temperature.cpp 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. #ifdef FILAMENT_SENSOR
  82. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float temp_iState[EXTRUDERS] = { 0 };
  91. static float temp_dState[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float temp_iState_min[EXTRUDERS];
  98. static float temp_iState_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  122. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  123. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  124. static unsigned long extruder_autofan_last_check;
  125. #endif
  126. #if EXTRUDERS > 3
  127. # error Unsupported number of extruders
  128. #elif EXTRUDERS > 2
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  130. #elif EXTRUDERS > 1
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  132. #else
  133. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  134. #endif
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  147. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  148. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  149. #else
  150. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  151. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  152. #endif
  153. static float analog2temp(int raw, uint8_t e);
  154. static float analog2tempBed(int raw);
  155. static float analog2tempAmbient(int raw);
  156. static void updateTemperaturesFromRawValues();
  157. enum TempRunawayStates
  158. {
  159. TempRunaway_INACTIVE = 0,
  160. TempRunaway_PREHEAT = 1,
  161. TempRunaway_ACTIVE = 2,
  162. };
  163. #ifdef WATCH_TEMP_PERIOD
  164. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  166. #endif //WATCH_TEMP_PERIOD
  167. #ifndef SOFT_PWM_SCALE
  168. #define SOFT_PWM_SCALE 0
  169. #endif
  170. #ifdef FILAMENT_SENSOR
  171. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  172. #endif
  173. //===========================================================================
  174. //============================= functions ============================
  175. //===========================================================================
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. bias = d = (MAX_BED_POWER)/2;
  215. }
  216. else
  217. {
  218. soft_pwm[extruder] = (PID_MAX)/2;
  219. bias = d = (PID_MAX)/2;
  220. }
  221. for(;;) {
  222. wdt_reset();
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("ok B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("ok T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update();
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. void countFanSpeed()
  396. {
  397. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  398. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  399. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  401. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  402. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  403. SERIAL_ECHOLNPGM(" ");*/
  404. fan_edge_counter[0] = 0;
  405. fan_edge_counter[1] = 0;
  406. }
  407. extern bool fans_check_enabled;
  408. void checkFanSpeed()
  409. {
  410. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  411. static unsigned char fan_speed_errors[2] = { 0,0 };
  412. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  413. else fan_speed_errors[0] = 0;
  414. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  415. else fan_speed_errors[1] = 0;
  416. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  417. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  418. }
  419. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  420. extern void restore_print_from_ram_and_continue(float e_move);
  421. void fanSpeedError(unsigned char _fan) {
  422. if (get_message_level() != 0 && isPrintPaused) return;
  423. //to ensure that target temp. is not set to zero in case taht we are resuming print
  424. if (card.sdprinting) {
  425. if (heating_status != 0) {
  426. lcd_print_stop();
  427. }
  428. else {
  429. isPrintPaused = true;
  430. lcd_sdcard_pause();
  431. }
  432. }
  433. else {
  434. setTargetHotend0(0);
  435. }
  436. SERIAL_ERROR_START;
  437. switch (_fan) {
  438. case 0:
  439. SERIAL_ERRORLNPGM("ERROR: Extruder fan speed is lower then expected");
  440. if (get_message_level() == 0) {
  441. WRITE(BEEPER, HIGH);
  442. delayMicroseconds(200);
  443. WRITE(BEEPER, LOW);
  444. delayMicroseconds(100);
  445. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  446. }
  447. break;
  448. case 1:
  449. SERIAL_ERRORLNPGM("ERROR: Print fan speed is lower then expected");
  450. if (get_message_level() == 0) {
  451. WRITE(BEEPER, HIGH);
  452. delayMicroseconds(200);
  453. WRITE(BEEPER, LOW);
  454. delayMicroseconds(100);
  455. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  456. }
  457. break;
  458. }
  459. }
  460. void checkExtruderAutoFans()
  461. {
  462. uint8_t fanState = 0;
  463. // which fan pins need to be turned on?
  464. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  465. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  466. fanState |= 1;
  467. #endif
  468. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  469. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  470. {
  471. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  472. fanState |= 1;
  473. else
  474. fanState |= 2;
  475. }
  476. #endif
  477. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  478. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  479. {
  480. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  481. fanState |= 1;
  482. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  483. fanState |= 2;
  484. else
  485. fanState |= 4;
  486. }
  487. #endif
  488. // update extruder auto fan states
  489. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  490. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  491. #endif
  492. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  493. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  494. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  495. #endif
  496. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  497. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  498. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  499. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  500. #endif
  501. }
  502. #endif // any extruder auto fan pins set
  503. void manage_heater()
  504. {
  505. wdt_reset();
  506. float pid_input;
  507. float pid_output;
  508. if(temp_meas_ready != true) //better readability
  509. return;
  510. updateTemperaturesFromRawValues();
  511. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  512. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  513. #endif
  514. for(int e = 0; e < EXTRUDERS; e++)
  515. {
  516. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  517. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  518. #endif
  519. #ifdef PIDTEMP
  520. pid_input = current_temperature[e];
  521. #ifndef PID_OPENLOOP
  522. pid_error[e] = target_temperature[e] - pid_input;
  523. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  524. pid_output = BANG_MAX;
  525. pid_reset[e] = true;
  526. }
  527. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  528. pid_output = 0;
  529. pid_reset[e] = true;
  530. }
  531. else {
  532. if(pid_reset[e] == true) {
  533. temp_iState[e] = 0.0;
  534. pid_reset[e] = false;
  535. }
  536. pTerm[e] = Kp * pid_error[e];
  537. temp_iState[e] += pid_error[e];
  538. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  539. iTerm[e] = Ki * temp_iState[e];
  540. //K1 defined in Configuration.h in the PID settings
  541. #define K2 (1.0-K1)
  542. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  543. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  544. if (pid_output > PID_MAX) {
  545. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  546. pid_output=PID_MAX;
  547. } else if (pid_output < 0){
  548. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  549. pid_output=0;
  550. }
  551. }
  552. temp_dState[e] = pid_input;
  553. #else
  554. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  555. #endif //PID_OPENLOOP
  556. #ifdef PID_DEBUG
  557. SERIAL_ECHO_START;
  558. SERIAL_ECHO(" PID_DEBUG ");
  559. SERIAL_ECHO(e);
  560. SERIAL_ECHO(": Input ");
  561. SERIAL_ECHO(pid_input);
  562. SERIAL_ECHO(" Output ");
  563. SERIAL_ECHO(pid_output);
  564. SERIAL_ECHO(" pTerm ");
  565. SERIAL_ECHO(pTerm[e]);
  566. SERIAL_ECHO(" iTerm ");
  567. SERIAL_ECHO(iTerm[e]);
  568. SERIAL_ECHO(" dTerm ");
  569. SERIAL_ECHOLN(dTerm[e]);
  570. #endif //PID_DEBUG
  571. #else /* PID off */
  572. pid_output = 0;
  573. if(current_temperature[e] < target_temperature[e]) {
  574. pid_output = PID_MAX;
  575. }
  576. #endif
  577. // Check if temperature is within the correct range
  578. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  579. {
  580. soft_pwm[e] = (int)pid_output >> 1;
  581. }
  582. else {
  583. soft_pwm[e] = 0;
  584. }
  585. #ifdef WATCH_TEMP_PERIOD
  586. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  587. {
  588. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  589. {
  590. setTargetHotend(0, e);
  591. LCD_MESSAGEPGM("Heating failed");
  592. SERIAL_ECHO_START;
  593. SERIAL_ECHOLN("Heating failed");
  594. }else{
  595. watchmillis[e] = 0;
  596. }
  597. }
  598. #endif
  599. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  600. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  601. disable_heater();
  602. if(IsStopped() == false) {
  603. SERIAL_ERROR_START;
  604. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  605. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  606. }
  607. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  608. Stop();
  609. #endif
  610. }
  611. #endif
  612. } // End extruder for loop
  613. #ifndef DEBUG_DISABLE_FANCHECK
  614. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  615. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  616. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  617. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  618. {
  619. countFanSpeed();
  620. checkFanSpeed();
  621. checkExtruderAutoFans();
  622. extruder_autofan_last_check = millis();
  623. }
  624. #endif
  625. #endif //DEBUG_DISABLE_FANCHECK
  626. #ifndef PIDTEMPBED
  627. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  628. return;
  629. previous_millis_bed_heater = millis();
  630. #endif
  631. #if TEMP_SENSOR_BED != 0
  632. #ifdef PIDTEMPBED
  633. pid_input = current_temperature_bed;
  634. #ifndef PID_OPENLOOP
  635. pid_error_bed = target_temperature_bed - pid_input;
  636. pTerm_bed = bedKp * pid_error_bed;
  637. temp_iState_bed += pid_error_bed;
  638. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  639. iTerm_bed = bedKi * temp_iState_bed;
  640. //K1 defined in Configuration.h in the PID settings
  641. #define K2 (1.0-K1)
  642. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  643. temp_dState_bed = pid_input;
  644. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  645. if (pid_output > MAX_BED_POWER) {
  646. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  647. pid_output=MAX_BED_POWER;
  648. } else if (pid_output < 0){
  649. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  650. pid_output=0;
  651. }
  652. #else
  653. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  654. #endif //PID_OPENLOOP
  655. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  656. {
  657. soft_pwm_bed = (int)pid_output >> 1;
  658. }
  659. else {
  660. soft_pwm_bed = 0;
  661. }
  662. #elif !defined(BED_LIMIT_SWITCHING)
  663. // Check if temperature is within the correct range
  664. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  665. {
  666. if(current_temperature_bed >= target_temperature_bed)
  667. {
  668. soft_pwm_bed = 0;
  669. }
  670. else
  671. {
  672. soft_pwm_bed = MAX_BED_POWER>>1;
  673. }
  674. }
  675. else
  676. {
  677. soft_pwm_bed = 0;
  678. WRITE(HEATER_BED_PIN,LOW);
  679. }
  680. #else //#ifdef BED_LIMIT_SWITCHING
  681. // Check if temperature is within the correct band
  682. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  683. {
  684. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  685. {
  686. soft_pwm_bed = 0;
  687. }
  688. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  689. {
  690. soft_pwm_bed = MAX_BED_POWER>>1;
  691. }
  692. }
  693. else
  694. {
  695. soft_pwm_bed = 0;
  696. WRITE(HEATER_BED_PIN,LOW);
  697. }
  698. #endif
  699. #endif
  700. //code for controlling the extruder rate based on the width sensor
  701. #ifdef FILAMENT_SENSOR
  702. if(filament_sensor)
  703. {
  704. meas_shift_index=delay_index1-meas_delay_cm;
  705. if(meas_shift_index<0)
  706. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  707. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  708. //then square it to get an area
  709. if(meas_shift_index<0)
  710. meas_shift_index=0;
  711. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  712. meas_shift_index=MAX_MEASUREMENT_DELAY;
  713. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  714. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  715. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  716. }
  717. #endif
  718. #ifdef HOST_KEEPALIVE_FEATURE
  719. host_keepalive();
  720. #endif
  721. }
  722. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  723. // Derived from RepRap FiveD extruder::getTemperature()
  724. // For hot end temperature measurement.
  725. static float analog2temp(int raw, uint8_t e) {
  726. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  727. if(e > EXTRUDERS)
  728. #else
  729. if(e >= EXTRUDERS)
  730. #endif
  731. {
  732. SERIAL_ERROR_START;
  733. SERIAL_ERROR((int)e);
  734. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  735. kill("", 6);
  736. return 0.0;
  737. }
  738. #ifdef HEATER_0_USES_MAX6675
  739. if (e == 0)
  740. {
  741. return 0.25 * raw;
  742. }
  743. #endif
  744. if(heater_ttbl_map[e] != NULL)
  745. {
  746. float celsius = 0;
  747. uint8_t i;
  748. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  749. for (i=1; i<heater_ttbllen_map[e]; i++)
  750. {
  751. if (PGM_RD_W((*tt)[i][0]) > raw)
  752. {
  753. celsius = PGM_RD_W((*tt)[i-1][1]) +
  754. (raw - PGM_RD_W((*tt)[i-1][0])) *
  755. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  756. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  757. break;
  758. }
  759. }
  760. // Overflow: Set to last value in the table
  761. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  762. return celsius;
  763. }
  764. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  765. }
  766. // Derived from RepRap FiveD extruder::getTemperature()
  767. // For bed temperature measurement.
  768. static float analog2tempBed(int raw) {
  769. #ifdef BED_USES_THERMISTOR
  770. float celsius = 0;
  771. byte i;
  772. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  773. {
  774. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  775. {
  776. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  777. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  778. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  779. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  780. break;
  781. }
  782. }
  783. // Overflow: Set to last value in the table
  784. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  785. // temperature offset adjustment
  786. #ifdef BED_OFFSET
  787. float _offset = BED_OFFSET;
  788. float _offset_center = BED_OFFSET_CENTER;
  789. float _offset_start = BED_OFFSET_START;
  790. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  791. float _second_koef = (_offset / 2) / (100 - _offset_center);
  792. if (celsius >= _offset_start && celsius <= _offset_center)
  793. {
  794. celsius = celsius + (_first_koef * (celsius - _offset_start));
  795. }
  796. else if (celsius > _offset_center && celsius <= 100)
  797. {
  798. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  799. }
  800. else if (celsius > 100)
  801. {
  802. celsius = celsius + _offset;
  803. }
  804. #endif
  805. return celsius;
  806. #elif defined BED_USES_AD595
  807. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  808. #else
  809. return 0;
  810. #endif
  811. }
  812. static float analog2tempAmbient(int raw)
  813. {
  814. float celsius = 0;
  815. byte i;
  816. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  817. {
  818. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  819. {
  820. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  821. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  822. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  823. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  824. break;
  825. }
  826. }
  827. // Overflow: Set to last value in the table
  828. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  829. return celsius;
  830. }
  831. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  832. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  833. static void updateTemperaturesFromRawValues()
  834. {
  835. for(uint8_t e=0;e<EXTRUDERS;e++)
  836. {
  837. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  838. }
  839. #ifdef PINDA_THERMISTOR
  840. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  841. #endif
  842. #ifdef AMBIENT_THERMISTOR
  843. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  844. #endif
  845. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  846. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  847. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  848. #endif
  849. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  850. filament_width_meas = analog2widthFil();
  851. #endif
  852. //Reset the watchdog after we know we have a temperature measurement.
  853. watchdog_reset();
  854. CRITICAL_SECTION_START;
  855. temp_meas_ready = false;
  856. CRITICAL_SECTION_END;
  857. }
  858. // For converting raw Filament Width to milimeters
  859. #ifdef FILAMENT_SENSOR
  860. float analog2widthFil() {
  861. return current_raw_filwidth/16383.0*5.0;
  862. //return current_raw_filwidth;
  863. }
  864. // For converting raw Filament Width to a ratio
  865. int widthFil_to_size_ratio() {
  866. float temp;
  867. temp=filament_width_meas;
  868. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  869. temp=filament_width_nominal; //assume sensor cut out
  870. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  871. temp= MEASURED_UPPER_LIMIT;
  872. return(filament_width_nominal/temp*100);
  873. }
  874. #endif
  875. void tp_init()
  876. {
  877. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  878. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  879. MCUCR=(1<<JTD);
  880. MCUCR=(1<<JTD);
  881. #endif
  882. // Finish init of mult extruder arrays
  883. for(int e = 0; e < EXTRUDERS; e++) {
  884. // populate with the first value
  885. maxttemp[e] = maxttemp[0];
  886. #ifdef PIDTEMP
  887. temp_iState_min[e] = 0.0;
  888. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  889. #endif //PIDTEMP
  890. #ifdef PIDTEMPBED
  891. temp_iState_min_bed = 0.0;
  892. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  893. #endif //PIDTEMPBED
  894. }
  895. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  896. SET_OUTPUT(HEATER_0_PIN);
  897. #endif
  898. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  899. SET_OUTPUT(HEATER_1_PIN);
  900. #endif
  901. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  902. SET_OUTPUT(HEATER_2_PIN);
  903. #endif
  904. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  905. SET_OUTPUT(HEATER_BED_PIN);
  906. #endif
  907. #if defined(FAN_PIN) && (FAN_PIN > -1)
  908. SET_OUTPUT(FAN_PIN);
  909. #ifdef FAST_PWM_FAN
  910. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  911. #endif
  912. #ifdef FAN_SOFT_PWM
  913. soft_pwm_fan = fanSpeedSoftPwm / 2;
  914. #endif
  915. #endif
  916. #ifdef HEATER_0_USES_MAX6675
  917. #ifndef SDSUPPORT
  918. SET_OUTPUT(SCK_PIN);
  919. WRITE(SCK_PIN,0);
  920. SET_OUTPUT(MOSI_PIN);
  921. WRITE(MOSI_PIN,1);
  922. SET_INPUT(MISO_PIN);
  923. WRITE(MISO_PIN,1);
  924. #endif
  925. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  926. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  927. pinMode(SS_PIN, OUTPUT);
  928. digitalWrite(SS_PIN,0);
  929. pinMode(MAX6675_SS, OUTPUT);
  930. digitalWrite(MAX6675_SS,1);
  931. #endif
  932. adc_init();
  933. // Use timer0 for temperature measurement
  934. // Interleave temperature interrupt with millies interrupt
  935. OCR0B = 128;
  936. TIMSK0 |= (1<<OCIE0B);
  937. // Wait for temperature measurement to settle
  938. delay(250);
  939. #ifdef HEATER_0_MINTEMP
  940. minttemp[0] = HEATER_0_MINTEMP;
  941. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  942. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  943. minttemp_raw[0] += OVERSAMPLENR;
  944. #else
  945. minttemp_raw[0] -= OVERSAMPLENR;
  946. #endif
  947. }
  948. #endif //MINTEMP
  949. #ifdef HEATER_0_MAXTEMP
  950. maxttemp[0] = HEATER_0_MAXTEMP;
  951. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  952. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  953. maxttemp_raw[0] -= OVERSAMPLENR;
  954. #else
  955. maxttemp_raw[0] += OVERSAMPLENR;
  956. #endif
  957. }
  958. #endif //MAXTEMP
  959. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  960. minttemp[1] = HEATER_1_MINTEMP;
  961. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  962. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  963. minttemp_raw[1] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[1] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif // MINTEMP 1
  969. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  970. maxttemp[1] = HEATER_1_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  972. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  973. maxttemp_raw[1] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[1] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP 1
  979. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  980. minttemp[2] = HEATER_2_MINTEMP;
  981. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  982. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  983. minttemp_raw[2] += OVERSAMPLENR;
  984. #else
  985. minttemp_raw[2] -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif //MINTEMP 2
  989. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  990. maxttemp[2] = HEATER_2_MAXTEMP;
  991. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  992. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  993. maxttemp_raw[2] -= OVERSAMPLENR;
  994. #else
  995. maxttemp_raw[2] += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MAXTEMP 2
  999. #ifdef BED_MINTEMP
  1000. /* No bed MINTEMP error implemented?!? */
  1001. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1002. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1003. bed_minttemp_raw += OVERSAMPLENR;
  1004. #else
  1005. bed_minttemp_raw -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //BED_MINTEMP
  1009. #ifdef BED_MAXTEMP
  1010. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1011. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1012. bed_maxttemp_raw -= OVERSAMPLENR;
  1013. #else
  1014. bed_maxttemp_raw += OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif //BED_MAXTEMP
  1018. }
  1019. void setWatch()
  1020. {
  1021. #ifdef WATCH_TEMP_PERIOD
  1022. for (int e = 0; e < EXTRUDERS; e++)
  1023. {
  1024. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1025. {
  1026. watch_start_temp[e] = degHotend(e);
  1027. watchmillis[e] = millis();
  1028. }
  1029. }
  1030. #endif
  1031. }
  1032. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1033. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1034. {
  1035. float __hysteresis = 0;
  1036. int __timeout = 0;
  1037. bool temp_runaway_check_active = false;
  1038. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1039. static int __preheat_counter[2] = { 0,0};
  1040. static int __preheat_errors[2] = { 0,0};
  1041. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1042. if (_isbed)
  1043. {
  1044. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1045. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1046. }
  1047. #endif
  1048. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1049. if (!_isbed)
  1050. {
  1051. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1052. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1053. }
  1054. #endif
  1055. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1056. {
  1057. temp_runaway_timer[_heater_id] = millis();
  1058. if (_output == 0)
  1059. {
  1060. temp_runaway_check_active = false;
  1061. temp_runaway_error_counter[_heater_id] = 0;
  1062. }
  1063. if (temp_runaway_target[_heater_id] != _target_temperature)
  1064. {
  1065. if (_target_temperature > 0)
  1066. {
  1067. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1068. temp_runaway_target[_heater_id] = _target_temperature;
  1069. __preheat_start[_heater_id] = _current_temperature;
  1070. __preheat_counter[_heater_id] = 0;
  1071. }
  1072. else
  1073. {
  1074. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1075. temp_runaway_target[_heater_id] = _target_temperature;
  1076. }
  1077. }
  1078. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1079. {
  1080. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1081. {
  1082. __preheat_counter[_heater_id]++;
  1083. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1084. {
  1085. /*SERIAL_ECHOPGM("Heater:");
  1086. MYSERIAL.print(_heater_id);
  1087. SERIAL_ECHOPGM(" T:");
  1088. MYSERIAL.print(_current_temperature);
  1089. SERIAL_ECHOPGM(" Tstart:");
  1090. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1091. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1092. __preheat_errors[_heater_id]++;
  1093. /*SERIAL_ECHOPGM(" Preheat errors:");
  1094. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1095. }
  1096. else {
  1097. //SERIAL_ECHOLNPGM("");
  1098. __preheat_errors[_heater_id] = 0;
  1099. }
  1100. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1101. {
  1102. if (farm_mode) { prusa_statistics(0); }
  1103. temp_runaway_stop(true, _isbed);
  1104. if (farm_mode) { prusa_statistics(91); }
  1105. }
  1106. __preheat_start[_heater_id] = _current_temperature;
  1107. __preheat_counter[_heater_id] = 0;
  1108. }
  1109. }
  1110. }
  1111. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1112. {
  1113. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1114. temp_runaway_check_active = false;
  1115. }
  1116. if (!temp_runaway_check_active && _output > 0)
  1117. {
  1118. temp_runaway_check_active = true;
  1119. }
  1120. if (temp_runaway_check_active)
  1121. {
  1122. // we are in range
  1123. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1124. {
  1125. temp_runaway_check_active = false;
  1126. temp_runaway_error_counter[_heater_id] = 0;
  1127. }
  1128. else
  1129. {
  1130. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1131. {
  1132. temp_runaway_error_counter[_heater_id]++;
  1133. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1134. {
  1135. if (farm_mode) { prusa_statistics(0); }
  1136. temp_runaway_stop(false, _isbed);
  1137. if (farm_mode) { prusa_statistics(90); }
  1138. }
  1139. }
  1140. }
  1141. }
  1142. }
  1143. }
  1144. void temp_runaway_stop(bool isPreheat, bool isBed)
  1145. {
  1146. cancel_heatup = true;
  1147. quickStop();
  1148. if (card.sdprinting)
  1149. {
  1150. card.sdprinting = false;
  1151. card.closefile();
  1152. }
  1153. // Clean the input command queue
  1154. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1155. cmdqueue_reset();
  1156. disable_heater();
  1157. disable_x();
  1158. disable_y();
  1159. disable_e0();
  1160. disable_e1();
  1161. disable_e2();
  1162. manage_heater();
  1163. lcd_update();
  1164. WRITE(BEEPER, HIGH);
  1165. delayMicroseconds(500);
  1166. WRITE(BEEPER, LOW);
  1167. delayMicroseconds(100);
  1168. if (isPreheat)
  1169. {
  1170. Stop();
  1171. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1172. SERIAL_ERROR_START;
  1173. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1174. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1175. SET_OUTPUT(FAN_PIN);
  1176. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1177. analogWrite(FAN_PIN, 255);
  1178. fanSpeed = 255;
  1179. delayMicroseconds(2000);
  1180. }
  1181. else
  1182. {
  1183. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1184. SERIAL_ERROR_START;
  1185. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1186. }
  1187. }
  1188. #endif
  1189. void disable_heater()
  1190. {
  1191. for(int i=0;i<EXTRUDERS;i++)
  1192. setTargetHotend(0,i);
  1193. setTargetBed(0);
  1194. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1195. target_temperature[0]=0;
  1196. soft_pwm[0]=0;
  1197. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1198. WRITE(HEATER_0_PIN,LOW);
  1199. #endif
  1200. #endif
  1201. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1202. target_temperature[1]=0;
  1203. soft_pwm[1]=0;
  1204. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1205. WRITE(HEATER_1_PIN,LOW);
  1206. #endif
  1207. #endif
  1208. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1209. target_temperature[2]=0;
  1210. soft_pwm[2]=0;
  1211. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1212. WRITE(HEATER_2_PIN,LOW);
  1213. #endif
  1214. #endif
  1215. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1216. target_temperature_bed=0;
  1217. soft_pwm_bed=0;
  1218. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1219. WRITE(HEATER_BED_PIN,LOW);
  1220. #endif
  1221. #endif
  1222. }
  1223. void max_temp_error(uint8_t e) {
  1224. disable_heater();
  1225. if(IsStopped() == false) {
  1226. SERIAL_ERROR_START;
  1227. SERIAL_ERRORLN((int)e);
  1228. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1229. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1230. }
  1231. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1232. Stop();
  1233. #endif
  1234. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1235. SET_OUTPUT(FAN_PIN);
  1236. SET_OUTPUT(BEEPER);
  1237. WRITE(FAN_PIN, 1);
  1238. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1239. WRITE(BEEPER, 1);
  1240. // fanSpeed will consumed by the check_axes_activity() routine.
  1241. fanSpeed=255;
  1242. if (farm_mode) { prusa_statistics(93); }
  1243. }
  1244. void min_temp_error(uint8_t e) {
  1245. #ifdef DEBUG_DISABLE_MINTEMP
  1246. return;
  1247. #endif
  1248. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1249. disable_heater();
  1250. if(IsStopped() == false) {
  1251. SERIAL_ERROR_START;
  1252. SERIAL_ERRORLN((int)e);
  1253. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1254. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1255. }
  1256. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1257. Stop();
  1258. #endif
  1259. if (farm_mode) { prusa_statistics(92); }
  1260. }
  1261. void bed_max_temp_error(void) {
  1262. #if HEATER_BED_PIN > -1
  1263. WRITE(HEATER_BED_PIN, 0);
  1264. #endif
  1265. if(IsStopped() == false) {
  1266. SERIAL_ERROR_START;
  1267. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1268. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1269. }
  1270. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1271. Stop();
  1272. #endif
  1273. }
  1274. void bed_min_temp_error(void) {
  1275. #ifdef DEBUG_DISABLE_MINTEMP
  1276. return;
  1277. #endif
  1278. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1279. #if HEATER_BED_PIN > -1
  1280. WRITE(HEATER_BED_PIN, 0);
  1281. #endif
  1282. if(IsStopped() == false) {
  1283. SERIAL_ERROR_START;
  1284. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1285. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1286. }
  1287. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1288. Stop();
  1289. #endif*/
  1290. }
  1291. #ifdef HEATER_0_USES_MAX6675
  1292. #define MAX6675_HEAT_INTERVAL 250
  1293. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1294. int max6675_temp = 2000;
  1295. int read_max6675()
  1296. {
  1297. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1298. return max6675_temp;
  1299. max6675_previous_millis = millis();
  1300. max6675_temp = 0;
  1301. #ifdef PRR
  1302. PRR &= ~(1<<PRSPI);
  1303. #elif defined PRR0
  1304. PRR0 &= ~(1<<PRSPI);
  1305. #endif
  1306. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1307. // enable TT_MAX6675
  1308. WRITE(MAX6675_SS, 0);
  1309. // ensure 100ns delay - a bit extra is fine
  1310. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1311. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1312. // read MSB
  1313. SPDR = 0;
  1314. for (;(SPSR & (1<<SPIF)) == 0;);
  1315. max6675_temp = SPDR;
  1316. max6675_temp <<= 8;
  1317. // read LSB
  1318. SPDR = 0;
  1319. for (;(SPSR & (1<<SPIF)) == 0;);
  1320. max6675_temp |= SPDR;
  1321. // disable TT_MAX6675
  1322. WRITE(MAX6675_SS, 1);
  1323. if (max6675_temp & 4)
  1324. {
  1325. // thermocouple open
  1326. max6675_temp = 2000;
  1327. }
  1328. else
  1329. {
  1330. max6675_temp = max6675_temp >> 3;
  1331. }
  1332. return max6675_temp;
  1333. }
  1334. #endif
  1335. extern "C" {
  1336. void adc_ready(void) //callback from adc when sampling finished
  1337. {
  1338. current_temperature_raw[0] = adc_values[0];
  1339. current_temperature_bed_raw = adc_values[2];
  1340. current_temperature_raw_pinda = adc_values[3];
  1341. current_voltage_raw_pwr = adc_values[4];
  1342. current_temperature_raw_ambient = adc_values[5];
  1343. current_voltage_raw_bed = adc_values[6];
  1344. temp_meas_ready = true;
  1345. }
  1346. } // extern "C"
  1347. // Timer 0 is shared with millies
  1348. ISR(TIMER0_COMPB_vect)
  1349. {
  1350. if (!temp_meas_ready) adc_cycle();
  1351. else
  1352. {
  1353. check_max_temp();
  1354. check_min_temp();
  1355. }
  1356. lcd_buttons_update();
  1357. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1358. static unsigned char soft_pwm_0;
  1359. #ifdef SLOW_PWM_HEATERS
  1360. static unsigned char slow_pwm_count = 0;
  1361. static unsigned char state_heater_0 = 0;
  1362. static unsigned char state_timer_heater_0 = 0;
  1363. #endif
  1364. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1365. static unsigned char soft_pwm_1;
  1366. #ifdef SLOW_PWM_HEATERS
  1367. static unsigned char state_heater_1 = 0;
  1368. static unsigned char state_timer_heater_1 = 0;
  1369. #endif
  1370. #endif
  1371. #if EXTRUDERS > 2
  1372. static unsigned char soft_pwm_2;
  1373. #ifdef SLOW_PWM_HEATERS
  1374. static unsigned char state_heater_2 = 0;
  1375. static unsigned char state_timer_heater_2 = 0;
  1376. #endif
  1377. #endif
  1378. #if HEATER_BED_PIN > -1
  1379. static unsigned char soft_pwm_b;
  1380. #ifdef SLOW_PWM_HEATERS
  1381. static unsigned char state_heater_b = 0;
  1382. static unsigned char state_timer_heater_b = 0;
  1383. #endif
  1384. #endif
  1385. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1386. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1387. #endif
  1388. #ifndef SLOW_PWM_HEATERS
  1389. /*
  1390. * standard PWM modulation
  1391. */
  1392. if (pwm_count == 0)
  1393. {
  1394. soft_pwm_0 = soft_pwm[0];
  1395. if(soft_pwm_0 > 0)
  1396. {
  1397. WRITE(HEATER_0_PIN,1);
  1398. #ifdef HEATERS_PARALLEL
  1399. WRITE(HEATER_1_PIN,1);
  1400. #endif
  1401. } else WRITE(HEATER_0_PIN,0);
  1402. #if EXTRUDERS > 1
  1403. soft_pwm_1 = soft_pwm[1];
  1404. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1405. #endif
  1406. #if EXTRUDERS > 2
  1407. soft_pwm_2 = soft_pwm[2];
  1408. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1409. #endif
  1410. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1411. soft_pwm_b = soft_pwm_bed;
  1412. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1413. #endif
  1414. #ifdef FAN_SOFT_PWM
  1415. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1416. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1417. #endif
  1418. }
  1419. if(soft_pwm_0 < pwm_count)
  1420. {
  1421. WRITE(HEATER_0_PIN,0);
  1422. #ifdef HEATERS_PARALLEL
  1423. WRITE(HEATER_1_PIN,0);
  1424. #endif
  1425. }
  1426. #if EXTRUDERS > 1
  1427. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1428. #endif
  1429. #if EXTRUDERS > 2
  1430. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1431. #endif
  1432. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1433. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1434. #endif
  1435. #ifdef FAN_SOFT_PWM
  1436. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1437. #endif
  1438. pwm_count += (1 << SOFT_PWM_SCALE);
  1439. pwm_count &= 0x7f;
  1440. #else //ifndef SLOW_PWM_HEATERS
  1441. /*
  1442. * SLOW PWM HEATERS
  1443. *
  1444. * for heaters drived by relay
  1445. */
  1446. #ifndef MIN_STATE_TIME
  1447. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1448. #endif
  1449. if (slow_pwm_count == 0) {
  1450. // EXTRUDER 0
  1451. soft_pwm_0 = soft_pwm[0];
  1452. if (soft_pwm_0 > 0) {
  1453. // turn ON heather only if the minimum time is up
  1454. if (state_timer_heater_0 == 0) {
  1455. // if change state set timer
  1456. if (state_heater_0 == 0) {
  1457. state_timer_heater_0 = MIN_STATE_TIME;
  1458. }
  1459. state_heater_0 = 1;
  1460. WRITE(HEATER_0_PIN, 1);
  1461. #ifdef HEATERS_PARALLEL
  1462. WRITE(HEATER_1_PIN, 1);
  1463. #endif
  1464. }
  1465. } else {
  1466. // turn OFF heather only if the minimum time is up
  1467. if (state_timer_heater_0 == 0) {
  1468. // if change state set timer
  1469. if (state_heater_0 == 1) {
  1470. state_timer_heater_0 = MIN_STATE_TIME;
  1471. }
  1472. state_heater_0 = 0;
  1473. WRITE(HEATER_0_PIN, 0);
  1474. #ifdef HEATERS_PARALLEL
  1475. WRITE(HEATER_1_PIN, 0);
  1476. #endif
  1477. }
  1478. }
  1479. #if EXTRUDERS > 1
  1480. // EXTRUDER 1
  1481. soft_pwm_1 = soft_pwm[1];
  1482. if (soft_pwm_1 > 0) {
  1483. // turn ON heather only if the minimum time is up
  1484. if (state_timer_heater_1 == 0) {
  1485. // if change state set timer
  1486. if (state_heater_1 == 0) {
  1487. state_timer_heater_1 = MIN_STATE_TIME;
  1488. }
  1489. state_heater_1 = 1;
  1490. WRITE(HEATER_1_PIN, 1);
  1491. }
  1492. } else {
  1493. // turn OFF heather only if the minimum time is up
  1494. if (state_timer_heater_1 == 0) {
  1495. // if change state set timer
  1496. if (state_heater_1 == 1) {
  1497. state_timer_heater_1 = MIN_STATE_TIME;
  1498. }
  1499. state_heater_1 = 0;
  1500. WRITE(HEATER_1_PIN, 0);
  1501. }
  1502. }
  1503. #endif
  1504. #if EXTRUDERS > 2
  1505. // EXTRUDER 2
  1506. soft_pwm_2 = soft_pwm[2];
  1507. if (soft_pwm_2 > 0) {
  1508. // turn ON heather only if the minimum time is up
  1509. if (state_timer_heater_2 == 0) {
  1510. // if change state set timer
  1511. if (state_heater_2 == 0) {
  1512. state_timer_heater_2 = MIN_STATE_TIME;
  1513. }
  1514. state_heater_2 = 1;
  1515. WRITE(HEATER_2_PIN, 1);
  1516. }
  1517. } else {
  1518. // turn OFF heather only if the minimum time is up
  1519. if (state_timer_heater_2 == 0) {
  1520. // if change state set timer
  1521. if (state_heater_2 == 1) {
  1522. state_timer_heater_2 = MIN_STATE_TIME;
  1523. }
  1524. state_heater_2 = 0;
  1525. WRITE(HEATER_2_PIN, 0);
  1526. }
  1527. }
  1528. #endif
  1529. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1530. // BED
  1531. soft_pwm_b = soft_pwm_bed;
  1532. if (soft_pwm_b > 0) {
  1533. // turn ON heather only if the minimum time is up
  1534. if (state_timer_heater_b == 0) {
  1535. // if change state set timer
  1536. if (state_heater_b == 0) {
  1537. state_timer_heater_b = MIN_STATE_TIME;
  1538. }
  1539. state_heater_b = 1;
  1540. WRITE(HEATER_BED_PIN, 1);
  1541. }
  1542. } else {
  1543. // turn OFF heather only if the minimum time is up
  1544. if (state_timer_heater_b == 0) {
  1545. // if change state set timer
  1546. if (state_heater_b == 1) {
  1547. state_timer_heater_b = MIN_STATE_TIME;
  1548. }
  1549. state_heater_b = 0;
  1550. WRITE(HEATER_BED_PIN, 0);
  1551. }
  1552. }
  1553. #endif
  1554. } // if (slow_pwm_count == 0)
  1555. // EXTRUDER 0
  1556. if (soft_pwm_0 < slow_pwm_count) {
  1557. // turn OFF heather only if the minimum time is up
  1558. if (state_timer_heater_0 == 0) {
  1559. // if change state set timer
  1560. if (state_heater_0 == 1) {
  1561. state_timer_heater_0 = MIN_STATE_TIME;
  1562. }
  1563. state_heater_0 = 0;
  1564. WRITE(HEATER_0_PIN, 0);
  1565. #ifdef HEATERS_PARALLEL
  1566. WRITE(HEATER_1_PIN, 0);
  1567. #endif
  1568. }
  1569. }
  1570. #if EXTRUDERS > 1
  1571. // EXTRUDER 1
  1572. if (soft_pwm_1 < slow_pwm_count) {
  1573. // turn OFF heather only if the minimum time is up
  1574. if (state_timer_heater_1 == 0) {
  1575. // if change state set timer
  1576. if (state_heater_1 == 1) {
  1577. state_timer_heater_1 = MIN_STATE_TIME;
  1578. }
  1579. state_heater_1 = 0;
  1580. WRITE(HEATER_1_PIN, 0);
  1581. }
  1582. }
  1583. #endif
  1584. #if EXTRUDERS > 2
  1585. // EXTRUDER 2
  1586. if (soft_pwm_2 < slow_pwm_count) {
  1587. // turn OFF heather only if the minimum time is up
  1588. if (state_timer_heater_2 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_2 == 1) {
  1591. state_timer_heater_2 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_2 = 0;
  1594. WRITE(HEATER_2_PIN, 0);
  1595. }
  1596. }
  1597. #endif
  1598. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1599. // BED
  1600. if (soft_pwm_b < slow_pwm_count) {
  1601. // turn OFF heather only if the minimum time is up
  1602. if (state_timer_heater_b == 0) {
  1603. // if change state set timer
  1604. if (state_heater_b == 1) {
  1605. state_timer_heater_b = MIN_STATE_TIME;
  1606. }
  1607. state_heater_b = 0;
  1608. WRITE(HEATER_BED_PIN, 0);
  1609. }
  1610. }
  1611. #endif
  1612. #ifdef FAN_SOFT_PWM
  1613. if (pwm_count == 0){
  1614. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1615. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1616. }
  1617. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1618. #endif
  1619. pwm_count += (1 << SOFT_PWM_SCALE);
  1620. pwm_count &= 0x7f;
  1621. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1622. if ((pwm_count % 64) == 0) {
  1623. slow_pwm_count++;
  1624. slow_pwm_count &= 0x7f;
  1625. // Extruder 0
  1626. if (state_timer_heater_0 > 0) {
  1627. state_timer_heater_0--;
  1628. }
  1629. #if EXTRUDERS > 1
  1630. // Extruder 1
  1631. if (state_timer_heater_1 > 0)
  1632. state_timer_heater_1--;
  1633. #endif
  1634. #if EXTRUDERS > 2
  1635. // Extruder 2
  1636. if (state_timer_heater_2 > 0)
  1637. state_timer_heater_2--;
  1638. #endif
  1639. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1640. // Bed
  1641. if (state_timer_heater_b > 0)
  1642. state_timer_heater_b--;
  1643. #endif
  1644. } //if ((pwm_count % 64) == 0) {
  1645. #endif //ifndef SLOW_PWM_HEATERS
  1646. #ifdef BABYSTEPPING
  1647. for(uint8_t axis=0;axis<3;axis++)
  1648. {
  1649. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1650. if(curTodo>0)
  1651. {
  1652. babystep(axis,/*fwd*/true);
  1653. babystepsTodo[axis]--; //less to do next time
  1654. }
  1655. else
  1656. if(curTodo<0)
  1657. {
  1658. babystep(axis,/*fwd*/false);
  1659. babystepsTodo[axis]++; //less to do next time
  1660. }
  1661. }
  1662. #endif //BABYSTEPPING
  1663. check_fans();
  1664. }
  1665. void check_max_temp()
  1666. {
  1667. //heater
  1668. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1669. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1670. #else
  1671. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1672. #endif
  1673. max_temp_error(0);
  1674. }
  1675. //bed
  1676. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1677. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1678. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1679. #else
  1680. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1681. #endif
  1682. target_temperature_bed = 0;
  1683. bed_max_temp_error();
  1684. }
  1685. #endif
  1686. }
  1687. void check_min_temp_heater0()
  1688. {
  1689. //heater
  1690. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1691. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1692. #else
  1693. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1694. #endif
  1695. min_temp_error(0);
  1696. }
  1697. }
  1698. void check_min_temp_bed()
  1699. {
  1700. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1701. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1702. #else
  1703. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1704. #endif
  1705. bed_min_temp_error();
  1706. }
  1707. }
  1708. void check_min_temp()
  1709. {
  1710. static uint8_t heat_cycles = 0;
  1711. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1712. {
  1713. if (READ(HEATER_0_PIN) == HIGH)
  1714. {
  1715. // if ((heat_cycles % 10) == 0)
  1716. // printf_P(PSTR("X%d\n"), heat_cycles);
  1717. if (heat_cycles > 50) //reaction time 5-10s
  1718. check_min_temp_heater0();
  1719. else
  1720. heat_cycles++;
  1721. }
  1722. else
  1723. heat_cycles = 0;
  1724. return;
  1725. }
  1726. check_min_temp_heater0();
  1727. check_min_temp_bed();
  1728. }
  1729. void check_fans() {
  1730. if (READ(TACH_0) != fan_state[0]) {
  1731. fan_edge_counter[0] ++;
  1732. fan_state[0] = !fan_state[0];
  1733. }
  1734. //if (READ(TACH_1) != fan_state[1]) {
  1735. // fan_edge_counter[1] ++;
  1736. // fan_state[1] = !fan_state[1];
  1737. //}
  1738. }
  1739. #ifdef PIDTEMP
  1740. // Apply the scale factors to the PID values
  1741. float scalePID_i(float i)
  1742. {
  1743. return i*PID_dT;
  1744. }
  1745. float unscalePID_i(float i)
  1746. {
  1747. return i/PID_dT;
  1748. }
  1749. float scalePID_d(float d)
  1750. {
  1751. return d/PID_dT;
  1752. }
  1753. float unscalePID_d(float d)
  1754. {
  1755. return d*PID_dT;
  1756. }
  1757. #endif //PIDTEMP