mmu.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. bool mmu_enabled = false;
  20. uint8_t mmu_extruder = 0;
  21. uint8_t tmp_extruder = 0;
  22. int8_t mmu_finda = -1;
  23. int16_t mmu_version = -1;
  24. //clear rx buffer
  25. void mmu_clr_rx_buf(void)
  26. {
  27. while (fgetc(uart2io) >= 0);
  28. }
  29. //send command - puts
  30. int mmu_puts_P(const char* str)
  31. {
  32. mmu_clr_rx_buf(); //clear rx buffer
  33. return fputs_P(str, uart2io); //send command
  34. }
  35. //send command - printf
  36. int mmu_printf_P(const char* format, ...)
  37. {
  38. va_list args;
  39. va_start(args, format);
  40. mmu_clr_rx_buf(); //clear rx buffer
  41. int r = vfprintf_P(uart2io, format, args); //send command
  42. va_end(args);
  43. return r;
  44. }
  45. //check 'ok' response
  46. int8_t mmu_rx_ok(void)
  47. {
  48. return uart2_rx_str_P(PSTR("ok\n"));
  49. }
  50. //check 'start' response
  51. int8_t mmu_rx_start(void)
  52. {
  53. return uart2_rx_str_P(PSTR("start\n"));
  54. }
  55. //initialize mmu_unit
  56. bool mmu_init(void)
  57. {
  58. digitalWrite(MMU_RST_PIN, HIGH);
  59. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  60. uart2_init(); //init uart2
  61. _delay_ms(10); //wait 10ms for sure
  62. if (mmu_reset()) //reset mmu
  63. {
  64. mmu_read_finda();
  65. mmu_read_version();
  66. return true;
  67. }
  68. return false;
  69. }
  70. bool mmu_reset(void)
  71. {
  72. #ifdef MMU_HWRESET
  73. digitalWrite(MMU_RST_PIN, LOW);
  74. _delay_us(100);
  75. digitalWrite(MMU_RST_PIN, HIGH);
  76. #else
  77. mmu_puts_P(PSTR("X0\n")); //send command
  78. #endif
  79. unsigned char timeout = MMU_TIMEOUT; //timeout = 10x100ms
  80. while ((mmu_rx_start() <= 0) && (--timeout))
  81. delay_keep_alive(MMU_TODELAY);
  82. mmu_enabled = timeout?true:false;
  83. return mmu_enabled;
  84. }
  85. int8_t mmu_read_finda(void)
  86. {
  87. mmu_puts_P(PSTR("P0\n"));
  88. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  89. while ((mmu_rx_ok() <= 0) && (--timeout))
  90. delay_keep_alive(MMU_TODELAY);
  91. mmu_finda = -1;
  92. if (timeout)
  93. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda);
  94. return mmu_finda;
  95. }
  96. int16_t mmu_read_version(void)
  97. {
  98. mmu_puts_P(PSTR("S1\n"));
  99. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  100. while ((mmu_rx_ok() <= 0) && (--timeout))
  101. delay_keep_alive(MMU_TODELAY);
  102. if (timeout)
  103. fscanf_P(uart2io, PSTR("%u"), &mmu_version);
  104. return mmu_version;
  105. }
  106. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  107. {
  108. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  109. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  110. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  111. while ((mmu_rx_ok() <= 0) && (--timeout))
  112. delay_keep_alive(MMU_TODELAY);
  113. return timeout?1:0;
  114. }
  115. bool mmu_get_response(bool timeout)
  116. {
  117. printf_P(PSTR("mmu_get_response - begin\n"));
  118. //waits for "ok" from mmu
  119. //function returns true if "ok" was received
  120. //if timeout is set to true function return false if there is no "ok" received before timeout
  121. bool response = true;
  122. LongTimer mmu_get_reponse_timeout;
  123. KEEPALIVE_STATE(IN_PROCESS);
  124. mmu_get_reponse_timeout.start();
  125. while (mmu_rx_ok() <= 0)
  126. {
  127. delay_keep_alive(100);
  128. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  129. { //5 minutes timeout
  130. response = false;
  131. break;
  132. }
  133. }
  134. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  135. return response;
  136. }
  137. void manage_response(bool move_axes, bool turn_off_nozzle)
  138. {
  139. bool response = false;
  140. mmu_print_saved = false;
  141. bool lcd_update_was_enabled = false;
  142. float hotend_temp_bckp = degTargetHotend(active_extruder);
  143. float z_position_bckp = current_position[Z_AXIS];
  144. float x_position_bckp = current_position[X_AXIS];
  145. float y_position_bckp = current_position[Y_AXIS];
  146. while(!response)
  147. {
  148. response = mmu_get_response(true); //wait for "ok" from mmu
  149. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  150. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  151. if (lcd_update_enabled) {
  152. lcd_update_was_enabled = true;
  153. lcd_update_enable(false);
  154. }
  155. st_synchronize();
  156. mmu_print_saved = true;
  157. hotend_temp_bckp = degTargetHotend(active_extruder);
  158. if (move_axes) {
  159. z_position_bckp = current_position[Z_AXIS];
  160. x_position_bckp = current_position[X_AXIS];
  161. y_position_bckp = current_position[Y_AXIS];
  162. //lift z
  163. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  164. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  166. st_synchronize();
  167. //Move XY to side
  168. current_position[X_AXIS] = X_PAUSE_POS;
  169. current_position[Y_AXIS] = Y_PAUSE_POS;
  170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  171. st_synchronize();
  172. }
  173. if (turn_off_nozzle) {
  174. //set nozzle target temperature to 0
  175. setAllTargetHotends(0);
  176. printf_P(PSTR("MMU not responding\n"));
  177. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  178. setTargetHotend(hotend_temp_bckp, active_extruder);
  179. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  180. delay_keep_alive(1000);
  181. lcd_wait_for_heater();
  182. }
  183. }
  184. }
  185. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  186. }
  187. else if (mmu_print_saved) {
  188. printf_P(PSTR("MMU start responding\n"));
  189. lcd_clear();
  190. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  191. if (move_axes) {
  192. current_position[X_AXIS] = x_position_bckp;
  193. current_position[Y_AXIS] = y_position_bckp;
  194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  195. st_synchronize();
  196. current_position[Z_AXIS] = z_position_bckp;
  197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  198. st_synchronize();
  199. }
  200. else {
  201. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  202. }
  203. }
  204. }
  205. if (lcd_update_was_enabled) lcd_update_enable(true);
  206. }
  207. void mmu_load_to_nozzle()
  208. {
  209. st_synchronize();
  210. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  211. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  212. current_position[E_AXIS] += 7.2f;
  213. float feedrate = 562;
  214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  215. st_synchronize();
  216. current_position[E_AXIS] += 14.4f;
  217. feedrate = 871;
  218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  219. st_synchronize();
  220. current_position[E_AXIS] += 36.0f;
  221. feedrate = 1393;
  222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  223. st_synchronize();
  224. current_position[E_AXIS] += 14.4f;
  225. feedrate = 871;
  226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  227. st_synchronize();
  228. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  229. }
  230. void mmu_M600_load_filament(bool automatic)
  231. {
  232. //load filament for mmu v2
  233. bool response = false;
  234. bool yes = false;
  235. if (!automatic) {
  236. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  237. if(yes) tmp_extruder = choose_extruder_menu();
  238. else tmp_extruder = mmu_extruder;
  239. }
  240. else {
  241. tmp_extruder = (tmp_extruder+1)%5;
  242. }
  243. lcd_update_enable(false);
  244. lcd_clear();
  245. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  246. lcd_print(" ");
  247. lcd_print(tmp_extruder + 1);
  248. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  249. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  250. mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  251. manage_response(false, true);
  252. mmu_extruder = tmp_extruder; //filament change is finished
  253. mmu_load_to_nozzle();
  254. st_synchronize();
  255. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  257. }
  258. void extr_mov(float shift, float feed_rate)
  259. { //move extruder no matter what the current heater temperature is
  260. set_extrude_min_temp(.0);
  261. current_position[E_AXIS] += shift;
  262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  263. set_extrude_min_temp(EXTRUDE_MINTEMP);
  264. }
  265. void change_extr(int extr) { //switches multiplexer for extruders
  266. #ifdef SNMM
  267. st_synchronize();
  268. delay(100);
  269. disable_e0();
  270. disable_e1();
  271. disable_e2();
  272. mmu_extruder = extr;
  273. pinMode(E_MUX0_PIN, OUTPUT);
  274. pinMode(E_MUX1_PIN, OUTPUT);
  275. switch (extr) {
  276. case 1:
  277. WRITE(E_MUX0_PIN, HIGH);
  278. WRITE(E_MUX1_PIN, LOW);
  279. break;
  280. case 2:
  281. WRITE(E_MUX0_PIN, LOW);
  282. WRITE(E_MUX1_PIN, HIGH);
  283. break;
  284. case 3:
  285. WRITE(E_MUX0_PIN, HIGH);
  286. WRITE(E_MUX1_PIN, HIGH);
  287. break;
  288. default:
  289. WRITE(E_MUX0_PIN, LOW);
  290. WRITE(E_MUX1_PIN, LOW);
  291. break;
  292. }
  293. delay(100);
  294. #endif
  295. }
  296. int get_ext_nr()
  297. { //reads multiplexer input pins and return current extruder number (counted from 0)
  298. #ifndef SNMM
  299. return(mmu_extruder); //update needed
  300. #else
  301. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  302. #endif
  303. }
  304. void display_loading()
  305. {
  306. switch (mmu_extruder)
  307. {
  308. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  309. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  310. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  311. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  312. }
  313. }
  314. void extr_adj(int extruder) //loading filament for SNMM
  315. {
  316. #ifndef SNMM
  317. printf_P(PSTR("L%d \n"),extruder);
  318. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  319. //show which filament is currently loaded
  320. lcd_update_enable(false);
  321. lcd_clear();
  322. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  323. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  324. //else lcd.print(" ");
  325. lcd_print(" ");
  326. lcd_print(mmu_extruder + 1);
  327. // get response
  328. manage_response(false, false);
  329. lcd_update_enable(true);
  330. //lcd_return_to_status();
  331. #else
  332. bool correct;
  333. max_feedrate[E_AXIS] =80;
  334. //max_feedrate[E_AXIS] = 50;
  335. START:
  336. lcd_clear();
  337. lcd_set_cursor(0, 0);
  338. switch (extruder) {
  339. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  340. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  341. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  342. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  343. }
  344. KEEPALIVE_STATE(PAUSED_FOR_USER);
  345. do{
  346. extr_mov(0.001,1000);
  347. delay_keep_alive(2);
  348. } while (!lcd_clicked());
  349. //delay_keep_alive(500);
  350. KEEPALIVE_STATE(IN_HANDLER);
  351. st_synchronize();
  352. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  353. //if (!correct) goto START;
  354. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  355. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  356. extr_mov(bowden_length[extruder], 500);
  357. lcd_clear();
  358. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  359. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  360. else lcd_print(" ");
  361. lcd_print(mmu_extruder + 1);
  362. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  363. st_synchronize();
  364. max_feedrate[E_AXIS] = 50;
  365. lcd_update_enable(true);
  366. lcd_return_to_status();
  367. lcdDrawUpdate = 2;
  368. #endif
  369. }
  370. void extr_unload()
  371. { //unload just current filament for multimaterial printers
  372. #ifdef SNMM
  373. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  374. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  375. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  376. #endif
  377. if (degHotend0() > EXTRUDE_MINTEMP)
  378. {
  379. #ifndef SNMM
  380. st_synchronize();
  381. //show which filament is currently unloaded
  382. lcd_update_enable(false);
  383. lcd_clear();
  384. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  385. lcd_print(" ");
  386. lcd_print(mmu_extruder + 1);
  387. current_position[E_AXIS] -= 80;
  388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  389. st_synchronize();
  390. printf_P(PSTR("U0\n"));
  391. fprintf_P(uart2io, PSTR("U0\n"));
  392. // get response
  393. manage_response(false, true);
  394. lcd_update_enable(true);
  395. #else //SNMM
  396. lcd_clear();
  397. lcd_display_message_fullscreen_P(PSTR(""));
  398. max_feedrate[E_AXIS] = 50;
  399. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  400. lcd_print(" ");
  401. lcd_print(mmu_extruder + 1);
  402. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  403. if (current_position[Z_AXIS] < 15) {
  404. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  406. }
  407. current_position[E_AXIS] += 10; //extrusion
  408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  409. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  410. if (current_temperature[0] < 230) { //PLA & all other filaments
  411. current_position[E_AXIS] += 5.4;
  412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  413. current_position[E_AXIS] += 3.2;
  414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  415. current_position[E_AXIS] += 3;
  416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  417. }
  418. else { //ABS
  419. current_position[E_AXIS] += 3.1;
  420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  421. current_position[E_AXIS] += 3.1;
  422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  423. current_position[E_AXIS] += 4;
  424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  425. /*current_position[X_AXIS] += 23; //delay
  426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  427. current_position[X_AXIS] -= 23; //delay
  428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  429. delay_keep_alive(4700);
  430. }
  431. max_feedrate[E_AXIS] = 80;
  432. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  434. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  436. st_synchronize();
  437. //st_current_init();
  438. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  439. else st_current_set(2, tmp_motor_loud[2]);
  440. lcd_update_enable(true);
  441. lcd_return_to_status();
  442. max_feedrate[E_AXIS] = 50;
  443. #endif //SNMM
  444. }
  445. else
  446. {
  447. lcd_clear();
  448. lcd_set_cursor(0, 0);
  449. lcd_puts_P(_T(MSG_ERROR));
  450. lcd_set_cursor(0, 2);
  451. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  452. delay(2000);
  453. lcd_clear();
  454. }
  455. //lcd_return_to_status();
  456. }
  457. //wrapper functions for loading filament
  458. void extr_adj_0()
  459. {
  460. #ifndef SNMM
  461. enquecommand_P(PSTR("M701 E0"));
  462. #else
  463. change_extr(0);
  464. extr_adj(0);
  465. #endif
  466. }
  467. void extr_adj_1()
  468. {
  469. #ifndef SNMM
  470. enquecommand_P(PSTR("M701 E1"));
  471. #else
  472. change_extr(1);
  473. extr_adj(1);
  474. #endif
  475. }
  476. void extr_adj_2()
  477. {
  478. #ifndef SNMM
  479. enquecommand_P(PSTR("M701 E2"));
  480. #else
  481. change_extr(2);
  482. extr_adj(2);
  483. #endif
  484. }
  485. void extr_adj_3()
  486. {
  487. #ifndef SNMM
  488. enquecommand_P(PSTR("M701 E3"));
  489. #else
  490. change_extr(3);
  491. extr_adj(3);
  492. #endif
  493. }
  494. void extr_adj_4()
  495. {
  496. #ifndef SNMM
  497. enquecommand_P(PSTR("M701 E4"));
  498. #else
  499. change_extr(4);
  500. extr_adj(4);
  501. #endif
  502. }
  503. void load_all()
  504. {
  505. #ifndef SNMM
  506. enquecommand_P(PSTR("M701 E0"));
  507. enquecommand_P(PSTR("M701 E1"));
  508. enquecommand_P(PSTR("M701 E2"));
  509. enquecommand_P(PSTR("M701 E3"));
  510. enquecommand_P(PSTR("M701 E4"));
  511. #else
  512. for (int i = 0; i < 4; i++)
  513. {
  514. change_extr(i);
  515. extr_adj(i);
  516. }
  517. #endif
  518. }
  519. //wrapper functions for changing extruders
  520. void extr_change_0()
  521. {
  522. change_extr(0);
  523. lcd_return_to_status();
  524. }
  525. void extr_change_1()
  526. {
  527. change_extr(1);
  528. lcd_return_to_status();
  529. }
  530. void extr_change_2()
  531. {
  532. change_extr(2);
  533. lcd_return_to_status();
  534. }
  535. void extr_change_3()
  536. {
  537. change_extr(3);
  538. lcd_return_to_status();
  539. }
  540. //wrapper functions for unloading filament
  541. void extr_unload_all()
  542. {
  543. if (degHotend0() > EXTRUDE_MINTEMP)
  544. {
  545. for (int i = 0; i < 4; i++)
  546. {
  547. change_extr(i);
  548. extr_unload();
  549. }
  550. }
  551. else
  552. {
  553. lcd_clear();
  554. lcd_set_cursor(0, 0);
  555. lcd_puts_P(_T(MSG_ERROR));
  556. lcd_set_cursor(0, 2);
  557. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  558. delay(2000);
  559. lcd_clear();
  560. lcd_return_to_status();
  561. }
  562. }
  563. //unloading just used filament (for snmm)
  564. void extr_unload_used()
  565. {
  566. if (degHotend0() > EXTRUDE_MINTEMP) {
  567. for (int i = 0; i < 4; i++) {
  568. if (snmm_filaments_used & (1 << i)) {
  569. change_extr(i);
  570. extr_unload();
  571. }
  572. }
  573. snmm_filaments_used = 0;
  574. }
  575. else {
  576. lcd_clear();
  577. lcd_set_cursor(0, 0);
  578. lcd_puts_P(_T(MSG_ERROR));
  579. lcd_set_cursor(0, 2);
  580. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  581. delay(2000);
  582. lcd_clear();
  583. lcd_return_to_status();
  584. }
  585. }
  586. void extr_unload_0()
  587. {
  588. change_extr(0);
  589. extr_unload();
  590. }
  591. void extr_unload_1()
  592. {
  593. change_extr(1);
  594. extr_unload();
  595. }
  596. void extr_unload_2()
  597. {
  598. change_extr(2);
  599. extr_unload();
  600. }
  601. void extr_unload_3()
  602. {
  603. change_extr(3);
  604. extr_unload();
  605. }
  606. void extr_unload_4()
  607. {
  608. change_extr(4);
  609. extr_unload();
  610. }