mesh_bed_calibration.cpp 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167
  1. #include "Marlin.h"
  2. #include "Configuration.h"
  3. #include "language_all.h"
  4. #include "mesh_bed_calibration.h"
  5. #include "mesh_bed_leveling.h"
  6. #include "stepper.h"
  7. #include "ultralcd.h"
  8. uint8_t world2machine_correction_mode;
  9. float world2machine_rotation_and_skew[2][2];
  10. float world2machine_rotation_and_skew_inv[2][2];
  11. float world2machine_shift[2];
  12. // Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
  13. // Only used for the first row of the points, which may not befully in reach of the sensor.
  14. #define WEIGHT_FIRST_ROW_X_HIGH (1.f)
  15. #define WEIGHT_FIRST_ROW_X_LOW (0.35f)
  16. #define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
  17. #define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
  18. #define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER)
  19. #define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER)
  20. // Scaling of the real machine axes against the programmed dimensions in the firmware.
  21. // The correction is tiny, here around 0.5mm on 250mm length.
  22. //#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
  23. //#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
  24. #define MACHINE_AXIS_SCALE_X 1.f
  25. #define MACHINE_AXIS_SCALE_Y 1.f
  26. // 0.12 degrees equals to an offset of 0.5mm on 250mm length.
  27. #define BED_SKEW_ANGLE_MILD (0.12f * M_PI / 180.f)
  28. // 0.25 degrees equals to an offset of 1.1mm on 250mm length.
  29. #define BED_SKEW_ANGLE_EXTREME (0.25f * M_PI / 180.f)
  30. #define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
  31. #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
  32. #define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
  33. #define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
  34. //#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
  35. #define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
  36. // Distances toward the print bed edge may not be accurate.
  37. #define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
  38. // When the measured point center is out of reach of the sensor, Y coordinate will be ignored
  39. // by the Least Squares fitting and the X coordinate will be weighted low.
  40. #define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
  41. // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
  42. // The points are ordered in a zig-zag fashion to speed up the calibration.
  43. const float bed_ref_points[] PROGMEM = {
  44. 13.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  45. 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  46. 216.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  47. 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  48. 115.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  49. 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  50. 13.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  51. 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  52. 216.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y
  53. };
  54. // Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
  55. // The points are the following: center front, center right, center rear, center left.
  56. const float bed_ref_points_4[] PROGMEM = {
  57. 115.f - BED_ZERO_REF_X, 6.4f - BED_ZERO_REF_Y,
  58. 216.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y,
  59. 115.f - BED_ZERO_REF_X, 202.4f - BED_ZERO_REF_Y,
  60. 13.f - BED_ZERO_REF_X, 104.4f - BED_ZERO_REF_Y
  61. };
  62. static inline float sqr(float x) { return x * x; }
  63. // Weight of a point coordinate in a least squares optimization.
  64. // The first row of points may not be fully reachable
  65. // and the y values may be shortened a bit by the bed carriage
  66. // pulling the belt up.
  67. static inline float point_weight_x(const uint8_t i, const float &y)
  68. {
  69. float w = 1.f;
  70. if (i < 3) {
  71. if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
  72. w = WEIGHT_FIRST_ROW_X_HIGH;
  73. } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
  74. // If the point is fully outside, give it some weight.
  75. w = WEIGHT_FIRST_ROW_X_LOW;
  76. } else {
  77. // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
  78. float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
  79. w = (1.f - t) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH;
  80. }
  81. }
  82. return w;
  83. }
  84. // Weight of a point coordinate in a least squares optimization.
  85. // The first row of points may not be fully reachable
  86. // and the y values may be shortened a bit by the bed carriage
  87. // pulling the belt up.
  88. static inline float point_weight_y(const uint8_t i, const float &y)
  89. {
  90. float w = 1.f;
  91. if (i < 3) {
  92. if (y >= Y_MIN_POS_CALIBRATION_POINT_ACCURATE) {
  93. w = WEIGHT_FIRST_ROW_Y_HIGH;
  94. } else if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
  95. // If the point is fully outside, give it some weight.
  96. w = WEIGHT_FIRST_ROW_Y_LOW;
  97. } else {
  98. // Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
  99. float t = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) / (Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
  100. w = (1.f - t) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH;
  101. }
  102. }
  103. return w;
  104. }
  105. // Non-Linear Least Squares fitting of the bed to the measured induction points
  106. // using the Gauss-Newton method.
  107. // This method will maintain a unity length of the machine axes,
  108. // which is the correct approach if the sensor points are not measured precisely.
  109. BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
  110. // Matrix of maximum 9 2D points (18 floats)
  111. const float *measured_pts,
  112. uint8_t npts,
  113. const float *true_pts,
  114. // Resulting correction matrix.
  115. float *vec_x,
  116. float *vec_y,
  117. float *cntr,
  118. // Temporary values, 49-18-(2*3)=25 floats
  119. // , float *temp
  120. int8_t verbosity_level
  121. )
  122. {
  123. if (verbosity_level >= 10) {
  124. // Show the initial state, before the fitting.
  125. SERIAL_ECHOPGM("X vector, initial: ");
  126. MYSERIAL.print(vec_x[0], 5);
  127. SERIAL_ECHOPGM(", ");
  128. MYSERIAL.print(vec_x[1], 5);
  129. SERIAL_ECHOLNPGM("");
  130. SERIAL_ECHOPGM("Y vector, initial: ");
  131. MYSERIAL.print(vec_y[0], 5);
  132. SERIAL_ECHOPGM(", ");
  133. MYSERIAL.print(vec_y[1], 5);
  134. SERIAL_ECHOLNPGM("");
  135. SERIAL_ECHOPGM("center, initial: ");
  136. MYSERIAL.print(cntr[0], 5);
  137. SERIAL_ECHOPGM(", ");
  138. MYSERIAL.print(cntr[1], 5);
  139. SERIAL_ECHOLNPGM("");
  140. for (uint8_t i = 0; i < npts; ++i) {
  141. SERIAL_ECHOPGM("point #");
  142. MYSERIAL.print(int(i));
  143. SERIAL_ECHOPGM(" measured: (");
  144. MYSERIAL.print(measured_pts[i * 2], 5);
  145. SERIAL_ECHOPGM(", ");
  146. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  147. SERIAL_ECHOPGM("); target: (");
  148. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  149. SERIAL_ECHOPGM(", ");
  150. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  151. SERIAL_ECHOPGM("), error: ");
  152. MYSERIAL.print(sqrt(
  153. sqr(pgm_read_float(true_pts + i * 2) - measured_pts[i * 2]) +
  154. sqr(pgm_read_float(true_pts + i * 2 + 1) - measured_pts[i * 2 + 1])), 5);
  155. SERIAL_ECHOLNPGM("");
  156. }
  157. delay_keep_alive(100);
  158. }
  159. // Run some iterations of the Gauss-Newton method of non-linear least squares.
  160. // Initial set of parameters:
  161. // X,Y offset
  162. cntr[0] = 0.f;
  163. cntr[1] = 0.f;
  164. // Rotation of the machine X axis from the bed X axis.
  165. float a1 = 0;
  166. // Rotation of the machine Y axis from the bed Y axis.
  167. float a2 = 0;
  168. for (int8_t iter = 0; iter < 100; ++iter) {
  169. float c1 = cos(a1) * MACHINE_AXIS_SCALE_X;
  170. float s1 = sin(a1) * MACHINE_AXIS_SCALE_X;
  171. float c2 = cos(a2) * MACHINE_AXIS_SCALE_Y;
  172. float s2 = sin(a2) * MACHINE_AXIS_SCALE_Y;
  173. // Prepare the Normal equation for the Gauss-Newton method.
  174. float A[4][4] = { 0.f };
  175. float b[4] = { 0.f };
  176. float acc;
  177. for (uint8_t r = 0; r < 4; ++r) {
  178. for (uint8_t c = 0; c < 4; ++c) {
  179. acc = 0;
  180. // J^T times J
  181. for (uint8_t i = 0; i < npts; ++i) {
  182. // First for the residuum in the x axis:
  183. if (r != 1 && c != 1) {
  184. float a =
  185. (r == 0) ? 1.f :
  186. ((r == 2) ? (-s1 * measured_pts[2 * i]) :
  187. (-c2 * measured_pts[2 * i + 1]));
  188. float b =
  189. (c == 0) ? 1.f :
  190. ((c == 2) ? (-s1 * measured_pts[2 * i]) :
  191. (-c2 * measured_pts[2 * i + 1]));
  192. float w = point_weight_x(i, measured_pts[2 * i + 1]);
  193. acc += a * b * w;
  194. }
  195. // Second for the residuum in the y axis.
  196. // The first row of the points have a low weight, because their position may not be known
  197. // with a sufficient accuracy.
  198. if (r != 0 && c != 0) {
  199. float a =
  200. (r == 1) ? 1.f :
  201. ((r == 2) ? ( c1 * measured_pts[2 * i]) :
  202. (-s2 * measured_pts[2 * i + 1]));
  203. float b =
  204. (c == 1) ? 1.f :
  205. ((c == 2) ? ( c1 * measured_pts[2 * i]) :
  206. (-s2 * measured_pts[2 * i + 1]));
  207. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  208. acc += a * b * w;
  209. }
  210. }
  211. A[r][c] = acc;
  212. }
  213. // J^T times f(x)
  214. acc = 0.f;
  215. for (uint8_t i = 0; i < npts; ++i) {
  216. {
  217. float j =
  218. (r == 0) ? 1.f :
  219. ((r == 1) ? 0.f :
  220. ((r == 2) ? (-s1 * measured_pts[2 * i]) :
  221. (-c2 * measured_pts[2 * i + 1])));
  222. float fx = c1 * measured_pts[2 * i] - s2 * measured_pts[2 * i + 1] + cntr[0] - pgm_read_float(true_pts + i * 2);
  223. float w = point_weight_x(i, measured_pts[2 * i + 1]);
  224. acc += j * fx * w;
  225. }
  226. {
  227. float j =
  228. (r == 0) ? 0.f :
  229. ((r == 1) ? 1.f :
  230. ((r == 2) ? ( c1 * measured_pts[2 * i]) :
  231. (-s2 * measured_pts[2 * i + 1])));
  232. float fy = s1 * measured_pts[2 * i] + c2 * measured_pts[2 * i + 1] + cntr[1] - pgm_read_float(true_pts + i * 2 + 1);
  233. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  234. acc += j * fy * w;
  235. }
  236. }
  237. b[r] = -acc;
  238. }
  239. // Solve for h by a Gauss iteration method.
  240. float h[4] = { 0.f };
  241. for (uint8_t gauss_iter = 0; gauss_iter < 100; ++gauss_iter) {
  242. h[0] = (b[0] - A[0][1] * h[1] - A[0][2] * h[2] - A[0][3] * h[3]) / A[0][0];
  243. h[1] = (b[1] - A[1][0] * h[0] - A[1][2] * h[2] - A[1][3] * h[3]) / A[1][1];
  244. h[2] = (b[2] - A[2][0] * h[0] - A[2][1] * h[1] - A[2][3] * h[3]) / A[2][2];
  245. h[3] = (b[3] - A[3][0] * h[0] - A[3][1] * h[1] - A[3][2] * h[2]) / A[3][3];
  246. }
  247. // and update the current position with h.
  248. // It may be better to use the Levenberg-Marquart method here,
  249. // but because we are very close to the solution alread,
  250. // the simple Gauss-Newton non-linear Least Squares method works well enough.
  251. cntr[0] += h[0];
  252. cntr[1] += h[1];
  253. a1 += h[2];
  254. a2 += h[3];
  255. if (verbosity_level >= 20) {
  256. SERIAL_ECHOPGM("iteration: ");
  257. MYSERIAL.print(iter, 0);
  258. SERIAL_ECHOPGM("correction vector: ");
  259. MYSERIAL.print(h[0], 5);
  260. SERIAL_ECHOPGM(", ");
  261. MYSERIAL.print(h[1], 5);
  262. SERIAL_ECHOPGM(", ");
  263. MYSERIAL.print(h[2], 5);
  264. SERIAL_ECHOPGM(", ");
  265. MYSERIAL.print(h[3], 5);
  266. SERIAL_ECHOLNPGM("");
  267. SERIAL_ECHOPGM("corrected x/y: ");
  268. MYSERIAL.print(cntr[0], 5);
  269. SERIAL_ECHOPGM(", ");
  270. MYSERIAL.print(cntr[0], 5);
  271. SERIAL_ECHOLNPGM("");
  272. SERIAL_ECHOPGM("corrected angles: ");
  273. MYSERIAL.print(180.f * a1 / M_PI, 5);
  274. SERIAL_ECHOPGM(", ");
  275. MYSERIAL.print(180.f * a2 / M_PI, 5);
  276. SERIAL_ECHOLNPGM("");
  277. }
  278. }
  279. vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
  280. vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
  281. vec_y[0] = -sin(a2) * MACHINE_AXIS_SCALE_Y;
  282. vec_y[1] = cos(a2) * MACHINE_AXIS_SCALE_Y;
  283. BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
  284. {
  285. float angleDiff = fabs(a2 - a1);
  286. if (angleDiff > BED_SKEW_ANGLE_MILD)
  287. result = (angleDiff > BED_SKEW_ANGLE_EXTREME) ?
  288. BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
  289. BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
  290. if (fabs(a1) > BED_SKEW_ANGLE_EXTREME ||
  291. fabs(a2) > BED_SKEW_ANGLE_EXTREME)
  292. result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
  293. }
  294. if (verbosity_level >= 1) {
  295. SERIAL_ECHOPGM("correction angles: ");
  296. MYSERIAL.print(180.f * a1 / M_PI, 5);
  297. SERIAL_ECHOPGM(", ");
  298. MYSERIAL.print(180.f * a2 / M_PI, 5);
  299. SERIAL_ECHOLNPGM("");
  300. }
  301. if (verbosity_level >= 10) {
  302. // Show the adjusted state, before the fitting.
  303. SERIAL_ECHOPGM("X vector new, inverted: ");
  304. MYSERIAL.print(vec_x[0], 5);
  305. SERIAL_ECHOPGM(", ");
  306. MYSERIAL.print(vec_x[1], 5);
  307. SERIAL_ECHOLNPGM("");
  308. SERIAL_ECHOPGM("Y vector new, inverted: ");
  309. MYSERIAL.print(vec_y[0], 5);
  310. SERIAL_ECHOPGM(", ");
  311. MYSERIAL.print(vec_y[1], 5);
  312. SERIAL_ECHOLNPGM("");
  313. SERIAL_ECHOPGM("center new, inverted: ");
  314. MYSERIAL.print(cntr[0], 5);
  315. SERIAL_ECHOPGM(", ");
  316. MYSERIAL.print(cntr[1], 5);
  317. SERIAL_ECHOLNPGM("");
  318. delay_keep_alive(100);
  319. SERIAL_ECHOLNPGM("Error after correction: ");
  320. }
  321. // Measure the error after correction.
  322. for (uint8_t i = 0; i < npts; ++i) {
  323. float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1] + cntr[0];
  324. float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1] + cntr[1];
  325. float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
  326. float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
  327. float err = sqrt(errX + errY);
  328. if (i < 3) {
  329. float w = point_weight_y(i, measured_pts[2 * i + 1]);
  330. if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
  331. (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y))
  332. result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
  333. } else {
  334. if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN)
  335. result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
  336. }
  337. if (verbosity_level >= 10) {
  338. SERIAL_ECHOPGM("point #");
  339. MYSERIAL.print(int(i));
  340. SERIAL_ECHOPGM(" measured: (");
  341. MYSERIAL.print(measured_pts[i * 2], 5);
  342. SERIAL_ECHOPGM(", ");
  343. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  344. SERIAL_ECHOPGM("); corrected: (");
  345. MYSERIAL.print(x, 5);
  346. SERIAL_ECHOPGM(", ");
  347. MYSERIAL.print(y, 5);
  348. SERIAL_ECHOPGM("); target: (");
  349. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  350. SERIAL_ECHOPGM(", ");
  351. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  352. SERIAL_ECHOPGM("), error: ");
  353. MYSERIAL.print(err);
  354. SERIAL_ECHOLNPGM("");
  355. }
  356. }
  357. #if 0
  358. if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < BED_SKEW_ANGLE_MILD && fabs(a2) < BED_SKEW_ANGLE_MILD) {
  359. if (verbosity_level > 0)
  360. SERIAL_ECHOLNPGM("Very little skew detected. Disabling skew correction.");
  361. // Just disable the skew correction.
  362. vec_x[0] = MACHINE_AXIS_SCALE_X;
  363. vec_x[1] = 0.f;
  364. vec_y[0] = 0.f;
  365. vec_y[1] = MACHINE_AXIS_SCALE_Y;
  366. }
  367. #else
  368. if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
  369. if (verbosity_level > 0)
  370. SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
  371. // Orthogonalize the axes.
  372. a1 = 0.5f * (a1 + a2);
  373. vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
  374. vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
  375. vec_y[0] = -sin(a1) * MACHINE_AXIS_SCALE_Y;
  376. vec_y[1] = cos(a1) * MACHINE_AXIS_SCALE_Y;
  377. // Refresh the offset.
  378. cntr[0] = 0.f;
  379. cntr[1] = 0.f;
  380. float wx = 0.f;
  381. float wy = 0.f;
  382. for (int8_t i = 0; i < 9; ++ i) {
  383. float x = vec_x[0] * measured_pts[i * 2] + vec_y[0] * measured_pts[i * 2 + 1];
  384. float y = vec_x[1] * measured_pts[i * 2] + vec_y[1] * measured_pts[i * 2 + 1];
  385. float w = point_weight_x(i, y);
  386. cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
  387. wx += w;
  388. w = point_weight_y(i, y);
  389. cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
  390. wy += w;
  391. }
  392. cntr[0] /= wx;
  393. cntr[1] /= wy;
  394. }
  395. #endif
  396. // Invert the transformation matrix made of vec_x, vec_y and cntr.
  397. {
  398. float d = vec_x[0] * vec_y[1] - vec_x[1] * vec_y[0];
  399. float Ainv[2][2] = {
  400. { vec_y[1] / d, -vec_y[0] / d },
  401. { -vec_x[1] / d, vec_x[0] / d }
  402. };
  403. float cntrInv[2] = {
  404. -Ainv[0][0] * cntr[0] - Ainv[0][1] * cntr[1],
  405. -Ainv[1][0] * cntr[0] - Ainv[1][1] * cntr[1]
  406. };
  407. vec_x[0] = Ainv[0][0];
  408. vec_x[1] = Ainv[1][0];
  409. vec_y[0] = Ainv[0][1];
  410. vec_y[1] = Ainv[1][1];
  411. cntr[0] = cntrInv[0];
  412. cntr[1] = cntrInv[1];
  413. }
  414. if (verbosity_level >= 1) {
  415. // Show the adjusted state, before the fitting.
  416. SERIAL_ECHOPGM("X vector, adjusted: ");
  417. MYSERIAL.print(vec_x[0], 5);
  418. SERIAL_ECHOPGM(", ");
  419. MYSERIAL.print(vec_x[1], 5);
  420. SERIAL_ECHOLNPGM("");
  421. SERIAL_ECHOPGM("Y vector, adjusted: ");
  422. MYSERIAL.print(vec_y[0], 5);
  423. SERIAL_ECHOPGM(", ");
  424. MYSERIAL.print(vec_y[1], 5);
  425. SERIAL_ECHOLNPGM("");
  426. SERIAL_ECHOPGM("center, adjusted: ");
  427. MYSERIAL.print(cntr[0], 5);
  428. SERIAL_ECHOPGM(", ");
  429. MYSERIAL.print(cntr[1], 5);
  430. SERIAL_ECHOLNPGM("");
  431. delay_keep_alive(100);
  432. }
  433. if (verbosity_level >= 2) {
  434. SERIAL_ECHOLNPGM("Difference after correction: ");
  435. for (uint8_t i = 0; i < npts; ++i) {
  436. float x = vec_x[0] * pgm_read_float(true_pts + i * 2) + vec_y[0] * pgm_read_float(true_pts + i * 2 + 1) + cntr[0];
  437. float y = vec_x[1] * pgm_read_float(true_pts + i * 2) + vec_y[1] * pgm_read_float(true_pts + i * 2 + 1) + cntr[1];
  438. SERIAL_ECHOPGM("point #");
  439. MYSERIAL.print(int(i));
  440. SERIAL_ECHOPGM("measured: (");
  441. MYSERIAL.print(measured_pts[i * 2], 5);
  442. SERIAL_ECHOPGM(", ");
  443. MYSERIAL.print(measured_pts[i * 2 + 1], 5);
  444. SERIAL_ECHOPGM("); measured-corrected: (");
  445. MYSERIAL.print(x, 5);
  446. SERIAL_ECHOPGM(", ");
  447. MYSERIAL.print(y, 5);
  448. SERIAL_ECHOPGM("); target: (");
  449. MYSERIAL.print(pgm_read_float(true_pts + i * 2), 5);
  450. SERIAL_ECHOPGM(", ");
  451. MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
  452. SERIAL_ECHOPGM("), error: ");
  453. MYSERIAL.print(sqrt(sqr(measured_pts[i * 2] - x) + sqr(measured_pts[i * 2 + 1] - y)));
  454. SERIAL_ECHOLNPGM("");
  455. }
  456. delay_keep_alive(100);
  457. }
  458. return result;
  459. }
  460. void reset_bed_offset_and_skew()
  461. {
  462. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
  463. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
  464. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
  465. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
  466. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
  467. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
  468. // Reset the 8 16bit offsets.
  469. for (int8_t i = 0; i < 4; ++ i)
  470. eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*4), 0x0FFFFFFFF);
  471. }
  472. bool is_bed_z_jitter_data_valid()
  473. {
  474. for (int8_t i = 0; i < 8; ++ i)
  475. if (eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER+i*2)) == 0x0FFFF)
  476. return false;
  477. return true;
  478. }
  479. static void world2machine_update(const float vec_x[2], const float vec_y[2], const float cntr[2])
  480. {
  481. world2machine_rotation_and_skew[0][0] = vec_x[0];
  482. world2machine_rotation_and_skew[1][0] = vec_x[1];
  483. world2machine_rotation_and_skew[0][1] = vec_y[0];
  484. world2machine_rotation_and_skew[1][1] = vec_y[1];
  485. world2machine_shift[0] = cntr[0];
  486. world2machine_shift[1] = cntr[1];
  487. // No correction.
  488. world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE;
  489. if (world2machine_shift[0] != 0.f || world2machine_shift[1] != 0.f)
  490. // Shift correction.
  491. world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SHIFT;
  492. if (world2machine_rotation_and_skew[0][0] != 1.f || world2machine_rotation_and_skew[0][1] != 0.f ||
  493. world2machine_rotation_and_skew[1][0] != 0.f || world2machine_rotation_and_skew[1][1] != 1.f) {
  494. // Rotation & skew correction.
  495. world2machine_correction_mode |= WORLD2MACHINE_CORRECTION_SKEW;
  496. // Invert the world2machine matrix.
  497. float d = world2machine_rotation_and_skew[0][0] * world2machine_rotation_and_skew[1][1] - world2machine_rotation_and_skew[1][0] * world2machine_rotation_and_skew[0][1];
  498. world2machine_rotation_and_skew_inv[0][0] = world2machine_rotation_and_skew[1][1] / d;
  499. world2machine_rotation_and_skew_inv[0][1] = -world2machine_rotation_and_skew[0][1] / d;
  500. world2machine_rotation_and_skew_inv[1][0] = -world2machine_rotation_and_skew[1][0] / d;
  501. world2machine_rotation_and_skew_inv[1][1] = world2machine_rotation_and_skew[0][0] / d;
  502. } else {
  503. world2machine_rotation_and_skew_inv[0][0] = 1.f;
  504. world2machine_rotation_and_skew_inv[0][1] = 0.f;
  505. world2machine_rotation_and_skew_inv[1][0] = 0.f;
  506. world2machine_rotation_and_skew_inv[1][1] = 1.f;
  507. }
  508. }
  509. void world2machine_reset()
  510. {
  511. const float vx[] = { 1.f, 0.f };
  512. const float vy[] = { 0.f, 1.f };
  513. const float cntr[] = { 0.f, 0.f };
  514. world2machine_update(vx, vy, cntr);
  515. }
  516. void world2machine_revert_to_uncorrected()
  517. {
  518. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE) {
  519. // Reset the machine correction matrix.
  520. const float vx[] = { 1.f, 0.f };
  521. const float vy[] = { 0.f, 1.f };
  522. const float cntr[] = { 0.f, 0.f };
  523. world2machine_update(vx, vy, cntr);
  524. // Wait for the motors to stop and update the current position with the absolute values.
  525. st_synchronize();
  526. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  527. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  528. }
  529. }
  530. static inline bool vec_undef(const float v[2])
  531. {
  532. const uint32_t *vx = (const uint32_t*)v;
  533. return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
  534. }
  535. void world2machine_initialize()
  536. {
  537. // SERIAL_ECHOLNPGM("world2machine_initialize()");
  538. float cntr[2] = {
  539. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
  540. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
  541. };
  542. float vec_x[2] = {
  543. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
  544. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
  545. };
  546. float vec_y[2] = {
  547. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
  548. eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
  549. };
  550. bool reset = false;
  551. if (vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
  552. // SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
  553. reset = true;
  554. }
  555. else {
  556. // Length of the vec_x shall be close to unity.
  557. float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
  558. if (l < 0.9 || l > 1.1) {
  559. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
  560. reset = true;
  561. }
  562. // Length of the vec_y shall be close to unity.
  563. l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
  564. if (l < 0.9 || l > 1.1) {
  565. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
  566. reset = true;
  567. }
  568. // Correction of the zero point shall be reasonably small.
  569. l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
  570. if (l > 15.f) {
  571. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
  572. reset = true;
  573. }
  574. // vec_x and vec_y shall be nearly perpendicular.
  575. l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
  576. if (fabs(l) > 0.1f) {
  577. SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
  578. reset = true;
  579. }
  580. }
  581. if (reset) {
  582. SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
  583. reset_bed_offset_and_skew();
  584. world2machine_reset();
  585. } else {
  586. world2machine_update(vec_x, vec_y, cntr);
  587. /*
  588. SERIAL_ECHOPGM("world2machine_initialize() loaded: ");
  589. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  590. SERIAL_ECHOPGM(", ");
  591. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  592. SERIAL_ECHOPGM(", ");
  593. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  594. SERIAL_ECHOPGM(", ");
  595. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  596. SERIAL_ECHOPGM(", offset ");
  597. MYSERIAL.print(world2machine_shift[0], 5);
  598. SERIAL_ECHOPGM(", ");
  599. MYSERIAL.print(world2machine_shift[1], 5);
  600. SERIAL_ECHOLNPGM("");
  601. */
  602. }
  603. }
  604. // When switching from absolute to corrected coordinates,
  605. // this will get the absolute coordinates from the servos,
  606. // applies the inverse world2machine transformation
  607. // and stores the result into current_position[x,y].
  608. void world2machine_update_current()
  609. {
  610. float x = current_position[X_AXIS] - world2machine_shift[0];
  611. float y = current_position[Y_AXIS] - world2machine_shift[1];
  612. current_position[X_AXIS] = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y;
  613. current_position[Y_AXIS] = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y;
  614. }
  615. static inline void go_xyz(float x, float y, float z, float fr)
  616. {
  617. plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
  618. st_synchronize();
  619. }
  620. static inline void go_xy(float x, float y, float fr)
  621. {
  622. plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
  623. st_synchronize();
  624. }
  625. static inline void go_to_current(float fr)
  626. {
  627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
  628. st_synchronize();
  629. }
  630. static inline void update_current_position_xyz()
  631. {
  632. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  633. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  634. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  636. }
  637. static inline void update_current_position_z()
  638. {
  639. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  640. plan_set_z_position(current_position[Z_AXIS]);
  641. }
  642. // At the current position, find the Z stop.
  643. inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter)
  644. {
  645. // SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 1");
  646. bool endstops_enabled = enable_endstops(true);
  647. bool endstop_z_enabled = enable_z_endstop(false);
  648. float z = 0.f;
  649. endstop_z_hit_on_purpose();
  650. // move down until you find the bed
  651. current_position[Z_AXIS] = minimum_z;
  652. go_to_current(homing_feedrate[Z_AXIS]/60);
  653. // we have to let the planner know where we are right now as it is not where we said to go.
  654. update_current_position_z();
  655. if (! endstop_z_hit_on_purpose())
  656. goto error;
  657. for (uint8_t i = 0; i < n_iter; ++ i) {
  658. // Move up the retract distance.
  659. current_position[Z_AXIS] += .5f;
  660. go_to_current(homing_feedrate[Z_AXIS]/60);
  661. // Move back down slowly to find bed.
  662. current_position[Z_AXIS] = minimum_z;
  663. go_to_current(homing_feedrate[Z_AXIS]/(4*60));
  664. // we have to let the planner know where we are right now as it is not where we said to go.
  665. update_current_position_z();
  666. if (! endstop_z_hit_on_purpose())
  667. goto error;
  668. // SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
  669. // MYSERIAL.print(current_position[Z_AXIS], 5);
  670. // SERIAL_ECHOLNPGM("");
  671. z += current_position[Z_AXIS];
  672. }
  673. current_position[Z_AXIS] = z;
  674. if (n_iter > 1)
  675. current_position[Z_AXIS] /= float(n_iter);
  676. enable_endstops(endstops_enabled);
  677. enable_z_endstop(endstop_z_enabled);
  678. // SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
  679. return true;
  680. error:
  681. // SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
  682. enable_endstops(endstops_enabled);
  683. enable_z_endstop(endstop_z_enabled);
  684. return false;
  685. }
  686. // Search around the current_position[X,Y],
  687. // look for the induction sensor response.
  688. // Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
  689. #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
  690. #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
  691. #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
  692. #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
  693. inline bool find_bed_induction_sensor_point_xy()
  694. {
  695. float feedrate = homing_feedrate[X_AXIS] / 60.f;
  696. bool found = false;
  697. {
  698. float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
  699. float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
  700. float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
  701. float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
  702. uint8_t nsteps_y;
  703. uint8_t i;
  704. if (x0 < X_MIN_POS)
  705. x0 = X_MIN_POS;
  706. if (x1 > X_MAX_POS)
  707. x1 = X_MAX_POS;
  708. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  709. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  710. if (y1 > Y_MAX_POS)
  711. y1 = Y_MAX_POS;
  712. nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
  713. enable_endstops(false);
  714. bool dir_positive = true;
  715. // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
  716. go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
  717. // Continously lower the Z axis.
  718. endstops_hit_on_purpose();
  719. enable_z_endstop(true);
  720. while (current_position[Z_AXIS] > -10.f) {
  721. // Do nsteps_y zig-zag movements.
  722. current_position[Y_AXIS] = y0;
  723. for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
  724. // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
  725. current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
  726. go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
  727. dir_positive = ! dir_positive;
  728. if (endstop_z_hit_on_purpose())
  729. goto endloop;
  730. }
  731. for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
  732. // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
  733. current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
  734. go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
  735. dir_positive = ! dir_positive;
  736. if (endstop_z_hit_on_purpose())
  737. goto endloop;
  738. }
  739. }
  740. endloop:
  741. // SERIAL_ECHOLN("First hit");
  742. // we have to let the planner know where we are right now as it is not where we said to go.
  743. update_current_position_xyz();
  744. // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
  745. for (int8_t iter = 0; iter < 3; ++ iter) {
  746. if (iter > 0) {
  747. // Slightly lower the Z axis to get a reliable trigger.
  748. current_position[Z_AXIS] -= 0.02f;
  749. go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
  750. }
  751. // Do nsteps_y zig-zag movements.
  752. float a, b;
  753. enable_endstops(false);
  754. enable_z_endstop(false);
  755. current_position[Y_AXIS] = y0;
  756. go_xy(x0, current_position[Y_AXIS], feedrate);
  757. enable_z_endstop(true);
  758. found = false;
  759. for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
  760. go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
  761. if (endstop_z_hit_on_purpose()) {
  762. found = true;
  763. break;
  764. }
  765. }
  766. update_current_position_xyz();
  767. if (! found) {
  768. // SERIAL_ECHOLN("Search in Y - not found");
  769. continue;
  770. }
  771. // SERIAL_ECHOLN("Search in Y - found");
  772. a = current_position[Y_AXIS];
  773. enable_z_endstop(false);
  774. current_position[Y_AXIS] = y1;
  775. go_xy(x0, current_position[Y_AXIS], feedrate);
  776. enable_z_endstop(true);
  777. found = false;
  778. for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
  779. go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
  780. if (endstop_z_hit_on_purpose()) {
  781. found = true;
  782. break;
  783. }
  784. }
  785. update_current_position_xyz();
  786. if (! found) {
  787. // SERIAL_ECHOLN("Search in Y2 - not found");
  788. continue;
  789. }
  790. // SERIAL_ECHOLN("Search in Y2 - found");
  791. b = current_position[Y_AXIS];
  792. current_position[Y_AXIS] = 0.5f * (a + b);
  793. // Search in the X direction along a cross.
  794. found = false;
  795. enable_z_endstop(false);
  796. go_xy(x0, current_position[Y_AXIS], feedrate);
  797. enable_z_endstop(true);
  798. go_xy(x1, current_position[Y_AXIS], feedrate);
  799. update_current_position_xyz();
  800. if (! endstop_z_hit_on_purpose()) {
  801. // SERIAL_ECHOLN("Search X span 0 - not found");
  802. continue;
  803. }
  804. // SERIAL_ECHOLN("Search X span 0 - found");
  805. a = current_position[X_AXIS];
  806. enable_z_endstop(false);
  807. go_xy(x1, current_position[Y_AXIS], feedrate);
  808. enable_z_endstop(true);
  809. go_xy(x0, current_position[Y_AXIS], feedrate);
  810. update_current_position_xyz();
  811. if (! endstop_z_hit_on_purpose()) {
  812. // SERIAL_ECHOLN("Search X span 1 - not found");
  813. continue;
  814. }
  815. // SERIAL_ECHOLN("Search X span 1 - found");
  816. b = current_position[X_AXIS];
  817. // Go to the center.
  818. enable_z_endstop(false);
  819. current_position[X_AXIS] = 0.5f * (a + b);
  820. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  821. found = true;
  822. #if 1
  823. // Search in the Y direction along a cross.
  824. found = false;
  825. enable_z_endstop(false);
  826. go_xy(current_position[X_AXIS], y0, feedrate);
  827. enable_z_endstop(true);
  828. go_xy(current_position[X_AXIS], y1, feedrate);
  829. update_current_position_xyz();
  830. if (! endstop_z_hit_on_purpose()) {
  831. // SERIAL_ECHOLN("Search Y2 span 0 - not found");
  832. continue;
  833. }
  834. // SERIAL_ECHOLN("Search Y2 span 0 - found");
  835. a = current_position[Y_AXIS];
  836. enable_z_endstop(false);
  837. go_xy(current_position[X_AXIS], y1, feedrate);
  838. enable_z_endstop(true);
  839. go_xy(current_position[X_AXIS], y0, feedrate);
  840. update_current_position_xyz();
  841. if (! endstop_z_hit_on_purpose()) {
  842. // SERIAL_ECHOLN("Search Y2 span 1 - not found");
  843. continue;
  844. }
  845. // SERIAL_ECHOLN("Search Y2 span 1 - found");
  846. b = current_position[Y_AXIS];
  847. // Go to the center.
  848. enable_z_endstop(false);
  849. current_position[Y_AXIS] = 0.5f * (a + b);
  850. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  851. found = true;
  852. #endif
  853. break;
  854. }
  855. }
  856. enable_z_endstop(false);
  857. return found;
  858. }
  859. // Search around the current_position[X,Y,Z].
  860. // It is expected, that the induction sensor is switched on at the current position.
  861. // Look around this center point by painting a star around the point.
  862. inline bool improve_bed_induction_sensor_point()
  863. {
  864. static const float search_radius = 8.f;
  865. bool endstops_enabled = enable_endstops(false);
  866. bool endstop_z_enabled = enable_z_endstop(false);
  867. bool found = false;
  868. float feedrate = homing_feedrate[X_AXIS] / 60.f;
  869. float center_old_x = current_position[X_AXIS];
  870. float center_old_y = current_position[Y_AXIS];
  871. float center_x = 0.f;
  872. float center_y = 0.f;
  873. for (uint8_t iter = 0; iter < 4; ++ iter) {
  874. switch (iter) {
  875. case 0:
  876. destination[X_AXIS] = center_old_x - search_radius * 0.707;
  877. destination[Y_AXIS] = center_old_y - search_radius * 0.707;
  878. break;
  879. case 1:
  880. destination[X_AXIS] = center_old_x + search_radius * 0.707;
  881. destination[Y_AXIS] = center_old_y + search_radius * 0.707;
  882. break;
  883. case 2:
  884. destination[X_AXIS] = center_old_x + search_radius * 0.707;
  885. destination[Y_AXIS] = center_old_y - search_radius * 0.707;
  886. break;
  887. case 3:
  888. default:
  889. destination[X_AXIS] = center_old_x - search_radius * 0.707;
  890. destination[Y_AXIS] = center_old_y + search_radius * 0.707;
  891. break;
  892. }
  893. // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
  894. float vx = destination[X_AXIS] - center_old_x;
  895. float vy = destination[Y_AXIS] - center_old_y;
  896. float l = sqrt(vx*vx+vy*vy);
  897. float t;
  898. if (destination[X_AXIS] < X_MIN_POS) {
  899. // Exiting the bed at xmin.
  900. t = (center_x - X_MIN_POS) / l;
  901. destination[X_AXIS] = X_MIN_POS;
  902. destination[Y_AXIS] = center_old_y + t * vy;
  903. } else if (destination[X_AXIS] > X_MAX_POS) {
  904. // Exiting the bed at xmax.
  905. t = (X_MAX_POS - center_x) / l;
  906. destination[X_AXIS] = X_MAX_POS;
  907. destination[Y_AXIS] = center_old_y + t * vy;
  908. }
  909. if (destination[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION) {
  910. // Exiting the bed at ymin.
  911. t = (center_y - Y_MIN_POS_FOR_BED_CALIBRATION) / l;
  912. destination[X_AXIS] = center_old_x + t * vx;
  913. destination[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  914. } else if (destination[Y_AXIS] > Y_MAX_POS) {
  915. // Exiting the bed at xmax.
  916. t = (Y_MAX_POS - center_y) / l;
  917. destination[X_AXIS] = center_old_x + t * vx;
  918. destination[Y_AXIS] = Y_MAX_POS;
  919. }
  920. // Move away from the measurement point.
  921. enable_endstops(false);
  922. go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
  923. // Move towards the measurement point, until the induction sensor triggers.
  924. enable_endstops(true);
  925. go_xy(center_old_x, center_old_y, feedrate);
  926. update_current_position_xyz();
  927. // if (! endstop_z_hit_on_purpose()) return false;
  928. center_x += current_position[X_AXIS];
  929. center_y += current_position[Y_AXIS];
  930. }
  931. // Calculate the new center, move to the new center.
  932. center_x /= 4.f;
  933. center_y /= 4.f;
  934. current_position[X_AXIS] = center_x;
  935. current_position[Y_AXIS] = center_y;
  936. enable_endstops(false);
  937. go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
  938. enable_endstops(endstops_enabled);
  939. enable_z_endstop(endstop_z_enabled);
  940. return found;
  941. }
  942. static inline void debug_output_point(const char *type, const float &x, const float &y, const float &z)
  943. {
  944. SERIAL_ECHOPGM("Measured ");
  945. SERIAL_ECHORPGM(type);
  946. SERIAL_ECHOPGM(" ");
  947. MYSERIAL.print(x, 5);
  948. SERIAL_ECHOPGM(", ");
  949. MYSERIAL.print(y, 5);
  950. SERIAL_ECHOPGM(", ");
  951. MYSERIAL.print(z, 5);
  952. SERIAL_ECHOLNPGM("");
  953. }
  954. // Search around the current_position[X,Y,Z].
  955. // It is expected, that the induction sensor is switched on at the current position.
  956. // Look around this center point by painting a star around the point.
  957. #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
  958. inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t verbosity_level)
  959. {
  960. float center_old_x = current_position[X_AXIS];
  961. float center_old_y = current_position[Y_AXIS];
  962. float a, b;
  963. bool point_small = false;
  964. enable_endstops(false);
  965. {
  966. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  967. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  968. if (x0 < X_MIN_POS)
  969. x0 = X_MIN_POS;
  970. if (x1 > X_MAX_POS)
  971. x1 = X_MAX_POS;
  972. // Search in the X direction along a cross.
  973. enable_z_endstop(false);
  974. go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  975. enable_z_endstop(true);
  976. go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  977. update_current_position_xyz();
  978. if (! endstop_z_hit_on_purpose()) {
  979. current_position[X_AXIS] = center_old_x;
  980. goto canceled;
  981. }
  982. a = current_position[X_AXIS];
  983. enable_z_endstop(false);
  984. go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  985. enable_z_endstop(true);
  986. go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  987. update_current_position_xyz();
  988. if (! endstop_z_hit_on_purpose()) {
  989. current_position[X_AXIS] = center_old_x;
  990. goto canceled;
  991. }
  992. b = current_position[X_AXIS];
  993. if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  994. if (verbosity_level >= 5) {
  995. SERIAL_ECHOPGM("Point width too small: ");
  996. SERIAL_ECHO(b - a);
  997. SERIAL_ECHOLNPGM("");
  998. }
  999. // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
  1000. if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1001. // Don't use the new X value.
  1002. current_position[X_AXIS] = center_old_x;
  1003. goto canceled;
  1004. } else {
  1005. // Use the new value, but force the Z axis to go a bit lower.
  1006. point_small = true;
  1007. }
  1008. }
  1009. if (verbosity_level >= 5) {
  1010. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1011. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1012. }
  1013. // Go to the center.
  1014. enable_z_endstop(false);
  1015. current_position[X_AXIS] = 0.5f * (a + b);
  1016. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1017. }
  1018. {
  1019. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  1020. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
  1021. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1022. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1023. if (y1 > Y_MAX_POS)
  1024. y1 = Y_MAX_POS;
  1025. // Search in the Y direction along a cross.
  1026. enable_z_endstop(false);
  1027. go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
  1028. if (lift_z_on_min_y) {
  1029. // The first row of points are very close to the end stop.
  1030. // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
  1031. go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+1.5f, homing_feedrate[Z_AXIS] / 60.f);
  1032. // and go back.
  1033. go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
  1034. }
  1035. if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
  1036. // Already triggering before we started the move.
  1037. // Shift the trigger point slightly outwards.
  1038. // a = current_position[Y_AXIS] - 1.5f;
  1039. a = current_position[Y_AXIS];
  1040. } else {
  1041. enable_z_endstop(true);
  1042. go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
  1043. update_current_position_xyz();
  1044. if (! endstop_z_hit_on_purpose()) {
  1045. current_position[Y_AXIS] = center_old_y;
  1046. goto canceled;
  1047. }
  1048. a = current_position[Y_AXIS];
  1049. }
  1050. enable_z_endstop(false);
  1051. go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
  1052. enable_z_endstop(true);
  1053. go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
  1054. update_current_position_xyz();
  1055. if (! endstop_z_hit_on_purpose()) {
  1056. current_position[Y_AXIS] = center_old_y;
  1057. goto canceled;
  1058. }
  1059. b = current_position[Y_AXIS];
  1060. if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1061. // We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
  1062. if (verbosity_level >= 5) {
  1063. SERIAL_ECHOPGM("Point height too small: ");
  1064. SERIAL_ECHO(b - a);
  1065. SERIAL_ECHOLNPGM("");
  1066. }
  1067. if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1068. // Don't use the new Y value.
  1069. current_position[Y_AXIS] = center_old_y;
  1070. goto canceled;
  1071. } else {
  1072. // Use the new value, but force the Z axis to go a bit lower.
  1073. point_small = true;
  1074. }
  1075. }
  1076. if (verbosity_level >= 5) {
  1077. debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
  1078. debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
  1079. }
  1080. // Go to the center.
  1081. enable_z_endstop(false);
  1082. current_position[Y_AXIS] = 0.5f * (a + b);
  1083. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1084. }
  1085. // If point is small but not too small, then force the Z axis to be lowered a bit,
  1086. // but use the new value. This is important when the initial position was off in one axis,
  1087. // for example if the initial calibration was shifted in the Y axis systematically.
  1088. // Then this first step will center.
  1089. return ! point_small;
  1090. canceled:
  1091. // Go back to the center.
  1092. enable_z_endstop(false);
  1093. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1094. return false;
  1095. }
  1096. // Searching the front points, where one cannot move the sensor head in front of the sensor point.
  1097. // Searching in a zig-zag movement in a plane for the maximum width of the response.
  1098. // This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
  1099. // If this function failed, the Y coordinate will never be outside the working space.
  1100. #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (4.f)
  1101. #define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
  1102. inline bool improve_bed_induction_sensor_point3(int verbosity_level)
  1103. {
  1104. float center_old_x = current_position[X_AXIS];
  1105. float center_old_y = current_position[Y_AXIS];
  1106. float a, b;
  1107. bool result = true;
  1108. // Was the sensor point detected too far in the minus Y axis?
  1109. // If yes, the center of the induction point cannot be reached by the machine.
  1110. {
  1111. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1112. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1113. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1114. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1115. float y = y0;
  1116. if (x0 < X_MIN_POS)
  1117. x0 = X_MIN_POS;
  1118. if (x1 > X_MAX_POS)
  1119. x1 = X_MAX_POS;
  1120. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1121. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1122. if (y1 > Y_MAX_POS)
  1123. y1 = Y_MAX_POS;
  1124. if (verbosity_level >= 20) {
  1125. SERIAL_ECHOPGM("Initial position: ");
  1126. SERIAL_ECHO(center_old_x);
  1127. SERIAL_ECHOPGM(", ");
  1128. SERIAL_ECHO(center_old_y);
  1129. SERIAL_ECHOLNPGM("");
  1130. }
  1131. // Search in the positive Y direction, until a maximum diameter is found.
  1132. // (the next diameter is smaller than the current one.)
  1133. float dmax = 0.f;
  1134. float xmax1 = 0.f;
  1135. float xmax2 = 0.f;
  1136. for (y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1137. enable_z_endstop(false);
  1138. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1139. enable_z_endstop(true);
  1140. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1141. update_current_position_xyz();
  1142. if (! endstop_z_hit_on_purpose()) {
  1143. continue;
  1144. // SERIAL_PROTOCOLPGM("Failed 1\n");
  1145. // current_position[X_AXIS] = center_old_x;
  1146. // goto canceled;
  1147. }
  1148. a = current_position[X_AXIS];
  1149. enable_z_endstop(false);
  1150. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1151. enable_z_endstop(true);
  1152. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1153. update_current_position_xyz();
  1154. if (! endstop_z_hit_on_purpose()) {
  1155. continue;
  1156. // SERIAL_PROTOCOLPGM("Failed 2\n");
  1157. // current_position[X_AXIS] = center_old_x;
  1158. // goto canceled;
  1159. }
  1160. b = current_position[X_AXIS];
  1161. if (verbosity_level >= 5) {
  1162. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1163. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1164. }
  1165. float d = b - a;
  1166. if (d > dmax) {
  1167. xmax1 = 0.5f * (a + b);
  1168. dmax = d;
  1169. } else if (dmax > 0.) {
  1170. y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
  1171. break;
  1172. }
  1173. }
  1174. if (dmax == 0.) {
  1175. if (verbosity_level > 0)
  1176. SERIAL_PROTOCOLPGM("failed - not found\n");
  1177. current_position[X_AXIS] = center_old_x;
  1178. current_position[Y_AXIS] = center_old_y;
  1179. goto canceled;
  1180. }
  1181. {
  1182. // Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
  1183. enable_z_endstop(false);
  1184. go_xy(xmax1, y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
  1185. enable_z_endstop(true);
  1186. go_xy(xmax1, max(y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
  1187. update_current_position_xyz();
  1188. if (! endstop_z_hit_on_purpose()) {
  1189. current_position[Y_AXIS] = center_old_y;
  1190. goto canceled;
  1191. }
  1192. if (verbosity_level >= 5)
  1193. debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1194. y1 = current_position[Y_AXIS];
  1195. }
  1196. if (y1 <= y0) {
  1197. // Either the induction sensor is too high, or the induction sensor target is out of reach.
  1198. current_position[Y_AXIS] = center_old_y;
  1199. goto canceled;
  1200. }
  1201. // Search in the negative Y direction, until a maximum diameter is found.
  1202. dmax = 0.f;
  1203. // if (y0 + 1.f < y1)
  1204. // y1 = y0 + 1.f;
  1205. for (y = y1; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1206. enable_z_endstop(false);
  1207. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1208. enable_z_endstop(true);
  1209. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1210. update_current_position_xyz();
  1211. if (! endstop_z_hit_on_purpose()) {
  1212. continue;
  1213. /*
  1214. current_position[X_AXIS] = center_old_x;
  1215. SERIAL_PROTOCOLPGM("Failed 3\n");
  1216. goto canceled;
  1217. */
  1218. }
  1219. a = current_position[X_AXIS];
  1220. enable_z_endstop(false);
  1221. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1222. enable_z_endstop(true);
  1223. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1224. update_current_position_xyz();
  1225. if (! endstop_z_hit_on_purpose()) {
  1226. continue;
  1227. /*
  1228. current_position[X_AXIS] = center_old_x;
  1229. SERIAL_PROTOCOLPGM("Failed 4\n");
  1230. goto canceled;
  1231. */
  1232. }
  1233. b = current_position[X_AXIS];
  1234. if (verbosity_level >= 5) {
  1235. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1236. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1237. }
  1238. float d = b - a;
  1239. if (d > dmax) {
  1240. xmax2 = 0.5f * (a + b);
  1241. dmax = d;
  1242. } else if (dmax > 0.) {
  1243. y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y;
  1244. break;
  1245. }
  1246. }
  1247. float xmax, ymax;
  1248. if (dmax == 0.f) {
  1249. // Only the hit in the positive direction found.
  1250. xmax = xmax1;
  1251. ymax = y0;
  1252. } else {
  1253. // Both positive and negative directions found.
  1254. xmax = xmax2;
  1255. ymax = 0.5f * (y0 + y1);
  1256. for (; y >= y0; y -= IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1257. enable_z_endstop(false);
  1258. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1259. enable_z_endstop(true);
  1260. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1261. update_current_position_xyz();
  1262. if (! endstop_z_hit_on_purpose()) {
  1263. continue;
  1264. /*
  1265. current_position[X_AXIS] = center_old_x;
  1266. SERIAL_PROTOCOLPGM("Failed 3\n");
  1267. goto canceled;
  1268. */
  1269. }
  1270. a = current_position[X_AXIS];
  1271. enable_z_endstop(false);
  1272. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1273. enable_z_endstop(true);
  1274. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1275. update_current_position_xyz();
  1276. if (! endstop_z_hit_on_purpose()) {
  1277. continue;
  1278. /*
  1279. current_position[X_AXIS] = center_old_x;
  1280. SERIAL_PROTOCOLPGM("Failed 4\n");
  1281. goto canceled;
  1282. */
  1283. }
  1284. b = current_position[X_AXIS];
  1285. if (verbosity_level >= 5) {
  1286. debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
  1287. debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
  1288. }
  1289. float d = b - a;
  1290. if (d > dmax) {
  1291. xmax = 0.5f * (a + b);
  1292. ymax = y;
  1293. dmax = d;
  1294. }
  1295. }
  1296. }
  1297. {
  1298. // Compare the distance in the Y+ direction with the diameter in the X direction.
  1299. // Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
  1300. enable_z_endstop(false);
  1301. go_xy(xmax, ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, homing_feedrate[X_AXIS] / 60.f);
  1302. enable_z_endstop(true);
  1303. go_xy(xmax, max(ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS, Y_MIN_POS_FOR_BED_CALIBRATION), homing_feedrate[X_AXIS] / 60.f);
  1304. update_current_position_xyz();
  1305. if (! endstop_z_hit_on_purpose()) {
  1306. current_position[Y_AXIS] = center_old_y;
  1307. goto canceled;
  1308. }
  1309. if (verbosity_level >= 5)
  1310. debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1311. if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
  1312. // Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
  1313. // First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
  1314. if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1315. if (verbosity_level >= 5) {
  1316. SERIAL_ECHOPGM("Partial point diameter too small: ");
  1317. SERIAL_ECHO(dmax);
  1318. SERIAL_ECHOLNPGM("");
  1319. }
  1320. result = false;
  1321. } else {
  1322. // Estimate the circle radius from the maximum diameter and height:
  1323. float h = current_position[Y_AXIS] - ymax;
  1324. float r = dmax * dmax / (8.f * h) + 0.5f * h;
  1325. if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
  1326. if (verbosity_level >= 5) {
  1327. SERIAL_ECHOPGM("Partial point estimated radius too small: ");
  1328. SERIAL_ECHO(r);
  1329. SERIAL_ECHOPGM(", dmax:");
  1330. SERIAL_ECHO(dmax);
  1331. SERIAL_ECHOPGM(", h:");
  1332. SERIAL_ECHO(h);
  1333. SERIAL_ECHOLNPGM("");
  1334. }
  1335. result = false;
  1336. } else {
  1337. // The point may end up outside of the machine working space.
  1338. // That is all right as it helps to improve the accuracy of the measurement point
  1339. // due to averaging.
  1340. // For the y correction, use an average of dmax/2 and the estimated radius.
  1341. r = 0.5f * (0.5f * dmax + r);
  1342. ymax = current_position[Y_AXIS] - r;
  1343. }
  1344. }
  1345. } else {
  1346. // If the diameter of the detected spot was smaller than a minimum allowed,
  1347. // the induction sensor is probably too high. Returning false will force
  1348. // the sensor to be lowered a tiny bit.
  1349. result = xmax >= MIN_BED_SENSOR_POINT_RESPONSE_DMR;
  1350. if (y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f)
  1351. // Only in case both left and right y tangents are known, use them.
  1352. // If y0 is close to the bed edge, it may not be symmetric to the right tangent.
  1353. ymax = 0.5f * ymax + 0.25f * (y0 + y1);
  1354. }
  1355. }
  1356. // Go to the center.
  1357. enable_z_endstop(false);
  1358. current_position[X_AXIS] = xmax;
  1359. current_position[Y_AXIS] = ymax;
  1360. if (verbosity_level >= 20) {
  1361. SERIAL_ECHOPGM("Adjusted position: ");
  1362. SERIAL_ECHO(current_position[X_AXIS]);
  1363. SERIAL_ECHOPGM(", ");
  1364. SERIAL_ECHO(current_position[Y_AXIS]);
  1365. SERIAL_ECHOLNPGM("");
  1366. }
  1367. // Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
  1368. // Only clamp the coordinate to go.
  1369. go_xy(current_position[X_AXIS], max(Y_MIN_POS, current_position[Y_AXIS]), homing_feedrate[X_AXIS] / 60.f);
  1370. // delay_keep_alive(3000);
  1371. }
  1372. if (result)
  1373. return true;
  1374. // otherwise clamp the Y coordinate
  1375. canceled:
  1376. // Go back to the center.
  1377. enable_z_endstop(false);
  1378. if (current_position[Y_AXIS] < Y_MIN_POS)
  1379. current_position[Y_AXIS] = Y_MIN_POS;
  1380. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1381. return false;
  1382. }
  1383. // Scan the mesh bed induction points one by one by a left-right zig-zag movement,
  1384. // write the trigger coordinates to the serial line.
  1385. // Useful for visualizing the behavior of the bed induction detector.
  1386. inline void scan_bed_induction_sensor_point()
  1387. {
  1388. float center_old_x = current_position[X_AXIS];
  1389. float center_old_y = current_position[Y_AXIS];
  1390. float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1391. float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1392. float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1393. float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
  1394. float y = y0;
  1395. if (x0 < X_MIN_POS)
  1396. x0 = X_MIN_POS;
  1397. if (x1 > X_MAX_POS)
  1398. x1 = X_MAX_POS;
  1399. if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION)
  1400. y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
  1401. if (y1 > Y_MAX_POS)
  1402. y1 = Y_MAX_POS;
  1403. for (float y = y0; y < y1; y += IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y) {
  1404. enable_z_endstop(false);
  1405. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1406. enable_z_endstop(true);
  1407. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1408. update_current_position_xyz();
  1409. if (endstop_z_hit_on_purpose())
  1410. debug_output_point(PSTR("left" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1411. enable_z_endstop(false);
  1412. go_xy(x1, y, homing_feedrate[X_AXIS] / 60.f);
  1413. enable_z_endstop(true);
  1414. go_xy(x0, y, homing_feedrate[X_AXIS] / 60.f);
  1415. update_current_position_xyz();
  1416. if (endstop_z_hit_on_purpose())
  1417. debug_output_point(PSTR("right"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1418. }
  1419. enable_z_endstop(false);
  1420. current_position[X_AXIS] = center_old_x;
  1421. current_position[Y_AXIS] = center_old_y;
  1422. go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
  1423. }
  1424. #define MESH_BED_CALIBRATION_SHOW_LCD
  1425. BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level)
  1426. {
  1427. // Don't let the manage_inactivity() function remove power from the motors.
  1428. refresh_cmd_timeout();
  1429. // Reusing the z_values memory for the measurement cache.
  1430. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1431. float *pts = &mbl.z_values[0][0];
  1432. float *vec_x = pts + 2 * 4;
  1433. float *vec_y = vec_x + 2;
  1434. float *cntr = vec_y + 2;
  1435. memset(pts, 0, sizeof(float) * 7 * 7);
  1436. // SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
  1437. // SERIAL_ECHO(int(verbosity_level));
  1438. // SERIAL_ECHOPGM("");
  1439. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1440. lcd_implementation_clear();
  1441. lcd_print_at_PGM(0, 0, MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1442. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1443. // Collect the rear 2x3 points.
  1444. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1445. for (int k = 0; k < 4; ++ k) {
  1446. // Don't let the manage_inactivity() function remove power from the motors.
  1447. refresh_cmd_timeout();
  1448. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1449. lcd_print_at_PGM(0, 1, MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1450. lcd_implementation_print_at(0, 2, k+1);
  1451. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE3);
  1452. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1453. float *pt = pts + k * 2;
  1454. // Go up to z_initial.
  1455. go_to_current(homing_feedrate[Z_AXIS] / 60.f);
  1456. if (verbosity_level >= 20) {
  1457. // Go to Y0, wait, then go to Y-4.
  1458. current_position[Y_AXIS] = 0.f;
  1459. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1460. SERIAL_ECHOLNPGM("At Y0");
  1461. delay_keep_alive(5000);
  1462. current_position[Y_AXIS] = Y_MIN_POS;
  1463. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1464. SERIAL_ECHOLNPGM("At Y-4");
  1465. delay_keep_alive(5000);
  1466. }
  1467. // Go to the measurement point position.
  1468. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+k*2);
  1469. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+k*2+1);
  1470. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1471. if (verbosity_level >= 10)
  1472. delay_keep_alive(3000);
  1473. if (! find_bed_induction_sensor_point_xy())
  1474. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1475. #if 1
  1476. if (k == 0) {
  1477. // Improve the position of the 1st row sensor points by a zig-zag movement.
  1478. find_bed_induction_sensor_point_z();
  1479. int8_t i = 4;
  1480. for (;;) {
  1481. if (improve_bed_induction_sensor_point3(verbosity_level))
  1482. break;
  1483. if (-- i == 0)
  1484. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1485. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1486. current_position[Z_AXIS] -= 0.025f;
  1487. enable_endstops(false);
  1488. enable_z_endstop(false);
  1489. go_to_current(homing_feedrate[Z_AXIS]);
  1490. }
  1491. if (i == 0)
  1492. // not found
  1493. return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1494. }
  1495. #endif
  1496. if (verbosity_level >= 10)
  1497. delay_keep_alive(3000);
  1498. // Save the detected point position and then clamp the Y coordinate, which may have been estimated
  1499. // to lie outside the machine working space.
  1500. pt[0] = current_position[X_AXIS];
  1501. pt[1] = current_position[Y_AXIS];
  1502. if (current_position[Y_AXIS] < Y_MIN_POS)
  1503. current_position[Y_AXIS] = Y_MIN_POS;
  1504. // Start searching for the other points at 3mm above the last point.
  1505. current_position[Z_AXIS] += 3.f;
  1506. cntr[0] += pt[0];
  1507. cntr[1] += pt[1];
  1508. if (verbosity_level >= 10 && k == 0) {
  1509. // Show the zero. Test, whether the Y motor skipped steps.
  1510. current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
  1511. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1512. delay_keep_alive(3000);
  1513. }
  1514. }
  1515. if (verbosity_level >= 20) {
  1516. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1517. delay_keep_alive(3000);
  1518. for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
  1519. // Don't let the manage_inactivity() function remove power from the motors.
  1520. refresh_cmd_timeout();
  1521. // Go to the measurement point.
  1522. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1523. current_position[X_AXIS] = pts[mesh_point*2];
  1524. current_position[Y_AXIS] = pts[mesh_point*2+1];
  1525. go_to_current(homing_feedrate[X_AXIS]/60);
  1526. delay_keep_alive(3000);
  1527. }
  1528. }
  1529. BedSkewOffsetDetectionResultType result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
  1530. if (result >= 0) {
  1531. world2machine_update(vec_x, vec_y, cntr);
  1532. #if 1
  1533. // Fearlessly store the calibration values into the eeprom.
  1534. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
  1535. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
  1536. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
  1537. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
  1538. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
  1539. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
  1540. #endif
  1541. // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
  1542. world2machine_update_current();
  1543. if (verbosity_level >= 20) {
  1544. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1545. delay_keep_alive(3000);
  1546. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1547. // Don't let the manage_inactivity() function remove power from the motors.
  1548. refresh_cmd_timeout();
  1549. // Go to the measurement point.
  1550. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1551. current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
  1552. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
  1553. go_to_current(homing_feedrate[X_AXIS]/60);
  1554. delay_keep_alive(3000);
  1555. }
  1556. }
  1557. }
  1558. return result;
  1559. }
  1560. BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
  1561. {
  1562. // Don't let the manage_inactivity() function remove power from the motors.
  1563. refresh_cmd_timeout();
  1564. // Mask of the first three points. Are they too far?
  1565. too_far_mask = 0;
  1566. // Reusing the z_values memory for the measurement cache.
  1567. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1568. float *pts = &mbl.z_values[0][0];
  1569. float *vec_x = pts + 2 * 9;
  1570. float *vec_y = vec_x + 2;
  1571. float *cntr = vec_y + 2;
  1572. memset(pts, 0, sizeof(float) * 7 * 7);
  1573. // Cache the current correction matrix.
  1574. world2machine_initialize();
  1575. vec_x[0] = world2machine_rotation_and_skew[0][0];
  1576. vec_x[1] = world2machine_rotation_and_skew[1][0];
  1577. vec_y[0] = world2machine_rotation_and_skew[0][1];
  1578. vec_y[1] = world2machine_rotation_and_skew[1][1];
  1579. cntr[0] = world2machine_shift[0];
  1580. cntr[1] = world2machine_shift[1];
  1581. // and reset the correction matrix, so the planner will not do anything.
  1582. world2machine_reset();
  1583. bool endstops_enabled = enable_endstops(false);
  1584. bool endstop_z_enabled = enable_z_endstop(false);
  1585. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1586. lcd_implementation_clear();
  1587. lcd_print_at_PGM(0, 0, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1);
  1588. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1589. // Collect a matrix of 9x9 points.
  1590. BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT;
  1591. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1592. // Don't let the manage_inactivity() function remove power from the motors.
  1593. refresh_cmd_timeout();
  1594. // Print the decrasing ID of the measurement point.
  1595. #ifdef MESH_BED_CALIBRATION_SHOW_LCD
  1596. lcd_print_at_PGM(0, 1, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
  1597. lcd_implementation_print_at(0, 2, mesh_point+1);
  1598. lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3);
  1599. #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
  1600. // Move up.
  1601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1602. enable_endstops(false);
  1603. enable_z_endstop(false);
  1604. go_to_current(homing_feedrate[Z_AXIS]/60);
  1605. if (verbosity_level >= 20) {
  1606. // Go to Y0, wait, then go to Y-4.
  1607. current_position[Y_AXIS] = 0.f;
  1608. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1609. SERIAL_ECHOLNPGM("At Y0");
  1610. delay_keep_alive(5000);
  1611. current_position[Y_AXIS] = Y_MIN_POS;
  1612. go_to_current(homing_feedrate[X_AXIS] / 60.f);
  1613. SERIAL_ECHOLNPGM("At Y-4");
  1614. delay_keep_alive(5000);
  1615. }
  1616. // Go to the measurement point.
  1617. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1618. current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
  1619. current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1620. // The calibration points are very close to the min Y.
  1621. if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
  1622. current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  1623. go_to_current(homing_feedrate[X_AXIS]/60);
  1624. // Find its Z position by running the normal vertical search.
  1625. if (verbosity_level >= 10)
  1626. delay_keep_alive(3000);
  1627. find_bed_induction_sensor_point_z();
  1628. if (verbosity_level >= 10)
  1629. delay_keep_alive(3000);
  1630. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1631. current_position[Z_AXIS] -= 0.025f;
  1632. // Improve the point position by searching its center in a current plane.
  1633. int8_t n_errors = 3;
  1634. for (int8_t iter = 0; iter < 8; ) {
  1635. if (verbosity_level > 20) {
  1636. SERIAL_ECHOPGM("Improving bed point ");
  1637. SERIAL_ECHO(mesh_point);
  1638. SERIAL_ECHOPGM(", iteration ");
  1639. SERIAL_ECHO(iter);
  1640. SERIAL_ECHOPGM(", z");
  1641. MYSERIAL.print(current_position[Z_AXIS], 5);
  1642. SERIAL_ECHOLNPGM("");
  1643. }
  1644. bool found = false;
  1645. if (mesh_point < 3) {
  1646. // Because the sensor cannot move in front of the first row
  1647. // of the sensor points, the y position cannot be measured
  1648. // by a cross center method.
  1649. // Use a zig-zag search for the first row of the points.
  1650. found = improve_bed_induction_sensor_point3(verbosity_level);
  1651. } else {
  1652. switch (method) {
  1653. case 0: found = improve_bed_induction_sensor_point(); break;
  1654. case 1: found = improve_bed_induction_sensor_point2(mesh_point < 3, verbosity_level); break;
  1655. default: break;
  1656. }
  1657. }
  1658. if (found) {
  1659. if (iter > 3) {
  1660. // Average the last 4 measurements.
  1661. pts[mesh_point*2 ] += current_position[X_AXIS];
  1662. pts[mesh_point*2+1] += current_position[Y_AXIS];
  1663. }
  1664. if (current_position[Y_AXIS] < Y_MIN_POS)
  1665. current_position[Y_AXIS] = Y_MIN_POS;
  1666. ++ iter;
  1667. } else if (n_errors -- == 0) {
  1668. // Give up.
  1669. result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
  1670. goto canceled;
  1671. } else {
  1672. // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
  1673. current_position[Z_AXIS] -= 0.05f;
  1674. enable_endstops(false);
  1675. enable_z_endstop(false);
  1676. go_to_current(homing_feedrate[Z_AXIS]);
  1677. if (verbosity_level >= 5) {
  1678. SERIAL_ECHOPGM("Improving bed point ");
  1679. SERIAL_ECHO(mesh_point);
  1680. SERIAL_ECHOPGM(", iteration ");
  1681. SERIAL_ECHO(iter);
  1682. SERIAL_ECHOPGM(" failed. Lowering z to ");
  1683. MYSERIAL.print(current_position[Z_AXIS], 5);
  1684. SERIAL_ECHOLNPGM("");
  1685. }
  1686. }
  1687. }
  1688. if (verbosity_level >= 10)
  1689. delay_keep_alive(3000);
  1690. }
  1691. // Don't let the manage_inactivity() function remove power from the motors.
  1692. refresh_cmd_timeout();
  1693. // Average the last 4 measurements.
  1694. for (int8_t i = 0; i < 18; ++ i)
  1695. pts[i] *= (1.f/4.f);
  1696. enable_endstops(false);
  1697. enable_z_endstop(false);
  1698. if (verbosity_level >= 5) {
  1699. // Test the positions. Are the positions reproducible?
  1700. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1701. // Don't let the manage_inactivity() function remove power from the motors.
  1702. refresh_cmd_timeout();
  1703. // Go to the measurement point.
  1704. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1705. current_position[X_AXIS] = pts[mesh_point*2];
  1706. current_position[Y_AXIS] = pts[mesh_point*2+1];
  1707. if (verbosity_level >= 10) {
  1708. go_to_current(homing_feedrate[X_AXIS]/60);
  1709. delay_keep_alive(3000);
  1710. }
  1711. SERIAL_ECHOPGM("Final measured bed point ");
  1712. SERIAL_ECHO(mesh_point);
  1713. SERIAL_ECHOPGM(": ");
  1714. MYSERIAL.print(current_position[X_AXIS], 5);
  1715. SERIAL_ECHOPGM(", ");
  1716. MYSERIAL.print(current_position[Y_AXIS], 5);
  1717. SERIAL_ECHOLNPGM("");
  1718. }
  1719. }
  1720. {
  1721. // First fill in the too_far_mask from the measured points.
  1722. for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)
  1723. if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
  1724. too_far_mask |= 1 << mesh_point;
  1725. result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
  1726. if (result < 0) {
  1727. SERIAL_ECHOLNPGM("Calculation of the machine skew and offset failed.");
  1728. goto canceled;
  1729. }
  1730. // In case of success, update the too_far_mask from the calculated points.
  1731. for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {
  1732. float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1733. if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
  1734. too_far_mask |= 1 << mesh_point;
  1735. }
  1736. }
  1737. world2machine_update(vec_x, vec_y, cntr);
  1738. #if 1
  1739. // Fearlessly store the calibration values into the eeprom.
  1740. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
  1741. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
  1742. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
  1743. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
  1744. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
  1745. eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
  1746. #endif
  1747. // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
  1748. world2machine_update_current();
  1749. enable_endstops(false);
  1750. enable_z_endstop(false);
  1751. if (verbosity_level >= 5) {
  1752. // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
  1753. delay_keep_alive(3000);
  1754. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1755. // Don't let the manage_inactivity() function remove power from the motors.
  1756. refresh_cmd_timeout();
  1757. // Go to the measurement point.
  1758. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1759. current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
  1760. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
  1761. if (verbosity_level >= 10) {
  1762. go_to_current(homing_feedrate[X_AXIS]/60);
  1763. delay_keep_alive(3000);
  1764. }
  1765. {
  1766. float x, y;
  1767. world2machine(current_position[X_AXIS], current_position[Y_AXIS], x, y);
  1768. SERIAL_ECHOPGM("Final calculated bed point ");
  1769. SERIAL_ECHO(mesh_point);
  1770. SERIAL_ECHOPGM(": ");
  1771. MYSERIAL.print(x, 5);
  1772. SERIAL_ECHOPGM(", ");
  1773. MYSERIAL.print(y, 5);
  1774. SERIAL_ECHOLNPGM("");
  1775. }
  1776. }
  1777. }
  1778. // Sample Z heights for the mesh bed leveling.
  1779. // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
  1780. if (! sample_mesh_and_store_reference())
  1781. goto canceled;
  1782. enable_endstops(endstops_enabled);
  1783. enable_z_endstop(endstop_z_enabled);
  1784. // Don't let the manage_inactivity() function remove power from the motors.
  1785. refresh_cmd_timeout();
  1786. return result;
  1787. canceled:
  1788. // Don't let the manage_inactivity() function remove power from the motors.
  1789. refresh_cmd_timeout();
  1790. // Print head up.
  1791. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1792. go_to_current(homing_feedrate[Z_AXIS]/60);
  1793. // Store the identity matrix to EEPROM.
  1794. reset_bed_offset_and_skew();
  1795. enable_endstops(endstops_enabled);
  1796. enable_z_endstop(endstop_z_enabled);
  1797. return result;
  1798. }
  1799. void go_home_with_z_lift()
  1800. {
  1801. // Don't let the manage_inactivity() function remove power from the motors.
  1802. refresh_cmd_timeout();
  1803. // Go home.
  1804. // First move up to a safe height.
  1805. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1806. go_to_current(homing_feedrate[Z_AXIS]/60);
  1807. // Second move to XY [0, 0].
  1808. current_position[X_AXIS] = X_MIN_POS+0.2;
  1809. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  1810. // Clamp to the physical coordinates.
  1811. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1812. go_to_current(homing_feedrate[X_AXIS]/60);
  1813. // Third move up to a safe height.
  1814. current_position[Z_AXIS] = Z_MIN_POS;
  1815. go_to_current(homing_feedrate[Z_AXIS]/60);
  1816. }
  1817. // Sample the 9 points of the bed and store them into the EEPROM as a reference.
  1818. // When calling this function, the X, Y, Z axes should be already homed,
  1819. // and the world2machine correction matrix should be active.
  1820. // Returns false if the reference values are more than 3mm far away.
  1821. bool sample_mesh_and_store_reference()
  1822. {
  1823. bool endstops_enabled = enable_endstops(false);
  1824. bool endstop_z_enabled = enable_z_endstop(false);
  1825. // Don't let the manage_inactivity() function remove power from the motors.
  1826. refresh_cmd_timeout();
  1827. // Sample Z heights for the mesh bed leveling.
  1828. // In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
  1829. {
  1830. // The first point defines the reference.
  1831. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1832. go_to_current(homing_feedrate[Z_AXIS]/60);
  1833. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1834. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1835. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1836. go_to_current(homing_feedrate[X_AXIS]/60);
  1837. memcpy(destination, current_position, sizeof(destination));
  1838. enable_endstops(true);
  1839. homeaxis(Z_AXIS);
  1840. enable_endstops(false);
  1841. find_bed_induction_sensor_point_z();
  1842. mbl.set_z(0, 0, current_position[Z_AXIS]);
  1843. }
  1844. for (int8_t mesh_point = 1; mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS; ++ mesh_point) {
  1845. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1846. go_to_current(homing_feedrate[Z_AXIS]/60);
  1847. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  1848. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  1849. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1850. go_to_current(homing_feedrate[X_AXIS]/60);
  1851. find_bed_induction_sensor_point_z();
  1852. // Get cords of measuring point
  1853. int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1854. int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1855. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1856. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1857. }
  1858. {
  1859. // Verify the span of the Z values.
  1860. float zmin = mbl.z_values[0][0];
  1861. float zmax = zmax;
  1862. for (int8_t j = 0; j < 3; ++ j)
  1863. for (int8_t i = 0; i < 3; ++ i) {
  1864. zmin = min(zmin, mbl.z_values[j][i]);
  1865. zmax = min(zmax, mbl.z_values[j][i]);
  1866. }
  1867. if (zmax - zmin > 3.f) {
  1868. // The span of the Z offsets is extreme. Give up.
  1869. // Homing failed on some of the points.
  1870. SERIAL_PROTOCOLLNPGM("Exreme span of the Z values!");
  1871. return false;
  1872. }
  1873. }
  1874. // Store the correction values to EEPROM.
  1875. // Offsets of the Z heiths of the calibration points from the first point.
  1876. // The offsets are saved as 16bit signed int, scaled to tenths of microns.
  1877. {
  1878. uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER;
  1879. for (int8_t j = 0; j < 3; ++ j)
  1880. for (int8_t i = 0; i < 3; ++ i) {
  1881. if (i == 0 && j == 0)
  1882. continue;
  1883. float dif = mbl.z_values[j][i] - mbl.z_values[0][0];
  1884. int16_t dif_quantized = int16_t(floor(dif * 100.f + 0.5f));
  1885. eeprom_update_word((uint16_t*)addr, *reinterpret_cast<uint16_t*>(&dif_quantized));
  1886. {
  1887. uint16_t z_offset_u = eeprom_read_word((uint16_t*)addr);
  1888. float dif2 = *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1889. SERIAL_ECHOPGM("Bed point ");
  1890. SERIAL_ECHO(i);
  1891. SERIAL_ECHOPGM(",");
  1892. SERIAL_ECHO(j);
  1893. SERIAL_ECHOPGM(", differences: written ");
  1894. MYSERIAL.print(dif, 5);
  1895. SERIAL_ECHOPGM(", read: ");
  1896. MYSERIAL.print(dif2, 5);
  1897. SERIAL_ECHOLNPGM("");
  1898. }
  1899. addr += 2;
  1900. }
  1901. }
  1902. mbl.upsample_3x3();
  1903. mbl.active = true;
  1904. go_home_with_z_lift();
  1905. enable_endstops(endstops_enabled);
  1906. enable_z_endstop(endstop_z_enabled);
  1907. return true;
  1908. }
  1909. bool scan_bed_induction_points(int8_t verbosity_level)
  1910. {
  1911. // Don't let the manage_inactivity() function remove power from the motors.
  1912. refresh_cmd_timeout();
  1913. // Reusing the z_values memory for the measurement cache.
  1914. // 7x7=49 floats, good for 16 (x,y,z) vectors.
  1915. float *pts = &mbl.z_values[0][0];
  1916. float *vec_x = pts + 2 * 9;
  1917. float *vec_y = vec_x + 2;
  1918. float *cntr = vec_y + 2;
  1919. memset(pts, 0, sizeof(float) * 7 * 7);
  1920. // Cache the current correction matrix.
  1921. world2machine_initialize();
  1922. vec_x[0] = world2machine_rotation_and_skew[0][0];
  1923. vec_x[1] = world2machine_rotation_and_skew[1][0];
  1924. vec_y[0] = world2machine_rotation_and_skew[0][1];
  1925. vec_y[1] = world2machine_rotation_and_skew[1][1];
  1926. cntr[0] = world2machine_shift[0];
  1927. cntr[1] = world2machine_shift[1];
  1928. // and reset the correction matrix, so the planner will not do anything.
  1929. world2machine_reset();
  1930. bool endstops_enabled = enable_endstops(false);
  1931. bool endstop_z_enabled = enable_z_endstop(false);
  1932. // Collect a matrix of 9x9 points.
  1933. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  1934. // Don't let the manage_inactivity() function remove power from the motors.
  1935. refresh_cmd_timeout();
  1936. // Move up.
  1937. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1938. enable_endstops(false);
  1939. enable_z_endstop(false);
  1940. go_to_current(homing_feedrate[Z_AXIS]/60);
  1941. // Go to the measurement point.
  1942. // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
  1943. current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
  1944. current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
  1945. // The calibration points are very close to the min Y.
  1946. if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
  1947. current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
  1948. go_to_current(homing_feedrate[X_AXIS]/60);
  1949. find_bed_induction_sensor_point_z();
  1950. scan_bed_induction_sensor_point();
  1951. }
  1952. // Don't let the manage_inactivity() function remove power from the motors.
  1953. refresh_cmd_timeout();
  1954. enable_endstops(false);
  1955. enable_z_endstop(false);
  1956. // Don't let the manage_inactivity() function remove power from the motors.
  1957. refresh_cmd_timeout();
  1958. enable_endstops(endstops_enabled);
  1959. enable_z_endstop(endstop_z_enabled);
  1960. return true;
  1961. }
  1962. // Shift a Z axis by a given delta.
  1963. // To replace loading of the babystep correction.
  1964. static void shift_z(float delta)
  1965. {
  1966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - delta, current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  1967. st_synchronize();
  1968. plan_set_z_position(current_position[Z_AXIS]);
  1969. }
  1970. #define BABYSTEP_LOADZ_BY_PLANNER
  1971. // Number of baby steps applied
  1972. static int babystepLoadZ = 0;
  1973. void babystep_apply()
  1974. {
  1975. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  1976. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  1977. {
  1978. // End of G80: Apply the baby stepping value.
  1979. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1980. #if 0
  1981. SERIAL_ECHO("Z baby step: ");
  1982. SERIAL_ECHO(babystepLoadZ);
  1983. SERIAL_ECHO(", current Z: ");
  1984. SERIAL_ECHO(current_position[Z_AXIS]);
  1985. SERIAL_ECHO("correction: ");
  1986. SERIAL_ECHO(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  1987. SERIAL_ECHOLN("");
  1988. #endif
  1989. #ifdef BABYSTEP_LOADZ_BY_PLANNER
  1990. shift_z(- float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  1991. #else
  1992. babystepsTodoZadd(babystepLoadZ);
  1993. #endif /* BABYSTEP_LOADZ_BY_PLANNER */
  1994. }
  1995. }
  1996. void babystep_undo()
  1997. {
  1998. #ifdef BABYSTEP_LOADZ_BY_PLANNER
  1999. shift_z(float(babystepLoadZ) / float(axis_steps_per_unit[Z_AXIS]));
  2000. #else
  2001. babystepsTodoZsubtract(babystepLoadZ);
  2002. #endif /* BABYSTEP_LOADZ_BY_PLANNER */
  2003. babystepLoadZ = 0;
  2004. }
  2005. void babystep_reset()
  2006. {
  2007. babystepLoadZ = 0;
  2008. }