Marlin_main.cpp 335 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  320. {
  321. #if 0
  322. char ch=pgm_read_byte(str);
  323. while(ch)
  324. {
  325. MYSERIAL.write(ch);
  326. ch=pgm_read_byte(++str);
  327. }
  328. #else
  329. // hmm, same size as the above version, the compiler did a good job optimizing the above
  330. while( uint8_t ch = pgm_read_byte(str) ){
  331. MYSERIAL.write((char)ch);
  332. ++str;
  333. }
  334. #endif
  335. }
  336. #ifdef SDSUPPORT
  337. #include "SdFatUtil.h"
  338. int freeMemory() { return SdFatUtil::FreeRam(); }
  339. #else
  340. extern "C" {
  341. extern unsigned int __bss_end;
  342. extern unsigned int __heap_start;
  343. extern void *__brkval;
  344. int freeMemory() {
  345. int free_memory;
  346. if ((int)__brkval == 0)
  347. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  348. else
  349. free_memory = ((int)&free_memory) - ((int)__brkval);
  350. return free_memory;
  351. }
  352. }
  353. #endif //!SDSUPPORT
  354. void setup_killpin()
  355. {
  356. #if defined(KILL_PIN) && KILL_PIN > -1
  357. SET_INPUT(KILL_PIN);
  358. WRITE(KILL_PIN,HIGH);
  359. #endif
  360. }
  361. // Set home pin
  362. void setup_homepin(void)
  363. {
  364. #if defined(HOME_PIN) && HOME_PIN > -1
  365. SET_INPUT(HOME_PIN);
  366. WRITE(HOME_PIN,HIGH);
  367. #endif
  368. }
  369. void setup_photpin()
  370. {
  371. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  372. SET_OUTPUT(PHOTOGRAPH_PIN);
  373. WRITE(PHOTOGRAPH_PIN, LOW);
  374. #endif
  375. }
  376. void setup_powerhold()
  377. {
  378. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  379. SET_OUTPUT(SUICIDE_PIN);
  380. WRITE(SUICIDE_PIN, HIGH);
  381. #endif
  382. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  383. SET_OUTPUT(PS_ON_PIN);
  384. #if defined(PS_DEFAULT_OFF)
  385. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  386. #else
  387. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  388. #endif
  389. #endif
  390. }
  391. void suicide()
  392. {
  393. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  394. SET_OUTPUT(SUICIDE_PIN);
  395. WRITE(SUICIDE_PIN, LOW);
  396. #endif
  397. }
  398. void servo_init()
  399. {
  400. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  401. servos[0].attach(SERVO0_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  404. servos[1].attach(SERVO1_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  407. servos[2].attach(SERVO2_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  410. servos[3].attach(SERVO3_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 5)
  413. #error "TODO: enter initalisation code for more servos"
  414. #endif
  415. }
  416. bool fans_check_enabled = true;
  417. #ifdef TMC2130
  418. extern int8_t CrashDetectMenu;
  419. void crashdet_enable()
  420. {
  421. tmc2130_sg_stop_on_crash = true;
  422. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  423. CrashDetectMenu = 1;
  424. }
  425. void crashdet_disable()
  426. {
  427. tmc2130_sg_stop_on_crash = false;
  428. tmc2130_sg_crash = 0;
  429. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  430. CrashDetectMenu = 0;
  431. }
  432. void crashdet_stop_and_save_print()
  433. {
  434. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  435. }
  436. void crashdet_restore_print_and_continue()
  437. {
  438. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  439. // babystep_apply();
  440. }
  441. void crashdet_stop_and_save_print2()
  442. {
  443. cli();
  444. planner_abort_hard(); //abort printing
  445. cmdqueue_reset(); //empty cmdqueue
  446. card.sdprinting = false;
  447. card.closefile();
  448. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  449. st_reset_timer();
  450. sei();
  451. }
  452. void crashdet_detected(uint8_t mask)
  453. {
  454. st_synchronize();
  455. static uint8_t crashDet_counter = 0;
  456. bool automatic_recovery_after_crash = true;
  457. if (crashDet_counter++ == 0) {
  458. crashDetTimer.start();
  459. }
  460. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  461. crashDetTimer.stop();
  462. crashDet_counter = 0;
  463. }
  464. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  465. automatic_recovery_after_crash = false;
  466. crashDetTimer.stop();
  467. crashDet_counter = 0;
  468. }
  469. else {
  470. crashDetTimer.start();
  471. }
  472. lcd_update_enable(true);
  473. lcd_clear();
  474. lcd_update(2);
  475. if (mask & X_AXIS_MASK)
  476. {
  477. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  478. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  479. }
  480. if (mask & Y_AXIS_MASK)
  481. {
  482. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  483. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  484. }
  485. lcd_update_enable(true);
  486. lcd_update(2);
  487. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  488. gcode_G28(true, true, false); //home X and Y
  489. st_synchronize();
  490. if (automatic_recovery_after_crash) {
  491. enquecommand_P(PSTR("CRASH_RECOVER"));
  492. }else{
  493. setTargetHotend(0, active_extruder);
  494. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  495. lcd_update_enable(true);
  496. if (yesno)
  497. {
  498. enquecommand_P(PSTR("CRASH_RECOVER"));
  499. }
  500. else
  501. {
  502. enquecommand_P(PSTR("CRASH_CANCEL"));
  503. }
  504. }
  505. }
  506. void crashdet_recover()
  507. {
  508. crashdet_restore_print_and_continue();
  509. tmc2130_sg_stop_on_crash = true;
  510. }
  511. void crashdet_cancel()
  512. {
  513. saved_printing = false;
  514. tmc2130_sg_stop_on_crash = true;
  515. if (saved_printing_type == PRINTING_TYPE_SD) {
  516. lcd_print_stop();
  517. }else if(saved_printing_type == PRINTING_TYPE_USB){
  518. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  519. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  520. }
  521. }
  522. #endif //TMC2130
  523. void failstats_reset_print()
  524. {
  525. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  526. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  527. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  528. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  529. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  530. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  531. }
  532. #ifdef MESH_BED_LEVELING
  533. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  534. #endif
  535. // Factory reset function
  536. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  537. // Level input parameter sets depth of reset
  538. int er_progress = 0;
  539. static void factory_reset(char level)
  540. {
  541. lcd_clear();
  542. switch (level) {
  543. // Level 0: Language reset
  544. case 0:
  545. Sound_MakeCustom(100,0,false);
  546. lang_reset();
  547. break;
  548. //Level 1: Reset statistics
  549. case 1:
  550. Sound_MakeCustom(100,0,false);
  551. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  552. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  556. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  558. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  559. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  560. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  561. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  562. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  565. lcd_menu_statistics();
  566. break;
  567. // Level 2: Prepare for shipping
  568. case 2:
  569. //lcd_puts_P(PSTR("Factory RESET"));
  570. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  571. // Force language selection at the next boot up.
  572. lang_reset();
  573. // Force the "Follow calibration flow" message at the next boot up.
  574. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  575. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  576. farm_no = 0;
  577. farm_mode = false;
  578. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  579. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  580. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  581. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  582. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  588. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  589. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  590. #ifdef FILAMENT_SENSOR
  591. fsensor_enable();
  592. fsensor_autoload_set(true);
  593. #endif //FILAMENT_SENSOR
  594. Sound_MakeCustom(100,0,false);
  595. //_delay_ms(2000);
  596. break;
  597. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  598. case 3:
  599. lcd_puts_P(PSTR("Factory RESET"));
  600. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  601. Sound_MakeCustom(100,0,false);
  602. er_progress = 0;
  603. lcd_puts_at_P(3, 3, PSTR(" "));
  604. lcd_set_cursor(3, 3);
  605. lcd_print(er_progress);
  606. // Erase EEPROM
  607. for (int i = 0; i < 4096; i++) {
  608. eeprom_update_byte((uint8_t*)i, 0xFF);
  609. if (i % 41 == 0) {
  610. er_progress++;
  611. lcd_puts_at_P(3, 3, PSTR(" "));
  612. lcd_set_cursor(3, 3);
  613. lcd_print(er_progress);
  614. lcd_puts_P(PSTR("%"));
  615. }
  616. }
  617. break;
  618. case 4:
  619. bowden_menu();
  620. break;
  621. default:
  622. break;
  623. }
  624. }
  625. extern "C" {
  626. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  627. }
  628. int uart_putchar(char c, FILE *)
  629. {
  630. MYSERIAL.write(c);
  631. return 0;
  632. }
  633. void lcd_splash()
  634. {
  635. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  636. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  637. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  638. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  639. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  640. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  641. }
  642. void factory_reset()
  643. {
  644. KEEPALIVE_STATE(PAUSED_FOR_USER);
  645. if (!READ(BTN_ENC))
  646. {
  647. _delay_ms(1000);
  648. if (!READ(BTN_ENC))
  649. {
  650. lcd_clear();
  651. lcd_puts_P(PSTR("Factory RESET"));
  652. SET_OUTPUT(BEEPER);
  653. if(eSoundMode!=e_SOUND_MODE_SILENT)
  654. WRITE(BEEPER, HIGH);
  655. while (!READ(BTN_ENC));
  656. WRITE(BEEPER, LOW);
  657. _delay_ms(2000);
  658. char level = reset_menu();
  659. factory_reset(level);
  660. switch (level) {
  661. case 0: _delay_ms(0); break;
  662. case 1: _delay_ms(0); break;
  663. case 2: _delay_ms(0); break;
  664. case 3: _delay_ms(0); break;
  665. }
  666. }
  667. }
  668. KEEPALIVE_STATE(IN_HANDLER);
  669. }
  670. void show_fw_version_warnings() {
  671. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  672. switch (FW_DEV_VERSION) {
  673. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  674. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  675. case(FW_VERSION_DEVEL):
  676. case(FW_VERSION_DEBUG):
  677. lcd_update_enable(false);
  678. lcd_clear();
  679. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  680. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  681. #else
  682. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  683. #endif
  684. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  685. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  686. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  687. lcd_wait_for_click();
  688. break;
  689. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  690. }
  691. lcd_update_enable(true);
  692. }
  693. //! @brief try to check if firmware is on right type of printer
  694. static void check_if_fw_is_on_right_printer(){
  695. #ifdef FILAMENT_SENSOR
  696. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  697. #ifdef IR_SENSOR
  698. swi2c_init();
  699. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  700. if (pat9125_detected){
  701. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  702. #endif //IR_SENSOR
  703. #ifdef PAT9125
  704. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  705. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  706. if (ir_detected){
  707. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  708. #endif //PAT9125
  709. }
  710. #endif //FILAMENT_SENSOR
  711. }
  712. uint8_t check_printer_version()
  713. {
  714. uint8_t version_changed = 0;
  715. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  716. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  717. if (printer_type != PRINTER_TYPE) {
  718. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  719. else version_changed |= 0b10;
  720. }
  721. if (motherboard != MOTHERBOARD) {
  722. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  723. else version_changed |= 0b01;
  724. }
  725. return version_changed;
  726. }
  727. #ifdef BOOTAPP
  728. #include "bootapp.h" //bootloader support
  729. #endif //BOOTAPP
  730. #if (LANG_MODE != 0) //secondary language support
  731. #ifdef W25X20CL
  732. // language update from external flash
  733. #define LANGBOOT_BLOCKSIZE 0x1000u
  734. #define LANGBOOT_RAMBUFFER 0x0800
  735. void update_sec_lang_from_external_flash()
  736. {
  737. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  738. {
  739. uint8_t lang = boot_reserved >> 4;
  740. uint8_t state = boot_reserved & 0xf;
  741. lang_table_header_t header;
  742. uint32_t src_addr;
  743. if (lang_get_header(lang, &header, &src_addr))
  744. {
  745. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  746. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  747. _delay(100);
  748. boot_reserved = (state + 1) | (lang << 4);
  749. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  750. {
  751. cli();
  752. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  753. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  754. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  755. if (state == 0)
  756. {
  757. //TODO - check header integrity
  758. }
  759. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  760. }
  761. else
  762. {
  763. //TODO - check sec lang data integrity
  764. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  765. }
  766. }
  767. }
  768. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  769. }
  770. #ifdef DEBUG_W25X20CL
  771. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  772. {
  773. lang_table_header_t header;
  774. uint8_t count = 0;
  775. uint32_t addr = 0x00000;
  776. while (1)
  777. {
  778. printf_P(_n("LANGTABLE%d:"), count);
  779. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  780. if (header.magic != LANG_MAGIC)
  781. {
  782. printf_P(_n("NG!\n"));
  783. break;
  784. }
  785. printf_P(_n("OK\n"));
  786. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  787. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  788. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  789. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  790. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  791. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  792. addr += header.size;
  793. codes[count] = header.code;
  794. count ++;
  795. }
  796. return count;
  797. }
  798. void list_sec_lang_from_external_flash()
  799. {
  800. uint16_t codes[8];
  801. uint8_t count = lang_xflash_enum_codes(codes);
  802. printf_P(_n("XFlash lang count = %hhd\n"), count);
  803. }
  804. #endif //DEBUG_W25X20CL
  805. #endif //W25X20CL
  806. #endif //(LANG_MODE != 0)
  807. static void w25x20cl_err_msg()
  808. {
  809. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  810. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  811. }
  812. // "Setup" function is called by the Arduino framework on startup.
  813. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  814. // are initialized by the main() routine provided by the Arduino framework.
  815. void setup()
  816. {
  817. mmu_init();
  818. ultralcd_init();
  819. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  820. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  821. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  822. spi_init();
  823. lcd_splash();
  824. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  825. #ifdef W25X20CL
  826. bool w25x20cl_success = w25x20cl_init();
  827. if (w25x20cl_success)
  828. {
  829. optiboot_w25x20cl_enter();
  830. #if (LANG_MODE != 0) //secondary language support
  831. update_sec_lang_from_external_flash();
  832. #endif //(LANG_MODE != 0)
  833. }
  834. else
  835. {
  836. w25x20cl_err_msg();
  837. }
  838. #else
  839. const bool w25x20cl_success = true;
  840. #endif //W25X20CL
  841. setup_killpin();
  842. setup_powerhold();
  843. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  844. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  845. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  846. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  847. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  848. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  849. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  850. if (farm_mode)
  851. {
  852. no_response = true; //we need confirmation by recieving PRUSA thx
  853. important_status = 8;
  854. prusa_statistics(8);
  855. selectedSerialPort = 1;
  856. #ifdef TMC2130
  857. //increased extruder current (PFW363)
  858. tmc2130_current_h[E_AXIS] = 36;
  859. tmc2130_current_r[E_AXIS] = 36;
  860. #endif //TMC2130
  861. #ifdef FILAMENT_SENSOR
  862. //disabled filament autoload (PFW360)
  863. fsensor_autoload_set(false);
  864. #endif //FILAMENT_SENSOR
  865. // ~ FanCheck -> on
  866. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  867. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  868. }
  869. MYSERIAL.begin(BAUDRATE);
  870. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  871. #ifndef W25X20CL
  872. SERIAL_PROTOCOLLNPGM("start");
  873. #endif //W25X20CL
  874. stdout = uartout;
  875. SERIAL_ECHO_START;
  876. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  877. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  878. #ifdef DEBUG_SEC_LANG
  879. lang_table_header_t header;
  880. uint32_t src_addr = 0x00000;
  881. if (lang_get_header(1, &header, &src_addr))
  882. {
  883. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  884. #define LT_PRINT_TEST 2
  885. // flash usage
  886. // total p.test
  887. //0 252718 t+c text code
  888. //1 253142 424 170 254
  889. //2 253040 322 164 158
  890. //3 253248 530 135 395
  891. #if (LT_PRINT_TEST==1) //not optimized printf
  892. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  893. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  894. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  895. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  896. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  897. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  898. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  899. #elif (LT_PRINT_TEST==2) //optimized printf
  900. printf_P(
  901. _n(
  902. " _src_addr = 0x%08lx\n"
  903. " _lt_magic = 0x%08lx %S\n"
  904. " _lt_size = 0x%04x (%d)\n"
  905. " _lt_count = 0x%04x (%d)\n"
  906. " _lt_chsum = 0x%04x\n"
  907. " _lt_code = 0x%04x (%c%c)\n"
  908. " _lt_resv1 = 0x%08lx\n"
  909. ),
  910. src_addr,
  911. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  912. header.size, header.size,
  913. header.count, header.count,
  914. header.checksum,
  915. header.code, header.code >> 8, header.code & 0xff,
  916. header.signature
  917. );
  918. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  919. MYSERIAL.print(" _src_addr = 0x");
  920. MYSERIAL.println(src_addr, 16);
  921. MYSERIAL.print(" _lt_magic = 0x");
  922. MYSERIAL.print(header.magic, 16);
  923. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  924. MYSERIAL.print(" _lt_size = 0x");
  925. MYSERIAL.print(header.size, 16);
  926. MYSERIAL.print(" (");
  927. MYSERIAL.print(header.size, 10);
  928. MYSERIAL.println(")");
  929. MYSERIAL.print(" _lt_count = 0x");
  930. MYSERIAL.print(header.count, 16);
  931. MYSERIAL.print(" (");
  932. MYSERIAL.print(header.count, 10);
  933. MYSERIAL.println(")");
  934. MYSERIAL.print(" _lt_chsum = 0x");
  935. MYSERIAL.println(header.checksum, 16);
  936. MYSERIAL.print(" _lt_code = 0x");
  937. MYSERIAL.print(header.code, 16);
  938. MYSERIAL.print(" (");
  939. MYSERIAL.print((char)(header.code >> 8), 0);
  940. MYSERIAL.print((char)(header.code & 0xff), 0);
  941. MYSERIAL.println(")");
  942. MYSERIAL.print(" _lt_resv1 = 0x");
  943. MYSERIAL.println(header.signature, 16);
  944. #endif //(LT_PRINT_TEST==)
  945. #undef LT_PRINT_TEST
  946. #if 0
  947. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  948. for (uint16_t i = 0; i < 1024; i++)
  949. {
  950. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  951. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  952. if ((i % 16) == 15) putchar('\n');
  953. }
  954. #endif
  955. uint16_t sum = 0;
  956. for (uint16_t i = 0; i < header.size; i++)
  957. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  958. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  959. sum -= header.checksum; //subtract checksum
  960. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  961. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  962. if (sum == header.checksum)
  963. printf_P(_n("Checksum OK\n"), sum);
  964. else
  965. printf_P(_n("Checksum NG\n"), sum);
  966. }
  967. else
  968. printf_P(_n("lang_get_header failed!\n"));
  969. #if 0
  970. for (uint16_t i = 0; i < 1024*10; i++)
  971. {
  972. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  973. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  974. if ((i % 16) == 15) putchar('\n');
  975. }
  976. #endif
  977. #if 0
  978. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  979. for (int i = 0; i < 4096; ++i) {
  980. int b = eeprom_read_byte((unsigned char*)i);
  981. if (b != 255) {
  982. SERIAL_ECHO(i);
  983. SERIAL_ECHO(":");
  984. SERIAL_ECHO(b);
  985. SERIAL_ECHOLN("");
  986. }
  987. }
  988. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  989. #endif
  990. #endif //DEBUG_SEC_LANG
  991. // Check startup - does nothing if bootloader sets MCUSR to 0
  992. byte mcu = MCUSR;
  993. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  994. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  995. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  996. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  997. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  998. if (mcu & 1) puts_P(MSG_POWERUP);
  999. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1000. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1001. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1002. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1003. MCUSR = 0;
  1004. //SERIAL_ECHORPGM(MSG_MARLIN);
  1005. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1006. #ifdef STRING_VERSION_CONFIG_H
  1007. #ifdef STRING_CONFIG_H_AUTHOR
  1008. SERIAL_ECHO_START;
  1009. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1010. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1011. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1012. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1013. SERIAL_ECHOPGM("Compiled: ");
  1014. SERIAL_ECHOLNPGM(__DATE__);
  1015. #endif
  1016. #endif
  1017. SERIAL_ECHO_START;
  1018. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1019. SERIAL_ECHO(freeMemory());
  1020. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1021. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1022. //lcd_update_enable(false); // why do we need this?? - andre
  1023. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1024. bool previous_settings_retrieved = false;
  1025. uint8_t hw_changed = check_printer_version();
  1026. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1027. previous_settings_retrieved = Config_RetrieveSettings();
  1028. }
  1029. else { //printer version was changed so use default settings
  1030. Config_ResetDefault();
  1031. }
  1032. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1033. tp_init(); // Initialize temperature loop
  1034. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1035. else
  1036. {
  1037. w25x20cl_err_msg();
  1038. printf_P(_n("W25X20CL not responding.\n"));
  1039. }
  1040. plan_init(); // Initialize planner;
  1041. factory_reset();
  1042. lcd_encoder_diff=0;
  1043. #ifdef TMC2130
  1044. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1045. if (silentMode == 0xff) silentMode = 0;
  1046. tmc2130_mode = TMC2130_MODE_NORMAL;
  1047. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1048. if (crashdet && !farm_mode)
  1049. {
  1050. crashdet_enable();
  1051. puts_P(_N("CrashDetect ENABLED!"));
  1052. }
  1053. else
  1054. {
  1055. crashdet_disable();
  1056. puts_P(_N("CrashDetect DISABLED"));
  1057. }
  1058. #ifdef TMC2130_LINEARITY_CORRECTION
  1059. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1060. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1061. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1062. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1063. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1064. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1065. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1066. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1067. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1068. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1069. #endif //TMC2130_LINEARITY_CORRECTION
  1070. #ifdef TMC2130_VARIABLE_RESOLUTION
  1071. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1072. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1073. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1074. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1075. #else //TMC2130_VARIABLE_RESOLUTION
  1076. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1077. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1078. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1079. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1080. #endif //TMC2130_VARIABLE_RESOLUTION
  1081. #endif //TMC2130
  1082. st_init(); // Initialize stepper, this enables interrupts!
  1083. #ifdef UVLO_SUPPORT
  1084. setup_uvlo_interrupt();
  1085. #endif //UVLO_SUPPORT
  1086. #ifdef TMC2130
  1087. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1088. update_mode_profile();
  1089. tmc2130_init();
  1090. #endif //TMC2130
  1091. setup_photpin();
  1092. servo_init();
  1093. // Reset the machine correction matrix.
  1094. // It does not make sense to load the correction matrix until the machine is homed.
  1095. world2machine_reset();
  1096. #ifdef FILAMENT_SENSOR
  1097. fsensor_init();
  1098. #endif //FILAMENT_SENSOR
  1099. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1100. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1101. #endif
  1102. setup_homepin();
  1103. #ifdef TMC2130
  1104. if (1) {
  1105. // try to run to zero phase before powering the Z motor.
  1106. // Move in negative direction
  1107. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1108. // Round the current micro-micro steps to micro steps.
  1109. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1110. // Until the phase counter is reset to zero.
  1111. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1112. _delay(2);
  1113. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1114. _delay(2);
  1115. }
  1116. }
  1117. #endif //TMC2130
  1118. #if defined(Z_AXIS_ALWAYS_ON)
  1119. enable_z();
  1120. #endif
  1121. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1122. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1123. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1124. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1125. if (farm_mode)
  1126. {
  1127. prusa_statistics(8);
  1128. }
  1129. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1130. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1131. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1132. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1133. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1134. // where all the EEPROM entries are set to 0x0ff.
  1135. // Once a firmware boots up, it forces at least a language selection, which changes
  1136. // EEPROM_LANG to number lower than 0x0ff.
  1137. // 1) Set a high power mode.
  1138. #ifdef TMC2130
  1139. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1140. tmc2130_mode = TMC2130_MODE_NORMAL;
  1141. #endif //TMC2130
  1142. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1143. }
  1144. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1145. // but this times out if a blocking dialog is shown in setup().
  1146. card.initsd();
  1147. #ifdef DEBUG_SD_SPEED_TEST
  1148. if (card.cardOK)
  1149. {
  1150. uint8_t* buff = (uint8_t*)block_buffer;
  1151. uint32_t block = 0;
  1152. uint32_t sumr = 0;
  1153. uint32_t sumw = 0;
  1154. for (int i = 0; i < 1024; i++)
  1155. {
  1156. uint32_t u = _micros();
  1157. bool res = card.card.readBlock(i, buff);
  1158. u = _micros() - u;
  1159. if (res)
  1160. {
  1161. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1162. sumr += u;
  1163. u = _micros();
  1164. res = card.card.writeBlock(i, buff);
  1165. u = _micros() - u;
  1166. if (res)
  1167. {
  1168. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1169. sumw += u;
  1170. }
  1171. else
  1172. {
  1173. printf_P(PSTR("writeBlock %4d error\n"), i);
  1174. break;
  1175. }
  1176. }
  1177. else
  1178. {
  1179. printf_P(PSTR("readBlock %4d error\n"), i);
  1180. break;
  1181. }
  1182. }
  1183. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1184. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1185. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1186. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1187. }
  1188. else
  1189. printf_P(PSTR("Card NG!\n"));
  1190. #endif //DEBUG_SD_SPEED_TEST
  1191. eeprom_init();
  1192. #ifdef SNMM
  1193. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1194. int _z = BOWDEN_LENGTH;
  1195. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1196. }
  1197. #endif
  1198. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1199. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1200. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1201. #if (LANG_MODE != 0) //secondary language support
  1202. #ifdef DEBUG_W25X20CL
  1203. W25X20CL_SPI_ENTER();
  1204. uint8_t uid[8]; // 64bit unique id
  1205. w25x20cl_rd_uid(uid);
  1206. puts_P(_n("W25X20CL UID="));
  1207. for (uint8_t i = 0; i < 8; i ++)
  1208. printf_P(PSTR("%02hhx"), uid[i]);
  1209. putchar('\n');
  1210. list_sec_lang_from_external_flash();
  1211. #endif //DEBUG_W25X20CL
  1212. // lang_reset();
  1213. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1214. lcd_language();
  1215. #ifdef DEBUG_SEC_LANG
  1216. uint16_t sec_lang_code = lang_get_code(1);
  1217. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1218. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1219. lang_print_sec_lang(uartout);
  1220. #endif //DEBUG_SEC_LANG
  1221. #endif //(LANG_MODE != 0)
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1223. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1224. temp_cal_active = false;
  1225. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1226. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1227. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1228. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1229. int16_t z_shift = 0;
  1230. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1231. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1232. temp_cal_active = false;
  1233. }
  1234. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1235. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1236. }
  1237. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1238. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1239. }
  1240. //mbl_mode_init();
  1241. mbl_settings_init();
  1242. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1243. if (SilentModeMenu_MMU == 255) {
  1244. SilentModeMenu_MMU = 1;
  1245. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1246. }
  1247. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1248. setup_fan_interrupt();
  1249. #endif //DEBUG_DISABLE_FANCHECK
  1250. #ifdef PAT9125
  1251. fsensor_setup_interrupt();
  1252. #endif //PAT9125
  1253. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1254. #ifndef DEBUG_DISABLE_STARTMSGS
  1255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1256. check_if_fw_is_on_right_printer();
  1257. show_fw_version_warnings();
  1258. switch (hw_changed) {
  1259. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1260. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1261. case(0b01):
  1262. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. case(0b10):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1268. break;
  1269. case(0b11):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1273. break;
  1274. default: break; //no change, show no message
  1275. }
  1276. if (!previous_settings_retrieved) {
  1277. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1278. Config_StoreSettings();
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1281. lcd_wizard(WizState::Run);
  1282. }
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1284. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1285. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1286. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1287. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1288. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1298. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1302. // Show the message.
  1303. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1304. }
  1305. }
  1306. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1307. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1308. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1309. update_current_firmware_version_to_eeprom();
  1310. lcd_selftest();
  1311. }
  1312. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1313. KEEPALIVE_STATE(IN_PROCESS);
  1314. #endif //DEBUG_DISABLE_STARTMSGS
  1315. lcd_update_enable(true);
  1316. lcd_clear();
  1317. lcd_update(2);
  1318. // Store the currently running firmware into an eeprom,
  1319. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1320. update_current_firmware_version_to_eeprom();
  1321. #ifdef TMC2130
  1322. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1323. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1324. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1325. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1326. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1327. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1328. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1329. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1330. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1331. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1332. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1333. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1334. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1335. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1336. #endif //TMC2130
  1337. #ifdef UVLO_SUPPORT
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1339. /*
  1340. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1341. else {
  1342. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1343. lcd_update_enable(true);
  1344. lcd_update(2);
  1345. lcd_setstatuspgm(_T(WELCOME_MSG));
  1346. }
  1347. */
  1348. manage_heater(); // Update temperatures
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1351. #endif
  1352. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1353. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1354. puts_P(_N("Automatic recovery!"));
  1355. #endif
  1356. recover_print(1);
  1357. }
  1358. else{
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Normal recovery!"));
  1361. #endif
  1362. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1363. else {
  1364. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1365. lcd_update_enable(true);
  1366. lcd_update(2);
  1367. lcd_setstatuspgm(_T(WELCOME_MSG));
  1368. }
  1369. }
  1370. }
  1371. #endif //UVLO_SUPPORT
  1372. fCheckModeInit();
  1373. fSetMmuMode(mmu_enabled);
  1374. KEEPALIVE_STATE(NOT_BUSY);
  1375. #ifdef WATCHDOG
  1376. wdt_enable(WDTO_4S);
  1377. #endif //WATCHDOG
  1378. }
  1379. void trace();
  1380. #define CHUNK_SIZE 64 // bytes
  1381. #define SAFETY_MARGIN 1
  1382. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1383. int chunkHead = 0;
  1384. void serial_read_stream() {
  1385. setAllTargetHotends(0);
  1386. setTargetBed(0);
  1387. lcd_clear();
  1388. lcd_puts_P(PSTR(" Upload in progress"));
  1389. // first wait for how many bytes we will receive
  1390. uint32_t bytesToReceive;
  1391. // receive the four bytes
  1392. char bytesToReceiveBuffer[4];
  1393. for (int i=0; i<4; i++) {
  1394. int data;
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. bytesToReceiveBuffer[i] = data;
  1397. }
  1398. // make it a uint32
  1399. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1400. // we're ready, notify the sender
  1401. MYSERIAL.write('+');
  1402. // lock in the routine
  1403. uint32_t receivedBytes = 0;
  1404. while (prusa_sd_card_upload) {
  1405. int i;
  1406. for (i=0; i<CHUNK_SIZE; i++) {
  1407. int data;
  1408. // check if we're not done
  1409. if (receivedBytes == bytesToReceive) {
  1410. break;
  1411. }
  1412. // read the next byte
  1413. while ((data = MYSERIAL.read()) == -1) {};
  1414. receivedBytes++;
  1415. // save it to the chunk
  1416. chunk[i] = data;
  1417. }
  1418. // write the chunk to SD
  1419. card.write_command_no_newline(&chunk[0]);
  1420. // notify the sender we're ready for more data
  1421. MYSERIAL.write('+');
  1422. // for safety
  1423. manage_heater();
  1424. // check if we're done
  1425. if(receivedBytes == bytesToReceive) {
  1426. trace(); // beep
  1427. card.closefile();
  1428. prusa_sd_card_upload = false;
  1429. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1430. }
  1431. }
  1432. }
  1433. /**
  1434. * Output a "busy" message at regular intervals
  1435. * while the machine is not accepting commands.
  1436. */
  1437. void host_keepalive() {
  1438. #ifndef HOST_KEEPALIVE_FEATURE
  1439. return;
  1440. #endif //HOST_KEEPALIVE_FEATURE
  1441. if (farm_mode) return;
  1442. long ms = _millis();
  1443. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1444. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1445. switch (busy_state) {
  1446. case IN_HANDLER:
  1447. case IN_PROCESS:
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOLNPGM("busy: processing");
  1450. break;
  1451. case PAUSED_FOR_USER:
  1452. SERIAL_ECHO_START;
  1453. SERIAL_ECHOLNPGM("busy: paused for user");
  1454. break;
  1455. case PAUSED_FOR_INPUT:
  1456. SERIAL_ECHO_START;
  1457. SERIAL_ECHOLNPGM("busy: paused for input");
  1458. break;
  1459. default:
  1460. break;
  1461. }
  1462. }
  1463. prev_busy_signal_ms = ms;
  1464. }
  1465. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1466. // Before loop(), the setup() function is called by the main() routine.
  1467. void loop()
  1468. {
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1471. {
  1472. is_usb_printing = true;
  1473. usb_printing_counter--;
  1474. _usb_timer = _millis();
  1475. }
  1476. if (usb_printing_counter == 0)
  1477. {
  1478. is_usb_printing = false;
  1479. }
  1480. if (prusa_sd_card_upload)
  1481. {
  1482. //we read byte-by byte
  1483. serial_read_stream();
  1484. } else
  1485. {
  1486. get_command();
  1487. #ifdef SDSUPPORT
  1488. card.checkautostart(false);
  1489. #endif
  1490. if(buflen)
  1491. {
  1492. cmdbuffer_front_already_processed = false;
  1493. #ifdef SDSUPPORT
  1494. if(card.saving)
  1495. {
  1496. // Saving a G-code file onto an SD-card is in progress.
  1497. // Saving starts with M28, saving until M29 is seen.
  1498. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1499. card.write_command(CMDBUFFER_CURRENT_STRING);
  1500. if(card.logging)
  1501. process_commands();
  1502. else
  1503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1504. } else {
  1505. card.closefile();
  1506. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1507. }
  1508. } else {
  1509. process_commands();
  1510. }
  1511. #else
  1512. process_commands();
  1513. #endif //SDSUPPORT
  1514. if (! cmdbuffer_front_already_processed && buflen)
  1515. {
  1516. // ptr points to the start of the block currently being processed.
  1517. // The first character in the block is the block type.
  1518. char *ptr = cmdbuffer + bufindr;
  1519. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1520. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1521. union {
  1522. struct {
  1523. char lo;
  1524. char hi;
  1525. } lohi;
  1526. uint16_t value;
  1527. } sdlen;
  1528. sdlen.value = 0;
  1529. {
  1530. // This block locks the interrupts globally for 3.25 us,
  1531. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1532. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1533. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1534. cli();
  1535. // Reset the command to something, which will be ignored by the power panic routine,
  1536. // so this buffer length will not be counted twice.
  1537. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1538. // Extract the current buffer length.
  1539. sdlen.lohi.lo = *ptr ++;
  1540. sdlen.lohi.hi = *ptr;
  1541. // and pass it to the planner queue.
  1542. planner_add_sd_length(sdlen.value);
  1543. sei();
  1544. }
  1545. }
  1546. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1547. cli();
  1548. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1549. // and one for each command to previous block in the planner queue.
  1550. planner_add_sd_length(1);
  1551. sei();
  1552. }
  1553. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1554. // this block's SD card length will not be counted twice as its command type has been replaced
  1555. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1556. cmdqueue_pop_front();
  1557. }
  1558. host_keepalive();
  1559. }
  1560. }
  1561. //check heater every n milliseconds
  1562. manage_heater();
  1563. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1564. checkHitEndstops();
  1565. lcd_update(0);
  1566. #ifdef TMC2130
  1567. tmc2130_check_overtemp();
  1568. if (tmc2130_sg_crash)
  1569. {
  1570. uint8_t crash = tmc2130_sg_crash;
  1571. tmc2130_sg_crash = 0;
  1572. // crashdet_stop_and_save_print();
  1573. switch (crash)
  1574. {
  1575. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1576. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1577. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1578. }
  1579. }
  1580. #endif //TMC2130
  1581. mmu_loop();
  1582. }
  1583. #define DEFINE_PGM_READ_ANY(type, reader) \
  1584. static inline type pgm_read_any(const type *p) \
  1585. { return pgm_read_##reader##_near(p); }
  1586. DEFINE_PGM_READ_ANY(float, float);
  1587. DEFINE_PGM_READ_ANY(signed char, byte);
  1588. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1589. static const PROGMEM type array##_P[3] = \
  1590. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1591. static inline type array(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); } \
  1593. type array##_ext(int axis) \
  1594. { return pgm_read_any(&array##_P[axis]); }
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1598. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1599. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1600. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1601. static void axis_is_at_home(int axis) {
  1602. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1603. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1604. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1605. }
  1606. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1607. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1608. //! @return original feedmultiply
  1609. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1610. saved_feedrate = feedrate;
  1611. int l_feedmultiply = feedmultiply;
  1612. feedmultiply = 100;
  1613. previous_millis_cmd = _millis();
  1614. enable_endstops(enable_endstops_now);
  1615. return l_feedmultiply;
  1616. }
  1617. //! @param original_feedmultiply feedmultiply to restore
  1618. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1619. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1620. enable_endstops(false);
  1621. #endif
  1622. feedrate = saved_feedrate;
  1623. feedmultiply = original_feedmultiply;
  1624. previous_millis_cmd = _millis();
  1625. }
  1626. #ifdef ENABLE_AUTO_BED_LEVELING
  1627. #ifdef AUTO_BED_LEVELING_GRID
  1628. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1629. {
  1630. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1631. planeNormal.debug("planeNormal");
  1632. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1633. //bedLevel.debug("bedLevel");
  1634. //plan_bed_level_matrix.debug("bed level before");
  1635. //vector_3 uncorrected_position = plan_get_position_mm();
  1636. //uncorrected_position.debug("position before");
  1637. vector_3 corrected_position = plan_get_position();
  1638. // corrected_position.debug("position after");
  1639. current_position[X_AXIS] = corrected_position.x;
  1640. current_position[Y_AXIS] = corrected_position.y;
  1641. current_position[Z_AXIS] = corrected_position.z;
  1642. // put the bed at 0 so we don't go below it.
  1643. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1645. }
  1646. #else // not AUTO_BED_LEVELING_GRID
  1647. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1648. plan_bed_level_matrix.set_to_identity();
  1649. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1650. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1651. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1652. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1653. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1654. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1655. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1656. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1657. vector_3 corrected_position = plan_get_position();
  1658. current_position[X_AXIS] = corrected_position.x;
  1659. current_position[Y_AXIS] = corrected_position.y;
  1660. current_position[Z_AXIS] = corrected_position.z;
  1661. // put the bed at 0 so we don't go below it.
  1662. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. }
  1665. #endif // AUTO_BED_LEVELING_GRID
  1666. static void run_z_probe() {
  1667. plan_bed_level_matrix.set_to_identity();
  1668. feedrate = homing_feedrate[Z_AXIS];
  1669. // move down until you find the bed
  1670. float zPosition = -10;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1672. st_synchronize();
  1673. // we have to let the planner know where we are right now as it is not where we said to go.
  1674. zPosition = st_get_position_mm(Z_AXIS);
  1675. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1676. // move up the retract distance
  1677. zPosition += home_retract_mm(Z_AXIS);
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1679. st_synchronize();
  1680. // move back down slowly to find bed
  1681. feedrate = homing_feedrate[Z_AXIS]/4;
  1682. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1684. st_synchronize();
  1685. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1686. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. }
  1689. static void do_blocking_move_to(float x, float y, float z) {
  1690. float oldFeedRate = feedrate;
  1691. feedrate = homing_feedrate[Z_AXIS];
  1692. current_position[Z_AXIS] = z;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1694. st_synchronize();
  1695. feedrate = XY_TRAVEL_SPEED;
  1696. current_position[X_AXIS] = x;
  1697. current_position[Y_AXIS] = y;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. feedrate = oldFeedRate;
  1701. }
  1702. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1703. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1704. }
  1705. /// Probe bed height at position (x,y), returns the measured z value
  1706. static float probe_pt(float x, float y, float z_before) {
  1707. // move to right place
  1708. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1709. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1710. run_z_probe();
  1711. float measured_z = current_position[Z_AXIS];
  1712. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1713. SERIAL_PROTOCOLPGM(" x: ");
  1714. SERIAL_PROTOCOL(x);
  1715. SERIAL_PROTOCOLPGM(" y: ");
  1716. SERIAL_PROTOCOL(y);
  1717. SERIAL_PROTOCOLPGM(" z: ");
  1718. SERIAL_PROTOCOL(measured_z);
  1719. SERIAL_PROTOCOLPGM("\n");
  1720. return measured_z;
  1721. }
  1722. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1723. #ifdef LIN_ADVANCE
  1724. /**
  1725. * M900: Set and/or Get advance K factor and WH/D ratio
  1726. *
  1727. * K<factor> Set advance K factor
  1728. * R<ratio> Set ratio directly (overrides WH/D)
  1729. * W<width> H<height> D<diam> Set ratio from WH/D
  1730. */
  1731. inline void gcode_M900() {
  1732. st_synchronize();
  1733. const float newK = code_seen('K') ? code_value_float() : -1;
  1734. if (newK >= 0) extruder_advance_k = newK;
  1735. float newR = code_seen('R') ? code_value_float() : -1;
  1736. if (newR < 0) {
  1737. const float newD = code_seen('D') ? code_value_float() : -1,
  1738. newW = code_seen('W') ? code_value_float() : -1,
  1739. newH = code_seen('H') ? code_value_float() : -1;
  1740. if (newD >= 0 && newW >= 0 && newH >= 0)
  1741. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1742. }
  1743. if (newR >= 0) advance_ed_ratio = newR;
  1744. SERIAL_ECHO_START;
  1745. SERIAL_ECHOPGM("Advance K=");
  1746. SERIAL_ECHOLN(extruder_advance_k);
  1747. SERIAL_ECHOPGM(" E/D=");
  1748. const float ratio = advance_ed_ratio;
  1749. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1750. }
  1751. #endif // LIN_ADVANCE
  1752. bool check_commands() {
  1753. bool end_command_found = false;
  1754. while (buflen)
  1755. {
  1756. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1757. if (!cmdbuffer_front_already_processed)
  1758. cmdqueue_pop_front();
  1759. cmdbuffer_front_already_processed = false;
  1760. }
  1761. return end_command_found;
  1762. }
  1763. #ifdef TMC2130
  1764. bool calibrate_z_auto()
  1765. {
  1766. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1767. lcd_clear();
  1768. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1769. bool endstops_enabled = enable_endstops(true);
  1770. int axis_up_dir = -home_dir(Z_AXIS);
  1771. tmc2130_home_enter(Z_AXIS_MASK);
  1772. current_position[Z_AXIS] = 0;
  1773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1774. set_destination_to_current();
  1775. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1776. feedrate = homing_feedrate[Z_AXIS];
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1778. st_synchronize();
  1779. // current_position[axis] = 0;
  1780. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. tmc2130_home_exit();
  1782. enable_endstops(false);
  1783. current_position[Z_AXIS] = 0;
  1784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1785. set_destination_to_current();
  1786. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1787. feedrate = homing_feedrate[Z_AXIS] / 2;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1789. st_synchronize();
  1790. enable_endstops(endstops_enabled);
  1791. if (PRINTER_TYPE == PRINTER_MK3) {
  1792. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1793. }
  1794. else {
  1795. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1796. }
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. return true;
  1799. }
  1800. #endif //TMC2130
  1801. #ifdef TMC2130
  1802. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1803. #else
  1804. void homeaxis(int axis, uint8_t cnt)
  1805. #endif //TMC2130
  1806. {
  1807. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1808. #define HOMEAXIS_DO(LETTER) \
  1809. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1810. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1811. {
  1812. int axis_home_dir = home_dir(axis);
  1813. feedrate = homing_feedrate[axis];
  1814. #ifdef TMC2130
  1815. tmc2130_home_enter(X_AXIS_MASK << axis);
  1816. #endif //TMC2130
  1817. // Move away a bit, so that the print head does not touch the end position,
  1818. // and the following movement to endstop has a chance to achieve the required velocity
  1819. // for the stall guard to work.
  1820. current_position[axis] = 0;
  1821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1822. set_destination_to_current();
  1823. // destination[axis] = 11.f;
  1824. destination[axis] = -3.f * axis_home_dir;
  1825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1828. endstops_hit_on_purpose();
  1829. enable_endstops(false);
  1830. current_position[axis] = 0;
  1831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1832. destination[axis] = 1. * axis_home_dir;
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. // Now continue to move up to the left end stop with the collision detection enabled.
  1836. enable_endstops(true);
  1837. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. for (uint8_t i = 0; i < cnt; i++)
  1841. {
  1842. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1843. endstops_hit_on_purpose();
  1844. enable_endstops(false);
  1845. current_position[axis] = 0;
  1846. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1847. destination[axis] = -10.f * axis_home_dir;
  1848. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1849. st_synchronize();
  1850. endstops_hit_on_purpose();
  1851. // Now move left up to the collision, this time with a repeatable velocity.
  1852. enable_endstops(true);
  1853. destination[axis] = 11.f * axis_home_dir;
  1854. #ifdef TMC2130
  1855. feedrate = homing_feedrate[axis];
  1856. #else //TMC2130
  1857. feedrate = homing_feedrate[axis] / 2;
  1858. #endif //TMC2130
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. #ifdef TMC2130
  1862. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1863. if (pstep) pstep[i] = mscnt >> 4;
  1864. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1865. #endif //TMC2130
  1866. }
  1867. endstops_hit_on_purpose();
  1868. enable_endstops(false);
  1869. #ifdef TMC2130
  1870. uint8_t orig = tmc2130_home_origin[axis];
  1871. uint8_t back = tmc2130_home_bsteps[axis];
  1872. if (tmc2130_home_enabled && (orig <= 63))
  1873. {
  1874. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1875. if (back > 0)
  1876. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1877. }
  1878. else
  1879. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1880. tmc2130_home_exit();
  1881. #endif //TMC2130
  1882. axis_is_at_home(axis);
  1883. axis_known_position[axis] = true;
  1884. // Move from minimum
  1885. #ifdef TMC2130
  1886. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1887. #else //TMC2130
  1888. float dist = - axis_home_dir * 0.01f * 64;
  1889. #endif //TMC2130
  1890. current_position[axis] -= dist;
  1891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1892. current_position[axis] += dist;
  1893. destination[axis] = current_position[axis];
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. feedrate = 0.0;
  1897. }
  1898. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1899. {
  1900. #ifdef TMC2130
  1901. FORCE_HIGH_POWER_START;
  1902. #endif
  1903. int axis_home_dir = home_dir(axis);
  1904. current_position[axis] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1907. feedrate = homing_feedrate[axis];
  1908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1909. st_synchronize();
  1910. #ifdef TMC2130
  1911. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1912. FORCE_HIGH_POWER_END;
  1913. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1914. return;
  1915. }
  1916. #endif //TMC2130
  1917. current_position[axis] = 0;
  1918. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1919. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1923. feedrate = homing_feedrate[axis]/2 ;
  1924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1925. st_synchronize();
  1926. #ifdef TMC2130
  1927. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1928. FORCE_HIGH_POWER_END;
  1929. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1930. return;
  1931. }
  1932. #endif //TMC2130
  1933. axis_is_at_home(axis);
  1934. destination[axis] = current_position[axis];
  1935. feedrate = 0.0;
  1936. endstops_hit_on_purpose();
  1937. axis_known_position[axis] = true;
  1938. #ifdef TMC2130
  1939. FORCE_HIGH_POWER_END;
  1940. #endif
  1941. }
  1942. enable_endstops(endstops_enabled);
  1943. }
  1944. /**/
  1945. void home_xy()
  1946. {
  1947. set_destination_to_current();
  1948. homeaxis(X_AXIS);
  1949. homeaxis(Y_AXIS);
  1950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1951. endstops_hit_on_purpose();
  1952. }
  1953. void refresh_cmd_timeout(void)
  1954. {
  1955. previous_millis_cmd = _millis();
  1956. }
  1957. #ifdef FWRETRACT
  1958. void retract(bool retracting, bool swapretract = false) {
  1959. if(retracting && !retracted[active_extruder]) {
  1960. destination[X_AXIS]=current_position[X_AXIS];
  1961. destination[Y_AXIS]=current_position[Y_AXIS];
  1962. destination[Z_AXIS]=current_position[Z_AXIS];
  1963. destination[E_AXIS]=current_position[E_AXIS];
  1964. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1965. plan_set_e_position(current_position[E_AXIS]);
  1966. float oldFeedrate = feedrate;
  1967. feedrate=cs.retract_feedrate*60;
  1968. retracted[active_extruder]=true;
  1969. prepare_move();
  1970. current_position[Z_AXIS]-=cs.retract_zlift;
  1971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1972. prepare_move();
  1973. feedrate = oldFeedrate;
  1974. } else if(!retracting && retracted[active_extruder]) {
  1975. destination[X_AXIS]=current_position[X_AXIS];
  1976. destination[Y_AXIS]=current_position[Y_AXIS];
  1977. destination[Z_AXIS]=current_position[Z_AXIS];
  1978. destination[E_AXIS]=current_position[E_AXIS];
  1979. current_position[Z_AXIS]+=cs.retract_zlift;
  1980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1981. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1982. plan_set_e_position(current_position[E_AXIS]);
  1983. float oldFeedrate = feedrate;
  1984. feedrate=cs.retract_recover_feedrate*60;
  1985. retracted[active_extruder]=false;
  1986. prepare_move();
  1987. feedrate = oldFeedrate;
  1988. }
  1989. } //retract
  1990. #endif //FWRETRACT
  1991. void trace() {
  1992. Sound_MakeCustom(25,440,true);
  1993. }
  1994. /*
  1995. void ramming() {
  1996. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1997. if (current_temperature[0] < 230) {
  1998. //PLA
  1999. max_feedrate[E_AXIS] = 50;
  2000. //current_position[E_AXIS] -= 8;
  2001. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2002. //current_position[E_AXIS] += 8;
  2003. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2004. current_position[E_AXIS] += 5.4;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2006. current_position[E_AXIS] += 3.2;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2008. current_position[E_AXIS] += 3;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2010. st_synchronize();
  2011. max_feedrate[E_AXIS] = 80;
  2012. current_position[E_AXIS] -= 82;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2014. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2015. current_position[E_AXIS] -= 20;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2017. current_position[E_AXIS] += 5;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2019. current_position[E_AXIS] += 5;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2021. current_position[E_AXIS] -= 10;
  2022. st_synchronize();
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2024. current_position[E_AXIS] += 10;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2026. current_position[E_AXIS] -= 10;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2028. current_position[E_AXIS] += 10;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2030. current_position[E_AXIS] -= 10;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2032. st_synchronize();
  2033. }
  2034. else {
  2035. //ABS
  2036. max_feedrate[E_AXIS] = 50;
  2037. //current_position[E_AXIS] -= 8;
  2038. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2039. //current_position[E_AXIS] += 8;
  2040. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2041. current_position[E_AXIS] += 3.1;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2043. current_position[E_AXIS] += 3.1;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2045. current_position[E_AXIS] += 4;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2047. st_synchronize();
  2048. //current_position[X_AXIS] += 23; //delay
  2049. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2050. //current_position[X_AXIS] -= 23; //delay
  2051. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2052. _delay(4700);
  2053. max_feedrate[E_AXIS] = 80;
  2054. current_position[E_AXIS] -= 92;
  2055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2056. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2057. current_position[E_AXIS] -= 5;
  2058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2061. current_position[E_AXIS] -= 5;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2063. st_synchronize();
  2064. current_position[E_AXIS] += 5;
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2066. current_position[E_AXIS] -= 5;
  2067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2068. current_position[E_AXIS] += 5;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2070. current_position[E_AXIS] -= 5;
  2071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2072. st_synchronize();
  2073. }
  2074. }
  2075. */
  2076. #ifdef TMC2130
  2077. void force_high_power_mode(bool start_high_power_section) {
  2078. uint8_t silent;
  2079. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2080. if (silent == 1) {
  2081. //we are in silent mode, set to normal mode to enable crash detection
  2082. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2083. st_synchronize();
  2084. cli();
  2085. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2086. update_mode_profile();
  2087. tmc2130_init();
  2088. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2089. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2090. st_reset_timer();
  2091. sei();
  2092. }
  2093. }
  2094. #endif //TMC2130
  2095. #ifdef TMC2130
  2096. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2097. #else
  2098. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2099. #endif //TMC2130
  2100. {
  2101. st_synchronize();
  2102. #if 0
  2103. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2104. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2105. #endif
  2106. // Flag for the display update routine and to disable the print cancelation during homing.
  2107. homing_flag = true;
  2108. // Which axes should be homed?
  2109. bool home_x = home_x_axis;
  2110. bool home_y = home_y_axis;
  2111. bool home_z = home_z_axis;
  2112. // Either all X,Y,Z codes are present, or none of them.
  2113. bool home_all_axes = home_x == home_y && home_x == home_z;
  2114. if (home_all_axes)
  2115. // No X/Y/Z code provided means to home all axes.
  2116. home_x = home_y = home_z = true;
  2117. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2118. if (home_all_axes) {
  2119. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2120. feedrate = homing_feedrate[Z_AXIS];
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2122. st_synchronize();
  2123. }
  2124. #ifdef ENABLE_AUTO_BED_LEVELING
  2125. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2126. #endif //ENABLE_AUTO_BED_LEVELING
  2127. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2128. // the planner will not perform any adjustments in the XY plane.
  2129. // Wait for the motors to stop and update the current position with the absolute values.
  2130. world2machine_revert_to_uncorrected();
  2131. // For mesh bed leveling deactivate the matrix temporarily.
  2132. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2133. // in a single axis only.
  2134. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2135. #ifdef MESH_BED_LEVELING
  2136. uint8_t mbl_was_active = mbl.active;
  2137. mbl.active = 0;
  2138. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2139. #endif
  2140. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2141. // consumed during the first movements following this statement.
  2142. if (home_z)
  2143. babystep_undo();
  2144. saved_feedrate = feedrate;
  2145. int l_feedmultiply = feedmultiply;
  2146. feedmultiply = 100;
  2147. previous_millis_cmd = _millis();
  2148. enable_endstops(true);
  2149. memcpy(destination, current_position, sizeof(destination));
  2150. feedrate = 0.0;
  2151. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2152. if(home_z)
  2153. homeaxis(Z_AXIS);
  2154. #endif
  2155. #ifdef QUICK_HOME
  2156. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2157. if(home_x && home_y) //first diagonal move
  2158. {
  2159. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2160. int x_axis_home_dir = home_dir(X_AXIS);
  2161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2162. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2163. feedrate = homing_feedrate[X_AXIS];
  2164. if(homing_feedrate[Y_AXIS]<feedrate)
  2165. feedrate = homing_feedrate[Y_AXIS];
  2166. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2167. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2168. } else {
  2169. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2170. }
  2171. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2172. st_synchronize();
  2173. axis_is_at_home(X_AXIS);
  2174. axis_is_at_home(Y_AXIS);
  2175. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2176. destination[X_AXIS] = current_position[X_AXIS];
  2177. destination[Y_AXIS] = current_position[Y_AXIS];
  2178. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2179. feedrate = 0.0;
  2180. st_synchronize();
  2181. endstops_hit_on_purpose();
  2182. current_position[X_AXIS] = destination[X_AXIS];
  2183. current_position[Y_AXIS] = destination[Y_AXIS];
  2184. current_position[Z_AXIS] = destination[Z_AXIS];
  2185. }
  2186. #endif /* QUICK_HOME */
  2187. #ifdef TMC2130
  2188. if(home_x)
  2189. {
  2190. if (!calib)
  2191. homeaxis(X_AXIS);
  2192. else
  2193. tmc2130_home_calibrate(X_AXIS);
  2194. }
  2195. if(home_y)
  2196. {
  2197. if (!calib)
  2198. homeaxis(Y_AXIS);
  2199. else
  2200. tmc2130_home_calibrate(Y_AXIS);
  2201. }
  2202. #else //TMC2130
  2203. if(home_x) homeaxis(X_AXIS);
  2204. if(home_y) homeaxis(Y_AXIS);
  2205. #endif //TMC2130
  2206. if(home_x_axis && home_x_value != 0)
  2207. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2208. if(home_y_axis && home_y_value != 0)
  2209. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2210. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2211. #ifndef Z_SAFE_HOMING
  2212. if(home_z) {
  2213. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2214. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2215. feedrate = max_feedrate[Z_AXIS];
  2216. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2217. st_synchronize();
  2218. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2219. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2220. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2221. {
  2222. homeaxis(X_AXIS);
  2223. homeaxis(Y_AXIS);
  2224. }
  2225. // 1st mesh bed leveling measurement point, corrected.
  2226. world2machine_initialize();
  2227. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2228. world2machine_reset();
  2229. if (destination[Y_AXIS] < Y_MIN_POS)
  2230. destination[Y_AXIS] = Y_MIN_POS;
  2231. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2232. feedrate = homing_feedrate[Z_AXIS]/10;
  2233. current_position[Z_AXIS] = 0;
  2234. enable_endstops(false);
  2235. #ifdef DEBUG_BUILD
  2236. SERIAL_ECHOLNPGM("plan_set_position()");
  2237. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2238. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2239. #endif
  2240. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2241. #ifdef DEBUG_BUILD
  2242. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2243. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2244. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2245. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2246. #endif
  2247. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2248. st_synchronize();
  2249. current_position[X_AXIS] = destination[X_AXIS];
  2250. current_position[Y_AXIS] = destination[Y_AXIS];
  2251. enable_endstops(true);
  2252. endstops_hit_on_purpose();
  2253. homeaxis(Z_AXIS);
  2254. #else // MESH_BED_LEVELING
  2255. homeaxis(Z_AXIS);
  2256. #endif // MESH_BED_LEVELING
  2257. }
  2258. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2259. if(home_all_axes) {
  2260. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2261. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2262. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2263. feedrate = XY_TRAVEL_SPEED/60;
  2264. current_position[Z_AXIS] = 0;
  2265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2267. st_synchronize();
  2268. current_position[X_AXIS] = destination[X_AXIS];
  2269. current_position[Y_AXIS] = destination[Y_AXIS];
  2270. homeaxis(Z_AXIS);
  2271. }
  2272. // Let's see if X and Y are homed and probe is inside bed area.
  2273. if(home_z) {
  2274. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2275. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2276. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2277. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2278. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2279. current_position[Z_AXIS] = 0;
  2280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2281. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2282. feedrate = max_feedrate[Z_AXIS];
  2283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2284. st_synchronize();
  2285. homeaxis(Z_AXIS);
  2286. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2287. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2288. SERIAL_ECHO_START;
  2289. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2290. } else {
  2291. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2292. SERIAL_ECHO_START;
  2293. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2294. }
  2295. }
  2296. #endif // Z_SAFE_HOMING
  2297. #endif // Z_HOME_DIR < 0
  2298. if(home_z_axis && home_z_value != 0)
  2299. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2300. #ifdef ENABLE_AUTO_BED_LEVELING
  2301. if(home_z)
  2302. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2303. #endif
  2304. // Set the planner and stepper routine positions.
  2305. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2306. // contains the machine coordinates.
  2307. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2308. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2309. enable_endstops(false);
  2310. #endif
  2311. feedrate = saved_feedrate;
  2312. feedmultiply = l_feedmultiply;
  2313. previous_millis_cmd = _millis();
  2314. endstops_hit_on_purpose();
  2315. #ifndef MESH_BED_LEVELING
  2316. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2317. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2318. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2319. lcd_adjust_z();
  2320. #endif
  2321. // Load the machine correction matrix
  2322. world2machine_initialize();
  2323. // and correct the current_position XY axes to match the transformed coordinate system.
  2324. world2machine_update_current();
  2325. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2326. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2327. {
  2328. if (! home_z && mbl_was_active) {
  2329. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2330. mbl.active = true;
  2331. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2332. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2333. }
  2334. }
  2335. else
  2336. {
  2337. st_synchronize();
  2338. homing_flag = false;
  2339. }
  2340. #endif
  2341. if (farm_mode) { prusa_statistics(20); };
  2342. homing_flag = false;
  2343. #if 0
  2344. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2345. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2346. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2347. #endif
  2348. }
  2349. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2350. {
  2351. #ifdef TMC2130
  2352. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2353. #else
  2354. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2355. #endif //TMC2130
  2356. }
  2357. void adjust_bed_reset()
  2358. {
  2359. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2364. }
  2365. //! @brief Calibrate XYZ
  2366. //! @param onlyZ if true, calibrate only Z axis
  2367. //! @param verbosity_level
  2368. //! @retval true Succeeded
  2369. //! @retval false Failed
  2370. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2371. {
  2372. bool final_result = false;
  2373. #ifdef TMC2130
  2374. FORCE_HIGH_POWER_START;
  2375. #endif // TMC2130
  2376. // Only Z calibration?
  2377. if (!onlyZ)
  2378. {
  2379. setTargetBed(0);
  2380. setAllTargetHotends(0);
  2381. adjust_bed_reset(); //reset bed level correction
  2382. }
  2383. // Disable the default update procedure of the display. We will do a modal dialog.
  2384. lcd_update_enable(false);
  2385. // Let the planner use the uncorrected coordinates.
  2386. mbl.reset();
  2387. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2388. // the planner will not perform any adjustments in the XY plane.
  2389. // Wait for the motors to stop and update the current position with the absolute values.
  2390. world2machine_revert_to_uncorrected();
  2391. // Reset the baby step value applied without moving the axes.
  2392. babystep_reset();
  2393. // Mark all axes as in a need for homing.
  2394. memset(axis_known_position, 0, sizeof(axis_known_position));
  2395. // Home in the XY plane.
  2396. //set_destination_to_current();
  2397. int l_feedmultiply = setup_for_endstop_move();
  2398. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2399. home_xy();
  2400. enable_endstops(false);
  2401. current_position[X_AXIS] += 5;
  2402. current_position[Y_AXIS] += 5;
  2403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2404. st_synchronize();
  2405. // Let the user move the Z axes up to the end stoppers.
  2406. #ifdef TMC2130
  2407. if (calibrate_z_auto())
  2408. {
  2409. #else //TMC2130
  2410. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2411. {
  2412. #endif //TMC2130
  2413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2414. if(onlyZ){
  2415. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2416. lcd_set_cursor(0, 3);
  2417. lcd_print(1);
  2418. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2419. }else{
  2420. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2421. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2422. lcd_set_cursor(0, 2);
  2423. lcd_print(1);
  2424. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2425. }
  2426. refresh_cmd_timeout();
  2427. #ifndef STEEL_SHEET
  2428. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2429. {
  2430. lcd_wait_for_cool_down();
  2431. }
  2432. #endif //STEEL_SHEET
  2433. if(!onlyZ)
  2434. {
  2435. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2436. #ifdef STEEL_SHEET
  2437. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2438. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2439. #endif //STEEL_SHEET
  2440. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2441. KEEPALIVE_STATE(IN_HANDLER);
  2442. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2443. lcd_set_cursor(0, 2);
  2444. lcd_print(1);
  2445. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2446. }
  2447. bool endstops_enabled = enable_endstops(false);
  2448. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2450. st_synchronize();
  2451. // Move the print head close to the bed.
  2452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2453. enable_endstops(true);
  2454. #ifdef TMC2130
  2455. tmc2130_home_enter(Z_AXIS_MASK);
  2456. #endif //TMC2130
  2457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2458. st_synchronize();
  2459. #ifdef TMC2130
  2460. tmc2130_home_exit();
  2461. #endif //TMC2130
  2462. enable_endstops(endstops_enabled);
  2463. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2464. {
  2465. if (onlyZ)
  2466. {
  2467. clean_up_after_endstop_move(l_feedmultiply);
  2468. // Z only calibration.
  2469. // Load the machine correction matrix
  2470. world2machine_initialize();
  2471. // and correct the current_position to match the transformed coordinate system.
  2472. world2machine_update_current();
  2473. //FIXME
  2474. bool result = sample_mesh_and_store_reference();
  2475. if (result)
  2476. {
  2477. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2478. // Shipped, the nozzle height has been set already. The user can start printing now.
  2479. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2480. final_result = true;
  2481. // babystep_apply();
  2482. }
  2483. }
  2484. else
  2485. {
  2486. // Reset the baby step value and the baby step applied flag.
  2487. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2488. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2489. // Complete XYZ calibration.
  2490. uint8_t point_too_far_mask = 0;
  2491. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2492. clean_up_after_endstop_move(l_feedmultiply);
  2493. // Print head up.
  2494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2496. st_synchronize();
  2497. //#ifndef NEW_XYZCAL
  2498. if (result >= 0)
  2499. {
  2500. #ifdef HEATBED_V2
  2501. sample_z();
  2502. #else //HEATBED_V2
  2503. point_too_far_mask = 0;
  2504. // Second half: The fine adjustment.
  2505. // Let the planner use the uncorrected coordinates.
  2506. mbl.reset();
  2507. world2machine_reset();
  2508. // Home in the XY plane.
  2509. int l_feedmultiply = setup_for_endstop_move();
  2510. home_xy();
  2511. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2512. clean_up_after_endstop_move(l_feedmultiply);
  2513. // Print head up.
  2514. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2516. st_synchronize();
  2517. // if (result >= 0) babystep_apply();
  2518. #endif //HEATBED_V2
  2519. }
  2520. //#endif //NEW_XYZCAL
  2521. lcd_update_enable(true);
  2522. lcd_update(2);
  2523. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2524. if (result >= 0)
  2525. {
  2526. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2527. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2528. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2529. final_result = true;
  2530. }
  2531. }
  2532. #ifdef TMC2130
  2533. tmc2130_home_exit();
  2534. #endif
  2535. }
  2536. else
  2537. {
  2538. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2539. final_result = false;
  2540. }
  2541. }
  2542. else
  2543. {
  2544. // Timeouted.
  2545. }
  2546. lcd_update_enable(true);
  2547. #ifdef TMC2130
  2548. FORCE_HIGH_POWER_END;
  2549. #endif // TMC2130
  2550. return final_result;
  2551. }
  2552. void gcode_M114()
  2553. {
  2554. SERIAL_PROTOCOLPGM("X:");
  2555. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2556. SERIAL_PROTOCOLPGM(" Y:");
  2557. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" Z:");
  2559. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" E:");
  2561. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2562. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2563. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2564. SERIAL_PROTOCOLPGM(" Y:");
  2565. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" Z:");
  2567. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" E:");
  2569. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2570. SERIAL_PROTOCOLLN("");
  2571. }
  2572. //! extracted code to compute z_shift for M600 in case of filament change operation
  2573. //! requested from fsensors.
  2574. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2575. //! unlike the previous implementation, which was adding 25mm even when the head was
  2576. //! printing at e.g. 24mm height.
  2577. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2578. //! the printout.
  2579. //! This function is templated to enable fast change of computation data type.
  2580. //! @return new z_shift value
  2581. template<typename T>
  2582. static T gcode_M600_filament_change_z_shift()
  2583. {
  2584. #ifdef FILAMENTCHANGE_ZADD
  2585. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2586. // avoid floating point arithmetics when not necessary - results in shorter code
  2587. T ztmp = T( current_position[Z_AXIS] );
  2588. T z_shift = 0;
  2589. if(ztmp < T(25)){
  2590. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2591. }
  2592. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2593. #else
  2594. return T(0);
  2595. #endif
  2596. }
  2597. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2598. {
  2599. st_synchronize();
  2600. float lastpos[4];
  2601. if (farm_mode)
  2602. {
  2603. prusa_statistics(22);
  2604. }
  2605. //First backup current position and settings
  2606. int feedmultiplyBckp = feedmultiply;
  2607. float HotendTempBckp = degTargetHotend(active_extruder);
  2608. int fanSpeedBckp = fanSpeed;
  2609. lastpos[X_AXIS] = current_position[X_AXIS];
  2610. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2611. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2612. lastpos[E_AXIS] = current_position[E_AXIS];
  2613. //Retract E
  2614. current_position[E_AXIS] += e_shift;
  2615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2616. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2617. st_synchronize();
  2618. //Lift Z
  2619. current_position[Z_AXIS] += z_shift;
  2620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2621. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2622. st_synchronize();
  2623. //Move XY to side
  2624. current_position[X_AXIS] = x_position;
  2625. current_position[Y_AXIS] = y_position;
  2626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2627. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2628. st_synchronize();
  2629. //Beep, manage nozzle heater and wait for user to start unload filament
  2630. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2631. lcd_change_fil_state = 0;
  2632. // Unload filament
  2633. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2634. else unload_filament(); //unload filament for single material (used also in M702)
  2635. //finish moves
  2636. st_synchronize();
  2637. if (!mmu_enabled)
  2638. {
  2639. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2640. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2641. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2642. if (lcd_change_fil_state == 0)
  2643. {
  2644. lcd_clear();
  2645. lcd_set_cursor(0, 2);
  2646. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2647. current_position[X_AXIS] -= 100;
  2648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2649. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2650. st_synchronize();
  2651. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2652. }
  2653. }
  2654. if (mmu_enabled)
  2655. {
  2656. if (!automatic) {
  2657. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2658. mmu_M600_wait_and_beep();
  2659. if (saved_printing) {
  2660. lcd_clear();
  2661. lcd_set_cursor(0, 2);
  2662. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2663. mmu_command(MmuCmd::R0);
  2664. manage_response(false, false);
  2665. }
  2666. }
  2667. mmu_M600_load_filament(automatic, HotendTempBckp);
  2668. }
  2669. else
  2670. M600_load_filament();
  2671. if (!automatic) M600_check_state(HotendTempBckp);
  2672. lcd_update_enable(true);
  2673. //Not let's go back to print
  2674. fanSpeed = fanSpeedBckp;
  2675. //Feed a little of filament to stabilize pressure
  2676. if (!automatic)
  2677. {
  2678. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2680. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2681. }
  2682. //Move XY back
  2683. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2684. FILAMENTCHANGE_XYFEED, active_extruder);
  2685. st_synchronize();
  2686. //Move Z back
  2687. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2688. FILAMENTCHANGE_ZFEED, active_extruder);
  2689. st_synchronize();
  2690. //Set E position to original
  2691. plan_set_e_position(lastpos[E_AXIS]);
  2692. memcpy(current_position, lastpos, sizeof(lastpos));
  2693. memcpy(destination, current_position, sizeof(current_position));
  2694. //Recover feed rate
  2695. feedmultiply = feedmultiplyBckp;
  2696. char cmd[9];
  2697. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2698. enquecommand(cmd);
  2699. #ifdef IR_SENSOR
  2700. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2701. fsensor_check_autoload();
  2702. #endif //IR_SENSOR
  2703. lcd_setstatuspgm(_T(WELCOME_MSG));
  2704. custom_message_type = CustomMsg::Status;
  2705. }
  2706. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2707. //!
  2708. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2709. //! during extruding (loading) filament.
  2710. void marlin_rise_z(void)
  2711. {
  2712. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2713. }
  2714. void gcode_M701()
  2715. {
  2716. printf_P(PSTR("gcode_M701 begin\n"));
  2717. if (farm_mode)
  2718. {
  2719. prusa_statistics(22);
  2720. }
  2721. if (mmu_enabled)
  2722. {
  2723. extr_adj(tmp_extruder);//loads current extruder
  2724. mmu_extruder = tmp_extruder;
  2725. }
  2726. else
  2727. {
  2728. enable_z();
  2729. custom_message_type = CustomMsg::FilamentLoading;
  2730. #ifdef FSENSOR_QUALITY
  2731. fsensor_oq_meassure_start(40);
  2732. #endif //FSENSOR_QUALITY
  2733. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2734. current_position[E_AXIS] += 40;
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2736. st_synchronize();
  2737. marlin_rise_z();
  2738. current_position[E_AXIS] += 30;
  2739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2740. load_filament_final_feed(); //slow sequence
  2741. st_synchronize();
  2742. Sound_MakeCustom(50,500,false);
  2743. if (!farm_mode && loading_flag) {
  2744. lcd_load_filament_color_check();
  2745. }
  2746. lcd_update_enable(true);
  2747. lcd_update(2);
  2748. lcd_setstatuspgm(_T(WELCOME_MSG));
  2749. disable_z();
  2750. loading_flag = false;
  2751. custom_message_type = CustomMsg::Status;
  2752. #ifdef FSENSOR_QUALITY
  2753. fsensor_oq_meassure_stop();
  2754. if (!fsensor_oq_result())
  2755. {
  2756. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2757. lcd_update_enable(true);
  2758. lcd_update(2);
  2759. if (disable)
  2760. fsensor_disable();
  2761. }
  2762. #endif //FSENSOR_QUALITY
  2763. }
  2764. }
  2765. /**
  2766. * @brief Get serial number from 32U2 processor
  2767. *
  2768. * Typical format of S/N is:CZPX0917X003XC13518
  2769. *
  2770. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2771. *
  2772. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2773. * reply is transmitted to serial port 1 character by character.
  2774. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2775. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2776. * in any case.
  2777. */
  2778. static void gcode_PRUSA_SN()
  2779. {
  2780. if (farm_mode) {
  2781. selectedSerialPort = 0;
  2782. putchar(';');
  2783. putchar('S');
  2784. int numbersRead = 0;
  2785. ShortTimer timeout;
  2786. timeout.start();
  2787. while (numbersRead < 19) {
  2788. while (MSerial.available() > 0) {
  2789. uint8_t serial_char = MSerial.read();
  2790. selectedSerialPort = 1;
  2791. putchar(serial_char);
  2792. numbersRead++;
  2793. selectedSerialPort = 0;
  2794. }
  2795. if (timeout.expired(100u)) break;
  2796. }
  2797. selectedSerialPort = 1;
  2798. putchar('\n');
  2799. #if 0
  2800. for (int b = 0; b < 3; b++) {
  2801. _tone(BEEPER, 110);
  2802. _delay(50);
  2803. _noTone(BEEPER);
  2804. _delay(50);
  2805. }
  2806. #endif
  2807. } else {
  2808. puts_P(_N("Not in farm mode."));
  2809. }
  2810. }
  2811. #ifdef BACKLASH_X
  2812. extern uint8_t st_backlash_x;
  2813. #endif //BACKLASH_X
  2814. #ifdef BACKLASH_Y
  2815. extern uint8_t st_backlash_y;
  2816. #endif //BACKLASH_Y
  2817. //! @brief Parse and process commands
  2818. //!
  2819. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2820. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2821. //!
  2822. //! Implemented Codes
  2823. //! -------------------
  2824. //!
  2825. //!@n PRUSA CODES
  2826. //!@n P F - Returns FW versions
  2827. //!@n P R - Returns revision of printer
  2828. //!
  2829. //!@n G0 -> G1
  2830. //!@n G1 - Coordinated Movement X Y Z E
  2831. //!@n G2 - CW ARC
  2832. //!@n G3 - CCW ARC
  2833. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2834. //!@n G10 - retract filament according to settings of M207
  2835. //!@n G11 - retract recover filament according to settings of M208
  2836. //!@n G28 - Home all Axis
  2837. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2838. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2839. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2840. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2841. //!@n G80 - Automatic mesh bed leveling
  2842. //!@n G81 - Print bed profile
  2843. //!@n G90 - Use Absolute Coordinates
  2844. //!@n G91 - Use Relative Coordinates
  2845. //!@n G92 - Set current position to coordinates given
  2846. //!
  2847. //!@n M Codes
  2848. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2849. //!@n M1 - Same as M0
  2850. //!@n M17 - Enable/Power all stepper motors
  2851. //!@n M18 - Disable all stepper motors; same as M84
  2852. //!@n M20 - List SD card
  2853. //!@n M21 - Init SD card
  2854. //!@n M22 - Release SD card
  2855. //!@n M23 - Select SD file (M23 filename.g)
  2856. //!@n M24 - Start/resume SD print
  2857. //!@n M25 - Pause SD print
  2858. //!@n M26 - Set SD position in bytes (M26 S12345)
  2859. //!@n M27 - Report SD print status
  2860. //!@n M28 - Start SD write (M28 filename.g)
  2861. //!@n M29 - Stop SD write
  2862. //!@n M30 - Delete file from SD (M30 filename.g)
  2863. //!@n M31 - Output time since last M109 or SD card start to serial
  2864. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2865. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2866. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2867. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2868. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2869. //!@n M73 - Show percent done and print time remaining
  2870. //!@n M80 - Turn on Power Supply
  2871. //!@n M81 - Turn off Power Supply
  2872. //!@n M82 - Set E codes absolute (default)
  2873. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2874. //!@n M84 - Disable steppers until next move,
  2875. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2876. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2877. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2878. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2879. //!@n M104 - Set extruder target temp
  2880. //!@n M105 - Read current temp
  2881. //!@n M106 - Fan on
  2882. //!@n M107 - Fan off
  2883. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2884. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2885. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2886. //!@n M112 - Emergency stop
  2887. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2888. //!@n M114 - Output current position to serial port
  2889. //!@n M115 - Capabilities string
  2890. //!@n M117 - display message
  2891. //!@n M119 - Output Endstop status to serial port
  2892. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2893. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2894. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2895. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2896. //!@n M140 - Set bed target temp
  2897. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2898. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2899. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2900. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2901. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2902. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2903. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2904. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2905. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2906. //!@n M206 - set additional homing offset
  2907. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2908. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2909. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2910. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2911. //!@n M220 S<factor in percent>- set speed factor override percentage
  2912. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2913. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2914. //!@n M240 - Trigger a camera to take a photograph
  2915. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2916. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2917. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2918. //!@n M301 - Set PID parameters P I and D
  2919. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2920. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2921. //!@n M304 - Set bed PID parameters P I and D
  2922. //!@n M400 - Finish all moves
  2923. //!@n M401 - Lower z-probe if present
  2924. //!@n M402 - Raise z-probe if present
  2925. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2926. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2927. //!@n M406 - Turn off Filament Sensor extrusion control
  2928. //!@n M407 - Displays measured filament diameter
  2929. //!@n M500 - stores parameters in EEPROM
  2930. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2931. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2932. //!@n M503 - print the current settings (from memory not from EEPROM)
  2933. //!@n M509 - force language selection on next restart
  2934. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2935. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2936. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2937. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2938. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2939. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2940. //!@n M907 - Set digital trimpot motor current using axis codes.
  2941. //!@n M908 - Control digital trimpot directly.
  2942. //!@n M350 - Set microstepping mode.
  2943. //!@n M351 - Toggle MS1 MS2 pins directly.
  2944. //!
  2945. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2946. //!@n M999 - Restart after being stopped by error
  2947. void process_commands()
  2948. {
  2949. #ifdef FANCHECK
  2950. if (fan_check_error){
  2951. if( fan_check_error == EFCE_DETECTED ){
  2952. fan_check_error = EFCE_REPORTED;
  2953. lcd_pause_print();
  2954. } // otherwise it has already been reported, so just ignore further processing
  2955. return;
  2956. }
  2957. #endif
  2958. if (!buflen) return; //empty command
  2959. #ifdef FILAMENT_RUNOUT_SUPPORT
  2960. SET_INPUT(FR_SENS);
  2961. #endif
  2962. #ifdef CMDBUFFER_DEBUG
  2963. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2964. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2965. SERIAL_ECHOLNPGM("");
  2966. SERIAL_ECHOPGM("In cmdqueue: ");
  2967. SERIAL_ECHO(buflen);
  2968. SERIAL_ECHOLNPGM("");
  2969. #endif /* CMDBUFFER_DEBUG */
  2970. unsigned long codenum; //throw away variable
  2971. char *starpos = NULL;
  2972. #ifdef ENABLE_AUTO_BED_LEVELING
  2973. float x_tmp, y_tmp, z_tmp, real_z;
  2974. #endif
  2975. // PRUSA GCODES
  2976. KEEPALIVE_STATE(IN_HANDLER);
  2977. #ifdef SNMM
  2978. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2979. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2980. int8_t SilentMode;
  2981. #endif
  2982. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2983. starpos = (strchr(strchr_pointer + 5, '*'));
  2984. if (starpos != NULL)
  2985. *(starpos) = '\0';
  2986. lcd_setstatus(strchr_pointer + 5);
  2987. }
  2988. #ifdef TMC2130
  2989. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2990. {
  2991. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2992. {
  2993. uint8_t mask = 0;
  2994. if (code_seen('X')) mask |= X_AXIS_MASK;
  2995. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2996. crashdet_detected(mask);
  2997. }
  2998. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2999. crashdet_recover();
  3000. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  3001. crashdet_cancel();
  3002. }
  3003. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3004. {
  3005. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  3006. {
  3007. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3008. axis = (axis == 'E')?3:(axis - 'X');
  3009. if (axis < 4)
  3010. {
  3011. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3012. tmc2130_set_wave(axis, 247, fac);
  3013. }
  3014. }
  3015. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3016. {
  3017. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3018. axis = (axis == 'E')?3:(axis - 'X');
  3019. if (axis < 4)
  3020. {
  3021. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3022. uint16_t res = tmc2130_get_res(axis);
  3023. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3024. }
  3025. }
  3026. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3027. {
  3028. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3029. axis = (axis == 'E')?3:(axis - 'X');
  3030. if (axis < 4)
  3031. {
  3032. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3033. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3034. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3035. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3036. char* str_end = 0;
  3037. if (CMDBUFFER_CURRENT_STRING[14])
  3038. {
  3039. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3040. if (str_end && *str_end)
  3041. {
  3042. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3043. if (str_end && *str_end)
  3044. {
  3045. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3046. if (str_end && *str_end)
  3047. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3048. }
  3049. }
  3050. }
  3051. tmc2130_chopper_config[axis].toff = chop0;
  3052. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3053. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3054. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3055. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3056. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3057. }
  3058. }
  3059. }
  3060. #ifdef BACKLASH_X
  3061. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3062. {
  3063. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3064. st_backlash_x = bl;
  3065. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3066. }
  3067. #endif //BACKLASH_X
  3068. #ifdef BACKLASH_Y
  3069. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3070. {
  3071. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3072. st_backlash_y = bl;
  3073. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3074. }
  3075. #endif //BACKLASH_Y
  3076. #endif //TMC2130
  3077. else if(code_seen("PRUSA")){
  3078. if (code_seen("Ping")) { //! PRUSA Ping
  3079. if (farm_mode) {
  3080. PingTime = _millis();
  3081. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3082. }
  3083. }
  3084. else if (code_seen("PRN")) { //! PRUSA PRN
  3085. printf_P(_N("%d"), status_number);
  3086. }else if (code_seen("FAN")) { //! PRUSA FAN
  3087. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3088. }else if (code_seen("fn")) { //! PRUSA fn
  3089. if (farm_mode) {
  3090. printf_P(_N("%d"), farm_no);
  3091. }
  3092. else {
  3093. puts_P(_N("Not in farm mode."));
  3094. }
  3095. }
  3096. else if (code_seen("thx")) //! PRUSA thx
  3097. {
  3098. no_response = false;
  3099. }
  3100. else if (code_seen("uvlo")) //! PRUSA uvlo
  3101. {
  3102. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3103. enquecommand_P(PSTR("M24"));
  3104. }
  3105. #ifdef FILAMENT_SENSOR
  3106. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3107. {
  3108. fsensor_restore_print_and_continue();
  3109. }
  3110. #endif //FILAMENT_SENSOR
  3111. else if (code_seen("MMURES")) //! PRUSA MMURES
  3112. {
  3113. mmu_reset();
  3114. }
  3115. else if (code_seen("RESET")) { //! PRUSA RESET
  3116. // careful!
  3117. if (farm_mode) {
  3118. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3119. boot_app_magic = BOOT_APP_MAGIC;
  3120. boot_app_flags = BOOT_APP_FLG_RUN;
  3121. wdt_enable(WDTO_15MS);
  3122. cli();
  3123. while(1);
  3124. #else //WATCHDOG
  3125. asm volatile("jmp 0x3E000");
  3126. #endif //WATCHDOG
  3127. }
  3128. else {
  3129. MYSERIAL.println("Not in farm mode.");
  3130. }
  3131. }else if (code_seen("fv")) { //! PRUSA fv
  3132. // get file version
  3133. #ifdef SDSUPPORT
  3134. card.openFile(strchr_pointer + 3,true);
  3135. while (true) {
  3136. uint16_t readByte = card.get();
  3137. MYSERIAL.write(readByte);
  3138. if (readByte=='\n') {
  3139. break;
  3140. }
  3141. }
  3142. card.closefile();
  3143. #endif // SDSUPPORT
  3144. } else if (code_seen("M28")) { //! PRUSA M28
  3145. trace();
  3146. prusa_sd_card_upload = true;
  3147. card.openFile(strchr_pointer+4,false);
  3148. } else if (code_seen("SN")) { //! PRUSA SN
  3149. gcode_PRUSA_SN();
  3150. } else if(code_seen("Fir")){ //! PRUSA Fir
  3151. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3152. } else if(code_seen("Rev")){ //! PRUSA Rev
  3153. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3154. } else if(code_seen("Lang")) { //! PRUSA Lang
  3155. lang_reset();
  3156. } else if(code_seen("Lz")) { //! PRUSA Lz
  3157. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3158. } else if(code_seen("Beat")) { //! PRUSA Beat
  3159. // Kick farm link timer
  3160. kicktime = _millis();
  3161. } else if(code_seen("FR")) { //! PRUSA FR
  3162. // Factory full reset
  3163. factory_reset(0);
  3164. //-//
  3165. /*
  3166. } else if(code_seen("rrr")) {
  3167. MYSERIAL.println("=== checking ===");
  3168. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3169. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3170. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3171. MYSERIAL.println(farm_mode,DEC);
  3172. MYSERIAL.println(eCheckMode,DEC);
  3173. } else if(code_seen("www")) {
  3174. MYSERIAL.println("=== @ FF ===");
  3175. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3176. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3177. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3178. */
  3179. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3180. uint16_t nDiameter;
  3181. if(code_seen('D'))
  3182. {
  3183. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3184. nozzle_diameter_check(nDiameter);
  3185. }
  3186. else if(code_seen("set") && farm_mode)
  3187. {
  3188. strchr_pointer++; // skip 1st char (~ 's')
  3189. strchr_pointer++; // skip 2nd char (~ 'e')
  3190. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3191. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3192. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3193. }
  3194. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3195. //-// !!! SupportMenu
  3196. /*
  3197. // musi byt PRED "PRUSA model"
  3198. } else if (code_seen("smodel")) { //! PRUSA smodel
  3199. size_t nOffset;
  3200. // ! -> "l"
  3201. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3202. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3203. if(*(strchr_pointer+1+nOffset))
  3204. printer_smodel_check(strchr_pointer);
  3205. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3206. } else if (code_seen("model")) { //! PRUSA model
  3207. uint16_t nPrinterModel;
  3208. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3209. nPrinterModel=(uint16_t)code_value_long();
  3210. if(nPrinterModel!=0)
  3211. printer_model_check(nPrinterModel);
  3212. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3213. } else if (code_seen("version")) { //! PRUSA version
  3214. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3215. while(*strchr_pointer==' ') // skip leading spaces
  3216. strchr_pointer++;
  3217. if(*strchr_pointer!=0)
  3218. fw_version_check(strchr_pointer);
  3219. else SERIAL_PROTOCOLLN(FW_VERSION);
  3220. } else if (code_seen("gcode")) { //! PRUSA gcode
  3221. uint16_t nGcodeLevel;
  3222. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3223. nGcodeLevel=(uint16_t)code_value_long();
  3224. if(nGcodeLevel!=0)
  3225. gcode_level_check(nGcodeLevel);
  3226. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3227. */
  3228. }
  3229. //else if (code_seen('Cal')) {
  3230. // lcd_calibration();
  3231. // }
  3232. }
  3233. else if (code_seen('^')) {
  3234. // nothing, this is a version line
  3235. } else if(code_seen('G'))
  3236. {
  3237. gcode_in_progress = (int)code_value();
  3238. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3239. switch (gcode_in_progress)
  3240. {
  3241. case 0: // G0 -> G1
  3242. case 1: // G1
  3243. if(Stopped == false) {
  3244. #ifdef FILAMENT_RUNOUT_SUPPORT
  3245. if(READ(FR_SENS)){
  3246. int feedmultiplyBckp=feedmultiply;
  3247. float target[4];
  3248. float lastpos[4];
  3249. target[X_AXIS]=current_position[X_AXIS];
  3250. target[Y_AXIS]=current_position[Y_AXIS];
  3251. target[Z_AXIS]=current_position[Z_AXIS];
  3252. target[E_AXIS]=current_position[E_AXIS];
  3253. lastpos[X_AXIS]=current_position[X_AXIS];
  3254. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3255. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3256. lastpos[E_AXIS]=current_position[E_AXIS];
  3257. //retract by E
  3258. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3259. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3260. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3262. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3263. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3264. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3265. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3266. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3267. //finish moves
  3268. st_synchronize();
  3269. //disable extruder steppers so filament can be removed
  3270. disable_e0();
  3271. disable_e1();
  3272. disable_e2();
  3273. _delay(100);
  3274. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3275. uint8_t cnt=0;
  3276. int counterBeep = 0;
  3277. lcd_wait_interact();
  3278. while(!lcd_clicked()){
  3279. cnt++;
  3280. manage_heater();
  3281. manage_inactivity(true);
  3282. //lcd_update(0);
  3283. if(cnt==0)
  3284. {
  3285. #if BEEPER > 0
  3286. if (counterBeep== 500){
  3287. counterBeep = 0;
  3288. }
  3289. SET_OUTPUT(BEEPER);
  3290. if (counterBeep== 0){
  3291. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3292. WRITE(BEEPER,HIGH);
  3293. }
  3294. if (counterBeep== 20){
  3295. WRITE(BEEPER,LOW);
  3296. }
  3297. counterBeep++;
  3298. #else
  3299. #endif
  3300. }
  3301. }
  3302. WRITE(BEEPER,LOW);
  3303. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3305. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3307. lcd_change_fil_state = 0;
  3308. lcd_loading_filament();
  3309. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3310. lcd_change_fil_state = 0;
  3311. lcd_alright();
  3312. switch(lcd_change_fil_state){
  3313. case 2:
  3314. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3316. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3317. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3318. lcd_loading_filament();
  3319. break;
  3320. case 3:
  3321. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3322. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3323. lcd_loading_color();
  3324. break;
  3325. default:
  3326. lcd_change_success();
  3327. break;
  3328. }
  3329. }
  3330. target[E_AXIS]+= 5;
  3331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3332. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3333. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3334. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3335. //plan_set_e_position(current_position[E_AXIS]);
  3336. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3337. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3338. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3339. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3340. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3341. plan_set_e_position(lastpos[E_AXIS]);
  3342. feedmultiply=feedmultiplyBckp;
  3343. char cmd[9];
  3344. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3345. enquecommand(cmd);
  3346. }
  3347. #endif
  3348. get_coordinates(); // For X Y Z E F
  3349. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3350. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3351. }
  3352. #ifdef FWRETRACT
  3353. if(cs.autoretract_enabled)
  3354. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3355. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3356. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3357. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3358. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3359. retract(!retracted[active_extruder]);
  3360. return;
  3361. }
  3362. }
  3363. #endif //FWRETRACT
  3364. prepare_move();
  3365. //ClearToSend();
  3366. }
  3367. break;
  3368. case 2: // G2 - CW ARC
  3369. if(Stopped == false) {
  3370. get_arc_coordinates();
  3371. prepare_arc_move(true);
  3372. }
  3373. break;
  3374. case 3: // G3 - CCW ARC
  3375. if(Stopped == false) {
  3376. get_arc_coordinates();
  3377. prepare_arc_move(false);
  3378. }
  3379. break;
  3380. case 4: // G4 dwell
  3381. codenum = 0;
  3382. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3383. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3384. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3385. st_synchronize();
  3386. codenum += _millis(); // keep track of when we started waiting
  3387. previous_millis_cmd = _millis();
  3388. while(_millis() < codenum) {
  3389. manage_heater();
  3390. manage_inactivity();
  3391. lcd_update(0);
  3392. }
  3393. break;
  3394. #ifdef FWRETRACT
  3395. case 10: // G10 retract
  3396. #if EXTRUDERS > 1
  3397. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3398. retract(true,retracted_swap[active_extruder]);
  3399. #else
  3400. retract(true);
  3401. #endif
  3402. break;
  3403. case 11: // G11 retract_recover
  3404. #if EXTRUDERS > 1
  3405. retract(false,retracted_swap[active_extruder]);
  3406. #else
  3407. retract(false);
  3408. #endif
  3409. break;
  3410. #endif //FWRETRACT
  3411. case 28: //G28 Home all Axis one at a time
  3412. {
  3413. long home_x_value = 0;
  3414. long home_y_value = 0;
  3415. long home_z_value = 0;
  3416. // Which axes should be homed?
  3417. bool home_x = code_seen(axis_codes[X_AXIS]);
  3418. home_x_value = code_value_long();
  3419. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3420. home_y_value = code_value_long();
  3421. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3422. home_z_value = code_value_long();
  3423. bool without_mbl = code_seen('W');
  3424. // calibrate?
  3425. #ifdef TMC2130
  3426. bool calib = code_seen('C');
  3427. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3428. #else
  3429. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3430. #endif //TMC2130
  3431. if ((home_x || home_y || without_mbl || home_z) == false) {
  3432. // Push the commands to the front of the message queue in the reverse order!
  3433. // There shall be always enough space reserved for these commands.
  3434. goto case_G80;
  3435. }
  3436. break;
  3437. }
  3438. #ifdef ENABLE_AUTO_BED_LEVELING
  3439. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3440. {
  3441. #if Z_MIN_PIN == -1
  3442. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3443. #endif
  3444. // Prevent user from running a G29 without first homing in X and Y
  3445. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3446. {
  3447. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3448. SERIAL_ECHO_START;
  3449. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3450. break; // abort G29, since we don't know where we are
  3451. }
  3452. st_synchronize();
  3453. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3454. //vector_3 corrected_position = plan_get_position_mm();
  3455. //corrected_position.debug("position before G29");
  3456. plan_bed_level_matrix.set_to_identity();
  3457. vector_3 uncorrected_position = plan_get_position();
  3458. //uncorrected_position.debug("position durring G29");
  3459. current_position[X_AXIS] = uncorrected_position.x;
  3460. current_position[Y_AXIS] = uncorrected_position.y;
  3461. current_position[Z_AXIS] = uncorrected_position.z;
  3462. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3463. int l_feedmultiply = setup_for_endstop_move();
  3464. feedrate = homing_feedrate[Z_AXIS];
  3465. #ifdef AUTO_BED_LEVELING_GRID
  3466. // probe at the points of a lattice grid
  3467. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3468. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3469. // solve the plane equation ax + by + d = z
  3470. // A is the matrix with rows [x y 1] for all the probed points
  3471. // B is the vector of the Z positions
  3472. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3473. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3474. // "A" matrix of the linear system of equations
  3475. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3476. // "B" vector of Z points
  3477. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3478. int probePointCounter = 0;
  3479. bool zig = true;
  3480. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3481. {
  3482. int xProbe, xInc;
  3483. if (zig)
  3484. {
  3485. xProbe = LEFT_PROBE_BED_POSITION;
  3486. //xEnd = RIGHT_PROBE_BED_POSITION;
  3487. xInc = xGridSpacing;
  3488. zig = false;
  3489. } else // zag
  3490. {
  3491. xProbe = RIGHT_PROBE_BED_POSITION;
  3492. //xEnd = LEFT_PROBE_BED_POSITION;
  3493. xInc = -xGridSpacing;
  3494. zig = true;
  3495. }
  3496. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3497. {
  3498. float z_before;
  3499. if (probePointCounter == 0)
  3500. {
  3501. // raise before probing
  3502. z_before = Z_RAISE_BEFORE_PROBING;
  3503. } else
  3504. {
  3505. // raise extruder
  3506. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3507. }
  3508. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3509. eqnBVector[probePointCounter] = measured_z;
  3510. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3511. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3512. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3513. probePointCounter++;
  3514. xProbe += xInc;
  3515. }
  3516. }
  3517. clean_up_after_endstop_move(l_feedmultiply);
  3518. // solve lsq problem
  3519. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3520. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3521. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3522. SERIAL_PROTOCOLPGM(" b: ");
  3523. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3524. SERIAL_PROTOCOLPGM(" d: ");
  3525. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3526. set_bed_level_equation_lsq(plane_equation_coefficients);
  3527. free(plane_equation_coefficients);
  3528. #else // AUTO_BED_LEVELING_GRID not defined
  3529. // Probe at 3 arbitrary points
  3530. // probe 1
  3531. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3532. // probe 2
  3533. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3534. // probe 3
  3535. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3536. clean_up_after_endstop_move(l_feedmultiply);
  3537. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3538. #endif // AUTO_BED_LEVELING_GRID
  3539. st_synchronize();
  3540. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3541. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3542. // When the bed is uneven, this height must be corrected.
  3543. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3544. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3545. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3546. z_tmp = current_position[Z_AXIS];
  3547. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3548. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3550. }
  3551. break;
  3552. #ifndef Z_PROBE_SLED
  3553. case 30: // G30 Single Z Probe
  3554. {
  3555. st_synchronize();
  3556. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3557. int l_feedmultiply = setup_for_endstop_move();
  3558. feedrate = homing_feedrate[Z_AXIS];
  3559. run_z_probe();
  3560. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3561. SERIAL_PROTOCOLPGM(" X: ");
  3562. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3563. SERIAL_PROTOCOLPGM(" Y: ");
  3564. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3565. SERIAL_PROTOCOLPGM(" Z: ");
  3566. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3567. SERIAL_PROTOCOLPGM("\n");
  3568. clean_up_after_endstop_move(l_feedmultiply);
  3569. }
  3570. break;
  3571. #else
  3572. case 31: // dock the sled
  3573. dock_sled(true);
  3574. break;
  3575. case 32: // undock the sled
  3576. dock_sled(false);
  3577. break;
  3578. #endif // Z_PROBE_SLED
  3579. #endif // ENABLE_AUTO_BED_LEVELING
  3580. #ifdef MESH_BED_LEVELING
  3581. case 30: // G30 Single Z Probe
  3582. {
  3583. st_synchronize();
  3584. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3585. int l_feedmultiply = setup_for_endstop_move();
  3586. feedrate = homing_feedrate[Z_AXIS];
  3587. find_bed_induction_sensor_point_z(-10.f, 3);
  3588. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3589. clean_up_after_endstop_move(l_feedmultiply);
  3590. }
  3591. break;
  3592. case 75:
  3593. {
  3594. for (int i = 40; i <= 110; i++)
  3595. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3596. }
  3597. break;
  3598. case 76: //! G76 - PINDA probe temperature calibration
  3599. {
  3600. #ifdef PINDA_THERMISTOR
  3601. if (true)
  3602. {
  3603. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3604. //we need to know accurate position of first calibration point
  3605. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3606. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3607. break;
  3608. }
  3609. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3610. {
  3611. // We don't know where we are! HOME!
  3612. // Push the commands to the front of the message queue in the reverse order!
  3613. // There shall be always enough space reserved for these commands.
  3614. repeatcommand_front(); // repeat G76 with all its parameters
  3615. enquecommand_front_P((PSTR("G28 W0")));
  3616. break;
  3617. }
  3618. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3619. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3620. if (result)
  3621. {
  3622. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3624. current_position[Z_AXIS] = 50;
  3625. current_position[Y_AXIS] = 180;
  3626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3627. st_synchronize();
  3628. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3629. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3630. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3632. st_synchronize();
  3633. gcode_G28(false, false, true);
  3634. }
  3635. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3636. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3637. current_position[Z_AXIS] = 100;
  3638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3639. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3640. lcd_temp_cal_show_result(false);
  3641. break;
  3642. }
  3643. }
  3644. lcd_update_enable(true);
  3645. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3646. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3647. float zero_z;
  3648. int z_shift = 0; //unit: steps
  3649. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3650. if (start_temp < 35) start_temp = 35;
  3651. if (start_temp < current_temperature_pinda) start_temp += 5;
  3652. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3653. // setTargetHotend(200, 0);
  3654. setTargetBed(70 + (start_temp - 30));
  3655. custom_message_type = CustomMsg::TempCal;
  3656. custom_message_state = 1;
  3657. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3658. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3660. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3661. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3663. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3665. st_synchronize();
  3666. while (current_temperature_pinda < start_temp)
  3667. {
  3668. delay_keep_alive(1000);
  3669. serialecho_temperatures();
  3670. }
  3671. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3672. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3674. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3675. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3677. st_synchronize();
  3678. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3679. if (find_z_result == false) {
  3680. lcd_temp_cal_show_result(find_z_result);
  3681. break;
  3682. }
  3683. zero_z = current_position[Z_AXIS];
  3684. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3685. int i = -1; for (; i < 5; i++)
  3686. {
  3687. float temp = (40 + i * 5);
  3688. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3689. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3690. if (start_temp <= temp) break;
  3691. }
  3692. for (i++; i < 5; i++)
  3693. {
  3694. float temp = (40 + i * 5);
  3695. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3696. custom_message_state = i + 2;
  3697. setTargetBed(50 + 10 * (temp - 30) / 5);
  3698. // setTargetHotend(255, 0);
  3699. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3701. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3702. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3704. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3706. st_synchronize();
  3707. while (current_temperature_pinda < temp)
  3708. {
  3709. delay_keep_alive(1000);
  3710. serialecho_temperatures();
  3711. }
  3712. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3714. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3715. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3717. st_synchronize();
  3718. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3719. if (find_z_result == false) {
  3720. lcd_temp_cal_show_result(find_z_result);
  3721. break;
  3722. }
  3723. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3724. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3725. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3726. }
  3727. lcd_temp_cal_show_result(true);
  3728. break;
  3729. }
  3730. #endif //PINDA_THERMISTOR
  3731. setTargetBed(PINDA_MIN_T);
  3732. float zero_z;
  3733. int z_shift = 0; //unit: steps
  3734. int t_c; // temperature
  3735. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3736. // We don't know where we are! HOME!
  3737. // Push the commands to the front of the message queue in the reverse order!
  3738. // There shall be always enough space reserved for these commands.
  3739. repeatcommand_front(); // repeat G76 with all its parameters
  3740. enquecommand_front_P((PSTR("G28 W0")));
  3741. break;
  3742. }
  3743. puts_P(_N("PINDA probe calibration start"));
  3744. custom_message_type = CustomMsg::TempCal;
  3745. custom_message_state = 1;
  3746. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3747. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3748. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3749. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3751. st_synchronize();
  3752. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3753. delay_keep_alive(1000);
  3754. serialecho_temperatures();
  3755. }
  3756. //enquecommand_P(PSTR("M190 S50"));
  3757. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3758. delay_keep_alive(1000);
  3759. serialecho_temperatures();
  3760. }
  3761. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3762. current_position[Z_AXIS] = 5;
  3763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3764. current_position[X_AXIS] = BED_X0;
  3765. current_position[Y_AXIS] = BED_Y0;
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3767. st_synchronize();
  3768. find_bed_induction_sensor_point_z(-1.f);
  3769. zero_z = current_position[Z_AXIS];
  3770. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3771. for (int i = 0; i<5; i++) {
  3772. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3773. custom_message_state = i + 2;
  3774. t_c = 60 + i * 10;
  3775. setTargetBed(t_c);
  3776. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3777. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3778. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3780. st_synchronize();
  3781. while (degBed() < t_c) {
  3782. delay_keep_alive(1000);
  3783. serialecho_temperatures();
  3784. }
  3785. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3786. delay_keep_alive(1000);
  3787. serialecho_temperatures();
  3788. }
  3789. current_position[Z_AXIS] = 5;
  3790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3791. current_position[X_AXIS] = BED_X0;
  3792. current_position[Y_AXIS] = BED_Y0;
  3793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3794. st_synchronize();
  3795. find_bed_induction_sensor_point_z(-1.f);
  3796. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3797. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3798. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3799. }
  3800. custom_message_type = CustomMsg::Status;
  3801. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3802. puts_P(_N("Temperature calibration done."));
  3803. disable_x();
  3804. disable_y();
  3805. disable_z();
  3806. disable_e0();
  3807. disable_e1();
  3808. disable_e2();
  3809. setTargetBed(0); //set bed target temperature back to 0
  3810. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3811. temp_cal_active = true;
  3812. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3813. lcd_update_enable(true);
  3814. lcd_update(2);
  3815. }
  3816. break;
  3817. /**
  3818. * G80: Mesh-based Z probe, probes a grid and produces a
  3819. * mesh to compensate for variable bed height
  3820. *
  3821. * The S0 report the points as below
  3822. * @code{.unparsed}
  3823. * +----> X-axis
  3824. * |
  3825. * |
  3826. * v Y-axis
  3827. * @endcode
  3828. */
  3829. case 80:
  3830. #ifdef MK1BP
  3831. break;
  3832. #endif //MK1BP
  3833. case_G80:
  3834. {
  3835. mesh_bed_leveling_flag = true;
  3836. static bool run = false;
  3837. #ifdef SUPPORT_VERBOSITY
  3838. int8_t verbosity_level = 0;
  3839. if (code_seen('V')) {
  3840. // Just 'V' without a number counts as V1.
  3841. char c = strchr_pointer[1];
  3842. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3843. }
  3844. #endif //SUPPORT_VERBOSITY
  3845. // Firstly check if we know where we are
  3846. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3847. // We don't know where we are! HOME!
  3848. // Push the commands to the front of the message queue in the reverse order!
  3849. // There shall be always enough space reserved for these commands.
  3850. if (lcd_commands_type != LcdCommands::StopPrint) {
  3851. repeatcommand_front(); // repeat G80 with all its parameters
  3852. enquecommand_front_P((PSTR("G28 W0")));
  3853. }
  3854. else {
  3855. mesh_bed_leveling_flag = false;
  3856. }
  3857. break;
  3858. }
  3859. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3860. if (code_seen('N')) {
  3861. nMeasPoints = code_value_uint8();
  3862. if (nMeasPoints != 7) {
  3863. nMeasPoints = 3;
  3864. }
  3865. }
  3866. else {
  3867. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3868. }
  3869. uint8_t nProbeRetry = 3;
  3870. if (code_seen('R')) {
  3871. nProbeRetry = code_value_uint8();
  3872. if (nProbeRetry > 10) {
  3873. nProbeRetry = 10;
  3874. }
  3875. }
  3876. else {
  3877. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3878. }
  3879. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3880. bool temp_comp_start = true;
  3881. #ifdef PINDA_THERMISTOR
  3882. temp_comp_start = false;
  3883. #endif //PINDA_THERMISTOR
  3884. if (temp_comp_start)
  3885. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3886. if (lcd_commands_type != LcdCommands::StopPrint) {
  3887. temp_compensation_start();
  3888. run = true;
  3889. repeatcommand_front(); // repeat G80 with all its parameters
  3890. enquecommand_front_P((PSTR("G28 W0")));
  3891. }
  3892. else {
  3893. mesh_bed_leveling_flag = false;
  3894. }
  3895. break;
  3896. }
  3897. run = false;
  3898. if (lcd_commands_type == LcdCommands::StopPrint) {
  3899. mesh_bed_leveling_flag = false;
  3900. break;
  3901. }
  3902. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3903. CustomMsg custom_message_type_old = custom_message_type;
  3904. unsigned int custom_message_state_old = custom_message_state;
  3905. custom_message_type = CustomMsg::MeshBedLeveling;
  3906. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3907. lcd_update(1);
  3908. mbl.reset(); //reset mesh bed leveling
  3909. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3910. // consumed during the first movements following this statement.
  3911. babystep_undo();
  3912. // Cycle through all points and probe them
  3913. // First move up. During this first movement, the babystepping will be reverted.
  3914. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3916. // The move to the first calibration point.
  3917. current_position[X_AXIS] = BED_X0;
  3918. current_position[Y_AXIS] = BED_Y0;
  3919. #ifdef SUPPORT_VERBOSITY
  3920. if (verbosity_level >= 1)
  3921. {
  3922. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3923. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3924. }
  3925. #else //SUPPORT_VERBOSITY
  3926. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3927. #endif //SUPPORT_VERBOSITY
  3928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3929. // Wait until the move is finished.
  3930. st_synchronize();
  3931. uint8_t mesh_point = 0; //index number of calibration point
  3932. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3933. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3934. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3935. #ifdef SUPPORT_VERBOSITY
  3936. if (verbosity_level >= 1) {
  3937. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3938. }
  3939. #endif // SUPPORT_VERBOSITY
  3940. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3941. const char *kill_message = NULL;
  3942. while (mesh_point != nMeasPoints * nMeasPoints) {
  3943. // Get coords of a measuring point.
  3944. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3945. uint8_t iy = mesh_point / nMeasPoints;
  3946. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3947. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3948. custom_message_state--;
  3949. mesh_point++;
  3950. continue; //skip
  3951. }*/
  3952. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3953. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3954. {
  3955. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3956. }
  3957. float z0 = 0.f;
  3958. if (has_z && (mesh_point > 0)) {
  3959. uint16_t z_offset_u = 0;
  3960. if (nMeasPoints == 7) {
  3961. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3962. }
  3963. else {
  3964. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3965. }
  3966. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3967. #ifdef SUPPORT_VERBOSITY
  3968. if (verbosity_level >= 1) {
  3969. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3970. }
  3971. #endif // SUPPORT_VERBOSITY
  3972. }
  3973. // Move Z up to MESH_HOME_Z_SEARCH.
  3974. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3975. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3976. float init_z_bckp = current_position[Z_AXIS];
  3977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3978. st_synchronize();
  3979. // Move to XY position of the sensor point.
  3980. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3981. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3982. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3983. #ifdef SUPPORT_VERBOSITY
  3984. if (verbosity_level >= 1) {
  3985. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3986. SERIAL_PROTOCOL(mesh_point);
  3987. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3988. }
  3989. #else //SUPPORT_VERBOSITY
  3990. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3991. #endif // SUPPORT_VERBOSITY
  3992. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3994. st_synchronize();
  3995. // Go down until endstop is hit
  3996. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3997. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3998. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3999. break;
  4000. }
  4001. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4002. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4003. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4005. st_synchronize();
  4006. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4007. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4008. break;
  4009. }
  4010. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4011. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4012. break;
  4013. }
  4014. }
  4015. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4016. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4017. break;
  4018. }
  4019. #ifdef SUPPORT_VERBOSITY
  4020. if (verbosity_level >= 10) {
  4021. SERIAL_ECHOPGM("X: ");
  4022. MYSERIAL.print(current_position[X_AXIS], 5);
  4023. SERIAL_ECHOLNPGM("");
  4024. SERIAL_ECHOPGM("Y: ");
  4025. MYSERIAL.print(current_position[Y_AXIS], 5);
  4026. SERIAL_PROTOCOLPGM("\n");
  4027. }
  4028. #endif // SUPPORT_VERBOSITY
  4029. float offset_z = 0;
  4030. #ifdef PINDA_THERMISTOR
  4031. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4032. #endif //PINDA_THERMISTOR
  4033. // #ifdef SUPPORT_VERBOSITY
  4034. /* if (verbosity_level >= 1)
  4035. {
  4036. SERIAL_ECHOPGM("mesh bed leveling: ");
  4037. MYSERIAL.print(current_position[Z_AXIS], 5);
  4038. SERIAL_ECHOPGM(" offset: ");
  4039. MYSERIAL.print(offset_z, 5);
  4040. SERIAL_ECHOLNPGM("");
  4041. }*/
  4042. // #endif // SUPPORT_VERBOSITY
  4043. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4044. custom_message_state--;
  4045. mesh_point++;
  4046. lcd_update(1);
  4047. }
  4048. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4049. #ifdef SUPPORT_VERBOSITY
  4050. if (verbosity_level >= 20) {
  4051. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4052. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4053. MYSERIAL.print(current_position[Z_AXIS], 5);
  4054. }
  4055. #endif // SUPPORT_VERBOSITY
  4056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4057. st_synchronize();
  4058. if (mesh_point != nMeasPoints * nMeasPoints) {
  4059. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4060. bool bState;
  4061. do { // repeat until Z-leveling o.k.
  4062. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4063. #ifdef TMC2130
  4064. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4065. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4066. #else // TMC2130
  4067. lcd_wait_for_click_delay(0); // ~ no timeout
  4068. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4069. #endif // TMC2130
  4070. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4071. bState=enable_z_endstop(false);
  4072. current_position[Z_AXIS] -= 1;
  4073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4074. st_synchronize();
  4075. enable_z_endstop(true);
  4076. #ifdef TMC2130
  4077. tmc2130_home_enter(Z_AXIS_MASK);
  4078. #endif // TMC2130
  4079. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4081. st_synchronize();
  4082. #ifdef TMC2130
  4083. tmc2130_home_exit();
  4084. #endif // TMC2130
  4085. enable_z_endstop(bState);
  4086. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4087. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4088. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4089. lcd_update_enable(true); // display / status-line recovery
  4090. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4091. repeatcommand_front(); // re-run (i.e. of "G80")
  4092. break;
  4093. }
  4094. clean_up_after_endstop_move(l_feedmultiply);
  4095. // SERIAL_ECHOLNPGM("clean up finished ");
  4096. bool apply_temp_comp = true;
  4097. #ifdef PINDA_THERMISTOR
  4098. apply_temp_comp = false;
  4099. #endif
  4100. if (apply_temp_comp)
  4101. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4102. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4103. // SERIAL_ECHOLNPGM("babystep applied");
  4104. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4105. #ifdef SUPPORT_VERBOSITY
  4106. if (verbosity_level >= 1) {
  4107. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4108. }
  4109. #endif // SUPPORT_VERBOSITY
  4110. for (uint8_t i = 0; i < 4; ++i) {
  4111. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4112. long correction = 0;
  4113. if (code_seen(codes[i]))
  4114. correction = code_value_long();
  4115. else if (eeprom_bed_correction_valid) {
  4116. unsigned char *addr = (i < 2) ?
  4117. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4118. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4119. correction = eeprom_read_int8(addr);
  4120. }
  4121. if (correction == 0)
  4122. continue;
  4123. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4124. SERIAL_ERROR_START;
  4125. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4126. SERIAL_ECHO(correction);
  4127. SERIAL_ECHOLNPGM(" microns");
  4128. }
  4129. else {
  4130. float offset = float(correction) * 0.001f;
  4131. switch (i) {
  4132. case 0:
  4133. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4134. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4135. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4136. }
  4137. }
  4138. break;
  4139. case 1:
  4140. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4141. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4142. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4143. }
  4144. }
  4145. break;
  4146. case 2:
  4147. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4148. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4149. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4150. }
  4151. }
  4152. break;
  4153. case 3:
  4154. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4155. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4156. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4157. }
  4158. }
  4159. break;
  4160. }
  4161. }
  4162. }
  4163. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4164. if (nMeasPoints == 3) {
  4165. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4166. }
  4167. /*
  4168. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4169. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4170. SERIAL_PROTOCOLPGM(",");
  4171. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4172. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4173. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4174. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4175. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4176. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4177. SERIAL_PROTOCOLPGM(" ");
  4178. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4179. }
  4180. SERIAL_PROTOCOLPGM("\n");
  4181. }
  4182. */
  4183. if (nMeasPoints == 7 && magnet_elimination) {
  4184. mbl_interpolation(nMeasPoints);
  4185. }
  4186. /*
  4187. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4188. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4189. SERIAL_PROTOCOLPGM(",");
  4190. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4191. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4192. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4193. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4194. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4195. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4196. SERIAL_PROTOCOLPGM(" ");
  4197. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4198. }
  4199. SERIAL_PROTOCOLPGM("\n");
  4200. }
  4201. */
  4202. // SERIAL_ECHOLNPGM("Upsample finished");
  4203. mbl.active = 1; //activate mesh bed leveling
  4204. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4205. go_home_with_z_lift();
  4206. // SERIAL_ECHOLNPGM("Go home finished");
  4207. //unretract (after PINDA preheat retraction)
  4208. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4209. current_position[E_AXIS] += default_retraction;
  4210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4211. }
  4212. KEEPALIVE_STATE(NOT_BUSY);
  4213. // Restore custom message state
  4214. lcd_setstatuspgm(_T(WELCOME_MSG));
  4215. custom_message_type = custom_message_type_old;
  4216. custom_message_state = custom_message_state_old;
  4217. mesh_bed_leveling_flag = false;
  4218. mesh_bed_run_from_menu = false;
  4219. lcd_update(2);
  4220. }
  4221. break;
  4222. /**
  4223. * G81: Print mesh bed leveling status and bed profile if activated
  4224. */
  4225. case 81:
  4226. if (mbl.active) {
  4227. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4228. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4229. SERIAL_PROTOCOLPGM(",");
  4230. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4231. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4232. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4233. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4234. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4235. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4236. SERIAL_PROTOCOLPGM(" ");
  4237. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4238. }
  4239. SERIAL_PROTOCOLPGM("\n");
  4240. }
  4241. }
  4242. else
  4243. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4244. break;
  4245. #if 0
  4246. /**
  4247. * G82: Single Z probe at current location
  4248. *
  4249. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4250. *
  4251. */
  4252. case 82:
  4253. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4254. int l_feedmultiply = setup_for_endstop_move();
  4255. find_bed_induction_sensor_point_z();
  4256. clean_up_after_endstop_move(l_feedmultiply);
  4257. SERIAL_PROTOCOLPGM("Bed found at: ");
  4258. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4259. SERIAL_PROTOCOLPGM("\n");
  4260. break;
  4261. /**
  4262. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4263. */
  4264. case 83:
  4265. {
  4266. int babystepz = code_seen('S') ? code_value() : 0;
  4267. int BabyPosition = code_seen('P') ? code_value() : 0;
  4268. if (babystepz != 0) {
  4269. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4270. // Is the axis indexed starting with zero or one?
  4271. if (BabyPosition > 4) {
  4272. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4273. }else{
  4274. // Save it to the eeprom
  4275. babystepLoadZ = babystepz;
  4276. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4277. // adjust the Z
  4278. babystepsTodoZadd(babystepLoadZ);
  4279. }
  4280. }
  4281. }
  4282. break;
  4283. /**
  4284. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4285. */
  4286. case 84:
  4287. babystepsTodoZsubtract(babystepLoadZ);
  4288. // babystepLoadZ = 0;
  4289. break;
  4290. /**
  4291. * G85: Prusa3D specific: Pick best babystep
  4292. */
  4293. case 85:
  4294. lcd_pick_babystep();
  4295. break;
  4296. #endif
  4297. /**
  4298. * G86: Prusa3D specific: Disable babystep correction after home.
  4299. * This G-code will be performed at the start of a calibration script.
  4300. */
  4301. case 86:
  4302. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4303. break;
  4304. /**
  4305. * G87: Prusa3D specific: Enable babystep correction after home
  4306. * This G-code will be performed at the end of a calibration script.
  4307. */
  4308. case 87:
  4309. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4310. break;
  4311. /**
  4312. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4313. */
  4314. case 88:
  4315. break;
  4316. #endif // ENABLE_MESH_BED_LEVELING
  4317. case 90: // G90
  4318. relative_mode = false;
  4319. break;
  4320. case 91: // G91
  4321. relative_mode = true;
  4322. break;
  4323. case 92: // G92
  4324. if(!code_seen(axis_codes[E_AXIS]))
  4325. st_synchronize();
  4326. for(int8_t i=0; i < NUM_AXIS; i++) {
  4327. if(code_seen(axis_codes[i])) {
  4328. if(i == E_AXIS) {
  4329. current_position[i] = code_value();
  4330. plan_set_e_position(current_position[E_AXIS]);
  4331. }
  4332. else {
  4333. current_position[i] = code_value()+cs.add_homing[i];
  4334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4335. }
  4336. }
  4337. }
  4338. break;
  4339. case 98: //! G98 (activate farm mode)
  4340. farm_mode = 1;
  4341. PingTime = _millis();
  4342. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4343. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4344. SilentModeMenu = SILENT_MODE_OFF;
  4345. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4346. fCheckModeInit(); // alternatively invoke printer reset
  4347. break;
  4348. case 99: //! G99 (deactivate farm mode)
  4349. farm_mode = 0;
  4350. lcd_printer_connected();
  4351. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4352. lcd_update(2);
  4353. fCheckModeInit(); // alternatively invoke printer reset
  4354. break;
  4355. default:
  4356. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4357. }
  4358. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4359. gcode_in_progress = 0;
  4360. } // end if(code_seen('G'))
  4361. else if(code_seen('M'))
  4362. {
  4363. int index;
  4364. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4365. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4366. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4367. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4368. } else
  4369. {
  4370. mcode_in_progress = (int)code_value();
  4371. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4372. switch(mcode_in_progress)
  4373. {
  4374. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4375. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4376. {
  4377. char *src = strchr_pointer + 2;
  4378. codenum = 0;
  4379. bool hasP = false, hasS = false;
  4380. if (code_seen('P')) {
  4381. codenum = code_value(); // milliseconds to wait
  4382. hasP = codenum > 0;
  4383. }
  4384. if (code_seen('S')) {
  4385. codenum = code_value() * 1000; // seconds to wait
  4386. hasS = codenum > 0;
  4387. }
  4388. starpos = strchr(src, '*');
  4389. if (starpos != NULL) *(starpos) = '\0';
  4390. while (*src == ' ') ++src;
  4391. if (!hasP && !hasS && *src != '\0') {
  4392. lcd_setstatus(src);
  4393. } else {
  4394. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4395. }
  4396. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4397. st_synchronize();
  4398. previous_millis_cmd = _millis();
  4399. if (codenum > 0){
  4400. codenum += _millis(); // keep track of when we started waiting
  4401. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4402. while(_millis() < codenum && !lcd_clicked()){
  4403. manage_heater();
  4404. manage_inactivity(true);
  4405. lcd_update(0);
  4406. }
  4407. KEEPALIVE_STATE(IN_HANDLER);
  4408. lcd_ignore_click(false);
  4409. }else{
  4410. marlin_wait_for_click();
  4411. }
  4412. if (IS_SD_PRINTING)
  4413. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4414. else
  4415. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4416. }
  4417. break;
  4418. case 17:
  4419. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4420. enable_x();
  4421. enable_y();
  4422. enable_z();
  4423. enable_e0();
  4424. enable_e1();
  4425. enable_e2();
  4426. break;
  4427. #ifdef SDSUPPORT
  4428. case 20: // M20 - list SD card
  4429. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4430. card.ls();
  4431. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4432. break;
  4433. case 21: // M21 - init SD card
  4434. card.initsd();
  4435. break;
  4436. case 22: //M22 - release SD card
  4437. card.release();
  4438. break;
  4439. case 23: //M23 - Select file
  4440. starpos = (strchr(strchr_pointer + 4,'*'));
  4441. if(starpos!=NULL)
  4442. *(starpos)='\0';
  4443. card.openFile(strchr_pointer + 4,true);
  4444. break;
  4445. case 24: //M24 - Start SD print
  4446. if (!card.paused)
  4447. failstats_reset_print();
  4448. card.startFileprint();
  4449. starttime=_millis();
  4450. break;
  4451. case 25: //M25 - Pause SD print
  4452. card.pauseSDPrint();
  4453. break;
  4454. case 26: //M26 - Set SD index
  4455. if(card.cardOK && code_seen('S')) {
  4456. card.setIndex(code_value_long());
  4457. }
  4458. break;
  4459. case 27: //M27 - Get SD status
  4460. card.getStatus();
  4461. break;
  4462. case 28: //M28 - Start SD write
  4463. starpos = (strchr(strchr_pointer + 4,'*'));
  4464. if(starpos != NULL){
  4465. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4466. strchr_pointer = strchr(npos,' ') + 1;
  4467. *(starpos) = '\0';
  4468. }
  4469. card.openFile(strchr_pointer+4,false);
  4470. break;
  4471. case 29: //M29 - Stop SD write
  4472. //processed in write to file routine above
  4473. //card,saving = false;
  4474. break;
  4475. case 30: //M30 <filename> Delete File
  4476. if (card.cardOK){
  4477. card.closefile();
  4478. starpos = (strchr(strchr_pointer + 4,'*'));
  4479. if(starpos != NULL){
  4480. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4481. strchr_pointer = strchr(npos,' ') + 1;
  4482. *(starpos) = '\0';
  4483. }
  4484. card.removeFile(strchr_pointer + 4);
  4485. }
  4486. break;
  4487. case 32: //M32 - Select file and start SD print
  4488. {
  4489. if(card.sdprinting) {
  4490. st_synchronize();
  4491. }
  4492. starpos = (strchr(strchr_pointer + 4,'*'));
  4493. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4494. if(namestartpos==NULL)
  4495. {
  4496. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4497. }
  4498. else
  4499. namestartpos++; //to skip the '!'
  4500. if(starpos!=NULL)
  4501. *(starpos)='\0';
  4502. bool call_procedure=(code_seen('P'));
  4503. if(strchr_pointer>namestartpos)
  4504. call_procedure=false; //false alert, 'P' found within filename
  4505. if( card.cardOK )
  4506. {
  4507. card.openFile(namestartpos,true,!call_procedure);
  4508. if(code_seen('S'))
  4509. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4510. card.setIndex(code_value_long());
  4511. card.startFileprint();
  4512. if(!call_procedure)
  4513. starttime=_millis(); //procedure calls count as normal print time.
  4514. }
  4515. } break;
  4516. case 928: //M928 - Start SD write
  4517. starpos = (strchr(strchr_pointer + 5,'*'));
  4518. if(starpos != NULL){
  4519. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4520. strchr_pointer = strchr(npos,' ') + 1;
  4521. *(starpos) = '\0';
  4522. }
  4523. card.openLogFile(strchr_pointer+5);
  4524. break;
  4525. #endif //SDSUPPORT
  4526. case 31: //M31 take time since the start of the SD print or an M109 command
  4527. {
  4528. stoptime=_millis();
  4529. char time[30];
  4530. unsigned long t=(stoptime-starttime)/1000;
  4531. int sec,min;
  4532. min=t/60;
  4533. sec=t%60;
  4534. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4535. SERIAL_ECHO_START;
  4536. SERIAL_ECHOLN(time);
  4537. lcd_setstatus(time);
  4538. autotempShutdown();
  4539. }
  4540. break;
  4541. case 42: //M42 -Change pin status via gcode
  4542. if (code_seen('S'))
  4543. {
  4544. int pin_status = code_value();
  4545. int pin_number = LED_PIN;
  4546. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4547. pin_number = code_value();
  4548. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4549. {
  4550. if (sensitive_pins[i] == pin_number)
  4551. {
  4552. pin_number = -1;
  4553. break;
  4554. }
  4555. }
  4556. #if defined(FAN_PIN) && FAN_PIN > -1
  4557. if (pin_number == FAN_PIN)
  4558. fanSpeed = pin_status;
  4559. #endif
  4560. if (pin_number > -1)
  4561. {
  4562. pinMode(pin_number, OUTPUT);
  4563. digitalWrite(pin_number, pin_status);
  4564. analogWrite(pin_number, pin_status);
  4565. }
  4566. }
  4567. break;
  4568. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4569. // Reset the baby step value and the baby step applied flag.
  4570. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4571. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4572. // Reset the skew and offset in both RAM and EEPROM.
  4573. reset_bed_offset_and_skew();
  4574. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4575. // the planner will not perform any adjustments in the XY plane.
  4576. // Wait for the motors to stop and update the current position with the absolute values.
  4577. world2machine_revert_to_uncorrected();
  4578. break;
  4579. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4580. {
  4581. int8_t verbosity_level = 0;
  4582. bool only_Z = code_seen('Z');
  4583. #ifdef SUPPORT_VERBOSITY
  4584. if (code_seen('V'))
  4585. {
  4586. // Just 'V' without a number counts as V1.
  4587. char c = strchr_pointer[1];
  4588. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4589. }
  4590. #endif //SUPPORT_VERBOSITY
  4591. gcode_M45(only_Z, verbosity_level);
  4592. }
  4593. break;
  4594. /*
  4595. case 46:
  4596. {
  4597. // M46: Prusa3D: Show the assigned IP address.
  4598. uint8_t ip[4];
  4599. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4600. if (hasIP) {
  4601. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4602. SERIAL_ECHO(int(ip[0]));
  4603. SERIAL_ECHOPGM(".");
  4604. SERIAL_ECHO(int(ip[1]));
  4605. SERIAL_ECHOPGM(".");
  4606. SERIAL_ECHO(int(ip[2]));
  4607. SERIAL_ECHOPGM(".");
  4608. SERIAL_ECHO(int(ip[3]));
  4609. SERIAL_ECHOLNPGM("");
  4610. } else {
  4611. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4612. }
  4613. break;
  4614. }
  4615. */
  4616. case 47:
  4617. //! M47: Prusa3D: Show end stops dialog on the display.
  4618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4619. lcd_diag_show_end_stops();
  4620. KEEPALIVE_STATE(IN_HANDLER);
  4621. break;
  4622. #if 0
  4623. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4624. {
  4625. // Disable the default update procedure of the display. We will do a modal dialog.
  4626. lcd_update_enable(false);
  4627. // Let the planner use the uncorrected coordinates.
  4628. mbl.reset();
  4629. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4630. // the planner will not perform any adjustments in the XY plane.
  4631. // Wait for the motors to stop and update the current position with the absolute values.
  4632. world2machine_revert_to_uncorrected();
  4633. // Move the print head close to the bed.
  4634. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4636. st_synchronize();
  4637. // Home in the XY plane.
  4638. set_destination_to_current();
  4639. int l_feedmultiply = setup_for_endstop_move();
  4640. home_xy();
  4641. int8_t verbosity_level = 0;
  4642. if (code_seen('V')) {
  4643. // Just 'V' without a number counts as V1.
  4644. char c = strchr_pointer[1];
  4645. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4646. }
  4647. bool success = scan_bed_induction_points(verbosity_level);
  4648. clean_up_after_endstop_move(l_feedmultiply);
  4649. // Print head up.
  4650. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4652. st_synchronize();
  4653. lcd_update_enable(true);
  4654. break;
  4655. }
  4656. #endif
  4657. #ifdef ENABLE_AUTO_BED_LEVELING
  4658. #ifdef Z_PROBE_REPEATABILITY_TEST
  4659. //! M48 Z-Probe repeatability measurement function.
  4660. //!
  4661. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4662. //!
  4663. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4664. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4665. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4666. //! regenerated.
  4667. //!
  4668. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4669. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4670. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4671. //!
  4672. case 48: // M48 Z-Probe repeatability
  4673. {
  4674. #if Z_MIN_PIN == -1
  4675. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4676. #endif
  4677. double sum=0.0;
  4678. double mean=0.0;
  4679. double sigma=0.0;
  4680. double sample_set[50];
  4681. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4682. double X_current, Y_current, Z_current;
  4683. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4684. if (code_seen('V') || code_seen('v')) {
  4685. verbose_level = code_value();
  4686. if (verbose_level<0 || verbose_level>4 ) {
  4687. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4688. goto Sigma_Exit;
  4689. }
  4690. }
  4691. if (verbose_level > 0) {
  4692. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4693. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4694. }
  4695. if (code_seen('n')) {
  4696. n_samples = code_value();
  4697. if (n_samples<4 || n_samples>50 ) {
  4698. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4699. goto Sigma_Exit;
  4700. }
  4701. }
  4702. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4703. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4704. Z_current = st_get_position_mm(Z_AXIS);
  4705. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4706. ext_position = st_get_position_mm(E_AXIS);
  4707. if (code_seen('X') || code_seen('x') ) {
  4708. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4709. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4710. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4711. goto Sigma_Exit;
  4712. }
  4713. }
  4714. if (code_seen('Y') || code_seen('y') ) {
  4715. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4716. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4717. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4718. goto Sigma_Exit;
  4719. }
  4720. }
  4721. if (code_seen('L') || code_seen('l') ) {
  4722. n_legs = code_value();
  4723. if ( n_legs==1 )
  4724. n_legs = 2;
  4725. if ( n_legs<0 || n_legs>15 ) {
  4726. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4727. goto Sigma_Exit;
  4728. }
  4729. }
  4730. //
  4731. // Do all the preliminary setup work. First raise the probe.
  4732. //
  4733. st_synchronize();
  4734. plan_bed_level_matrix.set_to_identity();
  4735. plan_buffer_line( X_current, Y_current, Z_start_location,
  4736. ext_position,
  4737. homing_feedrate[Z_AXIS]/60,
  4738. active_extruder);
  4739. st_synchronize();
  4740. //
  4741. // Now get everything to the specified probe point So we can safely do a probe to
  4742. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4743. // use that as a starting point for each probe.
  4744. //
  4745. if (verbose_level > 2)
  4746. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4747. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4748. ext_position,
  4749. homing_feedrate[X_AXIS]/60,
  4750. active_extruder);
  4751. st_synchronize();
  4752. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4753. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4754. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4755. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4756. //
  4757. // OK, do the inital probe to get us close to the bed.
  4758. // Then retrace the right amount and use that in subsequent probes
  4759. //
  4760. int l_feedmultiply = setup_for_endstop_move();
  4761. run_z_probe();
  4762. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4763. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4764. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4765. ext_position,
  4766. homing_feedrate[X_AXIS]/60,
  4767. active_extruder);
  4768. st_synchronize();
  4769. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4770. for( n=0; n<n_samples; n++) {
  4771. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4772. if ( n_legs) {
  4773. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4774. int rotational_direction, l;
  4775. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4776. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4777. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4778. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4779. //SERIAL_ECHOPAIR(" theta: ",theta);
  4780. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4781. //SERIAL_PROTOCOLLNPGM("");
  4782. for( l=0; l<n_legs-1; l++) {
  4783. if (rotational_direction==1)
  4784. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4785. else
  4786. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4787. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4788. if ( radius<0.0 )
  4789. radius = -radius;
  4790. X_current = X_probe_location + cos(theta) * radius;
  4791. Y_current = Y_probe_location + sin(theta) * radius;
  4792. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4793. X_current = X_MIN_POS;
  4794. if ( X_current>X_MAX_POS)
  4795. X_current = X_MAX_POS;
  4796. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4797. Y_current = Y_MIN_POS;
  4798. if ( Y_current>Y_MAX_POS)
  4799. Y_current = Y_MAX_POS;
  4800. if (verbose_level>3 ) {
  4801. SERIAL_ECHOPAIR("x: ", X_current);
  4802. SERIAL_ECHOPAIR("y: ", Y_current);
  4803. SERIAL_PROTOCOLLNPGM("");
  4804. }
  4805. do_blocking_move_to( X_current, Y_current, Z_current );
  4806. }
  4807. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4808. }
  4809. int l_feedmultiply = setup_for_endstop_move();
  4810. run_z_probe();
  4811. sample_set[n] = current_position[Z_AXIS];
  4812. //
  4813. // Get the current mean for the data points we have so far
  4814. //
  4815. sum=0.0;
  4816. for( j=0; j<=n; j++) {
  4817. sum = sum + sample_set[j];
  4818. }
  4819. mean = sum / (double (n+1));
  4820. //
  4821. // Now, use that mean to calculate the standard deviation for the
  4822. // data points we have so far
  4823. //
  4824. sum=0.0;
  4825. for( j=0; j<=n; j++) {
  4826. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4827. }
  4828. sigma = sqrt( sum / (double (n+1)) );
  4829. if (verbose_level > 1) {
  4830. SERIAL_PROTOCOL(n+1);
  4831. SERIAL_PROTOCOL(" of ");
  4832. SERIAL_PROTOCOL(n_samples);
  4833. SERIAL_PROTOCOLPGM(" z: ");
  4834. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4835. }
  4836. if (verbose_level > 2) {
  4837. SERIAL_PROTOCOL(" mean: ");
  4838. SERIAL_PROTOCOL_F(mean,6);
  4839. SERIAL_PROTOCOL(" sigma: ");
  4840. SERIAL_PROTOCOL_F(sigma,6);
  4841. }
  4842. if (verbose_level > 0)
  4843. SERIAL_PROTOCOLPGM("\n");
  4844. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4845. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4846. st_synchronize();
  4847. }
  4848. _delay(1000);
  4849. clean_up_after_endstop_move(l_feedmultiply);
  4850. // enable_endstops(true);
  4851. if (verbose_level > 0) {
  4852. SERIAL_PROTOCOLPGM("Mean: ");
  4853. SERIAL_PROTOCOL_F(mean, 6);
  4854. SERIAL_PROTOCOLPGM("\n");
  4855. }
  4856. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4857. SERIAL_PROTOCOL_F(sigma, 6);
  4858. SERIAL_PROTOCOLPGM("\n\n");
  4859. Sigma_Exit:
  4860. break;
  4861. }
  4862. #endif // Z_PROBE_REPEATABILITY_TEST
  4863. #endif // ENABLE_AUTO_BED_LEVELING
  4864. case 73: //M73 show percent done and time remaining
  4865. if(code_seen('P')) print_percent_done_normal = code_value();
  4866. if(code_seen('R')) print_time_remaining_normal = code_value();
  4867. if(code_seen('Q')) print_percent_done_silent = code_value();
  4868. if(code_seen('S')) print_time_remaining_silent = code_value();
  4869. {
  4870. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4871. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4872. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4873. }
  4874. break;
  4875. case 104: // M104
  4876. {
  4877. uint8_t extruder;
  4878. if(setTargetedHotend(104,extruder)){
  4879. break;
  4880. }
  4881. if (code_seen('S'))
  4882. {
  4883. setTargetHotendSafe(code_value(), extruder);
  4884. }
  4885. setWatch();
  4886. break;
  4887. }
  4888. case 112: // M112 -Emergency Stop
  4889. kill(_n(""), 3);
  4890. break;
  4891. case 140: // M140 set bed temp
  4892. if (code_seen('S')) setTargetBed(code_value());
  4893. break;
  4894. case 105 : // M105
  4895. {
  4896. uint8_t extruder;
  4897. if(setTargetedHotend(105, extruder)){
  4898. break;
  4899. }
  4900. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4901. SERIAL_PROTOCOLPGM("ok T:");
  4902. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4903. SERIAL_PROTOCOLPGM(" /");
  4904. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4905. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4906. SERIAL_PROTOCOLPGM(" B:");
  4907. SERIAL_PROTOCOL_F(degBed(),1);
  4908. SERIAL_PROTOCOLPGM(" /");
  4909. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4910. #endif //TEMP_BED_PIN
  4911. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4912. SERIAL_PROTOCOLPGM(" T");
  4913. SERIAL_PROTOCOL(cur_extruder);
  4914. SERIAL_PROTOCOLPGM(":");
  4915. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4916. SERIAL_PROTOCOLPGM(" /");
  4917. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4918. }
  4919. #else
  4920. SERIAL_ERROR_START;
  4921. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4922. #endif
  4923. SERIAL_PROTOCOLPGM(" @:");
  4924. #ifdef EXTRUDER_WATTS
  4925. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4926. SERIAL_PROTOCOLPGM("W");
  4927. #else
  4928. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4929. #endif
  4930. SERIAL_PROTOCOLPGM(" B@:");
  4931. #ifdef BED_WATTS
  4932. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4933. SERIAL_PROTOCOLPGM("W");
  4934. #else
  4935. SERIAL_PROTOCOL(getHeaterPower(-1));
  4936. #endif
  4937. #ifdef PINDA_THERMISTOR
  4938. SERIAL_PROTOCOLPGM(" P:");
  4939. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4940. #endif //PINDA_THERMISTOR
  4941. #ifdef AMBIENT_THERMISTOR
  4942. SERIAL_PROTOCOLPGM(" A:");
  4943. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4944. #endif //AMBIENT_THERMISTOR
  4945. #ifdef SHOW_TEMP_ADC_VALUES
  4946. {float raw = 0.0;
  4947. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4948. SERIAL_PROTOCOLPGM(" ADC B:");
  4949. SERIAL_PROTOCOL_F(degBed(),1);
  4950. SERIAL_PROTOCOLPGM("C->");
  4951. raw = rawBedTemp();
  4952. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4953. SERIAL_PROTOCOLPGM(" Rb->");
  4954. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4955. SERIAL_PROTOCOLPGM(" Rxb->");
  4956. SERIAL_PROTOCOL_F(raw, 5);
  4957. #endif
  4958. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4959. SERIAL_PROTOCOLPGM(" T");
  4960. SERIAL_PROTOCOL(cur_extruder);
  4961. SERIAL_PROTOCOLPGM(":");
  4962. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4963. SERIAL_PROTOCOLPGM("C->");
  4964. raw = rawHotendTemp(cur_extruder);
  4965. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4966. SERIAL_PROTOCOLPGM(" Rt");
  4967. SERIAL_PROTOCOL(cur_extruder);
  4968. SERIAL_PROTOCOLPGM("->");
  4969. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4970. SERIAL_PROTOCOLPGM(" Rx");
  4971. SERIAL_PROTOCOL(cur_extruder);
  4972. SERIAL_PROTOCOLPGM("->");
  4973. SERIAL_PROTOCOL_F(raw, 5);
  4974. }}
  4975. #endif
  4976. SERIAL_PROTOCOLLN("");
  4977. KEEPALIVE_STATE(NOT_BUSY);
  4978. return;
  4979. break;
  4980. }
  4981. case 109:
  4982. {// M109 - Wait for extruder heater to reach target.
  4983. uint8_t extruder;
  4984. if(setTargetedHotend(109, extruder)){
  4985. break;
  4986. }
  4987. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4988. heating_status = 1;
  4989. if (farm_mode) { prusa_statistics(1); };
  4990. #ifdef AUTOTEMP
  4991. autotemp_enabled=false;
  4992. #endif
  4993. if (code_seen('S')) {
  4994. setTargetHotendSafe(code_value(), extruder);
  4995. CooldownNoWait = true;
  4996. } else if (code_seen('R')) {
  4997. setTargetHotendSafe(code_value(), extruder);
  4998. CooldownNoWait = false;
  4999. }
  5000. #ifdef AUTOTEMP
  5001. if (code_seen('S')) autotemp_min=code_value();
  5002. if (code_seen('B')) autotemp_max=code_value();
  5003. if (code_seen('F'))
  5004. {
  5005. autotemp_factor=code_value();
  5006. autotemp_enabled=true;
  5007. }
  5008. #endif
  5009. setWatch();
  5010. codenum = _millis();
  5011. /* See if we are heating up or cooling down */
  5012. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5013. KEEPALIVE_STATE(NOT_BUSY);
  5014. cancel_heatup = false;
  5015. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5016. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5017. KEEPALIVE_STATE(IN_HANDLER);
  5018. heating_status = 2;
  5019. if (farm_mode) { prusa_statistics(2); };
  5020. //starttime=_millis();
  5021. previous_millis_cmd = _millis();
  5022. }
  5023. break;
  5024. case 190: // M190 - Wait for bed heater to reach target.
  5025. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5026. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5027. heating_status = 3;
  5028. if (farm_mode) { prusa_statistics(1); };
  5029. if (code_seen('S'))
  5030. {
  5031. setTargetBed(code_value());
  5032. CooldownNoWait = true;
  5033. }
  5034. else if (code_seen('R'))
  5035. {
  5036. setTargetBed(code_value());
  5037. CooldownNoWait = false;
  5038. }
  5039. codenum = _millis();
  5040. cancel_heatup = false;
  5041. target_direction = isHeatingBed(); // true if heating, false if cooling
  5042. KEEPALIVE_STATE(NOT_BUSY);
  5043. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5044. {
  5045. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5046. {
  5047. if (!farm_mode) {
  5048. float tt = degHotend(active_extruder);
  5049. SERIAL_PROTOCOLPGM("T:");
  5050. SERIAL_PROTOCOL(tt);
  5051. SERIAL_PROTOCOLPGM(" E:");
  5052. SERIAL_PROTOCOL((int)active_extruder);
  5053. SERIAL_PROTOCOLPGM(" B:");
  5054. SERIAL_PROTOCOL_F(degBed(), 1);
  5055. SERIAL_PROTOCOLLN("");
  5056. }
  5057. codenum = _millis();
  5058. }
  5059. manage_heater();
  5060. manage_inactivity();
  5061. lcd_update(0);
  5062. }
  5063. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5064. KEEPALIVE_STATE(IN_HANDLER);
  5065. heating_status = 4;
  5066. previous_millis_cmd = _millis();
  5067. #endif
  5068. break;
  5069. #if defined(FAN_PIN) && FAN_PIN > -1
  5070. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5071. if (code_seen('S')){
  5072. fanSpeed=constrain(code_value(),0,255);
  5073. }
  5074. else {
  5075. fanSpeed=255;
  5076. }
  5077. break;
  5078. case 107: //M107 Fan Off
  5079. fanSpeed = 0;
  5080. break;
  5081. #endif //FAN_PIN
  5082. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5083. case 80: // M80 - Turn on Power Supply
  5084. SET_OUTPUT(PS_ON_PIN); //GND
  5085. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5086. // If you have a switch on suicide pin, this is useful
  5087. // if you want to start another print with suicide feature after
  5088. // a print without suicide...
  5089. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5090. SET_OUTPUT(SUICIDE_PIN);
  5091. WRITE(SUICIDE_PIN, HIGH);
  5092. #endif
  5093. powersupply = true;
  5094. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5095. lcd_update(0);
  5096. break;
  5097. #endif
  5098. case 81: // M81 - Turn off Power Supply
  5099. disable_heater();
  5100. st_synchronize();
  5101. disable_e0();
  5102. disable_e1();
  5103. disable_e2();
  5104. finishAndDisableSteppers();
  5105. fanSpeed = 0;
  5106. _delay(1000); // Wait a little before to switch off
  5107. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5108. st_synchronize();
  5109. suicide();
  5110. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5111. SET_OUTPUT(PS_ON_PIN);
  5112. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5113. #endif
  5114. powersupply = false;
  5115. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5116. lcd_update(0);
  5117. break;
  5118. case 82:
  5119. axis_relative_modes[3] = false;
  5120. break;
  5121. case 83:
  5122. axis_relative_modes[3] = true;
  5123. break;
  5124. case 18: //compatibility
  5125. case 84: // M84
  5126. if(code_seen('S')){
  5127. stepper_inactive_time = code_value() * 1000;
  5128. }
  5129. else
  5130. {
  5131. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5132. if(all_axis)
  5133. {
  5134. st_synchronize();
  5135. disable_e0();
  5136. disable_e1();
  5137. disable_e2();
  5138. finishAndDisableSteppers();
  5139. }
  5140. else
  5141. {
  5142. st_synchronize();
  5143. if (code_seen('X')) disable_x();
  5144. if (code_seen('Y')) disable_y();
  5145. if (code_seen('Z')) disable_z();
  5146. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5147. if (code_seen('E')) {
  5148. disable_e0();
  5149. disable_e1();
  5150. disable_e2();
  5151. }
  5152. #endif
  5153. }
  5154. }
  5155. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5156. print_time_remaining_init();
  5157. snmm_filaments_used = 0;
  5158. break;
  5159. case 85: // M85
  5160. if(code_seen('S')) {
  5161. max_inactive_time = code_value() * 1000;
  5162. }
  5163. break;
  5164. #ifdef SAFETYTIMER
  5165. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5166. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5167. if (code_seen('S')) {
  5168. safetytimer_inactive_time = code_value() * 1000;
  5169. safetyTimer.start();
  5170. }
  5171. break;
  5172. #endif
  5173. case 92: // M92
  5174. for(int8_t i=0; i < NUM_AXIS; i++)
  5175. {
  5176. if(code_seen(axis_codes[i]))
  5177. {
  5178. if(i == 3) { // E
  5179. float value = code_value();
  5180. if(value < 20.0) {
  5181. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5182. cs.max_jerk[E_AXIS] *= factor;
  5183. max_feedrate[i] *= factor;
  5184. axis_steps_per_sqr_second[i] *= factor;
  5185. }
  5186. cs.axis_steps_per_unit[i] = value;
  5187. }
  5188. else {
  5189. cs.axis_steps_per_unit[i] = code_value();
  5190. }
  5191. }
  5192. }
  5193. break;
  5194. case 110: //! M110 N<line number> - reset line pos
  5195. if (code_seen('N'))
  5196. gcode_LastN = code_value_long();
  5197. break;
  5198. case 113: // M113 - Get or set Host Keepalive interval
  5199. if (code_seen('S')) {
  5200. host_keepalive_interval = (uint8_t)code_value_short();
  5201. // NOMORE(host_keepalive_interval, 60);
  5202. }
  5203. else {
  5204. SERIAL_ECHO_START;
  5205. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5206. SERIAL_PROTOCOLLN("");
  5207. }
  5208. break;
  5209. case 115: // M115
  5210. if (code_seen('V')) {
  5211. // Report the Prusa version number.
  5212. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5213. } else if (code_seen('U')) {
  5214. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5215. // pause the print for 30s and ask the user to upgrade the firmware.
  5216. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5217. } else {
  5218. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5219. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5220. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5221. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5222. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5223. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5224. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5225. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5226. SERIAL_ECHOPGM(" UUID:");
  5227. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5228. }
  5229. break;
  5230. /* case 117: // M117 display message
  5231. starpos = (strchr(strchr_pointer + 5,'*'));
  5232. if(starpos!=NULL)
  5233. *(starpos)='\0';
  5234. lcd_setstatus(strchr_pointer + 5);
  5235. break;*/
  5236. case 114: // M114
  5237. gcode_M114();
  5238. break;
  5239. case 120: //! M120 - Disable endstops
  5240. enable_endstops(false) ;
  5241. break;
  5242. case 121: //! M121 - Enable endstops
  5243. enable_endstops(true) ;
  5244. break;
  5245. case 119: // M119
  5246. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5247. SERIAL_PROTOCOLLN("");
  5248. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5249. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5250. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5252. }else{
  5253. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5254. }
  5255. SERIAL_PROTOCOLLN("");
  5256. #endif
  5257. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5258. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5259. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5260. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5261. }else{
  5262. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5263. }
  5264. SERIAL_PROTOCOLLN("");
  5265. #endif
  5266. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5267. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5268. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5269. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5270. }else{
  5271. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5272. }
  5273. SERIAL_PROTOCOLLN("");
  5274. #endif
  5275. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5276. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5277. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5278. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5279. }else{
  5280. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5281. }
  5282. SERIAL_PROTOCOLLN("");
  5283. #endif
  5284. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5285. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5286. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5287. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5288. }else{
  5289. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5290. }
  5291. SERIAL_PROTOCOLLN("");
  5292. #endif
  5293. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5294. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5295. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5296. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5297. }else{
  5298. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5299. }
  5300. SERIAL_PROTOCOLLN("");
  5301. #endif
  5302. break;
  5303. //TODO: update for all axis, use for loop
  5304. #ifdef BLINKM
  5305. case 150: // M150
  5306. {
  5307. byte red;
  5308. byte grn;
  5309. byte blu;
  5310. if(code_seen('R')) red = code_value();
  5311. if(code_seen('U')) grn = code_value();
  5312. if(code_seen('B')) blu = code_value();
  5313. SendColors(red,grn,blu);
  5314. }
  5315. break;
  5316. #endif //BLINKM
  5317. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5318. {
  5319. uint8_t extruder = active_extruder;
  5320. if(code_seen('T')) {
  5321. extruder = code_value();
  5322. if(extruder >= EXTRUDERS) {
  5323. SERIAL_ECHO_START;
  5324. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5325. break;
  5326. }
  5327. }
  5328. if(code_seen('D')) {
  5329. float diameter = (float)code_value();
  5330. if (diameter == 0.0) {
  5331. // setting any extruder filament size disables volumetric on the assumption that
  5332. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5333. // for all extruders
  5334. cs.volumetric_enabled = false;
  5335. } else {
  5336. cs.filament_size[extruder] = (float)code_value();
  5337. // make sure all extruders have some sane value for the filament size
  5338. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5339. #if EXTRUDERS > 1
  5340. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5341. #if EXTRUDERS > 2
  5342. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5343. #endif
  5344. #endif
  5345. cs.volumetric_enabled = true;
  5346. }
  5347. } else {
  5348. //reserved for setting filament diameter via UFID or filament measuring device
  5349. break;
  5350. }
  5351. calculate_extruder_multipliers();
  5352. }
  5353. break;
  5354. case 201: // M201
  5355. for (int8_t i = 0; i < NUM_AXIS; i++)
  5356. {
  5357. if (code_seen(axis_codes[i]))
  5358. {
  5359. unsigned long val = code_value();
  5360. #ifdef TMC2130
  5361. unsigned long val_silent = val;
  5362. if ((i == X_AXIS) || (i == Y_AXIS))
  5363. {
  5364. if (val > NORMAL_MAX_ACCEL_XY)
  5365. val = NORMAL_MAX_ACCEL_XY;
  5366. if (val_silent > SILENT_MAX_ACCEL_XY)
  5367. val_silent = SILENT_MAX_ACCEL_XY;
  5368. }
  5369. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5370. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5371. #else //TMC2130
  5372. max_acceleration_units_per_sq_second[i] = val;
  5373. #endif //TMC2130
  5374. }
  5375. }
  5376. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5377. reset_acceleration_rates();
  5378. break;
  5379. #if 0 // Not used for Sprinter/grbl gen6
  5380. case 202: // M202
  5381. for(int8_t i=0; i < NUM_AXIS; i++) {
  5382. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5383. }
  5384. break;
  5385. #endif
  5386. case 203: // M203 max feedrate mm/sec
  5387. for (int8_t i = 0; i < NUM_AXIS; i++)
  5388. {
  5389. if (code_seen(axis_codes[i]))
  5390. {
  5391. float val = code_value();
  5392. #ifdef TMC2130
  5393. float val_silent = val;
  5394. if ((i == X_AXIS) || (i == Y_AXIS))
  5395. {
  5396. if (val > NORMAL_MAX_FEEDRATE_XY)
  5397. val = NORMAL_MAX_FEEDRATE_XY;
  5398. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5399. val_silent = SILENT_MAX_FEEDRATE_XY;
  5400. }
  5401. cs.max_feedrate_normal[i] = val;
  5402. cs.max_feedrate_silent[i] = val_silent;
  5403. #else //TMC2130
  5404. max_feedrate[i] = val;
  5405. #endif //TMC2130
  5406. }
  5407. }
  5408. break;
  5409. case 204:
  5410. //! M204 acclereration settings.
  5411. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5412. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5413. {
  5414. if(code_seen('S')) {
  5415. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5416. // and it is also generated by Slic3r to control acceleration per extrusion type
  5417. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5418. cs.acceleration = code_value();
  5419. // Interpret the T value as retract acceleration in the old Marlin format.
  5420. if(code_seen('T'))
  5421. cs.retract_acceleration = code_value();
  5422. } else {
  5423. // New acceleration format, compatible with the upstream Marlin.
  5424. if(code_seen('P'))
  5425. cs.acceleration = code_value();
  5426. if(code_seen('R'))
  5427. cs.retract_acceleration = code_value();
  5428. if(code_seen('T')) {
  5429. // Interpret the T value as the travel acceleration in the new Marlin format.
  5430. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5431. // travel_acceleration = code_value();
  5432. }
  5433. }
  5434. }
  5435. break;
  5436. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5437. {
  5438. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5439. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5440. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5441. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5442. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5443. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5444. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5445. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5446. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5447. }
  5448. break;
  5449. case 206: // M206 additional homing offset
  5450. for(int8_t i=0; i < 3; i++)
  5451. {
  5452. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5453. }
  5454. break;
  5455. #ifdef FWRETRACT
  5456. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5457. {
  5458. if(code_seen('S'))
  5459. {
  5460. cs.retract_length = code_value() ;
  5461. }
  5462. if(code_seen('F'))
  5463. {
  5464. cs.retract_feedrate = code_value()/60 ;
  5465. }
  5466. if(code_seen('Z'))
  5467. {
  5468. cs.retract_zlift = code_value() ;
  5469. }
  5470. }break;
  5471. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5472. {
  5473. if(code_seen('S'))
  5474. {
  5475. cs.retract_recover_length = code_value() ;
  5476. }
  5477. if(code_seen('F'))
  5478. {
  5479. cs.retract_recover_feedrate = code_value()/60 ;
  5480. }
  5481. }break;
  5482. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5483. {
  5484. if(code_seen('S'))
  5485. {
  5486. int t= code_value() ;
  5487. switch(t)
  5488. {
  5489. case 0:
  5490. {
  5491. cs.autoretract_enabled=false;
  5492. retracted[0]=false;
  5493. #if EXTRUDERS > 1
  5494. retracted[1]=false;
  5495. #endif
  5496. #if EXTRUDERS > 2
  5497. retracted[2]=false;
  5498. #endif
  5499. }break;
  5500. case 1:
  5501. {
  5502. cs.autoretract_enabled=true;
  5503. retracted[0]=false;
  5504. #if EXTRUDERS > 1
  5505. retracted[1]=false;
  5506. #endif
  5507. #if EXTRUDERS > 2
  5508. retracted[2]=false;
  5509. #endif
  5510. }break;
  5511. default:
  5512. SERIAL_ECHO_START;
  5513. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5514. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5515. SERIAL_ECHOLNPGM("\"(1)");
  5516. }
  5517. }
  5518. }break;
  5519. #endif // FWRETRACT
  5520. #if EXTRUDERS > 1
  5521. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5522. {
  5523. uint8_t extruder;
  5524. if(setTargetedHotend(218, extruder)){
  5525. break;
  5526. }
  5527. if(code_seen('X'))
  5528. {
  5529. extruder_offset[X_AXIS][extruder] = code_value();
  5530. }
  5531. if(code_seen('Y'))
  5532. {
  5533. extruder_offset[Y_AXIS][extruder] = code_value();
  5534. }
  5535. SERIAL_ECHO_START;
  5536. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5537. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5538. {
  5539. SERIAL_ECHO(" ");
  5540. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5541. SERIAL_ECHO(",");
  5542. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5543. }
  5544. SERIAL_ECHOLN("");
  5545. }break;
  5546. #endif
  5547. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5548. {
  5549. if (code_seen('B')) //backup current speed factor
  5550. {
  5551. saved_feedmultiply_mm = feedmultiply;
  5552. }
  5553. if(code_seen('S'))
  5554. {
  5555. feedmultiply = code_value() ;
  5556. }
  5557. if (code_seen('R')) { //restore previous feedmultiply
  5558. feedmultiply = saved_feedmultiply_mm;
  5559. }
  5560. }
  5561. break;
  5562. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5563. {
  5564. if(code_seen('S'))
  5565. {
  5566. int tmp_code = code_value();
  5567. if (code_seen('T'))
  5568. {
  5569. uint8_t extruder;
  5570. if(setTargetedHotend(221, extruder)){
  5571. break;
  5572. }
  5573. extruder_multiply[extruder] = tmp_code;
  5574. }
  5575. else
  5576. {
  5577. extrudemultiply = tmp_code ;
  5578. }
  5579. }
  5580. calculate_extruder_multipliers();
  5581. }
  5582. break;
  5583. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5584. {
  5585. if(code_seen('P')){
  5586. int pin_number = code_value(); // pin number
  5587. int pin_state = -1; // required pin state - default is inverted
  5588. if(code_seen('S')) pin_state = code_value(); // required pin state
  5589. if(pin_state >= -1 && pin_state <= 1){
  5590. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5591. {
  5592. if (sensitive_pins[i] == pin_number)
  5593. {
  5594. pin_number = -1;
  5595. break;
  5596. }
  5597. }
  5598. if (pin_number > -1)
  5599. {
  5600. int target = LOW;
  5601. st_synchronize();
  5602. pinMode(pin_number, INPUT);
  5603. switch(pin_state){
  5604. case 1:
  5605. target = HIGH;
  5606. break;
  5607. case 0:
  5608. target = LOW;
  5609. break;
  5610. case -1:
  5611. target = !digitalRead(pin_number);
  5612. break;
  5613. }
  5614. while(digitalRead(pin_number) != target){
  5615. manage_heater();
  5616. manage_inactivity();
  5617. lcd_update(0);
  5618. }
  5619. }
  5620. }
  5621. }
  5622. }
  5623. break;
  5624. #if NUM_SERVOS > 0
  5625. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5626. {
  5627. int servo_index = -1;
  5628. int servo_position = 0;
  5629. if (code_seen('P'))
  5630. servo_index = code_value();
  5631. if (code_seen('S')) {
  5632. servo_position = code_value();
  5633. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5634. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5635. servos[servo_index].attach(0);
  5636. #endif
  5637. servos[servo_index].write(servo_position);
  5638. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5639. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5640. servos[servo_index].detach();
  5641. #endif
  5642. }
  5643. else {
  5644. SERIAL_ECHO_START;
  5645. SERIAL_ECHO("Servo ");
  5646. SERIAL_ECHO(servo_index);
  5647. SERIAL_ECHOLN(" out of range");
  5648. }
  5649. }
  5650. else if (servo_index >= 0) {
  5651. SERIAL_PROTOCOL(MSG_OK);
  5652. SERIAL_PROTOCOL(" Servo ");
  5653. SERIAL_PROTOCOL(servo_index);
  5654. SERIAL_PROTOCOL(": ");
  5655. SERIAL_PROTOCOL(servos[servo_index].read());
  5656. SERIAL_PROTOCOLLN("");
  5657. }
  5658. }
  5659. break;
  5660. #endif // NUM_SERVOS > 0
  5661. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5662. case 300: // M300
  5663. {
  5664. int beepS = code_seen('S') ? code_value() : 110;
  5665. int beepP = code_seen('P') ? code_value() : 1000;
  5666. if (beepS > 0)
  5667. {
  5668. #if BEEPER > 0
  5669. Sound_MakeCustom(beepP,beepS,false);
  5670. #endif
  5671. }
  5672. else
  5673. {
  5674. _delay(beepP);
  5675. }
  5676. }
  5677. break;
  5678. #endif // M300
  5679. #ifdef PIDTEMP
  5680. case 301: // M301
  5681. {
  5682. if(code_seen('P')) cs.Kp = code_value();
  5683. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5684. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5685. #ifdef PID_ADD_EXTRUSION_RATE
  5686. if(code_seen('C')) Kc = code_value();
  5687. #endif
  5688. updatePID();
  5689. SERIAL_PROTOCOLRPGM(MSG_OK);
  5690. SERIAL_PROTOCOL(" p:");
  5691. SERIAL_PROTOCOL(cs.Kp);
  5692. SERIAL_PROTOCOL(" i:");
  5693. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5694. SERIAL_PROTOCOL(" d:");
  5695. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5696. #ifdef PID_ADD_EXTRUSION_RATE
  5697. SERIAL_PROTOCOL(" c:");
  5698. //Kc does not have scaling applied above, or in resetting defaults
  5699. SERIAL_PROTOCOL(Kc);
  5700. #endif
  5701. SERIAL_PROTOCOLLN("");
  5702. }
  5703. break;
  5704. #endif //PIDTEMP
  5705. #ifdef PIDTEMPBED
  5706. case 304: // M304
  5707. {
  5708. if(code_seen('P')) cs.bedKp = code_value();
  5709. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5710. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5711. updatePID();
  5712. SERIAL_PROTOCOLRPGM(MSG_OK);
  5713. SERIAL_PROTOCOL(" p:");
  5714. SERIAL_PROTOCOL(cs.bedKp);
  5715. SERIAL_PROTOCOL(" i:");
  5716. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5717. SERIAL_PROTOCOL(" d:");
  5718. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5719. SERIAL_PROTOCOLLN("");
  5720. }
  5721. break;
  5722. #endif //PIDTEMP
  5723. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5724. {
  5725. #ifdef CHDK
  5726. SET_OUTPUT(CHDK);
  5727. WRITE(CHDK, HIGH);
  5728. chdkHigh = _millis();
  5729. chdkActive = true;
  5730. #else
  5731. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5732. const uint8_t NUM_PULSES=16;
  5733. const float PULSE_LENGTH=0.01524;
  5734. for(int i=0; i < NUM_PULSES; i++) {
  5735. WRITE(PHOTOGRAPH_PIN, HIGH);
  5736. _delay_ms(PULSE_LENGTH);
  5737. WRITE(PHOTOGRAPH_PIN, LOW);
  5738. _delay_ms(PULSE_LENGTH);
  5739. }
  5740. _delay(7.33);
  5741. for(int i=0; i < NUM_PULSES; i++) {
  5742. WRITE(PHOTOGRAPH_PIN, HIGH);
  5743. _delay_ms(PULSE_LENGTH);
  5744. WRITE(PHOTOGRAPH_PIN, LOW);
  5745. _delay_ms(PULSE_LENGTH);
  5746. }
  5747. #endif
  5748. #endif //chdk end if
  5749. }
  5750. break;
  5751. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5752. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5753. {
  5754. float temp = .0;
  5755. if (code_seen('S')) temp=code_value();
  5756. set_extrude_min_temp(temp);
  5757. }
  5758. break;
  5759. #endif
  5760. case 303: // M303 PID autotune
  5761. {
  5762. float temp = 150.0;
  5763. int e=0;
  5764. int c=5;
  5765. if (code_seen('E')) e=code_value();
  5766. if (e<0)
  5767. temp=70;
  5768. if (code_seen('S')) temp=code_value();
  5769. if (code_seen('C')) c=code_value();
  5770. PID_autotune(temp, e, c);
  5771. }
  5772. break;
  5773. case 400: // M400 finish all moves
  5774. {
  5775. st_synchronize();
  5776. }
  5777. break;
  5778. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5779. {
  5780. //! currently three different materials are needed (default, flex and PVA)
  5781. //! add storing this information for different load/unload profiles etc. in the future
  5782. //!firmware does not wait for "ok" from mmu
  5783. if (mmu_enabled)
  5784. {
  5785. uint8_t extruder = 255;
  5786. uint8_t filament = FILAMENT_UNDEFINED;
  5787. if(code_seen('E')) extruder = code_value();
  5788. if(code_seen('F')) filament = code_value();
  5789. mmu_set_filament_type(extruder, filament);
  5790. }
  5791. }
  5792. break;
  5793. case 500: // M500 Store settings in EEPROM
  5794. {
  5795. Config_StoreSettings();
  5796. }
  5797. break;
  5798. case 501: // M501 Read settings from EEPROM
  5799. {
  5800. Config_RetrieveSettings();
  5801. }
  5802. break;
  5803. case 502: // M502 Revert to default settings
  5804. {
  5805. Config_ResetDefault();
  5806. }
  5807. break;
  5808. case 503: // M503 print settings currently in memory
  5809. {
  5810. Config_PrintSettings();
  5811. }
  5812. break;
  5813. case 509: //M509 Force language selection
  5814. {
  5815. lang_reset();
  5816. SERIAL_ECHO_START;
  5817. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5818. }
  5819. break;
  5820. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5821. case 540:
  5822. {
  5823. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5824. }
  5825. break;
  5826. #endif
  5827. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5828. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5829. {
  5830. float value;
  5831. if (code_seen('Z'))
  5832. {
  5833. value = code_value();
  5834. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5835. {
  5836. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5837. SERIAL_ECHO_START;
  5838. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5839. SERIAL_PROTOCOLLN("");
  5840. }
  5841. else
  5842. {
  5843. SERIAL_ECHO_START;
  5844. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5845. SERIAL_ECHORPGM(MSG_Z_MIN);
  5846. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5847. SERIAL_ECHORPGM(MSG_Z_MAX);
  5848. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5849. SERIAL_PROTOCOLLN("");
  5850. }
  5851. }
  5852. else
  5853. {
  5854. SERIAL_ECHO_START;
  5855. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5856. SERIAL_ECHO(-cs.zprobe_zoffset);
  5857. SERIAL_PROTOCOLLN("");
  5858. }
  5859. break;
  5860. }
  5861. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5862. #ifdef FILAMENTCHANGEENABLE
  5863. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5864. {
  5865. st_synchronize();
  5866. float x_position = current_position[X_AXIS];
  5867. float y_position = current_position[Y_AXIS];
  5868. float z_shift = 0; // is it necessary to be a float?
  5869. float e_shift_init = 0;
  5870. float e_shift_late = 0;
  5871. bool automatic = false;
  5872. //Retract extruder
  5873. if(code_seen('E'))
  5874. {
  5875. e_shift_init = code_value();
  5876. }
  5877. else
  5878. {
  5879. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5880. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5881. #endif
  5882. }
  5883. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5884. if (code_seen('L'))
  5885. {
  5886. e_shift_late = code_value();
  5887. }
  5888. else
  5889. {
  5890. #ifdef FILAMENTCHANGE_FINALRETRACT
  5891. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5892. #endif
  5893. }
  5894. //Lift Z
  5895. if(code_seen('Z'))
  5896. {
  5897. z_shift = code_value();
  5898. }
  5899. else
  5900. {
  5901. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5902. }
  5903. //Move XY to side
  5904. if(code_seen('X'))
  5905. {
  5906. x_position = code_value();
  5907. }
  5908. else
  5909. {
  5910. #ifdef FILAMENTCHANGE_XPOS
  5911. x_position = FILAMENTCHANGE_XPOS;
  5912. #endif
  5913. }
  5914. if(code_seen('Y'))
  5915. {
  5916. y_position = code_value();
  5917. }
  5918. else
  5919. {
  5920. #ifdef FILAMENTCHANGE_YPOS
  5921. y_position = FILAMENTCHANGE_YPOS ;
  5922. #endif
  5923. }
  5924. if (mmu_enabled && code_seen("AUTO"))
  5925. automatic = true;
  5926. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5927. }
  5928. break;
  5929. #endif //FILAMENTCHANGEENABLE
  5930. case 601: //! M601 - Pause print
  5931. {
  5932. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5933. lcd_pause_print();
  5934. }
  5935. break;
  5936. case 602: { //! M602 - Resume print
  5937. lcd_resume_print();
  5938. }
  5939. break;
  5940. #ifdef PINDA_THERMISTOR
  5941. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5942. {
  5943. int set_target_pinda = 0;
  5944. if (code_seen('S')) {
  5945. set_target_pinda = code_value();
  5946. }
  5947. else {
  5948. break;
  5949. }
  5950. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5951. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5952. SERIAL_PROTOCOL(set_target_pinda);
  5953. SERIAL_PROTOCOLLN("");
  5954. codenum = _millis();
  5955. cancel_heatup = false;
  5956. bool is_pinda_cooling = false;
  5957. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5958. is_pinda_cooling = true;
  5959. }
  5960. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5961. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5962. {
  5963. SERIAL_PROTOCOLPGM("P:");
  5964. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5965. SERIAL_PROTOCOLPGM("/");
  5966. SERIAL_PROTOCOL(set_target_pinda);
  5967. SERIAL_PROTOCOLLN("");
  5968. codenum = _millis();
  5969. }
  5970. manage_heater();
  5971. manage_inactivity();
  5972. lcd_update(0);
  5973. }
  5974. LCD_MESSAGERPGM(MSG_OK);
  5975. break;
  5976. }
  5977. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5978. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5979. uint8_t cal_status = calibration_status_pinda();
  5980. int16_t usteps = 0;
  5981. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5982. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5983. for (uint8_t i = 0; i < 6; i++)
  5984. {
  5985. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5986. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5987. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5988. SERIAL_PROTOCOLPGM(", ");
  5989. SERIAL_PROTOCOL(35 + (i * 5));
  5990. SERIAL_PROTOCOLPGM(", ");
  5991. SERIAL_PROTOCOL(usteps);
  5992. SERIAL_PROTOCOLPGM(", ");
  5993. SERIAL_PROTOCOL(mm * 1000);
  5994. SERIAL_PROTOCOLLN("");
  5995. }
  5996. }
  5997. else if (code_seen('!')) { // ! - Set factory default values
  5998. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5999. int16_t z_shift = 8; //40C - 20um - 8usteps
  6000. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6001. z_shift = 24; //45C - 60um - 24usteps
  6002. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6003. z_shift = 48; //50C - 120um - 48usteps
  6004. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6005. z_shift = 80; //55C - 200um - 80usteps
  6006. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6007. z_shift = 120; //60C - 300um - 120usteps
  6008. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6009. SERIAL_PROTOCOLLN("factory restored");
  6010. }
  6011. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6012. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6013. int16_t z_shift = 0;
  6014. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6015. SERIAL_PROTOCOLLN("zerorized");
  6016. }
  6017. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6018. int16_t usteps = code_value();
  6019. if (code_seen('I')) {
  6020. uint8_t index = code_value();
  6021. if (index < 5) {
  6022. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6023. SERIAL_PROTOCOLLN("OK");
  6024. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6025. for (uint8_t i = 0; i < 6; i++)
  6026. {
  6027. usteps = 0;
  6028. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6029. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6030. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6031. SERIAL_PROTOCOLPGM(", ");
  6032. SERIAL_PROTOCOL(35 + (i * 5));
  6033. SERIAL_PROTOCOLPGM(", ");
  6034. SERIAL_PROTOCOL(usteps);
  6035. SERIAL_PROTOCOLPGM(", ");
  6036. SERIAL_PROTOCOL(mm * 1000);
  6037. SERIAL_PROTOCOLLN("");
  6038. }
  6039. }
  6040. }
  6041. }
  6042. else {
  6043. SERIAL_PROTOCOLPGM("no valid command");
  6044. }
  6045. break;
  6046. #endif //PINDA_THERMISTOR
  6047. case 862: // M862: print checking
  6048. float nDummy;
  6049. uint8_t nCommand;
  6050. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6051. switch((ClPrintChecking)nCommand)
  6052. {
  6053. case ClPrintChecking::_Nozzle: // ~ .1
  6054. uint16_t nDiameter;
  6055. if(code_seen('P'))
  6056. {
  6057. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6058. nozzle_diameter_check(nDiameter);
  6059. }
  6060. /*
  6061. else if(code_seen('S')&&farm_mode)
  6062. {
  6063. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6064. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6065. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6066. }
  6067. */
  6068. else if(code_seen('Q'))
  6069. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6070. break;
  6071. case ClPrintChecking::_Model: // ~ .2
  6072. if(code_seen('P'))
  6073. {
  6074. uint16_t nPrinterModel;
  6075. nPrinterModel=(uint16_t)code_value_long();
  6076. printer_model_check(nPrinterModel);
  6077. }
  6078. else if(code_seen('Q'))
  6079. SERIAL_PROTOCOLLN(nPrinterType);
  6080. break;
  6081. case ClPrintChecking::_Smodel: // ~ .3
  6082. if(code_seen('P'))
  6083. printer_smodel_check(strchr_pointer);
  6084. else if(code_seen('Q'))
  6085. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6086. break;
  6087. case ClPrintChecking::_Version: // ~ .4
  6088. if(code_seen('P'))
  6089. fw_version_check(++strchr_pointer);
  6090. else if(code_seen('Q'))
  6091. SERIAL_PROTOCOLLN(FW_VERSION);
  6092. break;
  6093. case ClPrintChecking::_Gcode: // ~ .5
  6094. if(code_seen('P'))
  6095. {
  6096. uint16_t nGcodeLevel;
  6097. nGcodeLevel=(uint16_t)code_value_long();
  6098. gcode_level_check(nGcodeLevel);
  6099. }
  6100. else if(code_seen('Q'))
  6101. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6102. break;
  6103. }
  6104. break;
  6105. #ifdef LIN_ADVANCE
  6106. case 900: // M900: Set LIN_ADVANCE options.
  6107. gcode_M900();
  6108. break;
  6109. #endif
  6110. case 907: // M907 Set digital trimpot motor current using axis codes.
  6111. {
  6112. #ifdef TMC2130
  6113. for (int i = 0; i < NUM_AXIS; i++)
  6114. if(code_seen(axis_codes[i]))
  6115. {
  6116. long cur_mA = code_value_long();
  6117. uint8_t val = tmc2130_cur2val(cur_mA);
  6118. tmc2130_set_current_h(i, val);
  6119. tmc2130_set_current_r(i, val);
  6120. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6121. }
  6122. #else //TMC2130
  6123. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6124. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6125. if(code_seen('B')) st_current_set(4,code_value());
  6126. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6127. #endif
  6128. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6129. if(code_seen('X')) st_current_set(0, code_value());
  6130. #endif
  6131. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6132. if(code_seen('Z')) st_current_set(1, code_value());
  6133. #endif
  6134. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6135. if(code_seen('E')) st_current_set(2, code_value());
  6136. #endif
  6137. #endif //TMC2130
  6138. }
  6139. break;
  6140. case 908: // M908 Control digital trimpot directly.
  6141. {
  6142. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6143. uint8_t channel,current;
  6144. if(code_seen('P')) channel=code_value();
  6145. if(code_seen('S')) current=code_value();
  6146. digitalPotWrite(channel, current);
  6147. #endif
  6148. }
  6149. break;
  6150. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6151. case 910: //! M910 - TMC2130 init
  6152. {
  6153. tmc2130_init();
  6154. }
  6155. break;
  6156. case 911: //! M911 - Set TMC2130 holding currents
  6157. {
  6158. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6159. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6160. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6161. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6162. }
  6163. break;
  6164. case 912: //! M912 - Set TMC2130 running currents
  6165. {
  6166. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6167. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6168. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6169. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6170. }
  6171. break;
  6172. case 913: //! M913 - Print TMC2130 currents
  6173. {
  6174. tmc2130_print_currents();
  6175. }
  6176. break;
  6177. case 914: //! M914 - Set normal mode
  6178. {
  6179. tmc2130_mode = TMC2130_MODE_NORMAL;
  6180. update_mode_profile();
  6181. tmc2130_init();
  6182. }
  6183. break;
  6184. case 915: //! M915 - Set silent mode
  6185. {
  6186. tmc2130_mode = TMC2130_MODE_SILENT;
  6187. update_mode_profile();
  6188. tmc2130_init();
  6189. }
  6190. break;
  6191. case 916: //! M916 - Set sg_thrs
  6192. {
  6193. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6194. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6195. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6196. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6197. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6198. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6199. }
  6200. break;
  6201. case 917: //! M917 - Set TMC2130 pwm_ampl
  6202. {
  6203. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6204. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6205. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6206. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6207. }
  6208. break;
  6209. case 918: //! M918 - Set TMC2130 pwm_grad
  6210. {
  6211. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6212. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6213. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6214. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6215. }
  6216. break;
  6217. #endif //TMC2130_SERVICE_CODES_M910_M918
  6218. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6219. {
  6220. #ifdef TMC2130
  6221. if(code_seen('E'))
  6222. {
  6223. uint16_t res_new = code_value();
  6224. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6225. {
  6226. st_synchronize();
  6227. uint8_t axis = E_AXIS;
  6228. uint16_t res = tmc2130_get_res(axis);
  6229. tmc2130_set_res(axis, res_new);
  6230. cs.axis_ustep_resolution[axis] = res_new;
  6231. if (res_new > res)
  6232. {
  6233. uint16_t fac = (res_new / res);
  6234. cs.axis_steps_per_unit[axis] *= fac;
  6235. position[E_AXIS] *= fac;
  6236. }
  6237. else
  6238. {
  6239. uint16_t fac = (res / res_new);
  6240. cs.axis_steps_per_unit[axis] /= fac;
  6241. position[E_AXIS] /= fac;
  6242. }
  6243. }
  6244. }
  6245. #else //TMC2130
  6246. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6247. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6248. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6249. if(code_seen('B')) microstep_mode(4,code_value());
  6250. microstep_readings();
  6251. #endif
  6252. #endif //TMC2130
  6253. }
  6254. break;
  6255. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6256. {
  6257. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6258. if(code_seen('S')) switch((int)code_value())
  6259. {
  6260. case 1:
  6261. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6262. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6263. break;
  6264. case 2:
  6265. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6266. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6267. break;
  6268. }
  6269. microstep_readings();
  6270. #endif
  6271. }
  6272. break;
  6273. case 701: //! M701 - load filament
  6274. {
  6275. if (mmu_enabled && code_seen('E'))
  6276. tmp_extruder = code_value();
  6277. gcode_M701();
  6278. }
  6279. break;
  6280. case 702: //! M702 [U C] -
  6281. {
  6282. #ifdef SNMM
  6283. if (code_seen('U'))
  6284. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6285. else if (code_seen('C'))
  6286. extr_unload(); //! if "C" unload just current filament
  6287. else
  6288. extr_unload_all(); //! otherwise unload all filaments
  6289. #else
  6290. if (code_seen('C')) {
  6291. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6292. }
  6293. else {
  6294. if(mmu_enabled) extr_unload(); //! unload current filament
  6295. else unload_filament();
  6296. }
  6297. #endif //SNMM
  6298. }
  6299. break;
  6300. case 999: // M999: Restart after being stopped
  6301. Stopped = false;
  6302. lcd_reset_alert_level();
  6303. gcode_LastN = Stopped_gcode_LastN;
  6304. FlushSerialRequestResend();
  6305. break;
  6306. default:
  6307. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6308. }
  6309. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6310. mcode_in_progress = 0;
  6311. }
  6312. }
  6313. // end if(code_seen('M')) (end of M codes)
  6314. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6315. //! select filament in case of MMU_V2
  6316. //! if extruder is "?", open menu to let the user select extruder/filament
  6317. //!
  6318. //! For MMU_V2:
  6319. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6320. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6321. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6322. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6323. else if(code_seen('T'))
  6324. {
  6325. int index;
  6326. bool load_to_nozzle = false;
  6327. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6328. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6329. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6330. SERIAL_ECHOLNPGM("Invalid T code.");
  6331. }
  6332. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6333. if (mmu_enabled)
  6334. {
  6335. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6336. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6337. {
  6338. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6339. }
  6340. else
  6341. {
  6342. st_synchronize();
  6343. mmu_command(MmuCmd::T0 + tmp_extruder);
  6344. manage_response(true, true, MMU_TCODE_MOVE);
  6345. }
  6346. }
  6347. }
  6348. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6349. if (mmu_enabled)
  6350. {
  6351. st_synchronize();
  6352. mmu_continue_loading(is_usb_printing);
  6353. mmu_extruder = tmp_extruder; //filament change is finished
  6354. mmu_load_to_nozzle();
  6355. }
  6356. }
  6357. else {
  6358. if (*(strchr_pointer + index) == '?')
  6359. {
  6360. if(mmu_enabled)
  6361. {
  6362. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6363. load_to_nozzle = true;
  6364. } else
  6365. {
  6366. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6367. }
  6368. }
  6369. else {
  6370. tmp_extruder = code_value();
  6371. if (mmu_enabled && lcd_autoDepleteEnabled())
  6372. {
  6373. tmp_extruder = ad_getAlternative(tmp_extruder);
  6374. }
  6375. }
  6376. st_synchronize();
  6377. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6378. if (mmu_enabled)
  6379. {
  6380. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6381. {
  6382. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6383. }
  6384. else
  6385. {
  6386. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6387. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6388. {
  6389. mmu_command(MmuCmd::K0 + tmp_extruder);
  6390. manage_response(true, true, MMU_UNLOAD_MOVE);
  6391. }
  6392. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6393. mmu_command(MmuCmd::T0 + tmp_extruder);
  6394. manage_response(true, true, MMU_TCODE_MOVE);
  6395. mmu_continue_loading(is_usb_printing);
  6396. mmu_extruder = tmp_extruder; //filament change is finished
  6397. if (load_to_nozzle)// for single material usage with mmu
  6398. {
  6399. mmu_load_to_nozzle();
  6400. }
  6401. }
  6402. }
  6403. else
  6404. {
  6405. #ifdef SNMM
  6406. #ifdef LIN_ADVANCE
  6407. if (mmu_extruder != tmp_extruder)
  6408. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6409. #endif
  6410. mmu_extruder = tmp_extruder;
  6411. _delay(100);
  6412. disable_e0();
  6413. disable_e1();
  6414. disable_e2();
  6415. pinMode(E_MUX0_PIN, OUTPUT);
  6416. pinMode(E_MUX1_PIN, OUTPUT);
  6417. _delay(100);
  6418. SERIAL_ECHO_START;
  6419. SERIAL_ECHO("T:");
  6420. SERIAL_ECHOLN((int)tmp_extruder);
  6421. switch (tmp_extruder) {
  6422. case 1:
  6423. WRITE(E_MUX0_PIN, HIGH);
  6424. WRITE(E_MUX1_PIN, LOW);
  6425. break;
  6426. case 2:
  6427. WRITE(E_MUX0_PIN, LOW);
  6428. WRITE(E_MUX1_PIN, HIGH);
  6429. break;
  6430. case 3:
  6431. WRITE(E_MUX0_PIN, HIGH);
  6432. WRITE(E_MUX1_PIN, HIGH);
  6433. break;
  6434. default:
  6435. WRITE(E_MUX0_PIN, LOW);
  6436. WRITE(E_MUX1_PIN, LOW);
  6437. break;
  6438. }
  6439. _delay(100);
  6440. #else //SNMM
  6441. if (tmp_extruder >= EXTRUDERS) {
  6442. SERIAL_ECHO_START;
  6443. SERIAL_ECHOPGM("T");
  6444. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6445. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6446. }
  6447. else {
  6448. #if EXTRUDERS > 1
  6449. boolean make_move = false;
  6450. #endif
  6451. if (code_seen('F')) {
  6452. #if EXTRUDERS > 1
  6453. make_move = true;
  6454. #endif
  6455. next_feedrate = code_value();
  6456. if (next_feedrate > 0.0) {
  6457. feedrate = next_feedrate;
  6458. }
  6459. }
  6460. #if EXTRUDERS > 1
  6461. if (tmp_extruder != active_extruder) {
  6462. // Save current position to return to after applying extruder offset
  6463. memcpy(destination, current_position, sizeof(destination));
  6464. // Offset extruder (only by XY)
  6465. int i;
  6466. for (i = 0; i < 2; i++) {
  6467. current_position[i] = current_position[i] -
  6468. extruder_offset[i][active_extruder] +
  6469. extruder_offset[i][tmp_extruder];
  6470. }
  6471. // Set the new active extruder and position
  6472. active_extruder = tmp_extruder;
  6473. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6474. // Move to the old position if 'F' was in the parameters
  6475. if (make_move && Stopped == false) {
  6476. prepare_move();
  6477. }
  6478. }
  6479. #endif
  6480. SERIAL_ECHO_START;
  6481. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6482. SERIAL_PROTOCOLLN((int)active_extruder);
  6483. }
  6484. #endif //SNMM
  6485. }
  6486. }
  6487. } // end if(code_seen('T')) (end of T codes)
  6488. else if (code_seen('D')) // D codes (debug)
  6489. {
  6490. switch((int)code_value())
  6491. {
  6492. case -1: //! D-1 - Endless loop
  6493. dcode__1(); break;
  6494. #ifdef DEBUG_DCODES
  6495. case 0: //! D0 - Reset
  6496. dcode_0(); break;
  6497. case 1: //! D1 - Clear EEPROM
  6498. dcode_1(); break;
  6499. case 2: //! D2 - Read/Write RAM
  6500. dcode_2(); break;
  6501. #endif //DEBUG_DCODES
  6502. #ifdef DEBUG_DCODE3
  6503. case 3: //! D3 - Read/Write EEPROM
  6504. dcode_3(); break;
  6505. #endif //DEBUG_DCODE3
  6506. #ifdef DEBUG_DCODES
  6507. case 4: //! D4 - Read/Write PIN
  6508. dcode_4(); break;
  6509. #endif //DEBUG_DCODES
  6510. #ifdef DEBUG_DCODE5
  6511. case 5: // D5 - Read/Write FLASH
  6512. dcode_5(); break;
  6513. break;
  6514. #endif //DEBUG_DCODE5
  6515. #ifdef DEBUG_DCODES
  6516. case 6: // D6 - Read/Write external FLASH
  6517. dcode_6(); break;
  6518. case 7: //! D7 - Read/Write Bootloader
  6519. dcode_7(); break;
  6520. case 8: //! D8 - Read/Write PINDA
  6521. dcode_8(); break;
  6522. case 9: //! D9 - Read/Write ADC
  6523. dcode_9(); break;
  6524. case 10: //! D10 - XYZ calibration = OK
  6525. dcode_10(); break;
  6526. #endif //DEBUG_DCODES
  6527. #ifdef HEATBED_ANALYSIS
  6528. case 80:
  6529. {
  6530. float dimension_x = 40;
  6531. float dimension_y = 40;
  6532. int points_x = 40;
  6533. int points_y = 40;
  6534. float offset_x = 74;
  6535. float offset_y = 33;
  6536. if (code_seen('E')) dimension_x = code_value();
  6537. if (code_seen('F')) dimension_y = code_value();
  6538. if (code_seen('G')) {points_x = code_value(); }
  6539. if (code_seen('H')) {points_y = code_value(); }
  6540. if (code_seen('I')) {offset_x = code_value(); }
  6541. if (code_seen('J')) {offset_y = code_value(); }
  6542. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6543. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6544. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6545. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6546. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6547. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6548. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6549. }break;
  6550. case 81:
  6551. {
  6552. float dimension_x = 40;
  6553. float dimension_y = 40;
  6554. int points_x = 40;
  6555. int points_y = 40;
  6556. float offset_x = 74;
  6557. float offset_y = 33;
  6558. if (code_seen('E')) dimension_x = code_value();
  6559. if (code_seen('F')) dimension_y = code_value();
  6560. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6561. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6562. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6563. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6564. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6565. } break;
  6566. #endif //HEATBED_ANALYSIS
  6567. #ifdef DEBUG_DCODES
  6568. case 106: //D106 print measured fan speed for different pwm values
  6569. {
  6570. for (int i = 255; i > 0; i = i - 5) {
  6571. fanSpeed = i;
  6572. //delay_keep_alive(2000);
  6573. for (int j = 0; j < 100; j++) {
  6574. delay_keep_alive(100);
  6575. }
  6576. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6577. }
  6578. }break;
  6579. #ifdef TMC2130
  6580. case 2130: //! D2130 - TMC2130
  6581. dcode_2130(); break;
  6582. #endif //TMC2130
  6583. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6584. case 9125: //! D9125 - FILAMENT_SENSOR
  6585. dcode_9125(); break;
  6586. #endif //FILAMENT_SENSOR
  6587. #endif //DEBUG_DCODES
  6588. }
  6589. }
  6590. else
  6591. {
  6592. SERIAL_ECHO_START;
  6593. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6594. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6595. SERIAL_ECHOLNPGM("\"(2)");
  6596. }
  6597. KEEPALIVE_STATE(NOT_BUSY);
  6598. ClearToSend();
  6599. }
  6600. void FlushSerialRequestResend()
  6601. {
  6602. //char cmdbuffer[bufindr][100]="Resend:";
  6603. MYSERIAL.flush();
  6604. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6605. }
  6606. // Confirm the execution of a command, if sent from a serial line.
  6607. // Execution of a command from a SD card will not be confirmed.
  6608. void ClearToSend()
  6609. {
  6610. previous_millis_cmd = _millis();
  6611. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6612. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6613. }
  6614. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6615. void update_currents() {
  6616. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6617. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6618. float tmp_motor[3];
  6619. //SERIAL_ECHOLNPGM("Currents updated: ");
  6620. if (destination[Z_AXIS] < Z_SILENT) {
  6621. //SERIAL_ECHOLNPGM("LOW");
  6622. for (uint8_t i = 0; i < 3; i++) {
  6623. st_current_set(i, current_low[i]);
  6624. /*MYSERIAL.print(int(i));
  6625. SERIAL_ECHOPGM(": ");
  6626. MYSERIAL.println(current_low[i]);*/
  6627. }
  6628. }
  6629. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6630. //SERIAL_ECHOLNPGM("HIGH");
  6631. for (uint8_t i = 0; i < 3; i++) {
  6632. st_current_set(i, current_high[i]);
  6633. /*MYSERIAL.print(int(i));
  6634. SERIAL_ECHOPGM(": ");
  6635. MYSERIAL.println(current_high[i]);*/
  6636. }
  6637. }
  6638. else {
  6639. for (uint8_t i = 0; i < 3; i++) {
  6640. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6641. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6642. st_current_set(i, tmp_motor[i]);
  6643. /*MYSERIAL.print(int(i));
  6644. SERIAL_ECHOPGM(": ");
  6645. MYSERIAL.println(tmp_motor[i]);*/
  6646. }
  6647. }
  6648. }
  6649. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6650. void get_coordinates()
  6651. {
  6652. bool seen[4]={false,false,false,false};
  6653. for(int8_t i=0; i < NUM_AXIS; i++) {
  6654. if(code_seen(axis_codes[i]))
  6655. {
  6656. bool relative = axis_relative_modes[i] || relative_mode;
  6657. destination[i] = (float)code_value();
  6658. if (i == E_AXIS) {
  6659. float emult = extruder_multiplier[active_extruder];
  6660. if (emult != 1.) {
  6661. if (! relative) {
  6662. destination[i] -= current_position[i];
  6663. relative = true;
  6664. }
  6665. destination[i] *= emult;
  6666. }
  6667. }
  6668. if (relative)
  6669. destination[i] += current_position[i];
  6670. seen[i]=true;
  6671. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6672. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6673. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6674. }
  6675. else destination[i] = current_position[i]; //Are these else lines really needed?
  6676. }
  6677. if(code_seen('F')) {
  6678. next_feedrate = code_value();
  6679. #ifdef MAX_SILENT_FEEDRATE
  6680. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6681. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6682. #endif //MAX_SILENT_FEEDRATE
  6683. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6684. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6685. {
  6686. // float e_max_speed =
  6687. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6688. }
  6689. }
  6690. }
  6691. void get_arc_coordinates()
  6692. {
  6693. #ifdef SF_ARC_FIX
  6694. bool relative_mode_backup = relative_mode;
  6695. relative_mode = true;
  6696. #endif
  6697. get_coordinates();
  6698. #ifdef SF_ARC_FIX
  6699. relative_mode=relative_mode_backup;
  6700. #endif
  6701. if(code_seen('I')) {
  6702. offset[0] = code_value();
  6703. }
  6704. else {
  6705. offset[0] = 0.0;
  6706. }
  6707. if(code_seen('J')) {
  6708. offset[1] = code_value();
  6709. }
  6710. else {
  6711. offset[1] = 0.0;
  6712. }
  6713. }
  6714. void clamp_to_software_endstops(float target[3])
  6715. {
  6716. #ifdef DEBUG_DISABLE_SWLIMITS
  6717. return;
  6718. #endif //DEBUG_DISABLE_SWLIMITS
  6719. world2machine_clamp(target[0], target[1]);
  6720. // Clamp the Z coordinate.
  6721. if (min_software_endstops) {
  6722. float negative_z_offset = 0;
  6723. #ifdef ENABLE_AUTO_BED_LEVELING
  6724. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6725. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6726. #endif
  6727. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6728. }
  6729. if (max_software_endstops) {
  6730. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6731. }
  6732. }
  6733. #ifdef MESH_BED_LEVELING
  6734. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6735. float dx = x - current_position[X_AXIS];
  6736. float dy = y - current_position[Y_AXIS];
  6737. float dz = z - current_position[Z_AXIS];
  6738. int n_segments = 0;
  6739. if (mbl.active) {
  6740. float len = abs(dx) + abs(dy);
  6741. if (len > 0)
  6742. // Split to 3cm segments or shorter.
  6743. n_segments = int(ceil(len / 30.f));
  6744. }
  6745. if (n_segments > 1) {
  6746. float de = e - current_position[E_AXIS];
  6747. for (int i = 1; i < n_segments; ++ i) {
  6748. float t = float(i) / float(n_segments);
  6749. if (saved_printing || (mbl.active == false)) return;
  6750. plan_buffer_line(
  6751. current_position[X_AXIS] + t * dx,
  6752. current_position[Y_AXIS] + t * dy,
  6753. current_position[Z_AXIS] + t * dz,
  6754. current_position[E_AXIS] + t * de,
  6755. feed_rate, extruder);
  6756. }
  6757. }
  6758. // The rest of the path.
  6759. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6760. current_position[X_AXIS] = x;
  6761. current_position[Y_AXIS] = y;
  6762. current_position[Z_AXIS] = z;
  6763. current_position[E_AXIS] = e;
  6764. }
  6765. #endif // MESH_BED_LEVELING
  6766. void prepare_move()
  6767. {
  6768. clamp_to_software_endstops(destination);
  6769. previous_millis_cmd = _millis();
  6770. // Do not use feedmultiply for E or Z only moves
  6771. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6772. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6773. }
  6774. else {
  6775. #ifdef MESH_BED_LEVELING
  6776. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6777. #else
  6778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6779. #endif
  6780. }
  6781. for(int8_t i=0; i < NUM_AXIS; i++) {
  6782. current_position[i] = destination[i];
  6783. }
  6784. }
  6785. void prepare_arc_move(char isclockwise) {
  6786. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6787. // Trace the arc
  6788. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6789. // As far as the parser is concerned, the position is now == target. In reality the
  6790. // motion control system might still be processing the action and the real tool position
  6791. // in any intermediate location.
  6792. for(int8_t i=0; i < NUM_AXIS; i++) {
  6793. current_position[i] = destination[i];
  6794. }
  6795. previous_millis_cmd = _millis();
  6796. }
  6797. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6798. #if defined(FAN_PIN)
  6799. #if CONTROLLERFAN_PIN == FAN_PIN
  6800. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6801. #endif
  6802. #endif
  6803. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6804. unsigned long lastMotorCheck = 0;
  6805. void controllerFan()
  6806. {
  6807. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6808. {
  6809. lastMotorCheck = _millis();
  6810. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6811. #if EXTRUDERS > 2
  6812. || !READ(E2_ENABLE_PIN)
  6813. #endif
  6814. #if EXTRUDER > 1
  6815. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6816. || !READ(X2_ENABLE_PIN)
  6817. #endif
  6818. || !READ(E1_ENABLE_PIN)
  6819. #endif
  6820. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6821. {
  6822. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6823. }
  6824. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6825. {
  6826. digitalWrite(CONTROLLERFAN_PIN, 0);
  6827. analogWrite(CONTROLLERFAN_PIN, 0);
  6828. }
  6829. else
  6830. {
  6831. // allows digital or PWM fan output to be used (see M42 handling)
  6832. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6833. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6834. }
  6835. }
  6836. }
  6837. #endif
  6838. #ifdef TEMP_STAT_LEDS
  6839. static bool blue_led = false;
  6840. static bool red_led = false;
  6841. static uint32_t stat_update = 0;
  6842. void handle_status_leds(void) {
  6843. float max_temp = 0.0;
  6844. if(_millis() > stat_update) {
  6845. stat_update += 500; // Update every 0.5s
  6846. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6847. max_temp = max(max_temp, degHotend(cur_extruder));
  6848. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6849. }
  6850. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6851. max_temp = max(max_temp, degTargetBed());
  6852. max_temp = max(max_temp, degBed());
  6853. #endif
  6854. if((max_temp > 55.0) && (red_led == false)) {
  6855. digitalWrite(STAT_LED_RED, 1);
  6856. digitalWrite(STAT_LED_BLUE, 0);
  6857. red_led = true;
  6858. blue_led = false;
  6859. }
  6860. if((max_temp < 54.0) && (blue_led == false)) {
  6861. digitalWrite(STAT_LED_RED, 0);
  6862. digitalWrite(STAT_LED_BLUE, 1);
  6863. red_led = false;
  6864. blue_led = true;
  6865. }
  6866. }
  6867. }
  6868. #endif
  6869. #ifdef SAFETYTIMER
  6870. /**
  6871. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6872. *
  6873. * Full screen blocking notification message is shown after heater turning off.
  6874. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6875. * damage print.
  6876. *
  6877. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6878. */
  6879. static void handleSafetyTimer()
  6880. {
  6881. #if (EXTRUDERS > 1)
  6882. #error Implemented only for one extruder.
  6883. #endif //(EXTRUDERS > 1)
  6884. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6885. {
  6886. safetyTimer.stop();
  6887. }
  6888. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6889. {
  6890. safetyTimer.start();
  6891. }
  6892. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6893. {
  6894. setTargetBed(0);
  6895. setAllTargetHotends(0);
  6896. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6897. }
  6898. }
  6899. #endif //SAFETYTIMER
  6900. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6901. {
  6902. bool bInhibitFlag;
  6903. #ifdef FILAMENT_SENSOR
  6904. if (mmu_enabled == false)
  6905. {
  6906. //-// if (mcode_in_progress != 600) //M600 not in progress
  6907. #ifdef PAT9125
  6908. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6909. #endif // PAT9125
  6910. #ifdef IR_SENSOR
  6911. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6912. #endif // IR_SENSOR
  6913. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6914. {
  6915. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6916. {
  6917. if (fsensor_check_autoload())
  6918. {
  6919. #ifdef PAT9125
  6920. fsensor_autoload_check_stop();
  6921. #endif //PAT9125
  6922. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6923. if(0)
  6924. {
  6925. Sound_MakeCustom(50,1000,false);
  6926. loading_flag = true;
  6927. enquecommand_front_P((PSTR("M701")));
  6928. }
  6929. else
  6930. {
  6931. /*
  6932. lcd_update_enable(false);
  6933. show_preheat_nozzle_warning();
  6934. lcd_update_enable(true);
  6935. */
  6936. eFilamentAction=FilamentAction::AutoLoad;
  6937. bFilamentFirstRun=false;
  6938. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6939. {
  6940. bFilamentPreheatState=true;
  6941. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6942. menu_submenu(mFilamentItemForce);
  6943. }
  6944. else
  6945. {
  6946. menu_submenu(mFilamentMenu);
  6947. lcd_timeoutToStatus.start();
  6948. }
  6949. }
  6950. }
  6951. }
  6952. else
  6953. {
  6954. #ifdef PAT9125
  6955. fsensor_autoload_check_stop();
  6956. #endif //PAT9125
  6957. fsensor_update();
  6958. }
  6959. }
  6960. }
  6961. #endif //FILAMENT_SENSOR
  6962. #ifdef SAFETYTIMER
  6963. handleSafetyTimer();
  6964. #endif //SAFETYTIMER
  6965. #if defined(KILL_PIN) && KILL_PIN > -1
  6966. static int killCount = 0; // make the inactivity button a bit less responsive
  6967. const int KILL_DELAY = 10000;
  6968. #endif
  6969. if(buflen < (BUFSIZE-1)){
  6970. get_command();
  6971. }
  6972. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6973. if(max_inactive_time)
  6974. kill(_n(""), 4);
  6975. if(stepper_inactive_time) {
  6976. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6977. {
  6978. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6979. disable_x();
  6980. disable_y();
  6981. disable_z();
  6982. disable_e0();
  6983. disable_e1();
  6984. disable_e2();
  6985. }
  6986. }
  6987. }
  6988. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6989. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6990. {
  6991. chdkActive = false;
  6992. WRITE(CHDK, LOW);
  6993. }
  6994. #endif
  6995. #if defined(KILL_PIN) && KILL_PIN > -1
  6996. // Check if the kill button was pressed and wait just in case it was an accidental
  6997. // key kill key press
  6998. // -------------------------------------------------------------------------------
  6999. if( 0 == READ(KILL_PIN) )
  7000. {
  7001. killCount++;
  7002. }
  7003. else if (killCount > 0)
  7004. {
  7005. killCount--;
  7006. }
  7007. // Exceeded threshold and we can confirm that it was not accidental
  7008. // KILL the machine
  7009. // ----------------------------------------------------------------
  7010. if ( killCount >= KILL_DELAY)
  7011. {
  7012. kill("", 5);
  7013. }
  7014. #endif
  7015. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7016. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7017. #endif
  7018. #ifdef EXTRUDER_RUNOUT_PREVENT
  7019. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7020. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7021. {
  7022. bool oldstatus=READ(E0_ENABLE_PIN);
  7023. enable_e0();
  7024. float oldepos=current_position[E_AXIS];
  7025. float oldedes=destination[E_AXIS];
  7026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7027. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7028. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7029. current_position[E_AXIS]=oldepos;
  7030. destination[E_AXIS]=oldedes;
  7031. plan_set_e_position(oldepos);
  7032. previous_millis_cmd=_millis();
  7033. st_synchronize();
  7034. WRITE(E0_ENABLE_PIN,oldstatus);
  7035. }
  7036. #endif
  7037. #ifdef TEMP_STAT_LEDS
  7038. handle_status_leds();
  7039. #endif
  7040. check_axes_activity();
  7041. mmu_loop();
  7042. }
  7043. void kill(const char *full_screen_message, unsigned char id)
  7044. {
  7045. printf_P(_N("KILL: %d\n"), id);
  7046. //return;
  7047. cli(); // Stop interrupts
  7048. disable_heater();
  7049. disable_x();
  7050. // SERIAL_ECHOLNPGM("kill - disable Y");
  7051. disable_y();
  7052. disable_z();
  7053. disable_e0();
  7054. disable_e1();
  7055. disable_e2();
  7056. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7057. pinMode(PS_ON_PIN,INPUT);
  7058. #endif
  7059. SERIAL_ERROR_START;
  7060. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7061. if (full_screen_message != NULL) {
  7062. SERIAL_ERRORLNRPGM(full_screen_message);
  7063. lcd_display_message_fullscreen_P(full_screen_message);
  7064. } else {
  7065. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7066. }
  7067. // FMC small patch to update the LCD before ending
  7068. sei(); // enable interrupts
  7069. for ( int i=5; i--; lcd_update(0))
  7070. {
  7071. _delay(200);
  7072. }
  7073. cli(); // disable interrupts
  7074. suicide();
  7075. while(1)
  7076. {
  7077. #ifdef WATCHDOG
  7078. wdt_reset();
  7079. #endif //WATCHDOG
  7080. /* Intentionally left empty */
  7081. } // Wait for reset
  7082. }
  7083. void Stop()
  7084. {
  7085. disable_heater();
  7086. if(Stopped == false) {
  7087. Stopped = true;
  7088. lcd_print_stop();
  7089. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7090. SERIAL_ERROR_START;
  7091. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7092. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7093. }
  7094. }
  7095. bool IsStopped() { return Stopped; };
  7096. #ifdef FAST_PWM_FAN
  7097. void setPwmFrequency(uint8_t pin, int val)
  7098. {
  7099. val &= 0x07;
  7100. switch(digitalPinToTimer(pin))
  7101. {
  7102. #if defined(TCCR0A)
  7103. case TIMER0A:
  7104. case TIMER0B:
  7105. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7106. // TCCR0B |= val;
  7107. break;
  7108. #endif
  7109. #if defined(TCCR1A)
  7110. case TIMER1A:
  7111. case TIMER1B:
  7112. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7113. // TCCR1B |= val;
  7114. break;
  7115. #endif
  7116. #if defined(TCCR2)
  7117. case TIMER2:
  7118. case TIMER2:
  7119. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7120. TCCR2 |= val;
  7121. break;
  7122. #endif
  7123. #if defined(TCCR2A)
  7124. case TIMER2A:
  7125. case TIMER2B:
  7126. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7127. TCCR2B |= val;
  7128. break;
  7129. #endif
  7130. #if defined(TCCR3A)
  7131. case TIMER3A:
  7132. case TIMER3B:
  7133. case TIMER3C:
  7134. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7135. TCCR3B |= val;
  7136. break;
  7137. #endif
  7138. #if defined(TCCR4A)
  7139. case TIMER4A:
  7140. case TIMER4B:
  7141. case TIMER4C:
  7142. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7143. TCCR4B |= val;
  7144. break;
  7145. #endif
  7146. #if defined(TCCR5A)
  7147. case TIMER5A:
  7148. case TIMER5B:
  7149. case TIMER5C:
  7150. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7151. TCCR5B |= val;
  7152. break;
  7153. #endif
  7154. }
  7155. }
  7156. #endif //FAST_PWM_FAN
  7157. //! @brief Get and validate extruder number
  7158. //!
  7159. //! If it is not specified, active_extruder is returned in parameter extruder.
  7160. //! @param [in] code M code number
  7161. //! @param [out] extruder
  7162. //! @return error
  7163. //! @retval true Invalid extruder specified in T code
  7164. //! @retval false Valid extruder specified in T code, or not specifiead
  7165. bool setTargetedHotend(int code, uint8_t &extruder)
  7166. {
  7167. extruder = active_extruder;
  7168. if(code_seen('T')) {
  7169. extruder = code_value();
  7170. if(extruder >= EXTRUDERS) {
  7171. SERIAL_ECHO_START;
  7172. switch(code){
  7173. case 104:
  7174. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7175. break;
  7176. case 105:
  7177. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7178. break;
  7179. case 109:
  7180. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7181. break;
  7182. case 218:
  7183. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7184. break;
  7185. case 221:
  7186. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7187. break;
  7188. }
  7189. SERIAL_PROTOCOLLN((int)extruder);
  7190. return true;
  7191. }
  7192. }
  7193. return false;
  7194. }
  7195. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7196. {
  7197. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7198. {
  7199. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7200. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7201. }
  7202. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7203. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7204. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7205. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7206. total_filament_used = 0;
  7207. }
  7208. float calculate_extruder_multiplier(float diameter) {
  7209. float out = 1.f;
  7210. if (cs.volumetric_enabled && diameter > 0.f) {
  7211. float area = M_PI * diameter * diameter * 0.25;
  7212. out = 1.f / area;
  7213. }
  7214. if (extrudemultiply != 100)
  7215. out *= float(extrudemultiply) * 0.01f;
  7216. return out;
  7217. }
  7218. void calculate_extruder_multipliers() {
  7219. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7220. #if EXTRUDERS > 1
  7221. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7222. #if EXTRUDERS > 2
  7223. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7224. #endif
  7225. #endif
  7226. }
  7227. void delay_keep_alive(unsigned int ms)
  7228. {
  7229. for (;;) {
  7230. manage_heater();
  7231. // Manage inactivity, but don't disable steppers on timeout.
  7232. manage_inactivity(true);
  7233. lcd_update(0);
  7234. if (ms == 0)
  7235. break;
  7236. else if (ms >= 50) {
  7237. _delay(50);
  7238. ms -= 50;
  7239. } else {
  7240. _delay(ms);
  7241. ms = 0;
  7242. }
  7243. }
  7244. }
  7245. static void wait_for_heater(long codenum, uint8_t extruder) {
  7246. #ifdef TEMP_RESIDENCY_TIME
  7247. long residencyStart;
  7248. residencyStart = -1;
  7249. /* continue to loop until we have reached the target temp
  7250. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7251. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7252. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7253. #else
  7254. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7255. #endif //TEMP_RESIDENCY_TIME
  7256. if ((_millis() - codenum) > 1000UL)
  7257. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7258. if (!farm_mode) {
  7259. SERIAL_PROTOCOLPGM("T:");
  7260. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7261. SERIAL_PROTOCOLPGM(" E:");
  7262. SERIAL_PROTOCOL((int)extruder);
  7263. #ifdef TEMP_RESIDENCY_TIME
  7264. SERIAL_PROTOCOLPGM(" W:");
  7265. if (residencyStart > -1)
  7266. {
  7267. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7268. SERIAL_PROTOCOLLN(codenum);
  7269. }
  7270. else
  7271. {
  7272. SERIAL_PROTOCOLLN("?");
  7273. }
  7274. }
  7275. #else
  7276. SERIAL_PROTOCOLLN("");
  7277. #endif
  7278. codenum = _millis();
  7279. }
  7280. manage_heater();
  7281. manage_inactivity(true); //do not disable steppers
  7282. lcd_update(0);
  7283. #ifdef TEMP_RESIDENCY_TIME
  7284. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7285. or when current temp falls outside the hysteresis after target temp was reached */
  7286. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7287. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7288. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7289. {
  7290. residencyStart = _millis();
  7291. }
  7292. #endif //TEMP_RESIDENCY_TIME
  7293. }
  7294. }
  7295. void check_babystep()
  7296. {
  7297. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7298. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7299. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7300. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7301. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7302. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7303. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7304. babystep_z);
  7305. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7306. lcd_update_enable(true);
  7307. }
  7308. }
  7309. #ifdef HEATBED_ANALYSIS
  7310. void d_setup()
  7311. {
  7312. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7313. pinMode(D_DATA, INPUT_PULLUP);
  7314. pinMode(D_REQUIRE, OUTPUT);
  7315. digitalWrite(D_REQUIRE, HIGH);
  7316. }
  7317. float d_ReadData()
  7318. {
  7319. int digit[13];
  7320. String mergeOutput;
  7321. float output;
  7322. digitalWrite(D_REQUIRE, HIGH);
  7323. for (int i = 0; i<13; i++)
  7324. {
  7325. for (int j = 0; j < 4; j++)
  7326. {
  7327. while (digitalRead(D_DATACLOCK) == LOW) {}
  7328. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7329. bitWrite(digit[i], j, digitalRead(D_DATA));
  7330. }
  7331. }
  7332. digitalWrite(D_REQUIRE, LOW);
  7333. mergeOutput = "";
  7334. output = 0;
  7335. for (int r = 5; r <= 10; r++) //Merge digits
  7336. {
  7337. mergeOutput += digit[r];
  7338. }
  7339. output = mergeOutput.toFloat();
  7340. if (digit[4] == 8) //Handle sign
  7341. {
  7342. output *= -1;
  7343. }
  7344. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7345. {
  7346. output /= 10;
  7347. }
  7348. return output;
  7349. }
  7350. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7351. int t1 = 0;
  7352. int t_delay = 0;
  7353. int digit[13];
  7354. int m;
  7355. char str[3];
  7356. //String mergeOutput;
  7357. char mergeOutput[15];
  7358. float output;
  7359. int mesh_point = 0; //index number of calibration point
  7360. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7361. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7362. float mesh_home_z_search = 4;
  7363. float measure_z_height = 0.2f;
  7364. float row[x_points_num];
  7365. int ix = 0;
  7366. int iy = 0;
  7367. const char* filename_wldsd = "mesh.txt";
  7368. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7369. char numb_wldsd[8]; // (" -A.BCD" + null)
  7370. #ifdef MICROMETER_LOGGING
  7371. d_setup();
  7372. #endif //MICROMETER_LOGGING
  7373. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7374. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7375. unsigned int custom_message_type_old = custom_message_type;
  7376. unsigned int custom_message_state_old = custom_message_state;
  7377. <<<<<<< HEAD
  7378. custom_message_type = CustomMsg::MeshBedLeveling;
  7379. =======
  7380. custom_message_type = CustomMsgTypes::MESHBL;
  7381. >>>>>>> origin/code-size-reduction
  7382. custom_message_state = (x_points_num * y_points_num) + 10;
  7383. lcd_update(1);
  7384. //mbl.reset();
  7385. babystep_undo();
  7386. card.openFile(filename_wldsd, false);
  7387. /*destination[Z_AXIS] = mesh_home_z_search;
  7388. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7389. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7390. for(int8_t i=0; i < NUM_AXIS; i++) {
  7391. current_position[i] = destination[i];
  7392. }
  7393. st_synchronize();
  7394. */
  7395. destination[Z_AXIS] = measure_z_height;
  7396. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7397. for(int8_t i=0; i < NUM_AXIS; i++) {
  7398. current_position[i] = destination[i];
  7399. }
  7400. st_synchronize();
  7401. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7402. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7403. SERIAL_PROTOCOL(x_points_num);
  7404. SERIAL_PROTOCOLPGM(",");
  7405. SERIAL_PROTOCOL(y_points_num);
  7406. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7407. SERIAL_PROTOCOL(mesh_home_z_search);
  7408. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7409. SERIAL_PROTOCOL(x_dimension);
  7410. SERIAL_PROTOCOLPGM(",");
  7411. SERIAL_PROTOCOL(y_dimension);
  7412. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7413. while (mesh_point != x_points_num * y_points_num) {
  7414. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7415. iy = mesh_point / x_points_num;
  7416. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7417. float z0 = 0.f;
  7418. /*destination[Z_AXIS] = mesh_home_z_search;
  7419. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7420. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7421. for(int8_t i=0; i < NUM_AXIS; i++) {
  7422. current_position[i] = destination[i];
  7423. }
  7424. st_synchronize();*/
  7425. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7426. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7427. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7428. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7429. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7430. for(int8_t i=0; i < NUM_AXIS; i++) {
  7431. current_position[i] = destination[i];
  7432. }
  7433. st_synchronize();
  7434. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7435. delay_keep_alive(1000);
  7436. #ifdef MICROMETER_LOGGING
  7437. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7438. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7439. //strcat(data_wldsd, numb_wldsd);
  7440. //MYSERIAL.println(data_wldsd);
  7441. //delay(1000);
  7442. //delay(3000);
  7443. //t1 = millis();
  7444. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7445. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7446. memset(digit, 0, sizeof(digit));
  7447. //cli();
  7448. digitalWrite(D_REQUIRE, LOW);
  7449. for (int i = 0; i<13; i++)
  7450. {
  7451. //t1 = millis();
  7452. for (int j = 0; j < 4; j++)
  7453. {
  7454. while (digitalRead(D_DATACLOCK) == LOW) {}
  7455. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7456. //printf_P(PSTR("Done %d\n"), j);
  7457. bitWrite(digit[i], j, digitalRead(D_DATA));
  7458. }
  7459. //t_delay = (millis() - t1);
  7460. //SERIAL_PROTOCOLPGM(" ");
  7461. //SERIAL_PROTOCOL_F(t_delay, 5);
  7462. //SERIAL_PROTOCOLPGM(" ");
  7463. }
  7464. //sei();
  7465. digitalWrite(D_REQUIRE, HIGH);
  7466. mergeOutput[0] = '\0';
  7467. output = 0;
  7468. for (int r = 5; r <= 10; r++) //Merge digits
  7469. {
  7470. sprintf(str, "%d", digit[r]);
  7471. strcat(mergeOutput, str);
  7472. }
  7473. output = atof(mergeOutput);
  7474. if (digit[4] == 8) //Handle sign
  7475. {
  7476. output *= -1;
  7477. }
  7478. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7479. {
  7480. output *= 0.1;
  7481. }
  7482. //output = d_ReadData();
  7483. //row[ix] = current_position[Z_AXIS];
  7484. //row[ix] = d_ReadData();
  7485. row[ix] = output;
  7486. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7487. memset(data_wldsd, 0, sizeof(data_wldsd));
  7488. for (int i = 0; i < x_points_num; i++) {
  7489. SERIAL_PROTOCOLPGM(" ");
  7490. SERIAL_PROTOCOL_F(row[i], 5);
  7491. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7492. dtostrf(row[i], 7, 3, numb_wldsd);
  7493. strcat(data_wldsd, numb_wldsd);
  7494. }
  7495. card.write_command(data_wldsd);
  7496. SERIAL_PROTOCOLPGM("\n");
  7497. }
  7498. custom_message_state--;
  7499. mesh_point++;
  7500. lcd_update(1);
  7501. }
  7502. #endif //MICROMETER_LOGGING
  7503. card.closefile();
  7504. //clean_up_after_endstop_move(l_feedmultiply);
  7505. }
  7506. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7507. int t1 = 0;
  7508. int t_delay = 0;
  7509. int digit[13];
  7510. int m;
  7511. char str[3];
  7512. //String mergeOutput;
  7513. char mergeOutput[15];
  7514. float output;
  7515. int mesh_point = 0; //index number of calibration point
  7516. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7517. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7518. float mesh_home_z_search = 4;
  7519. float row[x_points_num];
  7520. int ix = 0;
  7521. int iy = 0;
  7522. const char* filename_wldsd = "wldsd.txt";
  7523. char data_wldsd[70];
  7524. char numb_wldsd[10];
  7525. d_setup();
  7526. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7527. // We don't know where we are! HOME!
  7528. // Push the commands to the front of the message queue in the reverse order!
  7529. // There shall be always enough space reserved for these commands.
  7530. repeatcommand_front(); // repeat G80 with all its parameters
  7531. enquecommand_front_P((PSTR("G28 W0")));
  7532. enquecommand_front_P((PSTR("G1 Z5")));
  7533. return;
  7534. }
  7535. unsigned int custom_message_type_old = custom_message_type;
  7536. unsigned int custom_message_state_old = custom_message_state;
  7537. <<<<<<< HEAD
  7538. custom_message_type = CustomMsg::MeshBedLeveling;
  7539. =======
  7540. custom_message_type = CustomMsgTypes::MESHBL;
  7541. >>>>>>> origin/code-size-reduction
  7542. custom_message_state = (x_points_num * y_points_num) + 10;
  7543. lcd_update(1);
  7544. mbl.reset();
  7545. babystep_undo();
  7546. card.openFile(filename_wldsd, false);
  7547. current_position[Z_AXIS] = mesh_home_z_search;
  7548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7549. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7550. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7551. int l_feedmultiply = setup_for_endstop_move(false);
  7552. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7553. SERIAL_PROTOCOL(x_points_num);
  7554. SERIAL_PROTOCOLPGM(",");
  7555. SERIAL_PROTOCOL(y_points_num);
  7556. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7557. SERIAL_PROTOCOL(mesh_home_z_search);
  7558. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7559. SERIAL_PROTOCOL(x_dimension);
  7560. SERIAL_PROTOCOLPGM(",");
  7561. SERIAL_PROTOCOL(y_dimension);
  7562. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7563. while (mesh_point != x_points_num * y_points_num) {
  7564. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7565. iy = mesh_point / x_points_num;
  7566. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7567. float z0 = 0.f;
  7568. current_position[Z_AXIS] = mesh_home_z_search;
  7569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7570. st_synchronize();
  7571. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7572. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7574. st_synchronize();
  7575. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7576. break;
  7577. card.closefile();
  7578. }
  7579. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7580. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7581. //strcat(data_wldsd, numb_wldsd);
  7582. //MYSERIAL.println(data_wldsd);
  7583. //_delay(1000);
  7584. //_delay(3000);
  7585. //t1 = _millis();
  7586. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7587. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7588. memset(digit, 0, sizeof(digit));
  7589. //cli();
  7590. digitalWrite(D_REQUIRE, LOW);
  7591. for (int i = 0; i<13; i++)
  7592. {
  7593. //t1 = _millis();
  7594. for (int j = 0; j < 4; j++)
  7595. {
  7596. while (digitalRead(D_DATACLOCK) == LOW) {}
  7597. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7598. bitWrite(digit[i], j, digitalRead(D_DATA));
  7599. }
  7600. //t_delay = (_millis() - t1);
  7601. //SERIAL_PROTOCOLPGM(" ");
  7602. //SERIAL_PROTOCOL_F(t_delay, 5);
  7603. //SERIAL_PROTOCOLPGM(" ");
  7604. }
  7605. //sei();
  7606. digitalWrite(D_REQUIRE, HIGH);
  7607. mergeOutput[0] = '\0';
  7608. output = 0;
  7609. for (int r = 5; r <= 10; r++) //Merge digits
  7610. {
  7611. sprintf(str, "%d", digit[r]);
  7612. strcat(mergeOutput, str);
  7613. }
  7614. output = atof(mergeOutput);
  7615. if (digit[4] == 8) //Handle sign
  7616. {
  7617. output *= -1;
  7618. }
  7619. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7620. {
  7621. output *= 0.1;
  7622. }
  7623. //output = d_ReadData();
  7624. //row[ix] = current_position[Z_AXIS];
  7625. memset(data_wldsd, 0, sizeof(data_wldsd));
  7626. for (int i = 0; i <3; i++) {
  7627. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7628. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7629. strcat(data_wldsd, numb_wldsd);
  7630. strcat(data_wldsd, ";");
  7631. }
  7632. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7633. dtostrf(output, 8, 5, numb_wldsd);
  7634. strcat(data_wldsd, numb_wldsd);
  7635. //strcat(data_wldsd, ";");
  7636. card.write_command(data_wldsd);
  7637. //row[ix] = d_ReadData();
  7638. row[ix] = output; // current_position[Z_AXIS];
  7639. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7640. for (int i = 0; i < x_points_num; i++) {
  7641. SERIAL_PROTOCOLPGM(" ");
  7642. SERIAL_PROTOCOL_F(row[i], 5);
  7643. }
  7644. SERIAL_PROTOCOLPGM("\n");
  7645. }
  7646. custom_message_state--;
  7647. mesh_point++;
  7648. lcd_update(1);
  7649. }
  7650. card.closefile();
  7651. clean_up_after_endstop_move(l_feedmultiply);
  7652. }
  7653. #endif //HEATBED_ANALYSIS
  7654. void temp_compensation_start() {
  7655. custom_message_type = CustomMsg::TempCompPreheat;
  7656. custom_message_state = PINDA_HEAT_T + 1;
  7657. lcd_update(2);
  7658. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7659. current_position[E_AXIS] -= default_retraction;
  7660. }
  7661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7662. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7663. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7664. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7666. st_synchronize();
  7667. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7668. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7669. delay_keep_alive(1000);
  7670. custom_message_state = PINDA_HEAT_T - i;
  7671. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7672. else lcd_update(1);
  7673. }
  7674. custom_message_type = CustomMsg::Status;
  7675. custom_message_state = 0;
  7676. }
  7677. void temp_compensation_apply() {
  7678. int i_add;
  7679. int z_shift = 0;
  7680. float z_shift_mm;
  7681. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7682. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7683. i_add = (target_temperature_bed - 60) / 10;
  7684. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7685. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7686. }else {
  7687. //interpolation
  7688. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7689. }
  7690. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7692. st_synchronize();
  7693. plan_set_z_position(current_position[Z_AXIS]);
  7694. }
  7695. else {
  7696. //we have no temp compensation data
  7697. }
  7698. }
  7699. float temp_comp_interpolation(float inp_temperature) {
  7700. //cubic spline interpolation
  7701. int n, i, j;
  7702. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7703. int shift[10];
  7704. int temp_C[10];
  7705. n = 6; //number of measured points
  7706. shift[0] = 0;
  7707. for (i = 0; i < n; i++) {
  7708. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7709. temp_C[i] = 50 + i * 10; //temperature in C
  7710. #ifdef PINDA_THERMISTOR
  7711. temp_C[i] = 35 + i * 5; //temperature in C
  7712. #else
  7713. temp_C[i] = 50 + i * 10; //temperature in C
  7714. #endif
  7715. x[i] = (float)temp_C[i];
  7716. f[i] = (float)shift[i];
  7717. }
  7718. if (inp_temperature < x[0]) return 0;
  7719. for (i = n - 1; i>0; i--) {
  7720. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7721. h[i - 1] = x[i] - x[i - 1];
  7722. }
  7723. //*********** formation of h, s , f matrix **************
  7724. for (i = 1; i<n - 1; i++) {
  7725. m[i][i] = 2 * (h[i - 1] + h[i]);
  7726. if (i != 1) {
  7727. m[i][i - 1] = h[i - 1];
  7728. m[i - 1][i] = h[i - 1];
  7729. }
  7730. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7731. }
  7732. //*********** forward elimination **************
  7733. for (i = 1; i<n - 2; i++) {
  7734. temp = (m[i + 1][i] / m[i][i]);
  7735. for (j = 1; j <= n - 1; j++)
  7736. m[i + 1][j] -= temp*m[i][j];
  7737. }
  7738. //*********** backward substitution *********
  7739. for (i = n - 2; i>0; i--) {
  7740. sum = 0;
  7741. for (j = i; j <= n - 2; j++)
  7742. sum += m[i][j] * s[j];
  7743. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7744. }
  7745. for (i = 0; i<n - 1; i++)
  7746. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7747. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7748. b = s[i] / 2;
  7749. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7750. d = f[i];
  7751. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7752. }
  7753. return sum;
  7754. }
  7755. #ifdef PINDA_THERMISTOR
  7756. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7757. {
  7758. if (!temp_cal_active) return 0;
  7759. if (!calibration_status_pinda()) return 0;
  7760. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7761. }
  7762. #endif //PINDA_THERMISTOR
  7763. void long_pause() //long pause print
  7764. {
  7765. st_synchronize();
  7766. start_pause_print = _millis();
  7767. //retract
  7768. current_position[E_AXIS] -= default_retraction;
  7769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7770. //lift z
  7771. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7772. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7774. //Move XY to side
  7775. current_position[X_AXIS] = X_PAUSE_POS;
  7776. current_position[Y_AXIS] = Y_PAUSE_POS;
  7777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7778. // Turn off the print fan
  7779. fanSpeed = 0;
  7780. st_synchronize();
  7781. }
  7782. void serialecho_temperatures() {
  7783. float tt = degHotend(active_extruder);
  7784. SERIAL_PROTOCOLPGM("T:");
  7785. SERIAL_PROTOCOL(tt);
  7786. SERIAL_PROTOCOLPGM(" E:");
  7787. SERIAL_PROTOCOL((int)active_extruder);
  7788. SERIAL_PROTOCOLPGM(" B:");
  7789. SERIAL_PROTOCOL_F(degBed(), 1);
  7790. SERIAL_PROTOCOLLN("");
  7791. }
  7792. extern uint32_t sdpos_atomic;
  7793. #ifdef UVLO_SUPPORT
  7794. void uvlo_()
  7795. {
  7796. unsigned long time_start = _millis();
  7797. bool sd_print = card.sdprinting;
  7798. // Conserve power as soon as possible.
  7799. disable_x();
  7800. disable_y();
  7801. #ifdef TMC2130
  7802. tmc2130_set_current_h(Z_AXIS, 20);
  7803. tmc2130_set_current_r(Z_AXIS, 20);
  7804. tmc2130_set_current_h(E_AXIS, 20);
  7805. tmc2130_set_current_r(E_AXIS, 20);
  7806. #endif //TMC2130
  7807. // Indicate that the interrupt has been triggered.
  7808. // SERIAL_ECHOLNPGM("UVLO");
  7809. // Read out the current Z motor microstep counter. This will be later used
  7810. // for reaching the zero full step before powering off.
  7811. uint16_t z_microsteps = 0;
  7812. #ifdef TMC2130
  7813. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7814. #endif //TMC2130
  7815. // Calculate the file position, from which to resume this print.
  7816. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7817. {
  7818. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7819. sd_position -= sdlen_planner;
  7820. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7821. sd_position -= sdlen_cmdqueue;
  7822. if (sd_position < 0) sd_position = 0;
  7823. }
  7824. // Backup the feedrate in mm/min.
  7825. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7826. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7827. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7828. // are in action.
  7829. planner_abort_hard();
  7830. // Store the current extruder position.
  7831. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7832. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7833. // Clean the input command queue.
  7834. cmdqueue_reset();
  7835. card.sdprinting = false;
  7836. // card.closefile();
  7837. // Enable stepper driver interrupt to move Z axis.
  7838. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7839. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7840. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7841. sei();
  7842. plan_buffer_line(
  7843. current_position[X_AXIS],
  7844. current_position[Y_AXIS],
  7845. current_position[Z_AXIS],
  7846. current_position[E_AXIS] - default_retraction,
  7847. 95, active_extruder);
  7848. st_synchronize();
  7849. disable_e0();
  7850. plan_buffer_line(
  7851. current_position[X_AXIS],
  7852. current_position[Y_AXIS],
  7853. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7854. current_position[E_AXIS] - default_retraction,
  7855. 40, active_extruder);
  7856. st_synchronize();
  7857. disable_e0();
  7858. plan_buffer_line(
  7859. current_position[X_AXIS],
  7860. current_position[Y_AXIS],
  7861. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7862. current_position[E_AXIS] - default_retraction,
  7863. 40, active_extruder);
  7864. st_synchronize();
  7865. disable_e0();
  7866. disable_z();
  7867. // Move Z up to the next 0th full step.
  7868. // Write the file position.
  7869. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7870. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7871. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7872. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7873. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7874. // Scale the z value to 1u resolution.
  7875. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7876. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7877. }
  7878. // Read out the current Z motor microstep counter. This will be later used
  7879. // for reaching the zero full step before powering off.
  7880. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7881. // Store the current position.
  7882. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7883. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7884. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7885. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7886. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7887. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7888. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7889. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7890. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7891. #if EXTRUDERS > 1
  7892. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7893. #if EXTRUDERS > 2
  7894. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7895. #endif
  7896. #endif
  7897. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7898. // Finaly store the "power outage" flag.
  7899. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7900. st_synchronize();
  7901. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7902. disable_z();
  7903. // Increment power failure counter
  7904. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7905. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7906. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7907. #if 0
  7908. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7909. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7911. st_synchronize();
  7912. #endif
  7913. wdt_enable(WDTO_500MS);
  7914. WRITE(BEEPER,HIGH);
  7915. while(1)
  7916. ;
  7917. }
  7918. void uvlo_tiny()
  7919. {
  7920. uint16_t z_microsteps=0;
  7921. // Conserve power as soon as possible.
  7922. disable_x();
  7923. disable_y();
  7924. disable_e0();
  7925. #ifdef TMC2130
  7926. tmc2130_set_current_h(Z_AXIS, 20);
  7927. tmc2130_set_current_r(Z_AXIS, 20);
  7928. #endif //TMC2130
  7929. // Read out the current Z motor microstep counter
  7930. #ifdef TMC2130
  7931. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7932. #endif //TMC2130
  7933. planner_abort_hard();
  7934. disable_z();
  7935. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7936. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7937. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7938. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7939. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7940. }
  7941. //after multiple power panics current Z axis is unknow
  7942. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7943. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7944. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7945. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7946. }
  7947. // Finaly store the "power outage" flag.
  7948. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7949. // Increment power failure counter
  7950. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7951. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7952. wdt_enable(WDTO_500MS);
  7953. WRITE(BEEPER,HIGH);
  7954. while(1)
  7955. ;
  7956. }
  7957. #endif //UVLO_SUPPORT
  7958. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7959. void setup_fan_interrupt() {
  7960. //INT7
  7961. DDRE &= ~(1 << 7); //input pin
  7962. PORTE &= ~(1 << 7); //no internal pull-up
  7963. //start with sensing rising edge
  7964. EICRB &= ~(1 << 6);
  7965. EICRB |= (1 << 7);
  7966. //enable INT7 interrupt
  7967. EIMSK |= (1 << 7);
  7968. }
  7969. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7970. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7971. ISR(INT7_vect) {
  7972. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7973. #ifdef FAN_SOFT_PWM
  7974. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7975. #else //FAN_SOFT_PWM
  7976. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7977. #endif //FAN_SOFT_PWM
  7978. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7979. t_fan_rising_edge = millis_nc();
  7980. }
  7981. else { //interrupt was triggered by falling edge
  7982. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7983. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7984. }
  7985. }
  7986. EICRB ^= (1 << 6); //change edge
  7987. }
  7988. #endif
  7989. #ifdef UVLO_SUPPORT
  7990. void setup_uvlo_interrupt() {
  7991. DDRE &= ~(1 << 4); //input pin
  7992. PORTE &= ~(1 << 4); //no internal pull-up
  7993. //sensing falling edge
  7994. EICRB |= (1 << 0);
  7995. EICRB &= ~(1 << 1);
  7996. //enable INT4 interrupt
  7997. EIMSK |= (1 << 4);
  7998. }
  7999. ISR(INT4_vect) {
  8000. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8001. SERIAL_ECHOLNPGM("INT4");
  8002. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8003. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8004. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8005. }
  8006. void recover_print(uint8_t automatic) {
  8007. char cmd[30];
  8008. lcd_update_enable(true);
  8009. lcd_update(2);
  8010. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8011. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8012. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8013. // Lift the print head, so one may remove the excess priming material.
  8014. if(!bTiny&&(current_position[Z_AXIS]<25))
  8015. enquecommand_P(PSTR("G1 Z25 F800"));
  8016. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8017. enquecommand_P(PSTR("G28 X Y"));
  8018. // Set the target bed and nozzle temperatures and wait.
  8019. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8020. enquecommand(cmd);
  8021. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8022. enquecommand(cmd);
  8023. enquecommand_P(PSTR("M83")); //E axis relative mode
  8024. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8025. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8026. if(automatic == 0){
  8027. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8028. }
  8029. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8030. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8031. // Restart the print.
  8032. restore_print_from_eeprom();
  8033. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8034. }
  8035. void recover_machine_state_after_power_panic(bool bTiny)
  8036. {
  8037. char cmd[30];
  8038. // 1) Recover the logical cordinates at the time of the power panic.
  8039. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8040. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8041. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8042. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8043. mbl.active = false;
  8044. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8045. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8046. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8047. // Scale the z value to 10u resolution.
  8048. int16_t v;
  8049. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8050. if (v != 0)
  8051. mbl.active = true;
  8052. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8053. }
  8054. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8055. // The current position after power panic is moved to the next closest 0th full step.
  8056. if(bTiny){
  8057. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8058. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8059. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8060. //after multiple power panics the print is slightly in the air so get it little bit down.
  8061. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8062. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8063. }
  8064. else{
  8065. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8066. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8067. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8068. }
  8069. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8070. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8071. sprintf_P(cmd, PSTR("G92 E"));
  8072. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8073. enquecommand(cmd);
  8074. }
  8075. memcpy(destination, current_position, sizeof(destination));
  8076. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8077. print_world_coordinates();
  8078. // 3) Initialize the logical to physical coordinate system transformation.
  8079. world2machine_initialize();
  8080. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8081. // print_mesh_bed_leveling_table();
  8082. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8083. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8084. babystep_load();
  8085. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8087. // 6) Power up the motors, mark their positions as known.
  8088. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8089. axis_known_position[X_AXIS] = true; enable_x();
  8090. axis_known_position[Y_AXIS] = true; enable_y();
  8091. axis_known_position[Z_AXIS] = true; enable_z();
  8092. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8093. print_physical_coordinates();
  8094. // 7) Recover the target temperatures.
  8095. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8096. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8097. // 8) Recover extruder multipilers
  8098. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8099. #if EXTRUDERS > 1
  8100. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8101. #if EXTRUDERS > 2
  8102. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8103. #endif
  8104. #endif
  8105. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8106. }
  8107. void restore_print_from_eeprom() {
  8108. int feedrate_rec;
  8109. uint8_t fan_speed_rec;
  8110. char cmd[30];
  8111. char filename[13];
  8112. uint8_t depth = 0;
  8113. char dir_name[9];
  8114. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8115. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8116. SERIAL_ECHOPGM("Feedrate:");
  8117. MYSERIAL.println(feedrate_rec);
  8118. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8119. MYSERIAL.println(int(depth));
  8120. for (int i = 0; i < depth; i++) {
  8121. for (int j = 0; j < 8; j++) {
  8122. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8123. }
  8124. dir_name[8] = '\0';
  8125. MYSERIAL.println(dir_name);
  8126. strcpy(dir_names[i], dir_name);
  8127. card.chdir(dir_name);
  8128. }
  8129. for (int i = 0; i < 8; i++) {
  8130. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8131. }
  8132. filename[8] = '\0';
  8133. MYSERIAL.print(filename);
  8134. strcat_P(filename, PSTR(".gco"));
  8135. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8136. enquecommand(cmd);
  8137. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8138. SERIAL_ECHOPGM("Position read from eeprom:");
  8139. MYSERIAL.println(position);
  8140. // E axis relative mode.
  8141. enquecommand_P(PSTR("M83"));
  8142. // Move to the XY print position in logical coordinates, where the print has been killed.
  8143. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8144. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8145. strcat_P(cmd, PSTR(" F2000"));
  8146. enquecommand(cmd);
  8147. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8148. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8149. // Move the Z axis down to the print, in logical coordinates.
  8150. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8151. enquecommand(cmd);
  8152. // Unretract.
  8153. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8154. // Set the feedrate saved at the power panic.
  8155. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8156. enquecommand(cmd);
  8157. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8158. {
  8159. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8160. }
  8161. // Set the fan speed saved at the power panic.
  8162. strcpy_P(cmd, PSTR("M106 S"));
  8163. strcat(cmd, itostr3(int(fan_speed_rec)));
  8164. enquecommand(cmd);
  8165. // Set a position in the file.
  8166. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8167. enquecommand(cmd);
  8168. enquecommand_P(PSTR("G4 S0"));
  8169. enquecommand_P(PSTR("PRUSA uvlo"));
  8170. }
  8171. #endif //UVLO_SUPPORT
  8172. //! @brief Immediately stop print moves
  8173. //!
  8174. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8175. //! If printing from sd card, position in file is saved.
  8176. //! If printing from USB, line number is saved.
  8177. //!
  8178. //! @param z_move
  8179. //! @param e_move
  8180. void stop_and_save_print_to_ram(float z_move, float e_move)
  8181. {
  8182. if (saved_printing) return;
  8183. #if 0
  8184. unsigned char nplanner_blocks;
  8185. #endif
  8186. unsigned char nlines;
  8187. uint16_t sdlen_planner;
  8188. uint16_t sdlen_cmdqueue;
  8189. cli();
  8190. if (card.sdprinting) {
  8191. #if 0
  8192. nplanner_blocks = number_of_blocks();
  8193. #endif
  8194. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8195. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8196. saved_sdpos -= sdlen_planner;
  8197. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8198. saved_sdpos -= sdlen_cmdqueue;
  8199. saved_printing_type = PRINTING_TYPE_SD;
  8200. }
  8201. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8202. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8203. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8204. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8205. saved_sdpos -= nlines;
  8206. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8207. saved_printing_type = PRINTING_TYPE_USB;
  8208. }
  8209. else {
  8210. saved_printing_type = PRINTING_TYPE_NONE;
  8211. //not sd printing nor usb printing
  8212. }
  8213. #if 0
  8214. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8215. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8216. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8217. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8218. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8219. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8220. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8221. {
  8222. card.setIndex(saved_sdpos);
  8223. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8224. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8225. MYSERIAL.print(char(card.get()));
  8226. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8227. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8228. MYSERIAL.print(char(card.get()));
  8229. SERIAL_ECHOLNPGM("End of command buffer");
  8230. }
  8231. {
  8232. // Print the content of the planner buffer, line by line:
  8233. card.setIndex(saved_sdpos);
  8234. int8_t iline = 0;
  8235. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8236. SERIAL_ECHOPGM("Planner line (from file): ");
  8237. MYSERIAL.print(int(iline), DEC);
  8238. SERIAL_ECHOPGM(", length: ");
  8239. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8240. SERIAL_ECHOPGM(", steps: (");
  8241. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8242. SERIAL_ECHOPGM(",");
  8243. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8244. SERIAL_ECHOPGM(",");
  8245. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8246. SERIAL_ECHOPGM(",");
  8247. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8248. SERIAL_ECHOPGM("), events: ");
  8249. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8250. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8251. MYSERIAL.print(char(card.get()));
  8252. }
  8253. }
  8254. {
  8255. // Print the content of the command buffer, line by line:
  8256. int8_t iline = 0;
  8257. union {
  8258. struct {
  8259. char lo;
  8260. char hi;
  8261. } lohi;
  8262. uint16_t value;
  8263. } sdlen_single;
  8264. int _bufindr = bufindr;
  8265. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8266. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8267. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8268. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8269. }
  8270. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8271. MYSERIAL.print(int(iline), DEC);
  8272. SERIAL_ECHOPGM(", type: ");
  8273. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8274. SERIAL_ECHOPGM(", len: ");
  8275. MYSERIAL.println(sdlen_single.value, DEC);
  8276. // Print the content of the buffer line.
  8277. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8278. SERIAL_ECHOPGM("Buffer line (from file): ");
  8279. MYSERIAL.println(int(iline), DEC);
  8280. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8281. MYSERIAL.print(char(card.get()));
  8282. if (-- _buflen == 0)
  8283. break;
  8284. // First skip the current command ID and iterate up to the end of the string.
  8285. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8286. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8287. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8288. // If the end of the buffer was empty,
  8289. if (_bufindr == sizeof(cmdbuffer)) {
  8290. // skip to the start and find the nonzero command.
  8291. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8292. }
  8293. }
  8294. }
  8295. #endif
  8296. #if 0
  8297. saved_feedrate2 = feedrate; //save feedrate
  8298. #else
  8299. // Try to deduce the feedrate from the first block of the planner.
  8300. // Speed is in mm/min.
  8301. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8302. #endif
  8303. planner_abort_hard(); //abort printing
  8304. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8305. saved_active_extruder = active_extruder; //save active_extruder
  8306. saved_extruder_temperature = degTargetHotend(active_extruder);
  8307. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8308. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8309. saved_fanSpeed = fanSpeed;
  8310. cmdqueue_reset(); //empty cmdqueue
  8311. card.sdprinting = false;
  8312. // card.closefile();
  8313. saved_printing = true;
  8314. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8315. st_reset_timer();
  8316. sei();
  8317. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8318. #if 1
  8319. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8320. char buf[48];
  8321. // First unretract (relative extrusion)
  8322. if(!saved_extruder_relative_mode){
  8323. enquecommand(PSTR("M83"), true);
  8324. }
  8325. //retract 45mm/s
  8326. // A single sprintf may not be faster, but is definitely 20B shorter
  8327. // than a sequence of commands building the string piece by piece
  8328. // A snprintf would have been a safer call, but since it is not used
  8329. // in the whole program, its implementation would bring more bytes to the total size
  8330. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8331. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8332. enquecommand(buf, false);
  8333. // Then lift Z axis
  8334. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8335. // At this point the command queue is empty.
  8336. enquecommand(buf, false);
  8337. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8338. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8339. repeatcommand_front();
  8340. #else
  8341. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8342. st_synchronize(); //wait moving
  8343. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8344. memcpy(destination, current_position, sizeof(destination));
  8345. #endif
  8346. }
  8347. }
  8348. //! @brief Restore print from ram
  8349. //!
  8350. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8351. //! waits for extruder temperature restore, then restores position and continues
  8352. //! print moves.
  8353. //! Internaly lcd_update() is called by wait_for_heater().
  8354. //!
  8355. //! @param e_move
  8356. void restore_print_from_ram_and_continue(float e_move)
  8357. {
  8358. if (!saved_printing) return;
  8359. #ifdef FANCHECK
  8360. // Do not allow resume printing if fans are still not ok
  8361. if( fan_check_error != EFCE_OK )return;
  8362. #endif
  8363. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8364. // current_position[axis] = st_get_position_mm(axis);
  8365. active_extruder = saved_active_extruder; //restore active_extruder
  8366. if (saved_extruder_temperature) {
  8367. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8368. heating_status = 1;
  8369. wait_for_heater(_millis(), saved_active_extruder);
  8370. heating_status = 2;
  8371. }
  8372. feedrate = saved_feedrate2; //restore feedrate
  8373. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8374. fanSpeed = saved_fanSpeed;
  8375. float e = saved_pos[E_AXIS] - e_move;
  8376. plan_set_e_position(e);
  8377. //first move print head in XY to the saved position:
  8378. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8379. st_synchronize();
  8380. //then move Z
  8381. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8382. st_synchronize();
  8383. //and finaly unretract (35mm/s)
  8384. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8385. st_synchronize();
  8386. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8387. memcpy(destination, current_position, sizeof(destination));
  8388. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8389. card.setIndex(saved_sdpos);
  8390. sdpos_atomic = saved_sdpos;
  8391. card.sdprinting = true;
  8392. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8393. }
  8394. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8395. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8396. serial_count = 0;
  8397. FlushSerialRequestResend();
  8398. }
  8399. else {
  8400. //not sd printing nor usb printing
  8401. }
  8402. lcd_setstatuspgm(_T(WELCOME_MSG));
  8403. saved_printing = false;
  8404. }
  8405. void print_world_coordinates()
  8406. {
  8407. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8408. }
  8409. void print_physical_coordinates()
  8410. {
  8411. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8412. }
  8413. void print_mesh_bed_leveling_table()
  8414. {
  8415. SERIAL_ECHOPGM("mesh bed leveling: ");
  8416. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8417. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8418. MYSERIAL.print(mbl.z_values[y][x], 3);
  8419. SERIAL_ECHOPGM(" ");
  8420. }
  8421. SERIAL_ECHOLNPGM("");
  8422. }
  8423. uint16_t print_time_remaining() {
  8424. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8425. #ifdef TMC2130
  8426. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8427. else print_t = print_time_remaining_silent;
  8428. #else
  8429. print_t = print_time_remaining_normal;
  8430. #endif //TMC2130
  8431. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8432. return print_t;
  8433. }
  8434. uint8_t calc_percent_done()
  8435. {
  8436. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8437. uint8_t percent_done = 0;
  8438. #ifdef TMC2130
  8439. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8440. percent_done = print_percent_done_normal;
  8441. }
  8442. else if (print_percent_done_silent <= 100) {
  8443. percent_done = print_percent_done_silent;
  8444. }
  8445. #else
  8446. if (print_percent_done_normal <= 100) {
  8447. percent_done = print_percent_done_normal;
  8448. }
  8449. #endif //TMC2130
  8450. else {
  8451. percent_done = card.percentDone();
  8452. }
  8453. return percent_done;
  8454. }
  8455. static void print_time_remaining_init()
  8456. {
  8457. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8458. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8459. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8460. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8461. }
  8462. void load_filament_final_feed()
  8463. {
  8464. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8466. }
  8467. //! @brief Wait for user to check the state
  8468. //! @par nozzle_temp nozzle temperature to load filament
  8469. void M600_check_state(float nozzle_temp)
  8470. {
  8471. lcd_change_fil_state = 0;
  8472. while (lcd_change_fil_state != 1)
  8473. {
  8474. lcd_change_fil_state = 0;
  8475. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8476. lcd_alright();
  8477. KEEPALIVE_STATE(IN_HANDLER);
  8478. switch(lcd_change_fil_state)
  8479. {
  8480. // Filament failed to load so load it again
  8481. case 2:
  8482. if (mmu_enabled)
  8483. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8484. else
  8485. M600_load_filament_movements();
  8486. break;
  8487. // Filament loaded properly but color is not clear
  8488. case 3:
  8489. st_synchronize();
  8490. load_filament_final_feed();
  8491. lcd_loading_color();
  8492. st_synchronize();
  8493. break;
  8494. // Everything good
  8495. default:
  8496. lcd_change_success();
  8497. break;
  8498. }
  8499. }
  8500. }
  8501. //! @brief Wait for user action
  8502. //!
  8503. //! Beep, manage nozzle heater and wait for user to start unload filament
  8504. //! If times out, active extruder temperature is set to 0.
  8505. //!
  8506. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8507. void M600_wait_for_user(float HotendTempBckp) {
  8508. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8509. int counterBeep = 0;
  8510. unsigned long waiting_start_time = _millis();
  8511. uint8_t wait_for_user_state = 0;
  8512. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8513. bool bFirst=true;
  8514. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8515. manage_heater();
  8516. manage_inactivity(true);
  8517. #if BEEPER > 0
  8518. if (counterBeep == 500) {
  8519. counterBeep = 0;
  8520. }
  8521. SET_OUTPUT(BEEPER);
  8522. if (counterBeep == 0) {
  8523. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8524. {
  8525. bFirst=false;
  8526. WRITE(BEEPER, HIGH);
  8527. }
  8528. }
  8529. if (counterBeep == 20) {
  8530. WRITE(BEEPER, LOW);
  8531. }
  8532. counterBeep++;
  8533. #endif //BEEPER > 0
  8534. switch (wait_for_user_state) {
  8535. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8536. delay_keep_alive(4);
  8537. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8538. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8539. wait_for_user_state = 1;
  8540. setAllTargetHotends(0);
  8541. st_synchronize();
  8542. disable_e0();
  8543. disable_e1();
  8544. disable_e2();
  8545. }
  8546. break;
  8547. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8548. delay_keep_alive(4);
  8549. if (lcd_clicked()) {
  8550. setTargetHotend(HotendTempBckp, active_extruder);
  8551. lcd_wait_for_heater();
  8552. wait_for_user_state = 2;
  8553. }
  8554. break;
  8555. case 2: //waiting for nozzle to reach target temperature
  8556. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8557. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8558. waiting_start_time = _millis();
  8559. wait_for_user_state = 0;
  8560. }
  8561. else {
  8562. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8563. lcd_set_cursor(1, 4);
  8564. lcd_print(ftostr3(degHotend(active_extruder)));
  8565. }
  8566. break;
  8567. }
  8568. }
  8569. WRITE(BEEPER, LOW);
  8570. }
  8571. void M600_load_filament_movements()
  8572. {
  8573. #ifdef SNMM
  8574. display_loading();
  8575. do
  8576. {
  8577. current_position[E_AXIS] += 0.002;
  8578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8579. delay_keep_alive(2);
  8580. }
  8581. while (!lcd_clicked());
  8582. st_synchronize();
  8583. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8585. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8587. current_position[E_AXIS] += 40;
  8588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8589. current_position[E_AXIS] += 10;
  8590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8591. #else
  8592. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8594. #endif
  8595. load_filament_final_feed();
  8596. lcd_loading_filament();
  8597. st_synchronize();
  8598. }
  8599. void M600_load_filament() {
  8600. //load filament for single material and SNMM
  8601. lcd_wait_interact();
  8602. //load_filament_time = _millis();
  8603. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8604. #ifdef PAT9125
  8605. fsensor_autoload_check_start();
  8606. #endif //PAT9125
  8607. while(!lcd_clicked())
  8608. {
  8609. manage_heater();
  8610. manage_inactivity(true);
  8611. #ifdef FILAMENT_SENSOR
  8612. if (fsensor_check_autoload())
  8613. {
  8614. Sound_MakeCustom(50,1000,false);
  8615. break;
  8616. }
  8617. #endif //FILAMENT_SENSOR
  8618. }
  8619. #ifdef PAT9125
  8620. fsensor_autoload_check_stop();
  8621. #endif //PAT9125
  8622. KEEPALIVE_STATE(IN_HANDLER);
  8623. #ifdef FSENSOR_QUALITY
  8624. fsensor_oq_meassure_start(70);
  8625. #endif //FSENSOR_QUALITY
  8626. M600_load_filament_movements();
  8627. Sound_MakeCustom(50,1000,false);
  8628. #ifdef FSENSOR_QUALITY
  8629. fsensor_oq_meassure_stop();
  8630. if (!fsensor_oq_result())
  8631. {
  8632. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8633. lcd_update_enable(true);
  8634. lcd_update(2);
  8635. if (disable)
  8636. fsensor_disable();
  8637. }
  8638. #endif //FSENSOR_QUALITY
  8639. lcd_update_enable(false);
  8640. }
  8641. //! @brief Wait for click
  8642. //!
  8643. //! Set
  8644. void marlin_wait_for_click()
  8645. {
  8646. int8_t busy_state_backup = busy_state;
  8647. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8648. lcd_consume_click();
  8649. while(!lcd_clicked())
  8650. {
  8651. manage_heater();
  8652. manage_inactivity(true);
  8653. lcd_update(0);
  8654. }
  8655. KEEPALIVE_STATE(busy_state_backup);
  8656. }
  8657. #define FIL_LOAD_LENGTH 60