Marlin_main.cpp 228 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. unsigned long PingTime = millis();
  198. unsigned long NcTime;
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef FILAMENT_SENSOR
  319. //Variables for Filament Sensor input
  320. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  321. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  322. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  323. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  324. int delay_index1=0; //index into ring buffer
  325. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  326. float delay_dist=0; //delay distance counter
  327. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  328. #endif
  329. const char errormagic[] PROGMEM = "Error:";
  330. const char echomagic[] PROGMEM = "echo:";
  331. bool no_response = false;
  332. uint8_t important_status;
  333. uint8_t saved_filament_type;
  334. //===========================================================================
  335. //=============================Private Variables=============================
  336. //===========================================================================
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  339. static float delta[3] = {0.0, 0.0, 0.0};
  340. // For tracing an arc
  341. static float offset[3] = {0.0, 0.0, 0.0};
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. // Determines Absolute or Relative Coordinates.
  346. // Also there is bool axis_relative_modes[] per axis flag.
  347. static bool relative_mode = false;
  348. // String circular buffer. Commands may be pushed to the buffer from both sides:
  349. // Chained commands will be pushed to the front, interactive (from LCD menu)
  350. // and printing commands (from serial line or from SD card) are pushed to the tail.
  351. // First character of each entry indicates the type of the entry:
  352. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  353. // Command in cmdbuffer was sent over USB.
  354. #define CMDBUFFER_CURRENT_TYPE_USB 1
  355. // Command in cmdbuffer was read from SDCARD.
  356. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  357. // Command in cmdbuffer was generated by the UI.
  358. #define CMDBUFFER_CURRENT_TYPE_UI 3
  359. // Command in cmdbuffer was generated by another G-code.
  360. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  361. // How much space to reserve for the chained commands
  362. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  363. // which are pushed to the front of the queue?
  364. // Maximum 5 commands of max length 20 + null terminator.
  365. #define CMDBUFFER_RESERVE_FRONT (5*21)
  366. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  367. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  368. // Head of the circular buffer, where to read.
  369. static int bufindr = 0;
  370. // Tail of the buffer, where to write.
  371. static int bufindw = 0;
  372. // Number of lines in cmdbuffer.
  373. static int buflen = 0;
  374. // Flag for processing the current command inside the main Arduino loop().
  375. // If a new command was pushed to the front of a command buffer while
  376. // processing another command, this replaces the command on the top.
  377. // Therefore don't remove the command from the queue in the loop() function.
  378. static bool cmdbuffer_front_already_processed = false;
  379. // Type of a command, which is to be executed right now.
  380. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  381. // String of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  383. // Enable debugging of the command buffer.
  384. // Debugging information will be sent to serial line.
  385. // #define CMDBUFFER_DEBUG
  386. static int serial_count = 0; //index of character read from serial line
  387. static boolean comment_mode = false;
  388. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  389. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  390. //static float tt = 0;
  391. //static float bt = 0;
  392. //Inactivity shutdown variables
  393. static unsigned long previous_millis_cmd = 0;
  394. unsigned long max_inactive_time = 0;
  395. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  396. unsigned long starttime=0;
  397. unsigned long stoptime=0;
  398. unsigned long _usb_timer = 0;
  399. static uint8_t tmp_extruder;
  400. bool Stopped=false;
  401. #if NUM_SERVOS > 0
  402. Servo servos[NUM_SERVOS];
  403. #endif
  404. bool CooldownNoWait = true;
  405. bool target_direction;
  406. //Insert variables if CHDK is defined
  407. #ifdef CHDK
  408. unsigned long chdkHigh = 0;
  409. boolean chdkActive = false;
  410. #endif
  411. //===========================================================================
  412. //=============================Routines======================================
  413. //===========================================================================
  414. void get_arc_coordinates();
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char *s_P, float v)
  417. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char *s_P, double v)
  419. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char *s_P, unsigned long v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. #ifdef SDSUPPORT
  423. #include "SdFatUtil.h"
  424. int freeMemory() { return SdFatUtil::FreeRam(); }
  425. #else
  426. extern "C" {
  427. extern unsigned int __bss_end;
  428. extern unsigned int __heap_start;
  429. extern void *__brkval;
  430. int freeMemory() {
  431. int free_memory;
  432. if ((int)__brkval == 0)
  433. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  434. else
  435. free_memory = ((int)&free_memory) - ((int)__brkval);
  436. return free_memory;
  437. }
  438. }
  439. #endif //!SDSUPPORT
  440. // Pop the currently processed command from the queue.
  441. // It is expected, that there is at least one command in the queue.
  442. bool cmdqueue_pop_front()
  443. {
  444. if (buflen > 0) {
  445. #ifdef CMDBUFFER_DEBUG
  446. SERIAL_ECHOPGM("Dequeing ");
  447. SERIAL_ECHO(cmdbuffer+bufindr+1);
  448. SERIAL_ECHOLNPGM("");
  449. SERIAL_ECHOPGM("Old indices: buflen ");
  450. SERIAL_ECHO(buflen);
  451. SERIAL_ECHOPGM(", bufindr ");
  452. SERIAL_ECHO(bufindr);
  453. SERIAL_ECHOPGM(", bufindw ");
  454. SERIAL_ECHO(bufindw);
  455. SERIAL_ECHOPGM(", serial_count ");
  456. SERIAL_ECHO(serial_count);
  457. SERIAL_ECHOPGM(", bufsize ");
  458. SERIAL_ECHO(sizeof(cmdbuffer));
  459. SERIAL_ECHOLNPGM("");
  460. #endif /* CMDBUFFER_DEBUG */
  461. if (-- buflen == 0) {
  462. // Empty buffer.
  463. if (serial_count == 0)
  464. // No serial communication is pending. Reset both pointers to zero.
  465. bufindw = 0;
  466. bufindr = bufindw;
  467. } else {
  468. // There is at least one ready line in the buffer.
  469. // First skip the current command ID and iterate up to the end of the string.
  470. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  471. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  472. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  473. // If the end of the buffer was empty,
  474. if (bufindr == sizeof(cmdbuffer)) {
  475. // skip to the start and find the nonzero command.
  476. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  477. }
  478. #ifdef CMDBUFFER_DEBUG
  479. SERIAL_ECHOPGM("New indices: buflen ");
  480. SERIAL_ECHO(buflen);
  481. SERIAL_ECHOPGM(", bufindr ");
  482. SERIAL_ECHO(bufindr);
  483. SERIAL_ECHOPGM(", bufindw ");
  484. SERIAL_ECHO(bufindw);
  485. SERIAL_ECHOPGM(", serial_count ");
  486. SERIAL_ECHO(serial_count);
  487. SERIAL_ECHOPGM(" new command on the top: ");
  488. SERIAL_ECHO(cmdbuffer+bufindr+1);
  489. SERIAL_ECHOLNPGM("");
  490. #endif /* CMDBUFFER_DEBUG */
  491. }
  492. return true;
  493. }
  494. return false;
  495. }
  496. void cmdqueue_reset()
  497. {
  498. while (cmdqueue_pop_front()) ;
  499. }
  500. // How long a string could be pushed to the front of the command queue?
  501. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  502. // len_asked does not contain the zero terminator size.
  503. bool cmdqueue_could_enqueue_front(int len_asked)
  504. {
  505. // MAX_CMD_SIZE has to accommodate the zero terminator.
  506. if (len_asked >= MAX_CMD_SIZE)
  507. return false;
  508. // Remove the currently processed command from the queue.
  509. if (! cmdbuffer_front_already_processed) {
  510. cmdqueue_pop_front();
  511. cmdbuffer_front_already_processed = true;
  512. }
  513. if (bufindr == bufindw && buflen > 0)
  514. // Full buffer.
  515. return false;
  516. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  517. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  518. if (bufindw < bufindr) {
  519. int bufindr_new = bufindr - len_asked - 2;
  520. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  521. if (endw <= bufindr_new) {
  522. bufindr = bufindr_new;
  523. return true;
  524. }
  525. } else {
  526. // Otherwise the free space is split between the start and end.
  527. if (len_asked + 2 <= bufindr) {
  528. // Could fit at the start.
  529. bufindr -= len_asked + 2;
  530. return true;
  531. }
  532. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  533. if (endw <= bufindr_new) {
  534. memset(cmdbuffer, 0, bufindr);
  535. bufindr = bufindr_new;
  536. return true;
  537. }
  538. }
  539. return false;
  540. }
  541. // Could one enqueue a command of lenthg len_asked into the buffer,
  542. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  543. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  544. // len_asked does not contain the zero terminator size.
  545. bool cmdqueue_could_enqueue_back(int len_asked)
  546. {
  547. // MAX_CMD_SIZE has to accommodate the zero terminator.
  548. if (len_asked >= MAX_CMD_SIZE)
  549. return false;
  550. if (bufindr == bufindw && buflen > 0)
  551. // Full buffer.
  552. return false;
  553. if (serial_count > 0) {
  554. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  555. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  556. // serial data.
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. } else {
  578. // How much memory to reserve for the commands pushed to the front?
  579. // End of the queue, when pushing to the end.
  580. int endw = bufindw + len_asked + 2;
  581. if (bufindw < bufindr)
  582. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  583. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  584. // Otherwise the free space is split between the start and end.
  585. if (// Could one fit to the end, including the reserve?
  586. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  587. // Could one fit to the end, and the reserve to the start?
  588. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  589. return true;
  590. // Could one fit both to the start?
  591. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  592. // Mark the rest of the buffer as used.
  593. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  594. // and point to the start.
  595. bufindw = 0;
  596. return true;
  597. }
  598. }
  599. return false;
  600. }
  601. #ifdef CMDBUFFER_DEBUG
  602. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  603. {
  604. SERIAL_ECHOPGM("Entry nr: ");
  605. SERIAL_ECHO(nr);
  606. SERIAL_ECHOPGM(", type: ");
  607. SERIAL_ECHO(int(*p));
  608. SERIAL_ECHOPGM(", cmd: ");
  609. SERIAL_ECHO(p+1);
  610. SERIAL_ECHOLNPGM("");
  611. }
  612. static void cmdqueue_dump_to_serial()
  613. {
  614. if (buflen == 0) {
  615. SERIAL_ECHOLNPGM("The command buffer is empty.");
  616. } else {
  617. SERIAL_ECHOPGM("Content of the buffer: entries ");
  618. SERIAL_ECHO(buflen);
  619. SERIAL_ECHOPGM(", indr ");
  620. SERIAL_ECHO(bufindr);
  621. SERIAL_ECHOPGM(", indw ");
  622. SERIAL_ECHO(bufindw);
  623. SERIAL_ECHOLNPGM("");
  624. int nr = 0;
  625. if (bufindr < bufindw) {
  626. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  627. cmdqueue_dump_to_serial_single_line(nr, p);
  628. // Skip the command.
  629. for (++p; *p != 0; ++ p);
  630. // Skip the gaps.
  631. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  632. }
  633. } else {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  640. }
  641. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. }
  649. SERIAL_ECHOLNPGM("End of the buffer.");
  650. }
  651. }
  652. #endif /* CMDBUFFER_DEBUG */
  653. //adds an command to the main command buffer
  654. //thats really done in a non-safe way.
  655. //needs overworking someday
  656. // Currently the maximum length of a command piped through this function is around 20 characters
  657. void enquecommand(const char *cmd, bool from_progmem)
  658. {
  659. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  660. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  661. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  662. if (cmdqueue_could_enqueue_back(len)) {
  663. // This is dangerous if a mixing of serial and this happens
  664. // This may easily be tested: If serial_count > 0, we have a problem.
  665. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  666. if (from_progmem)
  667. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  668. else
  669. strcpy(cmdbuffer + bufindw + 1, cmd);
  670. SERIAL_ECHO_START;
  671. SERIAL_ECHORPGM(MSG_Enqueing);
  672. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  673. SERIAL_ECHOLNPGM("\"");
  674. bufindw += len + 2;
  675. if (bufindw == sizeof(cmdbuffer))
  676. bufindw = 0;
  677. ++ buflen;
  678. #ifdef CMDBUFFER_DEBUG
  679. cmdqueue_dump_to_serial();
  680. #endif /* CMDBUFFER_DEBUG */
  681. } else {
  682. SERIAL_ERROR_START;
  683. SERIAL_ECHORPGM(MSG_Enqueing);
  684. if (from_progmem)
  685. SERIAL_PROTOCOLRPGM(cmd);
  686. else
  687. SERIAL_ECHO(cmd);
  688. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. }
  693. }
  694. void enquecommand_front(const char *cmd, bool from_progmem)
  695. {
  696. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  697. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  698. if (cmdqueue_could_enqueue_front(len)) {
  699. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  700. if (from_progmem)
  701. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  702. else
  703. strcpy(cmdbuffer + bufindr + 1, cmd);
  704. ++ buflen;
  705. SERIAL_ECHO_START;
  706. SERIAL_ECHOPGM("Enqueing to the front: \"");
  707. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  708. SERIAL_ECHOLNPGM("\"");
  709. #ifdef CMDBUFFER_DEBUG
  710. cmdqueue_dump_to_serial();
  711. #endif /* CMDBUFFER_DEBUG */
  712. } else {
  713. SERIAL_ERROR_START;
  714. SERIAL_ECHOPGM("Enqueing to the front: \"");
  715. if (from_progmem)
  716. SERIAL_PROTOCOLRPGM(cmd);
  717. else
  718. SERIAL_ECHO(cmd);
  719. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  720. #ifdef CMDBUFFER_DEBUG
  721. cmdqueue_dump_to_serial();
  722. #endif /* CMDBUFFER_DEBUG */
  723. }
  724. }
  725. // Mark the command at the top of the command queue as new.
  726. // Therefore it will not be removed from the queue.
  727. void repeatcommand_front()
  728. {
  729. cmdbuffer_front_already_processed = true;
  730. }
  731. bool is_buffer_empty()
  732. {
  733. if (buflen == 0) return true;
  734. else return false;
  735. }
  736. void setup_killpin()
  737. {
  738. #if defined(KILL_PIN) && KILL_PIN > -1
  739. SET_INPUT(KILL_PIN);
  740. WRITE(KILL_PIN,HIGH);
  741. #endif
  742. }
  743. // Set home pin
  744. void setup_homepin(void)
  745. {
  746. #if defined(HOME_PIN) && HOME_PIN > -1
  747. SET_INPUT(HOME_PIN);
  748. WRITE(HOME_PIN,HIGH);
  749. #endif
  750. }
  751. void setup_photpin()
  752. {
  753. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  754. SET_OUTPUT(PHOTOGRAPH_PIN);
  755. WRITE(PHOTOGRAPH_PIN, LOW);
  756. #endif
  757. }
  758. void setup_powerhold()
  759. {
  760. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  761. SET_OUTPUT(SUICIDE_PIN);
  762. WRITE(SUICIDE_PIN, HIGH);
  763. #endif
  764. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  765. SET_OUTPUT(PS_ON_PIN);
  766. #if defined(PS_DEFAULT_OFF)
  767. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  768. #else
  769. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  770. #endif
  771. #endif
  772. }
  773. void suicide()
  774. {
  775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  776. SET_OUTPUT(SUICIDE_PIN);
  777. WRITE(SUICIDE_PIN, LOW);
  778. #endif
  779. }
  780. void servo_init()
  781. {
  782. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  783. servos[0].attach(SERVO0_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  786. servos[1].attach(SERVO1_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  789. servos[2].attach(SERVO2_PIN);
  790. #endif
  791. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  792. servos[3].attach(SERVO3_PIN);
  793. #endif
  794. #if (NUM_SERVOS >= 5)
  795. #error "TODO: enter initalisation code for more servos"
  796. #endif
  797. }
  798. static void lcd_language_menu();
  799. #ifdef MESH_BED_LEVELING
  800. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  801. #endif
  802. // Factory reset function
  803. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  804. // Level input parameter sets depth of reset
  805. // Quiet parameter masks all waitings for user interact.
  806. int er_progress = 0;
  807. void factory_reset(char level, bool quiet)
  808. {
  809. lcd_implementation_clear();
  810. int cursor_pos = 0;
  811. switch (level) {
  812. // Level 0: Language reset
  813. case 0:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. lcd_force_language_selection();
  818. break;
  819. //Level 1: Reset statistics
  820. case 1:
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  825. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  826. lcd_menu_statistics();
  827. break;
  828. // Level 2: Prepare for shipping
  829. case 2:
  830. //lcd_printPGM(PSTR("Factory RESET"));
  831. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  832. // Force language selection at the next boot up.
  833. lcd_force_language_selection();
  834. // Force the "Follow calibration flow" message at the next boot up.
  835. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  836. farm_no = 0;
  837. farm_mode == false;
  838. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  839. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  840. WRITE(BEEPER, HIGH);
  841. _delay_ms(100);
  842. WRITE(BEEPER, LOW);
  843. //_delay_ms(2000);
  844. break;
  845. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  846. case 3:
  847. lcd_printPGM(PSTR("Factory RESET"));
  848. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. er_progress = 0;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. // Erase EEPROM
  856. for (int i = 0; i < 4096; i++) {
  857. eeprom_write_byte((uint8_t*)i, 0xFF);
  858. if (i % 41 == 0) {
  859. er_progress++;
  860. lcd_print_at_PGM(3, 3, PSTR(" "));
  861. lcd_implementation_print_at(3, 3, er_progress);
  862. lcd_printPGM(PSTR("%"));
  863. }
  864. }
  865. break;
  866. case 4:
  867. bowden_menu();
  868. break;
  869. default:
  870. break;
  871. }
  872. }
  873. // "Setup" function is called by the Arduino framework on startup.
  874. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  875. // are initialized by the main() routine provided by the Arduino framework.
  876. void setup()
  877. {
  878. lcd_init();
  879. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  880. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  881. setup_killpin();
  882. setup_powerhold();
  883. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  884. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  885. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  886. if (farm_no == 0xFFFF) farm_no = 0;
  887. if (farm_mode)
  888. {
  889. prusa_statistics(8);
  890. no_response = true; //we need confirmation by recieving PRUSA thx
  891. important_status = 8;
  892. selectedSerialPort = 1;
  893. } else {
  894. selectedSerialPort = 0;
  895. }
  896. MYSERIAL.begin(BAUDRATE);
  897. SERIAL_PROTOCOLLNPGM("start");
  898. SERIAL_ECHO_START;
  899. #if 0
  900. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  901. for (int i = 0; i < 4096; ++i) {
  902. int b = eeprom_read_byte((unsigned char*)i);
  903. if (b != 255) {
  904. SERIAL_ECHO(i);
  905. SERIAL_ECHO(":");
  906. SERIAL_ECHO(b);
  907. SERIAL_ECHOLN("");
  908. }
  909. }
  910. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  911. #endif
  912. // Check startup - does nothing if bootloader sets MCUSR to 0
  913. byte mcu = MCUSR;
  914. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  915. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  916. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  917. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  918. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  919. MCUSR = 0;
  920. //SERIAL_ECHORPGM(MSG_MARLIN);
  921. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  922. #ifdef STRING_VERSION_CONFIG_H
  923. #ifdef STRING_CONFIG_H_AUTHOR
  924. SERIAL_ECHO_START;
  925. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  926. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  927. SERIAL_ECHORPGM(MSG_AUTHOR);
  928. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  929. SERIAL_ECHOPGM("Compiled: ");
  930. SERIAL_ECHOLNPGM(__DATE__);
  931. #endif
  932. #endif
  933. SERIAL_ECHO_START;
  934. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  935. SERIAL_ECHO(freeMemory());
  936. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  937. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  938. lcd_update_enable(false);
  939. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  940. bool previous_settings_retrieved = Config_RetrieveSettings();
  941. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  942. tp_init(); // Initialize temperature loop
  943. plan_init(); // Initialize planner;
  944. watchdog_init();
  945. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  946. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  947. st_init(); // Initialize stepper, this enables interrupts!
  948. setup_photpin();
  949. servo_init();
  950. // Reset the machine correction matrix.
  951. // It does not make sense to load the correction matrix until the machine is homed.
  952. world2machine_reset();
  953. lcd_init();
  954. if (!READ(BTN_ENC))
  955. {
  956. _delay_ms(1000);
  957. if (!READ(BTN_ENC))
  958. {
  959. lcd_implementation_clear();
  960. lcd_printPGM(PSTR("Factory RESET"));
  961. SET_OUTPUT(BEEPER);
  962. WRITE(BEEPER, HIGH);
  963. while (!READ(BTN_ENC));
  964. WRITE(BEEPER, LOW);
  965. _delay_ms(2000);
  966. char level = reset_menu();
  967. factory_reset(level, false);
  968. switch (level) {
  969. case 0: _delay_ms(0); break;
  970. case 1: _delay_ms(0); break;
  971. case 2: _delay_ms(0); break;
  972. case 3: _delay_ms(0); break;
  973. }
  974. // _delay_ms(100);
  975. /*
  976. #ifdef MESH_BED_LEVELING
  977. _delay_ms(2000);
  978. if (!READ(BTN_ENC))
  979. {
  980. WRITE(BEEPER, HIGH);
  981. _delay_ms(100);
  982. WRITE(BEEPER, LOW);
  983. _delay_ms(200);
  984. WRITE(BEEPER, HIGH);
  985. _delay_ms(100);
  986. WRITE(BEEPER, LOW);
  987. int _z = 0;
  988. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  989. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  990. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  991. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  992. }
  993. else
  994. {
  995. WRITE(BEEPER, HIGH);
  996. _delay_ms(100);
  997. WRITE(BEEPER, LOW);
  998. }
  999. #endif // mesh */
  1000. }
  1001. }
  1002. else
  1003. {
  1004. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1005. }
  1006. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1007. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1008. #endif
  1009. #ifdef DIGIPOT_I2C
  1010. digipot_i2c_init();
  1011. #endif
  1012. setup_homepin();
  1013. #if defined(Z_AXIS_ALWAYS_ON)
  1014. enable_z();
  1015. #endif
  1016. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1017. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1018. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1019. if (farm_no == 0xFFFF) farm_no = 0;
  1020. if (farm_mode)
  1021. {
  1022. prusa_statistics(8);
  1023. no_response = true; //we need confirmation by recieving PRUSA thx
  1024. important_status = 8;
  1025. }
  1026. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1027. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1032. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1033. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1034. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1035. // where all the EEPROM entries are set to 0x0ff.
  1036. // Once a firmware boots up, it forces at least a language selection, which changes
  1037. // EEPROM_LANG to number lower than 0x0ff.
  1038. // 1) Set a high power mode.
  1039. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1040. }
  1041. #ifdef SNMM
  1042. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1043. int _z = BOWDEN_LENGTH;
  1044. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1045. }
  1046. #endif
  1047. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1048. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1049. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1050. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1051. if (lang_selected >= LANG_NUM){
  1052. lcd_mylang();
  1053. }
  1054. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1055. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1056. temp_cal_active = false;
  1057. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1063. }
  1064. #ifndef DEBUG_DISABLE_STARTMSGS
  1065. check_babystep(); //checking if Z babystep is in allowed range
  1066. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1067. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1068. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1069. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1070. // Show the message.
  1071. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1072. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1073. // Show the message.
  1074. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1075. lcd_update_enable(true);
  1076. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1077. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1078. lcd_update_enable(true);
  1079. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1080. // Show the message.
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1082. }
  1083. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1084. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1085. if (!previous_settings_retrieved) {
  1086. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1087. }
  1088. #endif //DEBUG_DISABLE_STARTMSGS
  1089. lcd_update_enable(true);
  1090. // Store the currently running firmware into an eeprom,
  1091. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1092. update_current_firmware_version_to_eeprom();
  1093. }
  1094. void trace();
  1095. #define CHUNK_SIZE 64 // bytes
  1096. #define SAFETY_MARGIN 1
  1097. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1098. int chunkHead = 0;
  1099. int serial_read_stream() {
  1100. setTargetHotend(0, 0);
  1101. setTargetBed(0);
  1102. lcd_implementation_clear();
  1103. lcd_printPGM(PSTR(" Upload in progress"));
  1104. // first wait for how many bytes we will receive
  1105. uint32_t bytesToReceive;
  1106. // receive the four bytes
  1107. char bytesToReceiveBuffer[4];
  1108. for (int i=0; i<4; i++) {
  1109. int data;
  1110. while ((data = MYSERIAL.read()) == -1) {};
  1111. bytesToReceiveBuffer[i] = data;
  1112. }
  1113. // make it a uint32
  1114. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1115. // we're ready, notify the sender
  1116. MYSERIAL.write('+');
  1117. // lock in the routine
  1118. uint32_t receivedBytes = 0;
  1119. while (prusa_sd_card_upload) {
  1120. int i;
  1121. for (i=0; i<CHUNK_SIZE; i++) {
  1122. int data;
  1123. // check if we're not done
  1124. if (receivedBytes == bytesToReceive) {
  1125. break;
  1126. }
  1127. // read the next byte
  1128. while ((data = MYSERIAL.read()) == -1) {};
  1129. receivedBytes++;
  1130. // save it to the chunk
  1131. chunk[i] = data;
  1132. }
  1133. // write the chunk to SD
  1134. card.write_command_no_newline(&chunk[0]);
  1135. // notify the sender we're ready for more data
  1136. MYSERIAL.write('+');
  1137. // for safety
  1138. manage_heater();
  1139. // check if we're done
  1140. if(receivedBytes == bytesToReceive) {
  1141. trace(); // beep
  1142. card.closefile();
  1143. prusa_sd_card_upload = false;
  1144. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1145. return 0;
  1146. }
  1147. }
  1148. }
  1149. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1150. // Before loop(), the setup() function is called by the main() routine.
  1151. void loop()
  1152. {
  1153. bool stack_integrity = true;
  1154. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1155. {
  1156. is_usb_printing = true;
  1157. usb_printing_counter--;
  1158. _usb_timer = millis();
  1159. }
  1160. if (usb_printing_counter == 0)
  1161. {
  1162. is_usb_printing = false;
  1163. }
  1164. if (prusa_sd_card_upload)
  1165. {
  1166. //we read byte-by byte
  1167. serial_read_stream();
  1168. } else
  1169. {
  1170. get_command();
  1171. #ifdef SDSUPPORT
  1172. card.checkautostart(false);
  1173. #endif
  1174. if(buflen)
  1175. {
  1176. #ifdef SDSUPPORT
  1177. if(card.saving)
  1178. {
  1179. // Saving a G-code file onto an SD-card is in progress.
  1180. // Saving starts with M28, saving until M29 is seen.
  1181. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1182. card.write_command(CMDBUFFER_CURRENT_STRING);
  1183. if(card.logging)
  1184. process_commands();
  1185. else
  1186. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1187. } else {
  1188. card.closefile();
  1189. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1190. }
  1191. } else {
  1192. process_commands();
  1193. }
  1194. #else
  1195. process_commands();
  1196. #endif //SDSUPPORT
  1197. if (! cmdbuffer_front_already_processed)
  1198. cmdqueue_pop_front();
  1199. cmdbuffer_front_already_processed = false;
  1200. }
  1201. }
  1202. //check heater every n milliseconds
  1203. manage_heater();
  1204. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1205. checkHitEndstops();
  1206. lcd_update();
  1207. }
  1208. void proc_commands() {
  1209. if (buflen)
  1210. {
  1211. process_commands();
  1212. if (!cmdbuffer_front_already_processed)
  1213. cmdqueue_pop_front();
  1214. cmdbuffer_front_already_processed = false;
  1215. }
  1216. }
  1217. void get_command()
  1218. {
  1219. // Test and reserve space for the new command string.
  1220. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1221. return;
  1222. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1223. while (MYSERIAL.available() > 0) {
  1224. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1225. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1226. rx_buffer_full = true; //sets flag that buffer was full
  1227. }
  1228. char serial_char = MYSERIAL.read();
  1229. if (selectedSerialPort == 1) {
  1230. selectedSerialPort = 0;
  1231. MYSERIAL.write(serial_char);
  1232. selectedSerialPort = 1;
  1233. }
  1234. TimeSent = millis();
  1235. TimeNow = millis();
  1236. if (serial_char < 0)
  1237. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1238. // and Marlin does not support such file names anyway.
  1239. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1240. // to a hang-up of the print process from an SD card.
  1241. continue;
  1242. if(serial_char == '\n' ||
  1243. serial_char == '\r' ||
  1244. (serial_char == ':' && comment_mode == false) ||
  1245. serial_count >= (MAX_CMD_SIZE - 1) )
  1246. {
  1247. if(!serial_count) { //if empty line
  1248. comment_mode = false; //for new command
  1249. return;
  1250. }
  1251. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1252. if(!comment_mode){
  1253. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1254. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1255. {
  1256. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1257. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1258. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1259. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1260. // M110 - set current line number.
  1261. // Line numbers not sent in succession.
  1262. SERIAL_ERROR_START;
  1263. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1264. SERIAL_ERRORLN(gcode_LastN);
  1265. //Serial.println(gcode_N);
  1266. FlushSerialRequestResend();
  1267. serial_count = 0;
  1268. return;
  1269. }
  1270. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1271. {
  1272. byte checksum = 0;
  1273. char *p = cmdbuffer+bufindw+1;
  1274. while (p != strchr_pointer)
  1275. checksum = checksum^(*p++);
  1276. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1277. SERIAL_ERROR_START;
  1278. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1279. SERIAL_ERRORLN(gcode_LastN);
  1280. FlushSerialRequestResend();
  1281. serial_count = 0;
  1282. return;
  1283. }
  1284. // If no errors, remove the checksum and continue parsing.
  1285. *strchr_pointer = 0;
  1286. }
  1287. else
  1288. {
  1289. SERIAL_ERROR_START;
  1290. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1291. SERIAL_ERRORLN(gcode_LastN);
  1292. FlushSerialRequestResend();
  1293. serial_count = 0;
  1294. return;
  1295. }
  1296. gcode_LastN = gcode_N;
  1297. //if no errors, continue parsing
  1298. } // end of 'N' command
  1299. }
  1300. else // if we don't receive 'N' but still see '*'
  1301. {
  1302. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1303. {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1306. SERIAL_ERRORLN(gcode_LastN);
  1307. serial_count = 0;
  1308. return;
  1309. }
  1310. } // end of '*' command
  1311. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1312. if (! IS_SD_PRINTING) {
  1313. usb_printing_counter = 10;
  1314. is_usb_printing = true;
  1315. }
  1316. if (Stopped == true) {
  1317. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1318. if (gcode >= 0 && gcode <= 3) {
  1319. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1320. LCD_MESSAGERPGM(MSG_STOPPED);
  1321. }
  1322. }
  1323. } // end of 'G' command
  1324. //If command was e-stop process now
  1325. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1326. kill();
  1327. // Store the current line into buffer, move to the next line.
  1328. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1329. #ifdef CMDBUFFER_DEBUG
  1330. SERIAL_ECHO_START;
  1331. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1332. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1333. SERIAL_ECHOLNPGM("");
  1334. #endif /* CMDBUFFER_DEBUG */
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. ++ buflen;
  1339. #ifdef CMDBUFFER_DEBUG
  1340. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1341. SERIAL_ECHO(buflen);
  1342. SERIAL_ECHOLNPGM("");
  1343. #endif /* CMDBUFFER_DEBUG */
  1344. } // end of 'not comment mode'
  1345. serial_count = 0; //clear buffer
  1346. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1347. // in the queue, as this function will reserve the memory.
  1348. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1349. return;
  1350. } // end of "end of line" processing
  1351. else {
  1352. // Not an "end of line" symbol. Store the new character into a buffer.
  1353. if(serial_char == ';') comment_mode = true;
  1354. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1355. }
  1356. } // end of serial line processing loop
  1357. if(farm_mode){
  1358. TimeNow = millis();
  1359. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1360. cmdbuffer[bufindw+serial_count+1] = 0;
  1361. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1362. if (bufindw == sizeof(cmdbuffer))
  1363. bufindw = 0;
  1364. ++ buflen;
  1365. serial_count = 0;
  1366. SERIAL_ECHOPGM("TIMEOUT:");
  1367. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1368. return;
  1369. }
  1370. }
  1371. //add comment
  1372. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1373. rx_buffer_full = false;
  1374. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1375. serial_count = 0;
  1376. }
  1377. #ifdef SDSUPPORT
  1378. if(!card.sdprinting || serial_count!=0){
  1379. // If there is a half filled buffer from serial line, wait until return before
  1380. // continuing with the serial line.
  1381. return;
  1382. }
  1383. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1384. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1385. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1386. static bool stop_buffering=false;
  1387. if(buflen==0) stop_buffering=false;
  1388. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1389. while( !card.eof() && !stop_buffering) {
  1390. int16_t n=card.get();
  1391. char serial_char = (char)n;
  1392. if(serial_char == '\n' ||
  1393. serial_char == '\r' ||
  1394. (serial_char == '#' && comment_mode == false) ||
  1395. (serial_char == ':' && comment_mode == false) ||
  1396. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1397. {
  1398. if(card.eof()){
  1399. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1400. stoptime=millis();
  1401. char time[30];
  1402. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1403. pause_time = 0;
  1404. int hours, minutes;
  1405. minutes=(t/60)%60;
  1406. hours=t/60/60;
  1407. save_statistics(total_filament_used, t);
  1408. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1409. SERIAL_ECHO_START;
  1410. SERIAL_ECHOLN(time);
  1411. lcd_setstatus(time);
  1412. card.printingHasFinished();
  1413. card.checkautostart(true);
  1414. if (farm_mode)
  1415. {
  1416. prusa_statistics(6);
  1417. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1418. }
  1419. }
  1420. if(serial_char=='#')
  1421. stop_buffering=true;
  1422. if(!serial_count)
  1423. {
  1424. comment_mode = false; //for new command
  1425. return; //if empty line
  1426. }
  1427. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1428. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1429. ++ buflen;
  1430. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1431. if (bufindw == sizeof(cmdbuffer))
  1432. bufindw = 0;
  1433. comment_mode = false; //for new command
  1434. serial_count = 0; //clear buffer
  1435. // The following line will reserve buffer space if available.
  1436. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1437. return;
  1438. }
  1439. else
  1440. {
  1441. if(serial_char == ';') comment_mode = true;
  1442. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1443. }
  1444. }
  1445. #endif //SDSUPPORT
  1446. }
  1447. // Return True if a character was found
  1448. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1449. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1450. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1451. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1452. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1453. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1454. static inline float code_value_float() {
  1455. char* e = strchr(strchr_pointer, 'E');
  1456. if (!e) return strtod(strchr_pointer + 1, NULL);
  1457. *e = 0;
  1458. float ret = strtod(strchr_pointer + 1, NULL);
  1459. *e = 'E';
  1460. return ret;
  1461. }
  1462. #define DEFINE_PGM_READ_ANY(type, reader) \
  1463. static inline type pgm_read_any(const type *p) \
  1464. { return pgm_read_##reader##_near(p); }
  1465. DEFINE_PGM_READ_ANY(float, float);
  1466. DEFINE_PGM_READ_ANY(signed char, byte);
  1467. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1468. static const PROGMEM type array##_P[3] = \
  1469. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1470. static inline type array(int axis) \
  1471. { return pgm_read_any(&array##_P[axis]); } \
  1472. type array##_ext(int axis) \
  1473. { return pgm_read_any(&array##_P[axis]); }
  1474. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1475. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1476. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1477. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1478. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1479. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1480. static void axis_is_at_home(int axis) {
  1481. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1482. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1483. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1484. }
  1485. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1486. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1487. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1488. saved_feedrate = feedrate;
  1489. saved_feedmultiply = feedmultiply;
  1490. feedmultiply = 100;
  1491. previous_millis_cmd = millis();
  1492. enable_endstops(enable_endstops_now);
  1493. }
  1494. static void clean_up_after_endstop_move() {
  1495. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1496. enable_endstops(false);
  1497. #endif
  1498. feedrate = saved_feedrate;
  1499. feedmultiply = saved_feedmultiply;
  1500. previous_millis_cmd = millis();
  1501. }
  1502. #ifdef ENABLE_AUTO_BED_LEVELING
  1503. #ifdef AUTO_BED_LEVELING_GRID
  1504. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1505. {
  1506. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1507. planeNormal.debug("planeNormal");
  1508. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1509. //bedLevel.debug("bedLevel");
  1510. //plan_bed_level_matrix.debug("bed level before");
  1511. //vector_3 uncorrected_position = plan_get_position_mm();
  1512. //uncorrected_position.debug("position before");
  1513. vector_3 corrected_position = plan_get_position();
  1514. // corrected_position.debug("position after");
  1515. current_position[X_AXIS] = corrected_position.x;
  1516. current_position[Y_AXIS] = corrected_position.y;
  1517. current_position[Z_AXIS] = corrected_position.z;
  1518. // put the bed at 0 so we don't go below it.
  1519. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1520. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1521. }
  1522. #else // not AUTO_BED_LEVELING_GRID
  1523. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1524. plan_bed_level_matrix.set_to_identity();
  1525. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1526. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1527. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1528. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1529. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1530. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1531. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1532. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1533. vector_3 corrected_position = plan_get_position();
  1534. current_position[X_AXIS] = corrected_position.x;
  1535. current_position[Y_AXIS] = corrected_position.y;
  1536. current_position[Z_AXIS] = corrected_position.z;
  1537. // put the bed at 0 so we don't go below it.
  1538. current_position[Z_AXIS] = zprobe_zoffset;
  1539. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1540. }
  1541. #endif // AUTO_BED_LEVELING_GRID
  1542. static void run_z_probe() {
  1543. plan_bed_level_matrix.set_to_identity();
  1544. feedrate = homing_feedrate[Z_AXIS];
  1545. // move down until you find the bed
  1546. float zPosition = -10;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. // we have to let the planner know where we are right now as it is not where we said to go.
  1550. zPosition = st_get_position_mm(Z_AXIS);
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1552. // move up the retract distance
  1553. zPosition += home_retract_mm(Z_AXIS);
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. // move back down slowly to find bed
  1557. feedrate = homing_feedrate[Z_AXIS]/4;
  1558. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1562. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. }
  1565. static void do_blocking_move_to(float x, float y, float z) {
  1566. float oldFeedRate = feedrate;
  1567. feedrate = homing_feedrate[Z_AXIS];
  1568. current_position[Z_AXIS] = z;
  1569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1570. st_synchronize();
  1571. feedrate = XY_TRAVEL_SPEED;
  1572. current_position[X_AXIS] = x;
  1573. current_position[Y_AXIS] = y;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. feedrate = oldFeedRate;
  1577. }
  1578. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1579. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1580. }
  1581. /// Probe bed height at position (x,y), returns the measured z value
  1582. static float probe_pt(float x, float y, float z_before) {
  1583. // move to right place
  1584. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1585. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1586. run_z_probe();
  1587. float measured_z = current_position[Z_AXIS];
  1588. SERIAL_PROTOCOLRPGM(MSG_BED);
  1589. SERIAL_PROTOCOLPGM(" x: ");
  1590. SERIAL_PROTOCOL(x);
  1591. SERIAL_PROTOCOLPGM(" y: ");
  1592. SERIAL_PROTOCOL(y);
  1593. SERIAL_PROTOCOLPGM(" z: ");
  1594. SERIAL_PROTOCOL(measured_z);
  1595. SERIAL_PROTOCOLPGM("\n");
  1596. return measured_z;
  1597. }
  1598. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1599. #ifdef LIN_ADVANCE
  1600. /**
  1601. * M900: Set and/or Get advance K factor and WH/D ratio
  1602. *
  1603. * K<factor> Set advance K factor
  1604. * R<ratio> Set ratio directly (overrides WH/D)
  1605. * W<width> H<height> D<diam> Set ratio from WH/D
  1606. */
  1607. inline void gcode_M900() {
  1608. st_synchronize();
  1609. const float newK = code_seen('K') ? code_value_float() : -1;
  1610. if (newK >= 0) extruder_advance_k = newK;
  1611. float newR = code_seen('R') ? code_value_float() : -1;
  1612. if (newR < 0) {
  1613. const float newD = code_seen('D') ? code_value_float() : -1,
  1614. newW = code_seen('W') ? code_value_float() : -1,
  1615. newH = code_seen('H') ? code_value_float() : -1;
  1616. if (newD >= 0 && newW >= 0 && newH >= 0)
  1617. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1618. }
  1619. if (newR >= 0) advance_ed_ratio = newR;
  1620. SERIAL_ECHO_START;
  1621. SERIAL_ECHOPGM("Advance K=");
  1622. SERIAL_ECHOLN(extruder_advance_k);
  1623. SERIAL_ECHOPGM(" E/D=");
  1624. const float ratio = advance_ed_ratio;
  1625. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1626. }
  1627. #endif // LIN_ADVANCE
  1628. bool check_commands() {
  1629. bool end_command_found = false;
  1630. if (buflen)
  1631. {
  1632. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1633. if (!cmdbuffer_front_already_processed)
  1634. cmdqueue_pop_front();
  1635. cmdbuffer_front_already_processed = false;
  1636. }
  1637. return end_command_found;
  1638. }
  1639. void homeaxis(int axis) {
  1640. #define HOMEAXIS_DO(LETTER) \
  1641. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1642. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1643. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1644. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1645. 0) {
  1646. int axis_home_dir = home_dir(axis);
  1647. current_position[axis] = 0;
  1648. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1649. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1650. feedrate = homing_feedrate[axis];
  1651. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1652. st_synchronize();
  1653. current_position[axis] = 0;
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1656. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1657. st_synchronize();
  1658. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1659. feedrate = homing_feedrate[axis]/2 ;
  1660. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1661. st_synchronize();
  1662. axis_is_at_home(axis);
  1663. destination[axis] = current_position[axis];
  1664. feedrate = 0.0;
  1665. endstops_hit_on_purpose();
  1666. axis_known_position[axis] = true;
  1667. }
  1668. }
  1669. void home_xy()
  1670. {
  1671. set_destination_to_current();
  1672. homeaxis(X_AXIS);
  1673. homeaxis(Y_AXIS);
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1675. endstops_hit_on_purpose();
  1676. }
  1677. void refresh_cmd_timeout(void)
  1678. {
  1679. previous_millis_cmd = millis();
  1680. }
  1681. #ifdef FWRETRACT
  1682. void retract(bool retracting, bool swapretract = false) {
  1683. if(retracting && !retracted[active_extruder]) {
  1684. destination[X_AXIS]=current_position[X_AXIS];
  1685. destination[Y_AXIS]=current_position[Y_AXIS];
  1686. destination[Z_AXIS]=current_position[Z_AXIS];
  1687. destination[E_AXIS]=current_position[E_AXIS];
  1688. if (swapretract) {
  1689. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1690. } else {
  1691. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1692. }
  1693. plan_set_e_position(current_position[E_AXIS]);
  1694. float oldFeedrate = feedrate;
  1695. feedrate=retract_feedrate*60;
  1696. retracted[active_extruder]=true;
  1697. prepare_move();
  1698. current_position[Z_AXIS]-=retract_zlift;
  1699. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1700. prepare_move();
  1701. feedrate = oldFeedrate;
  1702. } else if(!retracting && retracted[active_extruder]) {
  1703. destination[X_AXIS]=current_position[X_AXIS];
  1704. destination[Y_AXIS]=current_position[Y_AXIS];
  1705. destination[Z_AXIS]=current_position[Z_AXIS];
  1706. destination[E_AXIS]=current_position[E_AXIS];
  1707. current_position[Z_AXIS]+=retract_zlift;
  1708. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1709. //prepare_move();
  1710. if (swapretract) {
  1711. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1712. } else {
  1713. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1714. }
  1715. plan_set_e_position(current_position[E_AXIS]);
  1716. float oldFeedrate = feedrate;
  1717. feedrate=retract_recover_feedrate*60;
  1718. retracted[active_extruder]=false;
  1719. prepare_move();
  1720. feedrate = oldFeedrate;
  1721. }
  1722. } //retract
  1723. #endif //FWRETRACT
  1724. void trace() {
  1725. tone(BEEPER, 440);
  1726. delay(25);
  1727. noTone(BEEPER);
  1728. delay(20);
  1729. }
  1730. /*
  1731. void ramming() {
  1732. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1733. if (current_temperature[0] < 230) {
  1734. //PLA
  1735. max_feedrate[E_AXIS] = 50;
  1736. //current_position[E_AXIS] -= 8;
  1737. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1738. //current_position[E_AXIS] += 8;
  1739. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1740. current_position[E_AXIS] += 5.4;
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1742. current_position[E_AXIS] += 3.2;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1744. current_position[E_AXIS] += 3;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1746. st_synchronize();
  1747. max_feedrate[E_AXIS] = 80;
  1748. current_position[E_AXIS] -= 82;
  1749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1750. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1751. current_position[E_AXIS] -= 20;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1753. current_position[E_AXIS] += 5;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1755. current_position[E_AXIS] += 5;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1757. current_position[E_AXIS] -= 10;
  1758. st_synchronize();
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1760. current_position[E_AXIS] += 10;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1762. current_position[E_AXIS] -= 10;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1764. current_position[E_AXIS] += 10;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1766. current_position[E_AXIS] -= 10;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1768. st_synchronize();
  1769. }
  1770. else {
  1771. //ABS
  1772. max_feedrate[E_AXIS] = 50;
  1773. //current_position[E_AXIS] -= 8;
  1774. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1775. //current_position[E_AXIS] += 8;
  1776. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1777. current_position[E_AXIS] += 3.1;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1779. current_position[E_AXIS] += 3.1;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1781. current_position[E_AXIS] += 4;
  1782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1783. st_synchronize();
  1784. //current_position[X_AXIS] += 23; //delay
  1785. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1786. //current_position[X_AXIS] -= 23; //delay
  1787. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1788. delay(4700);
  1789. max_feedrate[E_AXIS] = 80;
  1790. current_position[E_AXIS] -= 92;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1792. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1793. current_position[E_AXIS] -= 5;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1795. current_position[E_AXIS] += 5;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1797. current_position[E_AXIS] -= 5;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1799. st_synchronize();
  1800. current_position[E_AXIS] += 5;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1802. current_position[E_AXIS] -= 5;
  1803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1804. current_position[E_AXIS] += 5;
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1806. current_position[E_AXIS] -= 5;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1808. st_synchronize();
  1809. }
  1810. }
  1811. */
  1812. void process_commands()
  1813. {
  1814. #ifdef FILAMENT_RUNOUT_SUPPORT
  1815. SET_INPUT(FR_SENS);
  1816. #endif
  1817. #ifdef CMDBUFFER_DEBUG
  1818. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1819. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1820. SERIAL_ECHOLNPGM("");
  1821. SERIAL_ECHOPGM("In cmdqueue: ");
  1822. SERIAL_ECHO(buflen);
  1823. SERIAL_ECHOLNPGM("");
  1824. #endif /* CMDBUFFER_DEBUG */
  1825. unsigned long codenum; //throw away variable
  1826. char *starpos = NULL;
  1827. #ifdef ENABLE_AUTO_BED_LEVELING
  1828. float x_tmp, y_tmp, z_tmp, real_z;
  1829. #endif
  1830. // PRUSA GCODES
  1831. #ifdef SNMM
  1832. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1833. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1834. int8_t SilentMode;
  1835. #endif
  1836. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1837. starpos = (strchr(strchr_pointer + 5, '*'));
  1838. if (starpos != NULL)
  1839. *(starpos) = '\0';
  1840. lcd_setstatus(strchr_pointer + 5);
  1841. }
  1842. else if(code_seen("PRUSA")){
  1843. if (code_seen("Ping")) { //PRUSA Ping
  1844. if (farm_mode) {
  1845. PingTime = millis();
  1846. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1847. }
  1848. } else if (code_seen("PRN")) {
  1849. MYSERIAL.println(status_number);
  1850. } else if (code_seen("RESET")) {
  1851. // careful!
  1852. if (farm_mode) {
  1853. asm volatile(" jmp 0x3E000");
  1854. }
  1855. else {
  1856. MYSERIAL.println("Not in farm mode.");
  1857. }
  1858. } else if (code_seen("fn")) {
  1859. if (farm_mode) {
  1860. MYSERIAL.println(farm_no);
  1861. }
  1862. else {
  1863. MYSERIAL.println("Not in farm mode.");
  1864. }
  1865. }
  1866. else if (code_seen("thx")) {
  1867. no_response = false;
  1868. }else if (code_seen("fv")) {
  1869. // get file version
  1870. #ifdef SDSUPPORT
  1871. card.openFile(strchr_pointer + 3,true);
  1872. while (true) {
  1873. uint16_t readByte = card.get();
  1874. MYSERIAL.write(readByte);
  1875. if (readByte=='\n') {
  1876. break;
  1877. }
  1878. }
  1879. card.closefile();
  1880. #endif // SDSUPPORT
  1881. } else if (code_seen("M28")) {
  1882. trace();
  1883. prusa_sd_card_upload = true;
  1884. card.openFile(strchr_pointer+4,false);
  1885. } else if (code_seen("SN")) {
  1886. if (farm_mode) {
  1887. selectedSerialPort = 0;
  1888. MSerial.write(";S");
  1889. // S/N is:CZPX0917X003XC13518
  1890. int numbersRead = 0;
  1891. while (numbersRead < 19) {
  1892. while (MSerial.available() > 0) {
  1893. uint8_t serial_char = MSerial.read();
  1894. selectedSerialPort = 1;
  1895. MSerial.write(serial_char);
  1896. numbersRead++;
  1897. selectedSerialPort = 0;
  1898. }
  1899. }
  1900. selectedSerialPort = 1;
  1901. MSerial.write('\n');
  1902. /*for (int b = 0; b < 3; b++) {
  1903. tone(BEEPER, 110);
  1904. delay(50);
  1905. noTone(BEEPER);
  1906. delay(50);
  1907. }*/
  1908. } else {
  1909. MYSERIAL.println("Not in farm mode.");
  1910. }
  1911. } else if(code_seen("Fir")){
  1912. SERIAL_PROTOCOLLN(FW_version);
  1913. } else if(code_seen("Rev")){
  1914. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1915. } else if(code_seen("Lang")) {
  1916. lcd_force_language_selection();
  1917. } else if(code_seen("Lz")) {
  1918. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1919. } else if (code_seen("SERIAL LOW")) {
  1920. MYSERIAL.println("SERIAL LOW");
  1921. MYSERIAL.begin(BAUDRATE);
  1922. return;
  1923. } else if (code_seen("SERIAL HIGH")) {
  1924. MYSERIAL.println("SERIAL HIGH");
  1925. MYSERIAL.begin(1152000);
  1926. return;
  1927. } else if(code_seen("Beat")) {
  1928. // Kick farm link timer
  1929. kicktime = millis();
  1930. } else if(code_seen("FR")) {
  1931. // Factory full reset
  1932. factory_reset(0,true);
  1933. }
  1934. //else if (code_seen('Cal')) {
  1935. // lcd_calibration();
  1936. // }
  1937. }
  1938. else if (code_seen('^')) {
  1939. // nothing, this is a version line
  1940. } else if(code_seen('G'))
  1941. {
  1942. switch((int)code_value())
  1943. {
  1944. case 0: // G0 -> G1
  1945. case 1: // G1
  1946. if(Stopped == false) {
  1947. #ifdef FILAMENT_RUNOUT_SUPPORT
  1948. if(READ(FR_SENS)){
  1949. feedmultiplyBckp=feedmultiply;
  1950. float target[4];
  1951. float lastpos[4];
  1952. target[X_AXIS]=current_position[X_AXIS];
  1953. target[Y_AXIS]=current_position[Y_AXIS];
  1954. target[Z_AXIS]=current_position[Z_AXIS];
  1955. target[E_AXIS]=current_position[E_AXIS];
  1956. lastpos[X_AXIS]=current_position[X_AXIS];
  1957. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1958. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1959. lastpos[E_AXIS]=current_position[E_AXIS];
  1960. //retract by E
  1961. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1963. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1964. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1965. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1966. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1968. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1969. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1970. //finish moves
  1971. st_synchronize();
  1972. //disable extruder steppers so filament can be removed
  1973. disable_e0();
  1974. disable_e1();
  1975. disable_e2();
  1976. delay(100);
  1977. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1978. uint8_t cnt=0;
  1979. int counterBeep = 0;
  1980. lcd_wait_interact();
  1981. while(!lcd_clicked()){
  1982. cnt++;
  1983. manage_heater();
  1984. manage_inactivity(true);
  1985. //lcd_update();
  1986. if(cnt==0)
  1987. {
  1988. #if BEEPER > 0
  1989. if (counterBeep== 500){
  1990. counterBeep = 0;
  1991. }
  1992. SET_OUTPUT(BEEPER);
  1993. if (counterBeep== 0){
  1994. WRITE(BEEPER,HIGH);
  1995. }
  1996. if (counterBeep== 20){
  1997. WRITE(BEEPER,LOW);
  1998. }
  1999. counterBeep++;
  2000. #else
  2001. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2002. lcd_buzz(1000/6,100);
  2003. #else
  2004. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2005. #endif
  2006. #endif
  2007. }
  2008. }
  2009. WRITE(BEEPER,LOW);
  2010. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2012. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2013. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2014. lcd_change_fil_state = 0;
  2015. lcd_loading_filament();
  2016. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2017. lcd_change_fil_state = 0;
  2018. lcd_alright();
  2019. switch(lcd_change_fil_state){
  2020. case 2:
  2021. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2022. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2023. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2025. lcd_loading_filament();
  2026. break;
  2027. case 3:
  2028. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2029. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2030. lcd_loading_color();
  2031. break;
  2032. default:
  2033. lcd_change_success();
  2034. break;
  2035. }
  2036. }
  2037. target[E_AXIS]+= 5;
  2038. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2039. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2041. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2042. //plan_set_e_position(current_position[E_AXIS]);
  2043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2044. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2045. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2046. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2047. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2048. plan_set_e_position(lastpos[E_AXIS]);
  2049. feedmultiply=feedmultiplyBckp;
  2050. char cmd[9];
  2051. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2052. enquecommand(cmd);
  2053. }
  2054. #endif
  2055. get_coordinates(); // For X Y Z E F
  2056. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2057. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2058. }
  2059. #ifdef FWRETRACT
  2060. if(autoretract_enabled)
  2061. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2062. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2063. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2064. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2065. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2066. retract(!retracted);
  2067. return;
  2068. }
  2069. }
  2070. #endif //FWRETRACT
  2071. prepare_move();
  2072. //ClearToSend();
  2073. }
  2074. break;
  2075. case 2: // G2 - CW ARC
  2076. if(Stopped == false) {
  2077. get_arc_coordinates();
  2078. prepare_arc_move(true);
  2079. }
  2080. break;
  2081. case 3: // G3 - CCW ARC
  2082. if(Stopped == false) {
  2083. get_arc_coordinates();
  2084. prepare_arc_move(false);
  2085. }
  2086. break;
  2087. case 4: // G4 dwell
  2088. codenum = 0;
  2089. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2090. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2091. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2092. st_synchronize();
  2093. codenum += millis(); // keep track of when we started waiting
  2094. previous_millis_cmd = millis();
  2095. while(millis() < codenum) {
  2096. manage_heater();
  2097. manage_inactivity();
  2098. lcd_update();
  2099. }
  2100. break;
  2101. #ifdef FWRETRACT
  2102. case 10: // G10 retract
  2103. #if EXTRUDERS > 1
  2104. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2105. retract(true,retracted_swap[active_extruder]);
  2106. #else
  2107. retract(true);
  2108. #endif
  2109. break;
  2110. case 11: // G11 retract_recover
  2111. #if EXTRUDERS > 1
  2112. retract(false,retracted_swap[active_extruder]);
  2113. #else
  2114. retract(false);
  2115. #endif
  2116. break;
  2117. #endif //FWRETRACT
  2118. case 28: //G28 Home all Axis one at a time
  2119. homing_flag = true;
  2120. #ifdef ENABLE_AUTO_BED_LEVELING
  2121. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2122. #endif //ENABLE_AUTO_BED_LEVELING
  2123. // For mesh bed leveling deactivate the matrix temporarily
  2124. #ifdef MESH_BED_LEVELING
  2125. mbl.active = 0;
  2126. #endif
  2127. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2128. // the planner will not perform any adjustments in the XY plane.
  2129. // Wait for the motors to stop and update the current position with the absolute values.
  2130. world2machine_revert_to_uncorrected();
  2131. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2132. // consumed during the first movements following this statement.
  2133. babystep_undo();
  2134. saved_feedrate = feedrate;
  2135. saved_feedmultiply = feedmultiply;
  2136. feedmultiply = 100;
  2137. previous_millis_cmd = millis();
  2138. enable_endstops(true);
  2139. for(int8_t i=0; i < NUM_AXIS; i++)
  2140. destination[i] = current_position[i];
  2141. feedrate = 0.0;
  2142. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2143. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2144. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2145. homeaxis(Z_AXIS);
  2146. }
  2147. #endif
  2148. #ifdef QUICK_HOME
  2149. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2150. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2151. {
  2152. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2153. int x_axis_home_dir = home_dir(X_AXIS);
  2154. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2155. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2156. feedrate = homing_feedrate[X_AXIS];
  2157. if(homing_feedrate[Y_AXIS]<feedrate)
  2158. feedrate = homing_feedrate[Y_AXIS];
  2159. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2160. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2161. } else {
  2162. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2163. }
  2164. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2165. st_synchronize();
  2166. axis_is_at_home(X_AXIS);
  2167. axis_is_at_home(Y_AXIS);
  2168. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2169. destination[X_AXIS] = current_position[X_AXIS];
  2170. destination[Y_AXIS] = current_position[Y_AXIS];
  2171. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2172. feedrate = 0.0;
  2173. st_synchronize();
  2174. endstops_hit_on_purpose();
  2175. current_position[X_AXIS] = destination[X_AXIS];
  2176. current_position[Y_AXIS] = destination[Y_AXIS];
  2177. current_position[Z_AXIS] = destination[Z_AXIS];
  2178. }
  2179. #endif /* QUICK_HOME */
  2180. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2181. homeaxis(X_AXIS);
  2182. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2183. homeaxis(Y_AXIS);
  2184. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2185. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2186. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2187. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2188. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2189. #ifndef Z_SAFE_HOMING
  2190. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2191. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2192. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2193. feedrate = max_feedrate[Z_AXIS];
  2194. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2195. st_synchronize();
  2196. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2197. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2198. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2199. {
  2200. homeaxis(X_AXIS);
  2201. homeaxis(Y_AXIS);
  2202. }
  2203. // 1st mesh bed leveling measurement point, corrected.
  2204. world2machine_initialize();
  2205. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2206. world2machine_reset();
  2207. if (destination[Y_AXIS] < Y_MIN_POS)
  2208. destination[Y_AXIS] = Y_MIN_POS;
  2209. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2210. feedrate = homing_feedrate[Z_AXIS]/10;
  2211. current_position[Z_AXIS] = 0;
  2212. enable_endstops(false);
  2213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2215. st_synchronize();
  2216. current_position[X_AXIS] = destination[X_AXIS];
  2217. current_position[Y_AXIS] = destination[Y_AXIS];
  2218. enable_endstops(true);
  2219. endstops_hit_on_purpose();
  2220. homeaxis(Z_AXIS);
  2221. #else // MESH_BED_LEVELING
  2222. homeaxis(Z_AXIS);
  2223. #endif // MESH_BED_LEVELING
  2224. }
  2225. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2226. if(home_all_axis) {
  2227. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2228. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2229. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2230. feedrate = XY_TRAVEL_SPEED/60;
  2231. current_position[Z_AXIS] = 0;
  2232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2234. st_synchronize();
  2235. current_position[X_AXIS] = destination[X_AXIS];
  2236. current_position[Y_AXIS] = destination[Y_AXIS];
  2237. homeaxis(Z_AXIS);
  2238. }
  2239. // Let's see if X and Y are homed and probe is inside bed area.
  2240. if(code_seen(axis_codes[Z_AXIS])) {
  2241. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2242. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2243. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2244. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2245. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2246. current_position[Z_AXIS] = 0;
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2249. feedrate = max_feedrate[Z_AXIS];
  2250. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2251. st_synchronize();
  2252. homeaxis(Z_AXIS);
  2253. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2254. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2255. SERIAL_ECHO_START;
  2256. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2257. } else {
  2258. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2259. SERIAL_ECHO_START;
  2260. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2261. }
  2262. }
  2263. #endif // Z_SAFE_HOMING
  2264. #endif // Z_HOME_DIR < 0
  2265. if(code_seen(axis_codes[Z_AXIS])) {
  2266. if(code_value_long() != 0) {
  2267. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2268. }
  2269. }
  2270. #ifdef ENABLE_AUTO_BED_LEVELING
  2271. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2272. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2273. }
  2274. #endif
  2275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2276. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2277. enable_endstops(false);
  2278. #endif
  2279. feedrate = saved_feedrate;
  2280. feedmultiply = saved_feedmultiply;
  2281. previous_millis_cmd = millis();
  2282. endstops_hit_on_purpose();
  2283. #ifndef MESH_BED_LEVELING
  2284. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2285. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2286. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2287. lcd_adjust_z();
  2288. #endif
  2289. // Load the machine correction matrix
  2290. world2machine_initialize();
  2291. // and correct the current_position to match the transformed coordinate system.
  2292. world2machine_update_current();
  2293. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2294. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2295. {
  2296. }
  2297. else
  2298. {
  2299. st_synchronize();
  2300. homing_flag = false;
  2301. // Push the commands to the front of the message queue in the reverse order!
  2302. // There shall be always enough space reserved for these commands.
  2303. // enquecommand_front_P((PSTR("G80")));
  2304. goto case_G80;
  2305. }
  2306. #endif
  2307. if (farm_mode) { prusa_statistics(20); };
  2308. homing_flag = false;
  2309. break;
  2310. #ifdef ENABLE_AUTO_BED_LEVELING
  2311. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2312. {
  2313. #if Z_MIN_PIN == -1
  2314. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2315. #endif
  2316. // Prevent user from running a G29 without first homing in X and Y
  2317. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2318. {
  2319. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2320. SERIAL_ECHO_START;
  2321. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2322. break; // abort G29, since we don't know where we are
  2323. }
  2324. st_synchronize();
  2325. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2326. //vector_3 corrected_position = plan_get_position_mm();
  2327. //corrected_position.debug("position before G29");
  2328. plan_bed_level_matrix.set_to_identity();
  2329. vector_3 uncorrected_position = plan_get_position();
  2330. //uncorrected_position.debug("position durring G29");
  2331. current_position[X_AXIS] = uncorrected_position.x;
  2332. current_position[Y_AXIS] = uncorrected_position.y;
  2333. current_position[Z_AXIS] = uncorrected_position.z;
  2334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2335. setup_for_endstop_move();
  2336. feedrate = homing_feedrate[Z_AXIS];
  2337. #ifdef AUTO_BED_LEVELING_GRID
  2338. // probe at the points of a lattice grid
  2339. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2340. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2341. // solve the plane equation ax + by + d = z
  2342. // A is the matrix with rows [x y 1] for all the probed points
  2343. // B is the vector of the Z positions
  2344. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2345. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2346. // "A" matrix of the linear system of equations
  2347. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2348. // "B" vector of Z points
  2349. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2350. int probePointCounter = 0;
  2351. bool zig = true;
  2352. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2353. {
  2354. int xProbe, xInc;
  2355. if (zig)
  2356. {
  2357. xProbe = LEFT_PROBE_BED_POSITION;
  2358. //xEnd = RIGHT_PROBE_BED_POSITION;
  2359. xInc = xGridSpacing;
  2360. zig = false;
  2361. } else // zag
  2362. {
  2363. xProbe = RIGHT_PROBE_BED_POSITION;
  2364. //xEnd = LEFT_PROBE_BED_POSITION;
  2365. xInc = -xGridSpacing;
  2366. zig = true;
  2367. }
  2368. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2369. {
  2370. float z_before;
  2371. if (probePointCounter == 0)
  2372. {
  2373. // raise before probing
  2374. z_before = Z_RAISE_BEFORE_PROBING;
  2375. } else
  2376. {
  2377. // raise extruder
  2378. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2379. }
  2380. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2381. eqnBVector[probePointCounter] = measured_z;
  2382. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2383. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2384. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2385. probePointCounter++;
  2386. xProbe += xInc;
  2387. }
  2388. }
  2389. clean_up_after_endstop_move();
  2390. // solve lsq problem
  2391. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2392. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2393. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2394. SERIAL_PROTOCOLPGM(" b: ");
  2395. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2396. SERIAL_PROTOCOLPGM(" d: ");
  2397. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2398. set_bed_level_equation_lsq(plane_equation_coefficients);
  2399. free(plane_equation_coefficients);
  2400. #else // AUTO_BED_LEVELING_GRID not defined
  2401. // Probe at 3 arbitrary points
  2402. // probe 1
  2403. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2404. // probe 2
  2405. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2406. // probe 3
  2407. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2408. clean_up_after_endstop_move();
  2409. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2410. #endif // AUTO_BED_LEVELING_GRID
  2411. st_synchronize();
  2412. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2413. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2414. // When the bed is uneven, this height must be corrected.
  2415. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2416. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2417. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2418. z_tmp = current_position[Z_AXIS];
  2419. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2420. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2422. }
  2423. break;
  2424. #ifndef Z_PROBE_SLED
  2425. case 30: // G30 Single Z Probe
  2426. {
  2427. st_synchronize();
  2428. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2429. setup_for_endstop_move();
  2430. feedrate = homing_feedrate[Z_AXIS];
  2431. run_z_probe();
  2432. SERIAL_PROTOCOLPGM(MSG_BED);
  2433. SERIAL_PROTOCOLPGM(" X: ");
  2434. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2435. SERIAL_PROTOCOLPGM(" Y: ");
  2436. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2437. SERIAL_PROTOCOLPGM(" Z: ");
  2438. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2439. SERIAL_PROTOCOLPGM("\n");
  2440. clean_up_after_endstop_move();
  2441. }
  2442. break;
  2443. #else
  2444. case 31: // dock the sled
  2445. dock_sled(true);
  2446. break;
  2447. case 32: // undock the sled
  2448. dock_sled(false);
  2449. break;
  2450. #endif // Z_PROBE_SLED
  2451. #endif // ENABLE_AUTO_BED_LEVELING
  2452. #ifdef MESH_BED_LEVELING
  2453. case 30: // G30 Single Z Probe
  2454. {
  2455. st_synchronize();
  2456. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2457. setup_for_endstop_move();
  2458. feedrate = homing_feedrate[Z_AXIS];
  2459. find_bed_induction_sensor_point_z(-10.f, 3);
  2460. SERIAL_PROTOCOLRPGM(MSG_BED);
  2461. SERIAL_PROTOCOLPGM(" X: ");
  2462. MYSERIAL.print(current_position[X_AXIS], 5);
  2463. SERIAL_PROTOCOLPGM(" Y: ");
  2464. MYSERIAL.print(current_position[Y_AXIS], 5);
  2465. SERIAL_PROTOCOLPGM(" Z: ");
  2466. MYSERIAL.print(current_position[Z_AXIS], 5);
  2467. SERIAL_PROTOCOLPGM("\n");
  2468. clean_up_after_endstop_move();
  2469. }
  2470. break;
  2471. case 75:
  2472. {
  2473. for (int i = 40; i <= 110; i++) {
  2474. MYSERIAL.print(i);
  2475. MYSERIAL.print(" ");
  2476. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2477. }
  2478. }
  2479. break;
  2480. case 76: //PINDA probe temperature calibration
  2481. {
  2482. setTargetBed(PINDA_MIN_T);
  2483. float zero_z;
  2484. int z_shift = 0; //unit: steps
  2485. int t_c; // temperature
  2486. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2487. // We don't know where we are! HOME!
  2488. // Push the commands to the front of the message queue in the reverse order!
  2489. // There shall be always enough space reserved for these commands.
  2490. repeatcommand_front(); // repeat G76 with all its parameters
  2491. enquecommand_front_P((PSTR("G28 W0")));
  2492. break;
  2493. }
  2494. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2495. custom_message = true;
  2496. custom_message_type = 4;
  2497. custom_message_state = 1;
  2498. custom_message = MSG_TEMP_CALIBRATION;
  2499. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2500. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2501. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2503. st_synchronize();
  2504. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2505. delay_keep_alive(1000);
  2506. serialecho_temperatures();
  2507. }
  2508. //enquecommand_P(PSTR("M190 S50"));
  2509. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2510. delay_keep_alive(1000);
  2511. serialecho_temperatures();
  2512. }
  2513. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2514. current_position[Z_AXIS] = 5;
  2515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2516. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2517. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2519. st_synchronize();
  2520. find_bed_induction_sensor_point_z(-1.f);
  2521. zero_z = current_position[Z_AXIS];
  2522. //current_position[Z_AXIS]
  2523. SERIAL_ECHOLNPGM("");
  2524. SERIAL_ECHOPGM("ZERO: ");
  2525. MYSERIAL.print(current_position[Z_AXIS]);
  2526. SERIAL_ECHOLNPGM("");
  2527. for (int i = 0; i<5; i++) {
  2528. SERIAL_ECHOPGM("Step: ");
  2529. MYSERIAL.print(i+2);
  2530. SERIAL_ECHOLNPGM("/6");
  2531. custom_message_state = i + 2;
  2532. t_c = 60 + i * 10;
  2533. setTargetBed(t_c);
  2534. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2535. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2536. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2538. st_synchronize();
  2539. while (degBed() < t_c) {
  2540. delay_keep_alive(1000);
  2541. serialecho_temperatures();
  2542. }
  2543. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2544. delay_keep_alive(1000);
  2545. serialecho_temperatures();
  2546. }
  2547. current_position[Z_AXIS] = 5;
  2548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2549. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2550. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2552. st_synchronize();
  2553. find_bed_induction_sensor_point_z(-1.f);
  2554. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2555. SERIAL_ECHOLNPGM("");
  2556. SERIAL_ECHOPGM("Temperature: ");
  2557. MYSERIAL.print(t_c);
  2558. SERIAL_ECHOPGM(" Z shift (mm):");
  2559. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2560. SERIAL_ECHOLNPGM("");
  2561. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2562. }
  2563. custom_message_type = 0;
  2564. custom_message = false;
  2565. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2566. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2567. disable_x();
  2568. disable_y();
  2569. disable_z();
  2570. disable_e0();
  2571. disable_e1();
  2572. disable_e2();
  2573. setTargetBed(0); //set bed target temperature back to 0
  2574. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2575. lcd_update_enable(true);
  2576. lcd_update(2);
  2577. }
  2578. break;
  2579. #ifdef DIS
  2580. case 77:
  2581. {
  2582. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2583. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2584. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2585. float dimension_x = 40;
  2586. float dimension_y = 40;
  2587. int points_x = 40;
  2588. int points_y = 40;
  2589. float offset_x = 74;
  2590. float offset_y = 33;
  2591. if (code_seen('X')) dimension_x = code_value();
  2592. if (code_seen('Y')) dimension_y = code_value();
  2593. if (code_seen('XP')) points_x = code_value();
  2594. if (code_seen('YP')) points_y = code_value();
  2595. if (code_seen('XO')) offset_x = code_value();
  2596. if (code_seen('YO')) offset_y = code_value();
  2597. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2598. } break;
  2599. #endif
  2600. /**
  2601. * G80: Mesh-based Z probe, probes a grid and produces a
  2602. * mesh to compensate for variable bed height
  2603. *
  2604. * The S0 report the points as below
  2605. *
  2606. * +----> X-axis
  2607. * |
  2608. * |
  2609. * v Y-axis
  2610. *
  2611. */
  2612. case 80:
  2613. #ifdef MK1BP
  2614. break;
  2615. #endif //MK1BP
  2616. case_G80:
  2617. {
  2618. mesh_bed_leveling_flag = true;
  2619. int8_t verbosity_level = 0;
  2620. static bool run = false;
  2621. if (code_seen('V')) {
  2622. // Just 'V' without a number counts as V1.
  2623. char c = strchr_pointer[1];
  2624. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2625. }
  2626. // Firstly check if we know where we are
  2627. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2628. // We don't know where we are! HOME!
  2629. // Push the commands to the front of the message queue in the reverse order!
  2630. // There shall be always enough space reserved for these commands.
  2631. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2632. repeatcommand_front(); // repeat G80 with all its parameters
  2633. enquecommand_front_P((PSTR("G28 W0")));
  2634. }
  2635. else {
  2636. mesh_bed_leveling_flag = false;
  2637. }
  2638. break;
  2639. }
  2640. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2641. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2642. temp_compensation_start();
  2643. run = true;
  2644. repeatcommand_front(); // repeat G80 with all its parameters
  2645. enquecommand_front_P((PSTR("G28 W0")));
  2646. }
  2647. else {
  2648. mesh_bed_leveling_flag = false;
  2649. }
  2650. break;
  2651. }
  2652. run = false;
  2653. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2654. mesh_bed_leveling_flag = false;
  2655. break;
  2656. }
  2657. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2658. bool custom_message_old = custom_message;
  2659. unsigned int custom_message_type_old = custom_message_type;
  2660. unsigned int custom_message_state_old = custom_message_state;
  2661. custom_message = true;
  2662. custom_message_type = 1;
  2663. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2664. lcd_update(1);
  2665. mbl.reset(); //reset mesh bed leveling
  2666. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2667. // consumed during the first movements following this statement.
  2668. babystep_undo();
  2669. // Cycle through all points and probe them
  2670. // First move up. During this first movement, the babystepping will be reverted.
  2671. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2673. // The move to the first calibration point.
  2674. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2675. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2676. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2677. if (verbosity_level >= 1) {
  2678. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2679. }
  2680. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2682. // Wait until the move is finished.
  2683. st_synchronize();
  2684. int mesh_point = 0; //index number of calibration point
  2685. int ix = 0;
  2686. int iy = 0;
  2687. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2688. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2689. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2690. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2691. if (verbosity_level >= 1) {
  2692. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2693. }
  2694. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2695. const char *kill_message = NULL;
  2696. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2697. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2698. // Get coords of a measuring point.
  2699. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2700. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2701. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2702. float z0 = 0.f;
  2703. if (has_z && mesh_point > 0) {
  2704. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2705. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2706. //#if 0
  2707. if (verbosity_level >= 1) {
  2708. SERIAL_ECHOPGM("Bed leveling, point: ");
  2709. MYSERIAL.print(mesh_point);
  2710. SERIAL_ECHOPGM(", calibration z: ");
  2711. MYSERIAL.print(z0, 5);
  2712. SERIAL_ECHOLNPGM("");
  2713. }
  2714. //#endif
  2715. }
  2716. // Move Z up to MESH_HOME_Z_SEARCH.
  2717. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2719. st_synchronize();
  2720. // Move to XY position of the sensor point.
  2721. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2722. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2723. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2724. if (verbosity_level >= 1) {
  2725. SERIAL_PROTOCOL(mesh_point);
  2726. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2727. }
  2728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2729. st_synchronize();
  2730. // Go down until endstop is hit
  2731. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2732. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2733. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2734. break;
  2735. }
  2736. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2737. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2738. break;
  2739. }
  2740. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2741. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2742. break;
  2743. }
  2744. if (verbosity_level >= 10) {
  2745. SERIAL_ECHOPGM("X: ");
  2746. MYSERIAL.print(current_position[X_AXIS], 5);
  2747. SERIAL_ECHOLNPGM("");
  2748. SERIAL_ECHOPGM("Y: ");
  2749. MYSERIAL.print(current_position[Y_AXIS], 5);
  2750. SERIAL_PROTOCOLPGM("\n");
  2751. }
  2752. if (verbosity_level >= 1) {
  2753. SERIAL_ECHOPGM("mesh bed leveling: ");
  2754. MYSERIAL.print(current_position[Z_AXIS], 5);
  2755. SERIAL_ECHOLNPGM("");
  2756. }
  2757. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2758. custom_message_state--;
  2759. mesh_point++;
  2760. lcd_update(1);
  2761. }
  2762. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2763. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2764. if (verbosity_level >= 20) {
  2765. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2766. MYSERIAL.print(current_position[Z_AXIS], 5);
  2767. }
  2768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2769. st_synchronize();
  2770. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2771. kill(kill_message);
  2772. SERIAL_ECHOLNPGM("killed");
  2773. }
  2774. clean_up_after_endstop_move();
  2775. SERIAL_ECHOLNPGM("clean up finished ");
  2776. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2777. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2778. SERIAL_ECHOLNPGM("babystep applied");
  2779. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2780. if (verbosity_level >= 1) {
  2781. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2782. }
  2783. for (uint8_t i = 0; i < 4; ++i) {
  2784. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2785. long correction = 0;
  2786. if (code_seen(codes[i]))
  2787. correction = code_value_long();
  2788. else if (eeprom_bed_correction_valid) {
  2789. unsigned char *addr = (i < 2) ?
  2790. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2791. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2792. correction = eeprom_read_int8(addr);
  2793. }
  2794. if (correction == 0)
  2795. continue;
  2796. float offset = float(correction) * 0.001f;
  2797. if (fabs(offset) > 0.101f) {
  2798. SERIAL_ERROR_START;
  2799. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2800. SERIAL_ECHO(offset);
  2801. SERIAL_ECHOLNPGM(" microns");
  2802. }
  2803. else {
  2804. switch (i) {
  2805. case 0:
  2806. for (uint8_t row = 0; row < 3; ++row) {
  2807. mbl.z_values[row][1] += 0.5f * offset;
  2808. mbl.z_values[row][0] += offset;
  2809. }
  2810. break;
  2811. case 1:
  2812. for (uint8_t row = 0; row < 3; ++row) {
  2813. mbl.z_values[row][1] += 0.5f * offset;
  2814. mbl.z_values[row][2] += offset;
  2815. }
  2816. break;
  2817. case 2:
  2818. for (uint8_t col = 0; col < 3; ++col) {
  2819. mbl.z_values[1][col] += 0.5f * offset;
  2820. mbl.z_values[0][col] += offset;
  2821. }
  2822. break;
  2823. case 3:
  2824. for (uint8_t col = 0; col < 3; ++col) {
  2825. mbl.z_values[1][col] += 0.5f * offset;
  2826. mbl.z_values[2][col] += offset;
  2827. }
  2828. break;
  2829. }
  2830. }
  2831. }
  2832. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2833. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2834. SERIAL_ECHOLNPGM("Upsample finished");
  2835. mbl.active = 1; //activate mesh bed leveling
  2836. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2837. go_home_with_z_lift();
  2838. SERIAL_ECHOLNPGM("Go home finished");
  2839. //unretract (after PINDA preheat retraction)
  2840. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2841. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2843. }
  2844. // Restore custom message state
  2845. custom_message = custom_message_old;
  2846. custom_message_type = custom_message_type_old;
  2847. custom_message_state = custom_message_state_old;
  2848. mesh_bed_leveling_flag = false;
  2849. mesh_bed_run_from_menu = false;
  2850. lcd_update(2);
  2851. }
  2852. break;
  2853. /**
  2854. * G81: Print mesh bed leveling status and bed profile if activated
  2855. */
  2856. case 81:
  2857. if (mbl.active) {
  2858. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2859. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2860. SERIAL_PROTOCOLPGM(",");
  2861. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2862. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2863. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2864. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2865. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2866. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2867. SERIAL_PROTOCOLPGM(" ");
  2868. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2869. }
  2870. SERIAL_PROTOCOLPGM("\n");
  2871. }
  2872. }
  2873. else
  2874. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2875. break;
  2876. #if 0
  2877. /**
  2878. * G82: Single Z probe at current location
  2879. *
  2880. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2881. *
  2882. */
  2883. case 82:
  2884. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2885. setup_for_endstop_move();
  2886. find_bed_induction_sensor_point_z();
  2887. clean_up_after_endstop_move();
  2888. SERIAL_PROTOCOLPGM("Bed found at: ");
  2889. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2890. SERIAL_PROTOCOLPGM("\n");
  2891. break;
  2892. /**
  2893. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2894. */
  2895. case 83:
  2896. {
  2897. int babystepz = code_seen('S') ? code_value() : 0;
  2898. int BabyPosition = code_seen('P') ? code_value() : 0;
  2899. if (babystepz != 0) {
  2900. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2901. // Is the axis indexed starting with zero or one?
  2902. if (BabyPosition > 4) {
  2903. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2904. }else{
  2905. // Save it to the eeprom
  2906. babystepLoadZ = babystepz;
  2907. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2908. // adjust the Z
  2909. babystepsTodoZadd(babystepLoadZ);
  2910. }
  2911. }
  2912. }
  2913. break;
  2914. /**
  2915. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2916. */
  2917. case 84:
  2918. babystepsTodoZsubtract(babystepLoadZ);
  2919. // babystepLoadZ = 0;
  2920. break;
  2921. /**
  2922. * G85: Prusa3D specific: Pick best babystep
  2923. */
  2924. case 85:
  2925. lcd_pick_babystep();
  2926. break;
  2927. #endif
  2928. /**
  2929. * G86: Prusa3D specific: Disable babystep correction after home.
  2930. * This G-code will be performed at the start of a calibration script.
  2931. */
  2932. case 86:
  2933. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2934. break;
  2935. /**
  2936. * G87: Prusa3D specific: Enable babystep correction after home
  2937. * This G-code will be performed at the end of a calibration script.
  2938. */
  2939. case 87:
  2940. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2941. break;
  2942. /**
  2943. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2944. */
  2945. case 88:
  2946. break;
  2947. #endif // ENABLE_MESH_BED_LEVELING
  2948. case 90: // G90
  2949. relative_mode = false;
  2950. break;
  2951. case 91: // G91
  2952. relative_mode = true;
  2953. break;
  2954. case 92: // G92
  2955. if(!code_seen(axis_codes[E_AXIS]))
  2956. st_synchronize();
  2957. for(int8_t i=0; i < NUM_AXIS; i++) {
  2958. if(code_seen(axis_codes[i])) {
  2959. if(i == E_AXIS) {
  2960. current_position[i] = code_value();
  2961. plan_set_e_position(current_position[E_AXIS]);
  2962. }
  2963. else {
  2964. current_position[i] = code_value()+add_homing[i];
  2965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2966. }
  2967. }
  2968. }
  2969. break;
  2970. case 98: //activate farm mode
  2971. farm_mode = 1;
  2972. PingTime = millis();
  2973. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2974. break;
  2975. case 99: //deactivate farm mode
  2976. farm_mode = 0;
  2977. lcd_printer_connected();
  2978. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2979. lcd_update(2);
  2980. break;
  2981. }
  2982. } // end if(code_seen('G'))
  2983. else if(code_seen('M'))
  2984. {
  2985. int index;
  2986. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2987. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2988. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2989. SERIAL_ECHOLNPGM("Invalid M code");
  2990. } else
  2991. switch((int)code_value())
  2992. {
  2993. #ifdef ULTIPANEL
  2994. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2995. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2996. {
  2997. char *src = strchr_pointer + 2;
  2998. codenum = 0;
  2999. bool hasP = false, hasS = false;
  3000. if (code_seen('P')) {
  3001. codenum = code_value(); // milliseconds to wait
  3002. hasP = codenum > 0;
  3003. }
  3004. if (code_seen('S')) {
  3005. codenum = code_value() * 1000; // seconds to wait
  3006. hasS = codenum > 0;
  3007. }
  3008. starpos = strchr(src, '*');
  3009. if (starpos != NULL) *(starpos) = '\0';
  3010. while (*src == ' ') ++src;
  3011. if (!hasP && !hasS && *src != '\0') {
  3012. lcd_setstatus(src);
  3013. } else {
  3014. LCD_MESSAGERPGM(MSG_USERWAIT);
  3015. }
  3016. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3017. st_synchronize();
  3018. previous_millis_cmd = millis();
  3019. if (codenum > 0){
  3020. codenum += millis(); // keep track of when we started waiting
  3021. while(millis() < codenum && !lcd_clicked()){
  3022. manage_heater();
  3023. manage_inactivity(true);
  3024. lcd_update();
  3025. }
  3026. lcd_ignore_click(false);
  3027. }else{
  3028. if (!lcd_detected())
  3029. break;
  3030. while(!lcd_clicked()){
  3031. manage_heater();
  3032. manage_inactivity(true);
  3033. lcd_update();
  3034. }
  3035. }
  3036. if (IS_SD_PRINTING)
  3037. LCD_MESSAGERPGM(MSG_RESUMING);
  3038. else
  3039. LCD_MESSAGERPGM(WELCOME_MSG);
  3040. }
  3041. break;
  3042. #endif
  3043. case 17:
  3044. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3045. enable_x();
  3046. enable_y();
  3047. enable_z();
  3048. enable_e0();
  3049. enable_e1();
  3050. enable_e2();
  3051. break;
  3052. #ifdef SDSUPPORT
  3053. case 20: // M20 - list SD card
  3054. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3055. card.ls();
  3056. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3057. break;
  3058. case 21: // M21 - init SD card
  3059. card.initsd();
  3060. break;
  3061. case 22: //M22 - release SD card
  3062. card.release();
  3063. break;
  3064. case 23: //M23 - Select file
  3065. starpos = (strchr(strchr_pointer + 4,'*'));
  3066. if(starpos!=NULL)
  3067. *(starpos)='\0';
  3068. card.openFile(strchr_pointer + 4,true);
  3069. break;
  3070. case 24: //M24 - Start SD print
  3071. card.startFileprint();
  3072. starttime=millis();
  3073. break;
  3074. case 25: //M25 - Pause SD print
  3075. card.pauseSDPrint();
  3076. break;
  3077. case 26: //M26 - Set SD index
  3078. if(card.cardOK && code_seen('S')) {
  3079. card.setIndex(code_value_long());
  3080. }
  3081. break;
  3082. case 27: //M27 - Get SD status
  3083. card.getStatus();
  3084. break;
  3085. case 28: //M28 - Start SD write
  3086. starpos = (strchr(strchr_pointer + 4,'*'));
  3087. if(starpos != NULL){
  3088. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3089. strchr_pointer = strchr(npos,' ') + 1;
  3090. *(starpos) = '\0';
  3091. }
  3092. card.openFile(strchr_pointer+4,false);
  3093. break;
  3094. case 29: //M29 - Stop SD write
  3095. //processed in write to file routine above
  3096. //card,saving = false;
  3097. break;
  3098. case 30: //M30 <filename> Delete File
  3099. if (card.cardOK){
  3100. card.closefile();
  3101. starpos = (strchr(strchr_pointer + 4,'*'));
  3102. if(starpos != NULL){
  3103. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3104. strchr_pointer = strchr(npos,' ') + 1;
  3105. *(starpos) = '\0';
  3106. }
  3107. card.removeFile(strchr_pointer + 4);
  3108. }
  3109. break;
  3110. case 32: //M32 - Select file and start SD print
  3111. {
  3112. if(card.sdprinting) {
  3113. st_synchronize();
  3114. }
  3115. starpos = (strchr(strchr_pointer + 4,'*'));
  3116. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3117. if(namestartpos==NULL)
  3118. {
  3119. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3120. }
  3121. else
  3122. namestartpos++; //to skip the '!'
  3123. if(starpos!=NULL)
  3124. *(starpos)='\0';
  3125. bool call_procedure=(code_seen('P'));
  3126. if(strchr_pointer>namestartpos)
  3127. call_procedure=false; //false alert, 'P' found within filename
  3128. if( card.cardOK )
  3129. {
  3130. card.openFile(namestartpos,true,!call_procedure);
  3131. if(code_seen('S'))
  3132. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3133. card.setIndex(code_value_long());
  3134. card.startFileprint();
  3135. if(!call_procedure)
  3136. starttime=millis(); //procedure calls count as normal print time.
  3137. }
  3138. } break;
  3139. case 928: //M928 - Start SD write
  3140. starpos = (strchr(strchr_pointer + 5,'*'));
  3141. if(starpos != NULL){
  3142. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3143. strchr_pointer = strchr(npos,' ') + 1;
  3144. *(starpos) = '\0';
  3145. }
  3146. card.openLogFile(strchr_pointer+5);
  3147. break;
  3148. #endif //SDSUPPORT
  3149. case 31: //M31 take time since the start of the SD print or an M109 command
  3150. {
  3151. stoptime=millis();
  3152. char time[30];
  3153. unsigned long t=(stoptime-starttime)/1000;
  3154. int sec,min;
  3155. min=t/60;
  3156. sec=t%60;
  3157. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3158. SERIAL_ECHO_START;
  3159. SERIAL_ECHOLN(time);
  3160. lcd_setstatus(time);
  3161. autotempShutdown();
  3162. }
  3163. break;
  3164. case 42: //M42 -Change pin status via gcode
  3165. if (code_seen('S'))
  3166. {
  3167. int pin_status = code_value();
  3168. int pin_number = LED_PIN;
  3169. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3170. pin_number = code_value();
  3171. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3172. {
  3173. if (sensitive_pins[i] == pin_number)
  3174. {
  3175. pin_number = -1;
  3176. break;
  3177. }
  3178. }
  3179. #if defined(FAN_PIN) && FAN_PIN > -1
  3180. if (pin_number == FAN_PIN)
  3181. fanSpeed = pin_status;
  3182. #endif
  3183. if (pin_number > -1)
  3184. {
  3185. pinMode(pin_number, OUTPUT);
  3186. digitalWrite(pin_number, pin_status);
  3187. analogWrite(pin_number, pin_status);
  3188. }
  3189. }
  3190. break;
  3191. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3192. // Reset the baby step value and the baby step applied flag.
  3193. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3194. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3195. // Reset the skew and offset in both RAM and EEPROM.
  3196. reset_bed_offset_and_skew();
  3197. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3198. // the planner will not perform any adjustments in the XY plane.
  3199. // Wait for the motors to stop and update the current position with the absolute values.
  3200. world2machine_revert_to_uncorrected();
  3201. break;
  3202. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3203. {
  3204. // Only Z calibration?
  3205. bool onlyZ = code_seen('Z');
  3206. if (!onlyZ) {
  3207. setTargetBed(0);
  3208. setTargetHotend(0, 0);
  3209. setTargetHotend(0, 1);
  3210. setTargetHotend(0, 2);
  3211. adjust_bed_reset(); //reset bed level correction
  3212. }
  3213. // Disable the default update procedure of the display. We will do a modal dialog.
  3214. lcd_update_enable(false);
  3215. // Let the planner use the uncorrected coordinates.
  3216. mbl.reset();
  3217. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3218. // the planner will not perform any adjustments in the XY plane.
  3219. // Wait for the motors to stop and update the current position with the absolute values.
  3220. world2machine_revert_to_uncorrected();
  3221. // Reset the baby step value applied without moving the axes.
  3222. babystep_reset();
  3223. // Mark all axes as in a need for homing.
  3224. memset(axis_known_position, 0, sizeof(axis_known_position));
  3225. // Let the user move the Z axes up to the end stoppers.
  3226. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3227. refresh_cmd_timeout();
  3228. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3229. lcd_wait_for_cool_down();
  3230. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3231. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3232. lcd_implementation_print_at(0, 2, 1);
  3233. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3234. }
  3235. // Move the print head close to the bed.
  3236. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3238. st_synchronize();
  3239. // Home in the XY plane.
  3240. set_destination_to_current();
  3241. setup_for_endstop_move();
  3242. home_xy();
  3243. int8_t verbosity_level = 0;
  3244. if (code_seen('V')) {
  3245. // Just 'V' without a number counts as V1.
  3246. char c = strchr_pointer[1];
  3247. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3248. }
  3249. if (onlyZ) {
  3250. clean_up_after_endstop_move();
  3251. // Z only calibration.
  3252. // Load the machine correction matrix
  3253. world2machine_initialize();
  3254. // and correct the current_position to match the transformed coordinate system.
  3255. world2machine_update_current();
  3256. //FIXME
  3257. bool result = sample_mesh_and_store_reference();
  3258. if (result) {
  3259. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3260. // Shipped, the nozzle height has been set already. The user can start printing now.
  3261. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3262. // babystep_apply();
  3263. }
  3264. } else {
  3265. // Reset the baby step value and the baby step applied flag.
  3266. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3267. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3268. // Complete XYZ calibration.
  3269. uint8_t point_too_far_mask = 0;
  3270. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3271. clean_up_after_endstop_move();
  3272. // Print head up.
  3273. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3275. st_synchronize();
  3276. if (result >= 0) {
  3277. point_too_far_mask = 0;
  3278. // Second half: The fine adjustment.
  3279. // Let the planner use the uncorrected coordinates.
  3280. mbl.reset();
  3281. world2machine_reset();
  3282. // Home in the XY plane.
  3283. setup_for_endstop_move();
  3284. home_xy();
  3285. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3286. clean_up_after_endstop_move();
  3287. // Print head up.
  3288. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3290. st_synchronize();
  3291. // if (result >= 0) babystep_apply();
  3292. }
  3293. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3294. if (result >= 0) {
  3295. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3296. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3297. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3298. }
  3299. }
  3300. } else {
  3301. // Timeouted.
  3302. }
  3303. lcd_update_enable(true);
  3304. break;
  3305. }
  3306. /*
  3307. case 46:
  3308. {
  3309. // M46: Prusa3D: Show the assigned IP address.
  3310. uint8_t ip[4];
  3311. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3312. if (hasIP) {
  3313. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3314. SERIAL_ECHO(int(ip[0]));
  3315. SERIAL_ECHOPGM(".");
  3316. SERIAL_ECHO(int(ip[1]));
  3317. SERIAL_ECHOPGM(".");
  3318. SERIAL_ECHO(int(ip[2]));
  3319. SERIAL_ECHOPGM(".");
  3320. SERIAL_ECHO(int(ip[3]));
  3321. SERIAL_ECHOLNPGM("");
  3322. } else {
  3323. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3324. }
  3325. break;
  3326. }
  3327. */
  3328. case 47:
  3329. // M47: Prusa3D: Show end stops dialog on the display.
  3330. lcd_diag_show_end_stops();
  3331. break;
  3332. #if 0
  3333. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3334. {
  3335. // Disable the default update procedure of the display. We will do a modal dialog.
  3336. lcd_update_enable(false);
  3337. // Let the planner use the uncorrected coordinates.
  3338. mbl.reset();
  3339. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3340. // the planner will not perform any adjustments in the XY plane.
  3341. // Wait for the motors to stop and update the current position with the absolute values.
  3342. world2machine_revert_to_uncorrected();
  3343. // Move the print head close to the bed.
  3344. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3346. st_synchronize();
  3347. // Home in the XY plane.
  3348. set_destination_to_current();
  3349. setup_for_endstop_move();
  3350. home_xy();
  3351. int8_t verbosity_level = 0;
  3352. if (code_seen('V')) {
  3353. // Just 'V' without a number counts as V1.
  3354. char c = strchr_pointer[1];
  3355. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3356. }
  3357. bool success = scan_bed_induction_points(verbosity_level);
  3358. clean_up_after_endstop_move();
  3359. // Print head up.
  3360. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3362. st_synchronize();
  3363. lcd_update_enable(true);
  3364. break;
  3365. }
  3366. #endif
  3367. // M48 Z-Probe repeatability measurement function.
  3368. //
  3369. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3370. //
  3371. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3372. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3373. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3374. // regenerated.
  3375. //
  3376. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3377. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3378. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3379. //
  3380. #ifdef ENABLE_AUTO_BED_LEVELING
  3381. #ifdef Z_PROBE_REPEATABILITY_TEST
  3382. case 48: // M48 Z-Probe repeatability
  3383. {
  3384. #if Z_MIN_PIN == -1
  3385. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3386. #endif
  3387. double sum=0.0;
  3388. double mean=0.0;
  3389. double sigma=0.0;
  3390. double sample_set[50];
  3391. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3392. double X_current, Y_current, Z_current;
  3393. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3394. if (code_seen('V') || code_seen('v')) {
  3395. verbose_level = code_value();
  3396. if (verbose_level<0 || verbose_level>4 ) {
  3397. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3398. goto Sigma_Exit;
  3399. }
  3400. }
  3401. if (verbose_level > 0) {
  3402. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3403. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3404. }
  3405. if (code_seen('n')) {
  3406. n_samples = code_value();
  3407. if (n_samples<4 || n_samples>50 ) {
  3408. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3409. goto Sigma_Exit;
  3410. }
  3411. }
  3412. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3413. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3414. Z_current = st_get_position_mm(Z_AXIS);
  3415. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3416. ext_position = st_get_position_mm(E_AXIS);
  3417. if (code_seen('X') || code_seen('x') ) {
  3418. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3419. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3420. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3421. goto Sigma_Exit;
  3422. }
  3423. }
  3424. if (code_seen('Y') || code_seen('y') ) {
  3425. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3426. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3427. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3428. goto Sigma_Exit;
  3429. }
  3430. }
  3431. if (code_seen('L') || code_seen('l') ) {
  3432. n_legs = code_value();
  3433. if ( n_legs==1 )
  3434. n_legs = 2;
  3435. if ( n_legs<0 || n_legs>15 ) {
  3436. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3437. goto Sigma_Exit;
  3438. }
  3439. }
  3440. //
  3441. // Do all the preliminary setup work. First raise the probe.
  3442. //
  3443. st_synchronize();
  3444. plan_bed_level_matrix.set_to_identity();
  3445. plan_buffer_line( X_current, Y_current, Z_start_location,
  3446. ext_position,
  3447. homing_feedrate[Z_AXIS]/60,
  3448. active_extruder);
  3449. st_synchronize();
  3450. //
  3451. // Now get everything to the specified probe point So we can safely do a probe to
  3452. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3453. // use that as a starting point for each probe.
  3454. //
  3455. if (verbose_level > 2)
  3456. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3457. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3458. ext_position,
  3459. homing_feedrate[X_AXIS]/60,
  3460. active_extruder);
  3461. st_synchronize();
  3462. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3463. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3464. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3465. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3466. //
  3467. // OK, do the inital probe to get us close to the bed.
  3468. // Then retrace the right amount and use that in subsequent probes
  3469. //
  3470. setup_for_endstop_move();
  3471. run_z_probe();
  3472. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3473. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3474. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3475. ext_position,
  3476. homing_feedrate[X_AXIS]/60,
  3477. active_extruder);
  3478. st_synchronize();
  3479. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3480. for( n=0; n<n_samples; n++) {
  3481. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3482. if ( n_legs) {
  3483. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3484. int rotational_direction, l;
  3485. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3486. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3487. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3488. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3489. //SERIAL_ECHOPAIR(" theta: ",theta);
  3490. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3491. //SERIAL_PROTOCOLLNPGM("");
  3492. for( l=0; l<n_legs-1; l++) {
  3493. if (rotational_direction==1)
  3494. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3495. else
  3496. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3497. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3498. if ( radius<0.0 )
  3499. radius = -radius;
  3500. X_current = X_probe_location + cos(theta) * radius;
  3501. Y_current = Y_probe_location + sin(theta) * radius;
  3502. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3503. X_current = X_MIN_POS;
  3504. if ( X_current>X_MAX_POS)
  3505. X_current = X_MAX_POS;
  3506. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3507. Y_current = Y_MIN_POS;
  3508. if ( Y_current>Y_MAX_POS)
  3509. Y_current = Y_MAX_POS;
  3510. if (verbose_level>3 ) {
  3511. SERIAL_ECHOPAIR("x: ", X_current);
  3512. SERIAL_ECHOPAIR("y: ", Y_current);
  3513. SERIAL_PROTOCOLLNPGM("");
  3514. }
  3515. do_blocking_move_to( X_current, Y_current, Z_current );
  3516. }
  3517. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3518. }
  3519. setup_for_endstop_move();
  3520. run_z_probe();
  3521. sample_set[n] = current_position[Z_AXIS];
  3522. //
  3523. // Get the current mean for the data points we have so far
  3524. //
  3525. sum=0.0;
  3526. for( j=0; j<=n; j++) {
  3527. sum = sum + sample_set[j];
  3528. }
  3529. mean = sum / (double (n+1));
  3530. //
  3531. // Now, use that mean to calculate the standard deviation for the
  3532. // data points we have so far
  3533. //
  3534. sum=0.0;
  3535. for( j=0; j<=n; j++) {
  3536. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3537. }
  3538. sigma = sqrt( sum / (double (n+1)) );
  3539. if (verbose_level > 1) {
  3540. SERIAL_PROTOCOL(n+1);
  3541. SERIAL_PROTOCOL(" of ");
  3542. SERIAL_PROTOCOL(n_samples);
  3543. SERIAL_PROTOCOLPGM(" z: ");
  3544. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3545. }
  3546. if (verbose_level > 2) {
  3547. SERIAL_PROTOCOL(" mean: ");
  3548. SERIAL_PROTOCOL_F(mean,6);
  3549. SERIAL_PROTOCOL(" sigma: ");
  3550. SERIAL_PROTOCOL_F(sigma,6);
  3551. }
  3552. if (verbose_level > 0)
  3553. SERIAL_PROTOCOLPGM("\n");
  3554. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3555. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3556. st_synchronize();
  3557. }
  3558. delay(1000);
  3559. clean_up_after_endstop_move();
  3560. // enable_endstops(true);
  3561. if (verbose_level > 0) {
  3562. SERIAL_PROTOCOLPGM("Mean: ");
  3563. SERIAL_PROTOCOL_F(mean, 6);
  3564. SERIAL_PROTOCOLPGM("\n");
  3565. }
  3566. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3567. SERIAL_PROTOCOL_F(sigma, 6);
  3568. SERIAL_PROTOCOLPGM("\n\n");
  3569. Sigma_Exit:
  3570. break;
  3571. }
  3572. #endif // Z_PROBE_REPEATABILITY_TEST
  3573. #endif // ENABLE_AUTO_BED_LEVELING
  3574. case 104: // M104
  3575. if(setTargetedHotend(104)){
  3576. break;
  3577. }
  3578. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3579. setWatch();
  3580. break;
  3581. case 112: // M112 -Emergency Stop
  3582. kill();
  3583. break;
  3584. case 140: // M140 set bed temp
  3585. if (code_seen('S')) setTargetBed(code_value());
  3586. break;
  3587. case 105 : // M105
  3588. if(setTargetedHotend(105)){
  3589. break;
  3590. }
  3591. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3592. SERIAL_PROTOCOLPGM("ok T:");
  3593. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3594. SERIAL_PROTOCOLPGM(" /");
  3595. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3596. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3597. SERIAL_PROTOCOLPGM(" B:");
  3598. SERIAL_PROTOCOL_F(degBed(),1);
  3599. SERIAL_PROTOCOLPGM(" /");
  3600. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3601. #endif //TEMP_BED_PIN
  3602. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3603. SERIAL_PROTOCOLPGM(" T");
  3604. SERIAL_PROTOCOL(cur_extruder);
  3605. SERIAL_PROTOCOLPGM(":");
  3606. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3607. SERIAL_PROTOCOLPGM(" /");
  3608. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3609. }
  3610. #else
  3611. SERIAL_ERROR_START;
  3612. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3613. #endif
  3614. SERIAL_PROTOCOLPGM(" @:");
  3615. #ifdef EXTRUDER_WATTS
  3616. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3617. SERIAL_PROTOCOLPGM("W");
  3618. #else
  3619. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3620. #endif
  3621. SERIAL_PROTOCOLPGM(" B@:");
  3622. #ifdef BED_WATTS
  3623. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3624. SERIAL_PROTOCOLPGM("W");
  3625. #else
  3626. SERIAL_PROTOCOL(getHeaterPower(-1));
  3627. #endif
  3628. #ifdef SHOW_TEMP_ADC_VALUES
  3629. {float raw = 0.0;
  3630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3631. SERIAL_PROTOCOLPGM(" ADC B:");
  3632. SERIAL_PROTOCOL_F(degBed(),1);
  3633. SERIAL_PROTOCOLPGM("C->");
  3634. raw = rawBedTemp();
  3635. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3636. SERIAL_PROTOCOLPGM(" Rb->");
  3637. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3638. SERIAL_PROTOCOLPGM(" Rxb->");
  3639. SERIAL_PROTOCOL_F(raw, 5);
  3640. #endif
  3641. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3642. SERIAL_PROTOCOLPGM(" T");
  3643. SERIAL_PROTOCOL(cur_extruder);
  3644. SERIAL_PROTOCOLPGM(":");
  3645. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3646. SERIAL_PROTOCOLPGM("C->");
  3647. raw = rawHotendTemp(cur_extruder);
  3648. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3649. SERIAL_PROTOCOLPGM(" Rt");
  3650. SERIAL_PROTOCOL(cur_extruder);
  3651. SERIAL_PROTOCOLPGM("->");
  3652. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3653. SERIAL_PROTOCOLPGM(" Rx");
  3654. SERIAL_PROTOCOL(cur_extruder);
  3655. SERIAL_PROTOCOLPGM("->");
  3656. SERIAL_PROTOCOL_F(raw, 5);
  3657. }}
  3658. #endif
  3659. SERIAL_PROTOCOLLN("");
  3660. return;
  3661. break;
  3662. case 109:
  3663. {// M109 - Wait for extruder heater to reach target.
  3664. if(setTargetedHotend(109)){
  3665. break;
  3666. }
  3667. LCD_MESSAGERPGM(MSG_HEATING);
  3668. heating_status = 1;
  3669. if (farm_mode) { prusa_statistics(1); };
  3670. #ifdef AUTOTEMP
  3671. autotemp_enabled=false;
  3672. #endif
  3673. if (code_seen('S')) {
  3674. setTargetHotend(code_value(), tmp_extruder);
  3675. CooldownNoWait = true;
  3676. } else if (code_seen('R')) {
  3677. setTargetHotend(code_value(), tmp_extruder);
  3678. CooldownNoWait = false;
  3679. }
  3680. #ifdef AUTOTEMP
  3681. if (code_seen('S')) autotemp_min=code_value();
  3682. if (code_seen('B')) autotemp_max=code_value();
  3683. if (code_seen('F'))
  3684. {
  3685. autotemp_factor=code_value();
  3686. autotemp_enabled=true;
  3687. }
  3688. #endif
  3689. setWatch();
  3690. codenum = millis();
  3691. /* See if we are heating up or cooling down */
  3692. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3693. cancel_heatup = false;
  3694. wait_for_heater(codenum); //loops until target temperature is reached
  3695. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3696. heating_status = 2;
  3697. if (farm_mode) { prusa_statistics(2); };
  3698. //starttime=millis();
  3699. previous_millis_cmd = millis();
  3700. }
  3701. break;
  3702. case 190: // M190 - Wait for bed heater to reach target.
  3703. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3704. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3705. heating_status = 3;
  3706. if (farm_mode) { prusa_statistics(1); };
  3707. if (code_seen('S'))
  3708. {
  3709. setTargetBed(code_value());
  3710. CooldownNoWait = true;
  3711. }
  3712. else if (code_seen('R'))
  3713. {
  3714. setTargetBed(code_value());
  3715. CooldownNoWait = false;
  3716. }
  3717. codenum = millis();
  3718. cancel_heatup = false;
  3719. target_direction = isHeatingBed(); // true if heating, false if cooling
  3720. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3721. {
  3722. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3723. {
  3724. if (!farm_mode) {
  3725. float tt = degHotend(active_extruder);
  3726. SERIAL_PROTOCOLPGM("T:");
  3727. SERIAL_PROTOCOL(tt);
  3728. SERIAL_PROTOCOLPGM(" E:");
  3729. SERIAL_PROTOCOL((int)active_extruder);
  3730. SERIAL_PROTOCOLPGM(" B:");
  3731. SERIAL_PROTOCOL_F(degBed(), 1);
  3732. SERIAL_PROTOCOLLN("");
  3733. }
  3734. codenum = millis();
  3735. }
  3736. manage_heater();
  3737. manage_inactivity();
  3738. lcd_update();
  3739. }
  3740. LCD_MESSAGERPGM(MSG_BED_DONE);
  3741. heating_status = 4;
  3742. previous_millis_cmd = millis();
  3743. #endif
  3744. break;
  3745. #if defined(FAN_PIN) && FAN_PIN > -1
  3746. case 106: //M106 Fan On
  3747. if (code_seen('S')){
  3748. fanSpeed=constrain(code_value(),0,255);
  3749. }
  3750. else {
  3751. fanSpeed=255;
  3752. }
  3753. break;
  3754. case 107: //M107 Fan Off
  3755. fanSpeed = 0;
  3756. break;
  3757. #endif //FAN_PIN
  3758. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3759. case 80: // M80 - Turn on Power Supply
  3760. SET_OUTPUT(PS_ON_PIN); //GND
  3761. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3762. // If you have a switch on suicide pin, this is useful
  3763. // if you want to start another print with suicide feature after
  3764. // a print without suicide...
  3765. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3766. SET_OUTPUT(SUICIDE_PIN);
  3767. WRITE(SUICIDE_PIN, HIGH);
  3768. #endif
  3769. #ifdef ULTIPANEL
  3770. powersupply = true;
  3771. LCD_MESSAGERPGM(WELCOME_MSG);
  3772. lcd_update();
  3773. #endif
  3774. break;
  3775. #endif
  3776. case 81: // M81 - Turn off Power Supply
  3777. disable_heater();
  3778. st_synchronize();
  3779. disable_e0();
  3780. disable_e1();
  3781. disable_e2();
  3782. finishAndDisableSteppers();
  3783. fanSpeed = 0;
  3784. delay(1000); // Wait a little before to switch off
  3785. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3786. st_synchronize();
  3787. suicide();
  3788. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3789. SET_OUTPUT(PS_ON_PIN);
  3790. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3791. #endif
  3792. #ifdef ULTIPANEL
  3793. powersupply = false;
  3794. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3795. /*
  3796. MACHNAME = "Prusa i3"
  3797. MSGOFF = "Vypnuto"
  3798. "Prusai3"" ""vypnuto""."
  3799. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3800. */
  3801. lcd_update();
  3802. #endif
  3803. break;
  3804. case 82:
  3805. axis_relative_modes[3] = false;
  3806. break;
  3807. case 83:
  3808. axis_relative_modes[3] = true;
  3809. break;
  3810. case 18: //compatibility
  3811. case 84: // M84
  3812. if(code_seen('S')){
  3813. stepper_inactive_time = code_value() * 1000;
  3814. }
  3815. else
  3816. {
  3817. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3818. if(all_axis)
  3819. {
  3820. st_synchronize();
  3821. disable_e0();
  3822. disable_e1();
  3823. disable_e2();
  3824. finishAndDisableSteppers();
  3825. }
  3826. else
  3827. {
  3828. st_synchronize();
  3829. if (code_seen('X')) disable_x();
  3830. if (code_seen('Y')) disable_y();
  3831. if (code_seen('Z')) disable_z();
  3832. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3833. if (code_seen('E')) {
  3834. disable_e0();
  3835. disable_e1();
  3836. disable_e2();
  3837. }
  3838. #endif
  3839. }
  3840. }
  3841. snmm_filaments_used = 0;
  3842. break;
  3843. case 85: // M85
  3844. if(code_seen('S')) {
  3845. max_inactive_time = code_value() * 1000;
  3846. }
  3847. break;
  3848. case 92: // M92
  3849. for(int8_t i=0; i < NUM_AXIS; i++)
  3850. {
  3851. if(code_seen(axis_codes[i]))
  3852. {
  3853. if(i == 3) { // E
  3854. float value = code_value();
  3855. if(value < 20.0) {
  3856. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3857. max_jerk[E_AXIS] *= factor;
  3858. max_feedrate[i] *= factor;
  3859. axis_steps_per_sqr_second[i] *= factor;
  3860. }
  3861. axis_steps_per_unit[i] = value;
  3862. }
  3863. else {
  3864. axis_steps_per_unit[i] = code_value();
  3865. }
  3866. }
  3867. }
  3868. break;
  3869. case 110: // M110 - reset line pos
  3870. if (code_seen('N'))
  3871. gcode_LastN = code_value_long();
  3872. else
  3873. gcode_LastN = 0;
  3874. break;
  3875. case 115: // M115
  3876. if (code_seen('V')) {
  3877. // Report the Prusa version number.
  3878. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3879. } else if (code_seen('U')) {
  3880. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3881. // pause the print and ask the user to upgrade the firmware.
  3882. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3883. } else {
  3884. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3885. }
  3886. break;
  3887. /* case 117: // M117 display message
  3888. starpos = (strchr(strchr_pointer + 5,'*'));
  3889. if(starpos!=NULL)
  3890. *(starpos)='\0';
  3891. lcd_setstatus(strchr_pointer + 5);
  3892. break;*/
  3893. case 114: // M114
  3894. SERIAL_PROTOCOLPGM("X:");
  3895. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3896. SERIAL_PROTOCOLPGM(" Y:");
  3897. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3898. SERIAL_PROTOCOLPGM(" Z:");
  3899. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3900. SERIAL_PROTOCOLPGM(" E:");
  3901. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3902. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3903. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3904. SERIAL_PROTOCOLPGM(" Y:");
  3905. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3906. SERIAL_PROTOCOLPGM(" Z:");
  3907. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3908. SERIAL_PROTOCOLLN("");
  3909. break;
  3910. case 120: // M120
  3911. enable_endstops(false) ;
  3912. break;
  3913. case 121: // M121
  3914. enable_endstops(true) ;
  3915. break;
  3916. case 119: // M119
  3917. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3918. SERIAL_PROTOCOLLN("");
  3919. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3920. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3921. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3922. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3923. }else{
  3924. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3925. }
  3926. SERIAL_PROTOCOLLN("");
  3927. #endif
  3928. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3929. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3930. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3931. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3932. }else{
  3933. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3934. }
  3935. SERIAL_PROTOCOLLN("");
  3936. #endif
  3937. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3938. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3939. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3940. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3941. }else{
  3942. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3943. }
  3944. SERIAL_PROTOCOLLN("");
  3945. #endif
  3946. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3947. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3948. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3949. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3950. }else{
  3951. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3952. }
  3953. SERIAL_PROTOCOLLN("");
  3954. #endif
  3955. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3956. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3957. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3958. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3959. }else{
  3960. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3961. }
  3962. SERIAL_PROTOCOLLN("");
  3963. #endif
  3964. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3965. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3966. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3967. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3968. }else{
  3969. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3970. }
  3971. SERIAL_PROTOCOLLN("");
  3972. #endif
  3973. break;
  3974. //TODO: update for all axis, use for loop
  3975. #ifdef BLINKM
  3976. case 150: // M150
  3977. {
  3978. byte red;
  3979. byte grn;
  3980. byte blu;
  3981. if(code_seen('R')) red = code_value();
  3982. if(code_seen('U')) grn = code_value();
  3983. if(code_seen('B')) blu = code_value();
  3984. SendColors(red,grn,blu);
  3985. }
  3986. break;
  3987. #endif //BLINKM
  3988. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3989. {
  3990. tmp_extruder = active_extruder;
  3991. if(code_seen('T')) {
  3992. tmp_extruder = code_value();
  3993. if(tmp_extruder >= EXTRUDERS) {
  3994. SERIAL_ECHO_START;
  3995. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3996. break;
  3997. }
  3998. }
  3999. float area = .0;
  4000. if(code_seen('D')) {
  4001. float diameter = (float)code_value();
  4002. if (diameter == 0.0) {
  4003. // setting any extruder filament size disables volumetric on the assumption that
  4004. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4005. // for all extruders
  4006. volumetric_enabled = false;
  4007. } else {
  4008. filament_size[tmp_extruder] = (float)code_value();
  4009. // make sure all extruders have some sane value for the filament size
  4010. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4011. #if EXTRUDERS > 1
  4012. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4013. #if EXTRUDERS > 2
  4014. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4015. #endif
  4016. #endif
  4017. volumetric_enabled = true;
  4018. }
  4019. } else {
  4020. //reserved for setting filament diameter via UFID or filament measuring device
  4021. break;
  4022. }
  4023. calculate_volumetric_multipliers();
  4024. }
  4025. break;
  4026. case 201: // M201
  4027. for(int8_t i=0; i < NUM_AXIS; i++)
  4028. {
  4029. if(code_seen(axis_codes[i]))
  4030. {
  4031. max_acceleration_units_per_sq_second[i] = code_value();
  4032. }
  4033. }
  4034. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4035. reset_acceleration_rates();
  4036. break;
  4037. #if 0 // Not used for Sprinter/grbl gen6
  4038. case 202: // M202
  4039. for(int8_t i=0; i < NUM_AXIS; i++) {
  4040. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4041. }
  4042. break;
  4043. #endif
  4044. case 203: // M203 max feedrate mm/sec
  4045. for(int8_t i=0; i < NUM_AXIS; i++) {
  4046. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4047. }
  4048. break;
  4049. case 204: // M204 acclereration S normal moves T filmanent only moves
  4050. {
  4051. if(code_seen('S')) acceleration = code_value() ;
  4052. if(code_seen('T')) retract_acceleration = code_value() ;
  4053. }
  4054. break;
  4055. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4056. {
  4057. if(code_seen('S')) minimumfeedrate = code_value();
  4058. if(code_seen('T')) mintravelfeedrate = code_value();
  4059. if(code_seen('B')) minsegmenttime = code_value() ;
  4060. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4061. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4062. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4063. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4064. }
  4065. break;
  4066. case 206: // M206 additional homing offset
  4067. for(int8_t i=0; i < 3; i++)
  4068. {
  4069. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4070. }
  4071. break;
  4072. #ifdef FWRETRACT
  4073. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4074. {
  4075. if(code_seen('S'))
  4076. {
  4077. retract_length = code_value() ;
  4078. }
  4079. if(code_seen('F'))
  4080. {
  4081. retract_feedrate = code_value()/60 ;
  4082. }
  4083. if(code_seen('Z'))
  4084. {
  4085. retract_zlift = code_value() ;
  4086. }
  4087. }break;
  4088. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4089. {
  4090. if(code_seen('S'))
  4091. {
  4092. retract_recover_length = code_value() ;
  4093. }
  4094. if(code_seen('F'))
  4095. {
  4096. retract_recover_feedrate = code_value()/60 ;
  4097. }
  4098. }break;
  4099. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4100. {
  4101. if(code_seen('S'))
  4102. {
  4103. int t= code_value() ;
  4104. switch(t)
  4105. {
  4106. case 0:
  4107. {
  4108. autoretract_enabled=false;
  4109. retracted[0]=false;
  4110. #if EXTRUDERS > 1
  4111. retracted[1]=false;
  4112. #endif
  4113. #if EXTRUDERS > 2
  4114. retracted[2]=false;
  4115. #endif
  4116. }break;
  4117. case 1:
  4118. {
  4119. autoretract_enabled=true;
  4120. retracted[0]=false;
  4121. #if EXTRUDERS > 1
  4122. retracted[1]=false;
  4123. #endif
  4124. #if EXTRUDERS > 2
  4125. retracted[2]=false;
  4126. #endif
  4127. }break;
  4128. default:
  4129. SERIAL_ECHO_START;
  4130. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4131. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4132. SERIAL_ECHOLNPGM("\"");
  4133. }
  4134. }
  4135. }break;
  4136. #endif // FWRETRACT
  4137. #if EXTRUDERS > 1
  4138. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4139. {
  4140. if(setTargetedHotend(218)){
  4141. break;
  4142. }
  4143. if(code_seen('X'))
  4144. {
  4145. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4146. }
  4147. if(code_seen('Y'))
  4148. {
  4149. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4150. }
  4151. SERIAL_ECHO_START;
  4152. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4153. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4154. {
  4155. SERIAL_ECHO(" ");
  4156. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4157. SERIAL_ECHO(",");
  4158. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4159. }
  4160. SERIAL_ECHOLN("");
  4161. }break;
  4162. #endif
  4163. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4164. {
  4165. if(code_seen('S'))
  4166. {
  4167. feedmultiply = code_value() ;
  4168. }
  4169. }
  4170. break;
  4171. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4172. {
  4173. if(code_seen('S'))
  4174. {
  4175. int tmp_code = code_value();
  4176. if (code_seen('T'))
  4177. {
  4178. if(setTargetedHotend(221)){
  4179. break;
  4180. }
  4181. extruder_multiply[tmp_extruder] = tmp_code;
  4182. }
  4183. else
  4184. {
  4185. extrudemultiply = tmp_code ;
  4186. }
  4187. }
  4188. }
  4189. break;
  4190. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4191. {
  4192. if(code_seen('P')){
  4193. int pin_number = code_value(); // pin number
  4194. int pin_state = -1; // required pin state - default is inverted
  4195. if(code_seen('S')) pin_state = code_value(); // required pin state
  4196. if(pin_state >= -1 && pin_state <= 1){
  4197. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4198. {
  4199. if (sensitive_pins[i] == pin_number)
  4200. {
  4201. pin_number = -1;
  4202. break;
  4203. }
  4204. }
  4205. if (pin_number > -1)
  4206. {
  4207. int target = LOW;
  4208. st_synchronize();
  4209. pinMode(pin_number, INPUT);
  4210. switch(pin_state){
  4211. case 1:
  4212. target = HIGH;
  4213. break;
  4214. case 0:
  4215. target = LOW;
  4216. break;
  4217. case -1:
  4218. target = !digitalRead(pin_number);
  4219. break;
  4220. }
  4221. while(digitalRead(pin_number) != target){
  4222. manage_heater();
  4223. manage_inactivity();
  4224. lcd_update();
  4225. }
  4226. }
  4227. }
  4228. }
  4229. }
  4230. break;
  4231. #if NUM_SERVOS > 0
  4232. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4233. {
  4234. int servo_index = -1;
  4235. int servo_position = 0;
  4236. if (code_seen('P'))
  4237. servo_index = code_value();
  4238. if (code_seen('S')) {
  4239. servo_position = code_value();
  4240. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4241. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4242. servos[servo_index].attach(0);
  4243. #endif
  4244. servos[servo_index].write(servo_position);
  4245. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4246. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4247. servos[servo_index].detach();
  4248. #endif
  4249. }
  4250. else {
  4251. SERIAL_ECHO_START;
  4252. SERIAL_ECHO("Servo ");
  4253. SERIAL_ECHO(servo_index);
  4254. SERIAL_ECHOLN(" out of range");
  4255. }
  4256. }
  4257. else if (servo_index >= 0) {
  4258. SERIAL_PROTOCOL(MSG_OK);
  4259. SERIAL_PROTOCOL(" Servo ");
  4260. SERIAL_PROTOCOL(servo_index);
  4261. SERIAL_PROTOCOL(": ");
  4262. SERIAL_PROTOCOL(servos[servo_index].read());
  4263. SERIAL_PROTOCOLLN("");
  4264. }
  4265. }
  4266. break;
  4267. #endif // NUM_SERVOS > 0
  4268. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4269. case 300: // M300
  4270. {
  4271. int beepS = code_seen('S') ? code_value() : 110;
  4272. int beepP = code_seen('P') ? code_value() : 1000;
  4273. if (beepS > 0)
  4274. {
  4275. #if BEEPER > 0
  4276. tone(BEEPER, beepS);
  4277. delay(beepP);
  4278. noTone(BEEPER);
  4279. #elif defined(ULTRALCD)
  4280. lcd_buzz(beepS, beepP);
  4281. #elif defined(LCD_USE_I2C_BUZZER)
  4282. lcd_buzz(beepP, beepS);
  4283. #endif
  4284. }
  4285. else
  4286. {
  4287. delay(beepP);
  4288. }
  4289. }
  4290. break;
  4291. #endif // M300
  4292. #ifdef PIDTEMP
  4293. case 301: // M301
  4294. {
  4295. if(code_seen('P')) Kp = code_value();
  4296. if(code_seen('I')) Ki = scalePID_i(code_value());
  4297. if(code_seen('D')) Kd = scalePID_d(code_value());
  4298. #ifdef PID_ADD_EXTRUSION_RATE
  4299. if(code_seen('C')) Kc = code_value();
  4300. #endif
  4301. updatePID();
  4302. SERIAL_PROTOCOLRPGM(MSG_OK);
  4303. SERIAL_PROTOCOL(" p:");
  4304. SERIAL_PROTOCOL(Kp);
  4305. SERIAL_PROTOCOL(" i:");
  4306. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4307. SERIAL_PROTOCOL(" d:");
  4308. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4309. #ifdef PID_ADD_EXTRUSION_RATE
  4310. SERIAL_PROTOCOL(" c:");
  4311. //Kc does not have scaling applied above, or in resetting defaults
  4312. SERIAL_PROTOCOL(Kc);
  4313. #endif
  4314. SERIAL_PROTOCOLLN("");
  4315. }
  4316. break;
  4317. #endif //PIDTEMP
  4318. #ifdef PIDTEMPBED
  4319. case 304: // M304
  4320. {
  4321. if(code_seen('P')) bedKp = code_value();
  4322. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4323. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4324. updatePID();
  4325. SERIAL_PROTOCOLRPGM(MSG_OK);
  4326. SERIAL_PROTOCOL(" p:");
  4327. SERIAL_PROTOCOL(bedKp);
  4328. SERIAL_PROTOCOL(" i:");
  4329. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4330. SERIAL_PROTOCOL(" d:");
  4331. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4332. SERIAL_PROTOCOLLN("");
  4333. }
  4334. break;
  4335. #endif //PIDTEMP
  4336. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4337. {
  4338. #ifdef CHDK
  4339. SET_OUTPUT(CHDK);
  4340. WRITE(CHDK, HIGH);
  4341. chdkHigh = millis();
  4342. chdkActive = true;
  4343. #else
  4344. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4345. const uint8_t NUM_PULSES=16;
  4346. const float PULSE_LENGTH=0.01524;
  4347. for(int i=0; i < NUM_PULSES; i++) {
  4348. WRITE(PHOTOGRAPH_PIN, HIGH);
  4349. _delay_ms(PULSE_LENGTH);
  4350. WRITE(PHOTOGRAPH_PIN, LOW);
  4351. _delay_ms(PULSE_LENGTH);
  4352. }
  4353. delay(7.33);
  4354. for(int i=0; i < NUM_PULSES; i++) {
  4355. WRITE(PHOTOGRAPH_PIN, HIGH);
  4356. _delay_ms(PULSE_LENGTH);
  4357. WRITE(PHOTOGRAPH_PIN, LOW);
  4358. _delay_ms(PULSE_LENGTH);
  4359. }
  4360. #endif
  4361. #endif //chdk end if
  4362. }
  4363. break;
  4364. #ifdef DOGLCD
  4365. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4366. {
  4367. if (code_seen('C')) {
  4368. lcd_setcontrast( ((int)code_value())&63 );
  4369. }
  4370. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4371. SERIAL_PROTOCOL(lcd_contrast);
  4372. SERIAL_PROTOCOLLN("");
  4373. }
  4374. break;
  4375. #endif
  4376. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4377. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4378. {
  4379. float temp = .0;
  4380. if (code_seen('S')) temp=code_value();
  4381. set_extrude_min_temp(temp);
  4382. }
  4383. break;
  4384. #endif
  4385. case 303: // M303 PID autotune
  4386. {
  4387. float temp = 150.0;
  4388. int e=0;
  4389. int c=5;
  4390. if (code_seen('E')) e=code_value();
  4391. if (e<0)
  4392. temp=70;
  4393. if (code_seen('S')) temp=code_value();
  4394. if (code_seen('C')) c=code_value();
  4395. PID_autotune(temp, e, c);
  4396. }
  4397. break;
  4398. case 400: // M400 finish all moves
  4399. {
  4400. st_synchronize();
  4401. }
  4402. break;
  4403. #ifdef FILAMENT_SENSOR
  4404. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4405. {
  4406. #if (FILWIDTH_PIN > -1)
  4407. if(code_seen('N')) filament_width_nominal=code_value();
  4408. else{
  4409. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4410. SERIAL_PROTOCOLLN(filament_width_nominal);
  4411. }
  4412. #endif
  4413. }
  4414. break;
  4415. case 405: //M405 Turn on filament sensor for control
  4416. {
  4417. if(code_seen('D')) meas_delay_cm=code_value();
  4418. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4419. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4420. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4421. {
  4422. int temp_ratio = widthFil_to_size_ratio();
  4423. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4424. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4425. }
  4426. delay_index1=0;
  4427. delay_index2=0;
  4428. }
  4429. filament_sensor = true ;
  4430. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4431. //SERIAL_PROTOCOL(filament_width_meas);
  4432. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4433. //SERIAL_PROTOCOL(extrudemultiply);
  4434. }
  4435. break;
  4436. case 406: //M406 Turn off filament sensor for control
  4437. {
  4438. filament_sensor = false ;
  4439. }
  4440. break;
  4441. case 407: //M407 Display measured filament diameter
  4442. {
  4443. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4444. SERIAL_PROTOCOLLN(filament_width_meas);
  4445. }
  4446. break;
  4447. #endif
  4448. case 500: // M500 Store settings in EEPROM
  4449. {
  4450. Config_StoreSettings();
  4451. }
  4452. break;
  4453. case 501: // M501 Read settings from EEPROM
  4454. {
  4455. Config_RetrieveSettings();
  4456. }
  4457. break;
  4458. case 502: // M502 Revert to default settings
  4459. {
  4460. Config_ResetDefault();
  4461. }
  4462. break;
  4463. case 503: // M503 print settings currently in memory
  4464. {
  4465. Config_PrintSettings();
  4466. }
  4467. break;
  4468. case 509: //M509 Force language selection
  4469. {
  4470. lcd_force_language_selection();
  4471. SERIAL_ECHO_START;
  4472. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4473. }
  4474. break;
  4475. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4476. case 540:
  4477. {
  4478. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4479. }
  4480. break;
  4481. #endif
  4482. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4483. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4484. {
  4485. float value;
  4486. if (code_seen('Z'))
  4487. {
  4488. value = code_value();
  4489. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4490. {
  4491. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4492. SERIAL_ECHO_START;
  4493. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4494. SERIAL_PROTOCOLLN("");
  4495. }
  4496. else
  4497. {
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4500. SERIAL_ECHORPGM(MSG_Z_MIN);
  4501. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4502. SERIAL_ECHORPGM(MSG_Z_MAX);
  4503. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4504. SERIAL_PROTOCOLLN("");
  4505. }
  4506. }
  4507. else
  4508. {
  4509. SERIAL_ECHO_START;
  4510. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4511. SERIAL_ECHO(-zprobe_zoffset);
  4512. SERIAL_PROTOCOLLN("");
  4513. }
  4514. break;
  4515. }
  4516. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4517. #ifdef FILAMENTCHANGEENABLE
  4518. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4519. {
  4520. st_synchronize();
  4521. float target[4];
  4522. float lastpos[4];
  4523. if (farm_mode)
  4524. {
  4525. prusa_statistics(22);
  4526. }
  4527. feedmultiplyBckp=feedmultiply;
  4528. int8_t TooLowZ = 0;
  4529. target[X_AXIS]=current_position[X_AXIS];
  4530. target[Y_AXIS]=current_position[Y_AXIS];
  4531. target[Z_AXIS]=current_position[Z_AXIS];
  4532. target[E_AXIS]=current_position[E_AXIS];
  4533. lastpos[X_AXIS]=current_position[X_AXIS];
  4534. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4535. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4536. lastpos[E_AXIS]=current_position[E_AXIS];
  4537. //Retract extruder
  4538. if(code_seen('E'))
  4539. {
  4540. target[E_AXIS]+= code_value();
  4541. }
  4542. else
  4543. {
  4544. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4545. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4546. #endif
  4547. }
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4549. //Lift Z
  4550. if(code_seen('Z'))
  4551. {
  4552. target[Z_AXIS]+= code_value();
  4553. }
  4554. else
  4555. {
  4556. #ifdef FILAMENTCHANGE_ZADD
  4557. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4558. if(target[Z_AXIS] < 10){
  4559. target[Z_AXIS]+= 10 ;
  4560. TooLowZ = 1;
  4561. }else{
  4562. TooLowZ = 0;
  4563. }
  4564. #endif
  4565. }
  4566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4567. //Move XY to side
  4568. if(code_seen('X'))
  4569. {
  4570. target[X_AXIS]+= code_value();
  4571. }
  4572. else
  4573. {
  4574. #ifdef FILAMENTCHANGE_XPOS
  4575. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4576. #endif
  4577. }
  4578. if(code_seen('Y'))
  4579. {
  4580. target[Y_AXIS]= code_value();
  4581. }
  4582. else
  4583. {
  4584. #ifdef FILAMENTCHANGE_YPOS
  4585. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4586. #endif
  4587. }
  4588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4589. st_synchronize();
  4590. custom_message = true;
  4591. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4592. // Unload filament
  4593. if(code_seen('L'))
  4594. {
  4595. target[E_AXIS]+= code_value();
  4596. }
  4597. else
  4598. {
  4599. #ifdef SNMM
  4600. #else
  4601. #ifdef FILAMENTCHANGE_FINALRETRACT
  4602. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4603. #endif
  4604. #endif // SNMM
  4605. }
  4606. #ifdef SNMM
  4607. target[E_AXIS] += 12;
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4609. target[E_AXIS] += 6;
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4611. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4613. st_synchronize();
  4614. target[E_AXIS] += (FIL_COOLING);
  4615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4616. target[E_AXIS] += (FIL_COOLING*-1);
  4617. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4618. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4620. st_synchronize();
  4621. #else
  4622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4623. #endif // SNMM
  4624. //finish moves
  4625. st_synchronize();
  4626. //disable extruder steppers so filament can be removed
  4627. disable_e0();
  4628. disable_e1();
  4629. disable_e2();
  4630. delay(100);
  4631. //Wait for user to insert filament
  4632. uint8_t cnt=0;
  4633. int counterBeep = 0;
  4634. lcd_wait_interact();
  4635. load_filament_time = millis();
  4636. while(!lcd_clicked()){
  4637. cnt++;
  4638. manage_heater();
  4639. manage_inactivity(true);
  4640. /*#ifdef SNMM
  4641. target[E_AXIS] += 0.002;
  4642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4643. #endif // SNMM*/
  4644. if(cnt==0)
  4645. {
  4646. #if BEEPER > 0
  4647. if (counterBeep== 500){
  4648. counterBeep = 0;
  4649. }
  4650. SET_OUTPUT(BEEPER);
  4651. if (counterBeep== 0){
  4652. WRITE(BEEPER,HIGH);
  4653. }
  4654. if (counterBeep== 20){
  4655. WRITE(BEEPER,LOW);
  4656. }
  4657. counterBeep++;
  4658. #else
  4659. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4660. lcd_buzz(1000/6,100);
  4661. #else
  4662. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4663. #endif
  4664. #endif
  4665. }
  4666. }
  4667. WRITE(BEEPER, LOW);
  4668. #ifdef SNMM
  4669. display_loading();
  4670. do {
  4671. target[E_AXIS] += 0.002;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4673. delay_keep_alive(2);
  4674. } while (!lcd_clicked());
  4675. /*if (millis() - load_filament_time > 2) {
  4676. load_filament_time = millis();
  4677. target[E_AXIS] += 0.001;
  4678. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4679. }*/
  4680. #endif
  4681. //Filament inserted
  4682. //Feed the filament to the end of nozzle quickly
  4683. #ifdef SNMM
  4684. st_synchronize();
  4685. target[E_AXIS] += bowden_length[snmm_extruder];
  4686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4687. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4689. target[E_AXIS] += 40;
  4690. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4691. target[E_AXIS] += 10;
  4692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4693. #else
  4694. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4696. #endif // SNMM
  4697. //Extrude some filament
  4698. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4700. //Wait for user to check the state
  4701. lcd_change_fil_state = 0;
  4702. lcd_loading_filament();
  4703. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4704. lcd_change_fil_state = 0;
  4705. lcd_alright();
  4706. switch(lcd_change_fil_state){
  4707. // Filament failed to load so load it again
  4708. case 2:
  4709. #ifdef SNMM
  4710. display_loading();
  4711. do {
  4712. target[E_AXIS] += 0.002;
  4713. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4714. delay_keep_alive(2);
  4715. } while (!lcd_clicked());
  4716. st_synchronize();
  4717. target[E_AXIS] += bowden_length[snmm_extruder];
  4718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4719. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4720. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4721. target[E_AXIS] += 40;
  4722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4723. target[E_AXIS] += 10;
  4724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4725. #else
  4726. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4728. #endif
  4729. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4730. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4731. lcd_loading_filament();
  4732. break;
  4733. // Filament loaded properly but color is not clear
  4734. case 3:
  4735. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4737. lcd_loading_color();
  4738. break;
  4739. // Everything good
  4740. default:
  4741. lcd_change_success();
  4742. lcd_update_enable(true);
  4743. break;
  4744. }
  4745. }
  4746. //Not let's go back to print
  4747. //Feed a little of filament to stabilize pressure
  4748. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4749. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4750. //Retract
  4751. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4753. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4754. //Move XY back
  4755. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4756. //Move Z back
  4757. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4758. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4759. //Unretract
  4760. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4761. //Set E position to original
  4762. plan_set_e_position(lastpos[E_AXIS]);
  4763. //Recover feed rate
  4764. feedmultiply=feedmultiplyBckp;
  4765. char cmd[9];
  4766. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4767. enquecommand(cmd);
  4768. lcd_setstatuspgm(WELCOME_MSG);
  4769. custom_message = false;
  4770. custom_message_type = 0;
  4771. }
  4772. break;
  4773. #endif //FILAMENTCHANGEENABLE
  4774. case 601: {
  4775. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4776. }
  4777. break;
  4778. case 602: {
  4779. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4780. }
  4781. break;
  4782. #ifdef LIN_ADVANCE
  4783. case 900: // M900: Set LIN_ADVANCE options.
  4784. gcode_M900();
  4785. break;
  4786. #endif
  4787. case 907: // M907 Set digital trimpot motor current using axis codes.
  4788. {
  4789. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4790. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4791. if(code_seen('B')) digipot_current(4,code_value());
  4792. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4793. #endif
  4794. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4795. if(code_seen('X')) digipot_current(0, code_value());
  4796. #endif
  4797. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4798. if(code_seen('Z')) digipot_current(1, code_value());
  4799. #endif
  4800. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4801. if(code_seen('E')) digipot_current(2, code_value());
  4802. #endif
  4803. #ifdef DIGIPOT_I2C
  4804. // this one uses actual amps in floating point
  4805. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4806. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4807. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4808. #endif
  4809. }
  4810. break;
  4811. case 908: // M908 Control digital trimpot directly.
  4812. {
  4813. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4814. uint8_t channel,current;
  4815. if(code_seen('P')) channel=code_value();
  4816. if(code_seen('S')) current=code_value();
  4817. digitalPotWrite(channel, current);
  4818. #endif
  4819. }
  4820. break;
  4821. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4822. {
  4823. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4824. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4825. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4826. if(code_seen('B')) microstep_mode(4,code_value());
  4827. microstep_readings();
  4828. #endif
  4829. }
  4830. break;
  4831. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4832. {
  4833. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4834. if(code_seen('S')) switch((int)code_value())
  4835. {
  4836. case 1:
  4837. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4838. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4839. break;
  4840. case 2:
  4841. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4842. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4843. break;
  4844. }
  4845. microstep_readings();
  4846. #endif
  4847. }
  4848. break;
  4849. case 701: //M701: load filament
  4850. {
  4851. enable_z();
  4852. custom_message = true;
  4853. custom_message_type = 2;
  4854. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4855. current_position[E_AXIS] += 70;
  4856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4857. current_position[E_AXIS] += 25;
  4858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4859. st_synchronize();
  4860. if (!farm_mode && loading_flag) {
  4861. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4862. while (!clean) {
  4863. lcd_update_enable(true);
  4864. lcd_update(2);
  4865. current_position[E_AXIS] += 25;
  4866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4867. st_synchronize();
  4868. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4869. }
  4870. }
  4871. lcd_update_enable(true);
  4872. lcd_update(2);
  4873. lcd_setstatuspgm(WELCOME_MSG);
  4874. disable_z();
  4875. loading_flag = false;
  4876. custom_message = false;
  4877. custom_message_type = 0;
  4878. }
  4879. break;
  4880. case 702:
  4881. {
  4882. #ifdef SNMM
  4883. if (code_seen('U')) {
  4884. extr_unload_used(); //unload all filaments which were used in current print
  4885. }
  4886. else if (code_seen('C')) {
  4887. extr_unload(); //unload just current filament
  4888. }
  4889. else {
  4890. extr_unload_all(); //unload all filaments
  4891. }
  4892. #else
  4893. custom_message = true;
  4894. custom_message_type = 2;
  4895. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4896. current_position[E_AXIS] -= 80;
  4897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4898. st_synchronize();
  4899. lcd_setstatuspgm(WELCOME_MSG);
  4900. custom_message = false;
  4901. custom_message_type = 0;
  4902. #endif
  4903. }
  4904. break;
  4905. case 999: // M999: Restart after being stopped
  4906. Stopped = false;
  4907. lcd_reset_alert_level();
  4908. gcode_LastN = Stopped_gcode_LastN;
  4909. FlushSerialRequestResend();
  4910. break;
  4911. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4912. }
  4913. } // end if(code_seen('M')) (end of M codes)
  4914. else if(code_seen('T'))
  4915. {
  4916. int index;
  4917. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4918. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4919. SERIAL_ECHOLNPGM("Invalid T code.");
  4920. }
  4921. else {
  4922. if (*(strchr_pointer + index) == '?') {
  4923. tmp_extruder = choose_extruder_menu();
  4924. }
  4925. else {
  4926. tmp_extruder = code_value();
  4927. }
  4928. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4929. #ifdef SNMM
  4930. #ifdef LIN_ADVANCE
  4931. if (snmm_extruder != tmp_extruder)
  4932. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4933. #endif
  4934. snmm_extruder = tmp_extruder;
  4935. st_synchronize();
  4936. delay(100);
  4937. disable_e0();
  4938. disable_e1();
  4939. disable_e2();
  4940. pinMode(E_MUX0_PIN, OUTPUT);
  4941. pinMode(E_MUX1_PIN, OUTPUT);
  4942. delay(100);
  4943. SERIAL_ECHO_START;
  4944. SERIAL_ECHO("T:");
  4945. SERIAL_ECHOLN((int)tmp_extruder);
  4946. switch (tmp_extruder) {
  4947. case 1:
  4948. WRITE(E_MUX0_PIN, HIGH);
  4949. WRITE(E_MUX1_PIN, LOW);
  4950. break;
  4951. case 2:
  4952. WRITE(E_MUX0_PIN, LOW);
  4953. WRITE(E_MUX1_PIN, HIGH);
  4954. break;
  4955. case 3:
  4956. WRITE(E_MUX0_PIN, HIGH);
  4957. WRITE(E_MUX1_PIN, HIGH);
  4958. break;
  4959. default:
  4960. WRITE(E_MUX0_PIN, LOW);
  4961. WRITE(E_MUX1_PIN, LOW);
  4962. break;
  4963. }
  4964. delay(100);
  4965. #else
  4966. if (tmp_extruder >= EXTRUDERS) {
  4967. SERIAL_ECHO_START;
  4968. SERIAL_ECHOPGM("T");
  4969. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4970. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4971. }
  4972. else {
  4973. boolean make_move = false;
  4974. if (code_seen('F')) {
  4975. make_move = true;
  4976. next_feedrate = code_value();
  4977. if (next_feedrate > 0.0) {
  4978. feedrate = next_feedrate;
  4979. }
  4980. }
  4981. #if EXTRUDERS > 1
  4982. if (tmp_extruder != active_extruder) {
  4983. // Save current position to return to after applying extruder offset
  4984. memcpy(destination, current_position, sizeof(destination));
  4985. // Offset extruder (only by XY)
  4986. int i;
  4987. for (i = 0; i < 2; i++) {
  4988. current_position[i] = current_position[i] -
  4989. extruder_offset[i][active_extruder] +
  4990. extruder_offset[i][tmp_extruder];
  4991. }
  4992. // Set the new active extruder and position
  4993. active_extruder = tmp_extruder;
  4994. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4995. // Move to the old position if 'F' was in the parameters
  4996. if (make_move && Stopped == false) {
  4997. prepare_move();
  4998. }
  4999. }
  5000. #endif
  5001. SERIAL_ECHO_START;
  5002. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5003. SERIAL_PROTOCOLLN((int)active_extruder);
  5004. }
  5005. #endif
  5006. }
  5007. } // end if(code_seen('T')) (end of T codes)
  5008. #ifdef DEBUG_DCODES
  5009. else if (code_seen('D')) // D codes (debug)
  5010. {
  5011. switch((int)code_value_uint8())
  5012. {
  5013. case 0: // D0 - Reset
  5014. if (*(strchr_pointer + 1) == 0) break;
  5015. MYSERIAL.println("D0 - Reset");
  5016. asm volatile("jmp 0x00000");
  5017. break;
  5018. case 1: // D1 - Clear EEPROM
  5019. {
  5020. MYSERIAL.println("D1 - Clear EEPROM");
  5021. cli();
  5022. for (int i = 0; i < 4096; i++)
  5023. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5024. sei();
  5025. }
  5026. break;
  5027. case 2: // D2 - Read/Write PIN
  5028. {
  5029. if (code_seen('P')) // Pin (0-255)
  5030. {
  5031. int pin = (int)code_value();
  5032. if ((pin >= 0) && (pin <= 255))
  5033. {
  5034. if (code_seen('F')) // Function in/out (0/1)
  5035. {
  5036. int fnc = (int)code_value();
  5037. if (fnc == 0) pinMode(pin, INPUT);
  5038. else if (fnc == 1) pinMode(pin, OUTPUT);
  5039. }
  5040. if (code_seen('V')) // Value (0/1)
  5041. {
  5042. int val = (int)code_value();
  5043. if (val == 0) digitalWrite(pin, LOW);
  5044. else if (val == 1) digitalWrite(pin, HIGH);
  5045. }
  5046. else
  5047. {
  5048. int val = (digitalRead(pin) != LOW)?1:0;
  5049. MYSERIAL.print("PIN");
  5050. MYSERIAL.print(pin);
  5051. MYSERIAL.print("=");
  5052. MYSERIAL.println(val);
  5053. }
  5054. }
  5055. }
  5056. }
  5057. break;
  5058. }
  5059. }
  5060. #endif //DEBUG_DCODES
  5061. else
  5062. {
  5063. SERIAL_ECHO_START;
  5064. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5065. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5066. SERIAL_ECHOLNPGM("\"");
  5067. }
  5068. ClearToSend();
  5069. }
  5070. void FlushSerialRequestResend()
  5071. {
  5072. //char cmdbuffer[bufindr][100]="Resend:";
  5073. MYSERIAL.flush();
  5074. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5075. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5076. ClearToSend();
  5077. }
  5078. // Confirm the execution of a command, if sent from a serial line.
  5079. // Execution of a command from a SD card will not be confirmed.
  5080. void ClearToSend()
  5081. {
  5082. previous_millis_cmd = millis();
  5083. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5084. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5085. }
  5086. void get_coordinates()
  5087. {
  5088. bool seen[4]={false,false,false,false};
  5089. for(int8_t i=0; i < NUM_AXIS; i++) {
  5090. if(code_seen(axis_codes[i]))
  5091. {
  5092. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5093. seen[i]=true;
  5094. }
  5095. else destination[i] = current_position[i]; //Are these else lines really needed?
  5096. }
  5097. if(code_seen('F')) {
  5098. next_feedrate = code_value();
  5099. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5100. }
  5101. }
  5102. void get_arc_coordinates()
  5103. {
  5104. #ifdef SF_ARC_FIX
  5105. bool relative_mode_backup = relative_mode;
  5106. relative_mode = true;
  5107. #endif
  5108. get_coordinates();
  5109. #ifdef SF_ARC_FIX
  5110. relative_mode=relative_mode_backup;
  5111. #endif
  5112. if(code_seen('I')) {
  5113. offset[0] = code_value();
  5114. }
  5115. else {
  5116. offset[0] = 0.0;
  5117. }
  5118. if(code_seen('J')) {
  5119. offset[1] = code_value();
  5120. }
  5121. else {
  5122. offset[1] = 0.0;
  5123. }
  5124. }
  5125. void clamp_to_software_endstops(float target[3])
  5126. {
  5127. #ifdef DEBUG_DISABLE_SWLIMITS
  5128. return;
  5129. #endif //DEBUG_DISABLE_SWLIMITS
  5130. world2machine_clamp(target[0], target[1]);
  5131. // Clamp the Z coordinate.
  5132. if (min_software_endstops) {
  5133. float negative_z_offset = 0;
  5134. #ifdef ENABLE_AUTO_BED_LEVELING
  5135. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5136. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5137. #endif
  5138. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5139. }
  5140. if (max_software_endstops) {
  5141. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5142. }
  5143. }
  5144. #ifdef MESH_BED_LEVELING
  5145. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5146. float dx = x - current_position[X_AXIS];
  5147. float dy = y - current_position[Y_AXIS];
  5148. float dz = z - current_position[Z_AXIS];
  5149. int n_segments = 0;
  5150. if (mbl.active) {
  5151. float len = abs(dx) + abs(dy);
  5152. if (len > 0)
  5153. // Split to 3cm segments or shorter.
  5154. n_segments = int(ceil(len / 30.f));
  5155. }
  5156. if (n_segments > 1) {
  5157. float de = e - current_position[E_AXIS];
  5158. for (int i = 1; i < n_segments; ++ i) {
  5159. float t = float(i) / float(n_segments);
  5160. plan_buffer_line(
  5161. current_position[X_AXIS] + t * dx,
  5162. current_position[Y_AXIS] + t * dy,
  5163. current_position[Z_AXIS] + t * dz,
  5164. current_position[E_AXIS] + t * de,
  5165. feed_rate, extruder);
  5166. }
  5167. }
  5168. // The rest of the path.
  5169. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5170. current_position[X_AXIS] = x;
  5171. current_position[Y_AXIS] = y;
  5172. current_position[Z_AXIS] = z;
  5173. current_position[E_AXIS] = e;
  5174. }
  5175. #endif // MESH_BED_LEVELING
  5176. void prepare_move()
  5177. {
  5178. clamp_to_software_endstops(destination);
  5179. previous_millis_cmd = millis();
  5180. // Do not use feedmultiply for E or Z only moves
  5181. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5183. }
  5184. else {
  5185. #ifdef MESH_BED_LEVELING
  5186. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5187. #else
  5188. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5189. #endif
  5190. }
  5191. for(int8_t i=0; i < NUM_AXIS; i++) {
  5192. current_position[i] = destination[i];
  5193. }
  5194. }
  5195. void prepare_arc_move(char isclockwise) {
  5196. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5197. // Trace the arc
  5198. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5199. // As far as the parser is concerned, the position is now == target. In reality the
  5200. // motion control system might still be processing the action and the real tool position
  5201. // in any intermediate location.
  5202. for(int8_t i=0; i < NUM_AXIS; i++) {
  5203. current_position[i] = destination[i];
  5204. }
  5205. previous_millis_cmd = millis();
  5206. }
  5207. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5208. #if defined(FAN_PIN)
  5209. #if CONTROLLERFAN_PIN == FAN_PIN
  5210. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5211. #endif
  5212. #endif
  5213. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5214. unsigned long lastMotorCheck = 0;
  5215. void controllerFan()
  5216. {
  5217. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5218. {
  5219. lastMotorCheck = millis();
  5220. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5221. #if EXTRUDERS > 2
  5222. || !READ(E2_ENABLE_PIN)
  5223. #endif
  5224. #if EXTRUDER > 1
  5225. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5226. || !READ(X2_ENABLE_PIN)
  5227. #endif
  5228. || !READ(E1_ENABLE_PIN)
  5229. #endif
  5230. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5231. {
  5232. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5233. }
  5234. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5235. {
  5236. digitalWrite(CONTROLLERFAN_PIN, 0);
  5237. analogWrite(CONTROLLERFAN_PIN, 0);
  5238. }
  5239. else
  5240. {
  5241. // allows digital or PWM fan output to be used (see M42 handling)
  5242. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5243. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5244. }
  5245. }
  5246. }
  5247. #endif
  5248. #ifdef TEMP_STAT_LEDS
  5249. static bool blue_led = false;
  5250. static bool red_led = false;
  5251. static uint32_t stat_update = 0;
  5252. void handle_status_leds(void) {
  5253. float max_temp = 0.0;
  5254. if(millis() > stat_update) {
  5255. stat_update += 500; // Update every 0.5s
  5256. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5257. max_temp = max(max_temp, degHotend(cur_extruder));
  5258. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5259. }
  5260. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5261. max_temp = max(max_temp, degTargetBed());
  5262. max_temp = max(max_temp, degBed());
  5263. #endif
  5264. if((max_temp > 55.0) && (red_led == false)) {
  5265. digitalWrite(STAT_LED_RED, 1);
  5266. digitalWrite(STAT_LED_BLUE, 0);
  5267. red_led = true;
  5268. blue_led = false;
  5269. }
  5270. if((max_temp < 54.0) && (blue_led == false)) {
  5271. digitalWrite(STAT_LED_RED, 0);
  5272. digitalWrite(STAT_LED_BLUE, 1);
  5273. red_led = false;
  5274. blue_led = true;
  5275. }
  5276. }
  5277. }
  5278. #endif
  5279. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5280. {
  5281. #if defined(KILL_PIN) && KILL_PIN > -1
  5282. static int killCount = 0; // make the inactivity button a bit less responsive
  5283. const int KILL_DELAY = 10000;
  5284. #endif
  5285. if(buflen < (BUFSIZE-1)){
  5286. get_command();
  5287. }
  5288. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5289. if(max_inactive_time)
  5290. kill();
  5291. if(stepper_inactive_time) {
  5292. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5293. {
  5294. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5295. disable_x();
  5296. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5297. disable_y();
  5298. disable_z();
  5299. disable_e0();
  5300. disable_e1();
  5301. disable_e2();
  5302. }
  5303. }
  5304. }
  5305. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5306. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5307. {
  5308. chdkActive = false;
  5309. WRITE(CHDK, LOW);
  5310. }
  5311. #endif
  5312. #if defined(KILL_PIN) && KILL_PIN > -1
  5313. // Check if the kill button was pressed and wait just in case it was an accidental
  5314. // key kill key press
  5315. // -------------------------------------------------------------------------------
  5316. if( 0 == READ(KILL_PIN) )
  5317. {
  5318. killCount++;
  5319. }
  5320. else if (killCount > 0)
  5321. {
  5322. killCount--;
  5323. }
  5324. // Exceeded threshold and we can confirm that it was not accidental
  5325. // KILL the machine
  5326. // ----------------------------------------------------------------
  5327. if ( killCount >= KILL_DELAY)
  5328. {
  5329. kill();
  5330. }
  5331. #endif
  5332. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5333. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5334. #endif
  5335. #ifdef EXTRUDER_RUNOUT_PREVENT
  5336. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5337. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5338. {
  5339. bool oldstatus=READ(E0_ENABLE_PIN);
  5340. enable_e0();
  5341. float oldepos=current_position[E_AXIS];
  5342. float oldedes=destination[E_AXIS];
  5343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5344. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5345. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5346. current_position[E_AXIS]=oldepos;
  5347. destination[E_AXIS]=oldedes;
  5348. plan_set_e_position(oldepos);
  5349. previous_millis_cmd=millis();
  5350. st_synchronize();
  5351. WRITE(E0_ENABLE_PIN,oldstatus);
  5352. }
  5353. #endif
  5354. #ifdef TEMP_STAT_LEDS
  5355. handle_status_leds();
  5356. #endif
  5357. check_axes_activity();
  5358. }
  5359. void kill(const char *full_screen_message)
  5360. {
  5361. cli(); // Stop interrupts
  5362. disable_heater();
  5363. disable_x();
  5364. // SERIAL_ECHOLNPGM("kill - disable Y");
  5365. disable_y();
  5366. disable_z();
  5367. disable_e0();
  5368. disable_e1();
  5369. disable_e2();
  5370. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5371. pinMode(PS_ON_PIN,INPUT);
  5372. #endif
  5373. SERIAL_ERROR_START;
  5374. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5375. if (full_screen_message != NULL) {
  5376. SERIAL_ERRORLNRPGM(full_screen_message);
  5377. lcd_display_message_fullscreen_P(full_screen_message);
  5378. } else {
  5379. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5380. }
  5381. // FMC small patch to update the LCD before ending
  5382. sei(); // enable interrupts
  5383. for ( int i=5; i--; lcd_update())
  5384. {
  5385. delay(200);
  5386. }
  5387. cli(); // disable interrupts
  5388. suicide();
  5389. while(1) { /* Intentionally left empty */ } // Wait for reset
  5390. }
  5391. void Stop()
  5392. {
  5393. disable_heater();
  5394. if(Stopped == false) {
  5395. Stopped = true;
  5396. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5397. SERIAL_ERROR_START;
  5398. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5399. LCD_MESSAGERPGM(MSG_STOPPED);
  5400. }
  5401. }
  5402. bool IsStopped() { return Stopped; };
  5403. #ifdef FAST_PWM_FAN
  5404. void setPwmFrequency(uint8_t pin, int val)
  5405. {
  5406. val &= 0x07;
  5407. switch(digitalPinToTimer(pin))
  5408. {
  5409. #if defined(TCCR0A)
  5410. case TIMER0A:
  5411. case TIMER0B:
  5412. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5413. // TCCR0B |= val;
  5414. break;
  5415. #endif
  5416. #if defined(TCCR1A)
  5417. case TIMER1A:
  5418. case TIMER1B:
  5419. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5420. // TCCR1B |= val;
  5421. break;
  5422. #endif
  5423. #if defined(TCCR2)
  5424. case TIMER2:
  5425. case TIMER2:
  5426. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5427. TCCR2 |= val;
  5428. break;
  5429. #endif
  5430. #if defined(TCCR2A)
  5431. case TIMER2A:
  5432. case TIMER2B:
  5433. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5434. TCCR2B |= val;
  5435. break;
  5436. #endif
  5437. #if defined(TCCR3A)
  5438. case TIMER3A:
  5439. case TIMER3B:
  5440. case TIMER3C:
  5441. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5442. TCCR3B |= val;
  5443. break;
  5444. #endif
  5445. #if defined(TCCR4A)
  5446. case TIMER4A:
  5447. case TIMER4B:
  5448. case TIMER4C:
  5449. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5450. TCCR4B |= val;
  5451. break;
  5452. #endif
  5453. #if defined(TCCR5A)
  5454. case TIMER5A:
  5455. case TIMER5B:
  5456. case TIMER5C:
  5457. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5458. TCCR5B |= val;
  5459. break;
  5460. #endif
  5461. }
  5462. }
  5463. #endif //FAST_PWM_FAN
  5464. bool setTargetedHotend(int code){
  5465. tmp_extruder = active_extruder;
  5466. if(code_seen('T')) {
  5467. tmp_extruder = code_value();
  5468. if(tmp_extruder >= EXTRUDERS) {
  5469. SERIAL_ECHO_START;
  5470. switch(code){
  5471. case 104:
  5472. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5473. break;
  5474. case 105:
  5475. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5476. break;
  5477. case 109:
  5478. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5479. break;
  5480. case 218:
  5481. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5482. break;
  5483. case 221:
  5484. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5485. break;
  5486. }
  5487. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5488. return true;
  5489. }
  5490. }
  5491. return false;
  5492. }
  5493. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5494. {
  5495. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5496. {
  5497. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5498. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5499. }
  5500. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5501. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5502. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5503. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5504. total_filament_used = 0;
  5505. }
  5506. float calculate_volumetric_multiplier(float diameter) {
  5507. float area = .0;
  5508. float radius = .0;
  5509. radius = diameter * .5;
  5510. if (! volumetric_enabled || radius == 0) {
  5511. area = 1;
  5512. }
  5513. else {
  5514. area = M_PI * pow(radius, 2);
  5515. }
  5516. return 1.0 / area;
  5517. }
  5518. void calculate_volumetric_multipliers() {
  5519. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5520. #if EXTRUDERS > 1
  5521. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5522. #if EXTRUDERS > 2
  5523. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5524. #endif
  5525. #endif
  5526. }
  5527. void delay_keep_alive(unsigned int ms)
  5528. {
  5529. for (;;) {
  5530. manage_heater();
  5531. // Manage inactivity, but don't disable steppers on timeout.
  5532. manage_inactivity(true);
  5533. lcd_update();
  5534. if (ms == 0)
  5535. break;
  5536. else if (ms >= 50) {
  5537. delay(50);
  5538. ms -= 50;
  5539. } else {
  5540. delay(ms);
  5541. ms = 0;
  5542. }
  5543. }
  5544. }
  5545. void wait_for_heater(long codenum) {
  5546. #ifdef TEMP_RESIDENCY_TIME
  5547. long residencyStart;
  5548. residencyStart = -1;
  5549. /* continue to loop until we have reached the target temp
  5550. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5551. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5552. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5553. #else
  5554. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5555. #endif //TEMP_RESIDENCY_TIME
  5556. if ((millis() - codenum) > 1000UL)
  5557. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5558. if (!farm_mode) {
  5559. SERIAL_PROTOCOLPGM("T:");
  5560. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5561. SERIAL_PROTOCOLPGM(" E:");
  5562. SERIAL_PROTOCOL((int)tmp_extruder);
  5563. #ifdef TEMP_RESIDENCY_TIME
  5564. SERIAL_PROTOCOLPGM(" W:");
  5565. if (residencyStart > -1)
  5566. {
  5567. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5568. SERIAL_PROTOCOLLN(codenum);
  5569. }
  5570. else
  5571. {
  5572. SERIAL_PROTOCOLLN("?");
  5573. }
  5574. }
  5575. #else
  5576. SERIAL_PROTOCOLLN("");
  5577. #endif
  5578. codenum = millis();
  5579. }
  5580. manage_heater();
  5581. manage_inactivity();
  5582. lcd_update();
  5583. #ifdef TEMP_RESIDENCY_TIME
  5584. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5585. or when current temp falls outside the hysteresis after target temp was reached */
  5586. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5587. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5588. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5589. {
  5590. residencyStart = millis();
  5591. }
  5592. #endif //TEMP_RESIDENCY_TIME
  5593. }
  5594. }
  5595. void check_babystep() {
  5596. int babystep_z;
  5597. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5598. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5599. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5600. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5601. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5602. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5603. lcd_update_enable(true);
  5604. }
  5605. }
  5606. #ifdef DIS
  5607. void d_setup()
  5608. {
  5609. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5610. pinMode(D_DATA, INPUT_PULLUP);
  5611. pinMode(D_REQUIRE, OUTPUT);
  5612. digitalWrite(D_REQUIRE, HIGH);
  5613. }
  5614. float d_ReadData()
  5615. {
  5616. int digit[13];
  5617. String mergeOutput;
  5618. float output;
  5619. digitalWrite(D_REQUIRE, HIGH);
  5620. for (int i = 0; i<13; i++)
  5621. {
  5622. for (int j = 0; j < 4; j++)
  5623. {
  5624. while (digitalRead(D_DATACLOCK) == LOW) {}
  5625. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5626. bitWrite(digit[i], j, digitalRead(D_DATA));
  5627. }
  5628. }
  5629. digitalWrite(D_REQUIRE, LOW);
  5630. mergeOutput = "";
  5631. output = 0;
  5632. for (int r = 5; r <= 10; r++) //Merge digits
  5633. {
  5634. mergeOutput += digit[r];
  5635. }
  5636. output = mergeOutput.toFloat();
  5637. if (digit[4] == 8) //Handle sign
  5638. {
  5639. output *= -1;
  5640. }
  5641. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5642. {
  5643. output /= 10;
  5644. }
  5645. return output;
  5646. }
  5647. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5648. int t1 = 0;
  5649. int t_delay = 0;
  5650. int digit[13];
  5651. int m;
  5652. char str[3];
  5653. //String mergeOutput;
  5654. char mergeOutput[15];
  5655. float output;
  5656. int mesh_point = 0; //index number of calibration point
  5657. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5658. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5659. float mesh_home_z_search = 4;
  5660. float row[x_points_num];
  5661. int ix = 0;
  5662. int iy = 0;
  5663. char* filename_wldsd = "wldsd.txt";
  5664. char data_wldsd[70];
  5665. char numb_wldsd[10];
  5666. d_setup();
  5667. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5668. // We don't know where we are! HOME!
  5669. // Push the commands to the front of the message queue in the reverse order!
  5670. // There shall be always enough space reserved for these commands.
  5671. repeatcommand_front(); // repeat G80 with all its parameters
  5672. enquecommand_front_P((PSTR("G28 W0")));
  5673. enquecommand_front_P((PSTR("G1 Z5")));
  5674. return;
  5675. }
  5676. bool custom_message_old = custom_message;
  5677. unsigned int custom_message_type_old = custom_message_type;
  5678. unsigned int custom_message_state_old = custom_message_state;
  5679. custom_message = true;
  5680. custom_message_type = 1;
  5681. custom_message_state = (x_points_num * y_points_num) + 10;
  5682. lcd_update(1);
  5683. mbl.reset();
  5684. babystep_undo();
  5685. card.openFile(filename_wldsd, false);
  5686. current_position[Z_AXIS] = mesh_home_z_search;
  5687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5688. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5689. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5690. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5691. setup_for_endstop_move(false);
  5692. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5693. SERIAL_PROTOCOL(x_points_num);
  5694. SERIAL_PROTOCOLPGM(",");
  5695. SERIAL_PROTOCOL(y_points_num);
  5696. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5697. SERIAL_PROTOCOL(mesh_home_z_search);
  5698. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5699. SERIAL_PROTOCOL(x_dimension);
  5700. SERIAL_PROTOCOLPGM(",");
  5701. SERIAL_PROTOCOL(y_dimension);
  5702. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5703. while (mesh_point != x_points_num * y_points_num) {
  5704. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5705. iy = mesh_point / x_points_num;
  5706. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5707. float z0 = 0.f;
  5708. current_position[Z_AXIS] = mesh_home_z_search;
  5709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5710. st_synchronize();
  5711. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5712. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5714. st_synchronize();
  5715. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5716. break;
  5717. card.closefile();
  5718. }
  5719. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5720. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5721. //strcat(data_wldsd, numb_wldsd);
  5722. //MYSERIAL.println(data_wldsd);
  5723. //delay(1000);
  5724. //delay(3000);
  5725. //t1 = millis();
  5726. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5727. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5728. memset(digit, 0, sizeof(digit));
  5729. //cli();
  5730. digitalWrite(D_REQUIRE, LOW);
  5731. for (int i = 0; i<13; i++)
  5732. {
  5733. //t1 = millis();
  5734. for (int j = 0; j < 4; j++)
  5735. {
  5736. while (digitalRead(D_DATACLOCK) == LOW) {}
  5737. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5738. bitWrite(digit[i], j, digitalRead(D_DATA));
  5739. }
  5740. //t_delay = (millis() - t1);
  5741. //SERIAL_PROTOCOLPGM(" ");
  5742. //SERIAL_PROTOCOL_F(t_delay, 5);
  5743. //SERIAL_PROTOCOLPGM(" ");
  5744. }
  5745. //sei();
  5746. digitalWrite(D_REQUIRE, HIGH);
  5747. mergeOutput[0] = '\0';
  5748. output = 0;
  5749. for (int r = 5; r <= 10; r++) //Merge digits
  5750. {
  5751. sprintf(str, "%d", digit[r]);
  5752. strcat(mergeOutput, str);
  5753. }
  5754. output = atof(mergeOutput);
  5755. if (digit[4] == 8) //Handle sign
  5756. {
  5757. output *= -1;
  5758. }
  5759. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5760. {
  5761. output *= 0.1;
  5762. }
  5763. //output = d_ReadData();
  5764. //row[ix] = current_position[Z_AXIS];
  5765. memset(data_wldsd, 0, sizeof(data_wldsd));
  5766. for (int i = 0; i <3; i++) {
  5767. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5768. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5769. strcat(data_wldsd, numb_wldsd);
  5770. strcat(data_wldsd, ";");
  5771. }
  5772. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5773. dtostrf(output, 8, 5, numb_wldsd);
  5774. strcat(data_wldsd, numb_wldsd);
  5775. //strcat(data_wldsd, ";");
  5776. card.write_command(data_wldsd);
  5777. //row[ix] = d_ReadData();
  5778. row[ix] = output; // current_position[Z_AXIS];
  5779. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5780. for (int i = 0; i < x_points_num; i++) {
  5781. SERIAL_PROTOCOLPGM(" ");
  5782. SERIAL_PROTOCOL_F(row[i], 5);
  5783. }
  5784. SERIAL_PROTOCOLPGM("\n");
  5785. }
  5786. custom_message_state--;
  5787. mesh_point++;
  5788. lcd_update(1);
  5789. }
  5790. card.closefile();
  5791. }
  5792. #endif
  5793. void temp_compensation_start() {
  5794. custom_message = true;
  5795. custom_message_type = 5;
  5796. custom_message_state = PINDA_HEAT_T + 1;
  5797. lcd_update(2);
  5798. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5799. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5800. }
  5801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5802. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5803. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5804. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5806. st_synchronize();
  5807. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5808. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5809. delay_keep_alive(1000);
  5810. custom_message_state = PINDA_HEAT_T - i;
  5811. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5812. else lcd_update(1);
  5813. }
  5814. custom_message_type = 0;
  5815. custom_message_state = 0;
  5816. custom_message = false;
  5817. }
  5818. void temp_compensation_apply() {
  5819. int i_add;
  5820. int compensation_value;
  5821. int z_shift = 0;
  5822. float z_shift_mm;
  5823. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5824. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5825. i_add = (target_temperature_bed - 60) / 10;
  5826. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5827. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5828. }else {
  5829. //interpolation
  5830. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5831. }
  5832. SERIAL_PROTOCOLPGM("\n");
  5833. SERIAL_PROTOCOLPGM("Z shift applied:");
  5834. MYSERIAL.print(z_shift_mm);
  5835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5836. st_synchronize();
  5837. plan_set_z_position(current_position[Z_AXIS]);
  5838. }
  5839. else {
  5840. //we have no temp compensation data
  5841. }
  5842. }
  5843. float temp_comp_interpolation(float inp_temperature) {
  5844. //cubic spline interpolation
  5845. int n, i, j, k;
  5846. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5847. int shift[10];
  5848. int temp_C[10];
  5849. n = 6; //number of measured points
  5850. shift[0] = 0;
  5851. for (i = 0; i < n; i++) {
  5852. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5853. temp_C[i] = 50 + i * 10; //temperature in C
  5854. x[i] = (float)temp_C[i];
  5855. f[i] = (float)shift[i];
  5856. }
  5857. if (inp_temperature < x[0]) return 0;
  5858. for (i = n - 1; i>0; i--) {
  5859. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5860. h[i - 1] = x[i] - x[i - 1];
  5861. }
  5862. //*********** formation of h, s , f matrix **************
  5863. for (i = 1; i<n - 1; i++) {
  5864. m[i][i] = 2 * (h[i - 1] + h[i]);
  5865. if (i != 1) {
  5866. m[i][i - 1] = h[i - 1];
  5867. m[i - 1][i] = h[i - 1];
  5868. }
  5869. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5870. }
  5871. //*********** forward elimination **************
  5872. for (i = 1; i<n - 2; i++) {
  5873. temp = (m[i + 1][i] / m[i][i]);
  5874. for (j = 1; j <= n - 1; j++)
  5875. m[i + 1][j] -= temp*m[i][j];
  5876. }
  5877. //*********** backward substitution *********
  5878. for (i = n - 2; i>0; i--) {
  5879. sum = 0;
  5880. for (j = i; j <= n - 2; j++)
  5881. sum += m[i][j] * s[j];
  5882. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5883. }
  5884. for (i = 0; i<n - 1; i++)
  5885. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5886. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5887. b = s[i] / 2;
  5888. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5889. d = f[i];
  5890. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5891. }
  5892. return sum;
  5893. }
  5894. void long_pause() //long pause print
  5895. {
  5896. st_synchronize();
  5897. //save currently set parameters to global variables
  5898. saved_feedmultiply = feedmultiply;
  5899. HotendTempBckp = degTargetHotend(active_extruder);
  5900. fanSpeedBckp = fanSpeed;
  5901. start_pause_print = millis();
  5902. //save position
  5903. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5904. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5905. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5906. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5907. //retract
  5908. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5910. //lift z
  5911. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5912. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5914. //set nozzle target temperature to 0
  5915. setTargetHotend(0, 0);
  5916. setTargetHotend(0, 1);
  5917. setTargetHotend(0, 2);
  5918. //Move XY to side
  5919. current_position[X_AXIS] = X_PAUSE_POS;
  5920. current_position[Y_AXIS] = Y_PAUSE_POS;
  5921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5922. // Turn off the print fan
  5923. fanSpeed = 0;
  5924. st_synchronize();
  5925. }
  5926. void serialecho_temperatures() {
  5927. float tt = degHotend(active_extruder);
  5928. SERIAL_PROTOCOLPGM("T:");
  5929. SERIAL_PROTOCOL(tt);
  5930. SERIAL_PROTOCOLPGM(" E:");
  5931. SERIAL_PROTOCOL((int)active_extruder);
  5932. SERIAL_PROTOCOLPGM(" B:");
  5933. SERIAL_PROTOCOL_F(degBed(), 1);
  5934. SERIAL_PROTOCOLLN("");
  5935. }