temperature.cpp 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "cardreader.h"
  27. #include "Sd2PinMap.h"
  28. #include <avr/wdt.h>
  29. #include "adc.h"
  30. //===========================================================================
  31. //=============================public variables============================
  32. //===========================================================================
  33. int target_temperature[EXTRUDERS] = { 0 };
  34. int target_temperature_bed = 0;
  35. int current_temperature_raw[EXTRUDERS] = { 0 };
  36. float current_temperature[EXTRUDERS] = { 0.0 };
  37. #ifdef PINDA_THERMISTOR
  38. int current_temperature_raw_pinda = 0 ;
  39. float current_temperature_pinda = 0.0;
  40. #endif //PINDA_THERMISTOR
  41. #ifdef AMBIENT_THERMISTOR
  42. int current_temperature_raw_ambient = 0 ;
  43. float current_temperature_ambient = 0.0;
  44. #endif //AMBIENT_THERMISTOR
  45. #ifdef VOLT_PWR_PIN
  46. int current_voltage_raw_pwr = 0;
  47. #endif
  48. #ifdef VOLT_BED_PIN
  49. int current_voltage_raw_bed = 0;
  50. #endif
  51. int current_temperature_bed_raw = 0;
  52. float current_temperature_bed = 0.0;
  53. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  54. int redundant_temperature_raw = 0;
  55. float redundant_temperature = 0.0;
  56. #endif
  57. #ifdef PIDTEMP
  58. float _Kp, _Ki, _Kd;
  59. int pid_cycle, pid_number_of_cycles;
  60. bool pid_tuning_finished = false;
  61. float Kp=DEFAULT_Kp;
  62. float Ki=(DEFAULT_Ki*PID_dT);
  63. float Kd=(DEFAULT_Kd/PID_dT);
  64. #ifdef PID_ADD_EXTRUSION_RATE
  65. float Kc=DEFAULT_Kc;
  66. #endif
  67. #endif //PIDTEMP
  68. #ifdef PIDTEMPBED
  69. float bedKp=DEFAULT_bedKp;
  70. float bedKi=(DEFAULT_bedKi*PID_dT);
  71. float bedKd=(DEFAULT_bedKd/PID_dT);
  72. #endif //PIDTEMPBED
  73. #ifdef FAN_SOFT_PWM
  74. unsigned char fanSpeedSoftPwm;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float temp_iState[EXTRUDERS] = { 0 };
  87. static float temp_dState[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float temp_iState_min[EXTRUDERS];
  94. static float temp_iState_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. static unsigned long extruder_autofan_last_check;
  121. #endif
  122. #if EXTRUDERS > 3
  123. # error Unsupported number of extruders
  124. #elif EXTRUDERS > 2
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  126. #elif EXTRUDERS > 1
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  128. #else
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  130. #endif
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  143. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  144. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  145. #else
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. #endif
  149. static float analog2temp(int raw, uint8_t e);
  150. static float analog2tempBed(int raw);
  151. static float analog2tempAmbient(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. void PID_autotune(float temp, int extruder, int ncycles)
  170. {
  171. pid_number_of_cycles = ncycles;
  172. pid_tuning_finished = false;
  173. float input = 0.0;
  174. pid_cycle=0;
  175. bool heating = true;
  176. unsigned long temp_millis = millis();
  177. unsigned long t1=temp_millis;
  178. unsigned long t2=temp_millis;
  179. long t_high = 0;
  180. long t_low = 0;
  181. long bias, d;
  182. float Ku, Tu;
  183. float max = 0, min = 10000;
  184. uint8_t safety_check_cycles = 0;
  185. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  186. float temp_ambient;
  187. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  188. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  189. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  190. unsigned long extruder_autofan_last_check = millis();
  191. #endif
  192. if ((extruder >= EXTRUDERS)
  193. #if (TEMP_BED_PIN <= -1)
  194. ||(extruder < 0)
  195. #endif
  196. ){
  197. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  198. pid_tuning_finished = true;
  199. pid_cycle = 0;
  200. return;
  201. }
  202. SERIAL_ECHOLN("PID Autotune start");
  203. disable_heater(); // switch off all heaters.
  204. if (extruder<0)
  205. {
  206. soft_pwm_bed = (MAX_BED_POWER)/2;
  207. bias = d = (MAX_BED_POWER)/2;
  208. }
  209. else
  210. {
  211. soft_pwm[extruder] = (PID_MAX)/2;
  212. bias = d = (PID_MAX)/2;
  213. }
  214. for(;;) {
  215. #ifdef WATCHDOG
  216. wdt_reset();
  217. #endif //WATCHDOG
  218. if(temp_meas_ready == true) { // temp sample ready
  219. updateTemperaturesFromRawValues();
  220. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  221. max=max(max,input);
  222. min=min(min,input);
  223. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  224. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  225. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  226. if(millis() - extruder_autofan_last_check > 2500) {
  227. checkExtruderAutoFans();
  228. extruder_autofan_last_check = millis();
  229. }
  230. #endif
  231. if(heating == true && input > temp) {
  232. if(millis() - t2 > 5000) {
  233. heating=false;
  234. if (extruder<0)
  235. soft_pwm_bed = (bias - d) >> 1;
  236. else
  237. soft_pwm[extruder] = (bias - d) >> 1;
  238. t1=millis();
  239. t_high=t1 - t2;
  240. max=temp;
  241. }
  242. }
  243. if(heating == false && input < temp) {
  244. if(millis() - t1 > 5000) {
  245. heating=true;
  246. t2=millis();
  247. t_low=t2 - t1;
  248. if(pid_cycle > 0) {
  249. bias += (d*(t_high - t_low))/(t_low + t_high);
  250. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  251. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  252. else d = bias;
  253. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  254. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  255. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  256. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  257. if(pid_cycle > 2) {
  258. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  259. Tu = ((float)(t_low + t_high)/1000.0);
  260. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  261. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  262. _Kp = 0.6*Ku;
  263. _Ki = 2*_Kp/Tu;
  264. _Kd = _Kp*Tu/8;
  265. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  266. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  267. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  268. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  269. /*
  270. _Kp = 0.33*Ku;
  271. _Ki = _Kp/Tu;
  272. _Kd = _Kp*Tu/3;
  273. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  274. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  275. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  276. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  277. _Kp = 0.2*Ku;
  278. _Ki = 2*_Kp/Tu;
  279. _Kd = _Kp*Tu/3;
  280. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  281. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  282. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  283. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  284. */
  285. }
  286. }
  287. if (extruder<0)
  288. soft_pwm_bed = (bias + d) >> 1;
  289. else
  290. soft_pwm[extruder] = (bias + d) >> 1;
  291. pid_cycle++;
  292. min=temp;
  293. }
  294. }
  295. }
  296. if(input > (temp + 20)) {
  297. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  298. pid_tuning_finished = true;
  299. pid_cycle = 0;
  300. return;
  301. }
  302. if(millis() - temp_millis > 2000) {
  303. int p;
  304. if (extruder<0){
  305. p=soft_pwm_bed;
  306. SERIAL_PROTOCOLPGM("B:");
  307. }else{
  308. p=soft_pwm[extruder];
  309. SERIAL_PROTOCOLPGM("T:");
  310. }
  311. SERIAL_PROTOCOL(input);
  312. SERIAL_PROTOCOLPGM(" @:");
  313. SERIAL_PROTOCOLLN(p);
  314. if (safety_check_cycles == 0) { //save ambient temp
  315. temp_ambient = input;
  316. //SERIAL_ECHOPGM("Ambient T: ");
  317. //MYSERIAL.println(temp_ambient);
  318. safety_check_cycles++;
  319. }
  320. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  321. safety_check_cycles++;
  322. }
  323. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  324. safety_check_cycles++;
  325. //SERIAL_ECHOPGM("Time from beginning: ");
  326. //MYSERIAL.print(safety_check_cycles_count * 2);
  327. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  328. //MYSERIAL.println(input - temp_ambient);
  329. if (abs(input - temp_ambient) < 5.0) {
  330. temp_runaway_stop(false, (extruder<0));
  331. pid_tuning_finished = true;
  332. return;
  333. }
  334. }
  335. temp_millis = millis();
  336. }
  337. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  338. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  339. pid_tuning_finished = true;
  340. pid_cycle = 0;
  341. return;
  342. }
  343. if(pid_cycle > ncycles) {
  344. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  345. pid_tuning_finished = true;
  346. pid_cycle = 0;
  347. return;
  348. }
  349. lcd_update();
  350. }
  351. }
  352. void updatePID()
  353. {
  354. #ifdef PIDTEMP
  355. for(int e = 0; e < EXTRUDERS; e++) {
  356. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  357. }
  358. #endif
  359. #ifdef PIDTEMPBED
  360. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  361. #endif
  362. }
  363. int getHeaterPower(int heater) {
  364. if (heater<0)
  365. return soft_pwm_bed;
  366. return soft_pwm[heater];
  367. }
  368. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  369. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  370. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  371. #if defined(FAN_PIN) && FAN_PIN > -1
  372. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  373. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  374. #endif
  375. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  376. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  377. #endif
  378. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  379. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  380. #endif
  381. #endif
  382. void setExtruderAutoFanState(int pin, bool state)
  383. {
  384. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  385. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  386. pinMode(pin, OUTPUT);
  387. digitalWrite(pin, newFanSpeed);
  388. analogWrite(pin, newFanSpeed);
  389. }
  390. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  391. void countFanSpeed()
  392. {
  393. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  394. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  395. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  396. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  397. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  398. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  399. SERIAL_ECHOLNPGM(" ");*/
  400. fan_edge_counter[0] = 0;
  401. fan_edge_counter[1] = 0;
  402. }
  403. extern bool fans_check_enabled;
  404. void checkFanSpeed()
  405. {
  406. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  407. static unsigned char fan_speed_errors[2] = { 0,0 };
  408. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  409. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  410. else fan_speed_errors[0] = 0;
  411. #endif
  412. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  413. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  414. else fan_speed_errors[1] = 0;
  415. #endif
  416. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  417. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  418. }
  419. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  420. extern void restore_print_from_ram_and_continue(float e_move);
  421. void fanSpeedError(unsigned char _fan) {
  422. if (get_message_level() != 0 && isPrintPaused) return;
  423. //to ensure that target temp. is not set to zero in case taht we are resuming print
  424. if (card.sdprinting) {
  425. if (heating_status != 0) {
  426. lcd_print_stop();
  427. }
  428. else {
  429. isPrintPaused = true;
  430. lcd_sdcard_pause();
  431. }
  432. }
  433. else {
  434. setTargetHotend0(0);
  435. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  436. }
  437. switch (_fan) {
  438. case 0:
  439. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  440. if (get_message_level() == 0) {
  441. WRITE(BEEPER, HIGH);
  442. delayMicroseconds(200);
  443. WRITE(BEEPER, LOW);
  444. delayMicroseconds(100);
  445. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  446. }
  447. break;
  448. case 1:
  449. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  450. if (get_message_level() == 0) {
  451. WRITE(BEEPER, HIGH);
  452. delayMicroseconds(200);
  453. WRITE(BEEPER, LOW);
  454. delayMicroseconds(100);
  455. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  456. }
  457. break;
  458. }
  459. }
  460. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  461. void checkExtruderAutoFans()
  462. {
  463. uint8_t fanState = 0;
  464. // which fan pins need to be turned on?
  465. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  466. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  467. fanState |= 1;
  468. #endif
  469. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  470. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  471. {
  472. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  473. fanState |= 1;
  474. else
  475. fanState |= 2;
  476. }
  477. #endif
  478. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  479. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  480. {
  481. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  482. fanState |= 1;
  483. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  484. fanState |= 2;
  485. else
  486. fanState |= 4;
  487. }
  488. #endif
  489. // update extruder auto fan states
  490. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  491. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  492. #endif
  493. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  494. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  495. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  496. #endif
  497. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  498. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  499. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  500. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  501. #endif
  502. }
  503. #endif // any extruder auto fan pins set
  504. void manage_heater()
  505. {
  506. #ifdef WATCHDOG
  507. wdt_reset();
  508. #endif //WATCHDOG
  509. float pid_input;
  510. float pid_output;
  511. if(temp_meas_ready != true) //better readability
  512. return;
  513. updateTemperaturesFromRawValues();
  514. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  515. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  516. #endif
  517. for(int e = 0; e < EXTRUDERS; e++)
  518. {
  519. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  520. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  521. #endif
  522. #ifdef PIDTEMP
  523. pid_input = current_temperature[e];
  524. #ifndef PID_OPENLOOP
  525. pid_error[e] = target_temperature[e] - pid_input;
  526. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  527. pid_output = BANG_MAX;
  528. pid_reset[e] = true;
  529. }
  530. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  531. pid_output = 0;
  532. pid_reset[e] = true;
  533. }
  534. else {
  535. if(pid_reset[e] == true) {
  536. temp_iState[e] = 0.0;
  537. pid_reset[e] = false;
  538. }
  539. pTerm[e] = Kp * pid_error[e];
  540. temp_iState[e] += pid_error[e];
  541. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  542. iTerm[e] = Ki * temp_iState[e];
  543. //K1 defined in Configuration.h in the PID settings
  544. #define K2 (1.0-K1)
  545. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  546. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  547. if (pid_output > PID_MAX) {
  548. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  549. pid_output=PID_MAX;
  550. } else if (pid_output < 0){
  551. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  552. pid_output=0;
  553. }
  554. }
  555. temp_dState[e] = pid_input;
  556. #else
  557. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  558. #endif //PID_OPENLOOP
  559. #ifdef PID_DEBUG
  560. SERIAL_ECHO_START;
  561. SERIAL_ECHO(" PID_DEBUG ");
  562. SERIAL_ECHO(e);
  563. SERIAL_ECHO(": Input ");
  564. SERIAL_ECHO(pid_input);
  565. SERIAL_ECHO(" Output ");
  566. SERIAL_ECHO(pid_output);
  567. SERIAL_ECHO(" pTerm ");
  568. SERIAL_ECHO(pTerm[e]);
  569. SERIAL_ECHO(" iTerm ");
  570. SERIAL_ECHO(iTerm[e]);
  571. SERIAL_ECHO(" dTerm ");
  572. SERIAL_ECHOLN(dTerm[e]);
  573. #endif //PID_DEBUG
  574. #else /* PID off */
  575. pid_output = 0;
  576. if(current_temperature[e] < target_temperature[e]) {
  577. pid_output = PID_MAX;
  578. }
  579. #endif
  580. // Check if temperature is within the correct range
  581. #ifdef AMBIENT_THERMISTOR
  582. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  583. #else //AMBIENT_THERMISTOR
  584. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  585. #endif //AMBIENT_THERMISTOR
  586. {
  587. soft_pwm[e] = (int)pid_output >> 1;
  588. }
  589. else
  590. {
  591. soft_pwm[e] = 0;
  592. }
  593. #ifdef WATCH_TEMP_PERIOD
  594. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  595. {
  596. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  597. {
  598. setTargetHotend(0, e);
  599. LCD_MESSAGEPGM("Heating failed");
  600. SERIAL_ECHO_START;
  601. SERIAL_ECHOLN("Heating failed");
  602. }else{
  603. watchmillis[e] = 0;
  604. }
  605. }
  606. #endif
  607. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  608. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  609. disable_heater();
  610. if(IsStopped() == false) {
  611. SERIAL_ERROR_START;
  612. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  613. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  614. }
  615. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  616. Stop();
  617. #endif
  618. }
  619. #endif
  620. } // End extruder for loop
  621. #ifndef DEBUG_DISABLE_FANCHECK
  622. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  623. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  624. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  625. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  626. {
  627. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  628. countFanSpeed();
  629. checkFanSpeed();
  630. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  631. checkExtruderAutoFans();
  632. extruder_autofan_last_check = millis();
  633. }
  634. #endif
  635. #endif //DEBUG_DISABLE_FANCHECK
  636. #ifndef PIDTEMPBED
  637. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  638. return;
  639. previous_millis_bed_heater = millis();
  640. #endif
  641. #if TEMP_SENSOR_BED != 0
  642. #ifdef PIDTEMPBED
  643. pid_input = current_temperature_bed;
  644. #ifndef PID_OPENLOOP
  645. pid_error_bed = target_temperature_bed - pid_input;
  646. pTerm_bed = bedKp * pid_error_bed;
  647. temp_iState_bed += pid_error_bed;
  648. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  649. iTerm_bed = bedKi * temp_iState_bed;
  650. //K1 defined in Configuration.h in the PID settings
  651. #define K2 (1.0-K1)
  652. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  653. temp_dState_bed = pid_input;
  654. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  655. if (pid_output > MAX_BED_POWER) {
  656. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  657. pid_output=MAX_BED_POWER;
  658. } else if (pid_output < 0){
  659. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  660. pid_output=0;
  661. }
  662. #else
  663. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  664. #endif //PID_OPENLOOP
  665. #ifdef AMBIENT_THERMISTOR
  666. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  667. #else //AMBIENT_THERMISTOR
  668. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  669. #endif //AMBIENT_THERMISTOR
  670. {
  671. soft_pwm_bed = (int)pid_output >> 1;
  672. }
  673. else {
  674. soft_pwm_bed = 0;
  675. }
  676. #elif !defined(BED_LIMIT_SWITCHING)
  677. // Check if temperature is within the correct range
  678. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  679. {
  680. if(current_temperature_bed >= target_temperature_bed)
  681. {
  682. soft_pwm_bed = 0;
  683. }
  684. else
  685. {
  686. soft_pwm_bed = MAX_BED_POWER>>1;
  687. }
  688. }
  689. else
  690. {
  691. soft_pwm_bed = 0;
  692. WRITE(HEATER_BED_PIN,LOW);
  693. }
  694. #else //#ifdef BED_LIMIT_SWITCHING
  695. // Check if temperature is within the correct band
  696. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  697. {
  698. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  699. {
  700. soft_pwm_bed = 0;
  701. }
  702. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  703. {
  704. soft_pwm_bed = MAX_BED_POWER>>1;
  705. }
  706. }
  707. else
  708. {
  709. soft_pwm_bed = 0;
  710. WRITE(HEATER_BED_PIN,LOW);
  711. }
  712. #endif
  713. #endif
  714. #ifdef HOST_KEEPALIVE_FEATURE
  715. host_keepalive();
  716. #endif
  717. }
  718. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  719. // Derived from RepRap FiveD extruder::getTemperature()
  720. // For hot end temperature measurement.
  721. static float analog2temp(int raw, uint8_t e) {
  722. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  723. if(e > EXTRUDERS)
  724. #else
  725. if(e >= EXTRUDERS)
  726. #endif
  727. {
  728. SERIAL_ERROR_START;
  729. SERIAL_ERROR((int)e);
  730. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  731. kill("", 6);
  732. return 0.0;
  733. }
  734. #ifdef HEATER_0_USES_MAX6675
  735. if (e == 0)
  736. {
  737. return 0.25 * raw;
  738. }
  739. #endif
  740. if(heater_ttbl_map[e] != NULL)
  741. {
  742. float celsius = 0;
  743. uint8_t i;
  744. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  745. for (i=1; i<heater_ttbllen_map[e]; i++)
  746. {
  747. if (PGM_RD_W((*tt)[i][0]) > raw)
  748. {
  749. celsius = PGM_RD_W((*tt)[i-1][1]) +
  750. (raw - PGM_RD_W((*tt)[i-1][0])) *
  751. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  752. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  753. break;
  754. }
  755. }
  756. // Overflow: Set to last value in the table
  757. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  758. return celsius;
  759. }
  760. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  761. }
  762. // Derived from RepRap FiveD extruder::getTemperature()
  763. // For bed temperature measurement.
  764. static float analog2tempBed(int raw) {
  765. #ifdef BED_USES_THERMISTOR
  766. float celsius = 0;
  767. byte i;
  768. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  769. {
  770. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  771. {
  772. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  773. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  774. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  775. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  776. break;
  777. }
  778. }
  779. // Overflow: Set to last value in the table
  780. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  781. // temperature offset adjustment
  782. #ifdef BED_OFFSET
  783. float _offset = BED_OFFSET;
  784. float _offset_center = BED_OFFSET_CENTER;
  785. float _offset_start = BED_OFFSET_START;
  786. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  787. float _second_koef = (_offset / 2) / (100 - _offset_center);
  788. if (celsius >= _offset_start && celsius <= _offset_center)
  789. {
  790. celsius = celsius + (_first_koef * (celsius - _offset_start));
  791. }
  792. else if (celsius > _offset_center && celsius <= 100)
  793. {
  794. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  795. }
  796. else if (celsius > 100)
  797. {
  798. celsius = celsius + _offset;
  799. }
  800. #endif
  801. return celsius;
  802. #elif defined BED_USES_AD595
  803. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  804. #else
  805. return 0;
  806. #endif
  807. }
  808. #ifdef AMBIENT_THERMISTOR
  809. static float analog2tempAmbient(int raw)
  810. {
  811. float celsius = 0;
  812. byte i;
  813. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  814. {
  815. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  816. {
  817. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  818. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  819. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  820. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  821. break;
  822. }
  823. }
  824. // Overflow: Set to last value in the table
  825. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  826. return celsius;
  827. }
  828. #endif //AMBIENT_THERMISTOR
  829. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  830. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  831. static void updateTemperaturesFromRawValues()
  832. {
  833. for(uint8_t e=0;e<EXTRUDERS;e++)
  834. {
  835. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  836. }
  837. #ifdef PINDA_THERMISTOR
  838. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  839. #endif
  840. #ifdef AMBIENT_THERMISTOR
  841. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  842. #endif
  843. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  844. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  845. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  846. #endif
  847. //Reset the watchdog after we know we have a temperature measurement.
  848. #ifdef WATCHDOG
  849. wdt_reset();
  850. #endif //WATCHDOG
  851. CRITICAL_SECTION_START;
  852. temp_meas_ready = false;
  853. CRITICAL_SECTION_END;
  854. }
  855. void tp_init()
  856. {
  857. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  858. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  859. MCUCR=(1<<JTD);
  860. MCUCR=(1<<JTD);
  861. #endif
  862. // Finish init of mult extruder arrays
  863. for(int e = 0; e < EXTRUDERS; e++) {
  864. // populate with the first value
  865. maxttemp[e] = maxttemp[0];
  866. #ifdef PIDTEMP
  867. temp_iState_min[e] = 0.0;
  868. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  869. #endif //PIDTEMP
  870. #ifdef PIDTEMPBED
  871. temp_iState_min_bed = 0.0;
  872. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  873. #endif //PIDTEMPBED
  874. }
  875. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  876. SET_OUTPUT(HEATER_0_PIN);
  877. #endif
  878. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  879. SET_OUTPUT(HEATER_1_PIN);
  880. #endif
  881. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  882. SET_OUTPUT(HEATER_2_PIN);
  883. #endif
  884. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  885. SET_OUTPUT(HEATER_BED_PIN);
  886. #endif
  887. #if defined(FAN_PIN) && (FAN_PIN > -1)
  888. SET_OUTPUT(FAN_PIN);
  889. #ifdef FAST_PWM_FAN
  890. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  891. #endif
  892. #ifdef FAN_SOFT_PWM
  893. soft_pwm_fan = fanSpeedSoftPwm / 2;
  894. #endif
  895. #endif
  896. #ifdef HEATER_0_USES_MAX6675
  897. #ifndef SDSUPPORT
  898. SET_OUTPUT(SCK_PIN);
  899. WRITE(SCK_PIN,0);
  900. SET_OUTPUT(MOSI_PIN);
  901. WRITE(MOSI_PIN,1);
  902. SET_INPUT(MISO_PIN);
  903. WRITE(MISO_PIN,1);
  904. #endif
  905. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  906. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  907. pinMode(SS_PIN, OUTPUT);
  908. digitalWrite(SS_PIN,0);
  909. pinMode(MAX6675_SS, OUTPUT);
  910. digitalWrite(MAX6675_SS,1);
  911. #endif
  912. adc_init();
  913. // Use timer0 for temperature measurement
  914. // Interleave temperature interrupt with millies interrupt
  915. OCR0B = 128;
  916. TIMSK0 |= (1<<OCIE0B);
  917. // Wait for temperature measurement to settle
  918. delay(250);
  919. #ifdef HEATER_0_MINTEMP
  920. minttemp[0] = HEATER_0_MINTEMP;
  921. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  922. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  923. minttemp_raw[0] += OVERSAMPLENR;
  924. #else
  925. minttemp_raw[0] -= OVERSAMPLENR;
  926. #endif
  927. }
  928. #endif //MINTEMP
  929. #ifdef HEATER_0_MAXTEMP
  930. maxttemp[0] = HEATER_0_MAXTEMP;
  931. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  932. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  933. maxttemp_raw[0] -= OVERSAMPLENR;
  934. #else
  935. maxttemp_raw[0] += OVERSAMPLENR;
  936. #endif
  937. }
  938. #endif //MAXTEMP
  939. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  940. minttemp[1] = HEATER_1_MINTEMP;
  941. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  942. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  943. minttemp_raw[1] += OVERSAMPLENR;
  944. #else
  945. minttemp_raw[1] -= OVERSAMPLENR;
  946. #endif
  947. }
  948. #endif // MINTEMP 1
  949. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  950. maxttemp[1] = HEATER_1_MAXTEMP;
  951. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  952. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  953. maxttemp_raw[1] -= OVERSAMPLENR;
  954. #else
  955. maxttemp_raw[1] += OVERSAMPLENR;
  956. #endif
  957. }
  958. #endif //MAXTEMP 1
  959. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  960. minttemp[2] = HEATER_2_MINTEMP;
  961. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  962. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  963. minttemp_raw[2] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[2] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif //MINTEMP 2
  969. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  970. maxttemp[2] = HEATER_2_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  972. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  973. maxttemp_raw[2] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[2] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP 2
  979. #ifdef BED_MINTEMP
  980. /* No bed MINTEMP error implemented?!? */
  981. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  982. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  983. bed_minttemp_raw += OVERSAMPLENR;
  984. #else
  985. bed_minttemp_raw -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif //BED_MINTEMP
  989. #ifdef BED_MAXTEMP
  990. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  991. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  992. bed_maxttemp_raw -= OVERSAMPLENR;
  993. #else
  994. bed_maxttemp_raw += OVERSAMPLENR;
  995. #endif
  996. }
  997. #endif //BED_MAXTEMP
  998. }
  999. void setWatch()
  1000. {
  1001. #ifdef WATCH_TEMP_PERIOD
  1002. for (int e = 0; e < EXTRUDERS; e++)
  1003. {
  1004. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1005. {
  1006. watch_start_temp[e] = degHotend(e);
  1007. watchmillis[e] = millis();
  1008. }
  1009. }
  1010. #endif
  1011. }
  1012. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1013. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1014. {
  1015. float __hysteresis = 0;
  1016. int __timeout = 0;
  1017. bool temp_runaway_check_active = false;
  1018. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1019. static int __preheat_counter[2] = { 0,0};
  1020. static int __preheat_errors[2] = { 0,0};
  1021. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1022. if (_isbed)
  1023. {
  1024. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1025. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1026. }
  1027. #endif
  1028. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1029. if (!_isbed)
  1030. {
  1031. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1032. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1033. }
  1034. #endif
  1035. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1036. {
  1037. temp_runaway_timer[_heater_id] = millis();
  1038. if (_output == 0)
  1039. {
  1040. temp_runaway_check_active = false;
  1041. temp_runaway_error_counter[_heater_id] = 0;
  1042. }
  1043. if (temp_runaway_target[_heater_id] != _target_temperature)
  1044. {
  1045. if (_target_temperature > 0)
  1046. {
  1047. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1048. temp_runaway_target[_heater_id] = _target_temperature;
  1049. __preheat_start[_heater_id] = _current_temperature;
  1050. __preheat_counter[_heater_id] = 0;
  1051. }
  1052. else
  1053. {
  1054. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1055. temp_runaway_target[_heater_id] = _target_temperature;
  1056. }
  1057. }
  1058. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1059. {
  1060. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1061. {
  1062. __preheat_counter[_heater_id]++;
  1063. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1064. {
  1065. /*SERIAL_ECHOPGM("Heater:");
  1066. MYSERIAL.print(_heater_id);
  1067. SERIAL_ECHOPGM(" T:");
  1068. MYSERIAL.print(_current_temperature);
  1069. SERIAL_ECHOPGM(" Tstart:");
  1070. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1071. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1072. __preheat_errors[_heater_id]++;
  1073. /*SERIAL_ECHOPGM(" Preheat errors:");
  1074. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1075. }
  1076. else {
  1077. //SERIAL_ECHOLNPGM("");
  1078. __preheat_errors[_heater_id] = 0;
  1079. }
  1080. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1081. {
  1082. if (farm_mode) { prusa_statistics(0); }
  1083. temp_runaway_stop(true, _isbed);
  1084. if (farm_mode) { prusa_statistics(91); }
  1085. }
  1086. __preheat_start[_heater_id] = _current_temperature;
  1087. __preheat_counter[_heater_id] = 0;
  1088. }
  1089. }
  1090. }
  1091. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1092. {
  1093. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1094. temp_runaway_check_active = false;
  1095. }
  1096. if (!temp_runaway_check_active && _output > 0)
  1097. {
  1098. temp_runaway_check_active = true;
  1099. }
  1100. if (temp_runaway_check_active)
  1101. {
  1102. // we are in range
  1103. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1104. {
  1105. temp_runaway_check_active = false;
  1106. temp_runaway_error_counter[_heater_id] = 0;
  1107. }
  1108. else
  1109. {
  1110. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1111. {
  1112. temp_runaway_error_counter[_heater_id]++;
  1113. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1114. {
  1115. if (farm_mode) { prusa_statistics(0); }
  1116. temp_runaway_stop(false, _isbed);
  1117. if (farm_mode) { prusa_statistics(90); }
  1118. }
  1119. }
  1120. }
  1121. }
  1122. }
  1123. }
  1124. void temp_runaway_stop(bool isPreheat, bool isBed)
  1125. {
  1126. cancel_heatup = true;
  1127. quickStop();
  1128. if (card.sdprinting)
  1129. {
  1130. card.sdprinting = false;
  1131. card.closefile();
  1132. }
  1133. // Clean the input command queue
  1134. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1135. cmdqueue_reset();
  1136. disable_heater();
  1137. disable_x();
  1138. disable_y();
  1139. disable_e0();
  1140. disable_e1();
  1141. disable_e2();
  1142. manage_heater();
  1143. lcd_update();
  1144. WRITE(BEEPER, HIGH);
  1145. delayMicroseconds(500);
  1146. WRITE(BEEPER, LOW);
  1147. delayMicroseconds(100);
  1148. if (isPreheat)
  1149. {
  1150. Stop();
  1151. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1152. SERIAL_ERROR_START;
  1153. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1154. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1155. SET_OUTPUT(FAN_PIN);
  1156. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1157. analogWrite(FAN_PIN, 255);
  1158. fanSpeed = 255;
  1159. delayMicroseconds(2000);
  1160. }
  1161. else
  1162. {
  1163. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1164. SERIAL_ERROR_START;
  1165. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1166. }
  1167. }
  1168. #endif
  1169. void disable_heater()
  1170. {
  1171. for(int i=0;i<EXTRUDERS;i++)
  1172. setTargetHotend(0,i);
  1173. setTargetBed(0);
  1174. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1175. target_temperature[0]=0;
  1176. soft_pwm[0]=0;
  1177. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1178. WRITE(HEATER_0_PIN,LOW);
  1179. #endif
  1180. #endif
  1181. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1182. target_temperature[1]=0;
  1183. soft_pwm[1]=0;
  1184. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1185. WRITE(HEATER_1_PIN,LOW);
  1186. #endif
  1187. #endif
  1188. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1189. target_temperature[2]=0;
  1190. soft_pwm[2]=0;
  1191. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1192. WRITE(HEATER_2_PIN,LOW);
  1193. #endif
  1194. #endif
  1195. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1196. target_temperature_bed=0;
  1197. soft_pwm_bed=0;
  1198. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1199. WRITE(HEATER_BED_PIN,LOW);
  1200. #endif
  1201. #endif
  1202. }
  1203. void max_temp_error(uint8_t e) {
  1204. disable_heater();
  1205. if(IsStopped() == false) {
  1206. SERIAL_ERROR_START;
  1207. SERIAL_ERRORLN((int)e);
  1208. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1209. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1210. }
  1211. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1212. Stop();
  1213. #endif
  1214. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1215. SET_OUTPUT(FAN_PIN);
  1216. SET_OUTPUT(BEEPER);
  1217. WRITE(FAN_PIN, 1);
  1218. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1219. WRITE(BEEPER, 1);
  1220. // fanSpeed will consumed by the check_axes_activity() routine.
  1221. fanSpeed=255;
  1222. if (farm_mode) { prusa_statistics(93); }
  1223. }
  1224. void min_temp_error(uint8_t e) {
  1225. #ifdef DEBUG_DISABLE_MINTEMP
  1226. return;
  1227. #endif
  1228. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1229. disable_heater();
  1230. if(IsStopped() == false) {
  1231. SERIAL_ERROR_START;
  1232. SERIAL_ERRORLN((int)e);
  1233. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1234. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1235. }
  1236. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1237. Stop();
  1238. #endif
  1239. if (farm_mode) { prusa_statistics(92); }
  1240. }
  1241. void bed_max_temp_error(void) {
  1242. #if HEATER_BED_PIN > -1
  1243. WRITE(HEATER_BED_PIN, 0);
  1244. #endif
  1245. if(IsStopped() == false) {
  1246. SERIAL_ERROR_START;
  1247. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1248. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1249. }
  1250. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1251. Stop();
  1252. #endif
  1253. }
  1254. void bed_min_temp_error(void) {
  1255. #ifdef DEBUG_DISABLE_MINTEMP
  1256. return;
  1257. #endif
  1258. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1259. #if HEATER_BED_PIN > -1
  1260. WRITE(HEATER_BED_PIN, 0);
  1261. #endif
  1262. if(IsStopped() == false) {
  1263. SERIAL_ERROR_START;
  1264. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1265. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1266. }
  1267. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1268. Stop();
  1269. #endif*/
  1270. }
  1271. #ifdef HEATER_0_USES_MAX6675
  1272. #define MAX6675_HEAT_INTERVAL 250
  1273. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1274. int max6675_temp = 2000;
  1275. int read_max6675()
  1276. {
  1277. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1278. return max6675_temp;
  1279. max6675_previous_millis = millis();
  1280. max6675_temp = 0;
  1281. #ifdef PRR
  1282. PRR &= ~(1<<PRSPI);
  1283. #elif defined PRR0
  1284. PRR0 &= ~(1<<PRSPI);
  1285. #endif
  1286. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1287. // enable TT_MAX6675
  1288. WRITE(MAX6675_SS, 0);
  1289. // ensure 100ns delay - a bit extra is fine
  1290. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1291. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1292. // read MSB
  1293. SPDR = 0;
  1294. for (;(SPSR & (1<<SPIF)) == 0;);
  1295. max6675_temp = SPDR;
  1296. max6675_temp <<= 8;
  1297. // read LSB
  1298. SPDR = 0;
  1299. for (;(SPSR & (1<<SPIF)) == 0;);
  1300. max6675_temp |= SPDR;
  1301. // disable TT_MAX6675
  1302. WRITE(MAX6675_SS, 1);
  1303. if (max6675_temp & 4)
  1304. {
  1305. // thermocouple open
  1306. max6675_temp = 2000;
  1307. }
  1308. else
  1309. {
  1310. max6675_temp = max6675_temp >> 3;
  1311. }
  1312. return max6675_temp;
  1313. }
  1314. #endif
  1315. extern "C" {
  1316. void adc_ready(void) //callback from adc when sampling finished
  1317. {
  1318. current_temperature_raw[0] = adc_values[0];
  1319. current_temperature_raw_pinda = adc_values[1];
  1320. current_temperature_bed_raw = adc_values[2];
  1321. #ifdef VOLT_PWR_PIN
  1322. current_voltage_raw_pwr = adc_values[4];
  1323. #endif
  1324. #ifdef AMBIENT_THERMISTOR
  1325. current_temperature_raw_ambient = adc_values[5];
  1326. #endif //AMBIENT_THERMISTOR
  1327. #ifdef VOLT_BED_PIN
  1328. current_voltage_raw_bed = adc_values[6];
  1329. #endif
  1330. temp_meas_ready = true;
  1331. }
  1332. } // extern "C"
  1333. // Timer 0 is shared with millies
  1334. ISR(TIMER0_COMPB_vect)
  1335. {
  1336. static bool _lock = false;
  1337. if (_lock) return;
  1338. _lock = true;
  1339. asm("sei");
  1340. if (!temp_meas_ready) adc_cycle();
  1341. else
  1342. {
  1343. check_max_temp();
  1344. check_min_temp();
  1345. }
  1346. lcd_buttons_update();
  1347. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1348. static unsigned char soft_pwm_0;
  1349. #ifdef SLOW_PWM_HEATERS
  1350. static unsigned char slow_pwm_count = 0;
  1351. static unsigned char state_heater_0 = 0;
  1352. static unsigned char state_timer_heater_0 = 0;
  1353. #endif
  1354. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1355. static unsigned char soft_pwm_1;
  1356. #ifdef SLOW_PWM_HEATERS
  1357. static unsigned char state_heater_1 = 0;
  1358. static unsigned char state_timer_heater_1 = 0;
  1359. #endif
  1360. #endif
  1361. #if EXTRUDERS > 2
  1362. static unsigned char soft_pwm_2;
  1363. #ifdef SLOW_PWM_HEATERS
  1364. static unsigned char state_heater_2 = 0;
  1365. static unsigned char state_timer_heater_2 = 0;
  1366. #endif
  1367. #endif
  1368. #if HEATER_BED_PIN > -1
  1369. static unsigned char soft_pwm_b;
  1370. #ifdef SLOW_PWM_HEATERS
  1371. static unsigned char state_heater_b = 0;
  1372. static unsigned char state_timer_heater_b = 0;
  1373. #endif
  1374. #endif
  1375. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1376. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1377. #endif
  1378. #ifndef SLOW_PWM_HEATERS
  1379. /*
  1380. * standard PWM modulation
  1381. */
  1382. if (pwm_count == 0)
  1383. {
  1384. soft_pwm_0 = soft_pwm[0];
  1385. if(soft_pwm_0 > 0)
  1386. {
  1387. WRITE(HEATER_0_PIN,1);
  1388. #ifdef HEATERS_PARALLEL
  1389. WRITE(HEATER_1_PIN,1);
  1390. #endif
  1391. } else WRITE(HEATER_0_PIN,0);
  1392. #if EXTRUDERS > 1
  1393. soft_pwm_1 = soft_pwm[1];
  1394. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1395. #endif
  1396. #if EXTRUDERS > 2
  1397. soft_pwm_2 = soft_pwm[2];
  1398. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1399. #endif
  1400. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1401. soft_pwm_b = soft_pwm_bed;
  1402. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1403. #endif
  1404. #ifdef FAN_SOFT_PWM
  1405. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1406. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1407. #endif
  1408. }
  1409. if(soft_pwm_0 < pwm_count)
  1410. {
  1411. WRITE(HEATER_0_PIN,0);
  1412. #ifdef HEATERS_PARALLEL
  1413. WRITE(HEATER_1_PIN,0);
  1414. #endif
  1415. }
  1416. #if EXTRUDERS > 1
  1417. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1418. #endif
  1419. #if EXTRUDERS > 2
  1420. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1421. #endif
  1422. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1423. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1424. #endif
  1425. #ifdef FAN_SOFT_PWM
  1426. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1427. #endif
  1428. pwm_count += (1 << SOFT_PWM_SCALE);
  1429. pwm_count &= 0x7f;
  1430. #else //ifndef SLOW_PWM_HEATERS
  1431. /*
  1432. * SLOW PWM HEATERS
  1433. *
  1434. * for heaters drived by relay
  1435. */
  1436. #ifndef MIN_STATE_TIME
  1437. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1438. #endif
  1439. if (slow_pwm_count == 0) {
  1440. // EXTRUDER 0
  1441. soft_pwm_0 = soft_pwm[0];
  1442. if (soft_pwm_0 > 0) {
  1443. // turn ON heather only if the minimum time is up
  1444. if (state_timer_heater_0 == 0) {
  1445. // if change state set timer
  1446. if (state_heater_0 == 0) {
  1447. state_timer_heater_0 = MIN_STATE_TIME;
  1448. }
  1449. state_heater_0 = 1;
  1450. WRITE(HEATER_0_PIN, 1);
  1451. #ifdef HEATERS_PARALLEL
  1452. WRITE(HEATER_1_PIN, 1);
  1453. #endif
  1454. }
  1455. } else {
  1456. // turn OFF heather only if the minimum time is up
  1457. if (state_timer_heater_0 == 0) {
  1458. // if change state set timer
  1459. if (state_heater_0 == 1) {
  1460. state_timer_heater_0 = MIN_STATE_TIME;
  1461. }
  1462. state_heater_0 = 0;
  1463. WRITE(HEATER_0_PIN, 0);
  1464. #ifdef HEATERS_PARALLEL
  1465. WRITE(HEATER_1_PIN, 0);
  1466. #endif
  1467. }
  1468. }
  1469. #if EXTRUDERS > 1
  1470. // EXTRUDER 1
  1471. soft_pwm_1 = soft_pwm[1];
  1472. if (soft_pwm_1 > 0) {
  1473. // turn ON heather only if the minimum time is up
  1474. if (state_timer_heater_1 == 0) {
  1475. // if change state set timer
  1476. if (state_heater_1 == 0) {
  1477. state_timer_heater_1 = MIN_STATE_TIME;
  1478. }
  1479. state_heater_1 = 1;
  1480. WRITE(HEATER_1_PIN, 1);
  1481. }
  1482. } else {
  1483. // turn OFF heather only if the minimum time is up
  1484. if (state_timer_heater_1 == 0) {
  1485. // if change state set timer
  1486. if (state_heater_1 == 1) {
  1487. state_timer_heater_1 = MIN_STATE_TIME;
  1488. }
  1489. state_heater_1 = 0;
  1490. WRITE(HEATER_1_PIN, 0);
  1491. }
  1492. }
  1493. #endif
  1494. #if EXTRUDERS > 2
  1495. // EXTRUDER 2
  1496. soft_pwm_2 = soft_pwm[2];
  1497. if (soft_pwm_2 > 0) {
  1498. // turn ON heather only if the minimum time is up
  1499. if (state_timer_heater_2 == 0) {
  1500. // if change state set timer
  1501. if (state_heater_2 == 0) {
  1502. state_timer_heater_2 = MIN_STATE_TIME;
  1503. }
  1504. state_heater_2 = 1;
  1505. WRITE(HEATER_2_PIN, 1);
  1506. }
  1507. } else {
  1508. // turn OFF heather only if the minimum time is up
  1509. if (state_timer_heater_2 == 0) {
  1510. // if change state set timer
  1511. if (state_heater_2 == 1) {
  1512. state_timer_heater_2 = MIN_STATE_TIME;
  1513. }
  1514. state_heater_2 = 0;
  1515. WRITE(HEATER_2_PIN, 0);
  1516. }
  1517. }
  1518. #endif
  1519. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1520. // BED
  1521. soft_pwm_b = soft_pwm_bed;
  1522. if (soft_pwm_b > 0) {
  1523. // turn ON heather only if the minimum time is up
  1524. if (state_timer_heater_b == 0) {
  1525. // if change state set timer
  1526. if (state_heater_b == 0) {
  1527. state_timer_heater_b = MIN_STATE_TIME;
  1528. }
  1529. state_heater_b = 1;
  1530. WRITE(HEATER_BED_PIN, 1);
  1531. }
  1532. } else {
  1533. // turn OFF heather only if the minimum time is up
  1534. if (state_timer_heater_b == 0) {
  1535. // if change state set timer
  1536. if (state_heater_b == 1) {
  1537. state_timer_heater_b = MIN_STATE_TIME;
  1538. }
  1539. state_heater_b = 0;
  1540. WRITE(HEATER_BED_PIN, 0);
  1541. }
  1542. }
  1543. #endif
  1544. } // if (slow_pwm_count == 0)
  1545. // EXTRUDER 0
  1546. if (soft_pwm_0 < slow_pwm_count) {
  1547. // turn OFF heather only if the minimum time is up
  1548. if (state_timer_heater_0 == 0) {
  1549. // if change state set timer
  1550. if (state_heater_0 == 1) {
  1551. state_timer_heater_0 = MIN_STATE_TIME;
  1552. }
  1553. state_heater_0 = 0;
  1554. WRITE(HEATER_0_PIN, 0);
  1555. #ifdef HEATERS_PARALLEL
  1556. WRITE(HEATER_1_PIN, 0);
  1557. #endif
  1558. }
  1559. }
  1560. #if EXTRUDERS > 1
  1561. // EXTRUDER 1
  1562. if (soft_pwm_1 < slow_pwm_count) {
  1563. // turn OFF heather only if the minimum time is up
  1564. if (state_timer_heater_1 == 0) {
  1565. // if change state set timer
  1566. if (state_heater_1 == 1) {
  1567. state_timer_heater_1 = MIN_STATE_TIME;
  1568. }
  1569. state_heater_1 = 0;
  1570. WRITE(HEATER_1_PIN, 0);
  1571. }
  1572. }
  1573. #endif
  1574. #if EXTRUDERS > 2
  1575. // EXTRUDER 2
  1576. if (soft_pwm_2 < slow_pwm_count) {
  1577. // turn OFF heather only if the minimum time is up
  1578. if (state_timer_heater_2 == 0) {
  1579. // if change state set timer
  1580. if (state_heater_2 == 1) {
  1581. state_timer_heater_2 = MIN_STATE_TIME;
  1582. }
  1583. state_heater_2 = 0;
  1584. WRITE(HEATER_2_PIN, 0);
  1585. }
  1586. }
  1587. #endif
  1588. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1589. // BED
  1590. if (soft_pwm_b < slow_pwm_count) {
  1591. // turn OFF heather only if the minimum time is up
  1592. if (state_timer_heater_b == 0) {
  1593. // if change state set timer
  1594. if (state_heater_b == 1) {
  1595. state_timer_heater_b = MIN_STATE_TIME;
  1596. }
  1597. state_heater_b = 0;
  1598. WRITE(HEATER_BED_PIN, 0);
  1599. }
  1600. }
  1601. #endif
  1602. #ifdef FAN_SOFT_PWM
  1603. if (pwm_count == 0){
  1604. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1605. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1606. }
  1607. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1608. #endif
  1609. pwm_count += (1 << SOFT_PWM_SCALE);
  1610. pwm_count &= 0x7f;
  1611. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1612. if ((pwm_count % 64) == 0) {
  1613. slow_pwm_count++;
  1614. slow_pwm_count &= 0x7f;
  1615. // Extruder 0
  1616. if (state_timer_heater_0 > 0) {
  1617. state_timer_heater_0--;
  1618. }
  1619. #if EXTRUDERS > 1
  1620. // Extruder 1
  1621. if (state_timer_heater_1 > 0)
  1622. state_timer_heater_1--;
  1623. #endif
  1624. #if EXTRUDERS > 2
  1625. // Extruder 2
  1626. if (state_timer_heater_2 > 0)
  1627. state_timer_heater_2--;
  1628. #endif
  1629. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1630. // Bed
  1631. if (state_timer_heater_b > 0)
  1632. state_timer_heater_b--;
  1633. #endif
  1634. } //if ((pwm_count % 64) == 0) {
  1635. #endif //ifndef SLOW_PWM_HEATERS
  1636. #ifdef BABYSTEPPING
  1637. for(uint8_t axis=0;axis<3;axis++)
  1638. {
  1639. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1640. if(curTodo>0)
  1641. {
  1642. asm("cli");
  1643. babystep(axis,/*fwd*/true);
  1644. babystepsTodo[axis]--; //less to do next time
  1645. asm("sei");
  1646. }
  1647. else
  1648. if(curTodo<0)
  1649. {
  1650. asm("cli");
  1651. babystep(axis,/*fwd*/false);
  1652. babystepsTodo[axis]++; //less to do next time
  1653. asm("sei");
  1654. }
  1655. }
  1656. #endif //BABYSTEPPING
  1657. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1658. check_fans();
  1659. #endif //(defined(TACH_0))
  1660. _lock = false;
  1661. }
  1662. void check_max_temp()
  1663. {
  1664. //heater
  1665. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1666. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1667. #else
  1668. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1669. #endif
  1670. max_temp_error(0);
  1671. }
  1672. //bed
  1673. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1674. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1675. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1676. #else
  1677. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1678. #endif
  1679. target_temperature_bed = 0;
  1680. bed_max_temp_error();
  1681. }
  1682. #endif
  1683. }
  1684. void check_min_temp_heater0()
  1685. {
  1686. //heater
  1687. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1688. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1689. #else
  1690. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1691. #endif
  1692. min_temp_error(0);
  1693. }
  1694. }
  1695. void check_min_temp_bed()
  1696. {
  1697. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1698. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1699. #else
  1700. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1701. #endif
  1702. bed_min_temp_error();
  1703. }
  1704. }
  1705. void check_min_temp()
  1706. {
  1707. #ifdef AMBIENT_THERMISTOR
  1708. static uint8_t heat_cycles = 0;
  1709. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1710. {
  1711. if (READ(HEATER_0_PIN) == HIGH)
  1712. {
  1713. // if ((heat_cycles % 10) == 0)
  1714. // printf_P(PSTR("X%d\n"), heat_cycles);
  1715. if (heat_cycles > 50) //reaction time 5-10s
  1716. check_min_temp_heater0();
  1717. else
  1718. heat_cycles++;
  1719. }
  1720. else
  1721. heat_cycles = 0;
  1722. return;
  1723. }
  1724. #endif //AMBIENT_THERMISTOR
  1725. check_min_temp_heater0();
  1726. check_min_temp_bed();
  1727. }
  1728. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1729. void check_fans() {
  1730. if (READ(TACH_0) != fan_state[0]) {
  1731. fan_edge_counter[0] ++;
  1732. fan_state[0] = !fan_state[0];
  1733. }
  1734. //if (READ(TACH_1) != fan_state[1]) {
  1735. // fan_edge_counter[1] ++;
  1736. // fan_state[1] = !fan_state[1];
  1737. //}
  1738. }
  1739. #endif //TACH_0
  1740. #ifdef PIDTEMP
  1741. // Apply the scale factors to the PID values
  1742. float scalePID_i(float i)
  1743. {
  1744. return i*PID_dT;
  1745. }
  1746. float unscalePID_i(float i)
  1747. {
  1748. return i/PID_dT;
  1749. }
  1750. float scalePID_d(float d)
  1751. {
  1752. return d/PID_dT;
  1753. }
  1754. float unscalePID_d(float d)
  1755. {
  1756. return d*PID_dT;
  1757. }
  1758. #endif //PIDTEMP