planner.cpp 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LIN_ADVANCE_K;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Request the next block to start at zero E count
  100. static bool plan_reset_next_e_queue;
  101. static bool plan_reset_next_e_sched;
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static inline int8_t next_block_index(int8_t block_index) {
  105. if (++ block_index == BLOCK_BUFFER_SIZE)
  106. block_index = 0;
  107. return block_index;
  108. }
  109. // Returns the index of the previous block in the ring buffer
  110. static inline int8_t prev_block_index(int8_t block_index) {
  111. if (block_index == 0)
  112. block_index = BLOCK_BUFFER_SIZE;
  113. -- block_index;
  114. return block_index;
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Minimum stepper rate 120Hz.
  146. #define MINIMAL_STEP_RATE 120
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  149. {
  150. // These two lines are the only floating point calculations performed in this routine.
  151. // initial_rate, final_rate in Hz.
  152. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  153. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  154. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  155. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  156. // Limit minimal step rate (Otherwise the timer will overflow.)
  157. if (initial_rate < MINIMAL_STEP_RATE)
  158. initial_rate = MINIMAL_STEP_RATE;
  159. if (initial_rate > block->nominal_rate)
  160. initial_rate = block->nominal_rate;
  161. if (final_rate < MINIMAL_STEP_RATE)
  162. final_rate = MINIMAL_STEP_RATE;
  163. if (final_rate > block->nominal_rate)
  164. final_rate = block->nominal_rate;
  165. uint32_t acceleration = block->acceleration_st;
  166. if (acceleration == 0)
  167. // Don't allow zero acceleration.
  168. acceleration = 1;
  169. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  170. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  171. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  172. //FIXME assert that this result fits a 64bit unsigned int.
  173. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  174. uint32_t final_rate_sqr = final_rate*final_rate;
  175. uint32_t acceleration_x2 = acceleration << 1;
  176. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  177. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  178. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  179. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  180. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  181. // Size of Plateau of Nominal Rate.
  182. uint32_t plateau_steps = 0;
  183. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  184. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  185. // in order to reach the final_rate exactly at the end of this block.
  186. if (accel_decel_steps < block->step_event_count.wide) {
  187. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  188. } else {
  189. uint32_t acceleration_x4 = acceleration << 2;
  190. // Avoid negative numbers
  191. if (final_rate_sqr >= initial_rate_sqr) {
  192. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  193. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  194. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  195. #if 0
  196. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  197. #else
  198. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  199. if (block->step_event_count.wide & 1)
  200. accelerate_steps += acceleration_x2;
  201. accelerate_steps /= acceleration_x4;
  202. accelerate_steps += (block->step_event_count.wide >> 1);
  203. #endif
  204. if (accelerate_steps > block->step_event_count.wide)
  205. accelerate_steps = block->step_event_count.wide;
  206. } else {
  207. #if 0
  208. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  209. #else
  210. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  211. if (block->step_event_count.wide & 1)
  212. decelerate_steps += acceleration_x2;
  213. decelerate_steps /= acceleration_x4;
  214. decelerate_steps += (block->step_event_count.wide >> 1);
  215. #endif
  216. if (decelerate_steps > block->step_event_count.wide)
  217. decelerate_steps = block->step_event_count.wide;
  218. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  219. }
  220. }
  221. #ifdef LIN_ADVANCE
  222. uint16_t final_adv_steps = 0;
  223. if (block->use_advance_lead) {
  224. final_adv_steps = exit_speed * block->adv_comp;
  225. }
  226. #endif
  227. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  228. // This block locks the interrupts globally for 4.38 us,
  229. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  230. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  231. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  232. if (! block->busy) { // Don't update variables if block is busy.
  233. block->accelerate_until = accelerate_steps;
  234. block->decelerate_after = accelerate_steps+plateau_steps;
  235. block->initial_rate = initial_rate;
  236. block->final_rate = final_rate;
  237. #ifdef LIN_ADVANCE
  238. block->final_adv_steps = final_adv_steps;
  239. #endif
  240. }
  241. CRITICAL_SECTION_END;
  242. }
  243. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  244. // decceleration within the allotted distance.
  245. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  246. {
  247. // assert(decceleration < 0);
  248. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  249. }
  250. // Recalculates the motion plan according to the following algorithm:
  251. //
  252. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  253. // so that:
  254. // a. The junction jerk is within the set limit
  255. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  256. // acceleration.
  257. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  258. // a. The speed increase within one block would require faster accelleration than the one, true
  259. // constant acceleration.
  260. //
  261. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  262. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  263. // the set limit. Finally it will:
  264. //
  265. // 3. Recalculate trapezoids for all blocks.
  266. //
  267. //FIXME This routine is called 15x every time a new line is added to the planner,
  268. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  269. // if the CPU is found lacking computational power.
  270. //
  271. // Following sources may be used to optimize the 8-bit AVR code:
  272. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  273. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  274. //
  275. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  276. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  277. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  278. //
  279. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  280. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  281. // https://github.com/rekka/avrmultiplication
  282. //
  283. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  284. // https://courses.cit.cornell.edu/ee476/Math/
  285. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  286. //
  287. void planner_recalculate(const float &safe_final_speed)
  288. {
  289. // Reverse pass
  290. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  291. // by consuming the blocks, therefore shortening the queue.
  292. unsigned char tail = block_buffer_tail;
  293. uint8_t block_index;
  294. block_t *prev, *current, *next;
  295. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  296. // At least three blocks are in the queue?
  297. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  298. if (n_blocks >= 3) {
  299. // Initialize the last tripple of blocks.
  300. block_index = prev_block_index(block_buffer_head);
  301. next = block_buffer + block_index;
  302. current = block_buffer + (block_index = prev_block_index(block_index));
  303. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  304. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  305. // 1) it may already be running at the stepper interrupt,
  306. // 2) there is no way to limit it when going in the forward direction.
  307. while (block_index != tail) {
  308. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  309. // Don't modify the entry velocity of the starting block.
  310. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  311. // for the stepper interrupt routine to use them.
  312. tail = block_index;
  313. // Update the number of blocks to process.
  314. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  315. // SERIAL_ECHOLNPGM("START");
  316. break;
  317. }
  318. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  319. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  320. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  321. if (current->entry_speed != current->max_entry_speed) {
  322. // assert(current->entry_speed < current->max_entry_speed);
  323. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  324. // segment and the maximum acceleration allowed for this segment.
  325. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  326. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  327. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  328. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  329. // together with an assembly 32bit->16bit sqrt function.
  330. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  331. current->max_entry_speed :
  332. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  333. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  334. current->flag |= BLOCK_FLAG_RECALCULATE;
  335. }
  336. next = current;
  337. current = block_buffer + (block_index = prev_block_index(block_index));
  338. }
  339. }
  340. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  341. // Forward pass and recalculate the trapezoids.
  342. if (n_blocks >= 2) {
  343. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  344. block_index = tail;
  345. prev = block_buffer + block_index;
  346. current = block_buffer + (block_index = next_block_index(block_index));
  347. do {
  348. // If the previous block is an acceleration block, but it is not long enough to complete the
  349. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  350. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  351. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  352. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  353. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  354. // Check for junction speed change
  355. if (current->entry_speed != entry_speed) {
  356. current->entry_speed = entry_speed;
  357. current->flag |= BLOCK_FLAG_RECALCULATE;
  358. }
  359. }
  360. // Recalculate if current block entry or exit junction speed has changed.
  361. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  362. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  363. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  364. // Reset current only to ensure next trapezoid is computed.
  365. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  366. }
  367. prev = current;
  368. current = block_buffer + (block_index = next_block_index(block_index));
  369. } while (block_index != block_buffer_head);
  370. }
  371. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  372. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  373. current = block_buffer + prev_block_index(block_buffer_head);
  374. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  375. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  376. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  377. }
  378. void plan_init() {
  379. block_buffer_head = 0;
  380. block_buffer_tail = 0;
  381. memset(position, 0, sizeof(position)); // clear position
  382. #ifdef LIN_ADVANCE
  383. memset(position_float, 0, sizeof(position_float)); // clear position
  384. #endif
  385. previous_speed[0] = 0.0;
  386. previous_speed[1] = 0.0;
  387. previous_speed[2] = 0.0;
  388. previous_speed[3] = 0.0;
  389. previous_nominal_speed = 0.0;
  390. plan_reset_next_e_queue = false;
  391. plan_reset_next_e_sched = false;
  392. }
  393. #ifdef AUTOTEMP
  394. void getHighESpeed()
  395. {
  396. static float oldt=0;
  397. if(!autotemp_enabled){
  398. return;
  399. }
  400. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  401. return; //do nothing
  402. }
  403. float high=0.0;
  404. uint8_t block_index = block_buffer_tail;
  405. while(block_index != block_buffer_head) {
  406. if((block_buffer[block_index].steps_x.wide != 0) ||
  407. (block_buffer[block_index].steps_y.wide != 0) ||
  408. (block_buffer[block_index].steps_z.wide != 0)) {
  409. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  410. //se; mm/sec;
  411. if(se>high)
  412. {
  413. high=se;
  414. }
  415. }
  416. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  417. }
  418. float g=autotemp_min+high*autotemp_factor;
  419. float t=g;
  420. if(t<autotemp_min)
  421. t=autotemp_min;
  422. if(t>autotemp_max)
  423. t=autotemp_max;
  424. if(oldt>t)
  425. {
  426. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  427. }
  428. oldt=t;
  429. setTargetHotend0(t);
  430. }
  431. #endif
  432. bool e_active()
  433. {
  434. unsigned char e_active = 0;
  435. block_t *block;
  436. if(block_buffer_tail != block_buffer_head)
  437. {
  438. uint8_t block_index = block_buffer_tail;
  439. while(block_index != block_buffer_head)
  440. {
  441. block = &block_buffer[block_index];
  442. if(block->steps_e.wide != 0) e_active++;
  443. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  444. }
  445. }
  446. return (e_active > 0) ? true : false ;
  447. }
  448. void check_axes_activity()
  449. {
  450. unsigned char x_active = 0;
  451. unsigned char y_active = 0;
  452. unsigned char z_active = 0;
  453. unsigned char e_active = 0;
  454. unsigned char tail_fan_speed = fanSpeed;
  455. block_t *block;
  456. if(block_buffer_tail != block_buffer_head)
  457. {
  458. uint8_t block_index = block_buffer_tail;
  459. tail_fan_speed = block_buffer[block_index].fan_speed;
  460. while(block_index != block_buffer_head)
  461. {
  462. block = &block_buffer[block_index];
  463. if(block->steps_x.wide != 0) x_active++;
  464. if(block->steps_y.wide != 0) y_active++;
  465. if(block->steps_z.wide != 0) z_active++;
  466. if(block->steps_e.wide != 0) e_active++;
  467. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  468. }
  469. }
  470. if((DISABLE_X) && (x_active == 0)) disable_x();
  471. if((DISABLE_Y) && (y_active == 0)) disable_y();
  472. if((DISABLE_Z) && (z_active == 0)) disable_z();
  473. if((DISABLE_E) && (e_active == 0))
  474. {
  475. disable_e0();
  476. disable_e1();
  477. disable_e2();
  478. }
  479. #if defined(FAN_PIN) && FAN_PIN > -1
  480. #ifdef FAN_KICKSTART_TIME
  481. static unsigned long fan_kick_end;
  482. if (tail_fan_speed) {
  483. if (fan_kick_end == 0) {
  484. // Just starting up fan - run at full power.
  485. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  486. tail_fan_speed = 255;
  487. } else if (fan_kick_end > _millis())
  488. // Fan still spinning up.
  489. tail_fan_speed = 255;
  490. } else {
  491. fan_kick_end = 0;
  492. }
  493. #endif//FAN_KICKSTART_TIME
  494. #ifdef FAN_SOFT_PWM
  495. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  496. fanSpeedBckp = tail_fan_speed;
  497. }
  498. else {
  499. fanSpeedSoftPwm = tail_fan_speed;
  500. }
  501. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  502. #else
  503. analogWrite(FAN_PIN,tail_fan_speed);
  504. #endif//!FAN_SOFT_PWM
  505. #endif//FAN_PIN > -1
  506. #ifdef AUTOTEMP
  507. getHighESpeed();
  508. #endif
  509. }
  510. bool waiting_inside_plan_buffer_line_print_aborted = false;
  511. /*
  512. void planner_abort_soft()
  513. {
  514. // Empty the queue.
  515. while (blocks_queued()) plan_discard_current_block();
  516. // Relay to planner wait routine, that the current line shall be canceled.
  517. waiting_inside_plan_buffer_line_print_aborted = true;
  518. //current_position[i]
  519. }
  520. */
  521. #ifdef PLANNER_DIAGNOSTICS
  522. static inline void planner_update_queue_min_counter()
  523. {
  524. uint8_t new_counter = moves_planned();
  525. if (new_counter < g_cntr_planner_queue_min)
  526. g_cntr_planner_queue_min = new_counter;
  527. }
  528. #endif /* PLANNER_DIAGNOSTICS */
  529. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  530. void planner_abort_hard()
  531. {
  532. // Abort the stepper routine and flush the planner queue.
  533. DISABLE_STEPPER_DRIVER_INTERRUPT();
  534. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  535. // First update the planner's current position in the physical motor steps.
  536. position[X_AXIS] = st_get_position(X_AXIS);
  537. position[Y_AXIS] = st_get_position(Y_AXIS);
  538. position[Z_AXIS] = st_get_position(Z_AXIS);
  539. position[E_AXIS] = st_get_position(E_AXIS);
  540. // Second update the current position of the front end.
  541. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  542. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  543. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  544. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  545. // Apply the mesh bed leveling correction to the Z axis.
  546. #ifdef MESH_BED_LEVELING
  547. if (mbl.active) {
  548. #if 1
  549. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  550. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  551. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  552. #else
  553. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  554. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  555. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  556. else {
  557. float t = float(step_events_completed) / float(current_block->step_event_count);
  558. float vec[3] = {
  559. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  560. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  561. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  562. };
  563. float pos1[3], pos2[3];
  564. for (int8_t i = 0; i < 3; ++ i) {
  565. if (current_block->direction_bits & (1<<i))
  566. vec[i] = - vec[i];
  567. pos1[i] = current_position[i] - vec[i] * t;
  568. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  569. }
  570. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  571. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  572. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  573. }
  574. #endif
  575. }
  576. #endif
  577. // Clear the planner queue, reset and re-enable the stepper timer.
  578. quickStop();
  579. // Apply inverse world correction matrix.
  580. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  581. memcpy(destination, current_position, sizeof(destination));
  582. #ifdef LIN_ADVANCE
  583. memcpy(position_float, current_position, sizeof(position_float));
  584. #endif
  585. // Resets planner junction speeds. Assumes start from rest.
  586. previous_nominal_speed = 0.0;
  587. previous_speed[0] = 0.0;
  588. previous_speed[1] = 0.0;
  589. previous_speed[2] = 0.0;
  590. previous_speed[3] = 0.0;
  591. plan_reset_next_e_queue = false;
  592. plan_reset_next_e_sched = false;
  593. // Relay to planner wait routine, that the current line shall be canceled.
  594. waiting_inside_plan_buffer_line_print_aborted = true;
  595. }
  596. void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder) {
  597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, extruder );
  598. }
  599. float junction_deviation = 0.1;
  600. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  601. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  602. // calculation the caller must also provide the physical length of the line in millimeters.
  603. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  604. {
  605. // Calculate the buffer head after we push this byte
  606. int next_buffer_head = next_block_index(block_buffer_head);
  607. // If the buffer is full: good! That means we are well ahead of the robot.
  608. // Rest here until there is room in the buffer.
  609. waiting_inside_plan_buffer_line_print_aborted = false;
  610. if (block_buffer_tail == next_buffer_head) {
  611. do {
  612. manage_heater();
  613. // Vojtech: Don't disable motors inside the planner!
  614. manage_inactivity(false);
  615. lcd_update(0);
  616. } while (block_buffer_tail == next_buffer_head);
  617. if (waiting_inside_plan_buffer_line_print_aborted) {
  618. // Inside the lcd_update(0) routine the print has been aborted.
  619. // Cancel the print, do not plan the current line this routine is waiting on.
  620. #ifdef PLANNER_DIAGNOSTICS
  621. planner_update_queue_min_counter();
  622. #endif /* PLANNER_DIAGNOSTICS */
  623. return;
  624. }
  625. }
  626. #ifdef PLANNER_DIAGNOSTICS
  627. planner_update_queue_min_counter();
  628. #endif /* PLANNER_DIAGNOSTICS */
  629. // Prepare to set up new block
  630. block_t *block = &block_buffer[block_buffer_head];
  631. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  632. block->busy = false;
  633. // Set sdlen for calculating sd position
  634. block->sdlen = 0;
  635. // Save original destination of the move
  636. if (gcode_target)
  637. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  638. else
  639. {
  640. block->gcode_target[X_AXIS] = x;
  641. block->gcode_target[Y_AXIS] = y;
  642. block->gcode_target[Z_AXIS] = z;
  643. block->gcode_target[E_AXIS] = e;
  644. }
  645. // Save the global feedrate at scheduling time
  646. block->gcode_feedrate = feedrate;
  647. // Reset the starting E position when requested
  648. if (plan_reset_next_e_queue)
  649. {
  650. position[E_AXIS] = 0;
  651. #ifdef LIN_ADVANCE
  652. position_float[E_AXIS] = 0;
  653. #endif
  654. // the block might still be discarded later, but we need to ensure the lower-level
  655. // count_position is also reset correctly for consistent results!
  656. plan_reset_next_e_queue = false;
  657. plan_reset_next_e_sched = true;
  658. }
  659. #ifdef ENABLE_AUTO_BED_LEVELING
  660. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  661. #endif // ENABLE_AUTO_BED_LEVELING
  662. // Apply the machine correction matrix.
  663. {
  664. #if 0
  665. SERIAL_ECHOPGM("Planner, current position - servos: ");
  666. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  667. SERIAL_ECHOPGM(", ");
  668. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  669. SERIAL_ECHOPGM(", ");
  670. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  671. SERIAL_ECHOLNPGM("");
  672. SERIAL_ECHOPGM("Planner, target position, initial: ");
  673. MYSERIAL.print(x, 5);
  674. SERIAL_ECHOPGM(", ");
  675. MYSERIAL.print(y, 5);
  676. SERIAL_ECHOLNPGM("");
  677. SERIAL_ECHOPGM("Planner, world2machine: ");
  678. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  679. SERIAL_ECHOPGM(", ");
  680. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  681. SERIAL_ECHOPGM(", ");
  682. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  683. SERIAL_ECHOPGM(", ");
  684. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  685. SERIAL_ECHOLNPGM("");
  686. SERIAL_ECHOPGM("Planner, offset: ");
  687. MYSERIAL.print(world2machine_shift[0], 5);
  688. SERIAL_ECHOPGM(", ");
  689. MYSERIAL.print(world2machine_shift[1], 5);
  690. SERIAL_ECHOLNPGM("");
  691. #endif
  692. world2machine(x, y);
  693. #if 0
  694. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  695. MYSERIAL.print(x, 5);
  696. SERIAL_ECHOPGM(", ");
  697. MYSERIAL.print(y, 5);
  698. SERIAL_ECHOLNPGM("");
  699. #endif
  700. }
  701. // The target position of the tool in absolute steps
  702. // Calculate target position in absolute steps
  703. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  704. long target[4];
  705. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  706. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  707. #ifdef MESH_BED_LEVELING
  708. if (mbl.active){
  709. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  710. }else{
  711. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  712. }
  713. #else
  714. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  715. #endif // ENABLE_MESH_BED_LEVELING
  716. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  717. #ifdef PREVENT_DANGEROUS_EXTRUDE
  718. if(target[E_AXIS]!=position[E_AXIS])
  719. {
  720. if(degHotend(active_extruder)<extrude_min_temp)
  721. {
  722. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  723. #ifdef LIN_ADVANCE
  724. position_float[E_AXIS] = e;
  725. #endif
  726. SERIAL_ECHO_START;
  727. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  728. }
  729. #ifdef PREVENT_LENGTHY_EXTRUDE
  730. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  731. {
  732. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  733. #ifdef LIN_ADVANCE
  734. position_float[E_AXIS] = e;
  735. #endif
  736. SERIAL_ECHO_START;
  737. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  738. }
  739. #endif
  740. }
  741. #endif
  742. // Number of steps for each axis
  743. #ifndef COREXY
  744. // default non-h-bot planning
  745. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  746. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  747. #else
  748. // corexy planning
  749. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  750. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  751. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  752. #endif
  753. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  754. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  755. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  756. // Bail if this is a zero-length block
  757. if (block->step_event_count.wide <= dropsegments)
  758. {
  759. #ifdef PLANNER_DIAGNOSTICS
  760. planner_update_queue_min_counter();
  761. #endif /* PLANNER_DIAGNOSTICS */
  762. return;
  763. }
  764. block->fan_speed = fanSpeed;
  765. // Compute direction bits for this block
  766. block->direction_bits = 0;
  767. #ifndef COREXY
  768. if (target[X_AXIS] < position[X_AXIS])
  769. {
  770. block->direction_bits |= (1<<X_AXIS);
  771. }
  772. if (target[Y_AXIS] < position[Y_AXIS])
  773. {
  774. block->direction_bits |= (1<<Y_AXIS);
  775. }
  776. #else
  777. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  778. {
  779. block->direction_bits |= (1<<X_AXIS);
  780. }
  781. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  782. {
  783. block->direction_bits |= (1<<Y_AXIS);
  784. }
  785. #endif
  786. if (target[Z_AXIS] < position[Z_AXIS])
  787. {
  788. block->direction_bits |= (1<<Z_AXIS);
  789. }
  790. if (target[E_AXIS] < position[E_AXIS])
  791. {
  792. block->direction_bits |= (1<<E_AXIS);
  793. }
  794. block->active_extruder = extruder;
  795. //enable active axes
  796. #ifdef COREXY
  797. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  798. {
  799. enable_x();
  800. enable_y();
  801. }
  802. #else
  803. if(block->steps_x.wide != 0) enable_x();
  804. if(block->steps_y.wide != 0) enable_y();
  805. #endif
  806. if(block->steps_z.wide != 0) enable_z();
  807. // Enable extruder(s)
  808. if(block->steps_e.wide != 0)
  809. {
  810. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  811. {
  812. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  813. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  814. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  815. switch(extruder)
  816. {
  817. case 0:
  818. enable_e0();
  819. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  820. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  821. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  822. break;
  823. case 1:
  824. enable_e1();
  825. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  826. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  827. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  828. break;
  829. case 2:
  830. enable_e2();
  831. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  832. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  833. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  834. break;
  835. }
  836. }
  837. else //enable all
  838. {
  839. enable_e0();
  840. enable_e1();
  841. enable_e2();
  842. }
  843. }
  844. if (block->steps_e.wide == 0)
  845. {
  846. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  847. }
  848. else
  849. {
  850. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  851. }
  852. /* This part of the code calculates the total length of the movement.
  853. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  854. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  855. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  856. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  857. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  858. */
  859. #ifndef COREXY
  860. float delta_mm[4];
  861. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  862. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  863. #else
  864. float delta_mm[6];
  865. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  866. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  867. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  868. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  869. #endif
  870. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  871. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  872. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  873. {
  874. block->millimeters = fabs(delta_mm[E_AXIS]);
  875. }
  876. else
  877. {
  878. #ifndef COREXY
  879. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  880. #else
  881. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  882. #endif
  883. }
  884. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  885. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  886. float inverse_second = feed_rate * inverse_millimeters;
  887. int moves_queued = moves_planned();
  888. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  889. #ifdef SLOWDOWN
  890. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  891. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  892. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  893. // segment time in micro seconds
  894. unsigned long segment_time = lround(1000000.0/inverse_second);
  895. if (segment_time < cs.minsegmenttime)
  896. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  897. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  898. }
  899. #endif // SLOWDOWN
  900. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  901. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  902. // Calculate and limit speed in mm/sec for each axis
  903. float current_speed[4];
  904. float speed_factor = 1.0; //factor <=1 do decrease speed
  905. // maxlimit_status &= ~0xf;
  906. for(int i=0; i < 4; i++)
  907. {
  908. current_speed[i] = delta_mm[i] * inverse_second;
  909. if(fabs(current_speed[i]) > max_feedrate[i])
  910. {
  911. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  912. maxlimit_status |= (1 << i);
  913. }
  914. }
  915. // Correct the speed
  916. if( speed_factor < 1.0)
  917. {
  918. for(unsigned char i=0; i < 4; i++)
  919. {
  920. current_speed[i] *= speed_factor;
  921. }
  922. block->nominal_speed *= speed_factor;
  923. block->nominal_rate *= speed_factor;
  924. }
  925. #ifdef LIN_ADVANCE
  926. float e_D_ratio = 0;
  927. #endif
  928. // Compute and limit the acceleration rate for the trapezoid generator.
  929. // block->step_event_count ... event count of the fastest axis
  930. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  931. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  932. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  933. {
  934. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  935. #ifdef LIN_ADVANCE
  936. block->use_advance_lead = false;
  937. #endif
  938. }
  939. else
  940. {
  941. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  942. #ifdef LIN_ADVANCE
  943. /**
  944. * Use LIN_ADVANCE within this block if all these are true:
  945. *
  946. * block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
  947. * extruder_advance_K : There is an advance factor set.
  948. * delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  949. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  950. */
  951. block->use_advance_lead = block->steps_e.wide
  952. && extruder_advance_K
  953. && delta_mm[E_AXIS] > 0
  954. && abs(delta_mm[Z_AXIS]) < 0.5;
  955. if (block->use_advance_lead) {
  956. e_D_ratio = (e - position_float[E_AXIS]) /
  957. sqrt(sq(x - position_float[X_AXIS])
  958. + sq(y - position_float[Y_AXIS])
  959. + sq(z - position_float[Z_AXIS]));
  960. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  961. // print move due to min. steps per segment. Never execute this with advance! This assumes
  962. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  963. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  964. if (e_D_ratio > 3.0)
  965. block->use_advance_lead = false;
  966. else {
  967. const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio) * steps_per_mm;
  968. if (block->acceleration_st > max_accel_steps_per_s2) {
  969. block->acceleration_st = max_accel_steps_per_s2;
  970. #ifdef LA_DEBUG
  971. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  972. #endif
  973. }
  974. }
  975. }
  976. #endif
  977. // Limit acceleration per axis
  978. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  979. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  980. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  981. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  982. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  983. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  984. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  985. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  986. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  987. }
  988. // Acceleration of the segment, in mm/sec^2
  989. block->acceleration = block->acceleration_st / steps_per_mm;
  990. #if 0
  991. // Oversample diagonal movements by a power of 2 up to 8x
  992. // to achieve more accurate diagonal movements.
  993. uint8_t bresenham_oversample = 1;
  994. for (uint8_t i = 0; i < 3; ++ i) {
  995. if (block->nominal_rate >= 5000) // 5kHz
  996. break;
  997. block->nominal_rate << 1;
  998. bresenham_oversample << 1;
  999. block->step_event_count << 1;
  1000. }
  1001. if (bresenham_oversample > 1)
  1002. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1003. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1004. #endif
  1005. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1006. #ifdef LIN_ADVANCE
  1007. if (block->use_advance_lead) {
  1008. // the nominal speed doesn't change past this point: calculate the compression ratio for the
  1009. // segment and the required advance steps
  1010. block->adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS];
  1011. block->max_adv_steps = block->nominal_speed * block->adv_comp;
  1012. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1013. // still need to replicate the *exact* same step grouping policy (see below)
  1014. float advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1015. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1016. block->advance_rate = (F_CPU / 8.0) / advance_speed;
  1017. if (block->advance_rate > 20000) {
  1018. block->advance_rate = (block->advance_rate >> 2)&0x3fff;
  1019. block->advance_step_loops = 4;
  1020. }
  1021. else if (block->advance_rate > 10000) {
  1022. block->advance_rate = (block->advance_rate >> 1)&0x7fff;
  1023. block->advance_step_loops = 2;
  1024. }
  1025. else
  1026. block->advance_step_loops = 1;
  1027. #ifdef LA_DEBUG
  1028. if (block->advance_step_loops > 2)
  1029. // @wavexx: we should really check for the difference between step_loops and
  1030. // advance_step_loops instead. A difference of more than 1 will lead
  1031. // to uneven speed and *should* be adjusted here by furthermore
  1032. // reducing the speed.
  1033. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1034. #endif
  1035. }
  1036. #endif
  1037. // Start with a safe speed.
  1038. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1039. float safe_speed = block->nominal_speed;
  1040. bool limited = false;
  1041. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1042. float jerk = fabs(current_speed[axis]);
  1043. if (jerk > cs.max_jerk[axis]) {
  1044. // The actual jerk is lower, if it has been limited by the XY jerk.
  1045. if (limited) {
  1046. // Spare one division by a following gymnastics:
  1047. // Instead of jerk *= safe_speed / block->nominal_speed,
  1048. // multiply max_jerk[axis] by the divisor.
  1049. jerk *= safe_speed;
  1050. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1051. if (jerk > mjerk) {
  1052. safe_speed *= mjerk / jerk;
  1053. limited = true;
  1054. }
  1055. } else {
  1056. safe_speed = cs.max_jerk[axis];
  1057. limited = true;
  1058. }
  1059. }
  1060. }
  1061. // Reset the block flag.
  1062. block->flag = 0;
  1063. if (plan_reset_next_e_sched)
  1064. {
  1065. // finally propagate a pending reset
  1066. block->flag |= BLOCK_FLAG_E_RESET;
  1067. plan_reset_next_e_sched = false;
  1068. }
  1069. // Initial limit on the segment entry velocity.
  1070. float vmax_junction;
  1071. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1072. // Is it because we don't want to tinker with the first buffer line, which
  1073. // is likely to be executed by the stepper interrupt routine soon?
  1074. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1075. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1076. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1077. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1078. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1079. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1080. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1081. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1082. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1083. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1084. float v_factor = 1.f;
  1085. limited = false;
  1086. // Now limit the jerk in all axes.
  1087. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1088. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1089. float v_exit = previous_speed[axis];
  1090. float v_entry = current_speed [axis];
  1091. if (prev_speed_larger)
  1092. v_exit *= smaller_speed_factor;
  1093. if (limited) {
  1094. v_exit *= v_factor;
  1095. v_entry *= v_factor;
  1096. }
  1097. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1098. float jerk =
  1099. (v_exit > v_entry) ?
  1100. ((v_entry > 0.f || v_exit < 0.f) ?
  1101. // coasting
  1102. (v_exit - v_entry) :
  1103. // axis reversal
  1104. max(v_exit, - v_entry)) :
  1105. // v_exit <= v_entry
  1106. ((v_entry < 0.f || v_exit > 0.f) ?
  1107. // coasting
  1108. (v_entry - v_exit) :
  1109. // axis reversal
  1110. max(- v_exit, v_entry));
  1111. if (jerk > cs.max_jerk[axis]) {
  1112. v_factor *= cs.max_jerk[axis] / jerk;
  1113. limited = true;
  1114. }
  1115. }
  1116. if (limited)
  1117. vmax_junction *= v_factor;
  1118. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1119. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1120. float vmax_junction_threshold = vmax_junction * 0.99f;
  1121. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1122. // Not coasting. The machine will stop and start the movements anyway,
  1123. // better to start the segment from start.
  1124. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1125. vmax_junction = safe_speed;
  1126. }
  1127. } else {
  1128. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1129. vmax_junction = safe_speed;
  1130. }
  1131. // Max entry speed of this block equals the max exit speed of the previous block.
  1132. block->max_entry_speed = vmax_junction;
  1133. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1134. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1135. block->entry_speed = min(vmax_junction, v_allowable);
  1136. // Initialize planner efficiency flags
  1137. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1138. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1139. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1140. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1141. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1142. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1143. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1144. // Always calculate trapezoid for new block
  1145. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1146. // Update previous path unit_vector and nominal speed
  1147. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1148. previous_nominal_speed = block->nominal_speed;
  1149. previous_safe_speed = safe_speed;
  1150. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1151. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1152. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1153. if (block->step_event_count.wide <= 32767)
  1154. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1155. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1156. block_buffer_head = next_buffer_head;
  1157. // Update position
  1158. memcpy(position, target, sizeof(target)); // position[] = target[]
  1159. #ifdef LIN_ADVANCE
  1160. position_float[X_AXIS] = x;
  1161. position_float[Y_AXIS] = y;
  1162. position_float[Z_AXIS] = z;
  1163. position_float[E_AXIS] = e;
  1164. #endif
  1165. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1166. // the machine limits (maximum acceleration and maximum jerk).
  1167. // This runs asynchronously with the stepper interrupt controller, which may
  1168. // interfere with the process.
  1169. planner_recalculate(safe_speed);
  1170. // SERIAL_ECHOPGM("Q");
  1171. // SERIAL_ECHO(int(moves_planned()));
  1172. // SERIAL_ECHOLNPGM("");
  1173. #ifdef PLANNER_DIAGNOSTICS
  1174. planner_update_queue_min_counter();
  1175. #endif /* PLANNER_DIAGNOSTIC */
  1176. // The stepper timer interrupt will run continuously from now on.
  1177. // If there are no planner blocks to be executed by the stepper routine,
  1178. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1179. // from the planner queue if available.
  1180. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1181. }
  1182. #ifdef ENABLE_AUTO_BED_LEVELING
  1183. vector_3 plan_get_position() {
  1184. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1185. //position.debug("in plan_get position");
  1186. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1187. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1188. //inverse.debug("in plan_get inverse");
  1189. position.apply_rotation(inverse);
  1190. //position.debug("after rotation");
  1191. return position;
  1192. }
  1193. #endif // ENABLE_AUTO_BED_LEVELING
  1194. void plan_set_position(float x, float y, float z, const float &e)
  1195. {
  1196. #ifdef ENABLE_AUTO_BED_LEVELING
  1197. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1198. #endif // ENABLE_AUTO_BED_LEVELING
  1199. // Apply the machine correction matrix.
  1200. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1201. {
  1202. float tmpx = x;
  1203. float tmpy = y;
  1204. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1205. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1206. }
  1207. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1208. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1209. #ifdef MESH_BED_LEVELING
  1210. position[Z_AXIS] = mbl.active ?
  1211. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1212. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1213. #else
  1214. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1215. #endif // ENABLE_MESH_BED_LEVELING
  1216. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1217. #ifdef LIN_ADVANCE
  1218. position_float[X_AXIS] = x;
  1219. position_float[Y_AXIS] = y;
  1220. position_float[Z_AXIS] = z;
  1221. position_float[E_AXIS] = e;
  1222. #endif
  1223. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1224. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1225. previous_speed[0] = 0.0;
  1226. previous_speed[1] = 0.0;
  1227. previous_speed[2] = 0.0;
  1228. previous_speed[3] = 0.0;
  1229. }
  1230. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1231. void plan_set_z_position(const float &z)
  1232. {
  1233. #ifdef LIN_ADVANCE
  1234. position_float[Z_AXIS] = z;
  1235. #endif
  1236. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1237. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1238. }
  1239. void plan_set_e_position(const float &e)
  1240. {
  1241. #ifdef LIN_ADVANCE
  1242. position_float[E_AXIS] = e;
  1243. #endif
  1244. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1245. st_set_e_position(position[E_AXIS]);
  1246. }
  1247. void plan_reset_next_e()
  1248. {
  1249. plan_reset_next_e_queue = true;
  1250. }
  1251. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1252. void set_extrude_min_temp(float temp)
  1253. {
  1254. extrude_min_temp=temp;
  1255. }
  1256. #endif
  1257. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1258. void reset_acceleration_rates()
  1259. {
  1260. for(int8_t i=0; i < NUM_AXIS; i++)
  1261. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1262. }
  1263. #ifdef TMC2130
  1264. void update_mode_profile()
  1265. {
  1266. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1267. {
  1268. max_feedrate = cs.max_feedrate_normal;
  1269. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1270. }
  1271. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1272. {
  1273. max_feedrate = cs.max_feedrate_silent;
  1274. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1275. }
  1276. reset_acceleration_rates();
  1277. }
  1278. #endif //TMC2130
  1279. unsigned char number_of_blocks()
  1280. {
  1281. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1282. }
  1283. #ifdef PLANNER_DIAGNOSTICS
  1284. uint8_t planner_queue_min()
  1285. {
  1286. return g_cntr_planner_queue_min;
  1287. }
  1288. void planner_queue_min_reset()
  1289. {
  1290. g_cntr_planner_queue_min = moves_planned();
  1291. }
  1292. #endif /* PLANNER_DIAGNOSTICS */
  1293. void planner_add_sd_length(uint16_t sdlen)
  1294. {
  1295. if (block_buffer_head != block_buffer_tail) {
  1296. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1297. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1298. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1299. } else {
  1300. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1301. // at a power panic, so the length of this command may be forgotten.
  1302. }
  1303. }
  1304. uint16_t planner_calc_sd_length()
  1305. {
  1306. unsigned char _block_buffer_head = block_buffer_head;
  1307. unsigned char _block_buffer_tail = block_buffer_tail;
  1308. uint16_t sdlen = 0;
  1309. while (_block_buffer_head != _block_buffer_tail)
  1310. {
  1311. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1312. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1313. }
  1314. return sdlen;
  1315. }