temperature.cpp 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile uint8_t fan_check_error = EFCE_OK;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. void checkFanSpeed()
  424. {
  425. uint8_t max_print_fan_errors = 0;
  426. uint8_t max_extruder_fan_errors = 0;
  427. #ifdef FAN_SOFT_PWM
  428. max_print_fan_errors = 3; //15 seconds
  429. max_extruder_fan_errors = 2; //10seconds
  430. #else //FAN_SOFT_PWM
  431. max_print_fan_errors = 15; //15 seconds
  432. max_extruder_fan_errors = 5; //5 seconds
  433. #endif //FAN_SOFT_PWM
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  438. else fan_speed_errors[0] = 0;
  439. #endif
  440. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  441. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  442. else fan_speed_errors[1] = 0;
  443. #endif
  444. // drop the fan_check_error flag when both fans are ok
  445. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  446. // we may even send some info to the LCD from here
  447. fan_check_error = EFCE_OK;
  448. }
  449. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  450. fan_speed_errors[0] = 0;
  451. fanSpeedError(0); //extruder fan
  452. }
  453. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  454. fan_speed_errors[1] = 0;
  455. fanSpeedError(1); //print fan
  456. }
  457. }
  458. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  459. //! Extracted from fanSpeedError to save some space.
  460. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  461. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  462. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  463. SERIAL_ECHOLNRPGM(serialMsg);
  464. if (get_message_level() == 0) {
  465. Sound_MakeCustom(200,0,true);
  466. LCD_ALERTMESSAGERPGM(lcdMsg);
  467. }
  468. }
  469. void fanSpeedError(unsigned char _fan) {
  470. if (get_message_level() != 0 && isPrintPaused) return;
  471. //to ensure that target temp. is not set to zero in case taht we are resuming print
  472. if (card.sdprinting) {
  473. if (heating_status != 0) {
  474. lcd_print_stop();
  475. }
  476. else {
  477. fan_check_error = EFCE_DETECTED;
  478. }
  479. }
  480. else {
  481. setTargetHotend0(0);
  482. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  483. }
  484. switch (_fan) {
  485. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  486. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  487. break;
  488. case 1:
  489. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  490. break;
  491. }
  492. }
  493. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  494. void checkExtruderAutoFans()
  495. {
  496. uint8_t fanState = 0;
  497. // which fan pins need to be turned on?
  498. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  499. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  500. fanState |= 1;
  501. #endif
  502. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  503. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  504. {
  505. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  506. fanState |= 1;
  507. else
  508. fanState |= 2;
  509. }
  510. #endif
  511. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  512. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  513. {
  514. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  515. fanState |= 1;
  516. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  517. fanState |= 2;
  518. else
  519. fanState |= 4;
  520. }
  521. #endif
  522. // update extruder auto fan states
  523. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  524. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  525. #endif
  526. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  527. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  529. #endif
  530. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  531. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  532. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  533. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  534. #endif
  535. }
  536. #endif // any extruder auto fan pins set
  537. // ready for eventually parameters adjusting
  538. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  539. //void resetPID(uint8_t extruder)
  540. {
  541. }
  542. void manage_heater()
  543. {
  544. #ifdef WATCHDOG
  545. wdt_reset();
  546. #endif //WATCHDOG
  547. float pid_input;
  548. float pid_output;
  549. if(temp_meas_ready != true) //better readability
  550. return;
  551. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  552. updateTemperaturesFromRawValues();
  553. check_max_temp();
  554. check_min_temp();
  555. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  556. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  557. #endif
  558. for(int e = 0; e < EXTRUDERS; e++)
  559. {
  560. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  561. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  562. #endif
  563. #ifdef PIDTEMP
  564. pid_input = current_temperature[e];
  565. #ifndef PID_OPENLOOP
  566. if(target_temperature[e] == 0) {
  567. pid_output = 0;
  568. pid_reset[e] = true;
  569. } else {
  570. pid_error[e] = target_temperature[e] - pid_input;
  571. if(pid_reset[e]) {
  572. iState_sum[e] = 0.0;
  573. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  574. pid_reset[e] = false;
  575. }
  576. #ifndef PonM
  577. pTerm[e] = cs.Kp * pid_error[e];
  578. iState_sum[e] += pid_error[e];
  579. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  580. iTerm[e] = cs.Ki * iState_sum[e];
  581. // PID_K1 defined in Configuration.h in the PID settings
  582. #define K2 (1.0-PID_K1)
  583. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  584. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  585. if (pid_output > PID_MAX) {
  586. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  587. pid_output=PID_MAX;
  588. } else if (pid_output < 0) {
  589. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  590. pid_output=0;
  591. }
  592. #else // PonM ("Proportional on Measurement" method)
  593. iState_sum[e] += cs.Ki * pid_error[e];
  594. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  595. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  596. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  597. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  598. pid_output = constrain(pid_output, 0, PID_MAX);
  599. #endif // PonM
  600. }
  601. dState_last[e] = pid_input;
  602. #else
  603. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  604. #endif //PID_OPENLOOP
  605. #ifdef PID_DEBUG
  606. SERIAL_ECHO_START;
  607. SERIAL_ECHO(" PID_DEBUG ");
  608. SERIAL_ECHO(e);
  609. SERIAL_ECHO(": Input ");
  610. SERIAL_ECHO(pid_input);
  611. SERIAL_ECHO(" Output ");
  612. SERIAL_ECHO(pid_output);
  613. SERIAL_ECHO(" pTerm ");
  614. SERIAL_ECHO(pTerm[e]);
  615. SERIAL_ECHO(" iTerm ");
  616. SERIAL_ECHO(iTerm[e]);
  617. SERIAL_ECHO(" dTerm ");
  618. SERIAL_ECHOLN(-dTerm[e]);
  619. #endif //PID_DEBUG
  620. #else /* PID off */
  621. pid_output = 0;
  622. if(current_temperature[e] < target_temperature[e]) {
  623. pid_output = PID_MAX;
  624. }
  625. #endif
  626. // Check if temperature is within the correct range
  627. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  628. {
  629. soft_pwm[e] = (int)pid_output >> 1;
  630. }
  631. else
  632. {
  633. soft_pwm[e] = 0;
  634. }
  635. #ifdef WATCH_TEMP_PERIOD
  636. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  637. {
  638. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  639. {
  640. setTargetHotend(0, e);
  641. LCD_MESSAGEPGM("Heating failed");
  642. SERIAL_ECHO_START;
  643. SERIAL_ECHOLN("Heating failed");
  644. }else{
  645. watchmillis[e] = 0;
  646. }
  647. }
  648. #endif
  649. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  650. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  651. disable_heater();
  652. if(IsStopped() == false) {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  655. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  656. }
  657. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  658. Stop();
  659. #endif
  660. }
  661. #endif
  662. } // End extruder for loop
  663. #define FAN_CHECK_PERIOD 5000 //5s
  664. #define FAN_CHECK_DURATION 100 //100ms
  665. #ifndef DEBUG_DISABLE_FANCHECK
  666. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  667. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  668. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  669. #ifdef FAN_SOFT_PWM
  670. #ifdef FANCHECK
  671. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  672. extruder_autofan_last_check = _millis();
  673. fanSpeedBckp = fanSpeedSoftPwm;
  674. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  675. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  676. fanSpeedSoftPwm = 255;
  677. }
  678. fan_measuring = true;
  679. }
  680. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  681. countFanSpeed();
  682. checkFanSpeed();
  683. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  684. fanSpeedSoftPwm = fanSpeedBckp;
  685. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  686. extruder_autofan_last_check = _millis();
  687. fan_measuring = false;
  688. }
  689. #endif //FANCHECK
  690. checkExtruderAutoFans();
  691. #else //FAN_SOFT_PWM
  692. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  693. {
  694. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  695. countFanSpeed();
  696. checkFanSpeed();
  697. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  698. checkExtruderAutoFans();
  699. extruder_autofan_last_check = _millis();
  700. }
  701. #endif //FAN_SOFT_PWM
  702. #endif
  703. #endif //DEBUG_DISABLE_FANCHECK
  704. #ifndef PIDTEMPBED
  705. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  706. return;
  707. previous_millis_bed_heater = _millis();
  708. #endif
  709. #if TEMP_SENSOR_BED != 0
  710. #ifdef PIDTEMPBED
  711. pid_input = current_temperature_bed;
  712. #ifndef PID_OPENLOOP
  713. pid_error_bed = target_temperature_bed - pid_input;
  714. pTerm_bed = cs.bedKp * pid_error_bed;
  715. temp_iState_bed += pid_error_bed;
  716. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  717. iTerm_bed = cs.bedKi * temp_iState_bed;
  718. //PID_K1 defined in Configuration.h in the PID settings
  719. #define K2 (1.0-PID_K1)
  720. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  721. temp_dState_bed = pid_input;
  722. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  723. if (pid_output > MAX_BED_POWER) {
  724. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  725. pid_output=MAX_BED_POWER;
  726. } else if (pid_output < 0){
  727. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  728. pid_output=0;
  729. }
  730. #else
  731. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  732. #endif //PID_OPENLOOP
  733. if(current_temperature_bed < BED_MAXTEMP)
  734. {
  735. soft_pwm_bed = (int)pid_output >> 1;
  736. timer02_set_pwm0(soft_pwm_bed << 1);
  737. }
  738. else {
  739. soft_pwm_bed = 0;
  740. timer02_set_pwm0(soft_pwm_bed << 1);
  741. }
  742. #elif !defined(BED_LIMIT_SWITCHING)
  743. // Check if temperature is within the correct range
  744. if(current_temperature_bed < BED_MAXTEMP)
  745. {
  746. if(current_temperature_bed >= target_temperature_bed)
  747. {
  748. soft_pwm_bed = 0;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. else
  752. {
  753. soft_pwm_bed = MAX_BED_POWER>>1;
  754. timer02_set_pwm0(soft_pwm_bed << 1);
  755. }
  756. }
  757. else
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. WRITE(HEATER_BED_PIN,LOW);
  762. }
  763. #else //#ifdef BED_LIMIT_SWITCHING
  764. // Check if temperature is within the correct band
  765. if(current_temperature_bed < BED_MAXTEMP)
  766. {
  767. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  768. {
  769. soft_pwm_bed = 0;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  773. {
  774. soft_pwm_bed = MAX_BED_POWER>>1;
  775. timer02_set_pwm0(soft_pwm_bed << 1);
  776. }
  777. }
  778. else
  779. {
  780. soft_pwm_bed = 0;
  781. timer02_set_pwm0(soft_pwm_bed << 1);
  782. WRITE(HEATER_BED_PIN,LOW);
  783. }
  784. #endif
  785. if(target_temperature_bed==0)
  786. {
  787. soft_pwm_bed = 0;
  788. timer02_set_pwm0(soft_pwm_bed << 1);
  789. }
  790. #endif
  791. host_keepalive();
  792. }
  793. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  794. // Derived from RepRap FiveD extruder::getTemperature()
  795. // For hot end temperature measurement.
  796. static float analog2temp(int raw, uint8_t e) {
  797. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  798. if(e > EXTRUDERS)
  799. #else
  800. if(e >= EXTRUDERS)
  801. #endif
  802. {
  803. SERIAL_ERROR_START;
  804. SERIAL_ERROR((int)e);
  805. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  806. kill(PSTR(""), 6);
  807. return 0.0;
  808. }
  809. #ifdef HEATER_0_USES_MAX6675
  810. if (e == 0)
  811. {
  812. return 0.25 * raw;
  813. }
  814. #endif
  815. if(heater_ttbl_map[e] != NULL)
  816. {
  817. float celsius = 0;
  818. uint8_t i;
  819. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  820. for (i=1; i<heater_ttbllen_map[e]; i++)
  821. {
  822. if (PGM_RD_W((*tt)[i][0]) > raw)
  823. {
  824. celsius = PGM_RD_W((*tt)[i-1][1]) +
  825. (raw - PGM_RD_W((*tt)[i-1][0])) *
  826. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  827. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  828. break;
  829. }
  830. }
  831. // Overflow: Set to last value in the table
  832. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  833. return celsius;
  834. }
  835. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  836. }
  837. // Derived from RepRap FiveD extruder::getTemperature()
  838. // For bed temperature measurement.
  839. static float analog2tempBed(int raw) {
  840. #ifdef BED_USES_THERMISTOR
  841. float celsius = 0;
  842. byte i;
  843. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  844. {
  845. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  846. {
  847. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  848. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  849. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  850. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  851. break;
  852. }
  853. }
  854. // Overflow: Set to last value in the table
  855. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  856. // temperature offset adjustment
  857. #ifdef BED_OFFSET
  858. float _offset = BED_OFFSET;
  859. float _offset_center = BED_OFFSET_CENTER;
  860. float _offset_start = BED_OFFSET_START;
  861. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  862. float _second_koef = (_offset / 2) / (100 - _offset_center);
  863. if (celsius >= _offset_start && celsius <= _offset_center)
  864. {
  865. celsius = celsius + (_first_koef * (celsius - _offset_start));
  866. }
  867. else if (celsius > _offset_center && celsius <= 100)
  868. {
  869. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  870. }
  871. else if (celsius > 100)
  872. {
  873. celsius = celsius + _offset;
  874. }
  875. #endif
  876. return celsius;
  877. #elif defined BED_USES_AD595
  878. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  879. #else
  880. return 0;
  881. #endif
  882. }
  883. #ifdef AMBIENT_THERMISTOR
  884. static float analog2tempAmbient(int raw)
  885. {
  886. float celsius = 0;
  887. byte i;
  888. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  889. {
  890. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  891. {
  892. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  893. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  894. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  895. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  896. break;
  897. }
  898. }
  899. // Overflow: Set to last value in the table
  900. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  901. return celsius;
  902. }
  903. #endif //AMBIENT_THERMISTOR
  904. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  905. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  906. static void updateTemperaturesFromRawValues()
  907. {
  908. for(uint8_t e=0;e<EXTRUDERS;e++)
  909. {
  910. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  911. }
  912. #ifdef PINDA_THERMISTOR
  913. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  914. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  915. #endif
  916. #ifdef AMBIENT_THERMISTOR
  917. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  918. #endif
  919. #ifdef DEBUG_HEATER_BED_SIM
  920. current_temperature_bed = target_temperature_bed;
  921. #else //DEBUG_HEATER_BED_SIM
  922. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  923. #endif //DEBUG_HEATER_BED_SIM
  924. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  925. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  926. #endif
  927. CRITICAL_SECTION_START;
  928. temp_meas_ready = false;
  929. CRITICAL_SECTION_END;
  930. }
  931. void tp_init()
  932. {
  933. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  934. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  935. MCUCR=(1<<JTD);
  936. MCUCR=(1<<JTD);
  937. #endif
  938. // Finish init of mult extruder arrays
  939. for(int e = 0; e < EXTRUDERS; e++) {
  940. // populate with the first value
  941. maxttemp[e] = maxttemp[0];
  942. #ifdef PIDTEMP
  943. iState_sum_min[e] = 0.0;
  944. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  945. #endif //PIDTEMP
  946. #ifdef PIDTEMPBED
  947. temp_iState_min_bed = 0.0;
  948. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  949. #endif //PIDTEMPBED
  950. }
  951. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  952. SET_OUTPUT(HEATER_0_PIN);
  953. #endif
  954. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  955. SET_OUTPUT(HEATER_1_PIN);
  956. #endif
  957. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  958. SET_OUTPUT(HEATER_2_PIN);
  959. #endif
  960. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  961. SET_OUTPUT(HEATER_BED_PIN);
  962. #endif
  963. #if defined(FAN_PIN) && (FAN_PIN > -1)
  964. SET_OUTPUT(FAN_PIN);
  965. #ifdef FAST_PWM_FAN
  966. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  967. #endif
  968. #ifdef FAN_SOFT_PWM
  969. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  970. #endif
  971. #endif
  972. #ifdef HEATER_0_USES_MAX6675
  973. #ifndef SDSUPPORT
  974. SET_OUTPUT(SCK_PIN);
  975. WRITE(SCK_PIN,0);
  976. SET_OUTPUT(MOSI_PIN);
  977. WRITE(MOSI_PIN,1);
  978. SET_INPUT(MISO_PIN);
  979. WRITE(MISO_PIN,1);
  980. #endif
  981. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  982. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  983. pinMode(SS_PIN, OUTPUT);
  984. digitalWrite(SS_PIN,0);
  985. pinMode(MAX6675_SS, OUTPUT);
  986. digitalWrite(MAX6675_SS,1);
  987. #endif
  988. adc_init();
  989. timer0_init();
  990. OCR2B = 128;
  991. TIMSK2 |= (1<<OCIE2B);
  992. // Wait for temperature measurement to settle
  993. _delay(250);
  994. #ifdef HEATER_0_MINTEMP
  995. minttemp[0] = HEATER_0_MINTEMP;
  996. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  997. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  998. minttemp_raw[0] += OVERSAMPLENR;
  999. #else
  1000. minttemp_raw[0] -= OVERSAMPLENR;
  1001. #endif
  1002. }
  1003. #endif //MINTEMP
  1004. #ifdef HEATER_0_MAXTEMP
  1005. maxttemp[0] = HEATER_0_MAXTEMP;
  1006. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1007. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1008. maxttemp_raw[0] -= OVERSAMPLENR;
  1009. #else
  1010. maxttemp_raw[0] += OVERSAMPLENR;
  1011. #endif
  1012. }
  1013. #endif //MAXTEMP
  1014. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1015. minttemp[1] = HEATER_1_MINTEMP;
  1016. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1017. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1018. minttemp_raw[1] += OVERSAMPLENR;
  1019. #else
  1020. minttemp_raw[1] -= OVERSAMPLENR;
  1021. #endif
  1022. }
  1023. #endif // MINTEMP 1
  1024. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1025. maxttemp[1] = HEATER_1_MAXTEMP;
  1026. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1027. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1028. maxttemp_raw[1] -= OVERSAMPLENR;
  1029. #else
  1030. maxttemp_raw[1] += OVERSAMPLENR;
  1031. #endif
  1032. }
  1033. #endif //MAXTEMP 1
  1034. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1035. minttemp[2] = HEATER_2_MINTEMP;
  1036. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1037. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1038. minttemp_raw[2] += OVERSAMPLENR;
  1039. #else
  1040. minttemp_raw[2] -= OVERSAMPLENR;
  1041. #endif
  1042. }
  1043. #endif //MINTEMP 2
  1044. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1045. maxttemp[2] = HEATER_2_MAXTEMP;
  1046. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1047. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1048. maxttemp_raw[2] -= OVERSAMPLENR;
  1049. #else
  1050. maxttemp_raw[2] += OVERSAMPLENR;
  1051. #endif
  1052. }
  1053. #endif //MAXTEMP 2
  1054. #ifdef BED_MINTEMP
  1055. /* No bed MINTEMP error implemented?!? */
  1056. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1057. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1058. bed_minttemp_raw += OVERSAMPLENR;
  1059. #else
  1060. bed_minttemp_raw -= OVERSAMPLENR;
  1061. #endif
  1062. }
  1063. #endif //BED_MINTEMP
  1064. #ifdef BED_MAXTEMP
  1065. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1066. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1067. bed_maxttemp_raw -= OVERSAMPLENR;
  1068. #else
  1069. bed_maxttemp_raw += OVERSAMPLENR;
  1070. #endif
  1071. }
  1072. #endif //BED_MAXTEMP
  1073. }
  1074. void setWatch()
  1075. {
  1076. #ifdef WATCH_TEMP_PERIOD
  1077. for (int e = 0; e < EXTRUDERS; e++)
  1078. {
  1079. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1080. {
  1081. watch_start_temp[e] = degHotend(e);
  1082. watchmillis[e] = _millis();
  1083. }
  1084. }
  1085. #endif
  1086. }
  1087. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1088. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1089. {
  1090. float __delta;
  1091. float __hysteresis = 0;
  1092. int __timeout = 0;
  1093. bool temp_runaway_check_active = false;
  1094. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1095. static int __preheat_counter[2] = { 0,0};
  1096. static int __preheat_errors[2] = { 0,0};
  1097. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1098. {
  1099. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1100. if (_isbed)
  1101. {
  1102. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1103. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1104. }
  1105. #endif
  1106. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1107. if (!_isbed)
  1108. {
  1109. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1110. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1111. }
  1112. #endif
  1113. temp_runaway_timer[_heater_id] = _millis();
  1114. if (_output == 0)
  1115. {
  1116. temp_runaway_check_active = false;
  1117. temp_runaway_error_counter[_heater_id] = 0;
  1118. }
  1119. if (temp_runaway_target[_heater_id] != _target_temperature)
  1120. {
  1121. if (_target_temperature > 0)
  1122. {
  1123. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1124. temp_runaway_target[_heater_id] = _target_temperature;
  1125. __preheat_start[_heater_id] = _current_temperature;
  1126. __preheat_counter[_heater_id] = 0;
  1127. }
  1128. else
  1129. {
  1130. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1131. temp_runaway_target[_heater_id] = _target_temperature;
  1132. }
  1133. }
  1134. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1135. {
  1136. __preheat_counter[_heater_id]++;
  1137. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1138. {
  1139. /*SERIAL_ECHOPGM("Heater:");
  1140. MYSERIAL.print(_heater_id);
  1141. SERIAL_ECHOPGM(" T:");
  1142. MYSERIAL.print(_current_temperature);
  1143. SERIAL_ECHOPGM(" Tstart:");
  1144. MYSERIAL.print(__preheat_start[_heater_id]);
  1145. SERIAL_ECHOPGM(" delta:");
  1146. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1147. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1148. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1149. __delta=2.0;
  1150. if(_isbed)
  1151. {
  1152. __delta=3.0;
  1153. if(_current_temperature>90.0) __delta=2.0;
  1154. if(_current_temperature>105.0) __delta=0.6;
  1155. }
  1156. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1157. __preheat_errors[_heater_id]++;
  1158. /*SERIAL_ECHOPGM(" Preheat errors:");
  1159. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1160. }
  1161. else {
  1162. //SERIAL_ECHOLNPGM("");
  1163. __preheat_errors[_heater_id] = 0;
  1164. }
  1165. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1166. {
  1167. if (farm_mode) { prusa_statistics(0); }
  1168. temp_runaway_stop(true, _isbed);
  1169. if (farm_mode) { prusa_statistics(91); }
  1170. }
  1171. __preheat_start[_heater_id] = _current_temperature;
  1172. __preheat_counter[_heater_id] = 0;
  1173. }
  1174. }
  1175. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1176. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1177. {
  1178. /*SERIAL_ECHOPGM("Heater:");
  1179. MYSERIAL.print(_heater_id);
  1180. MYSERIAL.println(" ->tempRunaway");*/
  1181. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1182. temp_runaway_check_active = false;
  1183. temp_runaway_error_counter[_heater_id] = 0;
  1184. }
  1185. if (_output > 0)
  1186. {
  1187. temp_runaway_check_active = true;
  1188. }
  1189. if (temp_runaway_check_active)
  1190. {
  1191. // we are in range
  1192. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1193. {
  1194. temp_runaway_check_active = false;
  1195. temp_runaway_error_counter[_heater_id] = 0;
  1196. }
  1197. else
  1198. {
  1199. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1200. {
  1201. temp_runaway_error_counter[_heater_id]++;
  1202. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1203. {
  1204. if (farm_mode) { prusa_statistics(0); }
  1205. temp_runaway_stop(false, _isbed);
  1206. if (farm_mode) { prusa_statistics(90); }
  1207. }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. }
  1213. void temp_runaway_stop(bool isPreheat, bool isBed)
  1214. {
  1215. cancel_heatup = true;
  1216. quickStop();
  1217. if (card.sdprinting)
  1218. {
  1219. card.sdprinting = false;
  1220. card.closefile();
  1221. }
  1222. // Clean the input command queue
  1223. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1224. cmdqueue_reset();
  1225. disable_heater();
  1226. disable_x();
  1227. disable_y();
  1228. disable_e0();
  1229. disable_e1();
  1230. disable_e2();
  1231. manage_heater();
  1232. lcd_update(0);
  1233. Sound_MakeCustom(200,0,true);
  1234. if (isPreheat)
  1235. {
  1236. Stop();
  1237. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1238. SERIAL_ERROR_START;
  1239. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1240. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1241. SET_OUTPUT(FAN_PIN);
  1242. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1243. #ifdef FAN_SOFT_PWM
  1244. fanSpeedSoftPwm = 255;
  1245. #else //FAN_SOFT_PWM
  1246. analogWrite(FAN_PIN, 255);
  1247. #endif //FAN_SOFT_PWM
  1248. fanSpeed = 255;
  1249. delayMicroseconds(2000);
  1250. }
  1251. else
  1252. {
  1253. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1254. SERIAL_ERROR_START;
  1255. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1256. }
  1257. }
  1258. #endif
  1259. void disable_heater()
  1260. {
  1261. setAllTargetHotends(0);
  1262. setTargetBed(0);
  1263. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1264. target_temperature[0]=0;
  1265. soft_pwm[0]=0;
  1266. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1267. WRITE(HEATER_0_PIN,LOW);
  1268. #endif
  1269. #endif
  1270. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1271. target_temperature[1]=0;
  1272. soft_pwm[1]=0;
  1273. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1274. WRITE(HEATER_1_PIN,LOW);
  1275. #endif
  1276. #endif
  1277. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1278. target_temperature[2]=0;
  1279. soft_pwm[2]=0;
  1280. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1281. WRITE(HEATER_2_PIN,LOW);
  1282. #endif
  1283. #endif
  1284. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1285. target_temperature_bed=0;
  1286. soft_pwm_bed=0;
  1287. timer02_set_pwm0(soft_pwm_bed << 1);
  1288. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1289. //WRITE(HEATER_BED_PIN,LOW);
  1290. #endif
  1291. #endif
  1292. }
  1293. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1294. //! than raw const char * of the messages themselves.
  1295. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1296. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1297. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1298. //! remember the last alert message sent to the LCD
  1299. //! to prevent flicker and improve speed
  1300. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1301. void max_temp_error(uint8_t e) {
  1302. disable_heater();
  1303. if(IsStopped() == false) {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORLN((int)e);
  1306. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1307. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1308. }
  1309. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1310. Stop();
  1311. #endif
  1312. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1313. SET_OUTPUT(FAN_PIN);
  1314. SET_OUTPUT(BEEPER);
  1315. WRITE(FAN_PIN, 1);
  1316. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1317. WRITE(BEEPER, 1);
  1318. // fanSpeed will consumed by the check_axes_activity() routine.
  1319. fanSpeed=255;
  1320. if (farm_mode) { prusa_statistics(93); }
  1321. }
  1322. void min_temp_error(uint8_t e) {
  1323. #ifdef DEBUG_DISABLE_MINTEMP
  1324. return;
  1325. #endif
  1326. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1327. disable_heater();
  1328. static const char err[] PROGMEM = "Err: MINTEMP";
  1329. if(IsStopped() == false) {
  1330. SERIAL_ERROR_START;
  1331. SERIAL_ERRORLN((int)e);
  1332. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1333. lcd_setalertstatuspgm(err);
  1334. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1335. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1336. // we are already stopped due to some error, only update the status message without flickering
  1337. lcd_updatestatuspgm(err);
  1338. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1339. }
  1340. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1341. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1342. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1343. // lcd_print_stop();
  1344. // }
  1345. Stop();
  1346. #endif
  1347. if (farm_mode) { prusa_statistics(92); }
  1348. }
  1349. void bed_max_temp_error(void) {
  1350. #if HEATER_BED_PIN > -1
  1351. //WRITE(HEATER_BED_PIN, 0);
  1352. #endif
  1353. if(IsStopped() == false) {
  1354. SERIAL_ERROR_START;
  1355. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1356. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1357. }
  1358. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1359. Stop();
  1360. #endif
  1361. }
  1362. void bed_min_temp_error(void) {
  1363. #ifdef DEBUG_DISABLE_MINTEMP
  1364. return;
  1365. #endif
  1366. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1367. #if HEATER_BED_PIN > -1
  1368. //WRITE(HEATER_BED_PIN, 0);
  1369. #endif
  1370. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1371. if(IsStopped() == false) {
  1372. SERIAL_ERROR_START;
  1373. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1374. lcd_setalertstatuspgm(err);
  1375. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1376. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1377. // we are already stopped due to some error, only update the status message without flickering
  1378. lcd_updatestatuspgm(err);
  1379. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1380. }
  1381. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1382. Stop();
  1383. #endif
  1384. }
  1385. #ifdef HEATER_0_USES_MAX6675
  1386. #define MAX6675_HEAT_INTERVAL 250
  1387. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1388. int max6675_temp = 2000;
  1389. int read_max6675()
  1390. {
  1391. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1392. return max6675_temp;
  1393. max6675_previous_millis = _millis();
  1394. max6675_temp = 0;
  1395. #ifdef PRR
  1396. PRR &= ~(1<<PRSPI);
  1397. #elif defined PRR0
  1398. PRR0 &= ~(1<<PRSPI);
  1399. #endif
  1400. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1401. // enable TT_MAX6675
  1402. WRITE(MAX6675_SS, 0);
  1403. // ensure 100ns delay - a bit extra is fine
  1404. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1405. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1406. // read MSB
  1407. SPDR = 0;
  1408. for (;(SPSR & (1<<SPIF)) == 0;);
  1409. max6675_temp = SPDR;
  1410. max6675_temp <<= 8;
  1411. // read LSB
  1412. SPDR = 0;
  1413. for (;(SPSR & (1<<SPIF)) == 0;);
  1414. max6675_temp |= SPDR;
  1415. // disable TT_MAX6675
  1416. WRITE(MAX6675_SS, 1);
  1417. if (max6675_temp & 4)
  1418. {
  1419. // thermocouple open
  1420. max6675_temp = 2000;
  1421. }
  1422. else
  1423. {
  1424. max6675_temp = max6675_temp >> 3;
  1425. }
  1426. return max6675_temp;
  1427. }
  1428. #endif
  1429. extern "C" {
  1430. void adc_ready(void) //callback from adc when sampling finished
  1431. {
  1432. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1433. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1434. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1435. #ifdef VOLT_PWR_PIN
  1436. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1437. #endif
  1438. #ifdef AMBIENT_THERMISTOR
  1439. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1440. #endif //AMBIENT_THERMISTOR
  1441. #ifdef VOLT_BED_PIN
  1442. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1443. #endif
  1444. temp_meas_ready = true;
  1445. }
  1446. } // extern "C"
  1447. // Timer2 (originaly timer0) is shared with millies
  1448. #ifdef SYSTEM_TIMER_2
  1449. ISR(TIMER2_COMPB_vect)
  1450. #else //SYSTEM_TIMER_2
  1451. ISR(TIMER0_COMPB_vect)
  1452. #endif //SYSTEM_TIMER_2
  1453. {
  1454. static bool _lock = false;
  1455. if (_lock) return;
  1456. _lock = true;
  1457. asm("sei");
  1458. if (!temp_meas_ready) adc_cycle();
  1459. lcd_buttons_update();
  1460. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1461. static uint8_t soft_pwm_0;
  1462. #ifdef SLOW_PWM_HEATERS
  1463. static unsigned char slow_pwm_count = 0;
  1464. static unsigned char state_heater_0 = 0;
  1465. static unsigned char state_timer_heater_0 = 0;
  1466. #endif
  1467. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1468. static unsigned char soft_pwm_1;
  1469. #ifdef SLOW_PWM_HEATERS
  1470. static unsigned char state_heater_1 = 0;
  1471. static unsigned char state_timer_heater_1 = 0;
  1472. #endif
  1473. #endif
  1474. #if EXTRUDERS > 2
  1475. static unsigned char soft_pwm_2;
  1476. #ifdef SLOW_PWM_HEATERS
  1477. static unsigned char state_heater_2 = 0;
  1478. static unsigned char state_timer_heater_2 = 0;
  1479. #endif
  1480. #endif
  1481. #if HEATER_BED_PIN > -1
  1482. // @@DR static unsigned char soft_pwm_b;
  1483. #ifdef SLOW_PWM_HEATERS
  1484. static unsigned char state_heater_b = 0;
  1485. static unsigned char state_timer_heater_b = 0;
  1486. #endif
  1487. #endif
  1488. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1489. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1490. #endif
  1491. #ifndef SLOW_PWM_HEATERS
  1492. /*
  1493. * standard PWM modulation
  1494. */
  1495. if (pwm_count == 0)
  1496. {
  1497. soft_pwm_0 = soft_pwm[0];
  1498. if(soft_pwm_0 > 0)
  1499. {
  1500. WRITE(HEATER_0_PIN,1);
  1501. #ifdef HEATERS_PARALLEL
  1502. WRITE(HEATER_1_PIN,1);
  1503. #endif
  1504. } else WRITE(HEATER_0_PIN,0);
  1505. #if EXTRUDERS > 1
  1506. soft_pwm_1 = soft_pwm[1];
  1507. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1508. #endif
  1509. #if EXTRUDERS > 2
  1510. soft_pwm_2 = soft_pwm[2];
  1511. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1512. #endif
  1513. }
  1514. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1515. #if 0 // @@DR vypnuto pro hw pwm bedu
  1516. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1517. // teoreticky by se tato cast uz vubec nemusela poustet
  1518. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1519. {
  1520. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1521. # ifndef SYSTEM_TIMER_2
  1522. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1523. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1524. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1525. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1526. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1527. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1528. # endif //SYSTEM_TIMER_2
  1529. }
  1530. #endif
  1531. #endif
  1532. #ifdef FAN_SOFT_PWM
  1533. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1534. {
  1535. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1536. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1537. }
  1538. #endif
  1539. if(soft_pwm_0 < pwm_count)
  1540. {
  1541. WRITE(HEATER_0_PIN,0);
  1542. #ifdef HEATERS_PARALLEL
  1543. WRITE(HEATER_1_PIN,0);
  1544. #endif
  1545. }
  1546. #if EXTRUDERS > 1
  1547. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1548. #endif
  1549. #if EXTRUDERS > 2
  1550. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1551. #endif
  1552. #if 0 // @@DR
  1553. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1554. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1555. //WRITE(HEATER_BED_PIN,0);
  1556. }
  1557. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1558. #endif
  1559. #endif
  1560. #ifdef FAN_SOFT_PWM
  1561. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1562. #endif
  1563. pwm_count += (1 << SOFT_PWM_SCALE);
  1564. pwm_count &= 0x7f;
  1565. #else //ifndef SLOW_PWM_HEATERS
  1566. /*
  1567. * SLOW PWM HEATERS
  1568. *
  1569. * for heaters drived by relay
  1570. */
  1571. #ifndef MIN_STATE_TIME
  1572. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1573. #endif
  1574. if (slow_pwm_count == 0) {
  1575. // EXTRUDER 0
  1576. soft_pwm_0 = soft_pwm[0];
  1577. if (soft_pwm_0 > 0) {
  1578. // turn ON heather only if the minimum time is up
  1579. if (state_timer_heater_0 == 0) {
  1580. // if change state set timer
  1581. if (state_heater_0 == 0) {
  1582. state_timer_heater_0 = MIN_STATE_TIME;
  1583. }
  1584. state_heater_0 = 1;
  1585. WRITE(HEATER_0_PIN, 1);
  1586. #ifdef HEATERS_PARALLEL
  1587. WRITE(HEATER_1_PIN, 1);
  1588. #endif
  1589. }
  1590. } else {
  1591. // turn OFF heather only if the minimum time is up
  1592. if (state_timer_heater_0 == 0) {
  1593. // if change state set timer
  1594. if (state_heater_0 == 1) {
  1595. state_timer_heater_0 = MIN_STATE_TIME;
  1596. }
  1597. state_heater_0 = 0;
  1598. WRITE(HEATER_0_PIN, 0);
  1599. #ifdef HEATERS_PARALLEL
  1600. WRITE(HEATER_1_PIN, 0);
  1601. #endif
  1602. }
  1603. }
  1604. #if EXTRUDERS > 1
  1605. // EXTRUDER 1
  1606. soft_pwm_1 = soft_pwm[1];
  1607. if (soft_pwm_1 > 0) {
  1608. // turn ON heather only if the minimum time is up
  1609. if (state_timer_heater_1 == 0) {
  1610. // if change state set timer
  1611. if (state_heater_1 == 0) {
  1612. state_timer_heater_1 = MIN_STATE_TIME;
  1613. }
  1614. state_heater_1 = 1;
  1615. WRITE(HEATER_1_PIN, 1);
  1616. }
  1617. } else {
  1618. // turn OFF heather only if the minimum time is up
  1619. if (state_timer_heater_1 == 0) {
  1620. // if change state set timer
  1621. if (state_heater_1 == 1) {
  1622. state_timer_heater_1 = MIN_STATE_TIME;
  1623. }
  1624. state_heater_1 = 0;
  1625. WRITE(HEATER_1_PIN, 0);
  1626. }
  1627. }
  1628. #endif
  1629. #if EXTRUDERS > 2
  1630. // EXTRUDER 2
  1631. soft_pwm_2 = soft_pwm[2];
  1632. if (soft_pwm_2 > 0) {
  1633. // turn ON heather only if the minimum time is up
  1634. if (state_timer_heater_2 == 0) {
  1635. // if change state set timer
  1636. if (state_heater_2 == 0) {
  1637. state_timer_heater_2 = MIN_STATE_TIME;
  1638. }
  1639. state_heater_2 = 1;
  1640. WRITE(HEATER_2_PIN, 1);
  1641. }
  1642. } else {
  1643. // turn OFF heather only if the minimum time is up
  1644. if (state_timer_heater_2 == 0) {
  1645. // if change state set timer
  1646. if (state_heater_2 == 1) {
  1647. state_timer_heater_2 = MIN_STATE_TIME;
  1648. }
  1649. state_heater_2 = 0;
  1650. WRITE(HEATER_2_PIN, 0);
  1651. }
  1652. }
  1653. #endif
  1654. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1655. // BED
  1656. soft_pwm_b = soft_pwm_bed;
  1657. if (soft_pwm_b > 0) {
  1658. // turn ON heather only if the minimum time is up
  1659. if (state_timer_heater_b == 0) {
  1660. // if change state set timer
  1661. if (state_heater_b == 0) {
  1662. state_timer_heater_b = MIN_STATE_TIME;
  1663. }
  1664. state_heater_b = 1;
  1665. //WRITE(HEATER_BED_PIN, 1);
  1666. }
  1667. } else {
  1668. // turn OFF heather only if the minimum time is up
  1669. if (state_timer_heater_b == 0) {
  1670. // if change state set timer
  1671. if (state_heater_b == 1) {
  1672. state_timer_heater_b = MIN_STATE_TIME;
  1673. }
  1674. state_heater_b = 0;
  1675. WRITE(HEATER_BED_PIN, 0);
  1676. }
  1677. }
  1678. #endif
  1679. } // if (slow_pwm_count == 0)
  1680. // EXTRUDER 0
  1681. if (soft_pwm_0 < slow_pwm_count) {
  1682. // turn OFF heather only if the minimum time is up
  1683. if (state_timer_heater_0 == 0) {
  1684. // if change state set timer
  1685. if (state_heater_0 == 1) {
  1686. state_timer_heater_0 = MIN_STATE_TIME;
  1687. }
  1688. state_heater_0 = 0;
  1689. WRITE(HEATER_0_PIN, 0);
  1690. #ifdef HEATERS_PARALLEL
  1691. WRITE(HEATER_1_PIN, 0);
  1692. #endif
  1693. }
  1694. }
  1695. #if EXTRUDERS > 1
  1696. // EXTRUDER 1
  1697. if (soft_pwm_1 < slow_pwm_count) {
  1698. // turn OFF heather only if the minimum time is up
  1699. if (state_timer_heater_1 == 0) {
  1700. // if change state set timer
  1701. if (state_heater_1 == 1) {
  1702. state_timer_heater_1 = MIN_STATE_TIME;
  1703. }
  1704. state_heater_1 = 0;
  1705. WRITE(HEATER_1_PIN, 0);
  1706. }
  1707. }
  1708. #endif
  1709. #if EXTRUDERS > 2
  1710. // EXTRUDER 2
  1711. if (soft_pwm_2 < slow_pwm_count) {
  1712. // turn OFF heather only if the minimum time is up
  1713. if (state_timer_heater_2 == 0) {
  1714. // if change state set timer
  1715. if (state_heater_2 == 1) {
  1716. state_timer_heater_2 = MIN_STATE_TIME;
  1717. }
  1718. state_heater_2 = 0;
  1719. WRITE(HEATER_2_PIN, 0);
  1720. }
  1721. }
  1722. #endif
  1723. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1724. // BED
  1725. if (soft_pwm_b < slow_pwm_count) {
  1726. // turn OFF heather only if the minimum time is up
  1727. if (state_timer_heater_b == 0) {
  1728. // if change state set timer
  1729. if (state_heater_b == 1) {
  1730. state_timer_heater_b = MIN_STATE_TIME;
  1731. }
  1732. state_heater_b = 0;
  1733. WRITE(HEATER_BED_PIN, 0);
  1734. }
  1735. }
  1736. #endif
  1737. #ifdef FAN_SOFT_PWM
  1738. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1739. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1740. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1741. }
  1742. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1743. #endif
  1744. pwm_count += (1 << SOFT_PWM_SCALE);
  1745. pwm_count &= 0x7f;
  1746. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1747. if ((pwm_count % 64) == 0) {
  1748. slow_pwm_count++;
  1749. slow_pwm_count &= 0x7f;
  1750. // Extruder 0
  1751. if (state_timer_heater_0 > 0) {
  1752. state_timer_heater_0--;
  1753. }
  1754. #if EXTRUDERS > 1
  1755. // Extruder 1
  1756. if (state_timer_heater_1 > 0)
  1757. state_timer_heater_1--;
  1758. #endif
  1759. #if EXTRUDERS > 2
  1760. // Extruder 2
  1761. if (state_timer_heater_2 > 0)
  1762. state_timer_heater_2--;
  1763. #endif
  1764. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1765. // Bed
  1766. if (state_timer_heater_b > 0)
  1767. state_timer_heater_b--;
  1768. #endif
  1769. } //if ((pwm_count % 64) == 0) {
  1770. #endif //ifndef SLOW_PWM_HEATERS
  1771. #ifdef BABYSTEPPING
  1772. for(uint8_t axis=0;axis<3;axis++)
  1773. {
  1774. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1775. if(curTodo>0)
  1776. {
  1777. asm("cli");
  1778. babystep(axis,/*fwd*/true);
  1779. babystepsTodo[axis]--; //less to do next time
  1780. asm("sei");
  1781. }
  1782. else
  1783. if(curTodo<0)
  1784. {
  1785. asm("cli");
  1786. babystep(axis,/*fwd*/false);
  1787. babystepsTodo[axis]++; //less to do next time
  1788. asm("sei");
  1789. }
  1790. }
  1791. #endif //BABYSTEPPING
  1792. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1793. check_fans();
  1794. #endif //(defined(TACH_0))
  1795. _lock = false;
  1796. }
  1797. void check_max_temp()
  1798. {
  1799. //heater
  1800. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1801. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1802. #else
  1803. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1804. #endif
  1805. max_temp_error(0);
  1806. }
  1807. //bed
  1808. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1809. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1810. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1811. #else
  1812. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1813. #endif
  1814. target_temperature_bed = 0;
  1815. bed_max_temp_error();
  1816. }
  1817. #endif
  1818. }
  1819. //! number of repeating the same state with consecutive step() calls
  1820. //! used to slow down text switching
  1821. struct alert_automaton_mintemp {
  1822. private:
  1823. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1824. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1825. States state = States::Init;
  1826. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1827. void substep(States next_state){
  1828. if( repeat == 0 ){
  1829. state = next_state; // advance to the next state
  1830. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1831. } else {
  1832. --repeat;
  1833. }
  1834. }
  1835. public:
  1836. //! brief state automaton step routine
  1837. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1838. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1839. void step(float current_temp, float mintemp){
  1840. static const char m2[] PROGMEM = "MINTEMP fixed";
  1841. static const char m1[] PROGMEM = "Please restart";
  1842. switch(state){
  1843. case States::Init: // initial state - check hysteresis
  1844. if( current_temp > mintemp ){
  1845. state = States::TempAboveMintemp;
  1846. }
  1847. // otherwise keep the Err MINTEMP alert message on the display,
  1848. // i.e. do not transfer to state 1
  1849. break;
  1850. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1851. lcd_setalertstatuspgm(m2);
  1852. substep(States::ShowMintemp);
  1853. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1854. break;
  1855. case States::ShowPleaseRestart: // displaying "Please restart"
  1856. lcd_updatestatuspgm(m1);
  1857. substep(States::ShowMintemp);
  1858. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1859. break;
  1860. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1861. lcd_updatestatuspgm(m2);
  1862. substep(States::ShowPleaseRestart);
  1863. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1864. break;
  1865. }
  1866. }
  1867. };
  1868. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1869. void check_min_temp_heater0()
  1870. {
  1871. //heater
  1872. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1873. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1874. #else
  1875. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1876. #endif
  1877. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1878. min_temp_error(0);
  1879. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1880. // no recovery, just force the user to restart the printer
  1881. // which is a safer variant than just continuing printing
  1882. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1883. // we shall signalize, that MINTEMP has been fixed
  1884. // Code notice: normally the alert_automaton instance would have been placed here
  1885. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1886. // due to stupid compiler that takes 16 more bytes.
  1887. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1888. }
  1889. }
  1890. void check_min_temp_bed()
  1891. {
  1892. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1893. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1894. #else
  1895. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1896. #endif
  1897. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1898. bed_min_temp_error();
  1899. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1900. // no recovery, just force the user to restart the printer
  1901. // which is a safer variant than just continuing printing
  1902. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1903. }
  1904. }
  1905. void check_min_temp()
  1906. {
  1907. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1908. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1909. #ifdef AMBIENT_THERMISTOR
  1910. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1911. { // ambient temperature is low
  1912. #endif //AMBIENT_THERMISTOR
  1913. // *** 'common' part of code for MK2.5 & MK3
  1914. // * nozzle checking
  1915. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1916. { // ~ nozzle heating is on
  1917. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1918. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1919. {
  1920. bCheckingOnHeater=true; // not necessary
  1921. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1922. }
  1923. }
  1924. else { // ~ nozzle heating is off
  1925. oTimer4minTempHeater.start();
  1926. bCheckingOnHeater=false;
  1927. }
  1928. // * bed checking
  1929. if(target_temperature_bed>BED_MINTEMP)
  1930. { // ~ bed heating is on
  1931. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1932. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1933. {
  1934. bCheckingOnBed=true; // not necessary
  1935. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1936. }
  1937. }
  1938. else { // ~ bed heating is off
  1939. oTimer4minTempBed.start();
  1940. bCheckingOnBed=false;
  1941. }
  1942. // *** end of 'common' part
  1943. #ifdef AMBIENT_THERMISTOR
  1944. }
  1945. else { // ambient temperature is standard
  1946. check_min_temp_heater0();
  1947. check_min_temp_bed();
  1948. }
  1949. #endif //AMBIENT_THERMISTOR
  1950. }
  1951. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1952. void check_fans() {
  1953. #ifdef FAN_SOFT_PWM
  1954. if (READ(TACH_0) != fan_state[0]) {
  1955. if(fan_measuring) fan_edge_counter[0] ++;
  1956. fan_state[0] = !fan_state[0];
  1957. }
  1958. #else //FAN_SOFT_PWM
  1959. if (READ(TACH_0) != fan_state[0]) {
  1960. fan_edge_counter[0] ++;
  1961. fan_state[0] = !fan_state[0];
  1962. }
  1963. #endif
  1964. //if (READ(TACH_1) != fan_state[1]) {
  1965. // fan_edge_counter[1] ++;
  1966. // fan_state[1] = !fan_state[1];
  1967. //}
  1968. }
  1969. #endif //TACH_0
  1970. #ifdef PIDTEMP
  1971. // Apply the scale factors to the PID values
  1972. float scalePID_i(float i)
  1973. {
  1974. return i*PID_dT;
  1975. }
  1976. float unscalePID_i(float i)
  1977. {
  1978. return i/PID_dT;
  1979. }
  1980. float scalePID_d(float d)
  1981. {
  1982. return d/PID_dT;
  1983. }
  1984. float unscalePID_d(float d)
  1985. {
  1986. return d*PID_dT;
  1987. }
  1988. #endif //PIDTEMP