temperature.cpp 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. unsigned char soft_pwm_bed;
  74. #ifdef BABYSTEPPING
  75. volatile int babystepsTodo[3]={0,0,0};
  76. #endif
  77. //===========================================================================
  78. //=============================private variables============================
  79. //===========================================================================
  80. static volatile bool temp_meas_ready = false;
  81. #ifdef PIDTEMP
  82. //static cannot be external:
  83. static float iState_sum[EXTRUDERS] = { 0 };
  84. static float dState_last[EXTRUDERS] = { 0 };
  85. static float pTerm[EXTRUDERS];
  86. static float iTerm[EXTRUDERS];
  87. static float dTerm[EXTRUDERS];
  88. //int output;
  89. static float pid_error[EXTRUDERS];
  90. static float iState_sum_min[EXTRUDERS];
  91. static float iState_sum_max[EXTRUDERS];
  92. // static float pid_input[EXTRUDERS];
  93. // static float pid_output[EXTRUDERS];
  94. static bool pid_reset[EXTRUDERS];
  95. #endif //PIDTEMP
  96. #ifdef PIDTEMPBED
  97. //static cannot be external:
  98. static float temp_iState_bed = { 0 };
  99. static float temp_dState_bed = { 0 };
  100. static float pTerm_bed;
  101. static float iTerm_bed;
  102. static float dTerm_bed;
  103. //int output;
  104. static float pid_error_bed;
  105. static float temp_iState_min_bed;
  106. static float temp_iState_max_bed;
  107. #else //PIDTEMPBED
  108. static unsigned long previous_millis_bed_heater;
  109. #endif //PIDTEMPBED
  110. static unsigned char soft_pwm[EXTRUDERS];
  111. #ifdef FAN_SOFT_PWM
  112. static unsigned char soft_pwm_fan;
  113. #endif
  114. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  117. unsigned long extruder_autofan_last_check = _millis();
  118. uint8_t fanSpeedBckp = 255;
  119. bool fan_measuring = false;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  143. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  144. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  145. #else
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. #endif
  149. static float analog2temp(int raw, uint8_t e);
  150. static float analog2tempBed(int raw);
  151. static float analog2tempAmbient(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  170. static float temp_runaway_status[4];
  171. static float temp_runaway_target[4];
  172. static float temp_runaway_timer[4];
  173. static int temp_runaway_error_counter[4];
  174. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  175. static void temp_runaway_stop(bool isPreheat, bool isBed);
  176. #endif
  177. void PID_autotune(float temp, int extruder, int ncycles)
  178. {
  179. pid_number_of_cycles = ncycles;
  180. pid_tuning_finished = false;
  181. float input = 0.0;
  182. pid_cycle=0;
  183. bool heating = true;
  184. unsigned long temp_millis = _millis();
  185. unsigned long t1=temp_millis;
  186. unsigned long t2=temp_millis;
  187. long t_high = 0;
  188. long t_low = 0;
  189. long bias, d;
  190. float Ku, Tu;
  191. float max = 0, min = 10000;
  192. uint8_t safety_check_cycles = 0;
  193. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  194. float temp_ambient;
  195. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  197. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  198. unsigned long extruder_autofan_last_check = _millis();
  199. #endif
  200. if ((extruder >= EXTRUDERS)
  201. #if (TEMP_BED_PIN <= -1)
  202. ||(extruder < 0)
  203. #endif
  204. ){
  205. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  206. pid_tuning_finished = true;
  207. pid_cycle = 0;
  208. return;
  209. }
  210. SERIAL_ECHOLN("PID Autotune start");
  211. disable_heater(); // switch off all heaters.
  212. if (extruder<0)
  213. {
  214. soft_pwm_bed = (MAX_BED_POWER)/2;
  215. timer02_set_pwm0(soft_pwm_bed << 1);
  216. bias = d = (MAX_BED_POWER)/2;
  217. }
  218. else
  219. {
  220. soft_pwm[extruder] = (PID_MAX)/2;
  221. bias = d = (PID_MAX)/2;
  222. }
  223. for(;;) {
  224. #ifdef WATCHDOG
  225. wdt_reset();
  226. #endif //WATCHDOG
  227. if(temp_meas_ready == true) { // temp sample ready
  228. updateTemperaturesFromRawValues();
  229. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  230. max=max(max,input);
  231. min=min(min,input);
  232. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  234. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  235. if(_millis() - extruder_autofan_last_check > 2500) {
  236. checkExtruderAutoFans();
  237. extruder_autofan_last_check = _millis();
  238. }
  239. #endif
  240. if(heating == true && input > temp) {
  241. if(_millis() - t2 > 5000) {
  242. heating=false;
  243. if (extruder<0)
  244. {
  245. soft_pwm_bed = (bias - d) >> 1;
  246. timer02_set_pwm0(soft_pwm_bed << 1);
  247. }
  248. else
  249. soft_pwm[extruder] = (bias - d) >> 1;
  250. t1=_millis();
  251. t_high=t1 - t2;
  252. max=temp;
  253. }
  254. }
  255. if(heating == false && input < temp) {
  256. if(_millis() - t1 > 5000) {
  257. heating=true;
  258. t2=_millis();
  259. t_low=t2 - t1;
  260. if(pid_cycle > 0) {
  261. bias += (d*(t_high - t_low))/(t_low + t_high);
  262. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  263. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  264. else d = bias;
  265. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  266. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  267. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  268. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  269. if(pid_cycle > 2) {
  270. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  271. Tu = ((float)(t_low + t_high)/1000.0);
  272. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  273. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  274. _Kp = 0.6*Ku;
  275. _Ki = 2*_Kp/Tu;
  276. _Kd = _Kp*Tu/8;
  277. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  278. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  279. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  280. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  281. /*
  282. _Kp = 0.33*Ku;
  283. _Ki = _Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. _Kp = 0.2*Ku;
  290. _Ki = 2*_Kp/Tu;
  291. _Kd = _Kp*Tu/3;
  292. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  293. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  294. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  295. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  296. */
  297. }
  298. }
  299. if (extruder<0)
  300. {
  301. soft_pwm_bed = (bias + d) >> 1;
  302. timer02_set_pwm0(soft_pwm_bed << 1);
  303. }
  304. else
  305. soft_pwm[extruder] = (bias + d) >> 1;
  306. pid_cycle++;
  307. min=temp;
  308. }
  309. }
  310. }
  311. if(input > (temp + 20)) {
  312. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  313. pid_tuning_finished = true;
  314. pid_cycle = 0;
  315. return;
  316. }
  317. if(_millis() - temp_millis > 2000) {
  318. int p;
  319. if (extruder<0){
  320. p=soft_pwm_bed;
  321. SERIAL_PROTOCOLPGM("B:");
  322. }else{
  323. p=soft_pwm[extruder];
  324. SERIAL_PROTOCOLPGM("T:");
  325. }
  326. SERIAL_PROTOCOL(input);
  327. SERIAL_PROTOCOLPGM(" @:");
  328. SERIAL_PROTOCOLLN(p);
  329. if (safety_check_cycles == 0) { //save ambient temp
  330. temp_ambient = input;
  331. //SERIAL_ECHOPGM("Ambient T: ");
  332. //MYSERIAL.println(temp_ambient);
  333. safety_check_cycles++;
  334. }
  335. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  336. safety_check_cycles++;
  337. }
  338. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  339. safety_check_cycles++;
  340. //SERIAL_ECHOPGM("Time from beginning: ");
  341. //MYSERIAL.print(safety_check_cycles_count * 2);
  342. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  343. //MYSERIAL.println(input - temp_ambient);
  344. if (abs(input - temp_ambient) < 5.0) {
  345. temp_runaway_stop(false, (extruder<0));
  346. pid_tuning_finished = true;
  347. return;
  348. }
  349. }
  350. temp_millis = _millis();
  351. }
  352. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  353. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  354. pid_tuning_finished = true;
  355. pid_cycle = 0;
  356. return;
  357. }
  358. if(pid_cycle > ncycles) {
  359. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  360. pid_tuning_finished = true;
  361. pid_cycle = 0;
  362. return;
  363. }
  364. lcd_update(0);
  365. }
  366. }
  367. void updatePID()
  368. {
  369. #ifdef PIDTEMP
  370. for(int e = 0; e < EXTRUDERS; e++) {
  371. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  372. }
  373. #endif
  374. #ifdef PIDTEMPBED
  375. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  376. #endif
  377. }
  378. int getHeaterPower(int heater) {
  379. if (heater<0)
  380. return soft_pwm_bed;
  381. return soft_pwm[heater];
  382. }
  383. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  385. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  386. #if defined(FAN_PIN) && FAN_PIN > -1
  387. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  388. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  389. #endif
  390. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  391. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  392. #endif
  393. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  394. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  395. #endif
  396. #endif
  397. void setExtruderAutoFanState(int pin, bool state)
  398. {
  399. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  400. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  401. pinMode(pin, OUTPUT);
  402. digitalWrite(pin, newFanSpeed);
  403. //analogWrite(pin, newFanSpeed);
  404. }
  405. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  406. void countFanSpeed()
  407. {
  408. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  409. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  410. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  411. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  412. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  413. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  414. SERIAL_ECHOLNPGM(" ");*/
  415. fan_edge_counter[0] = 0;
  416. fan_edge_counter[1] = 0;
  417. }
  418. void checkFanSpeed()
  419. {
  420. uint8_t max_print_fan_errors = 0;
  421. uint8_t max_extruder_fan_errors = 0;
  422. #ifdef FAN_SOFT_PWM
  423. max_print_fan_errors = 3; //15 seconds
  424. max_extruder_fan_errors = 2; //10seconds
  425. #else //FAN_SOFT_PWM
  426. max_print_fan_errors = 15; //15 seconds
  427. max_extruder_fan_errors = 5; //5 seconds
  428. #endif //FAN_SOFT_PWM
  429. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  430. static unsigned char fan_speed_errors[2] = { 0,0 };
  431. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  432. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  433. else fan_speed_errors[0] = 0;
  434. #endif
  435. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  436. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  437. else fan_speed_errors[1] = 0;
  438. #endif
  439. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  440. fan_speed_errors[0] = 0;
  441. fanSpeedError(0); //extruder fan
  442. }
  443. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  444. fan_speed_errors[1] = 0;
  445. fanSpeedError(1); //print fan
  446. }
  447. }
  448. void fanSpeedError(unsigned char _fan) {
  449. if (get_message_level() != 0 && isPrintPaused) return;
  450. //to ensure that target temp. is not set to zero in case taht we are resuming print
  451. if (card.sdprinting) {
  452. if (heating_status != 0) {
  453. lcd_print_stop();
  454. }
  455. else {
  456. lcd_pause_print();
  457. }
  458. }
  459. else {
  460. setTargetHotend0(0);
  461. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  462. }
  463. switch (_fan) {
  464. case 0:
  465. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  466. if (get_message_level() == 0) {
  467. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  468. WRITE(BEEPER, HIGH);
  469. delayMicroseconds(200);
  470. WRITE(BEEPER, LOW);
  471. delayMicroseconds(100);
  472. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  473. }
  474. break;
  475. case 1:
  476. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  477. if (get_message_level() == 0) {
  478. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  479. WRITE(BEEPER, HIGH);
  480. delayMicroseconds(200);
  481. WRITE(BEEPER, LOW);
  482. delayMicroseconds(100);
  483. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  484. }
  485. break;
  486. }
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // PID_K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-PID_K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. #ifdef WATCH_TEMP_PERIOD
  631. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  632. {
  633. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  634. {
  635. setTargetHotend(0, e);
  636. LCD_MESSAGEPGM("Heating failed");
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOLN("Heating failed");
  639. }else{
  640. watchmillis[e] = 0;
  641. }
  642. }
  643. #endif
  644. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  645. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  646. disable_heater();
  647. if(IsStopped() == false) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  650. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  651. }
  652. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  653. Stop();
  654. #endif
  655. }
  656. #endif
  657. } // End extruder for loop
  658. #define FAN_CHECK_PERIOD 5000 //5s
  659. #define FAN_CHECK_DURATION 100 //100ms
  660. #ifndef DEBUG_DISABLE_FANCHECK
  661. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  662. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  663. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  664. #ifdef FAN_SOFT_PWM
  665. #ifdef FANCHECK
  666. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  667. extruder_autofan_last_check = _millis();
  668. fanSpeedBckp = fanSpeedSoftPwm;
  669. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  670. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  671. fanSpeedSoftPwm = 255;
  672. }
  673. fan_measuring = true;
  674. }
  675. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  676. countFanSpeed();
  677. checkFanSpeed();
  678. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  679. fanSpeedSoftPwm = fanSpeedBckp;
  680. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  681. extruder_autofan_last_check = _millis();
  682. fan_measuring = false;
  683. }
  684. #endif //FANCHECK
  685. checkExtruderAutoFans();
  686. #else //FAN_SOFT_PWM
  687. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  688. {
  689. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  690. countFanSpeed();
  691. checkFanSpeed();
  692. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  693. checkExtruderAutoFans();
  694. extruder_autofan_last_check = _millis();
  695. }
  696. #endif //FAN_SOFT_PWM
  697. #endif
  698. #endif //DEBUG_DISABLE_FANCHECK
  699. #ifndef PIDTEMPBED
  700. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  701. return;
  702. previous_millis_bed_heater = _millis();
  703. #endif
  704. #if TEMP_SENSOR_BED != 0
  705. #ifdef PIDTEMPBED
  706. pid_input = current_temperature_bed;
  707. #ifndef PID_OPENLOOP
  708. pid_error_bed = target_temperature_bed - pid_input;
  709. pTerm_bed = cs.bedKp * pid_error_bed;
  710. temp_iState_bed += pid_error_bed;
  711. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  712. iTerm_bed = cs.bedKi * temp_iState_bed;
  713. //PID_K1 defined in Configuration.h in the PID settings
  714. #define K2 (1.0-PID_K1)
  715. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  716. temp_dState_bed = pid_input;
  717. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  718. if (pid_output > MAX_BED_POWER) {
  719. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  720. pid_output=MAX_BED_POWER;
  721. } else if (pid_output < 0){
  722. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  723. pid_output=0;
  724. }
  725. #else
  726. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  727. #endif //PID_OPENLOOP
  728. if(current_temperature_bed < BED_MAXTEMP)
  729. {
  730. soft_pwm_bed = (int)pid_output >> 1;
  731. timer02_set_pwm0(soft_pwm_bed << 1);
  732. }
  733. else {
  734. soft_pwm_bed = 0;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. #elif !defined(BED_LIMIT_SWITCHING)
  738. // Check if temperature is within the correct range
  739. if(current_temperature_bed < BED_MAXTEMP)
  740. {
  741. if(current_temperature_bed >= target_temperature_bed)
  742. {
  743. soft_pwm_bed = 0;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. else
  747. {
  748. soft_pwm_bed = MAX_BED_POWER>>1;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. }
  752. else
  753. {
  754. soft_pwm_bed = 0;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. WRITE(HEATER_BED_PIN,LOW);
  757. }
  758. #else //#ifdef BED_LIMIT_SWITCHING
  759. // Check if temperature is within the correct band
  760. if(current_temperature_bed < BED_MAXTEMP)
  761. {
  762. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  763. {
  764. soft_pwm_bed = 0;
  765. timer02_set_pwm0(soft_pwm_bed << 1);
  766. }
  767. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  768. {
  769. soft_pwm_bed = MAX_BED_POWER>>1;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. }
  773. else
  774. {
  775. soft_pwm_bed = 0;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. WRITE(HEATER_BED_PIN,LOW);
  778. }
  779. #endif
  780. if(target_temperature_bed==0)
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. #endif
  786. #ifdef HOST_KEEPALIVE_FEATURE
  787. host_keepalive();
  788. #endif
  789. }
  790. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  791. // Derived from RepRap FiveD extruder::getTemperature()
  792. // For hot end temperature measurement.
  793. static float analog2temp(int raw, uint8_t e) {
  794. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  795. if(e > EXTRUDERS)
  796. #else
  797. if(e >= EXTRUDERS)
  798. #endif
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(PSTR(""), 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  911. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  912. #endif
  913. #ifdef AMBIENT_THERMISTOR
  914. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  915. #endif
  916. #ifdef DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = target_temperature_bed;
  918. #else //DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  920. #endif //DEBUG_HEATER_BED_SIM
  921. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  922. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  923. #endif
  924. //Reset the watchdog after we know we have a temperature measurement.
  925. #ifdef WATCHDOG
  926. wdt_reset();
  927. #endif //WATCHDOG
  928. CRITICAL_SECTION_START;
  929. temp_meas_ready = false;
  930. CRITICAL_SECTION_END;
  931. }
  932. void tp_init()
  933. {
  934. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  935. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  936. MCUCR=(1<<JTD);
  937. MCUCR=(1<<JTD);
  938. #endif
  939. // Finish init of mult extruder arrays
  940. for(int e = 0; e < EXTRUDERS; e++) {
  941. // populate with the first value
  942. maxttemp[e] = maxttemp[0];
  943. #ifdef PIDTEMP
  944. iState_sum_min[e] = 0.0;
  945. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  946. #endif //PIDTEMP
  947. #ifdef PIDTEMPBED
  948. temp_iState_min_bed = 0.0;
  949. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  950. #endif //PIDTEMPBED
  951. }
  952. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  953. SET_OUTPUT(HEATER_0_PIN);
  954. #endif
  955. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  956. SET_OUTPUT(HEATER_1_PIN);
  957. #endif
  958. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  959. SET_OUTPUT(HEATER_2_PIN);
  960. #endif
  961. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  962. SET_OUTPUT(HEATER_BED_PIN);
  963. #endif
  964. #if defined(FAN_PIN) && (FAN_PIN > -1)
  965. SET_OUTPUT(FAN_PIN);
  966. #ifdef FAST_PWM_FAN
  967. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  968. #endif
  969. #ifdef FAN_SOFT_PWM
  970. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  971. #endif
  972. #endif
  973. #ifdef HEATER_0_USES_MAX6675
  974. #ifndef SDSUPPORT
  975. SET_OUTPUT(SCK_PIN);
  976. WRITE(SCK_PIN,0);
  977. SET_OUTPUT(MOSI_PIN);
  978. WRITE(MOSI_PIN,1);
  979. SET_INPUT(MISO_PIN);
  980. WRITE(MISO_PIN,1);
  981. #endif
  982. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  983. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  984. pinMode(SS_PIN, OUTPUT);
  985. digitalWrite(SS_PIN,0);
  986. pinMode(MAX6675_SS, OUTPUT);
  987. digitalWrite(MAX6675_SS,1);
  988. #endif
  989. adc_init();
  990. #ifdef SYSTEM_TIMER_2
  991. timer02_init();
  992. OCR2B = 128;
  993. TIMSK2 |= (1<<OCIE2B);
  994. #else //SYSTEM_TIMER_2
  995. // Use timer0 for temperature measurement
  996. // Interleave temperature interrupt with millies interrupt
  997. OCR0B = 128;
  998. TIMSK0 |= (1<<OCIE0B);
  999. #endif //SYSTEM_TIMER_2
  1000. // Wait for temperature measurement to settle
  1001. _delay(250);
  1002. #ifdef HEATER_0_MINTEMP
  1003. minttemp[0] = HEATER_0_MINTEMP;
  1004. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1005. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1006. minttemp_raw[0] += OVERSAMPLENR;
  1007. #else
  1008. minttemp_raw[0] -= OVERSAMPLENR;
  1009. #endif
  1010. }
  1011. #endif //MINTEMP
  1012. #ifdef HEATER_0_MAXTEMP
  1013. maxttemp[0] = HEATER_0_MAXTEMP;
  1014. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1015. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1016. maxttemp_raw[0] -= OVERSAMPLENR;
  1017. #else
  1018. maxttemp_raw[0] += OVERSAMPLENR;
  1019. #endif
  1020. }
  1021. #endif //MAXTEMP
  1022. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1023. minttemp[1] = HEATER_1_MINTEMP;
  1024. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1025. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1026. minttemp_raw[1] += OVERSAMPLENR;
  1027. #else
  1028. minttemp_raw[1] -= OVERSAMPLENR;
  1029. #endif
  1030. }
  1031. #endif // MINTEMP 1
  1032. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1033. maxttemp[1] = HEATER_1_MAXTEMP;
  1034. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1035. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1036. maxttemp_raw[1] -= OVERSAMPLENR;
  1037. #else
  1038. maxttemp_raw[1] += OVERSAMPLENR;
  1039. #endif
  1040. }
  1041. #endif //MAXTEMP 1
  1042. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1043. minttemp[2] = HEATER_2_MINTEMP;
  1044. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1045. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1046. minttemp_raw[2] += OVERSAMPLENR;
  1047. #else
  1048. minttemp_raw[2] -= OVERSAMPLENR;
  1049. #endif
  1050. }
  1051. #endif //MINTEMP 2
  1052. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1053. maxttemp[2] = HEATER_2_MAXTEMP;
  1054. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1055. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1056. maxttemp_raw[2] -= OVERSAMPLENR;
  1057. #else
  1058. maxttemp_raw[2] += OVERSAMPLENR;
  1059. #endif
  1060. }
  1061. #endif //MAXTEMP 2
  1062. #ifdef BED_MINTEMP
  1063. /* No bed MINTEMP error implemented?!? */
  1064. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1065. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1066. bed_minttemp_raw += OVERSAMPLENR;
  1067. #else
  1068. bed_minttemp_raw -= OVERSAMPLENR;
  1069. #endif
  1070. }
  1071. #endif //BED_MINTEMP
  1072. #ifdef BED_MAXTEMP
  1073. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1074. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1075. bed_maxttemp_raw -= OVERSAMPLENR;
  1076. #else
  1077. bed_maxttemp_raw += OVERSAMPLENR;
  1078. #endif
  1079. }
  1080. #endif //BED_MAXTEMP
  1081. }
  1082. void setWatch()
  1083. {
  1084. #ifdef WATCH_TEMP_PERIOD
  1085. for (int e = 0; e < EXTRUDERS; e++)
  1086. {
  1087. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1088. {
  1089. watch_start_temp[e] = degHotend(e);
  1090. watchmillis[e] = _millis();
  1091. }
  1092. }
  1093. #endif
  1094. }
  1095. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1096. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1097. {
  1098. float __hysteresis = 0;
  1099. int __timeout = 0;
  1100. bool temp_runaway_check_active = false;
  1101. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1102. static int __preheat_counter[2] = { 0,0};
  1103. static int __preheat_errors[2] = { 0,0};
  1104. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1105. {
  1106. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1107. if (_isbed)
  1108. {
  1109. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1110. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1111. }
  1112. #endif
  1113. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1114. if (!_isbed)
  1115. {
  1116. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1117. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1118. }
  1119. #endif
  1120. temp_runaway_timer[_heater_id] = _millis();
  1121. if (_output == 0)
  1122. {
  1123. temp_runaway_check_active = false;
  1124. temp_runaway_error_counter[_heater_id] = 0;
  1125. }
  1126. if (temp_runaway_target[_heater_id] != _target_temperature)
  1127. {
  1128. if (_target_temperature > 0)
  1129. {
  1130. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1131. temp_runaway_target[_heater_id] = _target_temperature;
  1132. __preheat_start[_heater_id] = _current_temperature;
  1133. __preheat_counter[_heater_id] = 0;
  1134. }
  1135. else
  1136. {
  1137. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1138. temp_runaway_target[_heater_id] = _target_temperature;
  1139. }
  1140. }
  1141. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1142. {
  1143. __preheat_counter[_heater_id]++;
  1144. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1145. {
  1146. /*SERIAL_ECHOPGM("Heater:");
  1147. MYSERIAL.print(_heater_id);
  1148. SERIAL_ECHOPGM(" T:");
  1149. MYSERIAL.print(_current_temperature);
  1150. SERIAL_ECHOPGM(" Tstart:");
  1151. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1152. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1153. __preheat_errors[_heater_id]++;
  1154. /*SERIAL_ECHOPGM(" Preheat errors:");
  1155. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1156. }
  1157. else {
  1158. //SERIAL_ECHOLNPGM("");
  1159. __preheat_errors[_heater_id] = 0;
  1160. }
  1161. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1162. {
  1163. if (farm_mode) { prusa_statistics(0); }
  1164. temp_runaway_stop(true, _isbed);
  1165. if (farm_mode) { prusa_statistics(91); }
  1166. }
  1167. __preheat_start[_heater_id] = _current_temperature;
  1168. __preheat_counter[_heater_id] = 0;
  1169. }
  1170. }
  1171. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1172. {
  1173. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1174. temp_runaway_check_active = false;
  1175. }
  1176. if (_output > 0)
  1177. {
  1178. temp_runaway_check_active = true;
  1179. }
  1180. if (temp_runaway_check_active)
  1181. {
  1182. // we are in range
  1183. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1184. {
  1185. temp_runaway_check_active = false;
  1186. temp_runaway_error_counter[_heater_id] = 0;
  1187. }
  1188. else
  1189. {
  1190. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1191. {
  1192. temp_runaway_error_counter[_heater_id]++;
  1193. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1194. {
  1195. if (farm_mode) { prusa_statistics(0); }
  1196. temp_runaway_stop(false, _isbed);
  1197. if (farm_mode) { prusa_statistics(90); }
  1198. }
  1199. }
  1200. }
  1201. }
  1202. }
  1203. }
  1204. void temp_runaway_stop(bool isPreheat, bool isBed)
  1205. {
  1206. cancel_heatup = true;
  1207. quickStop();
  1208. if (card.sdprinting)
  1209. {
  1210. card.sdprinting = false;
  1211. card.closefile();
  1212. }
  1213. // Clean the input command queue
  1214. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1215. cmdqueue_reset();
  1216. disable_heater();
  1217. disable_x();
  1218. disable_y();
  1219. disable_e0();
  1220. disable_e1();
  1221. disable_e2();
  1222. manage_heater();
  1223. lcd_update(0);
  1224. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1225. WRITE(BEEPER, HIGH);
  1226. delayMicroseconds(500);
  1227. WRITE(BEEPER, LOW);
  1228. delayMicroseconds(100);
  1229. if (isPreheat)
  1230. {
  1231. Stop();
  1232. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1233. SERIAL_ERROR_START;
  1234. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1235. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1236. SET_OUTPUT(FAN_PIN);
  1237. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1238. #ifdef FAN_SOFT_PWM
  1239. fanSpeedSoftPwm = 255;
  1240. #else //FAN_SOFT_PWM
  1241. analogWrite(FAN_PIN, 255);
  1242. #endif //FAN_SOFT_PWM
  1243. fanSpeed = 255;
  1244. delayMicroseconds(2000);
  1245. }
  1246. else
  1247. {
  1248. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1249. SERIAL_ERROR_START;
  1250. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1251. }
  1252. }
  1253. #endif
  1254. void disable_heater()
  1255. {
  1256. setAllTargetHotends(0);
  1257. setTargetBed(0);
  1258. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1259. target_temperature[0]=0;
  1260. soft_pwm[0]=0;
  1261. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1262. WRITE(HEATER_0_PIN,LOW);
  1263. #endif
  1264. #endif
  1265. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1266. target_temperature[1]=0;
  1267. soft_pwm[1]=0;
  1268. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1269. WRITE(HEATER_1_PIN,LOW);
  1270. #endif
  1271. #endif
  1272. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1273. target_temperature[2]=0;
  1274. soft_pwm[2]=0;
  1275. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1276. WRITE(HEATER_2_PIN,LOW);
  1277. #endif
  1278. #endif
  1279. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1280. target_temperature_bed=0;
  1281. soft_pwm_bed=0;
  1282. timer02_set_pwm0(soft_pwm_bed << 1);
  1283. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1284. WRITE(HEATER_BED_PIN,LOW);
  1285. #endif
  1286. #endif
  1287. }
  1288. void max_temp_error(uint8_t e) {
  1289. disable_heater();
  1290. if(IsStopped() == false) {
  1291. SERIAL_ERROR_START;
  1292. SERIAL_ERRORLN((int)e);
  1293. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1294. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1295. }
  1296. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1297. Stop();
  1298. #endif
  1299. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1300. SET_OUTPUT(FAN_PIN);
  1301. SET_OUTPUT(BEEPER);
  1302. WRITE(FAN_PIN, 1);
  1303. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1304. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1305. WRITE(BEEPER, 1);
  1306. // fanSpeed will consumed by the check_axes_activity() routine.
  1307. fanSpeed=255;
  1308. if (farm_mode) { prusa_statistics(93); }
  1309. }
  1310. void min_temp_error(uint8_t e) {
  1311. #ifdef DEBUG_DISABLE_MINTEMP
  1312. return;
  1313. #endif
  1314. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1315. disable_heater();
  1316. if(IsStopped() == false) {
  1317. SERIAL_ERROR_START;
  1318. SERIAL_ERRORLN((int)e);
  1319. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1320. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1321. }
  1322. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1323. Stop();
  1324. #endif
  1325. if (farm_mode) { prusa_statistics(92); }
  1326. }
  1327. void bed_max_temp_error(void) {
  1328. #if HEATER_BED_PIN > -1
  1329. WRITE(HEATER_BED_PIN, 0);
  1330. #endif
  1331. if(IsStopped() == false) {
  1332. SERIAL_ERROR_START;
  1333. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1334. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1335. }
  1336. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1337. Stop();
  1338. #endif
  1339. }
  1340. void bed_min_temp_error(void) {
  1341. #ifdef DEBUG_DISABLE_MINTEMP
  1342. return;
  1343. #endif
  1344. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1345. #if HEATER_BED_PIN > -1
  1346. WRITE(HEATER_BED_PIN, 0);
  1347. #endif
  1348. if(IsStopped() == false) {
  1349. SERIAL_ERROR_START;
  1350. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1351. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1352. }
  1353. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1354. Stop();
  1355. #endif
  1356. }
  1357. #ifdef HEATER_0_USES_MAX6675
  1358. #define MAX6675_HEAT_INTERVAL 250
  1359. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1360. int max6675_temp = 2000;
  1361. int read_max6675()
  1362. {
  1363. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1364. return max6675_temp;
  1365. max6675_previous_millis = _millis();
  1366. max6675_temp = 0;
  1367. #ifdef PRR
  1368. PRR &= ~(1<<PRSPI);
  1369. #elif defined PRR0
  1370. PRR0 &= ~(1<<PRSPI);
  1371. #endif
  1372. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1373. // enable TT_MAX6675
  1374. WRITE(MAX6675_SS, 0);
  1375. // ensure 100ns delay - a bit extra is fine
  1376. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1377. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1378. // read MSB
  1379. SPDR = 0;
  1380. for (;(SPSR & (1<<SPIF)) == 0;);
  1381. max6675_temp = SPDR;
  1382. max6675_temp <<= 8;
  1383. // read LSB
  1384. SPDR = 0;
  1385. for (;(SPSR & (1<<SPIF)) == 0;);
  1386. max6675_temp |= SPDR;
  1387. // disable TT_MAX6675
  1388. WRITE(MAX6675_SS, 1);
  1389. if (max6675_temp & 4)
  1390. {
  1391. // thermocouple open
  1392. max6675_temp = 2000;
  1393. }
  1394. else
  1395. {
  1396. max6675_temp = max6675_temp >> 3;
  1397. }
  1398. return max6675_temp;
  1399. }
  1400. #endif
  1401. extern "C" {
  1402. void adc_ready(void) //callback from adc when sampling finished
  1403. {
  1404. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1405. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1406. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1407. #ifdef VOLT_PWR_PIN
  1408. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1409. #endif
  1410. #ifdef AMBIENT_THERMISTOR
  1411. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1412. #endif //AMBIENT_THERMISTOR
  1413. #ifdef VOLT_BED_PIN
  1414. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1415. #endif
  1416. temp_meas_ready = true;
  1417. }
  1418. } // extern "C"
  1419. // Timer2 (originaly timer0) is shared with millies
  1420. #ifdef SYSTEM_TIMER_2
  1421. ISR(TIMER2_COMPB_vect)
  1422. #else //SYSTEM_TIMER_2
  1423. ISR(TIMER0_COMPB_vect)
  1424. #endif //SYSTEM_TIMER_2
  1425. {
  1426. static bool _lock = false;
  1427. if (_lock) return;
  1428. _lock = true;
  1429. asm("sei");
  1430. if (!temp_meas_ready) adc_cycle();
  1431. lcd_buttons_update();
  1432. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1433. static unsigned char soft_pwm_0;
  1434. #ifdef SLOW_PWM_HEATERS
  1435. static unsigned char slow_pwm_count = 0;
  1436. static unsigned char state_heater_0 = 0;
  1437. static unsigned char state_timer_heater_0 = 0;
  1438. #endif
  1439. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1440. static unsigned char soft_pwm_1;
  1441. #ifdef SLOW_PWM_HEATERS
  1442. static unsigned char state_heater_1 = 0;
  1443. static unsigned char state_timer_heater_1 = 0;
  1444. #endif
  1445. #endif
  1446. #if EXTRUDERS > 2
  1447. static unsigned char soft_pwm_2;
  1448. #ifdef SLOW_PWM_HEATERS
  1449. static unsigned char state_heater_2 = 0;
  1450. static unsigned char state_timer_heater_2 = 0;
  1451. #endif
  1452. #endif
  1453. #if HEATER_BED_PIN > -1
  1454. static unsigned char soft_pwm_b;
  1455. #ifdef SLOW_PWM_HEATERS
  1456. static unsigned char state_heater_b = 0;
  1457. static unsigned char state_timer_heater_b = 0;
  1458. #endif
  1459. #endif
  1460. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1461. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1462. #endif
  1463. #ifndef SLOW_PWM_HEATERS
  1464. /*
  1465. * standard PWM modulation
  1466. */
  1467. if (pwm_count == 0)
  1468. {
  1469. soft_pwm_0 = soft_pwm[0];
  1470. if(soft_pwm_0 > 0)
  1471. {
  1472. WRITE(HEATER_0_PIN,1);
  1473. #ifdef HEATERS_PARALLEL
  1474. WRITE(HEATER_1_PIN,1);
  1475. #endif
  1476. } else WRITE(HEATER_0_PIN,0);
  1477. #if EXTRUDERS > 1
  1478. soft_pwm_1 = soft_pwm[1];
  1479. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1480. #endif
  1481. #if EXTRUDERS > 2
  1482. soft_pwm_2 = soft_pwm[2];
  1483. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1484. #endif
  1485. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1486. soft_pwm_b = soft_pwm_bed;
  1487. #ifndef SYSTEM_TIMER_2
  1488. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1489. #endif //SYSTEM_TIMER_2
  1490. #endif
  1491. }
  1492. #ifdef FAN_SOFT_PWM
  1493. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1494. {
  1495. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1496. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1497. }
  1498. #endif
  1499. if(soft_pwm_0 < pwm_count)
  1500. {
  1501. WRITE(HEATER_0_PIN,0);
  1502. #ifdef HEATERS_PARALLEL
  1503. WRITE(HEATER_1_PIN,0);
  1504. #endif
  1505. }
  1506. #if EXTRUDERS > 1
  1507. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1508. #endif
  1509. #if EXTRUDERS > 2
  1510. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1511. #endif
  1512. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1513. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1514. #endif
  1515. #ifdef FAN_SOFT_PWM
  1516. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1517. #endif
  1518. pwm_count += (1 << SOFT_PWM_SCALE);
  1519. pwm_count &= 0x7f;
  1520. #else //ifndef SLOW_PWM_HEATERS
  1521. /*
  1522. * SLOW PWM HEATERS
  1523. *
  1524. * for heaters drived by relay
  1525. */
  1526. #ifndef MIN_STATE_TIME
  1527. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1528. #endif
  1529. if (slow_pwm_count == 0) {
  1530. // EXTRUDER 0
  1531. soft_pwm_0 = soft_pwm[0];
  1532. if (soft_pwm_0 > 0) {
  1533. // turn ON heather only if the minimum time is up
  1534. if (state_timer_heater_0 == 0) {
  1535. // if change state set timer
  1536. if (state_heater_0 == 0) {
  1537. state_timer_heater_0 = MIN_STATE_TIME;
  1538. }
  1539. state_heater_0 = 1;
  1540. WRITE(HEATER_0_PIN, 1);
  1541. #ifdef HEATERS_PARALLEL
  1542. WRITE(HEATER_1_PIN, 1);
  1543. #endif
  1544. }
  1545. } else {
  1546. // turn OFF heather only if the minimum time is up
  1547. if (state_timer_heater_0 == 0) {
  1548. // if change state set timer
  1549. if (state_heater_0 == 1) {
  1550. state_timer_heater_0 = MIN_STATE_TIME;
  1551. }
  1552. state_heater_0 = 0;
  1553. WRITE(HEATER_0_PIN, 0);
  1554. #ifdef HEATERS_PARALLEL
  1555. WRITE(HEATER_1_PIN, 0);
  1556. #endif
  1557. }
  1558. }
  1559. #if EXTRUDERS > 1
  1560. // EXTRUDER 1
  1561. soft_pwm_1 = soft_pwm[1];
  1562. if (soft_pwm_1 > 0) {
  1563. // turn ON heather only if the minimum time is up
  1564. if (state_timer_heater_1 == 0) {
  1565. // if change state set timer
  1566. if (state_heater_1 == 0) {
  1567. state_timer_heater_1 = MIN_STATE_TIME;
  1568. }
  1569. state_heater_1 = 1;
  1570. WRITE(HEATER_1_PIN, 1);
  1571. }
  1572. } else {
  1573. // turn OFF heather only if the minimum time is up
  1574. if (state_timer_heater_1 == 0) {
  1575. // if change state set timer
  1576. if (state_heater_1 == 1) {
  1577. state_timer_heater_1 = MIN_STATE_TIME;
  1578. }
  1579. state_heater_1 = 0;
  1580. WRITE(HEATER_1_PIN, 0);
  1581. }
  1582. }
  1583. #endif
  1584. #if EXTRUDERS > 2
  1585. // EXTRUDER 2
  1586. soft_pwm_2 = soft_pwm[2];
  1587. if (soft_pwm_2 > 0) {
  1588. // turn ON heather only if the minimum time is up
  1589. if (state_timer_heater_2 == 0) {
  1590. // if change state set timer
  1591. if (state_heater_2 == 0) {
  1592. state_timer_heater_2 = MIN_STATE_TIME;
  1593. }
  1594. state_heater_2 = 1;
  1595. WRITE(HEATER_2_PIN, 1);
  1596. }
  1597. } else {
  1598. // turn OFF heather only if the minimum time is up
  1599. if (state_timer_heater_2 == 0) {
  1600. // if change state set timer
  1601. if (state_heater_2 == 1) {
  1602. state_timer_heater_2 = MIN_STATE_TIME;
  1603. }
  1604. state_heater_2 = 0;
  1605. WRITE(HEATER_2_PIN, 0);
  1606. }
  1607. }
  1608. #endif
  1609. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1610. // BED
  1611. soft_pwm_b = soft_pwm_bed;
  1612. if (soft_pwm_b > 0) {
  1613. // turn ON heather only if the minimum time is up
  1614. if (state_timer_heater_b == 0) {
  1615. // if change state set timer
  1616. if (state_heater_b == 0) {
  1617. state_timer_heater_b = MIN_STATE_TIME;
  1618. }
  1619. state_heater_b = 1;
  1620. //WRITE(HEATER_BED_PIN, 1);
  1621. }
  1622. } else {
  1623. // turn OFF heather only if the minimum time is up
  1624. if (state_timer_heater_b == 0) {
  1625. // if change state set timer
  1626. if (state_heater_b == 1) {
  1627. state_timer_heater_b = MIN_STATE_TIME;
  1628. }
  1629. state_heater_b = 0;
  1630. WRITE(HEATER_BED_PIN, 0);
  1631. }
  1632. }
  1633. #endif
  1634. } // if (slow_pwm_count == 0)
  1635. // EXTRUDER 0
  1636. if (soft_pwm_0 < slow_pwm_count) {
  1637. // turn OFF heather only if the minimum time is up
  1638. if (state_timer_heater_0 == 0) {
  1639. // if change state set timer
  1640. if (state_heater_0 == 1) {
  1641. state_timer_heater_0 = MIN_STATE_TIME;
  1642. }
  1643. state_heater_0 = 0;
  1644. WRITE(HEATER_0_PIN, 0);
  1645. #ifdef HEATERS_PARALLEL
  1646. WRITE(HEATER_1_PIN, 0);
  1647. #endif
  1648. }
  1649. }
  1650. #if EXTRUDERS > 1
  1651. // EXTRUDER 1
  1652. if (soft_pwm_1 < slow_pwm_count) {
  1653. // turn OFF heather only if the minimum time is up
  1654. if (state_timer_heater_1 == 0) {
  1655. // if change state set timer
  1656. if (state_heater_1 == 1) {
  1657. state_timer_heater_1 = MIN_STATE_TIME;
  1658. }
  1659. state_heater_1 = 0;
  1660. WRITE(HEATER_1_PIN, 0);
  1661. }
  1662. }
  1663. #endif
  1664. #if EXTRUDERS > 2
  1665. // EXTRUDER 2
  1666. if (soft_pwm_2 < slow_pwm_count) {
  1667. // turn OFF heather only if the minimum time is up
  1668. if (state_timer_heater_2 == 0) {
  1669. // if change state set timer
  1670. if (state_heater_2 == 1) {
  1671. state_timer_heater_2 = MIN_STATE_TIME;
  1672. }
  1673. state_heater_2 = 0;
  1674. WRITE(HEATER_2_PIN, 0);
  1675. }
  1676. }
  1677. #endif
  1678. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1679. // BED
  1680. if (soft_pwm_b < slow_pwm_count) {
  1681. // turn OFF heather only if the minimum time is up
  1682. if (state_timer_heater_b == 0) {
  1683. // if change state set timer
  1684. if (state_heater_b == 1) {
  1685. state_timer_heater_b = MIN_STATE_TIME;
  1686. }
  1687. state_heater_b = 0;
  1688. WRITE(HEATER_BED_PIN, 0);
  1689. }
  1690. }
  1691. #endif
  1692. #ifdef FAN_SOFT_PWM
  1693. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1694. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1695. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1696. }
  1697. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1698. #endif
  1699. pwm_count += (1 << SOFT_PWM_SCALE);
  1700. pwm_count &= 0x7f;
  1701. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1702. if ((pwm_count % 64) == 0) {
  1703. slow_pwm_count++;
  1704. slow_pwm_count &= 0x7f;
  1705. // Extruder 0
  1706. if (state_timer_heater_0 > 0) {
  1707. state_timer_heater_0--;
  1708. }
  1709. #if EXTRUDERS > 1
  1710. // Extruder 1
  1711. if (state_timer_heater_1 > 0)
  1712. state_timer_heater_1--;
  1713. #endif
  1714. #if EXTRUDERS > 2
  1715. // Extruder 2
  1716. if (state_timer_heater_2 > 0)
  1717. state_timer_heater_2--;
  1718. #endif
  1719. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1720. // Bed
  1721. if (state_timer_heater_b > 0)
  1722. state_timer_heater_b--;
  1723. #endif
  1724. } //if ((pwm_count % 64) == 0) {
  1725. #endif //ifndef SLOW_PWM_HEATERS
  1726. #ifdef BABYSTEPPING
  1727. for(uint8_t axis=0;axis<3;axis++)
  1728. {
  1729. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1730. if(curTodo>0)
  1731. {
  1732. asm("cli");
  1733. babystep(axis,/*fwd*/true);
  1734. babystepsTodo[axis]--; //less to do next time
  1735. asm("sei");
  1736. }
  1737. else
  1738. if(curTodo<0)
  1739. {
  1740. asm("cli");
  1741. babystep(axis,/*fwd*/false);
  1742. babystepsTodo[axis]++; //less to do next time
  1743. asm("sei");
  1744. }
  1745. }
  1746. #endif //BABYSTEPPING
  1747. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1748. check_fans();
  1749. #endif //(defined(TACH_0))
  1750. _lock = false;
  1751. }
  1752. void check_max_temp()
  1753. {
  1754. //heater
  1755. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1756. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1757. #else
  1758. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1759. #endif
  1760. max_temp_error(0);
  1761. }
  1762. //bed
  1763. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1764. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1765. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1766. #else
  1767. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1768. #endif
  1769. target_temperature_bed = 0;
  1770. bed_max_temp_error();
  1771. }
  1772. #endif
  1773. }
  1774. void check_min_temp_heater0()
  1775. {
  1776. //heater
  1777. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1778. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1779. #else
  1780. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1781. #endif
  1782. min_temp_error(0);
  1783. }
  1784. }
  1785. void check_min_temp_bed()
  1786. {
  1787. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1788. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1789. #else
  1790. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1791. #endif
  1792. bed_min_temp_error();
  1793. }
  1794. }
  1795. void check_min_temp()
  1796. {
  1797. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1798. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1799. #ifdef AMBIENT_THERMISTOR
  1800. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1801. { // ambient temperature is low
  1802. #endif //AMBIENT_THERMISTOR
  1803. // *** 'common' part of code for MK2.5 & MK3
  1804. // * nozzle checking
  1805. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1806. { // ~ nozzle heating is on
  1807. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1808. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1809. {
  1810. bCheckingOnHeater=true; // not necessary
  1811. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1812. }
  1813. }
  1814. else { // ~ nozzle heating is off
  1815. oTimer4minTempHeater.start();
  1816. bCheckingOnHeater=false;
  1817. }
  1818. // * bed checking
  1819. if(target_temperature_bed>BED_MINTEMP)
  1820. { // ~ bed heating is on
  1821. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1822. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1823. {
  1824. bCheckingOnBed=true; // not necessary
  1825. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1826. }
  1827. }
  1828. else { // ~ bed heating is off
  1829. oTimer4minTempBed.start();
  1830. bCheckingOnBed=false;
  1831. }
  1832. // *** end of 'common' part
  1833. #ifdef AMBIENT_THERMISTOR
  1834. }
  1835. else { // ambient temperature is standard
  1836. check_min_temp_heater0();
  1837. check_min_temp_bed();
  1838. }
  1839. #endif //AMBIENT_THERMISTOR
  1840. }
  1841. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1842. void check_fans() {
  1843. #ifdef FAN_SOFT_PWM
  1844. if (READ(TACH_0) != fan_state[0]) {
  1845. if(fan_measuring) fan_edge_counter[0] ++;
  1846. fan_state[0] = !fan_state[0];
  1847. }
  1848. #else //FAN_SOFT_PWM
  1849. if (READ(TACH_0) != fan_state[0]) {
  1850. fan_edge_counter[0] ++;
  1851. fan_state[0] = !fan_state[0];
  1852. }
  1853. #endif
  1854. //if (READ(TACH_1) != fan_state[1]) {
  1855. // fan_edge_counter[1] ++;
  1856. // fan_state[1] = !fan_state[1];
  1857. //}
  1858. }
  1859. #endif //TACH_0
  1860. #ifdef PIDTEMP
  1861. // Apply the scale factors to the PID values
  1862. float scalePID_i(float i)
  1863. {
  1864. return i*PID_dT;
  1865. }
  1866. float unscalePID_i(float i)
  1867. {
  1868. return i/PID_dT;
  1869. }
  1870. float scalePID_d(float d)
  1871. {
  1872. return d/PID_dT;
  1873. }
  1874. float unscalePID_d(float d)
  1875. {
  1876. return d*PID_dT;
  1877. }
  1878. #endif //PIDTEMP