fsensor.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "cmdqueue.h"
  8. #include "ultralcd.h"
  9. #include "mmu.h"
  10. #include "cardreader.h"
  11. #include "adc.h"
  12. #include "temperature.h"
  13. #include "config.h"
  14. #include "Filament_sensor.h" //temporary
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  18. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
  25. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
  26. #define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
  27. #define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
  28. //! @}
  29. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  30. //! enabled = initialized and sampled every chunk event
  31. bool fsensor_enabled = true;
  32. //! runout watching is done in fsensor_update (called from main loop)
  33. bool fsensor_watch_runout = true;
  34. //! not responding - is set if any communication error occurred during initialization or readout
  35. bool fsensor_not_responding = false;
  36. #ifdef PAT9125
  37. //! optical checking "chunk lenght" (already in steps)
  38. int16_t fsensor_chunk_len = 0;
  39. //! number of errors, updated in ISR
  40. uint8_t fsensor_err_cnt = 0;
  41. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  42. int16_t fsensor_st_cnt = 0;
  43. //! count of total sensor "soft" failures (filament status checks)
  44. uint8_t fsensor_softfail = 0;
  45. //! timestamp of last soft failure
  46. unsigned long fsensor_softfail_last = 0;
  47. //! count of soft failures within the configured time
  48. uint8_t fsensor_softfail_ccnt = 0;
  49. #endif
  50. #ifdef DEBUG_FSENSOR_LOG
  51. //! log flag: 0=log disabled, 1=log enabled
  52. uint8_t fsensor_log = 1;
  53. #endif //DEBUG_FSENSOR_LOG
  54. //! @name filament autoload variables
  55. //! @{
  56. //! autoload feature enabled
  57. bool fsensor_autoload_enabled = true;
  58. //! autoload watching enable/disable flag
  59. bool fsensor_watch_autoload = false;
  60. #ifdef PAT9125
  61. //
  62. uint16_t fsensor_autoload_y;
  63. //
  64. uint8_t fsensor_autoload_c;
  65. //
  66. uint32_t fsensor_autoload_last_millis;
  67. //
  68. uint8_t fsensor_autoload_sum;
  69. //! @}
  70. #endif
  71. //! @name filament optical quality measurement variables
  72. //! @{
  73. //! Measurement enable/disable flag
  74. bool fsensor_oq_meassure = false;
  75. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  76. uint8_t fsensor_oq_skipchunk;
  77. //! number of samples from start of measurement
  78. uint8_t fsensor_oq_samples;
  79. //! sum of steps in positive direction movements
  80. uint16_t fsensor_oq_st_sum;
  81. //! sum of deltas in positive direction movements
  82. uint16_t fsensor_oq_yd_sum;
  83. //! sum of errors during measurement
  84. uint16_t fsensor_oq_er_sum;
  85. //! max error counter value during measurement
  86. uint8_t fsensor_oq_er_max;
  87. //! minimum delta value
  88. int16_t fsensor_oq_yd_min;
  89. //! maximum delta value
  90. int16_t fsensor_oq_yd_max;
  91. //! sum of shutter value
  92. uint16_t fsensor_oq_sh_sum;
  93. //! @}
  94. #ifdef IR_SENSOR_ANALOG
  95. ClFsensorPCB oFsensorPCB;
  96. ClFsensorActionNA oFsensorActionNA;
  97. bool bIRsensorStateFlag=false;
  98. ShortTimer tIRsensorCheckTimer;
  99. #endif //IR_SENSOR_ANALOG
  100. #ifdef PAT9125
  101. // Reset all internal counters to zero, including stepper callbacks
  102. void fsensor_reset_err_cnt()
  103. {
  104. fsensor_err_cnt = 0;
  105. pat9125_y = 0;
  106. st_reset_fsensor();
  107. }
  108. void fsensor_set_axis_steps_per_unit(float u)
  109. {
  110. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  111. }
  112. #endif
  113. // fsensor_checkpoint_print cuts the current print job at the current position,
  114. // allowing new instructions to be inserted in the middle
  115. void fsensor_checkpoint_print(void)
  116. {
  117. puts_P(PSTR("fsensor_checkpoint_print"));
  118. stop_and_save_print_to_ram(0, 0);
  119. restore_print_from_ram_and_continue(0);
  120. }
  121. #ifdef IR_SENSOR_ANALOG
  122. const char* FsensorIRVersionText()
  123. {
  124. switch(oFsensorPCB)
  125. {
  126. case ClFsensorPCB::_Old:
  127. return _T(MSG_IR_03_OR_OLDER);
  128. case ClFsensorPCB::_Rev04:
  129. return _T(MSG_IR_04_OR_NEWER);
  130. default:
  131. return _T(MSG_IR_UNKNOWN);
  132. }
  133. }
  134. #endif //IR_SENSOR_ANALOG
  135. void fsensor_init(void)
  136. {
  137. #ifdef PAT9125
  138. uint8_t pat9125 = pat9125_init();
  139. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  140. #endif //PAT9125
  141. uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  142. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  143. fsensor_not_responding = false;
  144. #ifdef PAT9125
  145. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  146. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  147. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  148. if (!pat9125){
  149. fsensor_enabled = 0; //disable sensor
  150. fsensor_not_responding = true;
  151. }
  152. #endif //PAT9125
  153. #ifdef IR_SENSOR_ANALOG
  154. bIRsensorStateFlag=false;
  155. oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  156. oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  157. // If the fsensor is not responding even at the start of the printer,
  158. // set this flag accordingly to show N/A in Settings->Filament sensor.
  159. // This is even valid for both fsensor board revisions (0.3 or older and 0.4).
  160. // Must be done after reading what type of fsensor board we have
  161. fsensor_not_responding = ! fsensor_IR_check();
  162. #endif //IR_SENSOR_ANALOG
  163. if (fsensor_enabled){
  164. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  165. } else {
  166. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  167. }
  168. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  169. #ifdef IR_SENSOR_ANALOG
  170. printf_P(PSTR(" (sensor board revision:%S)\n"), FsensorIRVersionText());
  171. #else //IR_SENSOR_ANALOG
  172. MYSERIAL.println();
  173. #endif //IR_SENSOR_ANALOG
  174. if (check_for_ir_sensor()){
  175. ir_sensor_detected = true;
  176. }
  177. }
  178. bool fsensor_enable(bool bUpdateEEPROM)
  179. {
  180. #ifdef PAT9125
  181. (void)bUpdateEEPROM; // silence unused warning in this variant
  182. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  183. uint8_t pat9125 = pat9125_init();
  184. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  185. if (pat9125)
  186. fsensor_not_responding = false;
  187. else
  188. fsensor_not_responding = true;
  189. fsensor_enabled = pat9125 ? true : false;
  190. fsensor_watch_runout = true;
  191. fsensor_oq_meassure = false;
  192. fsensor_reset_err_cnt();
  193. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  194. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  195. }
  196. else //filament sensor is FINDA, always enable
  197. {
  198. fsensor_enabled = true;
  199. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  200. FSensorStateMenu = 1;
  201. }
  202. #else // PAT9125
  203. #ifdef IR_SENSOR_ANALOG
  204. if(!fsensor_IR_check(fsensor.getVoltRaw()))
  205. {
  206. bUpdateEEPROM=true;
  207. fsensor_enabled=false;
  208. fsensor_not_responding=true;
  209. FSensorStateMenu=0;
  210. }
  211. else {
  212. #endif //IR_SENSOR_ANALOG
  213. fsensor_enabled=true;
  214. fsensor_not_responding=false;
  215. FSensorStateMenu=1;
  216. #ifdef IR_SENSOR_ANALOG
  217. }
  218. #endif //IR_SENSOR_ANALOG
  219. if(bUpdateEEPROM)
  220. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  221. #endif //PAT9125
  222. return fsensor_enabled;
  223. }
  224. void fsensor_disable(bool bUpdateEEPROM)
  225. {
  226. fsensor_enabled = false;
  227. FSensorStateMenu = 0;
  228. if(bUpdateEEPROM)
  229. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  230. }
  231. void fsensor_autoload_set(bool State)
  232. {
  233. #ifdef PAT9125
  234. if (!State) fsensor_autoload_check_stop();
  235. #endif //PAT9125
  236. fsensor_autoload_enabled = State;
  237. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  238. }
  239. void pciSetup(byte pin)
  240. {
  241. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  242. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  243. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  244. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  245. }
  246. #ifdef PAT9125
  247. void fsensor_autoload_check_start(void)
  248. {
  249. // puts_P(_N("fsensor_autoload_check_start\n"));
  250. if (!fsensor_enabled) return;
  251. if (!fsensor_autoload_enabled) return;
  252. if (fsensor_watch_autoload) return;
  253. if (!pat9125_update()) //update sensor
  254. {
  255. fsensor_disable();
  256. fsensor_not_responding = true;
  257. fsensor_watch_autoload = false;
  258. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  259. return;
  260. }
  261. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED"));
  262. fsensor_autoload_y = pat9125_y; //save current y value
  263. fsensor_autoload_c = 0; //reset number of changes counter
  264. fsensor_autoload_sum = 0;
  265. fsensor_autoload_last_millis = _millis();
  266. fsensor_watch_runout = false;
  267. fsensor_watch_autoload = true;
  268. }
  269. void fsensor_autoload_check_stop(void)
  270. {
  271. // puts_P(_N("fsensor_autoload_check_stop\n"));
  272. if (!fsensor_enabled) return;
  273. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  274. if (!fsensor_autoload_enabled) return;
  275. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  276. if (!fsensor_watch_autoload) return;
  277. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED"));
  278. fsensor_autoload_sum = 0;
  279. fsensor_watch_autoload = false;
  280. fsensor_watch_runout = true;
  281. fsensor_reset_err_cnt();
  282. }
  283. #endif //PAT9125
  284. bool fsensor_check_autoload(void)
  285. {
  286. if (!fsensor_enabled) return false;
  287. if (!fsensor_autoload_enabled) return false;
  288. if (ir_sensor_detected) {
  289. if (READ(IR_SENSOR_PIN)) {
  290. fsensor_watch_autoload = true;
  291. }
  292. else if (fsensor_watch_autoload == true) {
  293. fsensor_watch_autoload = false;
  294. return true;
  295. }
  296. }
  297. #ifdef PAT9125
  298. if (!fsensor_watch_autoload)
  299. {
  300. fsensor_autoload_check_start();
  301. return false;
  302. }
  303. #if 0
  304. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  305. #endif
  306. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  307. fsensor_autoload_last_millis = _millis();
  308. if (!pat9125_update_y()) //update sensor
  309. {
  310. fsensor_disable();
  311. fsensor_not_responding = true;
  312. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  313. return false;
  314. }
  315. int16_t dy = pat9125_y - fsensor_autoload_y;
  316. if (dy) //? dy value is nonzero
  317. {
  318. if (dy > 0) //? delta-y value is positive (inserting)
  319. {
  320. fsensor_autoload_sum += dy;
  321. fsensor_autoload_c += 3; //increment change counter by 3
  322. }
  323. else if (fsensor_autoload_c > 1)
  324. fsensor_autoload_c -= 2; //decrement change counter by 2
  325. fsensor_autoload_y = pat9125_y; //save current value
  326. }
  327. else if (fsensor_autoload_c > 0)
  328. fsensor_autoload_c--;
  329. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  330. #if 0
  331. puts_P(_N("fsensor_check_autoload\n"));
  332. if (fsensor_autoload_c != fsensor_autoload_c_old)
  333. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  334. #endif
  335. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  336. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  337. {
  338. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  339. return true;
  340. }
  341. #endif //PAT9125
  342. return false;
  343. }
  344. #ifdef PAT9125
  345. void fsensor_oq_meassure_set(bool State)
  346. {
  347. fsensor_oq_meassure_enabled = State;
  348. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  349. }
  350. void fsensor_oq_meassure_start(uint8_t skip)
  351. {
  352. if (!fsensor_enabled) return;
  353. if (!fsensor_oq_meassure_enabled) return;
  354. puts_P(PSTR("fsensor_oq_meassure_start"));
  355. fsensor_oq_skipchunk = skip;
  356. fsensor_oq_samples = 0;
  357. fsensor_oq_st_sum = 0;
  358. fsensor_oq_yd_sum = 0;
  359. fsensor_oq_er_sum = 0;
  360. fsensor_oq_er_max = 0;
  361. fsensor_oq_yd_min = INT16_MAX;
  362. fsensor_oq_yd_max = 0;
  363. fsensor_oq_sh_sum = 0;
  364. pat9125_update();
  365. pat9125_y = 0;
  366. fsensor_oq_meassure = true;
  367. }
  368. void fsensor_oq_meassure_stop(void)
  369. {
  370. if (!fsensor_enabled) return;
  371. if (!fsensor_oq_meassure_enabled) return;
  372. printf_P(PSTR("fsensor_oq_meassure_stop, %u samples\n"), fsensor_oq_samples);
  373. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  374. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  375. fsensor_oq_meassure = false;
  376. }
  377. #ifdef FSENSOR_QUALITY
  378. const char _OK[] PROGMEM = "OK";
  379. const char _NG[] PROGMEM = "NG!";
  380. bool fsensor_oq_result(void)
  381. {
  382. if (!fsensor_enabled) return true;
  383. if (!fsensor_oq_meassure_enabled) return true;
  384. puts_P(_N("fsensor_oq_result"));
  385. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  386. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  387. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  388. printf_P(_N(" er_max = %u %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  389. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  390. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  391. printf_P(_N(" yd_avg = %u %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  392. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  393. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  394. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  395. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  396. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  397. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  398. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  399. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  400. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  401. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  402. if (yd_qua >= 8) res_sh_avg = true;
  403. printf_P(_N(" sh_avg = %u %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  404. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  405. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  406. return res;
  407. }
  408. #endif //FSENSOR_QUALITY
  409. FORCE_INLINE static void fsensor_isr(int st_cnt)
  410. {
  411. uint8_t old_err_cnt = fsensor_err_cnt;
  412. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  413. if (!pat9125_res)
  414. {
  415. fsensor_disable();
  416. fsensor_not_responding = true;
  417. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  418. }
  419. if (st_cnt != 0)
  420. {
  421. // movement was planned, check for sensor movement
  422. int8_t st_dir = st_cnt >= 0;
  423. int8_t pat9125_dir = pat9125_y >= 0;
  424. if (pat9125_y == 0)
  425. {
  426. if (st_dir)
  427. {
  428. // no movement detected: we might be within a blind sensor range,
  429. // update the frame and shutter parameters we didn't earlier
  430. if (!fsensor_oq_meassure)
  431. pat9125_update_bs();
  432. // increment the error count only if underexposed: filament likely missing
  433. if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
  434. {
  435. // check for a dark frame (<30% avg brightness) with long exposure
  436. ++fsensor_err_cnt;
  437. }
  438. else
  439. {
  440. // good frame, filament likely present
  441. if(fsensor_err_cnt) --fsensor_err_cnt;
  442. }
  443. }
  444. }
  445. else if (pat9125_dir != st_dir)
  446. {
  447. // detected direction opposite of motor movement
  448. if (st_dir) ++fsensor_err_cnt;
  449. }
  450. else if (pat9125_dir == st_dir)
  451. {
  452. // direction agreeing with planned movement
  453. if (fsensor_err_cnt) --fsensor_err_cnt;
  454. }
  455. if (st_dir && fsensor_oq_meassure)
  456. {
  457. // extruding with quality assessment
  458. if (fsensor_oq_skipchunk)
  459. {
  460. fsensor_oq_skipchunk--;
  461. fsensor_err_cnt = 0;
  462. }
  463. else
  464. {
  465. if (st_cnt == fsensor_chunk_len)
  466. {
  467. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  468. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  469. }
  470. fsensor_oq_samples++;
  471. fsensor_oq_st_sum += st_cnt;
  472. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  473. if (fsensor_err_cnt > old_err_cnt)
  474. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  475. if (fsensor_oq_er_max < fsensor_err_cnt)
  476. fsensor_oq_er_max = fsensor_err_cnt;
  477. fsensor_oq_sh_sum += pat9125_s;
  478. }
  479. }
  480. }
  481. #ifdef DEBUG_FSENSOR_LOG
  482. if (fsensor_log)
  483. {
  484. printf_P(_N("FSENSOR cnt=%d dy=%d err=%u %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  485. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%u yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  486. }
  487. #endif //DEBUG_FSENSOR_LOG
  488. pat9125_y = 0;
  489. }
  490. ISR(FSENSOR_INT_PIN_VECT)
  491. {
  492. if (mmu_enabled || ir_sensor_detected) return;
  493. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  494. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  495. // prevent isr re-entry
  496. static bool _lock = false;
  497. if (!_lock)
  498. {
  499. // fetch fsensor_st_cnt atomically
  500. int st_cnt = fsensor_st_cnt;
  501. fsensor_st_cnt = 0;
  502. _lock = true;
  503. sei();
  504. fsensor_isr(st_cnt);
  505. cli();
  506. _lock = false;
  507. }
  508. }
  509. void fsensor_setup_interrupt(void)
  510. {
  511. WRITE(FSENSOR_INT_PIN, 0);
  512. SET_OUTPUT(FSENSOR_INT_PIN);
  513. fsensor_int_pin_old = 0;
  514. //pciSetup(FSENSOR_INT_PIN);
  515. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  516. // so interrupt registers settings:
  517. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  518. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  519. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  520. }
  521. void fsensor_st_block_chunk(int cnt)
  522. {
  523. if (!fsensor_enabled) return;
  524. fsensor_st_cnt += cnt;
  525. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  526. WRITE(FSENSOR_INT_PIN, !READ(FSENSOR_INT_PIN));
  527. }
  528. #endif //PAT9125
  529. //! Common code for enqueing M600 and supplemental codes into the command queue.
  530. //! Used both for the IR sensor and the PAT9125
  531. void fsensor_enque_M600(){
  532. puts_P(PSTR("fsensor_update - M600"));
  533. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  534. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  535. enquecommand_front_P((PSTR("M600")));
  536. }
  537. //! @brief filament sensor update (perform M600 on filament runout)
  538. //!
  539. //! Works only if filament sensor is enabled.
  540. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  541. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  542. void fsensor_update(void)
  543. {
  544. #ifdef PAT9125
  545. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  546. {
  547. fsensor_stop_and_save_print();
  548. KEEPALIVE_STATE(IN_HANDLER);
  549. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  550. fsensor_autoload_enabled = false;
  551. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  552. fsensor_oq_meassure_enabled = true;
  553. // move the nozzle away while checking the filament
  554. current_position[Z_AXIS] += 0.8;
  555. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  556. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  557. st_synchronize();
  558. // check the filament in isolation
  559. fsensor_reset_err_cnt();
  560. fsensor_oq_meassure_start(0);
  561. float e_tmp = current_position[E_AXIS];
  562. current_position[E_AXIS] -= 3;
  563. plan_buffer_line_curposXYZE(250/60);
  564. current_position[E_AXIS] = e_tmp;
  565. plan_buffer_line_curposXYZE(200/60);
  566. st_synchronize();
  567. fsensor_oq_meassure_stop();
  568. bool err = false;
  569. err |= (fsensor_err_cnt > 0); // final error count is non-zero
  570. err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
  571. err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
  572. fsensor_restore_print_and_continue();
  573. fsensor_autoload_enabled = autoload_enabled_tmp;
  574. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  575. unsigned long now = _millis();
  576. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  577. fsensor_softfail_ccnt = 0;
  578. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  579. {
  580. puts_P(PSTR("fsensor_err_cnt = 0"));
  581. ++fsensor_softfail;
  582. ++fsensor_softfail_ccnt;
  583. fsensor_softfail_last = now;
  584. }
  585. else
  586. {
  587. fsensor_softfail_ccnt = 0;
  588. fsensor_softfail_last = 0;
  589. fsensor_enque_M600();
  590. }
  591. }
  592. #else //PAT9125
  593. if (CHECK_FSENSOR && ir_sensor_detected)
  594. {
  595. if (READ(IR_SENSOR_PIN))
  596. { // IR_SENSOR_PIN ~ H
  597. fsensor_checkpoint_print();
  598. fsensor_enque_M600();
  599. }
  600. }
  601. #endif //PAT9125
  602. }
  603. #ifdef IR_SENSOR_ANALOG
  604. /// This is called only upon start of the printer or when switching the fsensor ON in the menu
  605. /// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
  606. bool fsensor_IR_check(uint16_t raw){
  607. if( IRsensor_Lmax_TRESHOLD <= raw && raw <= IRsensor_Hmin_TRESHOLD ){
  608. /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
  609. /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
  610. /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
  611. /// and would have been considered more like a sabotage than normal printer operation
  612. puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));
  613. return false;
  614. }
  615. if( oFsensorPCB == ClFsensorPCB::_Rev04 ){
  616. /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
  617. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  618. puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));
  619. return false;
  620. }
  621. /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure
  622. #if 0 //Disabled as it has to be decided if we gonna use this or not.
  623. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  624. puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));
  625. return false;
  626. }
  627. #endif
  628. }
  629. /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false
  630. #if 0
  631. if( (oFsensorPCB == ClFsensorPCB::_Undef) && ( raw > IRsensor_Lmax_TRESHOLD ) ){
  632. puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));
  633. return false;
  634. }
  635. #endif
  636. // otherwise the IR fsensor is considered working correctly
  637. return true;
  638. }
  639. #endif //IR_SENSOR_ANALOG