Marlin_main.cpp 260 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(WELCOME_MSG);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X"));
  552. enquecommand_P(PSTR("G28 Y"));
  553. enquecommand_P(PSTR("CRASH_RECOVER"));
  554. }
  555. else
  556. {
  557. enquecommand_P(PSTR("CRASH_CANCEL"));
  558. }
  559. }
  560. void crashdet_recover()
  561. {
  562. crashdet_restore_print_and_continue();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. void crashdet_cancel()
  566. {
  567. card.sdprinting = false;
  568. card.closefile();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. #ifdef MESH_BED_LEVELING
  572. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  573. #endif
  574. // Factory reset function
  575. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  576. // Level input parameter sets depth of reset
  577. // Quiet parameter masks all waitings for user interact.
  578. int er_progress = 0;
  579. void factory_reset(char level, bool quiet)
  580. {
  581. lcd_implementation_clear();
  582. int cursor_pos = 0;
  583. switch (level) {
  584. // Level 0: Language reset
  585. case 0:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. lcd_force_language_selection();
  590. break;
  591. //Level 1: Reset statistics
  592. case 1:
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  597. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  601. lcd_menu_statistics();
  602. break;
  603. // Level 2: Prepare for shipping
  604. case 2:
  605. //lcd_printPGM(PSTR("Factory RESET"));
  606. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  607. // Force language selection at the next boot up.
  608. lcd_force_language_selection();
  609. // Force the "Follow calibration flow" message at the next boot up.
  610. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  611. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  612. farm_no = 0;
  613. farm_mode == false;
  614. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  615. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  616. WRITE(BEEPER, HIGH);
  617. _delay_ms(100);
  618. WRITE(BEEPER, LOW);
  619. //_delay_ms(2000);
  620. break;
  621. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  622. case 3:
  623. lcd_printPGM(PSTR("Factory RESET"));
  624. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. er_progress = 0;
  629. lcd_print_at_PGM(3, 3, PSTR(" "));
  630. lcd_implementation_print_at(3, 3, er_progress);
  631. // Erase EEPROM
  632. for (int i = 0; i < 4096; i++) {
  633. eeprom_write_byte((uint8_t*)i, 0xFF);
  634. if (i % 41 == 0) {
  635. er_progress++;
  636. lcd_print_at_PGM(3, 3, PSTR(" "));
  637. lcd_implementation_print_at(3, 3, er_progress);
  638. lcd_printPGM(PSTR("%"));
  639. }
  640. }
  641. break;
  642. case 4:
  643. bowden_menu();
  644. break;
  645. default:
  646. break;
  647. }
  648. }
  649. #include "LiquidCrystal.h"
  650. extern LiquidCrystal lcd;
  651. FILE _lcdout = {0};
  652. int lcd_putchar(char c, FILE *stream)
  653. {
  654. lcd.write(c);
  655. return 0;
  656. }
  657. FILE _uartout = {0};
  658. int uart_putchar(char c, FILE *stream)
  659. {
  660. MYSERIAL.write(c);
  661. return 0;
  662. }
  663. void lcd_splash()
  664. {
  665. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  666. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  667. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  668. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  669. }
  670. void factory_reset()
  671. {
  672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  673. if (!READ(BTN_ENC))
  674. {
  675. _delay_ms(1000);
  676. if (!READ(BTN_ENC))
  677. {
  678. lcd_implementation_clear();
  679. lcd_printPGM(PSTR("Factory RESET"));
  680. SET_OUTPUT(BEEPER);
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level, false);
  687. switch (level) {
  688. case 0: _delay_ms(0); break;
  689. case 1: _delay_ms(0); break;
  690. case 2: _delay_ms(0); break;
  691. case 3: _delay_ms(0); break;
  692. }
  693. // _delay_ms(100);
  694. /*
  695. #ifdef MESH_BED_LEVELING
  696. _delay_ms(2000);
  697. if (!READ(BTN_ENC))
  698. {
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(200);
  703. WRITE(BEEPER, HIGH);
  704. _delay_ms(100);
  705. WRITE(BEEPER, LOW);
  706. int _z = 0;
  707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  708. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  711. }
  712. else
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. }
  718. #endif // mesh */
  719. }
  720. }
  721. else
  722. {
  723. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  724. }
  725. KEEPALIVE_STATE(IN_HANDLER);
  726. }
  727. // "Setup" function is called by the Arduino framework on startup.
  728. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  729. // are initialized by the main() routine provided by the Arduino framework.
  730. void setup()
  731. {
  732. lcd_init();
  733. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  734. lcd_splash();
  735. setup_killpin();
  736. setup_powerhold();
  737. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  738. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  739. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  740. if (farm_no == 0xFFFF) farm_no = 0;
  741. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  742. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  743. if (farm_mode)
  744. {
  745. prusa_statistics(8);
  746. selectedSerialPort = 1;
  747. }
  748. MYSERIAL.begin(BAUDRATE);
  749. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  750. stdout = uartout;
  751. SERIAL_PROTOCOLLNPGM("start");
  752. SERIAL_ECHO_START;
  753. #if 0
  754. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  755. for (int i = 0; i < 4096; ++i) {
  756. int b = eeprom_read_byte((unsigned char*)i);
  757. if (b != 255) {
  758. SERIAL_ECHO(i);
  759. SERIAL_ECHO(":");
  760. SERIAL_ECHO(b);
  761. SERIAL_ECHOLN("");
  762. }
  763. }
  764. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  765. #endif
  766. // Check startup - does nothing if bootloader sets MCUSR to 0
  767. byte mcu = MCUSR;
  768. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  769. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  770. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  771. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  772. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  773. if (mcu & 1) puts_P(MSG_POWERUP);
  774. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  775. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  776. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  777. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  778. MCUSR = 0;
  779. //SERIAL_ECHORPGM(MSG_MARLIN);
  780. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  781. #ifdef STRING_VERSION_CONFIG_H
  782. #ifdef STRING_CONFIG_H_AUTHOR
  783. SERIAL_ECHO_START;
  784. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  785. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  786. SERIAL_ECHORPGM(MSG_AUTHOR);
  787. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  788. SERIAL_ECHOPGM("Compiled: ");
  789. SERIAL_ECHOLNPGM(__DATE__);
  790. #endif
  791. #endif
  792. SERIAL_ECHO_START;
  793. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  794. SERIAL_ECHO(freeMemory());
  795. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  796. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  797. //lcd_update_enable(false); // why do we need this?? - andre
  798. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  799. Config_RetrieveSettings(EEPROM_OFFSET);
  800. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  801. tp_init(); // Initialize temperature loop
  802. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  803. plan_init(); // Initialize planner;
  804. watchdog_init();
  805. factory_reset();
  806. #ifdef TMC2130
  807. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  808. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  809. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  810. if (crashdet)
  811. {
  812. crashdet_enable();
  813. MYSERIAL.println("CrashDetect ENABLED!");
  814. }
  815. else
  816. {
  817. crashdet_disable();
  818. MYSERIAL.println("CrashDetect DISABLED");
  819. }
  820. #endif //TMC2130
  821. st_init(); // Initialize stepper, this enables interrupts!
  822. setup_photpin();
  823. servo_init();
  824. // Reset the machine correction matrix.
  825. // It does not make sense to load the correction matrix until the machine is homed.
  826. world2machine_reset();
  827. #ifdef PAT9125
  828. fsensor_init();
  829. #endif //PAT9125
  830. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  831. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  832. #endif
  833. #ifdef DIGIPOT_I2C
  834. digipot_i2c_init();
  835. #endif
  836. setup_homepin();
  837. if (1) {
  838. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  839. // try to run to zero phase before powering the Z motor.
  840. // Move in negative direction
  841. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  842. // Round the current micro-micro steps to micro steps.
  843. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  844. // Until the phase counter is reset to zero.
  845. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  846. delay(2);
  847. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  848. delay(2);
  849. }
  850. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  851. }
  852. #if defined(Z_AXIS_ALWAYS_ON)
  853. enable_z();
  854. #endif
  855. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  856. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  857. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  858. if (farm_no == 0xFFFF) farm_no = 0;
  859. if (farm_mode)
  860. {
  861. prusa_statistics(8);
  862. }
  863. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  864. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  865. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  866. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  867. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  868. // where all the EEPROM entries are set to 0x0ff.
  869. // Once a firmware boots up, it forces at least a language selection, which changes
  870. // EEPROM_LANG to number lower than 0x0ff.
  871. // 1) Set a high power mode.
  872. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  873. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  874. }
  875. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  876. // but this times out if a blocking dialog is shown in setup().
  877. card.initsd();
  878. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  879. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  880. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  881. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  882. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  883. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  884. #ifdef SNMM
  885. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  886. int _z = BOWDEN_LENGTH;
  887. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  888. }
  889. #endif
  890. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  891. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  892. // is being written into the EEPROM, so the update procedure will be triggered only once.
  893. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  894. if (lang_selected >= LANG_NUM){
  895. lcd_mylang();
  896. }
  897. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  898. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  899. temp_cal_active = false;
  900. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  901. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  902. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  903. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  904. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  905. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  906. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  907. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  908. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  909. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  910. temp_cal_active = true;
  911. }
  912. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  913. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  914. }
  915. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  916. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  917. }
  918. check_babystep(); //checking if Z babystep is in allowed range
  919. setup_uvlo_interrupt();
  920. setup_fan_interrupt();
  921. fsensor_setup_interrupt();
  922. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  923. #ifndef DEBUG_DISABLE_STARTMSGS
  924. KEEPALIVE_STATE(PAUSED_FOR_USER);
  925. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  926. lcd_wizard(0);
  927. }
  928. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  929. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  930. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  931. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  932. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  933. // Show the message.
  934. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  935. }
  936. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  937. // Show the message.
  938. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  939. lcd_update_enable(true);
  940. }
  941. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  942. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  943. lcd_update_enable(true);
  944. }
  945. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  946. // Show the message.
  947. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  948. }
  949. }
  950. KEEPALIVE_STATE(IN_PROCESS);
  951. #endif //DEBUG_DISABLE_STARTMSGS
  952. lcd_update_enable(true);
  953. lcd_implementation_clear();
  954. lcd_update(2);
  955. // Store the currently running firmware into an eeprom,
  956. // so the next time the firmware gets updated, it will know from which version it has been updated.
  957. update_current_firmware_version_to_eeprom();
  958. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  959. /*
  960. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  961. else {
  962. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  963. lcd_update_enable(true);
  964. lcd_update(2);
  965. lcd_setstatuspgm(WELCOME_MSG);
  966. }
  967. */
  968. manage_heater(); // Update temperatures
  969. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  970. MYSERIAL.println("Power panic detected!");
  971. MYSERIAL.print("Current bed temp:");
  972. MYSERIAL.println(degBed());
  973. MYSERIAL.print("Saved bed temp:");
  974. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  975. #endif
  976. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  977. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  978. MYSERIAL.println("Automatic recovery!");
  979. #endif
  980. recover_print(1);
  981. }
  982. else{
  983. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  984. MYSERIAL.println("Normal recovery!");
  985. #endif
  986. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  987. else {
  988. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  989. lcd_update_enable(true);
  990. lcd_update(2);
  991. lcd_setstatuspgm(WELCOME_MSG);
  992. }
  993. }
  994. }
  995. KEEPALIVE_STATE(NOT_BUSY);
  996. wdt_enable(WDTO_4S);
  997. }
  998. #ifdef PAT9125
  999. void fsensor_init() {
  1000. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1001. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1002. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1003. if (!pat9125)
  1004. {
  1005. fsensor = 0; //disable sensor
  1006. fsensor_not_responding = true;
  1007. }
  1008. else {
  1009. fsensor_not_responding = false;
  1010. }
  1011. puts_P(PSTR("FSensor "));
  1012. if (fsensor)
  1013. {
  1014. puts_P(PSTR("ENABLED\n"));
  1015. fsensor_enable();
  1016. }
  1017. else
  1018. {
  1019. puts_P(PSTR("DISABLED\n"));
  1020. fsensor_disable();
  1021. }
  1022. }
  1023. #endif //PAT9125
  1024. void trace();
  1025. #define CHUNK_SIZE 64 // bytes
  1026. #define SAFETY_MARGIN 1
  1027. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1028. int chunkHead = 0;
  1029. int serial_read_stream() {
  1030. setTargetHotend(0, 0);
  1031. setTargetBed(0);
  1032. lcd_implementation_clear();
  1033. lcd_printPGM(PSTR(" Upload in progress"));
  1034. // first wait for how many bytes we will receive
  1035. uint32_t bytesToReceive;
  1036. // receive the four bytes
  1037. char bytesToReceiveBuffer[4];
  1038. for (int i=0; i<4; i++) {
  1039. int data;
  1040. while ((data = MYSERIAL.read()) == -1) {};
  1041. bytesToReceiveBuffer[i] = data;
  1042. }
  1043. // make it a uint32
  1044. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1045. // we're ready, notify the sender
  1046. MYSERIAL.write('+');
  1047. // lock in the routine
  1048. uint32_t receivedBytes = 0;
  1049. while (prusa_sd_card_upload) {
  1050. int i;
  1051. for (i=0; i<CHUNK_SIZE; i++) {
  1052. int data;
  1053. // check if we're not done
  1054. if (receivedBytes == bytesToReceive) {
  1055. break;
  1056. }
  1057. // read the next byte
  1058. while ((data = MYSERIAL.read()) == -1) {};
  1059. receivedBytes++;
  1060. // save it to the chunk
  1061. chunk[i] = data;
  1062. }
  1063. // write the chunk to SD
  1064. card.write_command_no_newline(&chunk[0]);
  1065. // notify the sender we're ready for more data
  1066. MYSERIAL.write('+');
  1067. // for safety
  1068. manage_heater();
  1069. // check if we're done
  1070. if(receivedBytes == bytesToReceive) {
  1071. trace(); // beep
  1072. card.closefile();
  1073. prusa_sd_card_upload = false;
  1074. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1075. return 0;
  1076. }
  1077. }
  1078. }
  1079. #ifdef HOST_KEEPALIVE_FEATURE
  1080. /**
  1081. * Output a "busy" message at regular intervals
  1082. * while the machine is not accepting commands.
  1083. */
  1084. void host_keepalive() {
  1085. if (farm_mode) return;
  1086. long ms = millis();
  1087. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1088. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1089. switch (busy_state) {
  1090. case IN_HANDLER:
  1091. case IN_PROCESS:
  1092. SERIAL_ECHO_START;
  1093. SERIAL_ECHOLNPGM("busy: processing");
  1094. break;
  1095. case PAUSED_FOR_USER:
  1096. SERIAL_ECHO_START;
  1097. SERIAL_ECHOLNPGM("busy: paused for user");
  1098. break;
  1099. case PAUSED_FOR_INPUT:
  1100. SERIAL_ECHO_START;
  1101. SERIAL_ECHOLNPGM("busy: paused for input");
  1102. break;
  1103. default:
  1104. break;
  1105. }
  1106. }
  1107. prev_busy_signal_ms = ms;
  1108. }
  1109. #endif
  1110. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1111. // Before loop(), the setup() function is called by the main() routine.
  1112. void loop()
  1113. {
  1114. KEEPALIVE_STATE(NOT_BUSY);
  1115. bool stack_integrity = true;
  1116. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1117. {
  1118. is_usb_printing = true;
  1119. usb_printing_counter--;
  1120. _usb_timer = millis();
  1121. }
  1122. if (usb_printing_counter == 0)
  1123. {
  1124. is_usb_printing = false;
  1125. }
  1126. if (prusa_sd_card_upload)
  1127. {
  1128. //we read byte-by byte
  1129. serial_read_stream();
  1130. } else
  1131. {
  1132. get_command();
  1133. #ifdef SDSUPPORT
  1134. card.checkautostart(false);
  1135. #endif
  1136. if(buflen)
  1137. {
  1138. cmdbuffer_front_already_processed = false;
  1139. #ifdef SDSUPPORT
  1140. if(card.saving)
  1141. {
  1142. // Saving a G-code file onto an SD-card is in progress.
  1143. // Saving starts with M28, saving until M29 is seen.
  1144. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1145. card.write_command(CMDBUFFER_CURRENT_STRING);
  1146. if(card.logging)
  1147. process_commands();
  1148. else
  1149. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1150. } else {
  1151. card.closefile();
  1152. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1153. }
  1154. } else {
  1155. process_commands();
  1156. }
  1157. #else
  1158. process_commands();
  1159. #endif //SDSUPPORT
  1160. if (! cmdbuffer_front_already_processed && buflen)
  1161. {
  1162. cli();
  1163. union {
  1164. struct {
  1165. char lo;
  1166. char hi;
  1167. } lohi;
  1168. uint16_t value;
  1169. } sdlen;
  1170. sdlen.value = 0;
  1171. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1172. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1173. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1174. }
  1175. cmdqueue_pop_front();
  1176. planner_add_sd_length(sdlen.value);
  1177. sei();
  1178. }
  1179. host_keepalive();
  1180. }
  1181. }
  1182. //check heater every n milliseconds
  1183. manage_heater();
  1184. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1185. checkHitEndstops();
  1186. lcd_update();
  1187. #ifdef PAT9125
  1188. fsensor_update();
  1189. #endif //PAT9125
  1190. #ifdef TMC2130
  1191. tmc2130_check_overtemp();
  1192. if (tmc2130_sg_crash)
  1193. {
  1194. tmc2130_sg_crash = false;
  1195. // crashdet_stop_and_save_print();
  1196. enquecommand_P((PSTR("CRASH_DETECTED")));
  1197. }
  1198. #endif //TMC2130
  1199. }
  1200. #define DEFINE_PGM_READ_ANY(type, reader) \
  1201. static inline type pgm_read_any(const type *p) \
  1202. { return pgm_read_##reader##_near(p); }
  1203. DEFINE_PGM_READ_ANY(float, float);
  1204. DEFINE_PGM_READ_ANY(signed char, byte);
  1205. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1206. static const PROGMEM type array##_P[3] = \
  1207. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1208. static inline type array(int axis) \
  1209. { return pgm_read_any(&array##_P[axis]); } \
  1210. type array##_ext(int axis) \
  1211. { return pgm_read_any(&array##_P[axis]); }
  1212. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1213. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1214. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1215. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1216. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1217. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1218. static void axis_is_at_home(int axis) {
  1219. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1220. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1221. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1222. }
  1223. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1224. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1225. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1226. saved_feedrate = feedrate;
  1227. saved_feedmultiply = feedmultiply;
  1228. feedmultiply = 100;
  1229. previous_millis_cmd = millis();
  1230. enable_endstops(enable_endstops_now);
  1231. }
  1232. static void clean_up_after_endstop_move() {
  1233. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1234. enable_endstops(false);
  1235. #endif
  1236. feedrate = saved_feedrate;
  1237. feedmultiply = saved_feedmultiply;
  1238. previous_millis_cmd = millis();
  1239. }
  1240. #ifdef ENABLE_AUTO_BED_LEVELING
  1241. #ifdef AUTO_BED_LEVELING_GRID
  1242. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1243. {
  1244. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1245. planeNormal.debug("planeNormal");
  1246. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1247. //bedLevel.debug("bedLevel");
  1248. //plan_bed_level_matrix.debug("bed level before");
  1249. //vector_3 uncorrected_position = plan_get_position_mm();
  1250. //uncorrected_position.debug("position before");
  1251. vector_3 corrected_position = plan_get_position();
  1252. // corrected_position.debug("position after");
  1253. current_position[X_AXIS] = corrected_position.x;
  1254. current_position[Y_AXIS] = corrected_position.y;
  1255. current_position[Z_AXIS] = corrected_position.z;
  1256. // put the bed at 0 so we don't go below it.
  1257. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1259. }
  1260. #else // not AUTO_BED_LEVELING_GRID
  1261. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1262. plan_bed_level_matrix.set_to_identity();
  1263. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1264. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1265. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1266. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1267. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1268. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1269. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1270. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1271. vector_3 corrected_position = plan_get_position();
  1272. current_position[X_AXIS] = corrected_position.x;
  1273. current_position[Y_AXIS] = corrected_position.y;
  1274. current_position[Z_AXIS] = corrected_position.z;
  1275. // put the bed at 0 so we don't go below it.
  1276. current_position[Z_AXIS] = zprobe_zoffset;
  1277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1278. }
  1279. #endif // AUTO_BED_LEVELING_GRID
  1280. static void run_z_probe() {
  1281. plan_bed_level_matrix.set_to_identity();
  1282. feedrate = homing_feedrate[Z_AXIS];
  1283. // move down until you find the bed
  1284. float zPosition = -10;
  1285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1286. st_synchronize();
  1287. // we have to let the planner know where we are right now as it is not where we said to go.
  1288. zPosition = st_get_position_mm(Z_AXIS);
  1289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1290. // move up the retract distance
  1291. zPosition += home_retract_mm(Z_AXIS);
  1292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1293. st_synchronize();
  1294. // move back down slowly to find bed
  1295. feedrate = homing_feedrate[Z_AXIS]/4;
  1296. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1298. st_synchronize();
  1299. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1300. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1302. }
  1303. static void do_blocking_move_to(float x, float y, float z) {
  1304. float oldFeedRate = feedrate;
  1305. feedrate = homing_feedrate[Z_AXIS];
  1306. current_position[Z_AXIS] = z;
  1307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. feedrate = XY_TRAVEL_SPEED;
  1310. current_position[X_AXIS] = x;
  1311. current_position[Y_AXIS] = y;
  1312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1313. st_synchronize();
  1314. feedrate = oldFeedRate;
  1315. }
  1316. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1317. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1318. }
  1319. /// Probe bed height at position (x,y), returns the measured z value
  1320. static float probe_pt(float x, float y, float z_before) {
  1321. // move to right place
  1322. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1323. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1324. run_z_probe();
  1325. float measured_z = current_position[Z_AXIS];
  1326. SERIAL_PROTOCOLRPGM(MSG_BED);
  1327. SERIAL_PROTOCOLPGM(" x: ");
  1328. SERIAL_PROTOCOL(x);
  1329. SERIAL_PROTOCOLPGM(" y: ");
  1330. SERIAL_PROTOCOL(y);
  1331. SERIAL_PROTOCOLPGM(" z: ");
  1332. SERIAL_PROTOCOL(measured_z);
  1333. SERIAL_PROTOCOLPGM("\n");
  1334. return measured_z;
  1335. }
  1336. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1337. #ifdef LIN_ADVANCE
  1338. /**
  1339. * M900: Set and/or Get advance K factor and WH/D ratio
  1340. *
  1341. * K<factor> Set advance K factor
  1342. * R<ratio> Set ratio directly (overrides WH/D)
  1343. * W<width> H<height> D<diam> Set ratio from WH/D
  1344. */
  1345. inline void gcode_M900() {
  1346. st_synchronize();
  1347. const float newK = code_seen('K') ? code_value_float() : -1;
  1348. if (newK >= 0) extruder_advance_k = newK;
  1349. float newR = code_seen('R') ? code_value_float() : -1;
  1350. if (newR < 0) {
  1351. const float newD = code_seen('D') ? code_value_float() : -1,
  1352. newW = code_seen('W') ? code_value_float() : -1,
  1353. newH = code_seen('H') ? code_value_float() : -1;
  1354. if (newD >= 0 && newW >= 0 && newH >= 0)
  1355. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1356. }
  1357. if (newR >= 0) advance_ed_ratio = newR;
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOPGM("Advance K=");
  1360. SERIAL_ECHOLN(extruder_advance_k);
  1361. SERIAL_ECHOPGM(" E/D=");
  1362. const float ratio = advance_ed_ratio;
  1363. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1364. }
  1365. #endif // LIN_ADVANCE
  1366. bool check_commands() {
  1367. bool end_command_found = false;
  1368. while (buflen)
  1369. {
  1370. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1371. if (!cmdbuffer_front_already_processed)
  1372. cmdqueue_pop_front();
  1373. cmdbuffer_front_already_processed = false;
  1374. }
  1375. return end_command_found;
  1376. }
  1377. #ifdef TMC2130
  1378. bool calibrate_z_auto()
  1379. {
  1380. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1381. lcd_implementation_clear();
  1382. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1383. bool endstops_enabled = enable_endstops(true);
  1384. int axis_up_dir = -home_dir(Z_AXIS);
  1385. tmc2130_home_enter(Z_AXIS_MASK);
  1386. current_position[Z_AXIS] = 0;
  1387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1388. set_destination_to_current();
  1389. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1390. feedrate = homing_feedrate[Z_AXIS];
  1391. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1392. st_synchronize();
  1393. // current_position[axis] = 0;
  1394. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1395. tmc2130_home_exit();
  1396. enable_endstops(false);
  1397. current_position[Z_AXIS] = 0;
  1398. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1399. set_destination_to_current();
  1400. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1401. feedrate = homing_feedrate[Z_AXIS] / 2;
  1402. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1403. st_synchronize();
  1404. enable_endstops(endstops_enabled);
  1405. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. return true;
  1408. }
  1409. #endif //TMC2130
  1410. void homeaxis(int axis)
  1411. {
  1412. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1413. #define HOMEAXIS_DO(LETTER) \
  1414. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1415. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1416. {
  1417. int axis_home_dir = home_dir(axis);
  1418. feedrate = homing_feedrate[axis];
  1419. #ifdef TMC2130
  1420. tmc2130_home_enter(X_AXIS_MASK << axis);
  1421. #endif
  1422. // Move right a bit, so that the print head does not touch the left end position,
  1423. // and the following left movement has a chance to achieve the required velocity
  1424. // for the stall guard to work.
  1425. current_position[axis] = 0;
  1426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1427. // destination[axis] = 11.f;
  1428. destination[axis] = 3.f;
  1429. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1430. st_synchronize();
  1431. // Move left away from the possible collision with the collision detection disabled.
  1432. endstops_hit_on_purpose();
  1433. enable_endstops(false);
  1434. current_position[axis] = 0;
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. destination[axis] = - 1.;
  1437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1438. st_synchronize();
  1439. // Now continue to move up to the left end stop with the collision detection enabled.
  1440. enable_endstops(true);
  1441. destination[axis] = - 1.1 * max_length(axis);
  1442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1443. st_synchronize();
  1444. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1445. endstops_hit_on_purpose();
  1446. enable_endstops(false);
  1447. current_position[axis] = 0;
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1449. destination[axis] = 10.f;
  1450. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1451. st_synchronize();
  1452. endstops_hit_on_purpose();
  1453. // Now move left up to the collision, this time with a repeatable velocity.
  1454. enable_endstops(true);
  1455. destination[axis] = - 15.f;
  1456. feedrate = homing_feedrate[axis]/2;
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1458. st_synchronize();
  1459. axis_is_at_home(axis);
  1460. axis_known_position[axis] = true;
  1461. #ifdef TMC2130
  1462. tmc2130_home_exit();
  1463. #endif
  1464. // Move the X carriage away from the collision.
  1465. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1466. endstops_hit_on_purpose();
  1467. enable_endstops(false);
  1468. {
  1469. // Two full periods (4 full steps).
  1470. float gap = 0.32f * 2.f;
  1471. current_position[axis] -= gap;
  1472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1473. current_position[axis] += gap;
  1474. }
  1475. destination[axis] = current_position[axis];
  1476. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1477. st_synchronize();
  1478. feedrate = 0.0;
  1479. }
  1480. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1481. {
  1482. int axis_home_dir = home_dir(axis);
  1483. current_position[axis] = 0;
  1484. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1485. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1486. feedrate = homing_feedrate[axis];
  1487. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1488. st_synchronize();
  1489. current_position[axis] = 0;
  1490. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1491. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1492. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1493. st_synchronize();
  1494. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1495. feedrate = homing_feedrate[axis]/2 ;
  1496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1497. st_synchronize();
  1498. axis_is_at_home(axis);
  1499. destination[axis] = current_position[axis];
  1500. feedrate = 0.0;
  1501. endstops_hit_on_purpose();
  1502. axis_known_position[axis] = true;
  1503. }
  1504. enable_endstops(endstops_enabled);
  1505. }
  1506. /**/
  1507. void home_xy()
  1508. {
  1509. set_destination_to_current();
  1510. homeaxis(X_AXIS);
  1511. homeaxis(Y_AXIS);
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. endstops_hit_on_purpose();
  1514. }
  1515. void refresh_cmd_timeout(void)
  1516. {
  1517. previous_millis_cmd = millis();
  1518. }
  1519. #ifdef FWRETRACT
  1520. void retract(bool retracting, bool swapretract = false) {
  1521. if(retracting && !retracted[active_extruder]) {
  1522. destination[X_AXIS]=current_position[X_AXIS];
  1523. destination[Y_AXIS]=current_position[Y_AXIS];
  1524. destination[Z_AXIS]=current_position[Z_AXIS];
  1525. destination[E_AXIS]=current_position[E_AXIS];
  1526. if (swapretract) {
  1527. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1528. } else {
  1529. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1530. }
  1531. plan_set_e_position(current_position[E_AXIS]);
  1532. float oldFeedrate = feedrate;
  1533. feedrate=retract_feedrate*60;
  1534. retracted[active_extruder]=true;
  1535. prepare_move();
  1536. current_position[Z_AXIS]-=retract_zlift;
  1537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1538. prepare_move();
  1539. feedrate = oldFeedrate;
  1540. } else if(!retracting && retracted[active_extruder]) {
  1541. destination[X_AXIS]=current_position[X_AXIS];
  1542. destination[Y_AXIS]=current_position[Y_AXIS];
  1543. destination[Z_AXIS]=current_position[Z_AXIS];
  1544. destination[E_AXIS]=current_position[E_AXIS];
  1545. current_position[Z_AXIS]+=retract_zlift;
  1546. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1547. //prepare_move();
  1548. if (swapretract) {
  1549. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1550. } else {
  1551. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1552. }
  1553. plan_set_e_position(current_position[E_AXIS]);
  1554. float oldFeedrate = feedrate;
  1555. feedrate=retract_recover_feedrate*60;
  1556. retracted[active_extruder]=false;
  1557. prepare_move();
  1558. feedrate = oldFeedrate;
  1559. }
  1560. } //retract
  1561. #endif //FWRETRACT
  1562. void trace() {
  1563. tone(BEEPER, 440);
  1564. delay(25);
  1565. noTone(BEEPER);
  1566. delay(20);
  1567. }
  1568. /*
  1569. void ramming() {
  1570. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1571. if (current_temperature[0] < 230) {
  1572. //PLA
  1573. max_feedrate[E_AXIS] = 50;
  1574. //current_position[E_AXIS] -= 8;
  1575. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1576. //current_position[E_AXIS] += 8;
  1577. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1578. current_position[E_AXIS] += 5.4;
  1579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1580. current_position[E_AXIS] += 3.2;
  1581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1582. current_position[E_AXIS] += 3;
  1583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1584. st_synchronize();
  1585. max_feedrate[E_AXIS] = 80;
  1586. current_position[E_AXIS] -= 82;
  1587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1588. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1589. current_position[E_AXIS] -= 20;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1591. current_position[E_AXIS] += 5;
  1592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1593. current_position[E_AXIS] += 5;
  1594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1595. current_position[E_AXIS] -= 10;
  1596. st_synchronize();
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1598. current_position[E_AXIS] += 10;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1600. current_position[E_AXIS] -= 10;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1602. current_position[E_AXIS] += 10;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1604. current_position[E_AXIS] -= 10;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1606. st_synchronize();
  1607. }
  1608. else {
  1609. //ABS
  1610. max_feedrate[E_AXIS] = 50;
  1611. //current_position[E_AXIS] -= 8;
  1612. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1613. //current_position[E_AXIS] += 8;
  1614. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1615. current_position[E_AXIS] += 3.1;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1617. current_position[E_AXIS] += 3.1;
  1618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1619. current_position[E_AXIS] += 4;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1621. st_synchronize();
  1622. //current_position[X_AXIS] += 23; //delay
  1623. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1624. //current_position[X_AXIS] -= 23; //delay
  1625. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1626. delay(4700);
  1627. max_feedrate[E_AXIS] = 80;
  1628. current_position[E_AXIS] -= 92;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1630. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1631. current_position[E_AXIS] -= 5;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1633. current_position[E_AXIS] += 5;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1635. current_position[E_AXIS] -= 5;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1637. st_synchronize();
  1638. current_position[E_AXIS] += 5;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1640. current_position[E_AXIS] -= 5;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1642. current_position[E_AXIS] += 5;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1644. current_position[E_AXIS] -= 5;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1646. st_synchronize();
  1647. }
  1648. }
  1649. */
  1650. #ifdef TMC2130
  1651. void force_high_power_mode(bool start_high_power_section) {
  1652. uint8_t silent;
  1653. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1654. if (silent == 1) {
  1655. //we are in silent mode, set to normal mode to enable crash detection
  1656. st_synchronize();
  1657. cli();
  1658. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1659. tmc2130_init();
  1660. sei();
  1661. digipot_init();
  1662. }
  1663. }
  1664. #endif //TMC2130
  1665. bool gcode_M45(bool onlyZ)
  1666. {
  1667. bool final_result = false;
  1668. #ifdef TMC2130
  1669. FORCE_HIGH_POWER_START;
  1670. #endif // TMC2130
  1671. // Only Z calibration?
  1672. if (!onlyZ)
  1673. {
  1674. setTargetBed(0);
  1675. setTargetHotend(0, 0);
  1676. setTargetHotend(0, 1);
  1677. setTargetHotend(0, 2);
  1678. adjust_bed_reset(); //reset bed level correction
  1679. }
  1680. // Disable the default update procedure of the display. We will do a modal dialog.
  1681. lcd_update_enable(false);
  1682. // Let the planner use the uncorrected coordinates.
  1683. mbl.reset();
  1684. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1685. // the planner will not perform any adjustments in the XY plane.
  1686. // Wait for the motors to stop and update the current position with the absolute values.
  1687. world2machine_revert_to_uncorrected();
  1688. // Reset the baby step value applied without moving the axes.
  1689. babystep_reset();
  1690. // Mark all axes as in a need for homing.
  1691. memset(axis_known_position, 0, sizeof(axis_known_position));
  1692. // Home in the XY plane.
  1693. //set_destination_to_current();
  1694. setup_for_endstop_move();
  1695. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1696. home_xy();
  1697. // Let the user move the Z axes up to the end stoppers.
  1698. #ifdef TMC2130
  1699. if (calibrate_z_auto())
  1700. {
  1701. #else //TMC2130
  1702. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1703. {
  1704. #endif //TMC2130
  1705. refresh_cmd_timeout();
  1706. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1707. //{
  1708. // lcd_wait_for_cool_down();
  1709. //}
  1710. if(!onlyZ)
  1711. {
  1712. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1713. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1714. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1715. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1716. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1717. KEEPALIVE_STATE(IN_HANDLER);
  1718. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1719. lcd_implementation_print_at(0, 2, 1);
  1720. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1721. }
  1722. // Move the print head close to the bed.
  1723. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1724. bool endstops_enabled = enable_endstops(true);
  1725. tmc2130_home_enter(Z_AXIS_MASK);
  1726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1727. st_synchronize();
  1728. tmc2130_home_exit();
  1729. enable_endstops(endstops_enabled);
  1730. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1731. {
  1732. //#ifdef TMC2130
  1733. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1734. //#endif
  1735. int8_t verbosity_level = 0;
  1736. if (code_seen('V'))
  1737. {
  1738. // Just 'V' without a number counts as V1.
  1739. char c = strchr_pointer[1];
  1740. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1741. }
  1742. if (onlyZ)
  1743. {
  1744. clean_up_after_endstop_move();
  1745. // Z only calibration.
  1746. // Load the machine correction matrix
  1747. world2machine_initialize();
  1748. // and correct the current_position to match the transformed coordinate system.
  1749. world2machine_update_current();
  1750. //FIXME
  1751. bool result = sample_mesh_and_store_reference();
  1752. if (result)
  1753. {
  1754. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1755. // Shipped, the nozzle height has been set already. The user can start printing now.
  1756. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1757. final_result = true;
  1758. // babystep_apply();
  1759. }
  1760. }
  1761. else
  1762. {
  1763. // Reset the baby step value and the baby step applied flag.
  1764. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1765. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1766. // Complete XYZ calibration.
  1767. uint8_t point_too_far_mask = 0;
  1768. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1769. clean_up_after_endstop_move();
  1770. // Print head up.
  1771. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1773. st_synchronize();
  1774. if (result >= 0)
  1775. {
  1776. point_too_far_mask = 0;
  1777. // Second half: The fine adjustment.
  1778. // Let the planner use the uncorrected coordinates.
  1779. mbl.reset();
  1780. world2machine_reset();
  1781. // Home in the XY plane.
  1782. setup_for_endstop_move();
  1783. home_xy();
  1784. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1785. clean_up_after_endstop_move();
  1786. // Print head up.
  1787. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1789. st_synchronize();
  1790. // if (result >= 0) babystep_apply();
  1791. }
  1792. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1793. if (result >= 0)
  1794. {
  1795. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1796. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1797. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1798. final_result = true;
  1799. }
  1800. }
  1801. #ifdef TMC2130
  1802. tmc2130_home_exit();
  1803. #endif
  1804. }
  1805. else
  1806. {
  1807. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1808. final_result = false;
  1809. }
  1810. }
  1811. else
  1812. {
  1813. // Timeouted.
  1814. }
  1815. lcd_update_enable(true);
  1816. #ifdef TMC2130
  1817. FORCE_HIGH_POWER_END;
  1818. #endif // TMC2130
  1819. return final_result;
  1820. }
  1821. void gcode_M701()
  1822. {
  1823. #ifdef SNMM
  1824. extr_adj(snmm_extruder);//loads current extruder
  1825. #else
  1826. enable_z();
  1827. custom_message = true;
  1828. custom_message_type = 2;
  1829. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1830. current_position[E_AXIS] += 70;
  1831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1832. current_position[E_AXIS] += 25;
  1833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1834. st_synchronize();
  1835. if (!farm_mode && loading_flag) {
  1836. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1837. while (!clean) {
  1838. lcd_update_enable(true);
  1839. lcd_update(2);
  1840. current_position[E_AXIS] += 25;
  1841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1842. st_synchronize();
  1843. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1844. }
  1845. }
  1846. lcd_update_enable(true);
  1847. lcd_update(2);
  1848. lcd_setstatuspgm(WELCOME_MSG);
  1849. disable_z();
  1850. loading_flag = false;
  1851. custom_message = false;
  1852. custom_message_type = 0;
  1853. #endif
  1854. }
  1855. void process_commands()
  1856. {
  1857. #ifdef FILAMENT_RUNOUT_SUPPORT
  1858. SET_INPUT(FR_SENS);
  1859. #endif
  1860. #ifdef CMDBUFFER_DEBUG
  1861. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1862. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1863. SERIAL_ECHOLNPGM("");
  1864. SERIAL_ECHOPGM("In cmdqueue: ");
  1865. SERIAL_ECHO(buflen);
  1866. SERIAL_ECHOLNPGM("");
  1867. #endif /* CMDBUFFER_DEBUG */
  1868. unsigned long codenum; //throw away variable
  1869. char *starpos = NULL;
  1870. #ifdef ENABLE_AUTO_BED_LEVELING
  1871. float x_tmp, y_tmp, z_tmp, real_z;
  1872. #endif
  1873. // PRUSA GCODES
  1874. KEEPALIVE_STATE(IN_HANDLER);
  1875. #ifdef SNMM
  1876. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1877. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1878. int8_t SilentMode;
  1879. #endif
  1880. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1881. starpos = (strchr(strchr_pointer + 5, '*'));
  1882. if (starpos != NULL)
  1883. *(starpos) = '\0';
  1884. lcd_setstatus(strchr_pointer + 5);
  1885. }
  1886. else if(code_seen("CRASH_DETECTED"))
  1887. crashdet_detected();
  1888. else if(code_seen("CRASH_RECOVER"))
  1889. crashdet_recover();
  1890. else if(code_seen("CRASH_CANCEL"))
  1891. crashdet_cancel();
  1892. else if(code_seen("PRUSA")){
  1893. if (code_seen("Ping")) { //PRUSA Ping
  1894. if (farm_mode) {
  1895. PingTime = millis();
  1896. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1897. }
  1898. }
  1899. else if (code_seen("PRN")) {
  1900. MYSERIAL.println(status_number);
  1901. }else if (code_seen("FAN")) {
  1902. MYSERIAL.print("E0:");
  1903. MYSERIAL.print(60*fan_speed[0]);
  1904. MYSERIAL.println(" RPM");
  1905. MYSERIAL.print("PRN0:");
  1906. MYSERIAL.print(60*fan_speed[1]);
  1907. MYSERIAL.println(" RPM");
  1908. }else if (code_seen("fn")) {
  1909. if (farm_mode) {
  1910. MYSERIAL.println(farm_no);
  1911. }
  1912. else {
  1913. MYSERIAL.println("Not in farm mode.");
  1914. }
  1915. }else if (code_seen("fv")) {
  1916. // get file version
  1917. #ifdef SDSUPPORT
  1918. card.openFile(strchr_pointer + 3,true);
  1919. while (true) {
  1920. uint16_t readByte = card.get();
  1921. MYSERIAL.write(readByte);
  1922. if (readByte=='\n') {
  1923. break;
  1924. }
  1925. }
  1926. card.closefile();
  1927. #endif // SDSUPPORT
  1928. } else if (code_seen("M28")) {
  1929. trace();
  1930. prusa_sd_card_upload = true;
  1931. card.openFile(strchr_pointer+4,false);
  1932. } else if (code_seen("SN")) {
  1933. if (farm_mode) {
  1934. selectedSerialPort = 0;
  1935. MSerial.write(";S");
  1936. // S/N is:CZPX0917X003XC13518
  1937. int numbersRead = 0;
  1938. while (numbersRead < 19) {
  1939. while (MSerial.available() > 0) {
  1940. uint8_t serial_char = MSerial.read();
  1941. selectedSerialPort = 1;
  1942. MSerial.write(serial_char);
  1943. numbersRead++;
  1944. selectedSerialPort = 0;
  1945. }
  1946. }
  1947. selectedSerialPort = 1;
  1948. MSerial.write('\n');
  1949. /*for (int b = 0; b < 3; b++) {
  1950. tone(BEEPER, 110);
  1951. delay(50);
  1952. noTone(BEEPER);
  1953. delay(50);
  1954. }*/
  1955. } else {
  1956. MYSERIAL.println("Not in farm mode.");
  1957. }
  1958. } else if(code_seen("Fir")){
  1959. SERIAL_PROTOCOLLN(FW_version);
  1960. } else if(code_seen("Rev")){
  1961. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1962. } else if(code_seen("Lang")) {
  1963. lcd_force_language_selection();
  1964. } else if(code_seen("Lz")) {
  1965. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1966. } else if (code_seen("SERIAL LOW")) {
  1967. MYSERIAL.println("SERIAL LOW");
  1968. MYSERIAL.begin(BAUDRATE);
  1969. return;
  1970. } else if (code_seen("SERIAL HIGH")) {
  1971. MYSERIAL.println("SERIAL HIGH");
  1972. MYSERIAL.begin(1152000);
  1973. return;
  1974. } else if(code_seen("Beat")) {
  1975. // Kick farm link timer
  1976. kicktime = millis();
  1977. } else if(code_seen("FR")) {
  1978. // Factory full reset
  1979. factory_reset(0,true);
  1980. }
  1981. //else if (code_seen('Cal')) {
  1982. // lcd_calibration();
  1983. // }
  1984. }
  1985. else if (code_seen('^')) {
  1986. // nothing, this is a version line
  1987. } else if(code_seen('G'))
  1988. {
  1989. switch((int)code_value())
  1990. {
  1991. case 0: // G0 -> G1
  1992. case 1: // G1
  1993. if(Stopped == false) {
  1994. #ifdef FILAMENT_RUNOUT_SUPPORT
  1995. if(READ(FR_SENS)){
  1996. feedmultiplyBckp=feedmultiply;
  1997. float target[4];
  1998. float lastpos[4];
  1999. target[X_AXIS]=current_position[X_AXIS];
  2000. target[Y_AXIS]=current_position[Y_AXIS];
  2001. target[Z_AXIS]=current_position[Z_AXIS];
  2002. target[E_AXIS]=current_position[E_AXIS];
  2003. lastpos[X_AXIS]=current_position[X_AXIS];
  2004. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2005. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2006. lastpos[E_AXIS]=current_position[E_AXIS];
  2007. //retract by E
  2008. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2009. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2010. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2012. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2013. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2015. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2016. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2017. //finish moves
  2018. st_synchronize();
  2019. //disable extruder steppers so filament can be removed
  2020. disable_e0();
  2021. disable_e1();
  2022. disable_e2();
  2023. delay(100);
  2024. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2025. uint8_t cnt=0;
  2026. int counterBeep = 0;
  2027. lcd_wait_interact();
  2028. while(!lcd_clicked()){
  2029. cnt++;
  2030. manage_heater();
  2031. manage_inactivity(true);
  2032. //lcd_update();
  2033. if(cnt==0)
  2034. {
  2035. #if BEEPER > 0
  2036. if (counterBeep== 500){
  2037. counterBeep = 0;
  2038. }
  2039. SET_OUTPUT(BEEPER);
  2040. if (counterBeep== 0){
  2041. WRITE(BEEPER,HIGH);
  2042. }
  2043. if (counterBeep== 20){
  2044. WRITE(BEEPER,LOW);
  2045. }
  2046. counterBeep++;
  2047. #else
  2048. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2049. lcd_buzz(1000/6,100);
  2050. #else
  2051. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2052. #endif
  2053. #endif
  2054. }
  2055. }
  2056. WRITE(BEEPER,LOW);
  2057. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2059. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2061. lcd_change_fil_state = 0;
  2062. lcd_loading_filament();
  2063. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2064. lcd_change_fil_state = 0;
  2065. lcd_alright();
  2066. switch(lcd_change_fil_state){
  2067. case 2:
  2068. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2070. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2072. lcd_loading_filament();
  2073. break;
  2074. case 3:
  2075. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2077. lcd_loading_color();
  2078. break;
  2079. default:
  2080. lcd_change_success();
  2081. break;
  2082. }
  2083. }
  2084. target[E_AXIS]+= 5;
  2085. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2086. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2088. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2089. //plan_set_e_position(current_position[E_AXIS]);
  2090. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2091. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2092. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2093. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2094. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2095. plan_set_e_position(lastpos[E_AXIS]);
  2096. feedmultiply=feedmultiplyBckp;
  2097. char cmd[9];
  2098. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2099. enquecommand(cmd);
  2100. }
  2101. #endif
  2102. get_coordinates(); // For X Y Z E F
  2103. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2104. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2105. }
  2106. #ifdef FWRETRACT
  2107. if(autoretract_enabled)
  2108. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2109. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2110. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2111. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2112. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2113. retract(!retracted);
  2114. return;
  2115. }
  2116. }
  2117. #endif //FWRETRACT
  2118. prepare_move();
  2119. //ClearToSend();
  2120. }
  2121. break;
  2122. case 2: // G2 - CW ARC
  2123. if(Stopped == false) {
  2124. get_arc_coordinates();
  2125. prepare_arc_move(true);
  2126. }
  2127. break;
  2128. case 3: // G3 - CCW ARC
  2129. if(Stopped == false) {
  2130. get_arc_coordinates();
  2131. prepare_arc_move(false);
  2132. }
  2133. break;
  2134. case 4: // G4 dwell
  2135. codenum = 0;
  2136. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2137. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2138. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2139. st_synchronize();
  2140. codenum += millis(); // keep track of when we started waiting
  2141. previous_millis_cmd = millis();
  2142. while(millis() < codenum) {
  2143. manage_heater();
  2144. manage_inactivity();
  2145. lcd_update();
  2146. }
  2147. break;
  2148. #ifdef FWRETRACT
  2149. case 10: // G10 retract
  2150. #if EXTRUDERS > 1
  2151. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2152. retract(true,retracted_swap[active_extruder]);
  2153. #else
  2154. retract(true);
  2155. #endif
  2156. break;
  2157. case 11: // G11 retract_recover
  2158. #if EXTRUDERS > 1
  2159. retract(false,retracted_swap[active_extruder]);
  2160. #else
  2161. retract(false);
  2162. #endif
  2163. break;
  2164. #endif //FWRETRACT
  2165. case 28: //G28 Home all Axis one at a time
  2166. {
  2167. st_synchronize();
  2168. #if 1
  2169. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2170. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2171. #endif
  2172. // Flag for the display update routine and to disable the print cancelation during homing.
  2173. homing_flag = true;
  2174. // Which axes should be homed?
  2175. bool home_x = code_seen(axis_codes[X_AXIS]);
  2176. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2177. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2178. // Either all X,Y,Z codes are present, or none of them.
  2179. bool home_all_axes = home_x == home_y && home_x == home_z;
  2180. if (home_all_axes)
  2181. // No X/Y/Z code provided means to home all axes.
  2182. home_x = home_y = home_z = true;
  2183. #ifdef ENABLE_AUTO_BED_LEVELING
  2184. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2185. #endif //ENABLE_AUTO_BED_LEVELING
  2186. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2187. // the planner will not perform any adjustments in the XY plane.
  2188. // Wait for the motors to stop and update the current position with the absolute values.
  2189. world2machine_revert_to_uncorrected();
  2190. // For mesh bed leveling deactivate the matrix temporarily.
  2191. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2192. // in a single axis only.
  2193. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2194. #ifdef MESH_BED_LEVELING
  2195. uint8_t mbl_was_active = mbl.active;
  2196. mbl.active = 0;
  2197. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2198. #endif
  2199. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2200. // consumed during the first movements following this statement.
  2201. if (home_z)
  2202. babystep_undo();
  2203. saved_feedrate = feedrate;
  2204. saved_feedmultiply = feedmultiply;
  2205. feedmultiply = 100;
  2206. previous_millis_cmd = millis();
  2207. enable_endstops(true);
  2208. memcpy(destination, current_position, sizeof(destination));
  2209. feedrate = 0.0;
  2210. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2211. if(home_z)
  2212. homeaxis(Z_AXIS);
  2213. #endif
  2214. #ifdef QUICK_HOME
  2215. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2216. if(home_x && home_y) //first diagonal move
  2217. {
  2218. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2219. int x_axis_home_dir = home_dir(X_AXIS);
  2220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2221. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2222. feedrate = homing_feedrate[X_AXIS];
  2223. if(homing_feedrate[Y_AXIS]<feedrate)
  2224. feedrate = homing_feedrate[Y_AXIS];
  2225. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2226. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2227. } else {
  2228. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2229. }
  2230. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2231. st_synchronize();
  2232. axis_is_at_home(X_AXIS);
  2233. axis_is_at_home(Y_AXIS);
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. destination[X_AXIS] = current_position[X_AXIS];
  2236. destination[Y_AXIS] = current_position[Y_AXIS];
  2237. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2238. feedrate = 0.0;
  2239. st_synchronize();
  2240. endstops_hit_on_purpose();
  2241. current_position[X_AXIS] = destination[X_AXIS];
  2242. current_position[Y_AXIS] = destination[Y_AXIS];
  2243. current_position[Z_AXIS] = destination[Z_AXIS];
  2244. }
  2245. #endif /* QUICK_HOME */
  2246. if(home_x)
  2247. homeaxis(X_AXIS);
  2248. if(home_y)
  2249. homeaxis(Y_AXIS);
  2250. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2251. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2252. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2253. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2254. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2255. #ifndef Z_SAFE_HOMING
  2256. if(home_z) {
  2257. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2258. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2259. feedrate = max_feedrate[Z_AXIS];
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2261. st_synchronize();
  2262. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2263. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2264. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2265. {
  2266. homeaxis(X_AXIS);
  2267. homeaxis(Y_AXIS);
  2268. }
  2269. // 1st mesh bed leveling measurement point, corrected.
  2270. world2machine_initialize();
  2271. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2272. world2machine_reset();
  2273. if (destination[Y_AXIS] < Y_MIN_POS)
  2274. destination[Y_AXIS] = Y_MIN_POS;
  2275. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2276. feedrate = homing_feedrate[Z_AXIS]/10;
  2277. current_position[Z_AXIS] = 0;
  2278. enable_endstops(false);
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2281. st_synchronize();
  2282. current_position[X_AXIS] = destination[X_AXIS];
  2283. current_position[Y_AXIS] = destination[Y_AXIS];
  2284. enable_endstops(true);
  2285. endstops_hit_on_purpose();
  2286. homeaxis(Z_AXIS);
  2287. #else // MESH_BED_LEVELING
  2288. homeaxis(Z_AXIS);
  2289. #endif // MESH_BED_LEVELING
  2290. }
  2291. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2292. if(home_all_axes) {
  2293. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2294. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2295. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2296. feedrate = XY_TRAVEL_SPEED/60;
  2297. current_position[Z_AXIS] = 0;
  2298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2299. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2300. st_synchronize();
  2301. current_position[X_AXIS] = destination[X_AXIS];
  2302. current_position[Y_AXIS] = destination[Y_AXIS];
  2303. homeaxis(Z_AXIS);
  2304. }
  2305. // Let's see if X and Y are homed and probe is inside bed area.
  2306. if(home_z) {
  2307. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2308. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2309. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2310. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2311. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2312. current_position[Z_AXIS] = 0;
  2313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2314. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2315. feedrate = max_feedrate[Z_AXIS];
  2316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2317. st_synchronize();
  2318. homeaxis(Z_AXIS);
  2319. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2320. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2321. SERIAL_ECHO_START;
  2322. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2323. } else {
  2324. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2325. SERIAL_ECHO_START;
  2326. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2327. }
  2328. }
  2329. #endif // Z_SAFE_HOMING
  2330. #endif // Z_HOME_DIR < 0
  2331. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2332. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2333. #ifdef ENABLE_AUTO_BED_LEVELING
  2334. if(home_z)
  2335. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2336. #endif
  2337. // Set the planner and stepper routine positions.
  2338. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2339. // contains the machine coordinates.
  2340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2341. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2342. enable_endstops(false);
  2343. #endif
  2344. feedrate = saved_feedrate;
  2345. feedmultiply = saved_feedmultiply;
  2346. previous_millis_cmd = millis();
  2347. endstops_hit_on_purpose();
  2348. #ifndef MESH_BED_LEVELING
  2349. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2350. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2351. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2352. lcd_adjust_z();
  2353. #endif
  2354. // Load the machine correction matrix
  2355. world2machine_initialize();
  2356. // and correct the current_position XY axes to match the transformed coordinate system.
  2357. world2machine_update_current();
  2358. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2359. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2360. {
  2361. if (! home_z && mbl_was_active) {
  2362. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2363. mbl.active = true;
  2364. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2365. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2366. }
  2367. }
  2368. else
  2369. {
  2370. st_synchronize();
  2371. homing_flag = false;
  2372. // Push the commands to the front of the message queue in the reverse order!
  2373. // There shall be always enough space reserved for these commands.
  2374. // enquecommand_front_P((PSTR("G80")));
  2375. goto case_G80;
  2376. }
  2377. #endif
  2378. if (farm_mode) { prusa_statistics(20); };
  2379. homing_flag = false;
  2380. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2381. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2382. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2383. break;
  2384. }
  2385. #ifdef ENABLE_AUTO_BED_LEVELING
  2386. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2387. {
  2388. #if Z_MIN_PIN == -1
  2389. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2390. #endif
  2391. // Prevent user from running a G29 without first homing in X and Y
  2392. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2393. {
  2394. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2395. SERIAL_ECHO_START;
  2396. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2397. break; // abort G29, since we don't know where we are
  2398. }
  2399. st_synchronize();
  2400. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2401. //vector_3 corrected_position = plan_get_position_mm();
  2402. //corrected_position.debug("position before G29");
  2403. plan_bed_level_matrix.set_to_identity();
  2404. vector_3 uncorrected_position = plan_get_position();
  2405. //uncorrected_position.debug("position durring G29");
  2406. current_position[X_AXIS] = uncorrected_position.x;
  2407. current_position[Y_AXIS] = uncorrected_position.y;
  2408. current_position[Z_AXIS] = uncorrected_position.z;
  2409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2410. setup_for_endstop_move();
  2411. feedrate = homing_feedrate[Z_AXIS];
  2412. #ifdef AUTO_BED_LEVELING_GRID
  2413. // probe at the points of a lattice grid
  2414. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2415. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2416. // solve the plane equation ax + by + d = z
  2417. // A is the matrix with rows [x y 1] for all the probed points
  2418. // B is the vector of the Z positions
  2419. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2420. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2421. // "A" matrix of the linear system of equations
  2422. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2423. // "B" vector of Z points
  2424. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2425. int probePointCounter = 0;
  2426. bool zig = true;
  2427. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2428. {
  2429. int xProbe, xInc;
  2430. if (zig)
  2431. {
  2432. xProbe = LEFT_PROBE_BED_POSITION;
  2433. //xEnd = RIGHT_PROBE_BED_POSITION;
  2434. xInc = xGridSpacing;
  2435. zig = false;
  2436. } else // zag
  2437. {
  2438. xProbe = RIGHT_PROBE_BED_POSITION;
  2439. //xEnd = LEFT_PROBE_BED_POSITION;
  2440. xInc = -xGridSpacing;
  2441. zig = true;
  2442. }
  2443. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2444. {
  2445. float z_before;
  2446. if (probePointCounter == 0)
  2447. {
  2448. // raise before probing
  2449. z_before = Z_RAISE_BEFORE_PROBING;
  2450. } else
  2451. {
  2452. // raise extruder
  2453. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2454. }
  2455. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2456. eqnBVector[probePointCounter] = measured_z;
  2457. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2458. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2459. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2460. probePointCounter++;
  2461. xProbe += xInc;
  2462. }
  2463. }
  2464. clean_up_after_endstop_move();
  2465. // solve lsq problem
  2466. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2467. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2468. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2469. SERIAL_PROTOCOLPGM(" b: ");
  2470. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2471. SERIAL_PROTOCOLPGM(" d: ");
  2472. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2473. set_bed_level_equation_lsq(plane_equation_coefficients);
  2474. free(plane_equation_coefficients);
  2475. #else // AUTO_BED_LEVELING_GRID not defined
  2476. // Probe at 3 arbitrary points
  2477. // probe 1
  2478. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2479. // probe 2
  2480. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2481. // probe 3
  2482. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2483. clean_up_after_endstop_move();
  2484. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2485. #endif // AUTO_BED_LEVELING_GRID
  2486. st_synchronize();
  2487. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2488. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2489. // When the bed is uneven, this height must be corrected.
  2490. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2491. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2492. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2493. z_tmp = current_position[Z_AXIS];
  2494. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2495. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2496. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2497. }
  2498. break;
  2499. #ifndef Z_PROBE_SLED
  2500. case 30: // G30 Single Z Probe
  2501. {
  2502. st_synchronize();
  2503. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2504. setup_for_endstop_move();
  2505. feedrate = homing_feedrate[Z_AXIS];
  2506. run_z_probe();
  2507. SERIAL_PROTOCOLPGM(MSG_BED);
  2508. SERIAL_PROTOCOLPGM(" X: ");
  2509. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2510. SERIAL_PROTOCOLPGM(" Y: ");
  2511. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2512. SERIAL_PROTOCOLPGM(" Z: ");
  2513. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2514. SERIAL_PROTOCOLPGM("\n");
  2515. clean_up_after_endstop_move();
  2516. }
  2517. break;
  2518. #else
  2519. case 31: // dock the sled
  2520. dock_sled(true);
  2521. break;
  2522. case 32: // undock the sled
  2523. dock_sled(false);
  2524. break;
  2525. #endif // Z_PROBE_SLED
  2526. #endif // ENABLE_AUTO_BED_LEVELING
  2527. #ifdef MESH_BED_LEVELING
  2528. case 30: // G30 Single Z Probe
  2529. {
  2530. st_synchronize();
  2531. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2532. setup_for_endstop_move();
  2533. feedrate = homing_feedrate[Z_AXIS];
  2534. find_bed_induction_sensor_point_z(-10.f, 3);
  2535. SERIAL_PROTOCOLRPGM(MSG_BED);
  2536. SERIAL_PROTOCOLPGM(" X: ");
  2537. MYSERIAL.print(current_position[X_AXIS], 5);
  2538. SERIAL_PROTOCOLPGM(" Y: ");
  2539. MYSERIAL.print(current_position[Y_AXIS], 5);
  2540. SERIAL_PROTOCOLPGM(" Z: ");
  2541. MYSERIAL.print(current_position[Z_AXIS], 5);
  2542. SERIAL_PROTOCOLPGM("\n");
  2543. clean_up_after_endstop_move();
  2544. }
  2545. break;
  2546. case 75:
  2547. {
  2548. for (int i = 40; i <= 110; i++) {
  2549. MYSERIAL.print(i);
  2550. MYSERIAL.print(" ");
  2551. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2552. }
  2553. }
  2554. break;
  2555. case 76: //PINDA probe temperature calibration
  2556. {
  2557. #ifdef PINDA_THERMISTOR
  2558. if (true)
  2559. {
  2560. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2561. // We don't know where we are! HOME!
  2562. // Push the commands to the front of the message queue in the reverse order!
  2563. // There shall be always enough space reserved for these commands.
  2564. repeatcommand_front(); // repeat G76 with all its parameters
  2565. enquecommand_front_P((PSTR("G28 W0")));
  2566. break;
  2567. }
  2568. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2569. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2570. float zero_z;
  2571. int z_shift = 0; //unit: steps
  2572. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2573. if (start_temp < 35) start_temp = 35;
  2574. if (start_temp < current_temperature_pinda) start_temp += 5;
  2575. SERIAL_ECHOPGM("start temperature: ");
  2576. MYSERIAL.println(start_temp);
  2577. // setTargetHotend(200, 0);
  2578. setTargetBed(70 + (start_temp - 30));
  2579. custom_message = true;
  2580. custom_message_type = 4;
  2581. custom_message_state = 1;
  2582. custom_message = MSG_TEMP_CALIBRATION;
  2583. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2584. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2585. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2587. st_synchronize();
  2588. while (current_temperature_pinda < start_temp)
  2589. {
  2590. delay_keep_alive(1000);
  2591. serialecho_temperatures();
  2592. }
  2593. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2594. current_position[Z_AXIS] = 5;
  2595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2596. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2597. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2599. st_synchronize();
  2600. find_bed_induction_sensor_point_z(-1.f);
  2601. zero_z = current_position[Z_AXIS];
  2602. //current_position[Z_AXIS]
  2603. SERIAL_ECHOLNPGM("");
  2604. SERIAL_ECHOPGM("ZERO: ");
  2605. MYSERIAL.print(current_position[Z_AXIS]);
  2606. SERIAL_ECHOLNPGM("");
  2607. int i = -1; for (; i < 5; i++)
  2608. {
  2609. float temp = (40 + i * 5);
  2610. SERIAL_ECHOPGM("Step: ");
  2611. MYSERIAL.print(i + 2);
  2612. SERIAL_ECHOLNPGM("/6 (skipped)");
  2613. SERIAL_ECHOPGM("PINDA temperature: ");
  2614. MYSERIAL.print((40 + i*5));
  2615. SERIAL_ECHOPGM(" Z shift (mm):");
  2616. MYSERIAL.print(0);
  2617. SERIAL_ECHOLNPGM("");
  2618. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2619. if (start_temp <= temp) break;
  2620. }
  2621. for (i++; i < 5; i++)
  2622. {
  2623. float temp = (40 + i * 5);
  2624. SERIAL_ECHOPGM("Step: ");
  2625. MYSERIAL.print(i + 2);
  2626. SERIAL_ECHOLNPGM("/6");
  2627. custom_message_state = i + 2;
  2628. setTargetBed(50 + 10 * (temp - 30) / 5);
  2629. // setTargetHotend(255, 0);
  2630. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2631. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2632. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2634. st_synchronize();
  2635. while (current_temperature_pinda < temp)
  2636. {
  2637. delay_keep_alive(1000);
  2638. serialecho_temperatures();
  2639. }
  2640. current_position[Z_AXIS] = 5;
  2641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2642. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2643. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2645. st_synchronize();
  2646. find_bed_induction_sensor_point_z(-1.f);
  2647. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2648. SERIAL_ECHOLNPGM("");
  2649. SERIAL_ECHOPGM("PINDA temperature: ");
  2650. MYSERIAL.print(current_temperature_pinda);
  2651. SERIAL_ECHOPGM(" Z shift (mm):");
  2652. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2653. SERIAL_ECHOLNPGM("");
  2654. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2655. }
  2656. custom_message_type = 0;
  2657. custom_message = false;
  2658. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2659. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2660. disable_x();
  2661. disable_y();
  2662. disable_z();
  2663. disable_e0();
  2664. disable_e1();
  2665. disable_e2();
  2666. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2667. lcd_update_enable(true);
  2668. lcd_update(2);
  2669. setTargetBed(0); //set bed target temperature back to 0
  2670. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2671. break;
  2672. }
  2673. #endif //PINDA_THERMISTOR
  2674. setTargetBed(PINDA_MIN_T);
  2675. float zero_z;
  2676. int z_shift = 0; //unit: steps
  2677. int t_c; // temperature
  2678. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2679. // We don't know where we are! HOME!
  2680. // Push the commands to the front of the message queue in the reverse order!
  2681. // There shall be always enough space reserved for these commands.
  2682. repeatcommand_front(); // repeat G76 with all its parameters
  2683. enquecommand_front_P((PSTR("G28 W0")));
  2684. break;
  2685. }
  2686. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2687. custom_message = true;
  2688. custom_message_type = 4;
  2689. custom_message_state = 1;
  2690. custom_message = MSG_TEMP_CALIBRATION;
  2691. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2692. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2693. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2695. st_synchronize();
  2696. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2697. delay_keep_alive(1000);
  2698. serialecho_temperatures();
  2699. }
  2700. //enquecommand_P(PSTR("M190 S50"));
  2701. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2702. delay_keep_alive(1000);
  2703. serialecho_temperatures();
  2704. }
  2705. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2706. current_position[Z_AXIS] = 5;
  2707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2708. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2709. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2711. st_synchronize();
  2712. find_bed_induction_sensor_point_z(-1.f);
  2713. zero_z = current_position[Z_AXIS];
  2714. //current_position[Z_AXIS]
  2715. SERIAL_ECHOLNPGM("");
  2716. SERIAL_ECHOPGM("ZERO: ");
  2717. MYSERIAL.print(current_position[Z_AXIS]);
  2718. SERIAL_ECHOLNPGM("");
  2719. for (int i = 0; i<5; i++) {
  2720. SERIAL_ECHOPGM("Step: ");
  2721. MYSERIAL.print(i+2);
  2722. SERIAL_ECHOLNPGM("/6");
  2723. custom_message_state = i + 2;
  2724. t_c = 60 + i * 10;
  2725. setTargetBed(t_c);
  2726. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2727. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2728. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2730. st_synchronize();
  2731. while (degBed() < t_c) {
  2732. delay_keep_alive(1000);
  2733. serialecho_temperatures();
  2734. }
  2735. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2736. delay_keep_alive(1000);
  2737. serialecho_temperatures();
  2738. }
  2739. current_position[Z_AXIS] = 5;
  2740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2741. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2742. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2744. st_synchronize();
  2745. find_bed_induction_sensor_point_z(-1.f);
  2746. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2747. SERIAL_ECHOLNPGM("");
  2748. SERIAL_ECHOPGM("Temperature: ");
  2749. MYSERIAL.print(t_c);
  2750. SERIAL_ECHOPGM(" Z shift (mm):");
  2751. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2752. SERIAL_ECHOLNPGM("");
  2753. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2754. }
  2755. custom_message_type = 0;
  2756. custom_message = false;
  2757. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2758. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2759. disable_x();
  2760. disable_y();
  2761. disable_z();
  2762. disable_e0();
  2763. disable_e1();
  2764. disable_e2();
  2765. setTargetBed(0); //set bed target temperature back to 0
  2766. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2767. lcd_update_enable(true);
  2768. lcd_update(2);
  2769. }
  2770. break;
  2771. #ifdef DIS
  2772. case 77:
  2773. {
  2774. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2775. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2776. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2777. float dimension_x = 40;
  2778. float dimension_y = 40;
  2779. int points_x = 40;
  2780. int points_y = 40;
  2781. float offset_x = 74;
  2782. float offset_y = 33;
  2783. if (code_seen('X')) dimension_x = code_value();
  2784. if (code_seen('Y')) dimension_y = code_value();
  2785. if (code_seen('XP')) points_x = code_value();
  2786. if (code_seen('YP')) points_y = code_value();
  2787. if (code_seen('XO')) offset_x = code_value();
  2788. if (code_seen('YO')) offset_y = code_value();
  2789. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2790. } break;
  2791. #endif
  2792. case 79: {
  2793. for (int i = 255; i > 0; i = i - 5) {
  2794. fanSpeed = i;
  2795. //delay_keep_alive(2000);
  2796. for (int j = 0; j < 100; j++) {
  2797. delay_keep_alive(100);
  2798. }
  2799. fan_speed[1];
  2800. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2801. }
  2802. }break;
  2803. /**
  2804. * G80: Mesh-based Z probe, probes a grid and produces a
  2805. * mesh to compensate for variable bed height
  2806. *
  2807. * The S0 report the points as below
  2808. *
  2809. * +----> X-axis
  2810. * |
  2811. * |
  2812. * v Y-axis
  2813. *
  2814. */
  2815. case 80:
  2816. #ifdef MK1BP
  2817. break;
  2818. #endif //MK1BP
  2819. case_G80:
  2820. {
  2821. mesh_bed_leveling_flag = true;
  2822. int8_t verbosity_level = 0;
  2823. static bool run = false;
  2824. if (code_seen('V')) {
  2825. // Just 'V' without a number counts as V1.
  2826. char c = strchr_pointer[1];
  2827. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2828. }
  2829. // Firstly check if we know where we are
  2830. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2831. // We don't know where we are! HOME!
  2832. // Push the commands to the front of the message queue in the reverse order!
  2833. // There shall be always enough space reserved for these commands.
  2834. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2835. repeatcommand_front(); // repeat G80 with all its parameters
  2836. enquecommand_front_P((PSTR("G28 W0")));
  2837. }
  2838. else {
  2839. mesh_bed_leveling_flag = false;
  2840. }
  2841. break;
  2842. }
  2843. bool temp_comp_start = true;
  2844. #ifdef PINDA_THERMISTOR
  2845. temp_comp_start = false;
  2846. #endif //PINDA_THERMISTOR
  2847. if (temp_comp_start)
  2848. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2849. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2850. temp_compensation_start();
  2851. run = true;
  2852. repeatcommand_front(); // repeat G80 with all its parameters
  2853. enquecommand_front_P((PSTR("G28 W0")));
  2854. }
  2855. else {
  2856. mesh_bed_leveling_flag = false;
  2857. }
  2858. break;
  2859. }
  2860. run = false;
  2861. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2862. mesh_bed_leveling_flag = false;
  2863. break;
  2864. }
  2865. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2866. bool custom_message_old = custom_message;
  2867. unsigned int custom_message_type_old = custom_message_type;
  2868. unsigned int custom_message_state_old = custom_message_state;
  2869. custom_message = true;
  2870. custom_message_type = 1;
  2871. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2872. lcd_update(1);
  2873. mbl.reset(); //reset mesh bed leveling
  2874. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2875. // consumed during the first movements following this statement.
  2876. babystep_undo();
  2877. // Cycle through all points and probe them
  2878. // First move up. During this first movement, the babystepping will be reverted.
  2879. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2881. // The move to the first calibration point.
  2882. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2883. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2884. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2885. #ifdef SUPPORT_VERBOSITY
  2886. if (verbosity_level >= 1) {
  2887. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2888. }
  2889. #endif //SUPPORT_VERBOSITY
  2890. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2892. // Wait until the move is finished.
  2893. st_synchronize();
  2894. int mesh_point = 0; //index number of calibration point
  2895. int ix = 0;
  2896. int iy = 0;
  2897. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2898. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2899. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2900. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2901. #ifdef SUPPORT_VERBOSITY
  2902. if (verbosity_level >= 1) {
  2903. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2904. }
  2905. #endif // SUPPORT_VERBOSITY
  2906. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2907. const char *kill_message = NULL;
  2908. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2909. // Get coords of a measuring point.
  2910. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2911. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2912. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2913. float z0 = 0.f;
  2914. if (has_z && mesh_point > 0) {
  2915. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2916. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2917. //#if 0
  2918. #ifdef SUPPORT_VERBOSITY
  2919. if (verbosity_level >= 1) {
  2920. SERIAL_ECHOLNPGM("");
  2921. SERIAL_ECHOPGM("Bed leveling, point: ");
  2922. MYSERIAL.print(mesh_point);
  2923. SERIAL_ECHOPGM(", calibration z: ");
  2924. MYSERIAL.print(z0, 5);
  2925. SERIAL_ECHOLNPGM("");
  2926. }
  2927. #endif // SUPPORT_VERBOSITY
  2928. //#endif
  2929. }
  2930. // Move Z up to MESH_HOME_Z_SEARCH.
  2931. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2933. st_synchronize();
  2934. // Move to XY position of the sensor point.
  2935. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2936. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2937. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2938. #ifdef SUPPORT_VERBOSITY
  2939. if (verbosity_level >= 1) {
  2940. SERIAL_PROTOCOL(mesh_point);
  2941. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2942. }
  2943. #endif // SUPPORT_VERBOSITY
  2944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2945. st_synchronize();
  2946. // Go down until endstop is hit
  2947. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2948. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2949. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2950. break;
  2951. }
  2952. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2953. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2954. break;
  2955. }
  2956. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2957. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2958. break;
  2959. }
  2960. #ifdef SUPPORT_VERBOSITY
  2961. if (verbosity_level >= 10) {
  2962. SERIAL_ECHOPGM("X: ");
  2963. MYSERIAL.print(current_position[X_AXIS], 5);
  2964. SERIAL_ECHOLNPGM("");
  2965. SERIAL_ECHOPGM("Y: ");
  2966. MYSERIAL.print(current_position[Y_AXIS], 5);
  2967. SERIAL_PROTOCOLPGM("\n");
  2968. }
  2969. #endif // SUPPORT_VERBOSITY
  2970. float offset_z = 0;
  2971. #ifdef PINDA_THERMISTOR
  2972. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2973. #endif //PINDA_THERMISTOR
  2974. // #ifdef SUPPORT_VERBOSITY
  2975. // if (verbosity_level >= 1)
  2976. {
  2977. SERIAL_ECHOPGM("mesh bed leveling: ");
  2978. MYSERIAL.print(current_position[Z_AXIS], 5);
  2979. SERIAL_ECHOPGM(" offset: ");
  2980. MYSERIAL.print(offset_z, 5);
  2981. SERIAL_ECHOLNPGM("");
  2982. }
  2983. // #endif // SUPPORT_VERBOSITY
  2984. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2985. custom_message_state--;
  2986. mesh_point++;
  2987. lcd_update(1);
  2988. }
  2989. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2990. #ifdef SUPPORT_VERBOSITY
  2991. if (verbosity_level >= 20) {
  2992. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2993. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2994. MYSERIAL.print(current_position[Z_AXIS], 5);
  2995. }
  2996. #endif // SUPPORT_VERBOSITY
  2997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2998. st_synchronize();
  2999. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3000. kill(kill_message);
  3001. SERIAL_ECHOLNPGM("killed");
  3002. }
  3003. clean_up_after_endstop_move();
  3004. SERIAL_ECHOLNPGM("clean up finished ");
  3005. bool apply_temp_comp = true;
  3006. #ifdef PINDA_THERMISTOR
  3007. apply_temp_comp = false;
  3008. #endif
  3009. if (apply_temp_comp)
  3010. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3011. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3012. SERIAL_ECHOLNPGM("babystep applied");
  3013. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3014. #ifdef SUPPORT_VERBOSITY
  3015. if (verbosity_level >= 1) {
  3016. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3017. }
  3018. #endif // SUPPORT_VERBOSITY
  3019. for (uint8_t i = 0; i < 4; ++i) {
  3020. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3021. long correction = 0;
  3022. if (code_seen(codes[i]))
  3023. correction = code_value_long();
  3024. else if (eeprom_bed_correction_valid) {
  3025. unsigned char *addr = (i < 2) ?
  3026. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3027. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3028. correction = eeprom_read_int8(addr);
  3029. }
  3030. if (correction == 0)
  3031. continue;
  3032. float offset = float(correction) * 0.001f;
  3033. if (fabs(offset) > 0.101f) {
  3034. SERIAL_ERROR_START;
  3035. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3036. SERIAL_ECHO(offset);
  3037. SERIAL_ECHOLNPGM(" microns");
  3038. }
  3039. else {
  3040. switch (i) {
  3041. case 0:
  3042. for (uint8_t row = 0; row < 3; ++row) {
  3043. mbl.z_values[row][1] += 0.5f * offset;
  3044. mbl.z_values[row][0] += offset;
  3045. }
  3046. break;
  3047. case 1:
  3048. for (uint8_t row = 0; row < 3; ++row) {
  3049. mbl.z_values[row][1] += 0.5f * offset;
  3050. mbl.z_values[row][2] += offset;
  3051. }
  3052. break;
  3053. case 2:
  3054. for (uint8_t col = 0; col < 3; ++col) {
  3055. mbl.z_values[1][col] += 0.5f * offset;
  3056. mbl.z_values[0][col] += offset;
  3057. }
  3058. break;
  3059. case 3:
  3060. for (uint8_t col = 0; col < 3; ++col) {
  3061. mbl.z_values[1][col] += 0.5f * offset;
  3062. mbl.z_values[2][col] += offset;
  3063. }
  3064. break;
  3065. }
  3066. }
  3067. }
  3068. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3069. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3070. SERIAL_ECHOLNPGM("Upsample finished");
  3071. mbl.active = 1; //activate mesh bed leveling
  3072. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3073. go_home_with_z_lift();
  3074. SERIAL_ECHOLNPGM("Go home finished");
  3075. //unretract (after PINDA preheat retraction)
  3076. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3077. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3079. }
  3080. KEEPALIVE_STATE(NOT_BUSY);
  3081. // Restore custom message state
  3082. custom_message = custom_message_old;
  3083. custom_message_type = custom_message_type_old;
  3084. custom_message_state = custom_message_state_old;
  3085. mesh_bed_leveling_flag = false;
  3086. mesh_bed_run_from_menu = false;
  3087. lcd_update(2);
  3088. }
  3089. break;
  3090. /**
  3091. * G81: Print mesh bed leveling status and bed profile if activated
  3092. */
  3093. case 81:
  3094. if (mbl.active) {
  3095. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3096. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3097. SERIAL_PROTOCOLPGM(",");
  3098. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3099. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3100. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3101. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3102. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3103. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3104. SERIAL_PROTOCOLPGM(" ");
  3105. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3106. }
  3107. SERIAL_PROTOCOLPGM("\n");
  3108. }
  3109. }
  3110. else
  3111. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3112. break;
  3113. #if 0
  3114. /**
  3115. * G82: Single Z probe at current location
  3116. *
  3117. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3118. *
  3119. */
  3120. case 82:
  3121. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3122. setup_for_endstop_move();
  3123. find_bed_induction_sensor_point_z();
  3124. clean_up_after_endstop_move();
  3125. SERIAL_PROTOCOLPGM("Bed found at: ");
  3126. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3127. SERIAL_PROTOCOLPGM("\n");
  3128. break;
  3129. /**
  3130. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3131. */
  3132. case 83:
  3133. {
  3134. int babystepz = code_seen('S') ? code_value() : 0;
  3135. int BabyPosition = code_seen('P') ? code_value() : 0;
  3136. if (babystepz != 0) {
  3137. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3138. // Is the axis indexed starting with zero or one?
  3139. if (BabyPosition > 4) {
  3140. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3141. }else{
  3142. // Save it to the eeprom
  3143. babystepLoadZ = babystepz;
  3144. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3145. // adjust the Z
  3146. babystepsTodoZadd(babystepLoadZ);
  3147. }
  3148. }
  3149. }
  3150. break;
  3151. /**
  3152. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3153. */
  3154. case 84:
  3155. babystepsTodoZsubtract(babystepLoadZ);
  3156. // babystepLoadZ = 0;
  3157. break;
  3158. /**
  3159. * G85: Prusa3D specific: Pick best babystep
  3160. */
  3161. case 85:
  3162. lcd_pick_babystep();
  3163. break;
  3164. #endif
  3165. /**
  3166. * G86: Prusa3D specific: Disable babystep correction after home.
  3167. * This G-code will be performed at the start of a calibration script.
  3168. */
  3169. case 86:
  3170. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3171. break;
  3172. /**
  3173. * G87: Prusa3D specific: Enable babystep correction after home
  3174. * This G-code will be performed at the end of a calibration script.
  3175. */
  3176. case 87:
  3177. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3178. break;
  3179. /**
  3180. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3181. */
  3182. case 88:
  3183. break;
  3184. #endif // ENABLE_MESH_BED_LEVELING
  3185. case 90: // G90
  3186. relative_mode = false;
  3187. break;
  3188. case 91: // G91
  3189. relative_mode = true;
  3190. break;
  3191. case 92: // G92
  3192. if(!code_seen(axis_codes[E_AXIS]))
  3193. st_synchronize();
  3194. for(int8_t i=0; i < NUM_AXIS; i++) {
  3195. if(code_seen(axis_codes[i])) {
  3196. if(i == E_AXIS) {
  3197. current_position[i] = code_value();
  3198. plan_set_e_position(current_position[E_AXIS]);
  3199. }
  3200. else {
  3201. current_position[i] = code_value()+add_homing[i];
  3202. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3203. }
  3204. }
  3205. }
  3206. break;
  3207. case 98: //activate farm mode
  3208. farm_mode = 1;
  3209. PingTime = millis();
  3210. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3211. break;
  3212. case 99: //deactivate farm mode
  3213. farm_mode = 0;
  3214. lcd_printer_connected();
  3215. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3216. lcd_update(2);
  3217. break;
  3218. }
  3219. } // end if(code_seen('G'))
  3220. else if(code_seen('M'))
  3221. {
  3222. int index;
  3223. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3224. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3225. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3226. SERIAL_ECHOLNPGM("Invalid M code");
  3227. } else
  3228. switch((int)code_value())
  3229. {
  3230. #ifdef ULTIPANEL
  3231. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3232. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3233. {
  3234. char *src = strchr_pointer + 2;
  3235. codenum = 0;
  3236. bool hasP = false, hasS = false;
  3237. if (code_seen('P')) {
  3238. codenum = code_value(); // milliseconds to wait
  3239. hasP = codenum > 0;
  3240. }
  3241. if (code_seen('S')) {
  3242. codenum = code_value() * 1000; // seconds to wait
  3243. hasS = codenum > 0;
  3244. }
  3245. starpos = strchr(src, '*');
  3246. if (starpos != NULL) *(starpos) = '\0';
  3247. while (*src == ' ') ++src;
  3248. if (!hasP && !hasS && *src != '\0') {
  3249. lcd_setstatus(src);
  3250. } else {
  3251. LCD_MESSAGERPGM(MSG_USERWAIT);
  3252. }
  3253. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3254. st_synchronize();
  3255. previous_millis_cmd = millis();
  3256. if (codenum > 0){
  3257. codenum += millis(); // keep track of when we started waiting
  3258. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3259. while(millis() < codenum && !lcd_clicked()){
  3260. manage_heater();
  3261. manage_inactivity(true);
  3262. lcd_update();
  3263. }
  3264. KEEPALIVE_STATE(IN_HANDLER);
  3265. lcd_ignore_click(false);
  3266. }else{
  3267. if (!lcd_detected())
  3268. break;
  3269. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3270. while(!lcd_clicked()){
  3271. manage_heater();
  3272. manage_inactivity(true);
  3273. lcd_update();
  3274. }
  3275. KEEPALIVE_STATE(IN_HANDLER);
  3276. }
  3277. if (IS_SD_PRINTING)
  3278. LCD_MESSAGERPGM(MSG_RESUMING);
  3279. else
  3280. LCD_MESSAGERPGM(WELCOME_MSG);
  3281. }
  3282. break;
  3283. #endif
  3284. case 17:
  3285. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3286. enable_x();
  3287. enable_y();
  3288. enable_z();
  3289. enable_e0();
  3290. enable_e1();
  3291. enable_e2();
  3292. break;
  3293. #ifdef SDSUPPORT
  3294. case 20: // M20 - list SD card
  3295. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3296. card.ls();
  3297. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3298. break;
  3299. case 21: // M21 - init SD card
  3300. card.initsd();
  3301. break;
  3302. case 22: //M22 - release SD card
  3303. card.release();
  3304. break;
  3305. case 23: //M23 - Select file
  3306. starpos = (strchr(strchr_pointer + 4,'*'));
  3307. if(starpos!=NULL)
  3308. *(starpos)='\0';
  3309. card.openFile(strchr_pointer + 4,true);
  3310. break;
  3311. case 24: //M24 - Start SD print
  3312. card.startFileprint();
  3313. starttime=millis();
  3314. break;
  3315. case 25: //M25 - Pause SD print
  3316. card.pauseSDPrint();
  3317. break;
  3318. case 26: //M26 - Set SD index
  3319. if(card.cardOK && code_seen('S')) {
  3320. card.setIndex(code_value_long());
  3321. }
  3322. break;
  3323. case 27: //M27 - Get SD status
  3324. card.getStatus();
  3325. break;
  3326. case 28: //M28 - Start SD write
  3327. starpos = (strchr(strchr_pointer + 4,'*'));
  3328. if(starpos != NULL){
  3329. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3330. strchr_pointer = strchr(npos,' ') + 1;
  3331. *(starpos) = '\0';
  3332. }
  3333. card.openFile(strchr_pointer+4,false);
  3334. break;
  3335. case 29: //M29 - Stop SD write
  3336. //processed in write to file routine above
  3337. //card,saving = false;
  3338. break;
  3339. case 30: //M30 <filename> Delete File
  3340. if (card.cardOK){
  3341. card.closefile();
  3342. starpos = (strchr(strchr_pointer + 4,'*'));
  3343. if(starpos != NULL){
  3344. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3345. strchr_pointer = strchr(npos,' ') + 1;
  3346. *(starpos) = '\0';
  3347. }
  3348. card.removeFile(strchr_pointer + 4);
  3349. }
  3350. break;
  3351. case 32: //M32 - Select file and start SD print
  3352. {
  3353. if(card.sdprinting) {
  3354. st_synchronize();
  3355. }
  3356. starpos = (strchr(strchr_pointer + 4,'*'));
  3357. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3358. if(namestartpos==NULL)
  3359. {
  3360. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3361. }
  3362. else
  3363. namestartpos++; //to skip the '!'
  3364. if(starpos!=NULL)
  3365. *(starpos)='\0';
  3366. bool call_procedure=(code_seen('P'));
  3367. if(strchr_pointer>namestartpos)
  3368. call_procedure=false; //false alert, 'P' found within filename
  3369. if( card.cardOK )
  3370. {
  3371. card.openFile(namestartpos,true,!call_procedure);
  3372. if(code_seen('S'))
  3373. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3374. card.setIndex(code_value_long());
  3375. card.startFileprint();
  3376. if(!call_procedure)
  3377. starttime=millis(); //procedure calls count as normal print time.
  3378. }
  3379. } break;
  3380. case 928: //M928 - Start SD write
  3381. starpos = (strchr(strchr_pointer + 5,'*'));
  3382. if(starpos != NULL){
  3383. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3384. strchr_pointer = strchr(npos,' ') + 1;
  3385. *(starpos) = '\0';
  3386. }
  3387. card.openLogFile(strchr_pointer+5);
  3388. break;
  3389. #endif //SDSUPPORT
  3390. case 31: //M31 take time since the start of the SD print or an M109 command
  3391. {
  3392. stoptime=millis();
  3393. char time[30];
  3394. unsigned long t=(stoptime-starttime)/1000;
  3395. int sec,min;
  3396. min=t/60;
  3397. sec=t%60;
  3398. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3399. SERIAL_ECHO_START;
  3400. SERIAL_ECHOLN(time);
  3401. lcd_setstatus(time);
  3402. autotempShutdown();
  3403. }
  3404. break;
  3405. #ifndef _DISABLE_M42_M226
  3406. case 42: //M42 -Change pin status via gcode
  3407. if (code_seen('S'))
  3408. {
  3409. int pin_status = code_value();
  3410. int pin_number = LED_PIN;
  3411. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3412. pin_number = code_value();
  3413. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3414. {
  3415. if (sensitive_pins[i] == pin_number)
  3416. {
  3417. pin_number = -1;
  3418. break;
  3419. }
  3420. }
  3421. #if defined(FAN_PIN) && FAN_PIN > -1
  3422. if (pin_number == FAN_PIN)
  3423. fanSpeed = pin_status;
  3424. #endif
  3425. if (pin_number > -1)
  3426. {
  3427. pinMode(pin_number, OUTPUT);
  3428. digitalWrite(pin_number, pin_status);
  3429. analogWrite(pin_number, pin_status);
  3430. }
  3431. }
  3432. break;
  3433. #endif //_DISABLE_M42_M226
  3434. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3435. // Reset the baby step value and the baby step applied flag.
  3436. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3437. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3438. // Reset the skew and offset in both RAM and EEPROM.
  3439. reset_bed_offset_and_skew();
  3440. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3441. // the planner will not perform any adjustments in the XY plane.
  3442. // Wait for the motors to stop and update the current position with the absolute values.
  3443. world2machine_revert_to_uncorrected();
  3444. break;
  3445. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3446. {
  3447. bool only_Z = code_seen('Z');
  3448. gcode_M45(only_Z);
  3449. }
  3450. break;
  3451. /*
  3452. case 46:
  3453. {
  3454. // M46: Prusa3D: Show the assigned IP address.
  3455. uint8_t ip[4];
  3456. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3457. if (hasIP) {
  3458. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3459. SERIAL_ECHO(int(ip[0]));
  3460. SERIAL_ECHOPGM(".");
  3461. SERIAL_ECHO(int(ip[1]));
  3462. SERIAL_ECHOPGM(".");
  3463. SERIAL_ECHO(int(ip[2]));
  3464. SERIAL_ECHOPGM(".");
  3465. SERIAL_ECHO(int(ip[3]));
  3466. SERIAL_ECHOLNPGM("");
  3467. } else {
  3468. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3469. }
  3470. break;
  3471. }
  3472. */
  3473. case 47:
  3474. // M47: Prusa3D: Show end stops dialog on the display.
  3475. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3476. lcd_diag_show_end_stops();
  3477. KEEPALIVE_STATE(IN_HANDLER);
  3478. break;
  3479. #if 0
  3480. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3481. {
  3482. // Disable the default update procedure of the display. We will do a modal dialog.
  3483. lcd_update_enable(false);
  3484. // Let the planner use the uncorrected coordinates.
  3485. mbl.reset();
  3486. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3487. // the planner will not perform any adjustments in the XY plane.
  3488. // Wait for the motors to stop and update the current position with the absolute values.
  3489. world2machine_revert_to_uncorrected();
  3490. // Move the print head close to the bed.
  3491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3493. st_synchronize();
  3494. // Home in the XY plane.
  3495. set_destination_to_current();
  3496. setup_for_endstop_move();
  3497. home_xy();
  3498. int8_t verbosity_level = 0;
  3499. if (code_seen('V')) {
  3500. // Just 'V' without a number counts as V1.
  3501. char c = strchr_pointer[1];
  3502. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3503. }
  3504. bool success = scan_bed_induction_points(verbosity_level);
  3505. clean_up_after_endstop_move();
  3506. // Print head up.
  3507. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3509. st_synchronize();
  3510. lcd_update_enable(true);
  3511. break;
  3512. }
  3513. #endif
  3514. // M48 Z-Probe repeatability measurement function.
  3515. //
  3516. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3517. //
  3518. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3519. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3520. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3521. // regenerated.
  3522. //
  3523. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3524. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3525. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3526. //
  3527. #ifdef ENABLE_AUTO_BED_LEVELING
  3528. #ifdef Z_PROBE_REPEATABILITY_TEST
  3529. case 48: // M48 Z-Probe repeatability
  3530. {
  3531. #if Z_MIN_PIN == -1
  3532. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3533. #endif
  3534. double sum=0.0;
  3535. double mean=0.0;
  3536. double sigma=0.0;
  3537. double sample_set[50];
  3538. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3539. double X_current, Y_current, Z_current;
  3540. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3541. if (code_seen('V') || code_seen('v')) {
  3542. verbose_level = code_value();
  3543. if (verbose_level<0 || verbose_level>4 ) {
  3544. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3545. goto Sigma_Exit;
  3546. }
  3547. }
  3548. if (verbose_level > 0) {
  3549. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3550. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3551. }
  3552. if (code_seen('n')) {
  3553. n_samples = code_value();
  3554. if (n_samples<4 || n_samples>50 ) {
  3555. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3556. goto Sigma_Exit;
  3557. }
  3558. }
  3559. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3560. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3561. Z_current = st_get_position_mm(Z_AXIS);
  3562. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3563. ext_position = st_get_position_mm(E_AXIS);
  3564. if (code_seen('X') || code_seen('x') ) {
  3565. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3566. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3567. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3568. goto Sigma_Exit;
  3569. }
  3570. }
  3571. if (code_seen('Y') || code_seen('y') ) {
  3572. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3573. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3574. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3575. goto Sigma_Exit;
  3576. }
  3577. }
  3578. if (code_seen('L') || code_seen('l') ) {
  3579. n_legs = code_value();
  3580. if ( n_legs==1 )
  3581. n_legs = 2;
  3582. if ( n_legs<0 || n_legs>15 ) {
  3583. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3584. goto Sigma_Exit;
  3585. }
  3586. }
  3587. //
  3588. // Do all the preliminary setup work. First raise the probe.
  3589. //
  3590. st_synchronize();
  3591. plan_bed_level_matrix.set_to_identity();
  3592. plan_buffer_line( X_current, Y_current, Z_start_location,
  3593. ext_position,
  3594. homing_feedrate[Z_AXIS]/60,
  3595. active_extruder);
  3596. st_synchronize();
  3597. //
  3598. // Now get everything to the specified probe point So we can safely do a probe to
  3599. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3600. // use that as a starting point for each probe.
  3601. //
  3602. if (verbose_level > 2)
  3603. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3604. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3605. ext_position,
  3606. homing_feedrate[X_AXIS]/60,
  3607. active_extruder);
  3608. st_synchronize();
  3609. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3610. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3611. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3612. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3613. //
  3614. // OK, do the inital probe to get us close to the bed.
  3615. // Then retrace the right amount and use that in subsequent probes
  3616. //
  3617. setup_for_endstop_move();
  3618. run_z_probe();
  3619. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3620. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3621. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3622. ext_position,
  3623. homing_feedrate[X_AXIS]/60,
  3624. active_extruder);
  3625. st_synchronize();
  3626. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3627. for( n=0; n<n_samples; n++) {
  3628. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3629. if ( n_legs) {
  3630. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3631. int rotational_direction, l;
  3632. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3633. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3634. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3635. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3636. //SERIAL_ECHOPAIR(" theta: ",theta);
  3637. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3638. //SERIAL_PROTOCOLLNPGM("");
  3639. for( l=0; l<n_legs-1; l++) {
  3640. if (rotational_direction==1)
  3641. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3642. else
  3643. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3644. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3645. if ( radius<0.0 )
  3646. radius = -radius;
  3647. X_current = X_probe_location + cos(theta) * radius;
  3648. Y_current = Y_probe_location + sin(theta) * radius;
  3649. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3650. X_current = X_MIN_POS;
  3651. if ( X_current>X_MAX_POS)
  3652. X_current = X_MAX_POS;
  3653. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3654. Y_current = Y_MIN_POS;
  3655. if ( Y_current>Y_MAX_POS)
  3656. Y_current = Y_MAX_POS;
  3657. if (verbose_level>3 ) {
  3658. SERIAL_ECHOPAIR("x: ", X_current);
  3659. SERIAL_ECHOPAIR("y: ", Y_current);
  3660. SERIAL_PROTOCOLLNPGM("");
  3661. }
  3662. do_blocking_move_to( X_current, Y_current, Z_current );
  3663. }
  3664. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3665. }
  3666. setup_for_endstop_move();
  3667. run_z_probe();
  3668. sample_set[n] = current_position[Z_AXIS];
  3669. //
  3670. // Get the current mean for the data points we have so far
  3671. //
  3672. sum=0.0;
  3673. for( j=0; j<=n; j++) {
  3674. sum = sum + sample_set[j];
  3675. }
  3676. mean = sum / (double (n+1));
  3677. //
  3678. // Now, use that mean to calculate the standard deviation for the
  3679. // data points we have so far
  3680. //
  3681. sum=0.0;
  3682. for( j=0; j<=n; j++) {
  3683. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3684. }
  3685. sigma = sqrt( sum / (double (n+1)) );
  3686. if (verbose_level > 1) {
  3687. SERIAL_PROTOCOL(n+1);
  3688. SERIAL_PROTOCOL(" of ");
  3689. SERIAL_PROTOCOL(n_samples);
  3690. SERIAL_PROTOCOLPGM(" z: ");
  3691. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3692. }
  3693. if (verbose_level > 2) {
  3694. SERIAL_PROTOCOL(" mean: ");
  3695. SERIAL_PROTOCOL_F(mean,6);
  3696. SERIAL_PROTOCOL(" sigma: ");
  3697. SERIAL_PROTOCOL_F(sigma,6);
  3698. }
  3699. if (verbose_level > 0)
  3700. SERIAL_PROTOCOLPGM("\n");
  3701. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3702. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3703. st_synchronize();
  3704. }
  3705. delay(1000);
  3706. clean_up_after_endstop_move();
  3707. // enable_endstops(true);
  3708. if (verbose_level > 0) {
  3709. SERIAL_PROTOCOLPGM("Mean: ");
  3710. SERIAL_PROTOCOL_F(mean, 6);
  3711. SERIAL_PROTOCOLPGM("\n");
  3712. }
  3713. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3714. SERIAL_PROTOCOL_F(sigma, 6);
  3715. SERIAL_PROTOCOLPGM("\n\n");
  3716. Sigma_Exit:
  3717. break;
  3718. }
  3719. #endif // Z_PROBE_REPEATABILITY_TEST
  3720. #endif // ENABLE_AUTO_BED_LEVELING
  3721. case 104: // M104
  3722. if(setTargetedHotend(104)){
  3723. break;
  3724. }
  3725. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3726. setWatch();
  3727. break;
  3728. case 112: // M112 -Emergency Stop
  3729. kill("", 3);
  3730. break;
  3731. case 140: // M140 set bed temp
  3732. if (code_seen('S')) setTargetBed(code_value());
  3733. break;
  3734. case 105 : // M105
  3735. if(setTargetedHotend(105)){
  3736. break;
  3737. }
  3738. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3739. SERIAL_PROTOCOLPGM("ok T:");
  3740. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3741. SERIAL_PROTOCOLPGM(" /");
  3742. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3743. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3744. SERIAL_PROTOCOLPGM(" B:");
  3745. SERIAL_PROTOCOL_F(degBed(),1);
  3746. SERIAL_PROTOCOLPGM(" /");
  3747. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3748. #endif //TEMP_BED_PIN
  3749. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3750. SERIAL_PROTOCOLPGM(" T");
  3751. SERIAL_PROTOCOL(cur_extruder);
  3752. SERIAL_PROTOCOLPGM(":");
  3753. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3754. SERIAL_PROTOCOLPGM(" /");
  3755. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3756. }
  3757. #else
  3758. SERIAL_ERROR_START;
  3759. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3760. #endif
  3761. SERIAL_PROTOCOLPGM(" @:");
  3762. #ifdef EXTRUDER_WATTS
  3763. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3764. SERIAL_PROTOCOLPGM("W");
  3765. #else
  3766. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3767. #endif
  3768. SERIAL_PROTOCOLPGM(" B@:");
  3769. #ifdef BED_WATTS
  3770. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3771. SERIAL_PROTOCOLPGM("W");
  3772. #else
  3773. SERIAL_PROTOCOL(getHeaterPower(-1));
  3774. #endif
  3775. #ifdef PINDA_THERMISTOR
  3776. SERIAL_PROTOCOLPGM(" P:");
  3777. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3778. #endif //PINDA_THERMISTOR
  3779. #ifdef AMBIENT_THERMISTOR
  3780. SERIAL_PROTOCOLPGM(" A:");
  3781. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3782. #endif //AMBIENT_THERMISTOR
  3783. #ifdef SHOW_TEMP_ADC_VALUES
  3784. {float raw = 0.0;
  3785. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3786. SERIAL_PROTOCOLPGM(" ADC B:");
  3787. SERIAL_PROTOCOL_F(degBed(),1);
  3788. SERIAL_PROTOCOLPGM("C->");
  3789. raw = rawBedTemp();
  3790. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3791. SERIAL_PROTOCOLPGM(" Rb->");
  3792. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3793. SERIAL_PROTOCOLPGM(" Rxb->");
  3794. SERIAL_PROTOCOL_F(raw, 5);
  3795. #endif
  3796. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3797. SERIAL_PROTOCOLPGM(" T");
  3798. SERIAL_PROTOCOL(cur_extruder);
  3799. SERIAL_PROTOCOLPGM(":");
  3800. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3801. SERIAL_PROTOCOLPGM("C->");
  3802. raw = rawHotendTemp(cur_extruder);
  3803. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3804. SERIAL_PROTOCOLPGM(" Rt");
  3805. SERIAL_PROTOCOL(cur_extruder);
  3806. SERIAL_PROTOCOLPGM("->");
  3807. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3808. SERIAL_PROTOCOLPGM(" Rx");
  3809. SERIAL_PROTOCOL(cur_extruder);
  3810. SERIAL_PROTOCOLPGM("->");
  3811. SERIAL_PROTOCOL_F(raw, 5);
  3812. }}
  3813. #endif
  3814. SERIAL_PROTOCOLLN("");
  3815. KEEPALIVE_STATE(NOT_BUSY);
  3816. return;
  3817. break;
  3818. case 109:
  3819. {// M109 - Wait for extruder heater to reach target.
  3820. if(setTargetedHotend(109)){
  3821. break;
  3822. }
  3823. LCD_MESSAGERPGM(MSG_HEATING);
  3824. heating_status = 1;
  3825. if (farm_mode) { prusa_statistics(1); };
  3826. #ifdef AUTOTEMP
  3827. autotemp_enabled=false;
  3828. #endif
  3829. if (code_seen('S')) {
  3830. setTargetHotend(code_value(), tmp_extruder);
  3831. CooldownNoWait = true;
  3832. } else if (code_seen('R')) {
  3833. setTargetHotend(code_value(), tmp_extruder);
  3834. CooldownNoWait = false;
  3835. }
  3836. #ifdef AUTOTEMP
  3837. if (code_seen('S')) autotemp_min=code_value();
  3838. if (code_seen('B')) autotemp_max=code_value();
  3839. if (code_seen('F'))
  3840. {
  3841. autotemp_factor=code_value();
  3842. autotemp_enabled=true;
  3843. }
  3844. #endif
  3845. setWatch();
  3846. codenum = millis();
  3847. /* See if we are heating up or cooling down */
  3848. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3849. KEEPALIVE_STATE(NOT_BUSY);
  3850. cancel_heatup = false;
  3851. wait_for_heater(codenum); //loops until target temperature is reached
  3852. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3853. KEEPALIVE_STATE(IN_HANDLER);
  3854. heating_status = 2;
  3855. if (farm_mode) { prusa_statistics(2); };
  3856. //starttime=millis();
  3857. previous_millis_cmd = millis();
  3858. }
  3859. break;
  3860. case 190: // M190 - Wait for bed heater to reach target.
  3861. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3862. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3863. heating_status = 3;
  3864. if (farm_mode) { prusa_statistics(1); };
  3865. if (code_seen('S'))
  3866. {
  3867. setTargetBed(code_value());
  3868. CooldownNoWait = true;
  3869. }
  3870. else if (code_seen('R'))
  3871. {
  3872. setTargetBed(code_value());
  3873. CooldownNoWait = false;
  3874. }
  3875. codenum = millis();
  3876. cancel_heatup = false;
  3877. target_direction = isHeatingBed(); // true if heating, false if cooling
  3878. KEEPALIVE_STATE(NOT_BUSY);
  3879. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3880. {
  3881. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3882. {
  3883. if (!farm_mode) {
  3884. float tt = degHotend(active_extruder);
  3885. SERIAL_PROTOCOLPGM("T:");
  3886. SERIAL_PROTOCOL(tt);
  3887. SERIAL_PROTOCOLPGM(" E:");
  3888. SERIAL_PROTOCOL((int)active_extruder);
  3889. SERIAL_PROTOCOLPGM(" B:");
  3890. SERIAL_PROTOCOL_F(degBed(), 1);
  3891. SERIAL_PROTOCOLLN("");
  3892. }
  3893. codenum = millis();
  3894. }
  3895. manage_heater();
  3896. manage_inactivity();
  3897. lcd_update();
  3898. }
  3899. LCD_MESSAGERPGM(MSG_BED_DONE);
  3900. KEEPALIVE_STATE(IN_HANDLER);
  3901. heating_status = 4;
  3902. previous_millis_cmd = millis();
  3903. #endif
  3904. break;
  3905. #if defined(FAN_PIN) && FAN_PIN > -1
  3906. case 106: //M106 Fan On
  3907. if (code_seen('S')){
  3908. fanSpeed=constrain(code_value(),0,255);
  3909. }
  3910. else {
  3911. fanSpeed=255;
  3912. }
  3913. break;
  3914. case 107: //M107 Fan Off
  3915. fanSpeed = 0;
  3916. break;
  3917. #endif //FAN_PIN
  3918. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3919. case 80: // M80 - Turn on Power Supply
  3920. SET_OUTPUT(PS_ON_PIN); //GND
  3921. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3922. // If you have a switch on suicide pin, this is useful
  3923. // if you want to start another print with suicide feature after
  3924. // a print without suicide...
  3925. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3926. SET_OUTPUT(SUICIDE_PIN);
  3927. WRITE(SUICIDE_PIN, HIGH);
  3928. #endif
  3929. #ifdef ULTIPANEL
  3930. powersupply = true;
  3931. LCD_MESSAGERPGM(WELCOME_MSG);
  3932. lcd_update();
  3933. #endif
  3934. break;
  3935. #endif
  3936. case 81: // M81 - Turn off Power Supply
  3937. disable_heater();
  3938. st_synchronize();
  3939. disable_e0();
  3940. disable_e1();
  3941. disable_e2();
  3942. finishAndDisableSteppers();
  3943. fanSpeed = 0;
  3944. delay(1000); // Wait a little before to switch off
  3945. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3946. st_synchronize();
  3947. suicide();
  3948. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3949. SET_OUTPUT(PS_ON_PIN);
  3950. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3951. #endif
  3952. #ifdef ULTIPANEL
  3953. powersupply = false;
  3954. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3955. /*
  3956. MACHNAME = "Prusa i3"
  3957. MSGOFF = "Vypnuto"
  3958. "Prusai3"" ""vypnuto""."
  3959. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3960. */
  3961. lcd_update();
  3962. #endif
  3963. break;
  3964. case 82:
  3965. axis_relative_modes[3] = false;
  3966. break;
  3967. case 83:
  3968. axis_relative_modes[3] = true;
  3969. break;
  3970. case 18: //compatibility
  3971. case 84: // M84
  3972. if(code_seen('S')){
  3973. stepper_inactive_time = code_value() * 1000;
  3974. }
  3975. else
  3976. {
  3977. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3978. if(all_axis)
  3979. {
  3980. st_synchronize();
  3981. disable_e0();
  3982. disable_e1();
  3983. disable_e2();
  3984. finishAndDisableSteppers();
  3985. }
  3986. else
  3987. {
  3988. st_synchronize();
  3989. if (code_seen('X')) disable_x();
  3990. if (code_seen('Y')) disable_y();
  3991. if (code_seen('Z')) disable_z();
  3992. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3993. if (code_seen('E')) {
  3994. disable_e0();
  3995. disable_e1();
  3996. disable_e2();
  3997. }
  3998. #endif
  3999. }
  4000. }
  4001. snmm_filaments_used = 0;
  4002. break;
  4003. case 85: // M85
  4004. if(code_seen('S')) {
  4005. max_inactive_time = code_value() * 1000;
  4006. }
  4007. break;
  4008. case 92: // M92
  4009. for(int8_t i=0; i < NUM_AXIS; i++)
  4010. {
  4011. if(code_seen(axis_codes[i]))
  4012. {
  4013. if(i == 3) { // E
  4014. float value = code_value();
  4015. if(value < 20.0) {
  4016. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4017. max_jerk[E_AXIS] *= factor;
  4018. max_feedrate[i] *= factor;
  4019. axis_steps_per_sqr_second[i] *= factor;
  4020. }
  4021. axis_steps_per_unit[i] = value;
  4022. }
  4023. else {
  4024. axis_steps_per_unit[i] = code_value();
  4025. }
  4026. }
  4027. }
  4028. break;
  4029. #ifdef HOST_KEEPALIVE_FEATURE
  4030. case 113: // M113 - Get or set Host Keepalive interval
  4031. if (code_seen('S')) {
  4032. host_keepalive_interval = (uint8_t)code_value_short();
  4033. // NOMORE(host_keepalive_interval, 60);
  4034. }
  4035. else {
  4036. SERIAL_ECHO_START;
  4037. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4038. SERIAL_PROTOCOLLN("");
  4039. }
  4040. break;
  4041. #endif
  4042. case 115: // M115
  4043. if (code_seen('V')) {
  4044. // Report the Prusa version number.
  4045. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4046. } else if (code_seen('U')) {
  4047. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4048. // pause the print and ask the user to upgrade the firmware.
  4049. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4050. } else {
  4051. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4052. }
  4053. break;
  4054. /* case 117: // M117 display message
  4055. starpos = (strchr(strchr_pointer + 5,'*'));
  4056. if(starpos!=NULL)
  4057. *(starpos)='\0';
  4058. lcd_setstatus(strchr_pointer + 5);
  4059. break;*/
  4060. case 114: // M114
  4061. SERIAL_PROTOCOLPGM("X:");
  4062. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4063. SERIAL_PROTOCOLPGM(" Y:");
  4064. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4065. SERIAL_PROTOCOLPGM(" Z:");
  4066. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4067. SERIAL_PROTOCOLPGM(" E:");
  4068. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4069. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4070. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4071. SERIAL_PROTOCOLPGM(" Y:");
  4072. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4073. SERIAL_PROTOCOLPGM(" Z:");
  4074. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4075. SERIAL_PROTOCOLPGM(" E:");
  4076. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4077. SERIAL_PROTOCOLLN("");
  4078. break;
  4079. case 120: // M120
  4080. enable_endstops(false) ;
  4081. break;
  4082. case 121: // M121
  4083. enable_endstops(true) ;
  4084. break;
  4085. case 119: // M119
  4086. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4087. SERIAL_PROTOCOLLN("");
  4088. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4089. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4090. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4091. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4092. }else{
  4093. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4094. }
  4095. SERIAL_PROTOCOLLN("");
  4096. #endif
  4097. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4098. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4099. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4100. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4101. }else{
  4102. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4103. }
  4104. SERIAL_PROTOCOLLN("");
  4105. #endif
  4106. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4107. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4108. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4109. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4110. }else{
  4111. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4112. }
  4113. SERIAL_PROTOCOLLN("");
  4114. #endif
  4115. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4116. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4117. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4118. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4119. }else{
  4120. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4121. }
  4122. SERIAL_PROTOCOLLN("");
  4123. #endif
  4124. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4125. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4126. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4127. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4128. }else{
  4129. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4130. }
  4131. SERIAL_PROTOCOLLN("");
  4132. #endif
  4133. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4134. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4135. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4136. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4137. }else{
  4138. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4139. }
  4140. SERIAL_PROTOCOLLN("");
  4141. #endif
  4142. break;
  4143. //TODO: update for all axis, use for loop
  4144. #ifdef BLINKM
  4145. case 150: // M150
  4146. {
  4147. byte red;
  4148. byte grn;
  4149. byte blu;
  4150. if(code_seen('R')) red = code_value();
  4151. if(code_seen('U')) grn = code_value();
  4152. if(code_seen('B')) blu = code_value();
  4153. SendColors(red,grn,blu);
  4154. }
  4155. break;
  4156. #endif //BLINKM
  4157. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4158. {
  4159. tmp_extruder = active_extruder;
  4160. if(code_seen('T')) {
  4161. tmp_extruder = code_value();
  4162. if(tmp_extruder >= EXTRUDERS) {
  4163. SERIAL_ECHO_START;
  4164. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4165. break;
  4166. }
  4167. }
  4168. float area = .0;
  4169. if(code_seen('D')) {
  4170. float diameter = (float)code_value();
  4171. if (diameter == 0.0) {
  4172. // setting any extruder filament size disables volumetric on the assumption that
  4173. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4174. // for all extruders
  4175. volumetric_enabled = false;
  4176. } else {
  4177. filament_size[tmp_extruder] = (float)code_value();
  4178. // make sure all extruders have some sane value for the filament size
  4179. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4180. #if EXTRUDERS > 1
  4181. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4182. #if EXTRUDERS > 2
  4183. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4184. #endif
  4185. #endif
  4186. volumetric_enabled = true;
  4187. }
  4188. } else {
  4189. //reserved for setting filament diameter via UFID or filament measuring device
  4190. break;
  4191. }
  4192. calculate_volumetric_multipliers();
  4193. }
  4194. break;
  4195. case 201: // M201
  4196. for(int8_t i=0; i < NUM_AXIS; i++)
  4197. {
  4198. if(code_seen(axis_codes[i]))
  4199. {
  4200. max_acceleration_units_per_sq_second[i] = code_value();
  4201. }
  4202. }
  4203. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4204. reset_acceleration_rates();
  4205. break;
  4206. #if 0 // Not used for Sprinter/grbl gen6
  4207. case 202: // M202
  4208. for(int8_t i=0; i < NUM_AXIS; i++) {
  4209. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4210. }
  4211. break;
  4212. #endif
  4213. case 203: // M203 max feedrate mm/sec
  4214. for(int8_t i=0; i < NUM_AXIS; i++) {
  4215. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4216. }
  4217. break;
  4218. case 204: // M204 acclereration S normal moves T filmanent only moves
  4219. {
  4220. if(code_seen('S')) acceleration = code_value() ;
  4221. if(code_seen('T')) retract_acceleration = code_value() ;
  4222. }
  4223. break;
  4224. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4225. {
  4226. if(code_seen('S')) minimumfeedrate = code_value();
  4227. if(code_seen('T')) mintravelfeedrate = code_value();
  4228. if(code_seen('B')) minsegmenttime = code_value() ;
  4229. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4230. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4231. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4232. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4233. }
  4234. break;
  4235. case 206: // M206 additional homing offset
  4236. for(int8_t i=0; i < 3; i++)
  4237. {
  4238. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4239. }
  4240. break;
  4241. #ifdef FWRETRACT
  4242. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4243. {
  4244. if(code_seen('S'))
  4245. {
  4246. retract_length = code_value() ;
  4247. }
  4248. if(code_seen('F'))
  4249. {
  4250. retract_feedrate = code_value()/60 ;
  4251. }
  4252. if(code_seen('Z'))
  4253. {
  4254. retract_zlift = code_value() ;
  4255. }
  4256. }break;
  4257. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4258. {
  4259. if(code_seen('S'))
  4260. {
  4261. retract_recover_length = code_value() ;
  4262. }
  4263. if(code_seen('F'))
  4264. {
  4265. retract_recover_feedrate = code_value()/60 ;
  4266. }
  4267. }break;
  4268. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4269. {
  4270. if(code_seen('S'))
  4271. {
  4272. int t= code_value() ;
  4273. switch(t)
  4274. {
  4275. case 0:
  4276. {
  4277. autoretract_enabled=false;
  4278. retracted[0]=false;
  4279. #if EXTRUDERS > 1
  4280. retracted[1]=false;
  4281. #endif
  4282. #if EXTRUDERS > 2
  4283. retracted[2]=false;
  4284. #endif
  4285. }break;
  4286. case 1:
  4287. {
  4288. autoretract_enabled=true;
  4289. retracted[0]=false;
  4290. #if EXTRUDERS > 1
  4291. retracted[1]=false;
  4292. #endif
  4293. #if EXTRUDERS > 2
  4294. retracted[2]=false;
  4295. #endif
  4296. }break;
  4297. default:
  4298. SERIAL_ECHO_START;
  4299. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4300. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4301. SERIAL_ECHOLNPGM("\"(1)");
  4302. }
  4303. }
  4304. }break;
  4305. #endif // FWRETRACT
  4306. #if EXTRUDERS > 1
  4307. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4308. {
  4309. if(setTargetedHotend(218)){
  4310. break;
  4311. }
  4312. if(code_seen('X'))
  4313. {
  4314. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4315. }
  4316. if(code_seen('Y'))
  4317. {
  4318. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4319. }
  4320. SERIAL_ECHO_START;
  4321. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4322. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4323. {
  4324. SERIAL_ECHO(" ");
  4325. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4326. SERIAL_ECHO(",");
  4327. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4328. }
  4329. SERIAL_ECHOLN("");
  4330. }break;
  4331. #endif
  4332. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4333. {
  4334. if(code_seen('S'))
  4335. {
  4336. feedmultiply = code_value() ;
  4337. }
  4338. }
  4339. break;
  4340. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4341. {
  4342. if(code_seen('S'))
  4343. {
  4344. int tmp_code = code_value();
  4345. if (code_seen('T'))
  4346. {
  4347. if(setTargetedHotend(221)){
  4348. break;
  4349. }
  4350. extruder_multiply[tmp_extruder] = tmp_code;
  4351. }
  4352. else
  4353. {
  4354. extrudemultiply = tmp_code ;
  4355. }
  4356. }
  4357. }
  4358. break;
  4359. #ifndef _DISABLE_M42_M226
  4360. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4361. {
  4362. if(code_seen('P')){
  4363. int pin_number = code_value(); // pin number
  4364. int pin_state = -1; // required pin state - default is inverted
  4365. if(code_seen('S')) pin_state = code_value(); // required pin state
  4366. if(pin_state >= -1 && pin_state <= 1){
  4367. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4368. {
  4369. if (sensitive_pins[i] == pin_number)
  4370. {
  4371. pin_number = -1;
  4372. break;
  4373. }
  4374. }
  4375. if (pin_number > -1)
  4376. {
  4377. int target = LOW;
  4378. st_synchronize();
  4379. pinMode(pin_number, INPUT);
  4380. switch(pin_state){
  4381. case 1:
  4382. target = HIGH;
  4383. break;
  4384. case 0:
  4385. target = LOW;
  4386. break;
  4387. case -1:
  4388. target = !digitalRead(pin_number);
  4389. break;
  4390. }
  4391. while(digitalRead(pin_number) != target){
  4392. manage_heater();
  4393. manage_inactivity();
  4394. lcd_update();
  4395. }
  4396. }
  4397. }
  4398. }
  4399. }
  4400. break;
  4401. #endif //_DISABLE_M42_M226
  4402. #if NUM_SERVOS > 0
  4403. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4404. {
  4405. int servo_index = -1;
  4406. int servo_position = 0;
  4407. if (code_seen('P'))
  4408. servo_index = code_value();
  4409. if (code_seen('S')) {
  4410. servo_position = code_value();
  4411. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4412. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4413. servos[servo_index].attach(0);
  4414. #endif
  4415. servos[servo_index].write(servo_position);
  4416. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4417. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4418. servos[servo_index].detach();
  4419. #endif
  4420. }
  4421. else {
  4422. SERIAL_ECHO_START;
  4423. SERIAL_ECHO("Servo ");
  4424. SERIAL_ECHO(servo_index);
  4425. SERIAL_ECHOLN(" out of range");
  4426. }
  4427. }
  4428. else if (servo_index >= 0) {
  4429. SERIAL_PROTOCOL(MSG_OK);
  4430. SERIAL_PROTOCOL(" Servo ");
  4431. SERIAL_PROTOCOL(servo_index);
  4432. SERIAL_PROTOCOL(": ");
  4433. SERIAL_PROTOCOL(servos[servo_index].read());
  4434. SERIAL_PROTOCOLLN("");
  4435. }
  4436. }
  4437. break;
  4438. #endif // NUM_SERVOS > 0
  4439. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4440. case 300: // M300
  4441. {
  4442. int beepS = code_seen('S') ? code_value() : 110;
  4443. int beepP = code_seen('P') ? code_value() : 1000;
  4444. if (beepS > 0)
  4445. {
  4446. #if BEEPER > 0
  4447. tone(BEEPER, beepS);
  4448. delay(beepP);
  4449. noTone(BEEPER);
  4450. #elif defined(ULTRALCD)
  4451. lcd_buzz(beepS, beepP);
  4452. #elif defined(LCD_USE_I2C_BUZZER)
  4453. lcd_buzz(beepP, beepS);
  4454. #endif
  4455. }
  4456. else
  4457. {
  4458. delay(beepP);
  4459. }
  4460. }
  4461. break;
  4462. #endif // M300
  4463. #ifdef PIDTEMP
  4464. case 301: // M301
  4465. {
  4466. if(code_seen('P')) Kp = code_value();
  4467. if(code_seen('I')) Ki = scalePID_i(code_value());
  4468. if(code_seen('D')) Kd = scalePID_d(code_value());
  4469. #ifdef PID_ADD_EXTRUSION_RATE
  4470. if(code_seen('C')) Kc = code_value();
  4471. #endif
  4472. updatePID();
  4473. SERIAL_PROTOCOLRPGM(MSG_OK);
  4474. SERIAL_PROTOCOL(" p:");
  4475. SERIAL_PROTOCOL(Kp);
  4476. SERIAL_PROTOCOL(" i:");
  4477. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4478. SERIAL_PROTOCOL(" d:");
  4479. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4480. #ifdef PID_ADD_EXTRUSION_RATE
  4481. SERIAL_PROTOCOL(" c:");
  4482. //Kc does not have scaling applied above, or in resetting defaults
  4483. SERIAL_PROTOCOL(Kc);
  4484. #endif
  4485. SERIAL_PROTOCOLLN("");
  4486. }
  4487. break;
  4488. #endif //PIDTEMP
  4489. #ifdef PIDTEMPBED
  4490. case 304: // M304
  4491. {
  4492. if(code_seen('P')) bedKp = code_value();
  4493. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4494. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4495. updatePID();
  4496. SERIAL_PROTOCOLRPGM(MSG_OK);
  4497. SERIAL_PROTOCOL(" p:");
  4498. SERIAL_PROTOCOL(bedKp);
  4499. SERIAL_PROTOCOL(" i:");
  4500. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4501. SERIAL_PROTOCOL(" d:");
  4502. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4503. SERIAL_PROTOCOLLN("");
  4504. }
  4505. break;
  4506. #endif //PIDTEMP
  4507. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4508. {
  4509. #ifdef CHDK
  4510. SET_OUTPUT(CHDK);
  4511. WRITE(CHDK, HIGH);
  4512. chdkHigh = millis();
  4513. chdkActive = true;
  4514. #else
  4515. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4516. const uint8_t NUM_PULSES=16;
  4517. const float PULSE_LENGTH=0.01524;
  4518. for(int i=0; i < NUM_PULSES; i++) {
  4519. WRITE(PHOTOGRAPH_PIN, HIGH);
  4520. _delay_ms(PULSE_LENGTH);
  4521. WRITE(PHOTOGRAPH_PIN, LOW);
  4522. _delay_ms(PULSE_LENGTH);
  4523. }
  4524. delay(7.33);
  4525. for(int i=0; i < NUM_PULSES; i++) {
  4526. WRITE(PHOTOGRAPH_PIN, HIGH);
  4527. _delay_ms(PULSE_LENGTH);
  4528. WRITE(PHOTOGRAPH_PIN, LOW);
  4529. _delay_ms(PULSE_LENGTH);
  4530. }
  4531. #endif
  4532. #endif //chdk end if
  4533. }
  4534. break;
  4535. #ifdef DOGLCD
  4536. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4537. {
  4538. if (code_seen('C')) {
  4539. lcd_setcontrast( ((int)code_value())&63 );
  4540. }
  4541. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4542. SERIAL_PROTOCOL(lcd_contrast);
  4543. SERIAL_PROTOCOLLN("");
  4544. }
  4545. break;
  4546. #endif
  4547. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4548. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4549. {
  4550. float temp = .0;
  4551. if (code_seen('S')) temp=code_value();
  4552. set_extrude_min_temp(temp);
  4553. }
  4554. break;
  4555. #endif
  4556. case 303: // M303 PID autotune
  4557. {
  4558. float temp = 150.0;
  4559. int e=0;
  4560. int c=5;
  4561. if (code_seen('E')) e=code_value();
  4562. if (e<0)
  4563. temp=70;
  4564. if (code_seen('S')) temp=code_value();
  4565. if (code_seen('C')) c=code_value();
  4566. PID_autotune(temp, e, c);
  4567. }
  4568. break;
  4569. case 400: // M400 finish all moves
  4570. {
  4571. st_synchronize();
  4572. }
  4573. break;
  4574. #ifdef FILAMENT_SENSOR
  4575. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4576. {
  4577. #if (FILWIDTH_PIN > -1)
  4578. if(code_seen('N')) filament_width_nominal=code_value();
  4579. else{
  4580. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4581. SERIAL_PROTOCOLLN(filament_width_nominal);
  4582. }
  4583. #endif
  4584. }
  4585. break;
  4586. case 405: //M405 Turn on filament sensor for control
  4587. {
  4588. if(code_seen('D')) meas_delay_cm=code_value();
  4589. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4590. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4591. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4592. {
  4593. int temp_ratio = widthFil_to_size_ratio();
  4594. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4595. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4596. }
  4597. delay_index1=0;
  4598. delay_index2=0;
  4599. }
  4600. filament_sensor = true ;
  4601. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4602. //SERIAL_PROTOCOL(filament_width_meas);
  4603. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4604. //SERIAL_PROTOCOL(extrudemultiply);
  4605. }
  4606. break;
  4607. case 406: //M406 Turn off filament sensor for control
  4608. {
  4609. filament_sensor = false ;
  4610. }
  4611. break;
  4612. case 407: //M407 Display measured filament diameter
  4613. {
  4614. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4615. SERIAL_PROTOCOLLN(filament_width_meas);
  4616. }
  4617. break;
  4618. #endif
  4619. case 500: // M500 Store settings in EEPROM
  4620. {
  4621. Config_StoreSettings(EEPROM_OFFSET);
  4622. }
  4623. break;
  4624. case 501: // M501 Read settings from EEPROM
  4625. {
  4626. Config_RetrieveSettings(EEPROM_OFFSET);
  4627. }
  4628. break;
  4629. case 502: // M502 Revert to default settings
  4630. {
  4631. Config_ResetDefault();
  4632. }
  4633. break;
  4634. case 503: // M503 print settings currently in memory
  4635. {
  4636. Config_PrintSettings();
  4637. }
  4638. break;
  4639. case 509: //M509 Force language selection
  4640. {
  4641. lcd_force_language_selection();
  4642. SERIAL_ECHO_START;
  4643. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4644. }
  4645. break;
  4646. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4647. case 540:
  4648. {
  4649. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4650. }
  4651. break;
  4652. #endif
  4653. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4654. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4655. {
  4656. float value;
  4657. if (code_seen('Z'))
  4658. {
  4659. value = code_value();
  4660. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4661. {
  4662. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4663. SERIAL_ECHO_START;
  4664. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4665. SERIAL_PROTOCOLLN("");
  4666. }
  4667. else
  4668. {
  4669. SERIAL_ECHO_START;
  4670. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4671. SERIAL_ECHORPGM(MSG_Z_MIN);
  4672. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4673. SERIAL_ECHORPGM(MSG_Z_MAX);
  4674. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4675. SERIAL_PROTOCOLLN("");
  4676. }
  4677. }
  4678. else
  4679. {
  4680. SERIAL_ECHO_START;
  4681. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4682. SERIAL_ECHO(-zprobe_zoffset);
  4683. SERIAL_PROTOCOLLN("");
  4684. }
  4685. break;
  4686. }
  4687. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4688. #ifdef FILAMENTCHANGEENABLE
  4689. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4690. {
  4691. bool old_fsensor_enabled = fsensor_enabled;
  4692. fsensor_enabled = false; //temporary solution for unexpected restarting
  4693. st_synchronize();
  4694. float target[4];
  4695. float lastpos[4];
  4696. if (farm_mode)
  4697. {
  4698. prusa_statistics(22);
  4699. }
  4700. feedmultiplyBckp=feedmultiply;
  4701. int8_t TooLowZ = 0;
  4702. target[X_AXIS]=current_position[X_AXIS];
  4703. target[Y_AXIS]=current_position[Y_AXIS];
  4704. target[Z_AXIS]=current_position[Z_AXIS];
  4705. target[E_AXIS]=current_position[E_AXIS];
  4706. lastpos[X_AXIS]=current_position[X_AXIS];
  4707. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4708. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4709. lastpos[E_AXIS]=current_position[E_AXIS];
  4710. //Restract extruder
  4711. if(code_seen('E'))
  4712. {
  4713. target[E_AXIS]+= code_value();
  4714. }
  4715. else
  4716. {
  4717. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4718. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4719. #endif
  4720. }
  4721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4722. //Lift Z
  4723. if(code_seen('Z'))
  4724. {
  4725. target[Z_AXIS]+= code_value();
  4726. }
  4727. else
  4728. {
  4729. #ifdef FILAMENTCHANGE_ZADD
  4730. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4731. if(target[Z_AXIS] < 10){
  4732. target[Z_AXIS]+= 10 ;
  4733. TooLowZ = 1;
  4734. }else{
  4735. TooLowZ = 0;
  4736. }
  4737. #endif
  4738. }
  4739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4740. //Move XY to side
  4741. if(code_seen('X'))
  4742. {
  4743. target[X_AXIS]+= code_value();
  4744. }
  4745. else
  4746. {
  4747. #ifdef FILAMENTCHANGE_XPOS
  4748. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4749. #endif
  4750. }
  4751. if(code_seen('Y'))
  4752. {
  4753. target[Y_AXIS]= code_value();
  4754. }
  4755. else
  4756. {
  4757. #ifdef FILAMENTCHANGE_YPOS
  4758. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4759. #endif
  4760. }
  4761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4762. st_synchronize();
  4763. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4764. uint8_t cnt = 0;
  4765. int counterBeep = 0;
  4766. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4767. while (!lcd_clicked()) {
  4768. cnt++;
  4769. manage_heater();
  4770. manage_inactivity(true);
  4771. /*#ifdef SNMM
  4772. target[E_AXIS] += 0.002;
  4773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4774. #endif // SNMM*/
  4775. if (cnt == 0)
  4776. {
  4777. #if BEEPER > 0
  4778. if (counterBeep == 500) {
  4779. counterBeep = 0;
  4780. }
  4781. SET_OUTPUT(BEEPER);
  4782. if (counterBeep == 0) {
  4783. WRITE(BEEPER, HIGH);
  4784. }
  4785. if (counterBeep == 20) {
  4786. WRITE(BEEPER, LOW);
  4787. }
  4788. counterBeep++;
  4789. #else
  4790. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4791. lcd_buzz(1000 / 6, 100);
  4792. #else
  4793. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4794. #endif
  4795. #endif
  4796. }
  4797. }
  4798. WRITE(BEEPER, LOW);
  4799. lcd_change_fil_state = 0;
  4800. while (lcd_change_fil_state == 0) {
  4801. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4802. KEEPALIVE_STATE(IN_HANDLER);
  4803. custom_message = true;
  4804. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4805. // Unload filament
  4806. if (code_seen('L'))
  4807. {
  4808. target[E_AXIS] += code_value();
  4809. }
  4810. else
  4811. {
  4812. #ifdef SNMM
  4813. #else
  4814. #ifdef FILAMENTCHANGE_FINALRETRACT
  4815. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4816. #endif
  4817. #endif // SNMM
  4818. }
  4819. #ifdef SNMM
  4820. target[E_AXIS] += 12;
  4821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4822. target[E_AXIS] += 6;
  4823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4824. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4826. st_synchronize();
  4827. target[E_AXIS] += (FIL_COOLING);
  4828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4829. target[E_AXIS] += (FIL_COOLING*-1);
  4830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4831. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4833. st_synchronize();
  4834. #else
  4835. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4837. #endif // SNMM
  4838. //finish moves
  4839. st_synchronize();
  4840. //disable extruder steppers so filament can be removed
  4841. disable_e0();
  4842. disable_e1();
  4843. disable_e2();
  4844. delay(100);
  4845. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4846. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4847. //lcd_return_to_status();
  4848. lcd_update_enable(true);
  4849. }
  4850. //Wait for user to insert filament
  4851. lcd_wait_interact();
  4852. //load_filament_time = millis();
  4853. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4854. #ifdef PAT9125
  4855. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4856. #endif //PAT9125
  4857. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4858. while(!lcd_clicked())
  4859. {
  4860. manage_heater();
  4861. manage_inactivity(true);
  4862. #ifdef PAT9125
  4863. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4864. {
  4865. tone(BEEPER, 1000);
  4866. delay_keep_alive(50);
  4867. noTone(BEEPER);
  4868. break;
  4869. }
  4870. #endif //PAT9125
  4871. /*#ifdef SNMM
  4872. target[E_AXIS] += 0.002;
  4873. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4874. #endif // SNMM*/
  4875. }
  4876. #ifdef PAT9125
  4877. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  4878. #endif //PAT9125
  4879. //WRITE(BEEPER, LOW);
  4880. KEEPALIVE_STATE(IN_HANDLER);
  4881. #ifdef SNMM
  4882. display_loading();
  4883. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4884. do {
  4885. target[E_AXIS] += 0.002;
  4886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4887. delay_keep_alive(2);
  4888. } while (!lcd_clicked());
  4889. KEEPALIVE_STATE(IN_HANDLER);
  4890. /*if (millis() - load_filament_time > 2) {
  4891. load_filament_time = millis();
  4892. target[E_AXIS] += 0.001;
  4893. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4894. }*/
  4895. //Filament inserted
  4896. //Feed the filament to the end of nozzle quickly
  4897. st_synchronize();
  4898. target[E_AXIS] += bowden_length[snmm_extruder];
  4899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4900. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4902. target[E_AXIS] += 40;
  4903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4904. target[E_AXIS] += 10;
  4905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4906. #else
  4907. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4908. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4909. #endif // SNMM
  4910. //Extrude some filament
  4911. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4913. //Wait for user to check the state
  4914. lcd_change_fil_state = 0;
  4915. lcd_loading_filament();
  4916. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4917. lcd_change_fil_state = 0;
  4918. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4919. lcd_alright();
  4920. KEEPALIVE_STATE(IN_HANDLER);
  4921. switch(lcd_change_fil_state){
  4922. // Filament failed to load so load it again
  4923. case 2:
  4924. #ifdef SNMM
  4925. display_loading();
  4926. do {
  4927. target[E_AXIS] += 0.002;
  4928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4929. delay_keep_alive(2);
  4930. } while (!lcd_clicked());
  4931. st_synchronize();
  4932. target[E_AXIS] += bowden_length[snmm_extruder];
  4933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4934. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4935. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4936. target[E_AXIS] += 40;
  4937. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4938. target[E_AXIS] += 10;
  4939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4940. #else
  4941. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4942. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4943. #endif
  4944. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4946. lcd_loading_filament();
  4947. break;
  4948. // Filament loaded properly but color is not clear
  4949. case 3:
  4950. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4952. lcd_loading_color();
  4953. break;
  4954. // Everything good
  4955. default:
  4956. lcd_change_success();
  4957. lcd_update_enable(true);
  4958. break;
  4959. }
  4960. }
  4961. //Not let's go back to print
  4962. //Feed a little of filament to stabilize pressure
  4963. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4965. //Retract
  4966. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4968. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4969. //Move XY back
  4970. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4971. //Move Z back
  4972. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4973. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4974. //Unretract
  4975. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4976. //Set E position to original
  4977. plan_set_e_position(lastpos[E_AXIS]);
  4978. //Recover feed rate
  4979. feedmultiply=feedmultiplyBckp;
  4980. char cmd[9];
  4981. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4982. enquecommand(cmd);
  4983. lcd_setstatuspgm(WELCOME_MSG);
  4984. custom_message = false;
  4985. custom_message_type = 0;
  4986. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4987. #ifdef PAT9125
  4988. if (fsensor_M600)
  4989. {
  4990. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4991. st_synchronize();
  4992. while (!is_buffer_empty())
  4993. {
  4994. process_commands();
  4995. cmdqueue_pop_front();
  4996. }
  4997. fsensor_enable();
  4998. fsensor_restore_print_and_continue();
  4999. }
  5000. #endif //PAT9125
  5001. }
  5002. break;
  5003. #endif //FILAMENTCHANGEENABLE
  5004. case 601: {
  5005. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5006. }
  5007. break;
  5008. case 602: {
  5009. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5010. }
  5011. break;
  5012. #ifdef LIN_ADVANCE
  5013. case 900: // M900: Set LIN_ADVANCE options.
  5014. gcode_M900();
  5015. break;
  5016. #endif
  5017. case 907: // M907 Set digital trimpot motor current using axis codes.
  5018. {
  5019. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5020. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5021. if(code_seen('B')) digipot_current(4,code_value());
  5022. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5023. #endif
  5024. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5025. if(code_seen('X')) digipot_current(0, code_value());
  5026. #endif
  5027. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5028. if(code_seen('Z')) digipot_current(1, code_value());
  5029. #endif
  5030. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5031. if(code_seen('E')) digipot_current(2, code_value());
  5032. #endif
  5033. #ifdef DIGIPOT_I2C
  5034. // this one uses actual amps in floating point
  5035. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5036. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5037. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5038. #endif
  5039. }
  5040. break;
  5041. case 908: // M908 Control digital trimpot directly.
  5042. {
  5043. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5044. uint8_t channel,current;
  5045. if(code_seen('P')) channel=code_value();
  5046. if(code_seen('S')) current=code_value();
  5047. digitalPotWrite(channel, current);
  5048. #endif
  5049. }
  5050. break;
  5051. case 910: // M910 TMC2130 init
  5052. {
  5053. tmc2130_init();
  5054. }
  5055. break;
  5056. case 911: // M911 Set TMC2130 holding currents
  5057. {
  5058. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5059. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5060. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5061. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5062. }
  5063. break;
  5064. case 912: // M912 Set TMC2130 running currents
  5065. {
  5066. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5067. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5068. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5069. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5070. }
  5071. break;
  5072. case 913: // M913 Print TMC2130 currents
  5073. {
  5074. tmc2130_print_currents();
  5075. }
  5076. break;
  5077. case 914: // M914 Set normal mode
  5078. {
  5079. tmc2130_mode = TMC2130_MODE_NORMAL;
  5080. tmc2130_init();
  5081. }
  5082. break;
  5083. case 915: // M915 Set silent mode
  5084. {
  5085. tmc2130_mode = TMC2130_MODE_SILENT;
  5086. tmc2130_init();
  5087. }
  5088. break;
  5089. case 916: // M916 Set sg_thrs
  5090. {
  5091. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5092. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5093. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5094. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5095. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5096. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5097. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5098. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5099. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5100. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5101. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5102. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5103. }
  5104. break;
  5105. case 917: // M917 Set TMC2130 pwm_ampl
  5106. {
  5107. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5108. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5109. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5110. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5111. }
  5112. break;
  5113. case 918: // M918 Set TMC2130 pwm_grad
  5114. {
  5115. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5116. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5117. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5118. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5119. }
  5120. break;
  5121. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5122. {
  5123. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5124. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5125. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5126. if(code_seen('B')) microstep_mode(4,code_value());
  5127. microstep_readings();
  5128. #endif
  5129. }
  5130. break;
  5131. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5132. {
  5133. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5134. if(code_seen('S')) switch((int)code_value())
  5135. {
  5136. case 1:
  5137. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5138. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5139. break;
  5140. case 2:
  5141. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5142. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5143. break;
  5144. }
  5145. microstep_readings();
  5146. #endif
  5147. }
  5148. break;
  5149. case 701: //M701: load filament
  5150. {
  5151. gcode_M701();
  5152. }
  5153. break;
  5154. case 702:
  5155. {
  5156. #ifdef SNMM
  5157. if (code_seen('U')) {
  5158. extr_unload_used(); //unload all filaments which were used in current print
  5159. }
  5160. else if (code_seen('C')) {
  5161. extr_unload(); //unload just current filament
  5162. }
  5163. else {
  5164. extr_unload_all(); //unload all filaments
  5165. }
  5166. #else
  5167. bool old_fsensor_enabled = fsensor_enabled;
  5168. fsensor_enabled = false;
  5169. custom_message = true;
  5170. custom_message_type = 2;
  5171. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5172. // extr_unload2();
  5173. current_position[E_AXIS] -= 80;
  5174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5175. st_synchronize();
  5176. lcd_setstatuspgm(WELCOME_MSG);
  5177. custom_message = false;
  5178. custom_message_type = 0;
  5179. fsensor_enabled = old_fsensor_enabled;
  5180. #endif
  5181. }
  5182. break;
  5183. case 999: // M999: Restart after being stopped
  5184. Stopped = false;
  5185. lcd_reset_alert_level();
  5186. gcode_LastN = Stopped_gcode_LastN;
  5187. FlushSerialRequestResend();
  5188. break;
  5189. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5190. }
  5191. } // end if(code_seen('M')) (end of M codes)
  5192. else if(code_seen('T'))
  5193. {
  5194. int index;
  5195. st_synchronize();
  5196. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5197. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5198. SERIAL_ECHOLNPGM("Invalid T code.");
  5199. }
  5200. else {
  5201. if (*(strchr_pointer + index) == '?') {
  5202. tmp_extruder = choose_extruder_menu();
  5203. }
  5204. else {
  5205. tmp_extruder = code_value();
  5206. }
  5207. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5208. #ifdef SNMM
  5209. #ifdef LIN_ADVANCE
  5210. if (snmm_extruder != tmp_extruder)
  5211. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5212. #endif
  5213. snmm_extruder = tmp_extruder;
  5214. delay(100);
  5215. disable_e0();
  5216. disable_e1();
  5217. disable_e2();
  5218. pinMode(E_MUX0_PIN, OUTPUT);
  5219. pinMode(E_MUX1_PIN, OUTPUT);
  5220. pinMode(E_MUX2_PIN, OUTPUT);
  5221. delay(100);
  5222. SERIAL_ECHO_START;
  5223. SERIAL_ECHO("T:");
  5224. SERIAL_ECHOLN((int)tmp_extruder);
  5225. switch (tmp_extruder) {
  5226. case 1:
  5227. WRITE(E_MUX0_PIN, HIGH);
  5228. WRITE(E_MUX1_PIN, LOW);
  5229. WRITE(E_MUX2_PIN, LOW);
  5230. break;
  5231. case 2:
  5232. WRITE(E_MUX0_PIN, LOW);
  5233. WRITE(E_MUX1_PIN, HIGH);
  5234. WRITE(E_MUX2_PIN, LOW);
  5235. break;
  5236. case 3:
  5237. WRITE(E_MUX0_PIN, HIGH);
  5238. WRITE(E_MUX1_PIN, HIGH);
  5239. WRITE(E_MUX2_PIN, LOW);
  5240. break;
  5241. default:
  5242. WRITE(E_MUX0_PIN, LOW);
  5243. WRITE(E_MUX1_PIN, LOW);
  5244. WRITE(E_MUX2_PIN, LOW);
  5245. break;
  5246. }
  5247. delay(100);
  5248. #else
  5249. if (tmp_extruder >= EXTRUDERS) {
  5250. SERIAL_ECHO_START;
  5251. SERIAL_ECHOPGM("T");
  5252. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5253. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5254. }
  5255. else {
  5256. boolean make_move = false;
  5257. if (code_seen('F')) {
  5258. make_move = true;
  5259. next_feedrate = code_value();
  5260. if (next_feedrate > 0.0) {
  5261. feedrate = next_feedrate;
  5262. }
  5263. }
  5264. #if EXTRUDERS > 1
  5265. if (tmp_extruder != active_extruder) {
  5266. // Save current position to return to after applying extruder offset
  5267. memcpy(destination, current_position, sizeof(destination));
  5268. // Offset extruder (only by XY)
  5269. int i;
  5270. for (i = 0; i < 2; i++) {
  5271. current_position[i] = current_position[i] -
  5272. extruder_offset[i][active_extruder] +
  5273. extruder_offset[i][tmp_extruder];
  5274. }
  5275. // Set the new active extruder and position
  5276. active_extruder = tmp_extruder;
  5277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5278. // Move to the old position if 'F' was in the parameters
  5279. if (make_move && Stopped == false) {
  5280. prepare_move();
  5281. }
  5282. }
  5283. #endif
  5284. SERIAL_ECHO_START;
  5285. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5286. SERIAL_PROTOCOLLN((int)active_extruder);
  5287. }
  5288. #endif
  5289. }
  5290. } // end if(code_seen('T')) (end of T codes)
  5291. #ifdef DEBUG_DCODES
  5292. else if (code_seen('D')) // D codes (debug)
  5293. {
  5294. switch((int)code_value())
  5295. {
  5296. case -1: // D-1 - Endless loop
  5297. dcode__1(); break;
  5298. case 0: // D0 - Reset
  5299. dcode_0(); break;
  5300. case 1: // D1 - Clear EEPROM
  5301. dcode_1(); break;
  5302. case 2: // D2 - Read/Write RAM
  5303. dcode_2(); break;
  5304. case 3: // D3 - Read/Write EEPROM
  5305. dcode_3(); break;
  5306. case 4: // D4 - Read/Write PIN
  5307. dcode_4(); break;
  5308. case 5: // D5 - Read/Write FLASH
  5309. // dcode_5(); break;
  5310. break;
  5311. case 6: // D6 - Read/Write external FLASH
  5312. dcode_6(); break;
  5313. case 7: // D7 - Read/Write Bootloader
  5314. dcode_7(); break;
  5315. case 8: // D8 - Read/Write PINDA
  5316. dcode_8(); break;
  5317. case 9: // D9 - Read/Write ADC
  5318. dcode_9(); break;
  5319. case 10: // D10 - XYZ calibration = OK
  5320. dcode_10(); break;
  5321. case 12: //D12 - Reset failstat counters
  5322. dcode_12(); break;
  5323. case 2130: // D9125 - TMC2130
  5324. dcode_2130(); break;
  5325. case 9125: // D9125 - PAT9125
  5326. dcode_9125(); break;
  5327. }
  5328. }
  5329. #endif //DEBUG_DCODES
  5330. else
  5331. {
  5332. SERIAL_ECHO_START;
  5333. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5334. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5335. SERIAL_ECHOLNPGM("\"(2)");
  5336. }
  5337. KEEPALIVE_STATE(NOT_BUSY);
  5338. ClearToSend();
  5339. }
  5340. void FlushSerialRequestResend()
  5341. {
  5342. //char cmdbuffer[bufindr][100]="Resend:";
  5343. MYSERIAL.flush();
  5344. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5345. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5346. previous_millis_cmd = millis();
  5347. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5348. }
  5349. // Confirm the execution of a command, if sent from a serial line.
  5350. // Execution of a command from a SD card will not be confirmed.
  5351. void ClearToSend()
  5352. {
  5353. previous_millis_cmd = millis();
  5354. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5355. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5356. }
  5357. void get_coordinates()
  5358. {
  5359. bool seen[4]={false,false,false,false};
  5360. for(int8_t i=0; i < NUM_AXIS; i++) {
  5361. if(code_seen(axis_codes[i]))
  5362. {
  5363. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5364. seen[i]=true;
  5365. }
  5366. else destination[i] = current_position[i]; //Are these else lines really needed?
  5367. }
  5368. if(code_seen('F')) {
  5369. next_feedrate = code_value();
  5370. #ifdef MAX_SILENT_FEEDRATE
  5371. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5372. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5373. #endif //MAX_SILENT_FEEDRATE
  5374. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5375. }
  5376. }
  5377. void get_arc_coordinates()
  5378. {
  5379. #ifdef SF_ARC_FIX
  5380. bool relative_mode_backup = relative_mode;
  5381. relative_mode = true;
  5382. #endif
  5383. get_coordinates();
  5384. #ifdef SF_ARC_FIX
  5385. relative_mode=relative_mode_backup;
  5386. #endif
  5387. if(code_seen('I')) {
  5388. offset[0] = code_value();
  5389. }
  5390. else {
  5391. offset[0] = 0.0;
  5392. }
  5393. if(code_seen('J')) {
  5394. offset[1] = code_value();
  5395. }
  5396. else {
  5397. offset[1] = 0.0;
  5398. }
  5399. }
  5400. void clamp_to_software_endstops(float target[3])
  5401. {
  5402. #ifdef DEBUG_DISABLE_SWLIMITS
  5403. return;
  5404. #endif //DEBUG_DISABLE_SWLIMITS
  5405. world2machine_clamp(target[0], target[1]);
  5406. // Clamp the Z coordinate.
  5407. if (min_software_endstops) {
  5408. float negative_z_offset = 0;
  5409. #ifdef ENABLE_AUTO_BED_LEVELING
  5410. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5411. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5412. #endif
  5413. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5414. }
  5415. if (max_software_endstops) {
  5416. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5417. }
  5418. }
  5419. #ifdef MESH_BED_LEVELING
  5420. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5421. float dx = x - current_position[X_AXIS];
  5422. float dy = y - current_position[Y_AXIS];
  5423. float dz = z - current_position[Z_AXIS];
  5424. int n_segments = 0;
  5425. if (mbl.active) {
  5426. float len = abs(dx) + abs(dy);
  5427. if (len > 0)
  5428. // Split to 3cm segments or shorter.
  5429. n_segments = int(ceil(len / 30.f));
  5430. }
  5431. if (n_segments > 1) {
  5432. float de = e - current_position[E_AXIS];
  5433. for (int i = 1; i < n_segments; ++ i) {
  5434. float t = float(i) / float(n_segments);
  5435. plan_buffer_line(
  5436. current_position[X_AXIS] + t * dx,
  5437. current_position[Y_AXIS] + t * dy,
  5438. current_position[Z_AXIS] + t * dz,
  5439. current_position[E_AXIS] + t * de,
  5440. feed_rate, extruder);
  5441. }
  5442. }
  5443. // The rest of the path.
  5444. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5445. current_position[X_AXIS] = x;
  5446. current_position[Y_AXIS] = y;
  5447. current_position[Z_AXIS] = z;
  5448. current_position[E_AXIS] = e;
  5449. }
  5450. #endif // MESH_BED_LEVELING
  5451. void prepare_move()
  5452. {
  5453. clamp_to_software_endstops(destination);
  5454. previous_millis_cmd = millis();
  5455. // Do not use feedmultiply for E or Z only moves
  5456. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5458. }
  5459. else {
  5460. #ifdef MESH_BED_LEVELING
  5461. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5462. #else
  5463. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5464. #endif
  5465. }
  5466. for(int8_t i=0; i < NUM_AXIS; i++) {
  5467. current_position[i] = destination[i];
  5468. }
  5469. }
  5470. void prepare_arc_move(char isclockwise) {
  5471. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5472. // Trace the arc
  5473. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5474. // As far as the parser is concerned, the position is now == target. In reality the
  5475. // motion control system might still be processing the action and the real tool position
  5476. // in any intermediate location.
  5477. for(int8_t i=0; i < NUM_AXIS; i++) {
  5478. current_position[i] = destination[i];
  5479. }
  5480. previous_millis_cmd = millis();
  5481. }
  5482. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5483. #if defined(FAN_PIN)
  5484. #if CONTROLLERFAN_PIN == FAN_PIN
  5485. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5486. #endif
  5487. #endif
  5488. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5489. unsigned long lastMotorCheck = 0;
  5490. void controllerFan()
  5491. {
  5492. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5493. {
  5494. lastMotorCheck = millis();
  5495. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5496. #if EXTRUDERS > 2
  5497. || !READ(E2_ENABLE_PIN)
  5498. #endif
  5499. #if EXTRUDER > 1
  5500. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5501. || !READ(X2_ENABLE_PIN)
  5502. #endif
  5503. || !READ(E1_ENABLE_PIN)
  5504. #endif
  5505. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5506. {
  5507. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5508. }
  5509. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5510. {
  5511. digitalWrite(CONTROLLERFAN_PIN, 0);
  5512. analogWrite(CONTROLLERFAN_PIN, 0);
  5513. }
  5514. else
  5515. {
  5516. // allows digital or PWM fan output to be used (see M42 handling)
  5517. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5518. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5519. }
  5520. }
  5521. }
  5522. #endif
  5523. #ifdef TEMP_STAT_LEDS
  5524. static bool blue_led = false;
  5525. static bool red_led = false;
  5526. static uint32_t stat_update = 0;
  5527. void handle_status_leds(void) {
  5528. float max_temp = 0.0;
  5529. if(millis() > stat_update) {
  5530. stat_update += 500; // Update every 0.5s
  5531. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5532. max_temp = max(max_temp, degHotend(cur_extruder));
  5533. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5534. }
  5535. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5536. max_temp = max(max_temp, degTargetBed());
  5537. max_temp = max(max_temp, degBed());
  5538. #endif
  5539. if((max_temp > 55.0) && (red_led == false)) {
  5540. digitalWrite(STAT_LED_RED, 1);
  5541. digitalWrite(STAT_LED_BLUE, 0);
  5542. red_led = true;
  5543. blue_led = false;
  5544. }
  5545. if((max_temp < 54.0) && (blue_led == false)) {
  5546. digitalWrite(STAT_LED_RED, 0);
  5547. digitalWrite(STAT_LED_BLUE, 1);
  5548. red_led = false;
  5549. blue_led = true;
  5550. }
  5551. }
  5552. }
  5553. #endif
  5554. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5555. {
  5556. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && (current_temperature[0] > EXTRUDE_MINTEMP))
  5557. {
  5558. if (fsensor_autoload_enabled)
  5559. {
  5560. if (fsensor_check_autoload())
  5561. {
  5562. fsensor_autoload_check_stop();
  5563. tone(BEEPER, 1000);
  5564. delay_keep_alive(50);
  5565. noTone(BEEPER);
  5566. enquecommand_front_P((PSTR("M701")));
  5567. }
  5568. }
  5569. else
  5570. fsensor_autoload_check_start();
  5571. }
  5572. else
  5573. if (fsensor_autoload_enabled)
  5574. fsensor_autoload_check_stop();
  5575. #if defined(KILL_PIN) && KILL_PIN > -1
  5576. static int killCount = 0; // make the inactivity button a bit less responsive
  5577. const int KILL_DELAY = 10000;
  5578. #endif
  5579. if(buflen < (BUFSIZE-1)){
  5580. get_command();
  5581. }
  5582. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5583. if(max_inactive_time)
  5584. kill("", 4);
  5585. if(stepper_inactive_time) {
  5586. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5587. {
  5588. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5589. disable_x();
  5590. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5591. disable_y();
  5592. disable_z();
  5593. disable_e0();
  5594. disable_e1();
  5595. disable_e2();
  5596. }
  5597. }
  5598. }
  5599. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5600. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5601. {
  5602. chdkActive = false;
  5603. WRITE(CHDK, LOW);
  5604. }
  5605. #endif
  5606. #if defined(KILL_PIN) && KILL_PIN > -1
  5607. // Check if the kill button was pressed and wait just in case it was an accidental
  5608. // key kill key press
  5609. // -------------------------------------------------------------------------------
  5610. if( 0 == READ(KILL_PIN) )
  5611. {
  5612. killCount++;
  5613. }
  5614. else if (killCount > 0)
  5615. {
  5616. killCount--;
  5617. }
  5618. // Exceeded threshold and we can confirm that it was not accidental
  5619. // KILL the machine
  5620. // ----------------------------------------------------------------
  5621. if ( killCount >= KILL_DELAY)
  5622. {
  5623. kill("", 5);
  5624. }
  5625. #endif
  5626. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5627. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5628. #endif
  5629. #ifdef EXTRUDER_RUNOUT_PREVENT
  5630. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5631. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5632. {
  5633. bool oldstatus=READ(E0_ENABLE_PIN);
  5634. enable_e0();
  5635. float oldepos=current_position[E_AXIS];
  5636. float oldedes=destination[E_AXIS];
  5637. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5638. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5639. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5640. current_position[E_AXIS]=oldepos;
  5641. destination[E_AXIS]=oldedes;
  5642. plan_set_e_position(oldepos);
  5643. previous_millis_cmd=millis();
  5644. st_synchronize();
  5645. WRITE(E0_ENABLE_PIN,oldstatus);
  5646. }
  5647. #endif
  5648. #ifdef TEMP_STAT_LEDS
  5649. handle_status_leds();
  5650. #endif
  5651. check_axes_activity();
  5652. }
  5653. void kill(const char *full_screen_message, unsigned char id)
  5654. {
  5655. SERIAL_ECHOPGM("KILL: ");
  5656. MYSERIAL.println(int(id));
  5657. //return;
  5658. cli(); // Stop interrupts
  5659. disable_heater();
  5660. disable_x();
  5661. // SERIAL_ECHOLNPGM("kill - disable Y");
  5662. disable_y();
  5663. disable_z();
  5664. disable_e0();
  5665. disable_e1();
  5666. disable_e2();
  5667. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5668. pinMode(PS_ON_PIN,INPUT);
  5669. #endif
  5670. SERIAL_ERROR_START;
  5671. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5672. if (full_screen_message != NULL) {
  5673. SERIAL_ERRORLNRPGM(full_screen_message);
  5674. lcd_display_message_fullscreen_P(full_screen_message);
  5675. } else {
  5676. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5677. }
  5678. // FMC small patch to update the LCD before ending
  5679. sei(); // enable interrupts
  5680. for ( int i=5; i--; lcd_update())
  5681. {
  5682. delay(200);
  5683. }
  5684. cli(); // disable interrupts
  5685. suicide();
  5686. while(1)
  5687. {
  5688. wdt_reset();
  5689. /* Intentionally left empty */
  5690. } // Wait for reset
  5691. }
  5692. void Stop()
  5693. {
  5694. disable_heater();
  5695. if(Stopped == false) {
  5696. Stopped = true;
  5697. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5698. SERIAL_ERROR_START;
  5699. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5700. LCD_MESSAGERPGM(MSG_STOPPED);
  5701. }
  5702. }
  5703. bool IsStopped() { return Stopped; };
  5704. #ifdef FAST_PWM_FAN
  5705. void setPwmFrequency(uint8_t pin, int val)
  5706. {
  5707. val &= 0x07;
  5708. switch(digitalPinToTimer(pin))
  5709. {
  5710. #if defined(TCCR0A)
  5711. case TIMER0A:
  5712. case TIMER0B:
  5713. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5714. // TCCR0B |= val;
  5715. break;
  5716. #endif
  5717. #if defined(TCCR1A)
  5718. case TIMER1A:
  5719. case TIMER1B:
  5720. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5721. // TCCR1B |= val;
  5722. break;
  5723. #endif
  5724. #if defined(TCCR2)
  5725. case TIMER2:
  5726. case TIMER2:
  5727. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5728. TCCR2 |= val;
  5729. break;
  5730. #endif
  5731. #if defined(TCCR2A)
  5732. case TIMER2A:
  5733. case TIMER2B:
  5734. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5735. TCCR2B |= val;
  5736. break;
  5737. #endif
  5738. #if defined(TCCR3A)
  5739. case TIMER3A:
  5740. case TIMER3B:
  5741. case TIMER3C:
  5742. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5743. TCCR3B |= val;
  5744. break;
  5745. #endif
  5746. #if defined(TCCR4A)
  5747. case TIMER4A:
  5748. case TIMER4B:
  5749. case TIMER4C:
  5750. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5751. TCCR4B |= val;
  5752. break;
  5753. #endif
  5754. #if defined(TCCR5A)
  5755. case TIMER5A:
  5756. case TIMER5B:
  5757. case TIMER5C:
  5758. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5759. TCCR5B |= val;
  5760. break;
  5761. #endif
  5762. }
  5763. }
  5764. #endif //FAST_PWM_FAN
  5765. bool setTargetedHotend(int code){
  5766. tmp_extruder = active_extruder;
  5767. if(code_seen('T')) {
  5768. tmp_extruder = code_value();
  5769. if(tmp_extruder >= EXTRUDERS) {
  5770. SERIAL_ECHO_START;
  5771. switch(code){
  5772. case 104:
  5773. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5774. break;
  5775. case 105:
  5776. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5777. break;
  5778. case 109:
  5779. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5780. break;
  5781. case 218:
  5782. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5783. break;
  5784. case 221:
  5785. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5786. break;
  5787. }
  5788. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5789. return true;
  5790. }
  5791. }
  5792. return false;
  5793. }
  5794. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5795. {
  5796. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5797. {
  5798. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5799. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5800. }
  5801. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5802. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5803. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5804. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5805. total_filament_used = 0;
  5806. }
  5807. float calculate_volumetric_multiplier(float diameter) {
  5808. float area = .0;
  5809. float radius = .0;
  5810. radius = diameter * .5;
  5811. if (! volumetric_enabled || radius == 0) {
  5812. area = 1;
  5813. }
  5814. else {
  5815. area = M_PI * pow(radius, 2);
  5816. }
  5817. return 1.0 / area;
  5818. }
  5819. void calculate_volumetric_multipliers() {
  5820. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5821. #if EXTRUDERS > 1
  5822. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5823. #if EXTRUDERS > 2
  5824. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5825. #endif
  5826. #endif
  5827. }
  5828. void delay_keep_alive(unsigned int ms)
  5829. {
  5830. for (;;) {
  5831. manage_heater();
  5832. // Manage inactivity, but don't disable steppers on timeout.
  5833. manage_inactivity(true);
  5834. lcd_update();
  5835. if (ms == 0)
  5836. break;
  5837. else if (ms >= 50) {
  5838. delay(50);
  5839. ms -= 50;
  5840. } else {
  5841. delay(ms);
  5842. ms = 0;
  5843. }
  5844. }
  5845. }
  5846. void wait_for_heater(long codenum) {
  5847. #ifdef TEMP_RESIDENCY_TIME
  5848. long residencyStart;
  5849. residencyStart = -1;
  5850. /* continue to loop until we have reached the target temp
  5851. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5852. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5853. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5854. #else
  5855. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5856. #endif //TEMP_RESIDENCY_TIME
  5857. if ((millis() - codenum) > 1000UL)
  5858. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5859. if (!farm_mode) {
  5860. SERIAL_PROTOCOLPGM("T:");
  5861. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5862. SERIAL_PROTOCOLPGM(" E:");
  5863. SERIAL_PROTOCOL((int)tmp_extruder);
  5864. #ifdef TEMP_RESIDENCY_TIME
  5865. SERIAL_PROTOCOLPGM(" W:");
  5866. if (residencyStart > -1)
  5867. {
  5868. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5869. SERIAL_PROTOCOLLN(codenum);
  5870. }
  5871. else
  5872. {
  5873. SERIAL_PROTOCOLLN("?");
  5874. }
  5875. }
  5876. #else
  5877. SERIAL_PROTOCOLLN("");
  5878. #endif
  5879. codenum = millis();
  5880. }
  5881. manage_heater();
  5882. manage_inactivity();
  5883. lcd_update();
  5884. #ifdef TEMP_RESIDENCY_TIME
  5885. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5886. or when current temp falls outside the hysteresis after target temp was reached */
  5887. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5888. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5889. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5890. {
  5891. residencyStart = millis();
  5892. }
  5893. #endif //TEMP_RESIDENCY_TIME
  5894. }
  5895. }
  5896. void check_babystep() {
  5897. int babystep_z;
  5898. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5899. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5900. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5901. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5902. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5903. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5904. lcd_update_enable(true);
  5905. }
  5906. }
  5907. #ifdef DIS
  5908. void d_setup()
  5909. {
  5910. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5911. pinMode(D_DATA, INPUT_PULLUP);
  5912. pinMode(D_REQUIRE, OUTPUT);
  5913. digitalWrite(D_REQUIRE, HIGH);
  5914. }
  5915. float d_ReadData()
  5916. {
  5917. int digit[13];
  5918. String mergeOutput;
  5919. float output;
  5920. digitalWrite(D_REQUIRE, HIGH);
  5921. for (int i = 0; i<13; i++)
  5922. {
  5923. for (int j = 0; j < 4; j++)
  5924. {
  5925. while (digitalRead(D_DATACLOCK) == LOW) {}
  5926. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5927. bitWrite(digit[i], j, digitalRead(D_DATA));
  5928. }
  5929. }
  5930. digitalWrite(D_REQUIRE, LOW);
  5931. mergeOutput = "";
  5932. output = 0;
  5933. for (int r = 5; r <= 10; r++) //Merge digits
  5934. {
  5935. mergeOutput += digit[r];
  5936. }
  5937. output = mergeOutput.toFloat();
  5938. if (digit[4] == 8) //Handle sign
  5939. {
  5940. output *= -1;
  5941. }
  5942. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5943. {
  5944. output /= 10;
  5945. }
  5946. return output;
  5947. }
  5948. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5949. int t1 = 0;
  5950. int t_delay = 0;
  5951. int digit[13];
  5952. int m;
  5953. char str[3];
  5954. //String mergeOutput;
  5955. char mergeOutput[15];
  5956. float output;
  5957. int mesh_point = 0; //index number of calibration point
  5958. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5959. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5960. float mesh_home_z_search = 4;
  5961. float row[x_points_num];
  5962. int ix = 0;
  5963. int iy = 0;
  5964. char* filename_wldsd = "wldsd.txt";
  5965. char data_wldsd[70];
  5966. char numb_wldsd[10];
  5967. d_setup();
  5968. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5969. // We don't know where we are! HOME!
  5970. // Push the commands to the front of the message queue in the reverse order!
  5971. // There shall be always enough space reserved for these commands.
  5972. repeatcommand_front(); // repeat G80 with all its parameters
  5973. enquecommand_front_P((PSTR("G28 W0")));
  5974. enquecommand_front_P((PSTR("G1 Z5")));
  5975. return;
  5976. }
  5977. bool custom_message_old = custom_message;
  5978. unsigned int custom_message_type_old = custom_message_type;
  5979. unsigned int custom_message_state_old = custom_message_state;
  5980. custom_message = true;
  5981. custom_message_type = 1;
  5982. custom_message_state = (x_points_num * y_points_num) + 10;
  5983. lcd_update(1);
  5984. mbl.reset();
  5985. babystep_undo();
  5986. card.openFile(filename_wldsd, false);
  5987. current_position[Z_AXIS] = mesh_home_z_search;
  5988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5989. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5990. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5991. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5992. setup_for_endstop_move(false);
  5993. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5994. SERIAL_PROTOCOL(x_points_num);
  5995. SERIAL_PROTOCOLPGM(",");
  5996. SERIAL_PROTOCOL(y_points_num);
  5997. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5998. SERIAL_PROTOCOL(mesh_home_z_search);
  5999. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6000. SERIAL_PROTOCOL(x_dimension);
  6001. SERIAL_PROTOCOLPGM(",");
  6002. SERIAL_PROTOCOL(y_dimension);
  6003. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6004. while (mesh_point != x_points_num * y_points_num) {
  6005. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6006. iy = mesh_point / x_points_num;
  6007. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6008. float z0 = 0.f;
  6009. current_position[Z_AXIS] = mesh_home_z_search;
  6010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6011. st_synchronize();
  6012. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6013. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6015. st_synchronize();
  6016. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6017. break;
  6018. card.closefile();
  6019. }
  6020. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6021. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6022. //strcat(data_wldsd, numb_wldsd);
  6023. //MYSERIAL.println(data_wldsd);
  6024. //delay(1000);
  6025. //delay(3000);
  6026. //t1 = millis();
  6027. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6028. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6029. memset(digit, 0, sizeof(digit));
  6030. //cli();
  6031. digitalWrite(D_REQUIRE, LOW);
  6032. for (int i = 0; i<13; i++)
  6033. {
  6034. //t1 = millis();
  6035. for (int j = 0; j < 4; j++)
  6036. {
  6037. while (digitalRead(D_DATACLOCK) == LOW) {}
  6038. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6039. bitWrite(digit[i], j, digitalRead(D_DATA));
  6040. }
  6041. //t_delay = (millis() - t1);
  6042. //SERIAL_PROTOCOLPGM(" ");
  6043. //SERIAL_PROTOCOL_F(t_delay, 5);
  6044. //SERIAL_PROTOCOLPGM(" ");
  6045. }
  6046. //sei();
  6047. digitalWrite(D_REQUIRE, HIGH);
  6048. mergeOutput[0] = '\0';
  6049. output = 0;
  6050. for (int r = 5; r <= 10; r++) //Merge digits
  6051. {
  6052. sprintf(str, "%d", digit[r]);
  6053. strcat(mergeOutput, str);
  6054. }
  6055. output = atof(mergeOutput);
  6056. if (digit[4] == 8) //Handle sign
  6057. {
  6058. output *= -1;
  6059. }
  6060. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6061. {
  6062. output *= 0.1;
  6063. }
  6064. //output = d_ReadData();
  6065. //row[ix] = current_position[Z_AXIS];
  6066. memset(data_wldsd, 0, sizeof(data_wldsd));
  6067. for (int i = 0; i <3; i++) {
  6068. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6069. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6070. strcat(data_wldsd, numb_wldsd);
  6071. strcat(data_wldsd, ";");
  6072. }
  6073. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6074. dtostrf(output, 8, 5, numb_wldsd);
  6075. strcat(data_wldsd, numb_wldsd);
  6076. //strcat(data_wldsd, ";");
  6077. card.write_command(data_wldsd);
  6078. //row[ix] = d_ReadData();
  6079. row[ix] = output; // current_position[Z_AXIS];
  6080. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6081. for (int i = 0; i < x_points_num; i++) {
  6082. SERIAL_PROTOCOLPGM(" ");
  6083. SERIAL_PROTOCOL_F(row[i], 5);
  6084. }
  6085. SERIAL_PROTOCOLPGM("\n");
  6086. }
  6087. custom_message_state--;
  6088. mesh_point++;
  6089. lcd_update(1);
  6090. }
  6091. card.closefile();
  6092. }
  6093. #endif
  6094. void temp_compensation_start() {
  6095. custom_message = true;
  6096. custom_message_type = 5;
  6097. custom_message_state = PINDA_HEAT_T + 1;
  6098. lcd_update(2);
  6099. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6100. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6101. }
  6102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6103. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6104. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6105. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6107. st_synchronize();
  6108. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6109. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6110. delay_keep_alive(1000);
  6111. custom_message_state = PINDA_HEAT_T - i;
  6112. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6113. else lcd_update(1);
  6114. }
  6115. custom_message_type = 0;
  6116. custom_message_state = 0;
  6117. custom_message = false;
  6118. }
  6119. void temp_compensation_apply() {
  6120. int i_add;
  6121. int compensation_value;
  6122. int z_shift = 0;
  6123. float z_shift_mm;
  6124. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6125. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6126. i_add = (target_temperature_bed - 60) / 10;
  6127. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6128. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6129. }else {
  6130. //interpolation
  6131. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6132. }
  6133. SERIAL_PROTOCOLPGM("\n");
  6134. SERIAL_PROTOCOLPGM("Z shift applied:");
  6135. MYSERIAL.print(z_shift_mm);
  6136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6137. st_synchronize();
  6138. plan_set_z_position(current_position[Z_AXIS]);
  6139. }
  6140. else {
  6141. //we have no temp compensation data
  6142. }
  6143. }
  6144. float temp_comp_interpolation(float inp_temperature) {
  6145. //cubic spline interpolation
  6146. int n, i, j, k;
  6147. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6148. int shift[10];
  6149. int temp_C[10];
  6150. n = 6; //number of measured points
  6151. shift[0] = 0;
  6152. for (i = 0; i < n; i++) {
  6153. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6154. temp_C[i] = 50 + i * 10; //temperature in C
  6155. #ifdef PINDA_THERMISTOR
  6156. temp_C[i] = 35 + i * 5; //temperature in C
  6157. #else
  6158. temp_C[i] = 50 + i * 10; //temperature in C
  6159. #endif
  6160. x[i] = (float)temp_C[i];
  6161. f[i] = (float)shift[i];
  6162. }
  6163. if (inp_temperature < x[0]) return 0;
  6164. for (i = n - 1; i>0; i--) {
  6165. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6166. h[i - 1] = x[i] - x[i - 1];
  6167. }
  6168. //*********** formation of h, s , f matrix **************
  6169. for (i = 1; i<n - 1; i++) {
  6170. m[i][i] = 2 * (h[i - 1] + h[i]);
  6171. if (i != 1) {
  6172. m[i][i - 1] = h[i - 1];
  6173. m[i - 1][i] = h[i - 1];
  6174. }
  6175. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6176. }
  6177. //*********** forward elimination **************
  6178. for (i = 1; i<n - 2; i++) {
  6179. temp = (m[i + 1][i] / m[i][i]);
  6180. for (j = 1; j <= n - 1; j++)
  6181. m[i + 1][j] -= temp*m[i][j];
  6182. }
  6183. //*********** backward substitution *********
  6184. for (i = n - 2; i>0; i--) {
  6185. sum = 0;
  6186. for (j = i; j <= n - 2; j++)
  6187. sum += m[i][j] * s[j];
  6188. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6189. }
  6190. for (i = 0; i<n - 1; i++)
  6191. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6192. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6193. b = s[i] / 2;
  6194. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6195. d = f[i];
  6196. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6197. }
  6198. return sum;
  6199. }
  6200. #ifdef PINDA_THERMISTOR
  6201. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6202. {
  6203. if (!temp_cal_active) return 0;
  6204. if (!calibration_status_pinda()) return 0;
  6205. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6206. }
  6207. #endif //PINDA_THERMISTOR
  6208. void long_pause() //long pause print
  6209. {
  6210. st_synchronize();
  6211. //save currently set parameters to global variables
  6212. saved_feedmultiply = feedmultiply;
  6213. HotendTempBckp = degTargetHotend(active_extruder);
  6214. fanSpeedBckp = fanSpeed;
  6215. start_pause_print = millis();
  6216. //save position
  6217. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6218. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6219. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6220. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6221. //retract
  6222. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6224. //lift z
  6225. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6226. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6227. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6228. //set nozzle target temperature to 0
  6229. setTargetHotend(0, 0);
  6230. setTargetHotend(0, 1);
  6231. setTargetHotend(0, 2);
  6232. //Move XY to side
  6233. current_position[X_AXIS] = X_PAUSE_POS;
  6234. current_position[Y_AXIS] = Y_PAUSE_POS;
  6235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6236. // Turn off the print fan
  6237. fanSpeed = 0;
  6238. st_synchronize();
  6239. }
  6240. void serialecho_temperatures() {
  6241. float tt = degHotend(active_extruder);
  6242. SERIAL_PROTOCOLPGM("T:");
  6243. SERIAL_PROTOCOL(tt);
  6244. SERIAL_PROTOCOLPGM(" E:");
  6245. SERIAL_PROTOCOL((int)active_extruder);
  6246. SERIAL_PROTOCOLPGM(" B:");
  6247. SERIAL_PROTOCOL_F(degBed(), 1);
  6248. SERIAL_PROTOCOLLN("");
  6249. }
  6250. extern uint32_t sdpos_atomic;
  6251. void uvlo_()
  6252. {
  6253. unsigned long time_start = millis();
  6254. bool sd_print = card.sdprinting;
  6255. // Conserve power as soon as possible.
  6256. disable_x();
  6257. disable_y();
  6258. tmc2130_set_current_h(Z_AXIS, 12);
  6259. tmc2130_set_current_r(Z_AXIS, 12);
  6260. tmc2130_set_current_h(E_AXIS, 20);
  6261. tmc2130_set_current_r(E_AXIS, 20);
  6262. // Indicate that the interrupt has been triggered.
  6263. SERIAL_ECHOLNPGM("UVLO");
  6264. // Read out the current Z motor microstep counter. This will be later used
  6265. // for reaching the zero full step before powering off.
  6266. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6267. // Calculate the file position, from which to resume this print.
  6268. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6269. {
  6270. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6271. sd_position -= sdlen_planner;
  6272. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6273. sd_position -= sdlen_cmdqueue;
  6274. if (sd_position < 0) sd_position = 0;
  6275. }
  6276. // Backup the feedrate in mm/min.
  6277. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6278. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6279. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6280. // are in action.
  6281. planner_abort_hard();
  6282. // Store the current extruder position.
  6283. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6284. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6285. // Clean the input command queue.
  6286. cmdqueue_reset();
  6287. card.sdprinting = false;
  6288. // card.closefile();
  6289. // Enable stepper driver interrupt to move Z axis.
  6290. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6291. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6292. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6293. sei();
  6294. plan_buffer_line(
  6295. current_position[X_AXIS],
  6296. current_position[Y_AXIS],
  6297. current_position[Z_AXIS],
  6298. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6299. 400, active_extruder);
  6300. plan_buffer_line(
  6301. current_position[X_AXIS],
  6302. current_position[Y_AXIS],
  6303. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6304. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6305. 40, active_extruder);
  6306. // Move Z up to the next 0th full step.
  6307. // Write the file position.
  6308. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6309. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6310. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6311. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6312. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6313. // Scale the z value to 1u resolution.
  6314. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6315. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6316. }
  6317. // Read out the current Z motor microstep counter. This will be later used
  6318. // for reaching the zero full step before powering off.
  6319. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6320. // Store the current position.
  6321. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6322. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6323. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6324. // Store the current feed rate, temperatures and fan speed.
  6325. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6326. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6327. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6328. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6329. // Finaly store the "power outage" flag.
  6330. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6331. st_synchronize();
  6332. SERIAL_ECHOPGM("stps");
  6333. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6334. #if 0
  6335. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6336. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6338. st_synchronize();
  6339. #endif
  6340. disable_z();
  6341. // Increment power failure counter
  6342. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6343. power_count++;
  6344. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6345. SERIAL_ECHOLNPGM("UVLO - end");
  6346. MYSERIAL.println(millis() - time_start);
  6347. cli();
  6348. while(1);
  6349. }
  6350. void setup_fan_interrupt() {
  6351. //INT7
  6352. DDRE &= ~(1 << 7); //input pin
  6353. PORTE &= ~(1 << 7); //no internal pull-up
  6354. //start with sensing rising edge
  6355. EICRB &= ~(1 << 6);
  6356. EICRB |= (1 << 7);
  6357. //enable INT7 interrupt
  6358. EIMSK |= (1 << 7);
  6359. }
  6360. ISR(INT7_vect) {
  6361. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6362. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6363. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6364. t_fan_rising_edge = millis();
  6365. }
  6366. else { //interrupt was triggered by falling edge
  6367. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6368. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6369. }
  6370. }
  6371. EICRB ^= (1 << 6); //change edge
  6372. }
  6373. void setup_uvlo_interrupt() {
  6374. DDRE &= ~(1 << 4); //input pin
  6375. PORTE &= ~(1 << 4); //no internal pull-up
  6376. //sensing falling edge
  6377. EICRB |= (1 << 0);
  6378. EICRB &= ~(1 << 1);
  6379. //enable INT4 interrupt
  6380. EIMSK |= (1 << 4);
  6381. }
  6382. ISR(INT4_vect) {
  6383. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6384. SERIAL_ECHOLNPGM("INT4");
  6385. if (IS_SD_PRINTING) uvlo_();
  6386. }
  6387. void recover_print(uint8_t automatic) {
  6388. char cmd[30];
  6389. lcd_update_enable(true);
  6390. lcd_update(2);
  6391. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6392. recover_machine_state_after_power_panic();
  6393. // Set the target bed and nozzle temperatures.
  6394. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6395. enquecommand(cmd);
  6396. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6397. enquecommand(cmd);
  6398. // Lift the print head, so one may remove the excess priming material.
  6399. if (current_position[Z_AXIS] < 25)
  6400. enquecommand_P(PSTR("G1 Z25 F800"));
  6401. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6402. enquecommand_P(PSTR("G28 X Y"));
  6403. // Set the target bed and nozzle temperatures and wait.
  6404. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6405. enquecommand(cmd);
  6406. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6407. enquecommand(cmd);
  6408. enquecommand_P(PSTR("M83")); //E axis relative mode
  6409. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6410. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6411. if(automatic == 0){
  6412. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6413. }
  6414. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6415. // Mark the power panic status as inactive.
  6416. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6417. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6418. delay_keep_alive(1000);
  6419. }*/
  6420. SERIAL_ECHOPGM("After waiting for temp:");
  6421. SERIAL_ECHOPGM("Current position X_AXIS:");
  6422. MYSERIAL.println(current_position[X_AXIS]);
  6423. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6424. MYSERIAL.println(current_position[Y_AXIS]);
  6425. // Restart the print.
  6426. restore_print_from_eeprom();
  6427. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6428. MYSERIAL.print(current_position[Z_AXIS]);
  6429. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6430. MYSERIAL.print(current_position[E_AXIS]);
  6431. }
  6432. void recover_machine_state_after_power_panic()
  6433. {
  6434. char cmd[30];
  6435. // 1) Recover the logical cordinates at the time of the power panic.
  6436. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6437. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6438. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6439. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6440. // The current position after power panic is moved to the next closest 0th full step.
  6441. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6442. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6443. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6444. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6445. sprintf_P(cmd, PSTR("G92 E"));
  6446. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6447. enquecommand(cmd);
  6448. }
  6449. memcpy(destination, current_position, sizeof(destination));
  6450. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6451. print_world_coordinates();
  6452. // 2) Initialize the logical to physical coordinate system transformation.
  6453. world2machine_initialize();
  6454. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6455. mbl.active = false;
  6456. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6457. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6458. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6459. // Scale the z value to 10u resolution.
  6460. int16_t v;
  6461. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6462. if (v != 0)
  6463. mbl.active = true;
  6464. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6465. }
  6466. if (mbl.active)
  6467. mbl.upsample_3x3();
  6468. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6469. print_mesh_bed_leveling_table();
  6470. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6471. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6472. babystep_load();
  6473. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6474. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6475. // 6) Power up the motors, mark their positions as known.
  6476. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6477. axis_known_position[X_AXIS] = true; enable_x();
  6478. axis_known_position[Y_AXIS] = true; enable_y();
  6479. axis_known_position[Z_AXIS] = true; enable_z();
  6480. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6481. print_physical_coordinates();
  6482. // 7) Recover the target temperatures.
  6483. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6484. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6485. }
  6486. void restore_print_from_eeprom() {
  6487. float x_rec, y_rec, z_pos;
  6488. int feedrate_rec;
  6489. uint8_t fan_speed_rec;
  6490. char cmd[30];
  6491. char* c;
  6492. char filename[13];
  6493. uint8_t depth = 0;
  6494. char dir_name[9];
  6495. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6496. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6497. SERIAL_ECHOPGM("Feedrate:");
  6498. MYSERIAL.println(feedrate_rec);
  6499. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6500. MYSERIAL.println(int(depth));
  6501. for (int i = 0; i < depth; i++) {
  6502. for (int j = 0; j < 8; j++) {
  6503. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6504. }
  6505. dir_name[8] = '\0';
  6506. MYSERIAL.println(dir_name);
  6507. card.chdir(dir_name);
  6508. }
  6509. for (int i = 0; i < 8; i++) {
  6510. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6511. }
  6512. filename[8] = '\0';
  6513. MYSERIAL.print(filename);
  6514. strcat_P(filename, PSTR(".gco"));
  6515. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6516. for (c = &cmd[4]; *c; c++)
  6517. *c = tolower(*c);
  6518. enquecommand(cmd);
  6519. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6520. SERIAL_ECHOPGM("Position read from eeprom:");
  6521. MYSERIAL.println(position);
  6522. // E axis relative mode.
  6523. enquecommand_P(PSTR("M83"));
  6524. // Move to the XY print position in logical coordinates, where the print has been killed.
  6525. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6526. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6527. strcat_P(cmd, PSTR(" F2000"));
  6528. enquecommand(cmd);
  6529. // Move the Z axis down to the print, in logical coordinates.
  6530. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6531. enquecommand(cmd);
  6532. // Unretract.
  6533. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6534. // Set the feedrate saved at the power panic.
  6535. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6536. enquecommand(cmd);
  6537. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6538. {
  6539. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6540. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6541. }
  6542. // Set the fan speed saved at the power panic.
  6543. strcpy_P(cmd, PSTR("M106 S"));
  6544. strcat(cmd, itostr3(int(fan_speed_rec)));
  6545. enquecommand(cmd);
  6546. // Set a position in the file.
  6547. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6548. enquecommand(cmd);
  6549. // Start SD print.
  6550. enquecommand_P(PSTR("M24"));
  6551. }
  6552. ////////////////////////////////////////////////////////////////////////////////
  6553. // new save/restore printing
  6554. //extern uint32_t sdpos_atomic;
  6555. bool saved_printing = false;
  6556. uint32_t saved_sdpos = 0;
  6557. float saved_pos[4] = {0, 0, 0, 0};
  6558. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6559. float saved_feedrate2 = 0;
  6560. uint8_t saved_active_extruder = 0;
  6561. bool saved_extruder_under_pressure = false;
  6562. void stop_and_save_print_to_ram(float z_move, float e_move)
  6563. {
  6564. if (saved_printing) return;
  6565. cli();
  6566. unsigned char nplanner_blocks = number_of_blocks();
  6567. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6568. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6569. saved_sdpos -= sdlen_planner;
  6570. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6571. saved_sdpos -= sdlen_cmdqueue;
  6572. #if 0
  6573. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6574. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6575. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6576. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6577. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6578. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6579. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6580. {
  6581. card.setIndex(saved_sdpos);
  6582. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6583. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6584. MYSERIAL.print(char(card.get()));
  6585. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6586. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6587. MYSERIAL.print(char(card.get()));
  6588. SERIAL_ECHOLNPGM("End of command buffer");
  6589. }
  6590. {
  6591. // Print the content of the planner buffer, line by line:
  6592. card.setIndex(saved_sdpos);
  6593. int8_t iline = 0;
  6594. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6595. SERIAL_ECHOPGM("Planner line (from file): ");
  6596. MYSERIAL.print(int(iline), DEC);
  6597. SERIAL_ECHOPGM(", length: ");
  6598. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6599. SERIAL_ECHOPGM(", steps: (");
  6600. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6601. SERIAL_ECHOPGM(",");
  6602. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6603. SERIAL_ECHOPGM(",");
  6604. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6605. SERIAL_ECHOPGM(",");
  6606. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6607. SERIAL_ECHOPGM("), events: ");
  6608. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6609. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6610. MYSERIAL.print(char(card.get()));
  6611. }
  6612. }
  6613. {
  6614. // Print the content of the command buffer, line by line:
  6615. int8_t iline = 0;
  6616. union {
  6617. struct {
  6618. char lo;
  6619. char hi;
  6620. } lohi;
  6621. uint16_t value;
  6622. } sdlen_single;
  6623. int _bufindr = bufindr;
  6624. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6625. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6626. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6627. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6628. }
  6629. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6630. MYSERIAL.print(int(iline), DEC);
  6631. SERIAL_ECHOPGM(", type: ");
  6632. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6633. SERIAL_ECHOPGM(", len: ");
  6634. MYSERIAL.println(sdlen_single.value, DEC);
  6635. // Print the content of the buffer line.
  6636. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6637. SERIAL_ECHOPGM("Buffer line (from file): ");
  6638. MYSERIAL.print(int(iline), DEC);
  6639. MYSERIAL.println(int(iline), DEC);
  6640. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6641. MYSERIAL.print(char(card.get()));
  6642. if (-- _buflen == 0)
  6643. break;
  6644. // First skip the current command ID and iterate up to the end of the string.
  6645. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6646. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6647. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6648. // If the end of the buffer was empty,
  6649. if (_bufindr == sizeof(cmdbuffer)) {
  6650. // skip to the start and find the nonzero command.
  6651. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6652. }
  6653. }
  6654. }
  6655. #endif
  6656. #if 0
  6657. saved_feedrate2 = feedrate; //save feedrate
  6658. #else
  6659. // Try to deduce the feedrate from the first block of the planner.
  6660. // Speed is in mm/min.
  6661. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6662. #endif
  6663. planner_abort_hard(); //abort printing
  6664. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6665. saved_active_extruder = active_extruder; //save active_extruder
  6666. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6667. cmdqueue_reset(); //empty cmdqueue
  6668. card.sdprinting = false;
  6669. // card.closefile();
  6670. saved_printing = true;
  6671. sei();
  6672. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6673. #if 1
  6674. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6675. char buf[48];
  6676. strcpy_P(buf, PSTR("G1 Z"));
  6677. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6678. strcat_P(buf, PSTR(" E"));
  6679. // Relative extrusion
  6680. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6681. strcat_P(buf, PSTR(" F"));
  6682. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6683. // At this point the command queue is empty.
  6684. enquecommand(buf, false);
  6685. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6686. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6687. repeatcommand_front();
  6688. #else
  6689. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6690. st_synchronize(); //wait moving
  6691. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6692. memcpy(destination, current_position, sizeof(destination));
  6693. #endif
  6694. }
  6695. }
  6696. void restore_print_from_ram_and_continue(float e_move)
  6697. {
  6698. if (!saved_printing) return;
  6699. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6700. // current_position[axis] = st_get_position_mm(axis);
  6701. active_extruder = saved_active_extruder; //restore active_extruder
  6702. feedrate = saved_feedrate2; //restore feedrate
  6703. float e = saved_pos[E_AXIS] - e_move;
  6704. plan_set_e_position(e);
  6705. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6706. st_synchronize();
  6707. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6708. memcpy(destination, current_position, sizeof(destination));
  6709. card.setIndex(saved_sdpos);
  6710. sdpos_atomic = saved_sdpos;
  6711. card.sdprinting = true;
  6712. saved_printing = false;
  6713. }
  6714. void print_world_coordinates()
  6715. {
  6716. SERIAL_ECHOPGM("world coordinates: (");
  6717. MYSERIAL.print(current_position[X_AXIS], 3);
  6718. SERIAL_ECHOPGM(", ");
  6719. MYSERIAL.print(current_position[Y_AXIS], 3);
  6720. SERIAL_ECHOPGM(", ");
  6721. MYSERIAL.print(current_position[Z_AXIS], 3);
  6722. SERIAL_ECHOLNPGM(")");
  6723. }
  6724. void print_physical_coordinates()
  6725. {
  6726. SERIAL_ECHOPGM("physical coordinates: (");
  6727. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6728. SERIAL_ECHOPGM(", ");
  6729. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6730. SERIAL_ECHOPGM(", ");
  6731. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6732. SERIAL_ECHOLNPGM(")");
  6733. }
  6734. void print_mesh_bed_leveling_table()
  6735. {
  6736. SERIAL_ECHOPGM("mesh bed leveling: ");
  6737. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6738. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6739. MYSERIAL.print(mbl.z_values[y][x], 3);
  6740. SERIAL_ECHOPGM(" ");
  6741. }
  6742. SERIAL_ECHOLNPGM("");
  6743. }
  6744. #define FIL_LOAD_LENGTH 60
  6745. void extr_unload2() { //unloads filament
  6746. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6747. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6748. // int8_t SilentMode;
  6749. uint8_t snmm_extruder = 0;
  6750. if (degHotend0() > EXTRUDE_MINTEMP) {
  6751. lcd_implementation_clear();
  6752. lcd_display_message_fullscreen_P(PSTR(""));
  6753. max_feedrate[E_AXIS] = 50;
  6754. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6755. // lcd.print(" ");
  6756. // lcd.print(snmm_extruder + 1);
  6757. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6758. if (current_position[Z_AXIS] < 15) {
  6759. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6761. }
  6762. current_position[E_AXIS] += 10; //extrusion
  6763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6764. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6765. if (current_temperature[0] < 230) { //PLA & all other filaments
  6766. current_position[E_AXIS] += 5.4;
  6767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6768. current_position[E_AXIS] += 3.2;
  6769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6770. current_position[E_AXIS] += 3;
  6771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6772. }
  6773. else { //ABS
  6774. current_position[E_AXIS] += 3.1;
  6775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6776. current_position[E_AXIS] += 3.1;
  6777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6778. current_position[E_AXIS] += 4;
  6779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6780. /*current_position[X_AXIS] += 23; //delay
  6781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6782. current_position[X_AXIS] -= 23; //delay
  6783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6784. delay_keep_alive(4700);
  6785. }
  6786. max_feedrate[E_AXIS] = 80;
  6787. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6789. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6791. st_synchronize();
  6792. //digipot_init();
  6793. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6794. // else digipot_current(2, tmp_motor_loud[2]);
  6795. lcd_update_enable(true);
  6796. // lcd_return_to_status();
  6797. max_feedrate[E_AXIS] = 50;
  6798. }
  6799. else {
  6800. lcd_implementation_clear();
  6801. lcd.setCursor(0, 0);
  6802. lcd_printPGM(MSG_ERROR);
  6803. lcd.setCursor(0, 2);
  6804. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6805. delay(2000);
  6806. lcd_implementation_clear();
  6807. }
  6808. // lcd_return_to_status();
  6809. }