fsensor.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include <avr/pgmspace.h>
  4. #include "pat9125.h"
  5. #include "stepper.h"
  6. #include "planner.h"
  7. #include "fastio.h"
  8. #include "cmdqueue.h"
  9. //Basic params
  10. #define FSENSOR_CHUNK_LEN 180 //filament sensor chunk length in steps - 0.64mm
  11. #define FSENSOR_ERR_MAX 10 //filament sensor maximum error count for runout detection
  12. //Optical quality meassurement params
  13. #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
  14. #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
  15. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
  16. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
  17. #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
  18. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  19. #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
  20. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  21. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  22. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  23. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  24. extern void restore_print_from_ram_and_continue(float e_move);
  25. extern int8_t FSensorStateMenu;
  26. void fsensor_stop_and_save_print(void)
  27. {
  28. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  29. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  30. }
  31. void fsensor_restore_print_and_continue(void)
  32. {
  33. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  34. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  35. }
  36. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  37. uint8_t fsensor_int_pin_old = 0;
  38. int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN;
  39. //enabled = initialized and sampled every chunk event
  40. bool fsensor_enabled = true;
  41. //runout watching is done in fsensor_update (called from main loop)
  42. bool fsensor_watch_runout = true;
  43. //not responding - is set if any communication error occured durring initialization or readout
  44. bool fsensor_not_responding = false;
  45. //printing saved
  46. bool fsensor_printing_saved = false;
  47. //number of errors, updated in ISR
  48. uint8_t fsensor_err_cnt = 0;
  49. //variable for accumolating step count (updated callbacks from stepper and ISR)
  50. int16_t fsensor_st_cnt = 0;
  51. //last dy value from pat9125 sensor (used in ISR)
  52. uint8_t fsensor_dy_old = 0;
  53. //log flag: 0=log disabled, 1=log enabled
  54. uint8_t fsensor_log = 0;
  55. ////////////////////////////////////////////////////////////////////////////////
  56. //filament autoload variables
  57. //autoload feature enabled
  58. bool fsensor_autoload_enabled = true;
  59. //autoload watching enable/disable flag
  60. bool fsensor_watch_autoload = false;
  61. //
  62. uint16_t fsensor_autoload_y;
  63. //
  64. uint8_t fsensor_autoload_c;
  65. //
  66. uint32_t fsensor_autoload_last_millis;
  67. //
  68. uint8_t fsensor_autoload_sum;
  69. ////////////////////////////////////////////////////////////////////////////////
  70. //filament optical quality meassurement variables
  71. //meassurement enable/disable flag
  72. bool fsensor_oq_meassure = false;
  73. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  74. uint8_t fsensor_oq_skipchunk;
  75. //number of samples from start of meassurement
  76. uint8_t fsensor_oq_samples;
  77. //sum of steps in positive direction movements
  78. uint16_t fsensor_oq_st_sum;
  79. //sum of deltas in positive direction movements
  80. uint16_t fsensor_oq_yd_sum;
  81. //sum of errors durring meassurement
  82. uint16_t fsensor_oq_er_sum;
  83. //max error counter value durring meassurement
  84. uint8_t fsensor_oq_er_max;
  85. //minimum delta value
  86. uint16_t fsensor_oq_yd_min;
  87. //maximum delta value
  88. uint16_t fsensor_oq_yd_max;
  89. //sum of shutter value
  90. uint16_t fsensor_oq_sh_sum;
  91. void fsensor_init(void)
  92. {
  93. int pat9125 = pat9125_init();
  94. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  95. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  96. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  97. if (!pat9125)
  98. {
  99. fsensor = 0; //disable sensor
  100. fsensor_not_responding = true;
  101. }
  102. else
  103. fsensor_not_responding = false;
  104. if (fsensor)
  105. fsensor_enable();
  106. else
  107. fsensor_disable();
  108. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  109. }
  110. bool fsensor_enable(void)
  111. {
  112. uint8_t pat9125 = pat9125_init();
  113. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  114. if (pat9125)
  115. fsensor_not_responding = false;
  116. else
  117. fsensor_not_responding = true;
  118. fsensor_enabled = pat9125?true:false;
  119. fsensor_watch_runout = true;
  120. fsensor_oq_meassure = false;
  121. fsensor_err_cnt = 0;
  122. fsensor_dy_old = 0;
  123. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  124. FSensorStateMenu = fsensor_enabled?1:0;
  125. return fsensor_enabled;
  126. }
  127. void fsensor_disable(void)
  128. {
  129. fsensor_enabled = false;
  130. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  131. FSensorStateMenu = 0;
  132. }
  133. void fsensor_autoload_set(bool State)
  134. {
  135. fsensor_autoload_enabled = State;
  136. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  137. }
  138. void pciSetup(byte pin)
  139. {
  140. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  141. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  142. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  143. }
  144. void fsensor_autoload_check_start(void)
  145. {
  146. // puts_P(_N("fsensor_autoload_check_start\n"));
  147. if (!fsensor_enabled) return;
  148. if (!fsensor_autoload_enabled) return;
  149. if (fsensor_watch_autoload) return;
  150. if (!pat9125_update_y()) //update sensor
  151. {
  152. fsensor_disable();
  153. fsensor_not_responding = true;
  154. fsensor_watch_autoload = false;
  155. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  156. return;
  157. }
  158. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  159. fsensor_autoload_y = pat9125_y; //save current y value
  160. fsensor_autoload_c = 0; //reset number of changes counter
  161. fsensor_autoload_sum = 0;
  162. fsensor_autoload_last_millis = millis();
  163. fsensor_watch_runout = false;
  164. fsensor_watch_autoload = true;
  165. fsensor_err_cnt = 0;
  166. }
  167. void fsensor_autoload_check_stop(void)
  168. {
  169. // puts_P(_N("fsensor_autoload_check_stop\n"));
  170. if (!fsensor_enabled) return;
  171. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  172. if (!fsensor_autoload_enabled) return;
  173. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  174. if (!fsensor_watch_autoload) return;
  175. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  176. fsensor_autoload_sum = 0;
  177. fsensor_watch_autoload = false;
  178. fsensor_watch_runout = true;
  179. fsensor_err_cnt = 0;
  180. }
  181. bool fsensor_check_autoload(void)
  182. {
  183. if (!fsensor_enabled) return false;
  184. if (!fsensor_autoload_enabled) return false;
  185. if (!fsensor_watch_autoload)
  186. {
  187. fsensor_autoload_check_start();
  188. return false;
  189. }
  190. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  191. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  192. fsensor_autoload_last_millis = millis();
  193. if (!pat9125_update_y()) //update sensor
  194. {
  195. fsensor_disable();
  196. fsensor_not_responding = true;
  197. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  198. return false;
  199. }
  200. int16_t dy = pat9125_y - fsensor_autoload_y;
  201. if (dy) //? dy value is nonzero
  202. {
  203. if (dy > 0) //? delta-y value is positive (inserting)
  204. {
  205. fsensor_autoload_sum += dy;
  206. fsensor_autoload_c += 3; //increment change counter by 3
  207. }
  208. else if (fsensor_autoload_c > 1)
  209. fsensor_autoload_c -= 2; //decrement change counter by 2
  210. fsensor_autoload_y = pat9125_y; //save current value
  211. }
  212. else if (fsensor_autoload_c > 0)
  213. fsensor_autoload_c--;
  214. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  215. // puts_P(_N("fsensor_check_autoload\n"));
  216. // if (fsensor_autoload_c != fsensor_autoload_c_old)
  217. // printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  218. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  219. if ((fsensor_autoload_c >= 10) && (fsensor_autoload_sum > 15))
  220. {
  221. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  222. return true;
  223. }
  224. return false;
  225. }
  226. void fsensor_oq_meassure_start(uint8_t skip)
  227. {
  228. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  229. fsensor_oq_skipchunk = skip;
  230. fsensor_oq_samples = 0;
  231. fsensor_oq_st_sum = 0;
  232. fsensor_oq_yd_sum = 0;
  233. fsensor_oq_er_sum = 0;
  234. fsensor_oq_er_max = 0;
  235. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  236. fsensor_oq_yd_max = 0;
  237. fsensor_oq_sh_sum = 0;
  238. pat9125_update();
  239. pat9125_y = 0;
  240. fsensor_watch_runout = false;
  241. fsensor_oq_meassure = true;
  242. }
  243. void fsensor_oq_meassure_stop(void)
  244. {
  245. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  246. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  247. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  248. fsensor_oq_meassure = false;
  249. fsensor_watch_runout = true;
  250. fsensor_err_cnt = 0;
  251. }
  252. const char _OK[] PROGMEM = "OK";
  253. const char _NG[] PROGMEM = "NG!";
  254. bool fsensor_oq_result(void)
  255. {
  256. printf_P(_N("fsensor_oq_result\n"));
  257. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  258. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  259. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  260. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  261. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum);
  262. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  263. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  264. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  265. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  266. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  267. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  268. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  269. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  270. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  271. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  272. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  273. return res;
  274. }
  275. ISR(PCINT2_vect)
  276. {
  277. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  278. fsensor_int_pin_old = PINK;
  279. static bool _lock = false;
  280. if (_lock) return;
  281. _lock = true;
  282. int st_cnt = fsensor_st_cnt;
  283. fsensor_st_cnt = 0;
  284. sei();
  285. uint8_t old_err_cnt = fsensor_err_cnt;
  286. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  287. if (!pat9125_res)
  288. {
  289. fsensor_disable();
  290. fsensor_not_responding = true;
  291. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  292. }
  293. if (st_cnt != 0)
  294. { //movement
  295. if (st_cnt > 0) //positive movement
  296. {
  297. if (pat9125_y < 0)
  298. fsensor_err_cnt++;
  299. else if (pat9125_y > 0)
  300. {
  301. if (fsensor_err_cnt)
  302. fsensor_err_cnt--;
  303. }
  304. else //(pat9125_y == 0)
  305. if (fsensor_dy_old <= 0)
  306. fsensor_err_cnt++;
  307. if (fsensor_oq_meassure)
  308. {
  309. if (fsensor_oq_skipchunk)
  310. {
  311. fsensor_oq_skipchunk--;
  312. fsensor_err_cnt = 0;
  313. }
  314. else
  315. {
  316. if (st_cnt == FSENSOR_CHUNK_LEN)
  317. {
  318. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  319. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  320. }
  321. fsensor_oq_samples++;
  322. fsensor_oq_st_sum += st_cnt;
  323. fsensor_oq_yd_sum += pat9125_y;
  324. if (fsensor_err_cnt > old_err_cnt)
  325. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  326. if (fsensor_oq_er_max < fsensor_err_cnt)
  327. fsensor_oq_er_max = fsensor_err_cnt;
  328. fsensor_oq_sh_sum += pat9125_s;
  329. }
  330. }
  331. }
  332. else //negative movement
  333. {
  334. }
  335. }
  336. else
  337. { //no movement
  338. }
  339. #ifdef DEBUG_FSENSOR_LOG
  340. if (fsensor_log)
  341. {
  342. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  343. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  344. }
  345. #endif //DEBUG_FSENSOR_LOG
  346. fsensor_dy_old = pat9125_y;
  347. pat9125_y = 0;
  348. _lock = false;
  349. return;
  350. }
  351. void fsensor_st_block_begin(block_t* bl)
  352. {
  353. if (!fsensor_enabled) return;
  354. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  355. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  356. {
  357. if (_READ(63)) _WRITE(63, LOW);
  358. else _WRITE(63, HIGH);
  359. }
  360. }
  361. void fsensor_st_block_chunk(block_t* bl, int cnt)
  362. {
  363. if (!fsensor_enabled) return;
  364. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  365. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  366. {
  367. if (_READ(63)) _WRITE(63, LOW);
  368. else _WRITE(63, HIGH);
  369. }
  370. }
  371. void fsensor_update(void)
  372. {
  373. if (fsensor_enabled)
  374. {
  375. if (fsensor_printing_saved)
  376. {
  377. fsensor_restore_print_and_continue();
  378. fsensor_printing_saved = false;
  379. fsensor_watch_runout = true;
  380. fsensor_err_cnt = 0;
  381. }
  382. else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  383. {
  384. fsensor_stop_and_save_print();
  385. fsensor_printing_saved = true;
  386. fsensor_err_cnt = 0;
  387. /*
  388. st_synchronize();
  389. for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  390. current_position[axis] = st_get_position_mm(axis);
  391. current_position[E_AXIS] -= 3;
  392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  393. st_synchronize();
  394. current_position[E_AXIS] += 3;
  395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  396. st_synchronize();
  397. */
  398. enquecommand_front_P((PSTR("G1 E-3 F200")));
  399. process_commands();
  400. cmdqueue_pop_front();
  401. st_synchronize();
  402. enquecommand_front_P((PSTR("G1 E3 F200")));
  403. process_commands();
  404. cmdqueue_pop_front();
  405. st_synchronize();
  406. if (fsensor_err_cnt == 0)
  407. {
  408. fsensor_restore_print_and_continue();
  409. fsensor_printing_saved = false;
  410. }
  411. else
  412. {
  413. // printf_P(PSTR("fsensor_update - M600\n"));
  414. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  415. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  416. enquecommand_front_P((PSTR("M600")));
  417. fsensor_watch_runout = false;
  418. }
  419. }
  420. }
  421. }
  422. void fsensor_setup_interrupt(void)
  423. {
  424. pinMode(FSENSOR_INT_PIN, OUTPUT);
  425. digitalWrite(FSENSOR_INT_PIN, LOW);
  426. fsensor_int_pin_old = 0;
  427. pciSetup(FSENSOR_INT_PIN);
  428. }