;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. //prepare_move();
  1557. if (swapretract) {
  1558. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1559. } else {
  1560. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1561. }
  1562. plan_set_e_position(current_position[E_AXIS]);
  1563. float oldFeedrate = feedrate;
  1564. feedrate=retract_recover_feedrate*60;
  1565. retracted[active_extruder]=false;
  1566. prepare_move();
  1567. feedrate = oldFeedrate;
  1568. }
  1569. } //retract
  1570. #endif //FWRETRACT
  1571. void trace() {
  1572. tone(BEEPER, 440);
  1573. delay(25);
  1574. noTone(BEEPER);
  1575. delay(20);
  1576. }
  1577. /*
  1578. void ramming() {
  1579. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1580. if (current_temperature[0] < 230) {
  1581. //PLA
  1582. max_feedrate[E_AXIS] = 50;
  1583. //current_position[E_AXIS] -= 8;
  1584. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1585. //current_position[E_AXIS] += 8;
  1586. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1587. current_position[E_AXIS] += 5.4;
  1588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1589. current_position[E_AXIS] += 3.2;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1591. current_position[E_AXIS] += 3;
  1592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1593. st_synchronize();
  1594. max_feedrate[E_AXIS] = 80;
  1595. current_position[E_AXIS] -= 82;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1597. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1598. current_position[E_AXIS] -= 20;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1600. current_position[E_AXIS] += 5;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1602. current_position[E_AXIS] += 5;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1604. current_position[E_AXIS] -= 10;
  1605. st_synchronize();
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1607. current_position[E_AXIS] += 10;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1609. current_position[E_AXIS] -= 10;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1611. current_position[E_AXIS] += 10;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1613. current_position[E_AXIS] -= 10;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1615. st_synchronize();
  1616. }
  1617. else {
  1618. //ABS
  1619. max_feedrate[E_AXIS] = 50;
  1620. //current_position[E_AXIS] -= 8;
  1621. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1622. //current_position[E_AXIS] += 8;
  1623. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1624. current_position[E_AXIS] += 3.1;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1626. current_position[E_AXIS] += 3.1;
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1628. current_position[E_AXIS] += 4;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1630. st_synchronize();
  1631. //current_position[X_AXIS] += 23; //delay
  1632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1633. //current_position[X_AXIS] -= 23; //delay
  1634. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1635. delay(4700);
  1636. max_feedrate[E_AXIS] = 80;
  1637. current_position[E_AXIS] -= 92;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1639. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1640. current_position[E_AXIS] -= 5;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1642. current_position[E_AXIS] += 5;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1644. current_position[E_AXIS] -= 5;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1646. st_synchronize();
  1647. current_position[E_AXIS] += 5;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1649. current_position[E_AXIS] -= 5;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1651. current_position[E_AXIS] += 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1653. current_position[E_AXIS] -= 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. st_synchronize();
  1656. }
  1657. }
  1658. */
  1659. #ifdef TMC2130
  1660. void force_high_power_mode(bool start_high_power_section) {
  1661. uint8_t silent;
  1662. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1663. if (silent == 1) {
  1664. //we are in silent mode, set to normal mode to enable crash detection
  1665. st_synchronize();
  1666. cli();
  1667. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1668. tmc2130_init();
  1669. sei();
  1670. digipot_init();
  1671. }
  1672. }
  1673. #endif //TMC2130
  1674. bool gcode_M45(bool onlyZ)
  1675. {
  1676. bool final_result = false;
  1677. #ifdef TMC2130
  1678. FORCE_HIGH_POWER_START;
  1679. #endif // TMC2130
  1680. // Only Z calibration?
  1681. if (!onlyZ)
  1682. {
  1683. setTargetBed(0);
  1684. setTargetHotend(0, 0);
  1685. setTargetHotend(0, 1);
  1686. setTargetHotend(0, 2);
  1687. adjust_bed_reset(); //reset bed level correction
  1688. }
  1689. // Disable the default update procedure of the display. We will do a modal dialog.
  1690. lcd_update_enable(false);
  1691. // Let the planner use the uncorrected coordinates.
  1692. mbl.reset();
  1693. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1694. // the planner will not perform any adjustments in the XY plane.
  1695. // Wait for the motors to stop and update the current position with the absolute values.
  1696. world2machine_revert_to_uncorrected();
  1697. // Reset the baby step value applied without moving the axes.
  1698. babystep_reset();
  1699. // Mark all axes as in a need for homing.
  1700. memset(axis_known_position, 0, sizeof(axis_known_position));
  1701. // Home in the XY plane.
  1702. //set_destination_to_current();
  1703. setup_for_endstop_move();
  1704. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1705. home_xy();
  1706. // Let the user move the Z axes up to the end stoppers.
  1707. #ifdef TMC2130
  1708. if (calibrate_z_auto())
  1709. {
  1710. #else //TMC2130
  1711. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1712. {
  1713. #endif //TMC2130
  1714. refresh_cmd_timeout();
  1715. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1716. //{
  1717. // lcd_wait_for_cool_down();
  1718. //}
  1719. if(!onlyZ)
  1720. {
  1721. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1722. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1723. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1724. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1725. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1726. KEEPALIVE_STATE(IN_HANDLER);
  1727. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1728. lcd_implementation_print_at(0, 2, 1);
  1729. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1730. }
  1731. // Move the print head close to the bed.
  1732. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1733. bool endstops_enabled = enable_endstops(true);
  1734. tmc2130_home_enter(Z_AXIS_MASK);
  1735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1736. st_synchronize();
  1737. tmc2130_home_exit();
  1738. enable_endstops(endstops_enabled);
  1739. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1740. {
  1741. //#ifdef TMC2130
  1742. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1743. //#endif
  1744. int8_t verbosity_level = 0;
  1745. if (code_seen('V'))
  1746. {
  1747. // Just 'V' without a number counts as V1.
  1748. char c = strchr_pointer[1];
  1749. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1750. }
  1751. if (onlyZ)
  1752. {
  1753. clean_up_after_endstop_move();
  1754. // Z only calibration.
  1755. // Load the machine correction matrix
  1756. world2machine_initialize();
  1757. // and correct the current_position to match the transformed coordinate system.
  1758. world2machine_update_current();
  1759. //FIXME
  1760. bool result = sample_mesh_and_store_reference();
  1761. if (result)
  1762. {
  1763. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1764. // Shipped, the nozzle height has been set already. The user can start printing now.
  1765. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1766. final_result = true;
  1767. // babystep_apply();
  1768. }
  1769. }
  1770. else
  1771. {
  1772. // Reset the baby step value and the baby step applied flag.
  1773. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1774. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1775. // Complete XYZ calibration.
  1776. uint8_t point_too_far_mask = 0;
  1777. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1778. clean_up_after_endstop_move();
  1779. // Print head up.
  1780. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1782. st_synchronize();
  1783. if (result >= 0)
  1784. {
  1785. point_too_far_mask = 0;
  1786. // Second half: The fine adjustment.
  1787. // Let the planner use the uncorrected coordinates.
  1788. mbl.reset();
  1789. world2machine_reset();
  1790. // Home in the XY plane.
  1791. setup_for_endstop_move();
  1792. home_xy();
  1793. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1794. clean_up_after_endstop_move();
  1795. // Print head up.
  1796. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1798. st_synchronize();
  1799. // if (result >= 0) babystep_apply();
  1800. }
  1801. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1802. if (result >= 0)
  1803. {
  1804. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1805. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1806. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1807. final_result = true;
  1808. }
  1809. }
  1810. #ifdef TMC2130
  1811. tmc2130_home_exit();
  1812. #endif
  1813. }
  1814. else
  1815. {
  1816. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1817. final_result = false;
  1818. }
  1819. }
  1820. else
  1821. {
  1822. // Timeouted.
  1823. }
  1824. lcd_update_enable(true);
  1825. #ifdef TMC2130
  1826. FORCE_HIGH_POWER_END;
  1827. #endif // TMC2130
  1828. return final_result;
  1829. }
  1830. void gcode_M701()
  1831. {
  1832. #ifdef SNMM
  1833. extr_adj(snmm_extruder);//loads current extruder
  1834. #else
  1835. enable_z();
  1836. custom_message = true;
  1837. custom_message_type = 2;
  1838. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1839. current_position[E_AXIS] += 70;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1841. current_position[E_AXIS] += 25;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1843. st_synchronize();
  1844. if (!farm_mode && loading_flag) {
  1845. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1846. while (!clean) {
  1847. lcd_update_enable(true);
  1848. lcd_update(2);
  1849. current_position[E_AXIS] += 25;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1851. st_synchronize();
  1852. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1853. }
  1854. }
  1855. lcd_update_enable(true);
  1856. lcd_update(2);
  1857. lcd_setstatuspgm(WELCOME_MSG);
  1858. disable_z();
  1859. loading_flag = false;
  1860. custom_message = false;
  1861. custom_message_type = 0;
  1862. #endif
  1863. }
  1864. void process_commands()
  1865. {
  1866. #ifdef FILAMENT_RUNOUT_SUPPORT
  1867. SET_INPUT(FR_SENS);
  1868. #endif
  1869. #ifdef CMDBUFFER_DEBUG
  1870. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1871. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1872. SERIAL_ECHOLNPGM("");
  1873. SERIAL_ECHOPGM("In cmdqueue: ");
  1874. SERIAL_ECHO(buflen);
  1875. SERIAL_ECHOLNPGM("");
  1876. #endif /* CMDBUFFER_DEBUG */
  1877. unsigned long codenum; //throw away variable
  1878. char *starpos = NULL;
  1879. #ifdef ENABLE_AUTO_BED_LEVELING
  1880. float x_tmp, y_tmp, z_tmp, real_z;
  1881. #endif
  1882. // PRUSA GCODES
  1883. KEEPALIVE_STATE(IN_HANDLER);
  1884. #ifdef SNMM
  1885. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1886. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1887. int8_t SilentMode;
  1888. #endif
  1889. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1890. starpos = (strchr(strchr_pointer + 5, '*'));
  1891. if (starpos != NULL)
  1892. *(starpos) = '\0';
  1893. lcd_setstatus(strchr_pointer + 5);
  1894. }
  1895. else if(code_seen("CRASH_DETECTED"))
  1896. crashdet_detected();
  1897. else if(code_seen("CRASH_RECOVER"))
  1898. crashdet_recover();
  1899. else if(code_seen("CRASH_CANCEL"))
  1900. crashdet_cancel();
  1901. else if(code_seen("PRUSA")){
  1902. if (code_seen("Ping")) { //PRUSA Ping
  1903. if (farm_mode) {
  1904. PingTime = millis();
  1905. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1906. }
  1907. }
  1908. else if (code_seen("PRN")) {
  1909. MYSERIAL.println(status_number);
  1910. }else if (code_seen("FAN")) {
  1911. MYSERIAL.print("E0:");
  1912. MYSERIAL.print(60*fan_speed[0]);
  1913. MYSERIAL.println(" RPM");
  1914. MYSERIAL.print("PRN0:");
  1915. MYSERIAL.print(60*fan_speed[1]);
  1916. MYSERIAL.println(" RPM");
  1917. }else if (code_seen("fn")) {
  1918. if (farm_mode) {
  1919. MYSERIAL.println(farm_no);
  1920. }
  1921. else {
  1922. MYSERIAL.println("Not in farm mode.");
  1923. }
  1924. }else if (code_seen("fv")) {
  1925. // get file version
  1926. #ifdef SDSUPPORT
  1927. card.openFile(strchr_pointer + 3,true);
  1928. while (true) {
  1929. uint16_t readByte = card.get();
  1930. MYSERIAL.write(readByte);
  1931. if (readByte=='\n') {
  1932. break;
  1933. }
  1934. }
  1935. card.closefile();
  1936. #endif // SDSUPPORT
  1937. } else if (code_seen("M28")) {
  1938. trace();
  1939. prusa_sd_card_upload = true;
  1940. card.openFile(strchr_pointer+4,false);
  1941. } else if (code_seen("SN")) {
  1942. if (farm_mode) {
  1943. selectedSerialPort = 0;
  1944. MSerial.write(";S");
  1945. // S/N is:CZPX0917X003XC13518
  1946. int numbersRead = 0;
  1947. while (numbersRead < 19) {
  1948. while (MSerial.available() > 0) {
  1949. uint8_t serial_char = MSerial.read();
  1950. selectedSerialPort = 1;
  1951. MSerial.write(serial_char);
  1952. numbersRead++;
  1953. selectedSerialPort = 0;
  1954. }
  1955. }
  1956. selectedSerialPort = 1;
  1957. MSerial.write('\n');
  1958. /*for (int b = 0; b < 3; b++) {
  1959. tone(BEEPER, 110);
  1960. delay(50);
  1961. noTone(BEEPER);
  1962. delay(50);
  1963. }*/
  1964. } else {
  1965. MYSERIAL.println("Not in farm mode.");
  1966. }
  1967. } else if(code_seen("Fir")){
  1968. SERIAL_PROTOCOLLN(FW_version);
  1969. } else if(code_seen("Rev")){
  1970. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1971. } else if(code_seen("Lang")) {
  1972. lcd_force_language_selection();
  1973. } else if(code_seen("Lz")) {
  1974. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1975. } else if (code_seen("SERIAL LOW")) {
  1976. MYSERIAL.println("SERIAL LOW");
  1977. MYSERIAL.begin(BAUDRATE);
  1978. return;
  1979. } else if (code_seen("SERIAL HIGH")) {
  1980. MYSERIAL.println("SERIAL HIGH");
  1981. MYSERIAL.begin(1152000);
  1982. return;
  1983. } else if(code_seen("Beat")) {
  1984. // Kick farm link timer
  1985. kicktime = millis();
  1986. } else if(code_seen("FR")) {
  1987. // Factory full reset
  1988. factory_reset(0,true);
  1989. }
  1990. //else if (code_seen('Cal')) {
  1991. // lcd_calibration();
  1992. // }
  1993. }
  1994. else if (code_seen('^')) {
  1995. // nothing, this is a version line
  1996. } else if(code_seen('G'))
  1997. {
  1998. switch((int)code_value())
  1999. {
  2000. case 0: // G0 -> G1
  2001. case 1: // G1
  2002. if(Stopped == false) {
  2003. #ifdef FILAMENT_RUNOUT_SUPPORT
  2004. if(READ(FR_SENS)){
  2005. feedmultiplyBckp=feedmultiply;
  2006. float target[4];
  2007. float lastpos[4];
  2008. target[X_AXIS]=current_position[X_AXIS];
  2009. target[Y_AXIS]=current_position[Y_AXIS];
  2010. target[Z_AXIS]=current_position[Z_AXIS];
  2011. target[E_AXIS]=current_position[E_AXIS];
  2012. lastpos[X_AXIS]=current_position[X_AXIS];
  2013. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2014. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2015. lastpos[E_AXIS]=current_position[E_AXIS];
  2016. //retract by E
  2017. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2018. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2019. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2020. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2021. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2022. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2024. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2025. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2026. //finish moves
  2027. st_synchronize();
  2028. //disable extruder steppers so filament can be removed
  2029. disable_e0();
  2030. disable_e1();
  2031. disable_e2();
  2032. delay(100);
  2033. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2034. uint8_t cnt=0;
  2035. int counterBeep = 0;
  2036. lcd_wait_interact();
  2037. while(!lcd_clicked()){
  2038. cnt++;
  2039. manage_heater();
  2040. manage_inactivity(true);
  2041. //lcd_update();
  2042. if(cnt==0)
  2043. {
  2044. #if BEEPER > 0
  2045. if (counterBeep== 500){
  2046. counterBeep = 0;
  2047. }
  2048. SET_OUTPUT(BEEPER);
  2049. if (counterBeep== 0){
  2050. WRITE(BEEPER,HIGH);
  2051. }
  2052. if (counterBeep== 20){
  2053. WRITE(BEEPER,LOW);
  2054. }
  2055. counterBeep++;
  2056. #else
  2057. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2058. lcd_buzz(1000/6,100);
  2059. #else
  2060. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2061. #endif
  2062. #endif
  2063. }
  2064. }
  2065. WRITE(BEEPER,LOW);
  2066. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2068. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2070. lcd_change_fil_state = 0;
  2071. lcd_loading_filament();
  2072. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2073. lcd_change_fil_state = 0;
  2074. lcd_alright();
  2075. switch(lcd_change_fil_state){
  2076. case 2:
  2077. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2079. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2081. lcd_loading_filament();
  2082. break;
  2083. case 3:
  2084. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2085. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2086. lcd_loading_color();
  2087. break;
  2088. default:
  2089. lcd_change_success();
  2090. break;
  2091. }
  2092. }
  2093. target[E_AXIS]+= 5;
  2094. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2095. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2096. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2097. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2098. //plan_set_e_position(current_position[E_AXIS]);
  2099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2100. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2101. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2102. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2103. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2104. plan_set_e_position(lastpos[E_AXIS]);
  2105. feedmultiply=feedmultiplyBckp;
  2106. char cmd[9];
  2107. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2108. enquecommand(cmd);
  2109. }
  2110. #endif
  2111. get_coordinates(); // For X Y Z E F
  2112. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2113. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2114. }
  2115. #ifdef FWRETRACT
  2116. if(autoretract_enabled)
  2117. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2118. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2119. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2120. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2121. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2122. retract(!retracted);
  2123. return;
  2124. }
  2125. }
  2126. #endif //FWRETRACT
  2127. prepare_move();
  2128. //ClearToSend();
  2129. }
  2130. break;
  2131. case 2: // G2 - CW ARC
  2132. if(Stopped == false) {
  2133. get_arc_coordinates();
  2134. prepare_arc_move(true);
  2135. }
  2136. break;
  2137. case 3: // G3 - CCW ARC
  2138. if(Stopped == false) {
  2139. get_arc_coordinates();
  2140. prepare_arc_move(false);
  2141. }
  2142. break;
  2143. case 4: // G4 dwell
  2144. codenum = 0;
  2145. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2146. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2147. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2148. st_synchronize();
  2149. codenum += millis(); // keep track of when we started waiting
  2150. previous_millis_cmd = millis();
  2151. while(millis() < codenum) {
  2152. manage_heater();
  2153. manage_inactivity();
  2154. lcd_update();
  2155. }
  2156. break;
  2157. #ifdef FWRETRACT
  2158. case 10: // G10 retract
  2159. #if EXTRUDERS > 1
  2160. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2161. retract(true,retracted_swap[active_extruder]);
  2162. #else
  2163. retract(true);
  2164. #endif
  2165. break;
  2166. case 11: // G11 retract_recover
  2167. #if EXTRUDERS > 1
  2168. retract(false,retracted_swap[active_extruder]);
  2169. #else
  2170. retract(false);
  2171. #endif
  2172. break;
  2173. #endif //FWRETRACT
  2174. case 28: //G28 Home all Axis one at a time
  2175. {
  2176. st_synchronize();
  2177. #if 0
  2178. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2179. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2180. #endif
  2181. // Flag for the display update routine and to disable the print cancelation during homing.
  2182. homing_flag = true;
  2183. // Which axes should be homed?
  2184. bool home_x = code_seen(axis_codes[X_AXIS]);
  2185. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2186. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2187. // Either all X,Y,Z codes are present, or none of them.
  2188. bool home_all_axes = home_x == home_y && home_x == home_z;
  2189. if (home_all_axes)
  2190. // No X/Y/Z code provided means to home all axes.
  2191. home_x = home_y = home_z = true;
  2192. #ifdef ENABLE_AUTO_BED_LEVELING
  2193. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2194. #endif //ENABLE_AUTO_BED_LEVELING
  2195. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2196. // the planner will not perform any adjustments in the XY plane.
  2197. // Wait for the motors to stop and update the current position with the absolute values.
  2198. world2machine_revert_to_uncorrected();
  2199. // For mesh bed leveling deactivate the matrix temporarily.
  2200. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2201. // in a single axis only.
  2202. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2203. #ifdef MESH_BED_LEVELING
  2204. uint8_t mbl_was_active = mbl.active;
  2205. mbl.active = 0;
  2206. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2207. #endif
  2208. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2209. // consumed during the first movements following this statement.
  2210. if (home_z)
  2211. babystep_undo();
  2212. saved_feedrate = feedrate;
  2213. saved_feedmultiply = feedmultiply;
  2214. feedmultiply = 100;
  2215. previous_millis_cmd = millis();
  2216. enable_endstops(true);
  2217. memcpy(destination, current_position, sizeof(destination));
  2218. feedrate = 0.0;
  2219. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2220. if(home_z)
  2221. homeaxis(Z_AXIS);
  2222. #endif
  2223. #ifdef QUICK_HOME
  2224. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2225. if(home_x && home_y) //first diagonal move
  2226. {
  2227. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2228. int x_axis_home_dir = home_dir(X_AXIS);
  2229. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2230. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2231. feedrate = homing_feedrate[X_AXIS];
  2232. if(homing_feedrate[Y_AXIS]<feedrate)
  2233. feedrate = homing_feedrate[Y_AXIS];
  2234. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2235. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2236. } else {
  2237. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2238. }
  2239. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2240. st_synchronize();
  2241. axis_is_at_home(X_AXIS);
  2242. axis_is_at_home(Y_AXIS);
  2243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2244. destination[X_AXIS] = current_position[X_AXIS];
  2245. destination[Y_AXIS] = current_position[Y_AXIS];
  2246. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2247. feedrate = 0.0;
  2248. st_synchronize();
  2249. endstops_hit_on_purpose();
  2250. current_position[X_AXIS] = destination[X_AXIS];
  2251. current_position[Y_AXIS] = destination[Y_AXIS];
  2252. current_position[Z_AXIS] = destination[Z_AXIS];
  2253. }
  2254. #endif /* QUICK_HOME */
  2255. if(home_x)
  2256. homeaxis(X_AXIS);
  2257. if(home_y)
  2258. homeaxis(Y_AXIS);
  2259. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2260. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2261. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2262. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2263. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2264. #ifndef Z_SAFE_HOMING
  2265. if(home_z) {
  2266. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2267. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2268. feedrate = max_feedrate[Z_AXIS];
  2269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2270. st_synchronize();
  2271. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2272. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2273. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2274. {
  2275. homeaxis(X_AXIS);
  2276. homeaxis(Y_AXIS);
  2277. }
  2278. // 1st mesh bed leveling measurement point, corrected.
  2279. world2machine_initialize();
  2280. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2281. world2machine_reset();
  2282. if (destination[Y_AXIS] < Y_MIN_POS)
  2283. destination[Y_AXIS] = Y_MIN_POS;
  2284. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2285. feedrate = homing_feedrate[Z_AXIS]/10;
  2286. current_position[Z_AXIS] = 0;
  2287. enable_endstops(false);
  2288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2289. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2290. st_synchronize();
  2291. current_position[X_AXIS] = destination[X_AXIS];
  2292. current_position[Y_AXIS] = destination[Y_AXIS];
  2293. enable_endstops(true);
  2294. endstops_hit_on_purpose();
  2295. homeaxis(Z_AXIS);
  2296. #else // MESH_BED_LEVELING
  2297. homeaxis(Z_AXIS);
  2298. #endif // MESH_BED_LEVELING
  2299. }
  2300. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2301. if(home_all_axes) {
  2302. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2303. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2304. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2305. feedrate = XY_TRAVEL_SPEED/60;
  2306. current_position[Z_AXIS] = 0;
  2307. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2309. st_synchronize();
  2310. current_position[X_AXIS] = destination[X_AXIS];
  2311. current_position[Y_AXIS] = destination[Y_AXIS];
  2312. homeaxis(Z_AXIS);
  2313. }
  2314. // Let's see if X and Y are homed and probe is inside bed area.
  2315. if(home_z) {
  2316. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2317. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2318. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2319. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2320. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2321. current_position[Z_AXIS] = 0;
  2322. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2323. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2324. feedrate = max_feedrate[Z_AXIS];
  2325. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2326. st_synchronize();
  2327. homeaxis(Z_AXIS);
  2328. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2329. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2332. } else {
  2333. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2334. SERIAL_ECHO_START;
  2335. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2336. }
  2337. }
  2338. #endif // Z_SAFE_HOMING
  2339. #endif // Z_HOME_DIR < 0
  2340. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2341. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2342. #ifdef ENABLE_AUTO_BED_LEVELING
  2343. if(home_z)
  2344. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2345. #endif
  2346. // Set the planner and stepper routine positions.
  2347. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2348. // contains the machine coordinates.
  2349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2350. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2351. enable_endstops(false);
  2352. #endif
  2353. feedrate = saved_feedrate;
  2354. feedmultiply = saved_feedmultiply;
  2355. previous_millis_cmd = millis();
  2356. endstops_hit_on_purpose();
  2357. #ifndef MESH_BED_LEVELING
  2358. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2359. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2360. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2361. lcd_adjust_z();
  2362. #endif
  2363. // Load the machine correction matrix
  2364. world2machine_initialize();
  2365. // and correct the current_position XY axes to match the transformed coordinate system.
  2366. world2machine_update_current();
  2367. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2368. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2369. {
  2370. if (! home_z && mbl_was_active) {
  2371. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2372. mbl.active = true;
  2373. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2374. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2375. }
  2376. }
  2377. else
  2378. {
  2379. st_synchronize();
  2380. homing_flag = false;
  2381. // Push the commands to the front of the message queue in the reverse order!
  2382. // There shall be always enough space reserved for these commands.
  2383. // enquecommand_front_P((PSTR("G80")));
  2384. goto case_G80;
  2385. }
  2386. #endif
  2387. if (farm_mode) { prusa_statistics(20); };
  2388. homing_flag = false;
  2389. #if 0
  2390. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2391. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2392. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2393. #endif
  2394. break;
  2395. }
  2396. #ifdef ENABLE_AUTO_BED_LEVELING
  2397. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2398. {
  2399. #if Z_MIN_PIN == -1
  2400. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2401. #endif
  2402. // Prevent user from running a G29 without first homing in X and Y
  2403. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2404. {
  2405. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2406. SERIAL_ECHO_START;
  2407. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2408. break; // abort G29, since we don't know where we are
  2409. }
  2410. st_synchronize();
  2411. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2412. //vector_3 corrected_position = plan_get_position_mm();
  2413. //corrected_position.debug("position before G29");
  2414. plan_bed_level_matrix.set_to_identity();
  2415. vector_3 uncorrected_position = plan_get_position();
  2416. //uncorrected_position.debug("position durring G29");
  2417. current_position[X_AXIS] = uncorrected_position.x;
  2418. current_position[Y_AXIS] = uncorrected_position.y;
  2419. current_position[Z_AXIS] = uncorrected_position.z;
  2420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2421. setup_for_endstop_move();
  2422. feedrate = homing_feedrate[Z_AXIS];
  2423. #ifdef AUTO_BED_LEVELING_GRID
  2424. // probe at the points of a lattice grid
  2425. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2426. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2427. // solve the plane equation ax + by + d = z
  2428. // A is the matrix with rows [x y 1] for all the probed points
  2429. // B is the vector of the Z positions
  2430. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2431. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2432. // "A" matrix of the linear system of equations
  2433. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2434. // "B" vector of Z points
  2435. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2436. int probePointCounter = 0;
  2437. bool zig = true;
  2438. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2439. {
  2440. int xProbe, xInc;
  2441. if (zig)
  2442. {
  2443. xProbe = LEFT_PROBE_BED_POSITION;
  2444. //xEnd = RIGHT_PROBE_BED_POSITION;
  2445. xInc = xGridSpacing;
  2446. zig = false;
  2447. } else // zag
  2448. {
  2449. xProbe = RIGHT_PROBE_BED_POSITION;
  2450. //xEnd = LEFT_PROBE_BED_POSITION;
  2451. xInc = -xGridSpacing;
  2452. zig = true;
  2453. }
  2454. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2455. {
  2456. float z_before;
  2457. if (probePointCounter == 0)
  2458. {
  2459. // raise before probing
  2460. z_before = Z_RAISE_BEFORE_PROBING;
  2461. } else
  2462. {
  2463. // raise extruder
  2464. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2465. }
  2466. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2467. eqnBVector[probePointCounter] = measured_z;
  2468. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2469. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2470. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2471. probePointCounter++;
  2472. xProbe += xInc;
  2473. }
  2474. }
  2475. clean_up_after_endstop_move();
  2476. // solve lsq problem
  2477. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2478. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2479. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2480. SERIAL_PROTOCOLPGM(" b: ");
  2481. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2482. SERIAL_PROTOCOLPGM(" d: ");
  2483. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2484. set_bed_level_equation_lsq(plane_equation_coefficients);
  2485. free(plane_equation_coefficients);
  2486. #else // AUTO_BED_LEVELING_GRID not defined
  2487. // Probe at 3 arbitrary points
  2488. // probe 1
  2489. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2490. // probe 2
  2491. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2492. // probe 3
  2493. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2494. clean_up_after_endstop_move();
  2495. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2496. #endif // AUTO_BED_LEVELING_GRID
  2497. st_synchronize();
  2498. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2499. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2500. // When the bed is uneven, this height must be corrected.
  2501. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2502. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2503. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2504. z_tmp = current_position[Z_AXIS];
  2505. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2506. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2507. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2508. }
  2509. break;
  2510. #ifndef Z_PROBE_SLED
  2511. case 30: // G30 Single Z Probe
  2512. {
  2513. st_synchronize();
  2514. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2515. setup_for_endstop_move();
  2516. feedrate = homing_feedrate[Z_AXIS];
  2517. run_z_probe();
  2518. SERIAL_PROTOCOLPGM(MSG_BED);
  2519. SERIAL_PROTOCOLPGM(" X: ");
  2520. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2521. SERIAL_PROTOCOLPGM(" Y: ");
  2522. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2523. SERIAL_PROTOCOLPGM(" Z: ");
  2524. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2525. SERIAL_PROTOCOLPGM("\n");
  2526. clean_up_after_endstop_move();
  2527. }
  2528. break;
  2529. #else
  2530. case 31: // dock the sled
  2531. dock_sled(true);
  2532. break;
  2533. case 32: // undock the sled
  2534. dock_sled(false);
  2535. break;
  2536. #endif // Z_PROBE_SLED
  2537. #endif // ENABLE_AUTO_BED_LEVELING
  2538. #ifdef MESH_BED_LEVELING
  2539. case 30: // G30 Single Z Probe
  2540. {
  2541. st_synchronize();
  2542. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2543. setup_for_endstop_move();
  2544. feedrate = homing_feedrate[Z_AXIS];
  2545. find_bed_induction_sensor_point_z(-10.f, 3);
  2546. SERIAL_PROTOCOLRPGM(MSG_BED);
  2547. SERIAL_PROTOCOLPGM(" X: ");
  2548. MYSERIAL.print(current_position[X_AXIS], 5);
  2549. SERIAL_PROTOCOLPGM(" Y: ");
  2550. MYSERIAL.print(current_position[Y_AXIS], 5);
  2551. SERIAL_PROTOCOLPGM(" Z: ");
  2552. MYSERIAL.print(current_position[Z_AXIS], 5);
  2553. SERIAL_PROTOCOLPGM("\n");
  2554. clean_up_after_endstop_move();
  2555. }
  2556. break;
  2557. case 75:
  2558. {
  2559. for (int i = 40; i <= 110; i++) {
  2560. MYSERIAL.print(i);
  2561. MYSERIAL.print(" ");
  2562. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2563. }
  2564. }
  2565. break;
  2566. case 76: //PINDA probe temperature calibration
  2567. {
  2568. #ifdef PINDA_THERMISTOR
  2569. if (true)
  2570. {
  2571. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2572. // We don't know where we are! HOME!
  2573. // Push the commands to the front of the message queue in the reverse order!
  2574. // There shall be always enough space reserved for these commands.
  2575. repeatcommand_front(); // repeat G76 with all its parameters
  2576. enquecommand_front_P((PSTR("G28 W0")));
  2577. break;
  2578. }
  2579. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2580. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2581. float zero_z;
  2582. int z_shift = 0; //unit: steps
  2583. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2584. if (start_temp < 35) start_temp = 35;
  2585. if (start_temp < current_temperature_pinda) start_temp += 5;
  2586. SERIAL_ECHOPGM("start temperature: ");
  2587. MYSERIAL.println(start_temp);
  2588. // setTargetHotend(200, 0);
  2589. setTargetBed(70 + (start_temp - 30));
  2590. custom_message = true;
  2591. custom_message_type = 4;
  2592. custom_message_state = 1;
  2593. custom_message = MSG_TEMP_CALIBRATION;
  2594. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2595. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2596. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2598. st_synchronize();
  2599. while (current_temperature_pinda < start_temp)
  2600. {
  2601. delay_keep_alive(1000);
  2602. serialecho_temperatures();
  2603. }
  2604. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2605. current_position[Z_AXIS] = 5;
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2607. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2608. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2610. st_synchronize();
  2611. find_bed_induction_sensor_point_z(-1.f);
  2612. zero_z = current_position[Z_AXIS];
  2613. //current_position[Z_AXIS]
  2614. SERIAL_ECHOLNPGM("");
  2615. SERIAL_ECHOPGM("ZERO: ");
  2616. MYSERIAL.print(current_position[Z_AXIS]);
  2617. SERIAL_ECHOLNPGM("");
  2618. int i = -1; for (; i < 5; i++)
  2619. {
  2620. float temp = (40 + i * 5);
  2621. SERIAL_ECHOPGM("Step: ");
  2622. MYSERIAL.print(i + 2);
  2623. SERIAL_ECHOLNPGM("/6 (skipped)");
  2624. SERIAL_ECHOPGM("PINDA temperature: ");
  2625. MYSERIAL.print((40 + i*5));
  2626. SERIAL_ECHOPGM(" Z shift (mm):");
  2627. MYSERIAL.print(0);
  2628. SERIAL_ECHOLNPGM("");
  2629. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2630. if (start_temp <= temp) break;
  2631. }
  2632. for (i++; i < 5; i++)
  2633. {
  2634. float temp = (40 + i * 5);
  2635. SERIAL_ECHOPGM("Step: ");
  2636. MYSERIAL.print(i + 2);
  2637. SERIAL_ECHOLNPGM("/6");
  2638. custom_message_state = i + 2;
  2639. setTargetBed(50 + 10 * (temp - 30) / 5);
  2640. // setTargetHotend(255, 0);
  2641. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2642. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2643. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2645. st_synchronize();
  2646. while (current_temperature_pinda < temp)
  2647. {
  2648. delay_keep_alive(1000);
  2649. serialecho_temperatures();
  2650. }
  2651. current_position[Z_AXIS] = 5;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2653. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2654. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2656. st_synchronize();
  2657. find_bed_induction_sensor_point_z(-1.f);
  2658. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2659. SERIAL_ECHOLNPGM("");
  2660. SERIAL_ECHOPGM("PINDA temperature: ");
  2661. MYSERIAL.print(current_temperature_pinda);
  2662. SERIAL_ECHOPGM(" Z shift (mm):");
  2663. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2664. SERIAL_ECHOLNPGM("");
  2665. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2666. }
  2667. custom_message_type = 0;
  2668. custom_message = false;
  2669. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2670. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2671. disable_x();
  2672. disable_y();
  2673. disable_z();
  2674. disable_e0();
  2675. disable_e1();
  2676. disable_e2();
  2677. setTargetBed(0); //set bed target temperature back to 0
  2678. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2679. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2680. lcd_update_enable(true);
  2681. lcd_update(2);
  2682. break;
  2683. }
  2684. #endif //PINDA_THERMISTOR
  2685. setTargetBed(PINDA_MIN_T);
  2686. float zero_z;
  2687. int z_shift = 0; //unit: steps
  2688. int t_c; // temperature
  2689. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2690. // We don't know where we are! HOME!
  2691. // Push the commands to the front of the message queue in the reverse order!
  2692. // There shall be always enough space reserved for these commands.
  2693. repeatcommand_front(); // repeat G76 with all its parameters
  2694. enquecommand_front_P((PSTR("G28 W0")));
  2695. break;
  2696. }
  2697. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2698. custom_message = true;
  2699. custom_message_type = 4;
  2700. custom_message_state = 1;
  2701. custom_message = MSG_TEMP_CALIBRATION;
  2702. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2703. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2704. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2706. st_synchronize();
  2707. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2708. delay_keep_alive(1000);
  2709. serialecho_temperatures();
  2710. }
  2711. //enquecommand_P(PSTR("M190 S50"));
  2712. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2713. delay_keep_alive(1000);
  2714. serialecho_temperatures();
  2715. }
  2716. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2717. current_position[Z_AXIS] = 5;
  2718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2719. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2720. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2722. st_synchronize();
  2723. find_bed_induction_sensor_point_z(-1.f);
  2724. zero_z = current_position[Z_AXIS];
  2725. //current_position[Z_AXIS]
  2726. SERIAL_ECHOLNPGM("");
  2727. SERIAL_ECHOPGM("ZERO: ");
  2728. MYSERIAL.print(current_position[Z_AXIS]);
  2729. SERIAL_ECHOLNPGM("");
  2730. for (int i = 0; i<5; i++) {
  2731. SERIAL_ECHOPGM("Step: ");
  2732. MYSERIAL.print(i+2);
  2733. SERIAL_ECHOLNPGM("/6");
  2734. custom_message_state = i + 2;
  2735. t_c = 60 + i * 10;
  2736. setTargetBed(t_c);
  2737. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2738. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2739. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2741. st_synchronize();
  2742. while (degBed() < t_c) {
  2743. delay_keep_alive(1000);
  2744. serialecho_temperatures();
  2745. }
  2746. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2747. delay_keep_alive(1000);
  2748. serialecho_temperatures();
  2749. }
  2750. current_position[Z_AXIS] = 5;
  2751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2752. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2753. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2755. st_synchronize();
  2756. find_bed_induction_sensor_point_z(-1.f);
  2757. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2758. SERIAL_ECHOLNPGM("");
  2759. SERIAL_ECHOPGM("Temperature: ");
  2760. MYSERIAL.print(t_c);
  2761. SERIAL_ECHOPGM(" Z shift (mm):");
  2762. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2763. SERIAL_ECHOLNPGM("");
  2764. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2765. }
  2766. custom_message_type = 0;
  2767. custom_message = false;
  2768. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2769. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2770. disable_x();
  2771. disable_y();
  2772. disable_z();
  2773. disable_e0();
  2774. disable_e1();
  2775. disable_e2();
  2776. setTargetBed(0); //set bed target temperature back to 0
  2777. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2778. lcd_update_enable(true);
  2779. lcd_update(2);
  2780. }
  2781. break;
  2782. #ifdef DIS
  2783. case 77:
  2784. {
  2785. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2786. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2787. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2788. float dimension_x = 40;
  2789. float dimension_y = 40;
  2790. int points_x = 40;
  2791. int points_y = 40;
  2792. float offset_x = 74;
  2793. float offset_y = 33;
  2794. if (code_seen('X')) dimension_x = code_value();
  2795. if (code_seen('Y')) dimension_y = code_value();
  2796. if (code_seen('XP')) points_x = code_value();
  2797. if (code_seen('YP')) points_y = code_value();
  2798. if (code_seen('XO')) offset_x = code_value();
  2799. if (code_seen('YO')) offset_y = code_value();
  2800. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2801. } break;
  2802. #endif
  2803. case 79: {
  2804. for (int i = 255; i > 0; i = i - 5) {
  2805. fanSpeed = i;
  2806. //delay_keep_alive(2000);
  2807. for (int j = 0; j < 100; j++) {
  2808. delay_keep_alive(100);
  2809. }
  2810. fan_speed[1];
  2811. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2812. }
  2813. }break;
  2814. /**
  2815. * G80: Mesh-based Z probe, probes a grid and produces a
  2816. * mesh to compensate for variable bed height
  2817. *
  2818. * The S0 report the points as below
  2819. *
  2820. * +----> X-axis
  2821. * |
  2822. * |
  2823. * v Y-axis
  2824. *
  2825. */
  2826. case 80:
  2827. #ifdef MK1BP
  2828. break;
  2829. #endif //MK1BP
  2830. case_G80:
  2831. {
  2832. mesh_bed_leveling_flag = true;
  2833. int8_t verbosity_level = 0;
  2834. static bool run = false;
  2835. if (code_seen('V')) {
  2836. // Just 'V' without a number counts as V1.
  2837. char c = strchr_pointer[1];
  2838. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2839. }
  2840. // Firstly check if we know where we are
  2841. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2842. // We don't know where we are! HOME!
  2843. // Push the commands to the front of the message queue in the reverse order!
  2844. // There shall be always enough space reserved for these commands.
  2845. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2846. repeatcommand_front(); // repeat G80 with all its parameters
  2847. enquecommand_front_P((PSTR("G28 W0")));
  2848. }
  2849. else {
  2850. mesh_bed_leveling_flag = false;
  2851. }
  2852. break;
  2853. }
  2854. bool temp_comp_start = true;
  2855. #ifdef PINDA_THERMISTOR
  2856. temp_comp_start = false;
  2857. #endif //PINDA_THERMISTOR
  2858. if (temp_comp_start)
  2859. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2860. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2861. temp_compensation_start();
  2862. run = true;
  2863. repeatcommand_front(); // repeat G80 with all its parameters
  2864. enquecommand_front_P((PSTR("G28 W0")));
  2865. }
  2866. else {
  2867. mesh_bed_leveling_flag = false;
  2868. }
  2869. break;
  2870. }
  2871. run = false;
  2872. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2873. mesh_bed_leveling_flag = false;
  2874. break;
  2875. }
  2876. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2877. bool custom_message_old = custom_message;
  2878. unsigned int custom_message_type_old = custom_message_type;
  2879. unsigned int custom_message_state_old = custom_message_state;
  2880. custom_message = true;
  2881. custom_message_type = 1;
  2882. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2883. lcd_update(1);
  2884. mbl.reset(); //reset mesh bed leveling
  2885. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2886. // consumed during the first movements following this statement.
  2887. babystep_undo();
  2888. // Cycle through all points and probe them
  2889. // First move up. During this first movement, the babystepping will be reverted.
  2890. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2892. // The move to the first calibration point.
  2893. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2894. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2895. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2896. #ifdef SUPPORT_VERBOSITY
  2897. if (verbosity_level >= 1) {
  2898. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2899. }
  2900. #endif //SUPPORT_VERBOSITY
  2901. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2903. // Wait until the move is finished.
  2904. st_synchronize();
  2905. int mesh_point = 0; //index number of calibration point
  2906. int ix = 0;
  2907. int iy = 0;
  2908. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2909. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2910. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2911. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2912. #ifdef SUPPORT_VERBOSITY
  2913. if (verbosity_level >= 1) {
  2914. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2915. }
  2916. #endif // SUPPORT_VERBOSITY
  2917. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2918. const char *kill_message = NULL;
  2919. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2920. // Get coords of a measuring point.
  2921. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2922. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2923. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2924. float z0 = 0.f;
  2925. if (has_z && mesh_point > 0) {
  2926. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2927. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2928. //#if 0
  2929. #ifdef SUPPORT_VERBOSITY
  2930. if (verbosity_level >= 1) {
  2931. SERIAL_ECHOLNPGM("");
  2932. SERIAL_ECHOPGM("Bed leveling, point: ");
  2933. MYSERIAL.print(mesh_point);
  2934. SERIAL_ECHOPGM(", calibration z: ");
  2935. MYSERIAL.print(z0, 5);
  2936. SERIAL_ECHOLNPGM("");
  2937. }
  2938. #endif // SUPPORT_VERBOSITY
  2939. //#endif
  2940. }
  2941. // Move Z up to MESH_HOME_Z_SEARCH.
  2942. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2944. st_synchronize();
  2945. // Move to XY position of the sensor point.
  2946. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2947. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2948. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2949. #ifdef SUPPORT_VERBOSITY
  2950. if (verbosity_level >= 1) {
  2951. SERIAL_PROTOCOL(mesh_point);
  2952. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2953. }
  2954. #endif // SUPPORT_VERBOSITY
  2955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2956. st_synchronize();
  2957. // Go down until endstop is hit
  2958. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2959. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2960. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2961. break;
  2962. }
  2963. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2964. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2965. break;
  2966. }
  2967. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2968. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2969. break;
  2970. }
  2971. #ifdef SUPPORT_VERBOSITY
  2972. if (verbosity_level >= 10) {
  2973. SERIAL_ECHOPGM("X: ");
  2974. MYSERIAL.print(current_position[X_AXIS], 5);
  2975. SERIAL_ECHOLNPGM("");
  2976. SERIAL_ECHOPGM("Y: ");
  2977. MYSERIAL.print(current_position[Y_AXIS], 5);
  2978. SERIAL_PROTOCOLPGM("\n");
  2979. }
  2980. #endif // SUPPORT_VERBOSITY
  2981. float offset_z = 0;
  2982. #ifdef PINDA_THERMISTOR
  2983. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2984. #endif //PINDA_THERMISTOR
  2985. // #ifdef SUPPORT_VERBOSITY
  2986. /* if (verbosity_level >= 1)
  2987. {
  2988. SERIAL_ECHOPGM("mesh bed leveling: ");
  2989. MYSERIAL.print(current_position[Z_AXIS], 5);
  2990. SERIAL_ECHOPGM(" offset: ");
  2991. MYSERIAL.print(offset_z, 5);
  2992. SERIAL_ECHOLNPGM("");
  2993. }*/
  2994. // #endif // SUPPORT_VERBOSITY
  2995. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2996. custom_message_state--;
  2997. mesh_point++;
  2998. lcd_update(1);
  2999. }
  3000. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3001. #ifdef SUPPORT_VERBOSITY
  3002. if (verbosity_level >= 20) {
  3003. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3004. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3005. MYSERIAL.print(current_position[Z_AXIS], 5);
  3006. }
  3007. #endif // SUPPORT_VERBOSITY
  3008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3009. st_synchronize();
  3010. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3011. kill(kill_message);
  3012. SERIAL_ECHOLNPGM("killed");
  3013. }
  3014. clean_up_after_endstop_move();
  3015. // SERIAL_ECHOLNPGM("clean up finished ");
  3016. bool apply_temp_comp = true;
  3017. #ifdef PINDA_THERMISTOR
  3018. apply_temp_comp = false;
  3019. #endif
  3020. if (apply_temp_comp)
  3021. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3022. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3023. // SERIAL_ECHOLNPGM("babystep applied");
  3024. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3025. #ifdef SUPPORT_VERBOSITY
  3026. if (verbosity_level >= 1) {
  3027. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3028. }
  3029. #endif // SUPPORT_VERBOSITY
  3030. for (uint8_t i = 0; i < 4; ++i) {
  3031. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3032. long correction = 0;
  3033. if (code_seen(codes[i]))
  3034. correction = code_value_long();
  3035. else if (eeprom_bed_correction_valid) {
  3036. unsigned char *addr = (i < 2) ?
  3037. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3038. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3039. correction = eeprom_read_int8(addr);
  3040. }
  3041. if (correction == 0)
  3042. continue;
  3043. float offset = float(correction) * 0.001f;
  3044. if (fabs(offset) > 0.101f) {
  3045. SERIAL_ERROR_START;
  3046. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3047. SERIAL_ECHO(offset);
  3048. SERIAL_ECHOLNPGM(" microns");
  3049. }
  3050. else {
  3051. switch (i) {
  3052. case 0:
  3053. for (uint8_t row = 0; row < 3; ++row) {
  3054. mbl.z_values[row][1] += 0.5f * offset;
  3055. mbl.z_values[row][0] += offset;
  3056. }
  3057. break;
  3058. case 1:
  3059. for (uint8_t row = 0; row < 3; ++row) {
  3060. mbl.z_values[row][1] += 0.5f * offset;
  3061. mbl.z_values[row][2] += offset;
  3062. }
  3063. break;
  3064. case 2:
  3065. for (uint8_t col = 0; col < 3; ++col) {
  3066. mbl.z_values[1][col] += 0.5f * offset;
  3067. mbl.z_values[0][col] += offset;
  3068. }
  3069. break;
  3070. case 3:
  3071. for (uint8_t col = 0; col < 3; ++col) {
  3072. mbl.z_values[1][col] += 0.5f * offset;
  3073. mbl.z_values[2][col] += offset;
  3074. }
  3075. break;
  3076. }
  3077. }
  3078. }
  3079. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3080. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3081. // SERIAL_ECHOLNPGM("Upsample finished");
  3082. mbl.active = 1; //activate mesh bed leveling
  3083. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3084. go_home_with_z_lift();
  3085. // SERIAL_ECHOLNPGM("Go home finished");
  3086. //unretract (after PINDA preheat retraction)
  3087. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3088. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3090. }
  3091. KEEPALIVE_STATE(NOT_BUSY);
  3092. // Restore custom message state
  3093. custom_message = custom_message_old;
  3094. custom_message_type = custom_message_type_old;
  3095. custom_message_state = custom_message_state_old;
  3096. mesh_bed_leveling_flag = false;
  3097. mesh_bed_run_from_menu = false;
  3098. lcd_update(2);
  3099. }
  3100. break;
  3101. /**
  3102. * G81: Print mesh bed leveling status and bed profile if activated
  3103. */
  3104. case 81:
  3105. if (mbl.active) {
  3106. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3107. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3108. SERIAL_PROTOCOLPGM(",");
  3109. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3110. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3111. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3112. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3113. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3114. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3115. SERIAL_PROTOCOLPGM(" ");
  3116. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3117. }
  3118. SERIAL_PROTOCOLPGM("\n");
  3119. }
  3120. }
  3121. else
  3122. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3123. break;
  3124. #if 0
  3125. /**
  3126. * G82: Single Z probe at current location
  3127. *
  3128. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3129. *
  3130. */
  3131. case 82:
  3132. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3133. setup_for_endstop_move();
  3134. find_bed_induction_sensor_point_z();
  3135. clean_up_after_endstop_move();
  3136. SERIAL_PROTOCOLPGM("Bed found at: ");
  3137. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3138. SERIAL_PROTOCOLPGM("\n");
  3139. break;
  3140. /**
  3141. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3142. */
  3143. case 83:
  3144. {
  3145. int babystepz = code_seen('S') ? code_value() : 0;
  3146. int BabyPosition = code_seen('P') ? code_value() : 0;
  3147. if (babystepz != 0) {
  3148. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3149. // Is the axis indexed starting with zero or one?
  3150. if (BabyPosition > 4) {
  3151. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3152. }else{
  3153. // Save it to the eeprom
  3154. babystepLoadZ = babystepz;
  3155. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3156. // adjust the Z
  3157. babystepsTodoZadd(babystepLoadZ);
  3158. }
  3159. }
  3160. }
  3161. break;
  3162. /**
  3163. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3164. */
  3165. case 84:
  3166. babystepsTodoZsubtract(babystepLoadZ);
  3167. // babystepLoadZ = 0;
  3168. break;
  3169. /**
  3170. * G85: Prusa3D specific: Pick best babystep
  3171. */
  3172. case 85:
  3173. lcd_pick_babystep();
  3174. break;
  3175. #endif
  3176. /**
  3177. * G86: Prusa3D specific: Disable babystep correction after home.
  3178. * This G-code will be performed at the start of a calibration script.
  3179. */
  3180. case 86:
  3181. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3182. break;
  3183. /**
  3184. * G87: Prusa3D specific: Enable babystep correction after home
  3185. * This G-code will be performed at the end of a calibration script.
  3186. */
  3187. case 87:
  3188. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3189. break;
  3190. /**
  3191. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3192. */
  3193. case 88:
  3194. break;
  3195. #endif // ENABLE_MESH_BED_LEVELING
  3196. case 90: // G90
  3197. relative_mode = false;
  3198. break;
  3199. case 91: // G91
  3200. relative_mode = true;
  3201. break;
  3202. case 92: // G92
  3203. if(!code_seen(axis_codes[E_AXIS]))
  3204. st_synchronize();
  3205. for(int8_t i=0; i < NUM_AXIS; i++) {
  3206. if(code_seen(axis_codes[i])) {
  3207. if(i == E_AXIS) {
  3208. current_position[i] = code_value();
  3209. plan_set_e_position(current_position[E_AXIS]);
  3210. }
  3211. else {
  3212. current_position[i] = code_value()+add_homing[i];
  3213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3214. }
  3215. }
  3216. }
  3217. break;
  3218. case 98: //activate farm mode
  3219. farm_mode = 1;
  3220. PingTime = millis();
  3221. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3222. break;
  3223. case 99: //deactivate farm mode
  3224. farm_mode = 0;
  3225. lcd_printer_connected();
  3226. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3227. lcd_update(2);
  3228. break;
  3229. }
  3230. } // end if(code_seen('G'))
  3231. else if(code_seen('M'))
  3232. {
  3233. int index;
  3234. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3235. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3236. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3237. SERIAL_ECHOLNPGM("Invalid M code");
  3238. } else
  3239. switch((int)code_value())
  3240. {
  3241. #ifdef ULTIPANEL
  3242. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3243. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3244. {
  3245. char *src = strchr_pointer + 2;
  3246. codenum = 0;
  3247. bool hasP = false, hasS = false;
  3248. if (code_seen('P')) {
  3249. codenum = code_value(); // milliseconds to wait
  3250. hasP = codenum > 0;
  3251. }
  3252. if (code_seen('S')) {
  3253. codenum = code_value() * 1000; // seconds to wait
  3254. hasS = codenum > 0;
  3255. }
  3256. starpos = strchr(src, '*');
  3257. if (starpos != NULL) *(starpos) = '\0';
  3258. while (*src == ' ') ++src;
  3259. if (!hasP && !hasS && *src != '\0') {
  3260. lcd_setstatus(src);
  3261. } else {
  3262. LCD_MESSAGERPGM(MSG_USERWAIT);
  3263. }
  3264. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3265. st_synchronize();
  3266. previous_millis_cmd = millis();
  3267. if (codenum > 0){
  3268. codenum += millis(); // keep track of when we started waiting
  3269. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3270. while(millis() < codenum && !lcd_clicked()){
  3271. manage_heater();
  3272. manage_inactivity(true);
  3273. lcd_update();
  3274. }
  3275. KEEPALIVE_STATE(IN_HANDLER);
  3276. lcd_ignore_click(false);
  3277. }else{
  3278. if (!lcd_detected())
  3279. break;
  3280. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3281. while(!lcd_clicked()){
  3282. manage_heater();
  3283. manage_inactivity(true);
  3284. lcd_update();
  3285. }
  3286. KEEPALIVE_STATE(IN_HANDLER);
  3287. }
  3288. if (IS_SD_PRINTING)
  3289. LCD_MESSAGERPGM(MSG_RESUMING);
  3290. else
  3291. LCD_MESSAGERPGM(WELCOME_MSG);
  3292. }
  3293. break;
  3294. #endif
  3295. case 17:
  3296. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3297. enable_x();
  3298. enable_y();
  3299. enable_z();
  3300. enable_e0();
  3301. enable_e1();
  3302. enable_e2();
  3303. break;
  3304. #ifdef SDSUPPORT
  3305. case 20: // M20 - list SD card
  3306. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3307. card.ls();
  3308. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3309. break;
  3310. case 21: // M21 - init SD card
  3311. card.initsd();
  3312. break;
  3313. case 22: //M22 - release SD card
  3314. card.release();
  3315. break;
  3316. case 23: //M23 - Select file
  3317. starpos = (strchr(strchr_pointer + 4,'*'));
  3318. if(starpos!=NULL)
  3319. *(starpos)='\0';
  3320. card.openFile(strchr_pointer + 4,true);
  3321. break;
  3322. case 24: //M24 - Start SD print
  3323. card.startFileprint();
  3324. starttime=millis();
  3325. break;
  3326. case 25: //M25 - Pause SD print
  3327. card.pauseSDPrint();
  3328. break;
  3329. case 26: //M26 - Set SD index
  3330. if(card.cardOK && code_seen('S')) {
  3331. card.setIndex(code_value_long());
  3332. }
  3333. break;
  3334. case 27: //M27 - Get SD status
  3335. card.getStatus();
  3336. break;
  3337. case 28: //M28 - Start SD write
  3338. starpos = (strchr(strchr_pointer + 4,'*'));
  3339. if(starpos != NULL){
  3340. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3341. strchr_pointer = strchr(npos,' ') + 1;
  3342. *(starpos) = '\0';
  3343. }
  3344. card.openFile(strchr_pointer+4,false);
  3345. break;
  3346. case 29: //M29 - Stop SD write
  3347. //processed in write to file routine above
  3348. //card,saving = false;
  3349. break;
  3350. case 30: //M30 <filename> Delete File
  3351. if (card.cardOK){
  3352. card.closefile();
  3353. starpos = (strchr(strchr_pointer + 4,'*'));
  3354. if(starpos != NULL){
  3355. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3356. strchr_pointer = strchr(npos,' ') + 1;
  3357. *(starpos) = '\0';
  3358. }
  3359. card.removeFile(strchr_pointer + 4);
  3360. }
  3361. break;
  3362. case 32: //M32 - Select file and start SD print
  3363. {
  3364. if(card.sdprinting) {
  3365. st_synchronize();
  3366. }
  3367. starpos = (strchr(strchr_pointer + 4,'*'));
  3368. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3369. if(namestartpos==NULL)
  3370. {
  3371. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3372. }
  3373. else
  3374. namestartpos++; //to skip the '!'
  3375. if(starpos!=NULL)
  3376. *(starpos)='\0';
  3377. bool call_procedure=(code_seen('P'));
  3378. if(strchr_pointer>namestartpos)
  3379. call_procedure=false; //false alert, 'P' found within filename
  3380. if( card.cardOK )
  3381. {
  3382. card.openFile(namestartpos,true,!call_procedure);
  3383. if(code_seen('S'))
  3384. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3385. card.setIndex(code_value_long());
  3386. card.startFileprint();
  3387. if(!call_procedure)
  3388. starttime=millis(); //procedure calls count as normal print time.
  3389. }
  3390. } break;
  3391. case 928: //M928 - Start SD write
  3392. starpos = (strchr(strchr_pointer + 5,'*'));
  3393. if(starpos != NULL){
  3394. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3395. strchr_pointer = strchr(npos,' ') + 1;
  3396. *(starpos) = '\0';
  3397. }
  3398. card.openLogFile(strchr_pointer+5);
  3399. break;
  3400. #endif //SDSUPPORT
  3401. case 31: //M31 take time since the start of the SD print or an M109 command
  3402. {
  3403. stoptime=millis();
  3404. char time[30];
  3405. unsigned long t=(stoptime-starttime)/1000;
  3406. int sec,min;
  3407. min=t/60;
  3408. sec=t%60;
  3409. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3410. SERIAL_ECHO_START;
  3411. SERIAL_ECHOLN(time);
  3412. lcd_setstatus(time);
  3413. autotempShutdown();
  3414. }
  3415. break;
  3416. #ifndef _DISABLE_M42_M226
  3417. case 42: //M42 -Change pin status via gcode
  3418. if (code_seen('S'))
  3419. {
  3420. int pin_status = code_value();
  3421. int pin_number = LED_PIN;
  3422. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3423. pin_number = code_value();
  3424. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3425. {
  3426. if (sensitive_pins[i] == pin_number)
  3427. {
  3428. pin_number = -1;
  3429. break;
  3430. }
  3431. }
  3432. #if defined(FAN_PIN) && FAN_PIN > -1
  3433. if (pin_number == FAN_PIN)
  3434. fanSpeed = pin_status;
  3435. #endif
  3436. if (pin_number > -1)
  3437. {
  3438. pinMode(pin_number, OUTPUT);
  3439. digitalWrite(pin_number, pin_status);
  3440. analogWrite(pin_number, pin_status);
  3441. }
  3442. }
  3443. break;
  3444. #endif //_DISABLE_M42_M226
  3445. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3446. // Reset the baby step value and the baby step applied flag.
  3447. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3448. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3449. // Reset the skew and offset in both RAM and EEPROM.
  3450. reset_bed_offset_and_skew();
  3451. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3452. // the planner will not perform any adjustments in the XY plane.
  3453. // Wait for the motors to stop and update the current position with the absolute values.
  3454. world2machine_revert_to_uncorrected();
  3455. break;
  3456. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3457. {
  3458. bool only_Z = code_seen('Z');
  3459. gcode_M45(only_Z);
  3460. }
  3461. break;
  3462. /*
  3463. case 46:
  3464. {
  3465. // M46: Prusa3D: Show the assigned IP address.
  3466. uint8_t ip[4];
  3467. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3468. if (hasIP) {
  3469. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3470. SERIAL_ECHO(int(ip[0]));
  3471. SERIAL_ECHOPGM(".");
  3472. SERIAL_ECHO(int(ip[1]));
  3473. SERIAL_ECHOPGM(".");
  3474. SERIAL_ECHO(int(ip[2]));
  3475. SERIAL_ECHOPGM(".");
  3476. SERIAL_ECHO(int(ip[3]));
  3477. SERIAL_ECHOLNPGM("");
  3478. } else {
  3479. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3480. }
  3481. break;
  3482. }
  3483. */
  3484. case 47:
  3485. // M47: Prusa3D: Show end stops dialog on the display.
  3486. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3487. lcd_diag_show_end_stops();
  3488. KEEPALIVE_STATE(IN_HANDLER);
  3489. break;
  3490. #if 0
  3491. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3492. {
  3493. // Disable the default update procedure of the display. We will do a modal dialog.
  3494. lcd_update_enable(false);
  3495. // Let the planner use the uncorrected coordinates.
  3496. mbl.reset();
  3497. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3498. // the planner will not perform any adjustments in the XY plane.
  3499. // Wait for the motors to stop and update the current position with the absolute values.
  3500. world2machine_revert_to_uncorrected();
  3501. // Move the print head close to the bed.
  3502. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3504. st_synchronize();
  3505. // Home in the XY plane.
  3506. set_destination_to_current();
  3507. setup_for_endstop_move();
  3508. home_xy();
  3509. int8_t verbosity_level = 0;
  3510. if (code_seen('V')) {
  3511. // Just 'V' without a number counts as V1.
  3512. char c = strchr_pointer[1];
  3513. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3514. }
  3515. bool success = scan_bed_induction_points(verbosity_level);
  3516. clean_up_after_endstop_move();
  3517. // Print head up.
  3518. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3520. st_synchronize();
  3521. lcd_update_enable(true);
  3522. break;
  3523. }
  3524. #endif
  3525. // M48 Z-Probe repeatability measurement function.
  3526. //
  3527. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3528. //
  3529. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3530. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3531. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3532. // regenerated.
  3533. //
  3534. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3535. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3536. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3537. //
  3538. #ifdef ENABLE_AUTO_BED_LEVELING
  3539. #ifdef Z_PROBE_REPEATABILITY_TEST
  3540. case 48: // M48 Z-Probe repeatability
  3541. {
  3542. #if Z_MIN_PIN == -1
  3543. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3544. #endif
  3545. double sum=0.0;
  3546. double mean=0.0;
  3547. double sigma=0.0;
  3548. double sample_set[50];
  3549. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3550. double X_current, Y_current, Z_current;
  3551. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3552. if (code_seen('V') || code_seen('v')) {
  3553. verbose_level = code_value();
  3554. if (verbose_level<0 || verbose_level>4 ) {
  3555. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3556. goto Sigma_Exit;
  3557. }
  3558. }
  3559. if (verbose_level > 0) {
  3560. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3561. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3562. }
  3563. if (code_seen('n')) {
  3564. n_samples = code_value();
  3565. if (n_samples<4 || n_samples>50 ) {
  3566. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3567. goto Sigma_Exit;
  3568. }
  3569. }
  3570. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3571. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3572. Z_current = st_get_position_mm(Z_AXIS);
  3573. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3574. ext_position = st_get_position_mm(E_AXIS);
  3575. if (code_seen('X') || code_seen('x') ) {
  3576. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3577. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3578. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3579. goto Sigma_Exit;
  3580. }
  3581. }
  3582. if (code_seen('Y') || code_seen('y') ) {
  3583. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3584. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3585. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3586. goto Sigma_Exit;
  3587. }
  3588. }
  3589. if (code_seen('L') || code_seen('l') ) {
  3590. n_legs = code_value();
  3591. if ( n_legs==1 )
  3592. n_legs = 2;
  3593. if ( n_legs<0 || n_legs>15 ) {
  3594. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3595. goto Sigma_Exit;
  3596. }
  3597. }
  3598. //
  3599. // Do all the preliminary setup work. First raise the probe.
  3600. //
  3601. st_synchronize();
  3602. plan_bed_level_matrix.set_to_identity();
  3603. plan_buffer_line( X_current, Y_current, Z_start_location,
  3604. ext_position,
  3605. homing_feedrate[Z_AXIS]/60,
  3606. active_extruder);
  3607. st_synchronize();
  3608. //
  3609. // Now get everything to the specified probe point So we can safely do a probe to
  3610. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3611. // use that as a starting point for each probe.
  3612. //
  3613. if (verbose_level > 2)
  3614. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3615. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3616. ext_position,
  3617. homing_feedrate[X_AXIS]/60,
  3618. active_extruder);
  3619. st_synchronize();
  3620. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3621. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3622. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3623. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3624. //
  3625. // OK, do the inital probe to get us close to the bed.
  3626. // Then retrace the right amount and use that in subsequent probes
  3627. //
  3628. setup_for_endstop_move();
  3629. run_z_probe();
  3630. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3631. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3632. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3633. ext_position,
  3634. homing_feedrate[X_AXIS]/60,
  3635. active_extruder);
  3636. st_synchronize();
  3637. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3638. for( n=0; n<n_samples; n++) {
  3639. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3640. if ( n_legs) {
  3641. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3642. int rotational_direction, l;
  3643. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3644. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3645. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3646. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3647. //SERIAL_ECHOPAIR(" theta: ",theta);
  3648. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3649. //SERIAL_PROTOCOLLNPGM("");
  3650. for( l=0; l<n_legs-1; l++) {
  3651. if (rotational_direction==1)
  3652. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3653. else
  3654. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3655. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3656. if ( radius<0.0 )
  3657. radius = -radius;
  3658. X_current = X_probe_location + cos(theta) * radius;
  3659. Y_current = Y_probe_location + sin(theta) * radius;
  3660. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3661. X_current = X_MIN_POS;
  3662. if ( X_current>X_MAX_POS)
  3663. X_current = X_MAX_POS;
  3664. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3665. Y_current = Y_MIN_POS;
  3666. if ( Y_current>Y_MAX_POS)
  3667. Y_current = Y_MAX_POS;
  3668. if (verbose_level>3 ) {
  3669. SERIAL_ECHOPAIR("x: ", X_current);
  3670. SERIAL_ECHOPAIR("y: ", Y_current);
  3671. SERIAL_PROTOCOLLNPGM("");
  3672. }
  3673. do_blocking_move_to( X_current, Y_current, Z_current );
  3674. }
  3675. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3676. }
  3677. setup_for_endstop_move();
  3678. run_z_probe();
  3679. sample_set[n] = current_position[Z_AXIS];
  3680. //
  3681. // Get the current mean for the data points we have so far
  3682. //
  3683. sum=0.0;
  3684. for( j=0; j<=n; j++) {
  3685. sum = sum + sample_set[j];
  3686. }
  3687. mean = sum / (double (n+1));
  3688. //
  3689. // Now, use that mean to calculate the standard deviation for the
  3690. // data points we have so far
  3691. //
  3692. sum=0.0;
  3693. for( j=0; j<=n; j++) {
  3694. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3695. }
  3696. sigma = sqrt( sum / (double (n+1)) );
  3697. if (verbose_level > 1) {
  3698. SERIAL_PROTOCOL(n+1);
  3699. SERIAL_PROTOCOL(" of ");
  3700. SERIAL_PROTOCOL(n_samples);
  3701. SERIAL_PROTOCOLPGM(" z: ");
  3702. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3703. }
  3704. if (verbose_level > 2) {
  3705. SERIAL_PROTOCOL(" mean: ");
  3706. SERIAL_PROTOCOL_F(mean,6);
  3707. SERIAL_PROTOCOL(" sigma: ");
  3708. SERIAL_PROTOCOL_F(sigma,6);
  3709. }
  3710. if (verbose_level > 0)
  3711. SERIAL_PROTOCOLPGM("\n");
  3712. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3713. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3714. st_synchronize();
  3715. }
  3716. delay(1000);
  3717. clean_up_after_endstop_move();
  3718. // enable_endstops(true);
  3719. if (verbose_level > 0) {
  3720. SERIAL_PROTOCOLPGM("Mean: ");
  3721. SERIAL_PROTOCOL_F(mean, 6);
  3722. SERIAL_PROTOCOLPGM("\n");
  3723. }
  3724. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3725. SERIAL_PROTOCOL_F(sigma, 6);
  3726. SERIAL_PROTOCOLPGM("\n\n");
  3727. Sigma_Exit:
  3728. break;
  3729. }
  3730. #endif // Z_PROBE_REPEATABILITY_TEST
  3731. #endif // ENABLE_AUTO_BED_LEVELING
  3732. case 104: // M104
  3733. if(setTargetedHotend(104)){
  3734. break;
  3735. }
  3736. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3737. setWatch();
  3738. break;
  3739. case 112: // M112 -Emergency Stop
  3740. kill("", 3);
  3741. break;
  3742. case 140: // M140 set bed temp
  3743. if (code_seen('S')) setTargetBed(code_value());
  3744. break;
  3745. case 105 : // M105
  3746. if(setTargetedHotend(105)){
  3747. break;
  3748. }
  3749. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3750. SERIAL_PROTOCOLPGM("ok T:");
  3751. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3752. SERIAL_PROTOCOLPGM(" /");
  3753. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3754. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3755. SERIAL_PROTOCOLPGM(" B:");
  3756. SERIAL_PROTOCOL_F(degBed(),1);
  3757. SERIAL_PROTOCOLPGM(" /");
  3758. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3759. #endif //TEMP_BED_PIN
  3760. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3761. SERIAL_PROTOCOLPGM(" T");
  3762. SERIAL_PROTOCOL(cur_extruder);
  3763. SERIAL_PROTOCOLPGM(":");
  3764. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3765. SERIAL_PROTOCOLPGM(" /");
  3766. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3767. }
  3768. #else
  3769. SERIAL_ERROR_START;
  3770. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3771. #endif
  3772. SERIAL_PROTOCOLPGM(" @:");
  3773. #ifdef EXTRUDER_WATTS
  3774. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3775. SERIAL_PROTOCOLPGM("W");
  3776. #else
  3777. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3778. #endif
  3779. SERIAL_PROTOCOLPGM(" B@:");
  3780. #ifdef BED_WATTS
  3781. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3782. SERIAL_PROTOCOLPGM("W");
  3783. #else
  3784. SERIAL_PROTOCOL(getHeaterPower(-1));
  3785. #endif
  3786. #ifdef PINDA_THERMISTOR
  3787. SERIAL_PROTOCOLPGM(" P:");
  3788. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3789. #endif //PINDA_THERMISTOR
  3790. #ifdef AMBIENT_THERMISTOR
  3791. SERIAL_PROTOCOLPGM(" A:");
  3792. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3793. #endif //AMBIENT_THERMISTOR
  3794. #ifdef SHOW_TEMP_ADC_VALUES
  3795. {float raw = 0.0;
  3796. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3797. SERIAL_PROTOCOLPGM(" ADC B:");
  3798. SERIAL_PROTOCOL_F(degBed(),1);
  3799. SERIAL_PROTOCOLPGM("C->");
  3800. raw = rawBedTemp();
  3801. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3802. SERIAL_PROTOCOLPGM(" Rb->");
  3803. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3804. SERIAL_PROTOCOLPGM(" Rxb->");
  3805. SERIAL_PROTOCOL_F(raw, 5);
  3806. #endif
  3807. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3808. SERIAL_PROTOCOLPGM(" T");
  3809. SERIAL_PROTOCOL(cur_extruder);
  3810. SERIAL_PROTOCOLPGM(":");
  3811. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3812. SERIAL_PROTOCOLPGM("C->");
  3813. raw = rawHotendTemp(cur_extruder);
  3814. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3815. SERIAL_PROTOCOLPGM(" Rt");
  3816. SERIAL_PROTOCOL(cur_extruder);
  3817. SERIAL_PROTOCOLPGM("->");
  3818. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3819. SERIAL_PROTOCOLPGM(" Rx");
  3820. SERIAL_PROTOCOL(cur_extruder);
  3821. SERIAL_PROTOCOLPGM("->");
  3822. SERIAL_PROTOCOL_F(raw, 5);
  3823. }}
  3824. #endif
  3825. SERIAL_PROTOCOLLN("");
  3826. KEEPALIVE_STATE(NOT_BUSY);
  3827. return;
  3828. break;
  3829. case 109:
  3830. {// M109 - Wait for extruder heater to reach target.
  3831. if(setTargetedHotend(109)){
  3832. break;
  3833. }
  3834. LCD_MESSAGERPGM(MSG_HEATING);
  3835. heating_status = 1;
  3836. if (farm_mode) { prusa_statistics(1); };
  3837. #ifdef AUTOTEMP
  3838. autotemp_enabled=false;
  3839. #endif
  3840. if (code_seen('S')) {
  3841. setTargetHotend(code_value(), tmp_extruder);
  3842. CooldownNoWait = true;
  3843. } else if (code_seen('R')) {
  3844. setTargetHotend(code_value(), tmp_extruder);
  3845. CooldownNoWait = false;
  3846. }
  3847. #ifdef AUTOTEMP
  3848. if (code_seen('S')) autotemp_min=code_value();
  3849. if (code_seen('B')) autotemp_max=code_value();
  3850. if (code_seen('F'))
  3851. {
  3852. autotemp_factor=code_value();
  3853. autotemp_enabled=true;
  3854. }
  3855. #endif
  3856. setWatch();
  3857. codenum = millis();
  3858. /* See if we are heating up or cooling down */
  3859. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3860. KEEPALIVE_STATE(NOT_BUSY);
  3861. cancel_heatup = false;
  3862. wait_for_heater(codenum); //loops until target temperature is reached
  3863. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3864. KEEPALIVE_STATE(IN_HANDLER);
  3865. heating_status = 2;
  3866. if (farm_mode) { prusa_statistics(2); };
  3867. //starttime=millis();
  3868. previous_millis_cmd = millis();
  3869. }
  3870. break;
  3871. case 190: // M190 - Wait for bed heater to reach target.
  3872. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3873. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3874. heating_status = 3;
  3875. if (farm_mode) { prusa_statistics(1); };
  3876. if (code_seen('S'))
  3877. {
  3878. setTargetBed(code_value());
  3879. CooldownNoWait = true;
  3880. }
  3881. else if (code_seen('R'))
  3882. {
  3883. setTargetBed(code_value());
  3884. CooldownNoWait = false;
  3885. }
  3886. codenum = millis();
  3887. cancel_heatup = false;
  3888. target_direction = isHeatingBed(); // true if heating, false if cooling
  3889. KEEPALIVE_STATE(NOT_BUSY);
  3890. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3891. {
  3892. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3893. {
  3894. if (!farm_mode) {
  3895. float tt = degHotend(active_extruder);
  3896. SERIAL_PROTOCOLPGM("T:");
  3897. SERIAL_PROTOCOL(tt);
  3898. SERIAL_PROTOCOLPGM(" E:");
  3899. SERIAL_PROTOCOL((int)active_extruder);
  3900. SERIAL_PROTOCOLPGM(" B:");
  3901. SERIAL_PROTOCOL_F(degBed(), 1);
  3902. SERIAL_PROTOCOLLN("");
  3903. }
  3904. codenum = millis();
  3905. }
  3906. manage_heater();
  3907. manage_inactivity();
  3908. lcd_update();
  3909. }
  3910. LCD_MESSAGERPGM(MSG_BED_DONE);
  3911. KEEPALIVE_STATE(IN_HANDLER);
  3912. heating_status = 4;
  3913. previous_millis_cmd = millis();
  3914. #endif
  3915. break;
  3916. #if defined(FAN_PIN) && FAN_PIN > -1
  3917. case 106: //M106 Fan On
  3918. if (code_seen('S')){
  3919. fanSpeed=constrain(code_value(),0,255);
  3920. }
  3921. else {
  3922. fanSpeed=255;
  3923. }
  3924. break;
  3925. case 107: //M107 Fan Off
  3926. fanSpeed = 0;
  3927. break;
  3928. #endif //FAN_PIN
  3929. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3930. case 80: // M80 - Turn on Power Supply
  3931. SET_OUTPUT(PS_ON_PIN); //GND
  3932. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3933. // If you have a switch on suicide pin, this is useful
  3934. // if you want to start another print with suicide feature after
  3935. // a print without suicide...
  3936. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3937. SET_OUTPUT(SUICIDE_PIN);
  3938. WRITE(SUICIDE_PIN, HIGH);
  3939. #endif
  3940. #ifdef ULTIPANEL
  3941. powersupply = true;
  3942. LCD_MESSAGERPGM(WELCOME_MSG);
  3943. lcd_update();
  3944. #endif
  3945. break;
  3946. #endif
  3947. case 81: // M81 - Turn off Power Supply
  3948. disable_heater();
  3949. st_synchronize();
  3950. disable_e0();
  3951. disable_e1();
  3952. disable_e2();
  3953. finishAndDisableSteppers();
  3954. fanSpeed = 0;
  3955. delay(1000); // Wait a little before to switch off
  3956. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3957. st_synchronize();
  3958. suicide();
  3959. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3960. SET_OUTPUT(PS_ON_PIN);
  3961. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3962. #endif
  3963. #ifdef ULTIPANEL
  3964. powersupply = false;
  3965. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3966. /*
  3967. MACHNAME = "Prusa i3"
  3968. MSGOFF = "Vypnuto"
  3969. "Prusai3"" ""vypnuto""."
  3970. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3971. */
  3972. lcd_update();
  3973. #endif
  3974. break;
  3975. case 82:
  3976. axis_relative_modes[3] = false;
  3977. break;
  3978. case 83:
  3979. axis_relative_modes[3] = true;
  3980. break;
  3981. case 18: //compatibility
  3982. case 84: // M84
  3983. if(code_seen('S')){
  3984. stepper_inactive_time = code_value() * 1000;
  3985. }
  3986. else
  3987. {
  3988. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3989. if(all_axis)
  3990. {
  3991. st_synchronize();
  3992. disable_e0();
  3993. disable_e1();
  3994. disable_e2();
  3995. finishAndDisableSteppers();
  3996. }
  3997. else
  3998. {
  3999. st_synchronize();
  4000. if (code_seen('X')) disable_x();
  4001. if (code_seen('Y')) disable_y();
  4002. if (code_seen('Z')) disable_z();
  4003. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4004. if (code_seen('E')) {
  4005. disable_e0();
  4006. disable_e1();
  4007. disable_e2();
  4008. }
  4009. #endif
  4010. }
  4011. }
  4012. snmm_filaments_used = 0;
  4013. break;
  4014. case 85: // M85
  4015. if(code_seen('S')) {
  4016. max_inactive_time = code_value() * 1000;
  4017. }
  4018. break;
  4019. case 92: // M92
  4020. for(int8_t i=0; i < NUM_AXIS; i++)
  4021. {
  4022. if(code_seen(axis_codes[i]))
  4023. {
  4024. if(i == 3) { // E
  4025. float value = code_value();
  4026. if(value < 20.0) {
  4027. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4028. max_jerk[E_AXIS] *= factor;
  4029. max_feedrate[i] *= factor;
  4030. axis_steps_per_sqr_second[i] *= factor;
  4031. }
  4032. axis_steps_per_unit[i] = value;
  4033. }
  4034. else {
  4035. axis_steps_per_unit[i] = code_value();
  4036. }
  4037. }
  4038. }
  4039. break;
  4040. case 110: // M110 - reset line pos
  4041. if (code_seen('N'))
  4042. gcode_LastN = code_value_long();
  4043. break;
  4044. #ifdef HOST_KEEPALIVE_FEATURE
  4045. case 113: // M113 - Get or set Host Keepalive interval
  4046. if (code_seen('S')) {
  4047. host_keepalive_interval = (uint8_t)code_value_short();
  4048. // NOMORE(host_keepalive_interval, 60);
  4049. }
  4050. else {
  4051. SERIAL_ECHO_START;
  4052. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4053. SERIAL_PROTOCOLLN("");
  4054. }
  4055. break;
  4056. #endif
  4057. case 115: // M115
  4058. if (code_seen('V')) {
  4059. // Report the Prusa version number.
  4060. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4061. } else if (code_seen('U')) {
  4062. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4063. // pause the print and ask the user to upgrade the firmware.
  4064. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4065. } else {
  4066. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4067. }
  4068. break;
  4069. /* case 117: // M117 display message
  4070. starpos = (strchr(strchr_pointer + 5,'*'));
  4071. if(starpos!=NULL)
  4072. *(starpos)='\0';
  4073. lcd_setstatus(strchr_pointer + 5);
  4074. break;*/
  4075. case 114: // M114
  4076. SERIAL_PROTOCOLPGM("X:");
  4077. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4078. SERIAL_PROTOCOLPGM(" Y:");
  4079. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4080. SERIAL_PROTOCOLPGM(" Z:");
  4081. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4082. SERIAL_PROTOCOLPGM(" E:");
  4083. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4084. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4085. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4086. SERIAL_PROTOCOLPGM(" Y:");
  4087. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4088. SERIAL_PROTOCOLPGM(" Z:");
  4089. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4090. SERIAL_PROTOCOLPGM(" E:");
  4091. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4092. SERIAL_PROTOCOLLN("");
  4093. break;
  4094. case 120: // M120
  4095. enable_endstops(false) ;
  4096. break;
  4097. case 121: // M121
  4098. enable_endstops(true) ;
  4099. break;
  4100. case 119: // M119
  4101. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4102. SERIAL_PROTOCOLLN("");
  4103. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4104. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4105. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4106. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4107. }else{
  4108. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4109. }
  4110. SERIAL_PROTOCOLLN("");
  4111. #endif
  4112. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4113. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4114. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4115. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4116. }else{
  4117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4118. }
  4119. SERIAL_PROTOCOLLN("");
  4120. #endif
  4121. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4122. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4123. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4124. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4125. }else{
  4126. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4127. }
  4128. SERIAL_PROTOCOLLN("");
  4129. #endif
  4130. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4131. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4132. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4133. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4134. }else{
  4135. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4136. }
  4137. SERIAL_PROTOCOLLN("");
  4138. #endif
  4139. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4140. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4141. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4142. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4143. }else{
  4144. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4145. }
  4146. SERIAL_PROTOCOLLN("");
  4147. #endif
  4148. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4149. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4150. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4151. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4152. }else{
  4153. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4154. }
  4155. SERIAL_PROTOCOLLN("");
  4156. #endif
  4157. break;
  4158. //TODO: update for all axis, use for loop
  4159. #ifdef BLINKM
  4160. case 150: // M150
  4161. {
  4162. byte red;
  4163. byte grn;
  4164. byte blu;
  4165. if(code_seen('R')) red = code_value();
  4166. if(code_seen('U')) grn = code_value();
  4167. if(code_seen('B')) blu = code_value();
  4168. SendColors(red,grn,blu);
  4169. }
  4170. break;
  4171. #endif //BLINKM
  4172. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4173. {
  4174. tmp_extruder = active_extruder;
  4175. if(code_seen('T')) {
  4176. tmp_extruder = code_value();
  4177. if(tmp_extruder >= EXTRUDERS) {
  4178. SERIAL_ECHO_START;
  4179. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4180. break;
  4181. }
  4182. }
  4183. float area = .0;
  4184. if(code_seen('D')) {
  4185. float diameter = (float)code_value();
  4186. if (diameter == 0.0) {
  4187. // setting any extruder filament size disables volumetric on the assumption that
  4188. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4189. // for all extruders
  4190. volumetric_enabled = false;
  4191. } else {
  4192. filament_size[tmp_extruder] = (float)code_value();
  4193. // make sure all extruders have some sane value for the filament size
  4194. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4195. #if EXTRUDERS > 1
  4196. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4197. #if EXTRUDERS > 2
  4198. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4199. #endif
  4200. #endif
  4201. volumetric_enabled = true;
  4202. }
  4203. } else {
  4204. //reserved for setting filament diameter via UFID or filament measuring device
  4205. break;
  4206. }
  4207. calculate_volumetric_multipliers();
  4208. }
  4209. break;
  4210. case 201: // M201
  4211. for(int8_t i=0; i < NUM_AXIS; i++)
  4212. {
  4213. if(code_seen(axis_codes[i]))
  4214. {
  4215. max_acceleration_units_per_sq_second[i] = code_value();
  4216. }
  4217. }
  4218. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4219. reset_acceleration_rates();
  4220. break;
  4221. #if 0 // Not used for Sprinter/grbl gen6
  4222. case 202: // M202
  4223. for(int8_t i=0; i < NUM_AXIS; i++) {
  4224. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4225. }
  4226. break;
  4227. #endif
  4228. case 203: // M203 max feedrate mm/sec
  4229. for(int8_t i=0; i < NUM_AXIS; i++) {
  4230. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4231. }
  4232. break;
  4233. case 204: // M204 acclereration S normal moves T filmanent only moves
  4234. {
  4235. if(code_seen('S')) acceleration = code_value() ;
  4236. if(code_seen('T')) retract_acceleration = code_value() ;
  4237. }
  4238. break;
  4239. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4240. {
  4241. if(code_seen('S')) minimumfeedrate = code_value();
  4242. if(code_seen('T')) mintravelfeedrate = code_value();
  4243. if(code_seen('B')) minsegmenttime = code_value() ;
  4244. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4245. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4246. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4247. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4248. }
  4249. break;
  4250. case 206: // M206 additional homing offset
  4251. for(int8_t i=0; i < 3; i++)
  4252. {
  4253. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4254. }
  4255. break;
  4256. #ifdef FWRETRACT
  4257. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4258. {
  4259. if(code_seen('S'))
  4260. {
  4261. retract_length = code_value() ;
  4262. }
  4263. if(code_seen('F'))
  4264. {
  4265. retract_feedrate = code_value()/60 ;
  4266. }
  4267. if(code_seen('Z'))
  4268. {
  4269. retract_zlift = code_value() ;
  4270. }
  4271. }break;
  4272. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4273. {
  4274. if(code_seen('S'))
  4275. {
  4276. retract_recover_length = code_value() ;
  4277. }
  4278. if(code_seen('F'))
  4279. {
  4280. retract_recover_feedrate = code_value()/60 ;
  4281. }
  4282. }break;
  4283. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4284. {
  4285. if(code_seen('S'))
  4286. {
  4287. int t= code_value() ;
  4288. switch(t)
  4289. {
  4290. case 0:
  4291. {
  4292. autoretract_enabled=false;
  4293. retracted[0]=false;
  4294. #if EXTRUDERS > 1
  4295. retracted[1]=false;
  4296. #endif
  4297. #if EXTRUDERS > 2
  4298. retracted[2]=false;
  4299. #endif
  4300. }break;
  4301. case 1:
  4302. {
  4303. autoretract_enabled=true;
  4304. retracted[0]=false;
  4305. #if EXTRUDERS > 1
  4306. retracted[1]=false;
  4307. #endif
  4308. #if EXTRUDERS > 2
  4309. retracted[2]=false;
  4310. #endif
  4311. }break;
  4312. default:
  4313. SERIAL_ECHO_START;
  4314. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4315. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4316. SERIAL_ECHOLNPGM("\"(1)");
  4317. }
  4318. }
  4319. }break;
  4320. #endif // FWRETRACT
  4321. #if EXTRUDERS > 1
  4322. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4323. {
  4324. if(setTargetedHotend(218)){
  4325. break;
  4326. }
  4327. if(code_seen('X'))
  4328. {
  4329. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4330. }
  4331. if(code_seen('Y'))
  4332. {
  4333. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4334. }
  4335. SERIAL_ECHO_START;
  4336. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4337. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4338. {
  4339. SERIAL_ECHO(" ");
  4340. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4341. SERIAL_ECHO(",");
  4342. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4343. }
  4344. SERIAL_ECHOLN("");
  4345. }break;
  4346. #endif
  4347. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4348. {
  4349. if(code_seen('S'))
  4350. {
  4351. feedmultiply = code_value() ;
  4352. }
  4353. }
  4354. break;
  4355. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4356. {
  4357. if(code_seen('S'))
  4358. {
  4359. int tmp_code = code_value();
  4360. if (code_seen('T'))
  4361. {
  4362. if(setTargetedHotend(221)){
  4363. break;
  4364. }
  4365. extruder_multiply[tmp_extruder] = tmp_code;
  4366. }
  4367. else
  4368. {
  4369. extrudemultiply = tmp_code ;
  4370. }
  4371. }
  4372. }
  4373. break;
  4374. #ifndef _DISABLE_M42_M226
  4375. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4376. {
  4377. if(code_seen('P')){
  4378. int pin_number = code_value(); // pin number
  4379. int pin_state = -1; // required pin state - default is inverted
  4380. if(code_seen('S')) pin_state = code_value(); // required pin state
  4381. if(pin_state >= -1 && pin_state <= 1){
  4382. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4383. {
  4384. if (sensitive_pins[i] == pin_number)
  4385. {
  4386. pin_number = -1;
  4387. break;
  4388. }
  4389. }
  4390. if (pin_number > -1)
  4391. {
  4392. int target = LOW;
  4393. st_synchronize();
  4394. pinMode(pin_number, INPUT);
  4395. switch(pin_state){
  4396. case 1:
  4397. target = HIGH;
  4398. break;
  4399. case 0:
  4400. target = LOW;
  4401. break;
  4402. case -1:
  4403. target = !digitalRead(pin_number);
  4404. break;
  4405. }
  4406. while(digitalRead(pin_number) != target){
  4407. manage_heater();
  4408. manage_inactivity();
  4409. lcd_update();
  4410. }
  4411. }
  4412. }
  4413. }
  4414. }
  4415. break;
  4416. #endif //_DISABLE_M42_M226
  4417. #if NUM_SERVOS > 0
  4418. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4419. {
  4420. int servo_index = -1;
  4421. int servo_position = 0;
  4422. if (code_seen('P'))
  4423. servo_index = code_value();
  4424. if (code_seen('S')) {
  4425. servo_position = code_value();
  4426. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4427. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4428. servos[servo_index].attach(0);
  4429. #endif
  4430. servos[servo_index].write(servo_position);
  4431. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4432. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4433. servos[servo_index].detach();
  4434. #endif
  4435. }
  4436. else {
  4437. SERIAL_ECHO_START;
  4438. SERIAL_ECHO("Servo ");
  4439. SERIAL_ECHO(servo_index);
  4440. SERIAL_ECHOLN(" out of range");
  4441. }
  4442. }
  4443. else if (servo_index >= 0) {
  4444. SERIAL_PROTOCOL(MSG_OK);
  4445. SERIAL_PROTOCOL(" Servo ");
  4446. SERIAL_PROTOCOL(servo_index);
  4447. SERIAL_PROTOCOL(": ");
  4448. SERIAL_PROTOCOL(servos[servo_index].read());
  4449. SERIAL_PROTOCOLLN("");
  4450. }
  4451. }
  4452. break;
  4453. #endif // NUM_SERVOS > 0
  4454. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4455. case 300: // M300
  4456. {
  4457. int beepS = code_seen('S') ? code_value() : 110;
  4458. int beepP = code_seen('P') ? code_value() : 1000;
  4459. if (beepS > 0)
  4460. {
  4461. #if BEEPER > 0
  4462. tone(BEEPER, beepS);
  4463. delay(beepP);
  4464. noTone(BEEPER);
  4465. #elif defined(ULTRALCD)
  4466. lcd_buzz(beepS, beepP);
  4467. #elif defined(LCD_USE_I2C_BUZZER)
  4468. lcd_buzz(beepP, beepS);
  4469. #endif
  4470. }
  4471. else
  4472. {
  4473. delay(beepP);
  4474. }
  4475. }
  4476. break;
  4477. #endif // M300
  4478. #ifdef PIDTEMP
  4479. case 301: // M301
  4480. {
  4481. if(code_seen('P')) Kp = code_value();
  4482. if(code_seen('I')) Ki = scalePID_i(code_value());
  4483. if(code_seen('D')) Kd = scalePID_d(code_value());
  4484. #ifdef PID_ADD_EXTRUSION_RATE
  4485. if(code_seen('C')) Kc = code_value();
  4486. #endif
  4487. updatePID();
  4488. SERIAL_PROTOCOLRPGM(MSG_OK);
  4489. SERIAL_PROTOCOL(" p:");
  4490. SERIAL_PROTOCOL(Kp);
  4491. SERIAL_PROTOCOL(" i:");
  4492. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4493. SERIAL_PROTOCOL(" d:");
  4494. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4495. #ifdef PID_ADD_EXTRUSION_RATE
  4496. SERIAL_PROTOCOL(" c:");
  4497. //Kc does not have scaling applied above, or in resetting defaults
  4498. SERIAL_PROTOCOL(Kc);
  4499. #endif
  4500. SERIAL_PROTOCOLLN("");
  4501. }
  4502. break;
  4503. #endif //PIDTEMP
  4504. #ifdef PIDTEMPBED
  4505. case 304: // M304
  4506. {
  4507. if(code_seen('P')) bedKp = code_value();
  4508. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4509. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4510. updatePID();
  4511. SERIAL_PROTOCOLRPGM(MSG_OK);
  4512. SERIAL_PROTOCOL(" p:");
  4513. SERIAL_PROTOCOL(bedKp);
  4514. SERIAL_PROTOCOL(" i:");
  4515. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4516. SERIAL_PROTOCOL(" d:");
  4517. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4518. SERIAL_PROTOCOLLN("");
  4519. }
  4520. break;
  4521. #endif //PIDTEMP
  4522. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4523. {
  4524. #ifdef CHDK
  4525. SET_OUTPUT(CHDK);
  4526. WRITE(CHDK, HIGH);
  4527. chdkHigh = millis();
  4528. chdkActive = true;
  4529. #else
  4530. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4531. const uint8_t NUM_PULSES=16;
  4532. const float PULSE_LENGTH=0.01524;
  4533. for(int i=0; i < NUM_PULSES; i++) {
  4534. WRITE(PHOTOGRAPH_PIN, HIGH);
  4535. _delay_ms(PULSE_LENGTH);
  4536. WRITE(PHOTOGRAPH_PIN, LOW);
  4537. _delay_ms(PULSE_LENGTH);
  4538. }
  4539. delay(7.33);
  4540. for(int i=0; i < NUM_PULSES; i++) {
  4541. WRITE(PHOTOGRAPH_PIN, HIGH);
  4542. _delay_ms(PULSE_LENGTH);
  4543. WRITE(PHOTOGRAPH_PIN, LOW);
  4544. _delay_ms(PULSE_LENGTH);
  4545. }
  4546. #endif
  4547. #endif //chdk end if
  4548. }
  4549. break;
  4550. #ifdef DOGLCD
  4551. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4552. {
  4553. if (code_seen('C')) {
  4554. lcd_setcontrast( ((int)code_value())&63 );
  4555. }
  4556. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4557. SERIAL_PROTOCOL(lcd_contrast);
  4558. SERIAL_PROTOCOLLN("");
  4559. }
  4560. break;
  4561. #endif
  4562. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4563. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4564. {
  4565. float temp = .0;
  4566. if (code_seen('S')) temp=code_value();
  4567. set_extrude_min_temp(temp);
  4568. }
  4569. break;
  4570. #endif
  4571. case 303: // M303 PID autotune
  4572. {
  4573. float temp = 150.0;
  4574. int e=0;
  4575. int c=5;
  4576. if (code_seen('E')) e=code_value();
  4577. if (e<0)
  4578. temp=70;
  4579. if (code_seen('S')) temp=code_value();
  4580. if (code_seen('C')) c=code_value();
  4581. PID_autotune(temp, e, c);
  4582. }
  4583. break;
  4584. case 400: // M400 finish all moves
  4585. {
  4586. st_synchronize();
  4587. }
  4588. break;
  4589. #ifdef FILAMENT_SENSOR
  4590. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4591. {
  4592. #if (FILWIDTH_PIN > -1)
  4593. if(code_seen('N')) filament_width_nominal=code_value();
  4594. else{
  4595. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4596. SERIAL_PROTOCOLLN(filament_width_nominal);
  4597. }
  4598. #endif
  4599. }
  4600. break;
  4601. case 405: //M405 Turn on filament sensor for control
  4602. {
  4603. if(code_seen('D')) meas_delay_cm=code_value();
  4604. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4605. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4606. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4607. {
  4608. int temp_ratio = widthFil_to_size_ratio();
  4609. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4610. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4611. }
  4612. delay_index1=0;
  4613. delay_index2=0;
  4614. }
  4615. filament_sensor = true ;
  4616. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4617. //SERIAL_PROTOCOL(filament_width_meas);
  4618. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4619. //SERIAL_PROTOCOL(extrudemultiply);
  4620. }
  4621. break;
  4622. case 406: //M406 Turn off filament sensor for control
  4623. {
  4624. filament_sensor = false ;
  4625. }
  4626. break;
  4627. case 407: //M407 Display measured filament diameter
  4628. {
  4629. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4630. SERIAL_PROTOCOLLN(filament_width_meas);
  4631. }
  4632. break;
  4633. #endif
  4634. case 500: // M500 Store settings in EEPROM
  4635. {
  4636. Config_StoreSettings(EEPROM_OFFSET);
  4637. }
  4638. break;
  4639. case 501: // M501 Read settings from EEPROM
  4640. {
  4641. Config_RetrieveSettings(EEPROM_OFFSET);
  4642. }
  4643. break;
  4644. case 502: // M502 Revert to default settings
  4645. {
  4646. Config_ResetDefault();
  4647. }
  4648. break;
  4649. case 503: // M503 print settings currently in memory
  4650. {
  4651. Config_PrintSettings();
  4652. }
  4653. break;
  4654. case 509: //M509 Force language selection
  4655. {
  4656. lcd_force_language_selection();
  4657. SERIAL_ECHO_START;
  4658. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4659. }
  4660. break;
  4661. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4662. case 540:
  4663. {
  4664. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4665. }
  4666. break;
  4667. #endif
  4668. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4669. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4670. {
  4671. float value;
  4672. if (code_seen('Z'))
  4673. {
  4674. value = code_value();
  4675. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4676. {
  4677. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4678. SERIAL_ECHO_START;
  4679. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4680. SERIAL_PROTOCOLLN("");
  4681. }
  4682. else
  4683. {
  4684. SERIAL_ECHO_START;
  4685. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4686. SERIAL_ECHORPGM(MSG_Z_MIN);
  4687. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4688. SERIAL_ECHORPGM(MSG_Z_MAX);
  4689. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4690. SERIAL_PROTOCOLLN("");
  4691. }
  4692. }
  4693. else
  4694. {
  4695. SERIAL_ECHO_START;
  4696. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4697. SERIAL_ECHO(-zprobe_zoffset);
  4698. SERIAL_PROTOCOLLN("");
  4699. }
  4700. break;
  4701. }
  4702. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4703. #ifdef FILAMENTCHANGEENABLE
  4704. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4705. {
  4706. bool old_fsensor_enabled = fsensor_enabled;
  4707. fsensor_enabled = false; //temporary solution for unexpected restarting
  4708. st_synchronize();
  4709. float target[4];
  4710. float lastpos[4];
  4711. if (farm_mode)
  4712. {
  4713. prusa_statistics(22);
  4714. }
  4715. feedmultiplyBckp=feedmultiply;
  4716. int8_t TooLowZ = 0;
  4717. target[X_AXIS]=current_position[X_AXIS];
  4718. target[Y_AXIS]=current_position[Y_AXIS];
  4719. target[Z_AXIS]=current_position[Z_AXIS];
  4720. target[E_AXIS]=current_position[E_AXIS];
  4721. lastpos[X_AXIS]=current_position[X_AXIS];
  4722. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4723. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4724. lastpos[E_AXIS]=current_position[E_AXIS];
  4725. //Restract extruder
  4726. if(code_seen('E'))
  4727. {
  4728. target[E_AXIS]+= code_value();
  4729. }
  4730. else
  4731. {
  4732. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4733. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4734. #endif
  4735. }
  4736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4737. //Lift Z
  4738. if(code_seen('Z'))
  4739. {
  4740. target[Z_AXIS]+= code_value();
  4741. }
  4742. else
  4743. {
  4744. #ifdef FILAMENTCHANGE_ZADD
  4745. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4746. if(target[Z_AXIS] < 10){
  4747. target[Z_AXIS]+= 10 ;
  4748. TooLowZ = 1;
  4749. }else{
  4750. TooLowZ = 0;
  4751. }
  4752. #endif
  4753. }
  4754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4755. //Move XY to side
  4756. if(code_seen('X'))
  4757. {
  4758. target[X_AXIS]+= code_value();
  4759. }
  4760. else
  4761. {
  4762. #ifdef FILAMENTCHANGE_XPOS
  4763. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4764. #endif
  4765. }
  4766. if(code_seen('Y'))
  4767. {
  4768. target[Y_AXIS]= code_value();
  4769. }
  4770. else
  4771. {
  4772. #ifdef FILAMENTCHANGE_YPOS
  4773. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4774. #endif
  4775. }
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4777. st_synchronize();
  4778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4779. uint8_t cnt = 0;
  4780. int counterBeep = 0;
  4781. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4782. while (!lcd_clicked()) {
  4783. cnt++;
  4784. manage_heater();
  4785. manage_inactivity(true);
  4786. /*#ifdef SNMM
  4787. target[E_AXIS] += 0.002;
  4788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4789. #endif // SNMM*/
  4790. if (cnt == 0)
  4791. {
  4792. #if BEEPER > 0
  4793. if (counterBeep == 500) {
  4794. counterBeep = 0;
  4795. }
  4796. SET_OUTPUT(BEEPER);
  4797. if (counterBeep == 0) {
  4798. WRITE(BEEPER, HIGH);
  4799. }
  4800. if (counterBeep == 20) {
  4801. WRITE(BEEPER, LOW);
  4802. }
  4803. counterBeep++;
  4804. #else
  4805. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4806. lcd_buzz(1000 / 6, 100);
  4807. #else
  4808. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4809. #endif
  4810. #endif
  4811. }
  4812. }
  4813. WRITE(BEEPER, LOW);
  4814. lcd_change_fil_state = 0;
  4815. while (lcd_change_fil_state == 0) {
  4816. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4817. KEEPALIVE_STATE(IN_HANDLER);
  4818. custom_message = true;
  4819. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4820. // Unload filament
  4821. if (code_seen('L'))
  4822. {
  4823. target[E_AXIS] += code_value();
  4824. }
  4825. else
  4826. {
  4827. #ifdef SNMM
  4828. #else
  4829. #ifdef FILAMENTCHANGE_FINALRETRACT
  4830. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4831. #endif
  4832. #endif // SNMM
  4833. }
  4834. #ifdef SNMM
  4835. target[E_AXIS] += 12;
  4836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4837. target[E_AXIS] += 6;
  4838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4839. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4840. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4841. st_synchronize();
  4842. target[E_AXIS] += (FIL_COOLING);
  4843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4844. target[E_AXIS] += (FIL_COOLING*-1);
  4845. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4846. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4847. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4848. st_synchronize();
  4849. #else
  4850. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4851. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4852. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4853. target[E_AXIS] -= 45;
  4854. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4855. st_synchronize();
  4856. target[E_AXIS] -= 15;
  4857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 160 / 60, active_extruder);
  4858. st_synchronize();
  4859. target[E_AXIS] -= 20;
  4860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000 / 60, active_extruder);
  4861. st_synchronize();
  4862. #endif // SNMM
  4863. //finish moves
  4864. st_synchronize();
  4865. //disable extruder steppers so filament can be removed
  4866. disable_e0();
  4867. disable_e1();
  4868. disable_e2();
  4869. delay(100);
  4870. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4871. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4872. //lcd_return_to_status();
  4873. lcd_update_enable(true);
  4874. }
  4875. //Wait for user to insert filament
  4876. lcd_wait_interact();
  4877. //load_filament_time = millis();
  4878. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4879. #ifdef PAT9125
  4880. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4881. #endif //PAT9125
  4882. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4883. while(!lcd_clicked())
  4884. {
  4885. manage_heater();
  4886. manage_inactivity(true);
  4887. #ifdef PAT9125
  4888. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4889. {
  4890. tone(BEEPER, 1000);
  4891. delay_keep_alive(50);
  4892. noTone(BEEPER);
  4893. break;
  4894. }
  4895. #endif //PAT9125
  4896. /*#ifdef SNMM
  4897. target[E_AXIS] += 0.002;
  4898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4899. #endif // SNMM*/
  4900. }
  4901. #ifdef PAT9125
  4902. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  4903. #endif //PAT9125
  4904. //WRITE(BEEPER, LOW);
  4905. KEEPALIVE_STATE(IN_HANDLER);
  4906. #ifdef SNMM
  4907. display_loading();
  4908. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4909. do {
  4910. target[E_AXIS] += 0.002;
  4911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4912. delay_keep_alive(2);
  4913. } while (!lcd_clicked());
  4914. KEEPALIVE_STATE(IN_HANDLER);
  4915. /*if (millis() - load_filament_time > 2) {
  4916. load_filament_time = millis();
  4917. target[E_AXIS] += 0.001;
  4918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4919. }*/
  4920. //Filament inserted
  4921. //Feed the filament to the end of nozzle quickly
  4922. st_synchronize();
  4923. target[E_AXIS] += bowden_length[snmm_extruder];
  4924. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4925. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4926. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4927. target[E_AXIS] += 40;
  4928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4929. target[E_AXIS] += 10;
  4930. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4931. #else
  4932. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4934. #endif // SNMM
  4935. //Extrude some filament
  4936. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4937. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4938. //Wait for user to check the state
  4939. lcd_change_fil_state = 0;
  4940. lcd_loading_filament();
  4941. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4942. lcd_change_fil_state = 0;
  4943. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4944. lcd_alright();
  4945. KEEPALIVE_STATE(IN_HANDLER);
  4946. switch(lcd_change_fil_state){
  4947. // Filament failed to load so load it again
  4948. case 2:
  4949. #ifdef SNMM
  4950. display_loading();
  4951. do {
  4952. target[E_AXIS] += 0.002;
  4953. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4954. delay_keep_alive(2);
  4955. } while (!lcd_clicked());
  4956. st_synchronize();
  4957. target[E_AXIS] += bowden_length[snmm_extruder];
  4958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4959. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4961. target[E_AXIS] += 40;
  4962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4963. target[E_AXIS] += 10;
  4964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4965. #else
  4966. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4968. #endif
  4969. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4970. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4971. lcd_loading_filament();
  4972. break;
  4973. // Filament loaded properly but color is not clear
  4974. case 3:
  4975. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4976. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4977. lcd_loading_color();
  4978. break;
  4979. // Everything good
  4980. default:
  4981. lcd_change_success();
  4982. lcd_update_enable(true);
  4983. break;
  4984. }
  4985. }
  4986. //Not let's go back to print
  4987. //Feed a little of filament to stabilize pressure
  4988. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4990. //Retract
  4991. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4992. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4993. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4994. //Move XY back
  4995. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4996. //Move Z back
  4997. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4998. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4999. //Unretract
  5000. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5001. //Set E position to original
  5002. plan_set_e_position(lastpos[E_AXIS]);
  5003. //Recover feed rate
  5004. feedmultiply=feedmultiplyBckp;
  5005. char cmd[9];
  5006. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5007. enquecommand(cmd);
  5008. lcd_setstatuspgm(WELCOME_MSG);
  5009. custom_message = false;
  5010. custom_message_type = 0;
  5011. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5012. #ifdef PAT9125
  5013. if (fsensor_M600)
  5014. {
  5015. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5016. st_synchronize();
  5017. while (!is_buffer_empty())
  5018. {
  5019. process_commands();
  5020. cmdqueue_pop_front();
  5021. }
  5022. fsensor_enable();
  5023. fsensor_restore_print_and_continue();
  5024. }
  5025. #endif //PAT9125
  5026. }
  5027. break;
  5028. #endif //FILAMENTCHANGEENABLE
  5029. case 601: {
  5030. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5031. }
  5032. break;
  5033. case 602: {
  5034. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5035. }
  5036. break;
  5037. #ifdef LIN_ADVANCE
  5038. case 900: // M900: Set LIN_ADVANCE options.
  5039. gcode_M900();
  5040. break;
  5041. #endif
  5042. case 907: // M907 Set digital trimpot motor current using axis codes.
  5043. {
  5044. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5045. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5046. if(code_seen('B')) digipot_current(4,code_value());
  5047. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5048. #endif
  5049. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5050. if(code_seen('X')) digipot_current(0, code_value());
  5051. #endif
  5052. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5053. if(code_seen('Z')) digipot_current(1, code_value());
  5054. #endif
  5055. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5056. if(code_seen('E')) digipot_current(2, code_value());
  5057. #endif
  5058. #ifdef DIGIPOT_I2C
  5059. // this one uses actual amps in floating point
  5060. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5061. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5062. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5063. #endif
  5064. }
  5065. break;
  5066. case 908: // M908 Control digital trimpot directly.
  5067. {
  5068. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5069. uint8_t channel,current;
  5070. if(code_seen('P')) channel=code_value();
  5071. if(code_seen('S')) current=code_value();
  5072. digitalPotWrite(channel, current);
  5073. #endif
  5074. }
  5075. break;
  5076. case 910: // M910 TMC2130 init
  5077. {
  5078. tmc2130_init();
  5079. }
  5080. break;
  5081. case 911: // M911 Set TMC2130 holding currents
  5082. {
  5083. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5084. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5085. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5086. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5087. }
  5088. break;
  5089. case 912: // M912 Set TMC2130 running currents
  5090. {
  5091. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5092. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5093. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5094. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5095. }
  5096. break;
  5097. case 913: // M913 Print TMC2130 currents
  5098. {
  5099. tmc2130_print_currents();
  5100. }
  5101. break;
  5102. case 914: // M914 Set normal mode
  5103. {
  5104. tmc2130_mode = TMC2130_MODE_NORMAL;
  5105. tmc2130_init();
  5106. }
  5107. break;
  5108. case 915: // M915 Set silent mode
  5109. {
  5110. tmc2130_mode = TMC2130_MODE_SILENT;
  5111. tmc2130_init();
  5112. }
  5113. break;
  5114. case 916: // M916 Set sg_thrs
  5115. {
  5116. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5117. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5118. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5119. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5120. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5121. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5122. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5123. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5124. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5125. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5126. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5127. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5128. }
  5129. break;
  5130. case 917: // M917 Set TMC2130 pwm_ampl
  5131. {
  5132. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5133. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5134. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5135. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5136. }
  5137. break;
  5138. case 918: // M918 Set TMC2130 pwm_grad
  5139. {
  5140. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5141. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5142. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5143. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5144. }
  5145. break;
  5146. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5147. {
  5148. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5149. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5150. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5151. if(code_seen('B')) microstep_mode(4,code_value());
  5152. microstep_readings();
  5153. #endif
  5154. }
  5155. break;
  5156. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5157. {
  5158. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5159. if(code_seen('S')) switch((int)code_value())
  5160. {
  5161. case 1:
  5162. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5163. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5164. break;
  5165. case 2:
  5166. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5167. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5168. break;
  5169. }
  5170. microstep_readings();
  5171. #endif
  5172. }
  5173. break;
  5174. case 701: //M701: load filament
  5175. {
  5176. gcode_M701();
  5177. }
  5178. break;
  5179. case 702:
  5180. {
  5181. #ifdef SNMM
  5182. if (code_seen('U')) {
  5183. extr_unload_used(); //unload all filaments which were used in current print
  5184. }
  5185. else if (code_seen('C')) {
  5186. extr_unload(); //unload just current filament
  5187. }
  5188. else {
  5189. extr_unload_all(); //unload all filaments
  5190. }
  5191. #else
  5192. bool old_fsensor_enabled = fsensor_enabled;
  5193. fsensor_enabled = false;
  5194. custom_message = true;
  5195. custom_message_type = 2;
  5196. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5197. // extr_unload2();
  5198. current_position[E_AXIS] -= 45;
  5199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5200. st_synchronize();
  5201. current_position[E_AXIS] -= 15;
  5202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 160 / 60, active_extruder);
  5203. st_synchronize();
  5204. current_position[E_AXIS] -= 20;
  5205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000 / 60, active_extruder);
  5206. st_synchronize();
  5207. lcd_setstatuspgm(WELCOME_MSG);
  5208. custom_message = false;
  5209. custom_message_type = 0;
  5210. fsensor_enabled = old_fsensor_enabled;
  5211. #endif
  5212. }
  5213. break;
  5214. case 999: // M999: Restart after being stopped
  5215. Stopped = false;
  5216. lcd_reset_alert_level();
  5217. gcode_LastN = Stopped_gcode_LastN;
  5218. FlushSerialRequestResend();
  5219. break;
  5220. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5221. }
  5222. } // end if(code_seen('M')) (end of M codes)
  5223. else if(code_seen('T'))
  5224. {
  5225. int index;
  5226. st_synchronize();
  5227. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5228. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5229. SERIAL_ECHOLNPGM("Invalid T code.");
  5230. }
  5231. else {
  5232. if (*(strchr_pointer + index) == '?') {
  5233. tmp_extruder = choose_extruder_menu();
  5234. }
  5235. else {
  5236. tmp_extruder = code_value();
  5237. }
  5238. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5239. #ifdef SNMM
  5240. #ifdef LIN_ADVANCE
  5241. if (snmm_extruder != tmp_extruder)
  5242. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5243. #endif
  5244. snmm_extruder = tmp_extruder;
  5245. delay(100);
  5246. disable_e0();
  5247. disable_e1();
  5248. disable_e2();
  5249. pinMode(E_MUX0_PIN, OUTPUT);
  5250. pinMode(E_MUX1_PIN, OUTPUT);
  5251. pinMode(E_MUX2_PIN, OUTPUT);
  5252. delay(100);
  5253. SERIAL_ECHO_START;
  5254. SERIAL_ECHO("T:");
  5255. SERIAL_ECHOLN((int)tmp_extruder);
  5256. switch (tmp_extruder) {
  5257. case 1:
  5258. WRITE(E_MUX0_PIN, HIGH);
  5259. WRITE(E_MUX1_PIN, LOW);
  5260. WRITE(E_MUX2_PIN, LOW);
  5261. break;
  5262. case 2:
  5263. WRITE(E_MUX0_PIN, LOW);
  5264. WRITE(E_MUX1_PIN, HIGH);
  5265. WRITE(E_MUX2_PIN, LOW);
  5266. break;
  5267. case 3:
  5268. WRITE(E_MUX0_PIN, HIGH);
  5269. WRITE(E_MUX1_PIN, HIGH);
  5270. WRITE(E_MUX2_PIN, LOW);
  5271. break;
  5272. default:
  5273. WRITE(E_MUX0_PIN, LOW);
  5274. WRITE(E_MUX1_PIN, LOW);
  5275. WRITE(E_MUX2_PIN, LOW);
  5276. break;
  5277. }
  5278. delay(100);
  5279. #else
  5280. if (tmp_extruder >= EXTRUDERS) {
  5281. SERIAL_ECHO_START;
  5282. SERIAL_ECHOPGM("T");
  5283. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5284. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5285. }
  5286. else {
  5287. boolean make_move = false;
  5288. if (code_seen('F')) {
  5289. make_move = true;
  5290. next_feedrate = code_value();
  5291. if (next_feedrate > 0.0) {
  5292. feedrate = next_feedrate;
  5293. }
  5294. }
  5295. #if EXTRUDERS > 1
  5296. if (tmp_extruder != active_extruder) {
  5297. // Save current position to return to after applying extruder offset
  5298. memcpy(destination, current_position, sizeof(destination));
  5299. // Offset extruder (only by XY)
  5300. int i;
  5301. for (i = 0; i < 2; i++) {
  5302. current_position[i] = current_position[i] -
  5303. extruder_offset[i][active_extruder] +
  5304. extruder_offset[i][tmp_extruder];
  5305. }
  5306. // Set the new active extruder and position
  5307. active_extruder = tmp_extruder;
  5308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5309. // Move to the old position if 'F' was in the parameters
  5310. if (make_move && Stopped == false) {
  5311. prepare_move();
  5312. }
  5313. }
  5314. #endif
  5315. SERIAL_ECHO_START;
  5316. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5317. SERIAL_PROTOCOLLN((int)active_extruder);
  5318. }
  5319. #endif
  5320. }
  5321. } // end if(code_seen('T')) (end of T codes)
  5322. #ifdef DEBUG_DCODES
  5323. else if (code_seen('D')) // D codes (debug)
  5324. {
  5325. switch((int)code_value())
  5326. {
  5327. case -1: // D-1 - Endless loop
  5328. dcode__1(); break;
  5329. case 0: // D0 - Reset
  5330. dcode_0(); break;
  5331. case 1: // D1 - Clear EEPROM
  5332. dcode_1(); break;
  5333. case 2: // D2 - Read/Write RAM
  5334. dcode_2(); break;
  5335. case 3: // D3 - Read/Write EEPROM
  5336. dcode_3(); break;
  5337. case 4: // D4 - Read/Write PIN
  5338. dcode_4(); break;
  5339. case 5: // D5 - Read/Write FLASH
  5340. // dcode_5(); break;
  5341. break;
  5342. case 6: // D6 - Read/Write external FLASH
  5343. dcode_6(); break;
  5344. case 7: // D7 - Read/Write Bootloader
  5345. dcode_7(); break;
  5346. case 8: // D8 - Read/Write PINDA
  5347. dcode_8(); break;
  5348. case 9: // D9 - Read/Write ADC
  5349. dcode_9(); break;
  5350. case 10: // D10 - XYZ calibration = OK
  5351. dcode_10(); break;
  5352. case 12: //D12 - Reset failstat counters
  5353. dcode_12(); break;
  5354. case 2130: // D9125 - TMC2130
  5355. dcode_2130(); break;
  5356. case 9125: // D9125 - PAT9125
  5357. dcode_9125(); break;
  5358. }
  5359. }
  5360. #endif //DEBUG_DCODES
  5361. else
  5362. {
  5363. SERIAL_ECHO_START;
  5364. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5365. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5366. SERIAL_ECHOLNPGM("\"(2)");
  5367. }
  5368. KEEPALIVE_STATE(NOT_BUSY);
  5369. ClearToSend();
  5370. }
  5371. void FlushSerialRequestResend()
  5372. {
  5373. //char cmdbuffer[bufindr][100]="Resend:";
  5374. MYSERIAL.flush();
  5375. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5376. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5377. previous_millis_cmd = millis();
  5378. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5379. }
  5380. // Confirm the execution of a command, if sent from a serial line.
  5381. // Execution of a command from a SD card will not be confirmed.
  5382. void ClearToSend()
  5383. {
  5384. previous_millis_cmd = millis();
  5385. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5386. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5387. }
  5388. void get_coordinates()
  5389. {
  5390. bool seen[4]={false,false,false,false};
  5391. for(int8_t i=0; i < NUM_AXIS; i++) {
  5392. if(code_seen(axis_codes[i]))
  5393. {
  5394. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5395. seen[i]=true;
  5396. }
  5397. else destination[i] = current_position[i]; //Are these else lines really needed?
  5398. }
  5399. if(code_seen('F')) {
  5400. next_feedrate = code_value();
  5401. #ifdef MAX_SILENT_FEEDRATE
  5402. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5403. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5404. #endif //MAX_SILENT_FEEDRATE
  5405. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5406. }
  5407. }
  5408. void get_arc_coordinates()
  5409. {
  5410. #ifdef SF_ARC_FIX
  5411. bool relative_mode_backup = relative_mode;
  5412. relative_mode = true;
  5413. #endif
  5414. get_coordinates();
  5415. #ifdef SF_ARC_FIX
  5416. relative_mode=relative_mode_backup;
  5417. #endif
  5418. if(code_seen('I')) {
  5419. offset[0] = code_value();
  5420. }
  5421. else {
  5422. offset[0] = 0.0;
  5423. }
  5424. if(code_seen('J')) {
  5425. offset[1] = code_value();
  5426. }
  5427. else {
  5428. offset[1] = 0.0;
  5429. }
  5430. }
  5431. void clamp_to_software_endstops(float target[3])
  5432. {
  5433. #ifdef DEBUG_DISABLE_SWLIMITS
  5434. return;
  5435. #endif //DEBUG_DISABLE_SWLIMITS
  5436. world2machine_clamp(target[0], target[1]);
  5437. // Clamp the Z coordinate.
  5438. if (min_software_endstops) {
  5439. float negative_z_offset = 0;
  5440. #ifdef ENABLE_AUTO_BED_LEVELING
  5441. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5442. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5443. #endif
  5444. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5445. }
  5446. if (max_software_endstops) {
  5447. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5448. }
  5449. }
  5450. #ifdef MESH_BED_LEVELING
  5451. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5452. float dx = x - current_position[X_AXIS];
  5453. float dy = y - current_position[Y_AXIS];
  5454. float dz = z - current_position[Z_AXIS];
  5455. int n_segments = 0;
  5456. if (mbl.active) {
  5457. float len = abs(dx) + abs(dy);
  5458. if (len > 0)
  5459. // Split to 3cm segments or shorter.
  5460. n_segments = int(ceil(len / 30.f));
  5461. }
  5462. if (n_segments > 1) {
  5463. float de = e - current_position[E_AXIS];
  5464. for (int i = 1; i < n_segments; ++ i) {
  5465. float t = float(i) / float(n_segments);
  5466. plan_buffer_line(
  5467. current_position[X_AXIS] + t * dx,
  5468. current_position[Y_AXIS] + t * dy,
  5469. current_position[Z_AXIS] + t * dz,
  5470. current_position[E_AXIS] + t * de,
  5471. feed_rate, extruder);
  5472. }
  5473. }
  5474. // The rest of the path.
  5475. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5476. current_position[X_AXIS] = x;
  5477. current_position[Y_AXIS] = y;
  5478. current_position[Z_AXIS] = z;
  5479. current_position[E_AXIS] = e;
  5480. }
  5481. #endif // MESH_BED_LEVELING
  5482. void prepare_move()
  5483. {
  5484. clamp_to_software_endstops(destination);
  5485. previous_millis_cmd = millis();
  5486. // Do not use feedmultiply for E or Z only moves
  5487. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5488. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5489. }
  5490. else {
  5491. #ifdef MESH_BED_LEVELING
  5492. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5493. #else
  5494. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5495. #endif
  5496. }
  5497. for(int8_t i=0; i < NUM_AXIS; i++) {
  5498. current_position[i] = destination[i];
  5499. }
  5500. }
  5501. void prepare_arc_move(char isclockwise) {
  5502. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5503. // Trace the arc
  5504. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5505. // As far as the parser is concerned, the position is now == target. In reality the
  5506. // motion control system might still be processing the action and the real tool position
  5507. // in any intermediate location.
  5508. for(int8_t i=0; i < NUM_AXIS; i++) {
  5509. current_position[i] = destination[i];
  5510. }
  5511. previous_millis_cmd = millis();
  5512. }
  5513. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5514. #if defined(FAN_PIN)
  5515. #if CONTROLLERFAN_PIN == FAN_PIN
  5516. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5517. #endif
  5518. #endif
  5519. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5520. unsigned long lastMotorCheck = 0;
  5521. void controllerFan()
  5522. {
  5523. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5524. {
  5525. lastMotorCheck = millis();
  5526. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5527. #if EXTRUDERS > 2
  5528. || !READ(E2_ENABLE_PIN)
  5529. #endif
  5530. #if EXTRUDER > 1
  5531. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5532. || !READ(X2_ENABLE_PIN)
  5533. #endif
  5534. || !READ(E1_ENABLE_PIN)
  5535. #endif
  5536. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5537. {
  5538. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5539. }
  5540. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5541. {
  5542. digitalWrite(CONTROLLERFAN_PIN, 0);
  5543. analogWrite(CONTROLLERFAN_PIN, 0);
  5544. }
  5545. else
  5546. {
  5547. // allows digital or PWM fan output to be used (see M42 handling)
  5548. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5549. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5550. }
  5551. }
  5552. }
  5553. #endif
  5554. #ifdef TEMP_STAT_LEDS
  5555. static bool blue_led = false;
  5556. static bool red_led = false;
  5557. static uint32_t stat_update = 0;
  5558. void handle_status_leds(void) {
  5559. float max_temp = 0.0;
  5560. if(millis() > stat_update) {
  5561. stat_update += 500; // Update every 0.5s
  5562. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5563. max_temp = max(max_temp, degHotend(cur_extruder));
  5564. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5565. }
  5566. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5567. max_temp = max(max_temp, degTargetBed());
  5568. max_temp = max(max_temp, degBed());
  5569. #endif
  5570. if((max_temp > 55.0) && (red_led == false)) {
  5571. digitalWrite(STAT_LED_RED, 1);
  5572. digitalWrite(STAT_LED_BLUE, 0);
  5573. red_led = true;
  5574. blue_led = false;
  5575. }
  5576. if((max_temp < 54.0) && (blue_led == false)) {
  5577. digitalWrite(STAT_LED_RED, 0);
  5578. digitalWrite(STAT_LED_BLUE, 1);
  5579. red_led = false;
  5580. blue_led = true;
  5581. }
  5582. }
  5583. }
  5584. #endif
  5585. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5586. {
  5587. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5588. {
  5589. if (fsensor_autoload_enabled)
  5590. {
  5591. if (fsensor_check_autoload())
  5592. {
  5593. if (degHotend0() > EXTRUDE_MINTEMP)
  5594. {
  5595. fsensor_autoload_check_stop();
  5596. tone(BEEPER, 1000);
  5597. delay_keep_alive(50);
  5598. noTone(BEEPER);
  5599. loading_flag = true;
  5600. enquecommand_front_P((PSTR("M701")));
  5601. }
  5602. else
  5603. {
  5604. lcd_update_enable(false);
  5605. lcd_implementation_clear();
  5606. lcd.setCursor(0, 0);
  5607. lcd_printPGM(MSG_ERROR);
  5608. lcd.setCursor(0, 2);
  5609. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5610. delay(2000);
  5611. lcd_implementation_clear();
  5612. lcd_update_enable(true);
  5613. }
  5614. }
  5615. }
  5616. else
  5617. fsensor_autoload_check_start();
  5618. }
  5619. else
  5620. if (fsensor_autoload_enabled)
  5621. fsensor_autoload_check_stop();
  5622. #if defined(KILL_PIN) && KILL_PIN > -1
  5623. static int killCount = 0; // make the inactivity button a bit less responsive
  5624. const int KILL_DELAY = 10000;
  5625. #endif
  5626. if(buflen < (BUFSIZE-1)){
  5627. get_command();
  5628. }
  5629. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5630. if(max_inactive_time)
  5631. kill("", 4);
  5632. if(stepper_inactive_time) {
  5633. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5634. {
  5635. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5636. disable_x();
  5637. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5638. disable_y();
  5639. disable_z();
  5640. disable_e0();
  5641. disable_e1();
  5642. disable_e2();
  5643. }
  5644. }
  5645. }
  5646. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5647. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5648. {
  5649. chdkActive = false;
  5650. WRITE(CHDK, LOW);
  5651. }
  5652. #endif
  5653. #if defined(KILL_PIN) && KILL_PIN > -1
  5654. // Check if the kill button was pressed and wait just in case it was an accidental
  5655. // key kill key press
  5656. // -------------------------------------------------------------------------------
  5657. if( 0 == READ(KILL_PIN) )
  5658. {
  5659. killCount++;
  5660. }
  5661. else if (killCount > 0)
  5662. {
  5663. killCount--;
  5664. }
  5665. // Exceeded threshold and we can confirm that it was not accidental
  5666. // KILL the machine
  5667. // ----------------------------------------------------------------
  5668. if ( killCount >= KILL_DELAY)
  5669. {
  5670. kill("", 5);
  5671. }
  5672. #endif
  5673. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5674. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5675. #endif
  5676. #ifdef EXTRUDER_RUNOUT_PREVENT
  5677. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5678. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5679. {
  5680. bool oldstatus=READ(E0_ENABLE_PIN);
  5681. enable_e0();
  5682. float oldepos=current_position[E_AXIS];
  5683. float oldedes=destination[E_AXIS];
  5684. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5685. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5686. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5687. current_position[E_AXIS]=oldepos;
  5688. destination[E_AXIS]=oldedes;
  5689. plan_set_e_position(oldepos);
  5690. previous_millis_cmd=millis();
  5691. st_synchronize();
  5692. WRITE(E0_ENABLE_PIN,oldstatus);
  5693. }
  5694. #endif
  5695. #ifdef TEMP_STAT_LEDS
  5696. handle_status_leds();
  5697. #endif
  5698. check_axes_activity();
  5699. }
  5700. void kill(const char *full_screen_message, unsigned char id)
  5701. {
  5702. SERIAL_ECHOPGM("KILL: ");
  5703. MYSERIAL.println(int(id));
  5704. //return;
  5705. cli(); // Stop interrupts
  5706. disable_heater();
  5707. disable_x();
  5708. // SERIAL_ECHOLNPGM("kill - disable Y");
  5709. disable_y();
  5710. disable_z();
  5711. disable_e0();
  5712. disable_e1();
  5713. disable_e2();
  5714. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5715. pinMode(PS_ON_PIN,INPUT);
  5716. #endif
  5717. SERIAL_ERROR_START;
  5718. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5719. if (full_screen_message != NULL) {
  5720. SERIAL_ERRORLNRPGM(full_screen_message);
  5721. lcd_display_message_fullscreen_P(full_screen_message);
  5722. } else {
  5723. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5724. }
  5725. // FMC small patch to update the LCD before ending
  5726. sei(); // enable interrupts
  5727. for ( int i=5; i--; lcd_update())
  5728. {
  5729. delay(200);
  5730. }
  5731. cli(); // disable interrupts
  5732. suicide();
  5733. while(1)
  5734. {
  5735. wdt_reset();
  5736. /* Intentionally left empty */
  5737. } // Wait for reset
  5738. }
  5739. void Stop()
  5740. {
  5741. disable_heater();
  5742. if(Stopped == false) {
  5743. Stopped = true;
  5744. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5745. SERIAL_ERROR_START;
  5746. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5747. LCD_MESSAGERPGM(MSG_STOPPED);
  5748. }
  5749. }
  5750. bool IsStopped() { return Stopped; };
  5751. #ifdef FAST_PWM_FAN
  5752. void setPwmFrequency(uint8_t pin, int val)
  5753. {
  5754. val &= 0x07;
  5755. switch(digitalPinToTimer(pin))
  5756. {
  5757. #if defined(TCCR0A)
  5758. case TIMER0A:
  5759. case TIMER0B:
  5760. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5761. // TCCR0B |= val;
  5762. break;
  5763. #endif
  5764. #if defined(TCCR1A)
  5765. case TIMER1A:
  5766. case TIMER1B:
  5767. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5768. // TCCR1B |= val;
  5769. break;
  5770. #endif
  5771. #if defined(TCCR2)
  5772. case TIMER2:
  5773. case TIMER2:
  5774. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5775. TCCR2 |= val;
  5776. break;
  5777. #endif
  5778. #if defined(TCCR2A)
  5779. case TIMER2A:
  5780. case TIMER2B:
  5781. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5782. TCCR2B |= val;
  5783. break;
  5784. #endif
  5785. #if defined(TCCR3A)
  5786. case TIMER3A:
  5787. case TIMER3B:
  5788. case TIMER3C:
  5789. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5790. TCCR3B |= val;
  5791. break;
  5792. #endif
  5793. #if defined(TCCR4A)
  5794. case TIMER4A:
  5795. case TIMER4B:
  5796. case TIMER4C:
  5797. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5798. TCCR4B |= val;
  5799. break;
  5800. #endif
  5801. #if defined(TCCR5A)
  5802. case TIMER5A:
  5803. case TIMER5B:
  5804. case TIMER5C:
  5805. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5806. TCCR5B |= val;
  5807. break;
  5808. #endif
  5809. }
  5810. }
  5811. #endif //FAST_PWM_FAN
  5812. bool setTargetedHotend(int code){
  5813. tmp_extruder = active_extruder;
  5814. if(code_seen('T')) {
  5815. tmp_extruder = code_value();
  5816. if(tmp_extruder >= EXTRUDERS) {
  5817. SERIAL_ECHO_START;
  5818. switch(code){
  5819. case 104:
  5820. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5821. break;
  5822. case 105:
  5823. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5824. break;
  5825. case 109:
  5826. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5827. break;
  5828. case 218:
  5829. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5830. break;
  5831. case 221:
  5832. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5833. break;
  5834. }
  5835. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5836. return true;
  5837. }
  5838. }
  5839. return false;
  5840. }
  5841. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5842. {
  5843. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5844. {
  5845. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5846. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5847. }
  5848. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5849. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5850. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5851. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5852. total_filament_used = 0;
  5853. }
  5854. float calculate_volumetric_multiplier(float diameter) {
  5855. float area = .0;
  5856. float radius = .0;
  5857. radius = diameter * .5;
  5858. if (! volumetric_enabled || radius == 0) {
  5859. area = 1;
  5860. }
  5861. else {
  5862. area = M_PI * pow(radius, 2);
  5863. }
  5864. return 1.0 / area;
  5865. }
  5866. void calculate_volumetric_multipliers() {
  5867. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5868. #if EXTRUDERS > 1
  5869. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5870. #if EXTRUDERS > 2
  5871. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5872. #endif
  5873. #endif
  5874. }
  5875. void delay_keep_alive(unsigned int ms)
  5876. {
  5877. for (;;) {
  5878. manage_heater();
  5879. // Manage inactivity, but don't disable steppers on timeout.
  5880. manage_inactivity(true);
  5881. lcd_update();
  5882. if (ms == 0)
  5883. break;
  5884. else if (ms >= 50) {
  5885. delay(50);
  5886. ms -= 50;
  5887. } else {
  5888. delay(ms);
  5889. ms = 0;
  5890. }
  5891. }
  5892. }
  5893. void wait_for_heater(long codenum) {
  5894. #ifdef TEMP_RESIDENCY_TIME
  5895. long residencyStart;
  5896. residencyStart = -1;
  5897. /* continue to loop until we have reached the target temp
  5898. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5899. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5900. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5901. #else
  5902. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5903. #endif //TEMP_RESIDENCY_TIME
  5904. if ((millis() - codenum) > 1000UL)
  5905. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5906. if (!farm_mode) {
  5907. SERIAL_PROTOCOLPGM("T:");
  5908. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5909. SERIAL_PROTOCOLPGM(" E:");
  5910. SERIAL_PROTOCOL((int)tmp_extruder);
  5911. #ifdef TEMP_RESIDENCY_TIME
  5912. SERIAL_PROTOCOLPGM(" W:");
  5913. if (residencyStart > -1)
  5914. {
  5915. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5916. SERIAL_PROTOCOLLN(codenum);
  5917. }
  5918. else
  5919. {
  5920. SERIAL_PROTOCOLLN("?");
  5921. }
  5922. }
  5923. #else
  5924. SERIAL_PROTOCOLLN("");
  5925. #endif
  5926. codenum = millis();
  5927. }
  5928. manage_heater();
  5929. manage_inactivity();
  5930. lcd_update();
  5931. #ifdef TEMP_RESIDENCY_TIME
  5932. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5933. or when current temp falls outside the hysteresis after target temp was reached */
  5934. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5935. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5936. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5937. {
  5938. residencyStart = millis();
  5939. }
  5940. #endif //TEMP_RESIDENCY_TIME
  5941. }
  5942. }
  5943. void check_babystep() {
  5944. int babystep_z;
  5945. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5946. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5947. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5948. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5949. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5950. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5951. lcd_update_enable(true);
  5952. }
  5953. }
  5954. #ifdef DIS
  5955. void d_setup()
  5956. {
  5957. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5958. pinMode(D_DATA, INPUT_PULLUP);
  5959. pinMode(D_REQUIRE, OUTPUT);
  5960. digitalWrite(D_REQUIRE, HIGH);
  5961. }
  5962. float d_ReadData()
  5963. {
  5964. int digit[13];
  5965. String mergeOutput;
  5966. float output;
  5967. digitalWrite(D_REQUIRE, HIGH);
  5968. for (int i = 0; i<13; i++)
  5969. {
  5970. for (int j = 0; j < 4; j++)
  5971. {
  5972. while (digitalRead(D_DATACLOCK) == LOW) {}
  5973. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5974. bitWrite(digit[i], j, digitalRead(D_DATA));
  5975. }
  5976. }
  5977. digitalWrite(D_REQUIRE, LOW);
  5978. mergeOutput = "";
  5979. output = 0;
  5980. for (int r = 5; r <= 10; r++) //Merge digits
  5981. {
  5982. mergeOutput += digit[r];
  5983. }
  5984. output = mergeOutput.toFloat();
  5985. if (digit[4] == 8) //Handle sign
  5986. {
  5987. output *= -1;
  5988. }
  5989. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5990. {
  5991. output /= 10;
  5992. }
  5993. return output;
  5994. }
  5995. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5996. int t1 = 0;
  5997. int t_delay = 0;
  5998. int digit[13];
  5999. int m;
  6000. char str[3];
  6001. //String mergeOutput;
  6002. char mergeOutput[15];
  6003. float output;
  6004. int mesh_point = 0; //index number of calibration point
  6005. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6006. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6007. float mesh_home_z_search = 4;
  6008. float row[x_points_num];
  6009. int ix = 0;
  6010. int iy = 0;
  6011. char* filename_wldsd = "wldsd.txt";
  6012. char data_wldsd[70];
  6013. char numb_wldsd[10];
  6014. d_setup();
  6015. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6016. // We don't know where we are! HOME!
  6017. // Push the commands to the front of the message queue in the reverse order!
  6018. // There shall be always enough space reserved for these commands.
  6019. repeatcommand_front(); // repeat G80 with all its parameters
  6020. enquecommand_front_P((PSTR("G28 W0")));
  6021. enquecommand_front_P((PSTR("G1 Z5")));
  6022. return;
  6023. }
  6024. bool custom_message_old = custom_message;
  6025. unsigned int custom_message_type_old = custom_message_type;
  6026. unsigned int custom_message_state_old = custom_message_state;
  6027. custom_message = true;
  6028. custom_message_type = 1;
  6029. custom_message_state = (x_points_num * y_points_num) + 10;
  6030. lcd_update(1);
  6031. mbl.reset();
  6032. babystep_undo();
  6033. card.openFile(filename_wldsd, false);
  6034. current_position[Z_AXIS] = mesh_home_z_search;
  6035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6036. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6037. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6038. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6039. setup_for_endstop_move(false);
  6040. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6041. SERIAL_PROTOCOL(x_points_num);
  6042. SERIAL_PROTOCOLPGM(",");
  6043. SERIAL_PROTOCOL(y_points_num);
  6044. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6045. SERIAL_PROTOCOL(mesh_home_z_search);
  6046. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6047. SERIAL_PROTOCOL(x_dimension);
  6048. SERIAL_PROTOCOLPGM(",");
  6049. SERIAL_PROTOCOL(y_dimension);
  6050. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6051. while (mesh_point != x_points_num * y_points_num) {
  6052. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6053. iy = mesh_point / x_points_num;
  6054. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6055. float z0 = 0.f;
  6056. current_position[Z_AXIS] = mesh_home_z_search;
  6057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6058. st_synchronize();
  6059. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6060. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6062. st_synchronize();
  6063. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6064. break;
  6065. card.closefile();
  6066. }
  6067. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6068. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6069. //strcat(data_wldsd, numb_wldsd);
  6070. //MYSERIAL.println(data_wldsd);
  6071. //delay(1000);
  6072. //delay(3000);
  6073. //t1 = millis();
  6074. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6075. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6076. memset(digit, 0, sizeof(digit));
  6077. //cli();
  6078. digitalWrite(D_REQUIRE, LOW);
  6079. for (int i = 0; i<13; i++)
  6080. {
  6081. //t1 = millis();
  6082. for (int j = 0; j < 4; j++)
  6083. {
  6084. while (digitalRead(D_DATACLOCK) == LOW) {}
  6085. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6086. bitWrite(digit[i], j, digitalRead(D_DATA));
  6087. }
  6088. //t_delay = (millis() - t1);
  6089. //SERIAL_PROTOCOLPGM(" ");
  6090. //SERIAL_PROTOCOL_F(t_delay, 5);
  6091. //SERIAL_PROTOCOLPGM(" ");
  6092. }
  6093. //sei();
  6094. digitalWrite(D_REQUIRE, HIGH);
  6095. mergeOutput[0] = '\0';
  6096. output = 0;
  6097. for (int r = 5; r <= 10; r++) //Merge digits
  6098. {
  6099. sprintf(str, "%d", digit[r]);
  6100. strcat(mergeOutput, str);
  6101. }
  6102. output = atof(mergeOutput);
  6103. if (digit[4] == 8) //Handle sign
  6104. {
  6105. output *= -1;
  6106. }
  6107. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6108. {
  6109. output *= 0.1;
  6110. }
  6111. //output = d_ReadData();
  6112. //row[ix] = current_position[Z_AXIS];
  6113. memset(data_wldsd, 0, sizeof(data_wldsd));
  6114. for (int i = 0; i <3; i++) {
  6115. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6116. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6117. strcat(data_wldsd, numb_wldsd);
  6118. strcat(data_wldsd, ";");
  6119. }
  6120. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6121. dtostrf(output, 8, 5, numb_wldsd);
  6122. strcat(data_wldsd, numb_wldsd);
  6123. //strcat(data_wldsd, ";");
  6124. card.write_command(data_wldsd);
  6125. //row[ix] = d_ReadData();
  6126. row[ix] = output; // current_position[Z_AXIS];
  6127. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6128. for (int i = 0; i < x_points_num; i++) {
  6129. SERIAL_PROTOCOLPGM(" ");
  6130. SERIAL_PROTOCOL_F(row[i], 5);
  6131. }
  6132. SERIAL_PROTOCOLPGM("\n");
  6133. }
  6134. custom_message_state--;
  6135. mesh_point++;
  6136. lcd_update(1);
  6137. }
  6138. card.closefile();
  6139. }
  6140. #endif
  6141. void temp_compensation_start() {
  6142. custom_message = true;
  6143. custom_message_type = 5;
  6144. custom_message_state = PINDA_HEAT_T + 1;
  6145. lcd_update(2);
  6146. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6147. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6148. }
  6149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6150. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6151. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6152. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6154. st_synchronize();
  6155. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6156. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6157. delay_keep_alive(1000);
  6158. custom_message_state = PINDA_HEAT_T - i;
  6159. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6160. else lcd_update(1);
  6161. }
  6162. custom_message_type = 0;
  6163. custom_message_state = 0;
  6164. custom_message = false;
  6165. }
  6166. void temp_compensation_apply() {
  6167. int i_add;
  6168. int compensation_value;
  6169. int z_shift = 0;
  6170. float z_shift_mm;
  6171. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6172. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6173. i_add = (target_temperature_bed - 60) / 10;
  6174. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6175. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6176. }else {
  6177. //interpolation
  6178. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6179. }
  6180. SERIAL_PROTOCOLPGM("\n");
  6181. SERIAL_PROTOCOLPGM("Z shift applied:");
  6182. MYSERIAL.print(z_shift_mm);
  6183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6184. st_synchronize();
  6185. plan_set_z_position(current_position[Z_AXIS]);
  6186. }
  6187. else {
  6188. //we have no temp compensation data
  6189. }
  6190. }
  6191. float temp_comp_interpolation(float inp_temperature) {
  6192. //cubic spline interpolation
  6193. int n, i, j, k;
  6194. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6195. int shift[10];
  6196. int temp_C[10];
  6197. n = 6; //number of measured points
  6198. shift[0] = 0;
  6199. for (i = 0; i < n; i++) {
  6200. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6201. temp_C[i] = 50 + i * 10; //temperature in C
  6202. #ifdef PINDA_THERMISTOR
  6203. temp_C[i] = 35 + i * 5; //temperature in C
  6204. #else
  6205. temp_C[i] = 50 + i * 10; //temperature in C
  6206. #endif
  6207. x[i] = (float)temp_C[i];
  6208. f[i] = (float)shift[i];
  6209. }
  6210. if (inp_temperature < x[0]) return 0;
  6211. for (i = n - 1; i>0; i--) {
  6212. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6213. h[i - 1] = x[i] - x[i - 1];
  6214. }
  6215. //*********** formation of h, s , f matrix **************
  6216. for (i = 1; i<n - 1; i++) {
  6217. m[i][i] = 2 * (h[i - 1] + h[i]);
  6218. if (i != 1) {
  6219. m[i][i - 1] = h[i - 1];
  6220. m[i - 1][i] = h[i - 1];
  6221. }
  6222. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6223. }
  6224. //*********** forward elimination **************
  6225. for (i = 1; i<n - 2; i++) {
  6226. temp = (m[i + 1][i] / m[i][i]);
  6227. for (j = 1; j <= n - 1; j++)
  6228. m[i + 1][j] -= temp*m[i][j];
  6229. }
  6230. //*********** backward substitution *********
  6231. for (i = n - 2; i>0; i--) {
  6232. sum = 0;
  6233. for (j = i; j <= n - 2; j++)
  6234. sum += m[i][j] * s[j];
  6235. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6236. }
  6237. for (i = 0; i<n - 1; i++)
  6238. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6239. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6240. b = s[i] / 2;
  6241. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6242. d = f[i];
  6243. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6244. }
  6245. return sum;
  6246. }
  6247. #ifdef PINDA_THERMISTOR
  6248. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6249. {
  6250. if (!temp_cal_active) return 0;
  6251. if (!calibration_status_pinda()) return 0;
  6252. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6253. }
  6254. #endif //PINDA_THERMISTOR
  6255. void long_pause() //long pause print
  6256. {
  6257. st_synchronize();
  6258. //save currently set parameters to global variables
  6259. saved_feedmultiply = feedmultiply;
  6260. HotendTempBckp = degTargetHotend(active_extruder);
  6261. fanSpeedBckp = fanSpeed;
  6262. start_pause_print = millis();
  6263. //save position
  6264. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6265. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6266. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6267. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6268. //retract
  6269. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6270. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6271. //lift z
  6272. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6273. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6275. //set nozzle target temperature to 0
  6276. setTargetHotend(0, 0);
  6277. setTargetHotend(0, 1);
  6278. setTargetHotend(0, 2);
  6279. //Move XY to side
  6280. current_position[X_AXIS] = X_PAUSE_POS;
  6281. current_position[Y_AXIS] = Y_PAUSE_POS;
  6282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6283. // Turn off the print fan
  6284. fanSpeed = 0;
  6285. st_synchronize();
  6286. }
  6287. void serialecho_temperatures() {
  6288. float tt = degHotend(active_extruder);
  6289. SERIAL_PROTOCOLPGM("T:");
  6290. SERIAL_PROTOCOL(tt);
  6291. SERIAL_PROTOCOLPGM(" E:");
  6292. SERIAL_PROTOCOL((int)active_extruder);
  6293. SERIAL_PROTOCOLPGM(" B:");
  6294. SERIAL_PROTOCOL_F(degBed(), 1);
  6295. SERIAL_PROTOCOLLN("");
  6296. }
  6297. extern uint32_t sdpos_atomic;
  6298. void uvlo_()
  6299. {
  6300. unsigned long time_start = millis();
  6301. bool sd_print = card.sdprinting;
  6302. // Conserve power as soon as possible.
  6303. disable_x();
  6304. disable_y();
  6305. disable_e0();
  6306. tmc2130_set_current_h(Z_AXIS, 20);
  6307. tmc2130_set_current_r(Z_AXIS, 20);
  6308. tmc2130_set_current_h(E_AXIS, 20);
  6309. tmc2130_set_current_r(E_AXIS, 20);
  6310. // Indicate that the interrupt has been triggered.
  6311. // SERIAL_ECHOLNPGM("UVLO");
  6312. // Read out the current Z motor microstep counter. This will be later used
  6313. // for reaching the zero full step before powering off.
  6314. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6315. // Calculate the file position, from which to resume this print.
  6316. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6317. {
  6318. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6319. sd_position -= sdlen_planner;
  6320. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6321. sd_position -= sdlen_cmdqueue;
  6322. if (sd_position < 0) sd_position = 0;
  6323. }
  6324. // Backup the feedrate in mm/min.
  6325. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6326. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6327. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6328. // are in action.
  6329. planner_abort_hard();
  6330. // Store the current extruder position.
  6331. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6332. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6333. // Clean the input command queue.
  6334. cmdqueue_reset();
  6335. card.sdprinting = false;
  6336. // card.closefile();
  6337. // Enable stepper driver interrupt to move Z axis.
  6338. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6339. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6340. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6341. sei();
  6342. plan_buffer_line(
  6343. current_position[X_AXIS],
  6344. current_position[Y_AXIS],
  6345. current_position[Z_AXIS],
  6346. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6347. 95, active_extruder);
  6348. st_synchronize();
  6349. disable_e0();
  6350. plan_buffer_line(
  6351. current_position[X_AXIS],
  6352. current_position[Y_AXIS],
  6353. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6354. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6355. 40, active_extruder);
  6356. st_synchronize();
  6357. disable_e0();
  6358. plan_buffer_line(
  6359. current_position[X_AXIS],
  6360. current_position[Y_AXIS],
  6361. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6362. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6363. 40, active_extruder);
  6364. st_synchronize();
  6365. disable_e0();
  6366. disable_z();
  6367. // Move Z up to the next 0th full step.
  6368. // Write the file position.
  6369. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6370. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6371. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6372. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6373. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6374. // Scale the z value to 1u resolution.
  6375. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6376. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6377. }
  6378. // Read out the current Z motor microstep counter. This will be later used
  6379. // for reaching the zero full step before powering off.
  6380. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6381. // Store the current position.
  6382. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6383. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6384. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6385. // Store the current feed rate, temperatures and fan speed.
  6386. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6387. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6388. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6389. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6390. // Finaly store the "power outage" flag.
  6391. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6392. st_synchronize();
  6393. SERIAL_ECHOPGM("stps");
  6394. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6395. disable_z();
  6396. // Increment power failure counter
  6397. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6398. power_count++;
  6399. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6400. SERIAL_ECHOLNPGM("UVLO - end");
  6401. MYSERIAL.println(millis() - time_start);
  6402. #if 0
  6403. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6404. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6406. st_synchronize();
  6407. #endif
  6408. cli();
  6409. volatile unsigned int ppcount = 0;
  6410. SET_OUTPUT(BEEPER);
  6411. WRITE(BEEPER, HIGH);
  6412. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6413. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6414. }
  6415. WRITE(BEEPER, LOW);
  6416. while(1){
  6417. #if 1
  6418. WRITE(BEEPER, LOW);
  6419. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6420. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6421. }
  6422. #endif
  6423. };
  6424. }
  6425. void setup_fan_interrupt() {
  6426. //INT7
  6427. DDRE &= ~(1 << 7); //input pin
  6428. PORTE &= ~(1 << 7); //no internal pull-up
  6429. //start with sensing rising edge
  6430. EICRB &= ~(1 << 6);
  6431. EICRB |= (1 << 7);
  6432. //enable INT7 interrupt
  6433. EIMSK |= (1 << 7);
  6434. }
  6435. ISR(INT7_vect) {
  6436. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6437. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6438. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6439. t_fan_rising_edge = millis();
  6440. }
  6441. else { //interrupt was triggered by falling edge
  6442. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6443. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6444. }
  6445. }
  6446. EICRB ^= (1 << 6); //change edge
  6447. }
  6448. void setup_uvlo_interrupt() {
  6449. DDRE &= ~(1 << 4); //input pin
  6450. PORTE &= ~(1 << 4); //no internal pull-up
  6451. //sensing falling edge
  6452. EICRB |= (1 << 0);
  6453. EICRB &= ~(1 << 1);
  6454. //enable INT4 interrupt
  6455. EIMSK |= (1 << 4);
  6456. }
  6457. ISR(INT4_vect) {
  6458. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6459. SERIAL_ECHOLNPGM("INT4");
  6460. if (IS_SD_PRINTING) uvlo_();
  6461. }
  6462. void recover_print(uint8_t automatic) {
  6463. char cmd[30];
  6464. lcd_update_enable(true);
  6465. lcd_update(2);
  6466. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6467. recover_machine_state_after_power_panic();
  6468. // Set the target bed and nozzle temperatures.
  6469. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6470. enquecommand(cmd);
  6471. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6472. enquecommand(cmd);
  6473. // Lift the print head, so one may remove the excess priming material.
  6474. if (current_position[Z_AXIS] < 25)
  6475. enquecommand_P(PSTR("G1 Z25 F800"));
  6476. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6477. enquecommand_P(PSTR("G28 X Y"));
  6478. // Set the target bed and nozzle temperatures and wait.
  6479. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6480. enquecommand(cmd);
  6481. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6482. enquecommand(cmd);
  6483. enquecommand_P(PSTR("M83")); //E axis relative mode
  6484. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6485. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6486. if(automatic == 0){
  6487. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6488. }
  6489. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6490. // Mark the power panic status as inactive.
  6491. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6492. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6493. delay_keep_alive(1000);
  6494. }*/
  6495. SERIAL_ECHOPGM("After waiting for temp:");
  6496. SERIAL_ECHOPGM("Current position X_AXIS:");
  6497. MYSERIAL.println(current_position[X_AXIS]);
  6498. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6499. MYSERIAL.println(current_position[Y_AXIS]);
  6500. // Restart the print.
  6501. restore_print_from_eeprom();
  6502. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6503. MYSERIAL.print(current_position[Z_AXIS]);
  6504. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6505. MYSERIAL.print(current_position[E_AXIS]);
  6506. }
  6507. void recover_machine_state_after_power_panic()
  6508. {
  6509. char cmd[30];
  6510. // 1) Recover the logical cordinates at the time of the power panic.
  6511. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6512. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6513. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6514. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6515. // The current position after power panic is moved to the next closest 0th full step.
  6516. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6517. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6518. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6519. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6520. sprintf_P(cmd, PSTR("G92 E"));
  6521. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6522. enquecommand(cmd);
  6523. }
  6524. memcpy(destination, current_position, sizeof(destination));
  6525. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6526. print_world_coordinates();
  6527. // 2) Initialize the logical to physical coordinate system transformation.
  6528. world2machine_initialize();
  6529. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6530. mbl.active = false;
  6531. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6532. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6533. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6534. // Scale the z value to 10u resolution.
  6535. int16_t v;
  6536. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6537. if (v != 0)
  6538. mbl.active = true;
  6539. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6540. }
  6541. if (mbl.active)
  6542. mbl.upsample_3x3();
  6543. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6544. // print_mesh_bed_leveling_table();
  6545. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6546. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6547. babystep_load();
  6548. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6550. // 6) Power up the motors, mark their positions as known.
  6551. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6552. axis_known_position[X_AXIS] = true; enable_x();
  6553. axis_known_position[Y_AXIS] = true; enable_y();
  6554. axis_known_position[Z_AXIS] = true; enable_z();
  6555. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6556. print_physical_coordinates();
  6557. // 7) Recover the target temperatures.
  6558. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6559. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6560. }
  6561. void restore_print_from_eeprom() {
  6562. float x_rec, y_rec, z_pos;
  6563. int feedrate_rec;
  6564. uint8_t fan_speed_rec;
  6565. char cmd[30];
  6566. char* c;
  6567. char filename[13];
  6568. uint8_t depth = 0;
  6569. char dir_name[9];
  6570. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6571. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6572. SERIAL_ECHOPGM("Feedrate:");
  6573. MYSERIAL.println(feedrate_rec);
  6574. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6575. MYSERIAL.println(int(depth));
  6576. for (int i = 0; i < depth; i++) {
  6577. for (int j = 0; j < 8; j++) {
  6578. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6579. }
  6580. dir_name[8] = '\0';
  6581. MYSERIAL.println(dir_name);
  6582. card.chdir(dir_name);
  6583. }
  6584. for (int i = 0; i < 8; i++) {
  6585. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6586. }
  6587. filename[8] = '\0';
  6588. MYSERIAL.print(filename);
  6589. strcat_P(filename, PSTR(".gco"));
  6590. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6591. for (c = &cmd[4]; *c; c++)
  6592. *c = tolower(*c);
  6593. enquecommand(cmd);
  6594. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6595. SERIAL_ECHOPGM("Position read from eeprom:");
  6596. MYSERIAL.println(position);
  6597. // E axis relative mode.
  6598. enquecommand_P(PSTR("M83"));
  6599. // Move to the XY print position in logical coordinates, where the print has been killed.
  6600. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6601. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6602. strcat_P(cmd, PSTR(" F2000"));
  6603. enquecommand(cmd);
  6604. // Move the Z axis down to the print, in logical coordinates.
  6605. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6606. enquecommand(cmd);
  6607. // Unretract.
  6608. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6609. // Set the feedrate saved at the power panic.
  6610. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6611. enquecommand(cmd);
  6612. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6613. {
  6614. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6615. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6616. }
  6617. // Set the fan speed saved at the power panic.
  6618. strcpy_P(cmd, PSTR("M106 S"));
  6619. strcat(cmd, itostr3(int(fan_speed_rec)));
  6620. enquecommand(cmd);
  6621. // Set a position in the file.
  6622. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6623. enquecommand(cmd);
  6624. // Start SD print.
  6625. enquecommand_P(PSTR("M24"));
  6626. }
  6627. ////////////////////////////////////////////////////////////////////////////////
  6628. // new save/restore printing
  6629. //extern uint32_t sdpos_atomic;
  6630. bool saved_printing = false;
  6631. uint32_t saved_sdpos = 0;
  6632. float saved_pos[4] = {0, 0, 0, 0};
  6633. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6634. float saved_feedrate2 = 0;
  6635. uint8_t saved_active_extruder = 0;
  6636. bool saved_extruder_under_pressure = false;
  6637. void stop_and_save_print_to_ram(float z_move, float e_move)
  6638. {
  6639. if (saved_printing) return;
  6640. cli();
  6641. unsigned char nplanner_blocks = number_of_blocks();
  6642. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6643. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6644. saved_sdpos -= sdlen_planner;
  6645. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6646. saved_sdpos -= sdlen_cmdqueue;
  6647. #if 0
  6648. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6649. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6650. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6651. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6652. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6653. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6654. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6655. {
  6656. card.setIndex(saved_sdpos);
  6657. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6658. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6659. MYSERIAL.print(char(card.get()));
  6660. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6661. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6662. MYSERIAL.print(char(card.get()));
  6663. SERIAL_ECHOLNPGM("End of command buffer");
  6664. }
  6665. {
  6666. // Print the content of the planner buffer, line by line:
  6667. card.setIndex(saved_sdpos);
  6668. int8_t iline = 0;
  6669. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6670. SERIAL_ECHOPGM("Planner line (from file): ");
  6671. MYSERIAL.print(int(iline), DEC);
  6672. SERIAL_ECHOPGM(", length: ");
  6673. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6674. SERIAL_ECHOPGM(", steps: (");
  6675. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6676. SERIAL_ECHOPGM(",");
  6677. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6678. SERIAL_ECHOPGM(",");
  6679. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6680. SERIAL_ECHOPGM(",");
  6681. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6682. SERIAL_ECHOPGM("), events: ");
  6683. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6684. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6685. MYSERIAL.print(char(card.get()));
  6686. }
  6687. }
  6688. {
  6689. // Print the content of the command buffer, line by line:
  6690. int8_t iline = 0;
  6691. union {
  6692. struct {
  6693. char lo;
  6694. char hi;
  6695. } lohi;
  6696. uint16_t value;
  6697. } sdlen_single;
  6698. int _bufindr = bufindr;
  6699. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6700. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6701. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6702. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6703. }
  6704. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6705. MYSERIAL.print(int(iline), DEC);
  6706. SERIAL_ECHOPGM(", type: ");
  6707. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6708. SERIAL_ECHOPGM(", len: ");
  6709. MYSERIAL.println(sdlen_single.value, DEC);
  6710. // Print the content of the buffer line.
  6711. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6712. SERIAL_ECHOPGM("Buffer line (from file): ");
  6713. MYSERIAL.print(int(iline), DEC);
  6714. MYSERIAL.println(int(iline), DEC);
  6715. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6716. MYSERIAL.print(char(card.get()));
  6717. if (-- _buflen == 0)
  6718. break;
  6719. // First skip the current command ID and iterate up to the end of the string.
  6720. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6721. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6722. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6723. // If the end of the buffer was empty,
  6724. if (_bufindr == sizeof(cmdbuffer)) {
  6725. // skip to the start and find the nonzero command.
  6726. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6727. }
  6728. }
  6729. }
  6730. #endif
  6731. #if 0
  6732. saved_feedrate2 = feedrate; //save feedrate
  6733. #else
  6734. // Try to deduce the feedrate from the first block of the planner.
  6735. // Speed is in mm/min.
  6736. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6737. #endif
  6738. planner_abort_hard(); //abort printing
  6739. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6740. saved_active_extruder = active_extruder; //save active_extruder
  6741. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6742. cmdqueue_reset(); //empty cmdqueue
  6743. card.sdprinting = false;
  6744. // card.closefile();
  6745. saved_printing = true;
  6746. sei();
  6747. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6748. #if 1
  6749. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6750. char buf[48];
  6751. strcpy_P(buf, PSTR("G1 Z"));
  6752. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6753. strcat_P(buf, PSTR(" E"));
  6754. // Relative extrusion
  6755. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6756. strcat_P(buf, PSTR(" F"));
  6757. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6758. // At this point the command queue is empty.
  6759. enquecommand(buf, false);
  6760. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6761. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6762. repeatcommand_front();
  6763. #else
  6764. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6765. st_synchronize(); //wait moving
  6766. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6767. memcpy(destination, current_position, sizeof(destination));
  6768. #endif
  6769. }
  6770. }
  6771. void restore_print_from_ram_and_continue(float e_move)
  6772. {
  6773. if (!saved_printing) return;
  6774. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6775. // current_position[axis] = st_get_position_mm(axis);
  6776. active_extruder = saved_active_extruder; //restore active_extruder
  6777. feedrate = saved_feedrate2; //restore feedrate
  6778. float e = saved_pos[E_AXIS] - e_move;
  6779. plan_set_e_position(e);
  6780. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6781. st_synchronize();
  6782. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6783. memcpy(destination, current_position, sizeof(destination));
  6784. card.setIndex(saved_sdpos);
  6785. sdpos_atomic = saved_sdpos;
  6786. card.sdprinting = true;
  6787. saved_printing = false;
  6788. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6789. }
  6790. void print_world_coordinates()
  6791. {
  6792. SERIAL_ECHOPGM("world coordinates: (");
  6793. MYSERIAL.print(current_position[X_AXIS], 3);
  6794. SERIAL_ECHOPGM(", ");
  6795. MYSERIAL.print(current_position[Y_AXIS], 3);
  6796. SERIAL_ECHOPGM(", ");
  6797. MYSERIAL.print(current_position[Z_AXIS], 3);
  6798. SERIAL_ECHOLNPGM(")");
  6799. }
  6800. void print_physical_coordinates()
  6801. {
  6802. SERIAL_ECHOPGM("physical coordinates: (");
  6803. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6804. SERIAL_ECHOPGM(", ");
  6805. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6806. SERIAL_ECHOPGM(", ");
  6807. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6808. SERIAL_ECHOLNPGM(")");
  6809. }
  6810. void print_mesh_bed_leveling_table()
  6811. {
  6812. SERIAL_ECHOPGM("mesh bed leveling: ");
  6813. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6814. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6815. MYSERIAL.print(mbl.z_values[y][x], 3);
  6816. SERIAL_ECHOPGM(" ");
  6817. }
  6818. SERIAL_ECHOLNPGM("");
  6819. }
  6820. #define FIL_LOAD_LENGTH 60
  6821. void extr_unload2() { //unloads filament
  6822. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6823. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6824. // int8_t SilentMode;
  6825. uint8_t snmm_extruder = 0;
  6826. if (degHotend0() > EXTRUDE_MINTEMP) {
  6827. lcd_implementation_clear();
  6828. lcd_display_message_fullscreen_P(PSTR(""));
  6829. max_feedrate[E_AXIS] = 50;
  6830. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6831. // lcd.print(" ");
  6832. // lcd.print(snmm_extruder + 1);
  6833. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6834. if (current_position[Z_AXIS] < 15) {
  6835. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6837. }
  6838. current_position[E_AXIS] += 10; //extrusion
  6839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6840. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6841. if (current_temperature[0] < 230) { //PLA & all other filaments
  6842. current_position[E_AXIS] += 5.4;
  6843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6844. current_position[E_AXIS] += 3.2;
  6845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6846. current_position[E_AXIS] += 3;
  6847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6848. }
  6849. else { //ABS
  6850. current_position[E_AXIS] += 3.1;
  6851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6852. current_position[E_AXIS] += 3.1;
  6853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6854. current_position[E_AXIS] += 4;
  6855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6856. /*current_position[X_AXIS] += 23; //delay
  6857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6858. current_position[X_AXIS] -= 23; //delay
  6859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6860. delay_keep_alive(4700);
  6861. }
  6862. max_feedrate[E_AXIS] = 80;
  6863. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6865. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6867. st_synchronize();
  6868. //digipot_init();
  6869. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6870. // else digipot_current(2, tmp_motor_loud[2]);
  6871. lcd_update_enable(true);
  6872. // lcd_return_to_status();
  6873. max_feedrate[E_AXIS] = 50;
  6874. }
  6875. else {
  6876. lcd_implementation_clear();
  6877. lcd.setCursor(0, 0);
  6878. lcd_printPGM(MSG_ERROR);
  6879. lcd.setCursor(0, 2);
  6880. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6881. delay(2000);
  6882. lcd_implementation_clear();
  6883. }
  6884. // lcd_return_to_status();
  6885. }