Marlin_main.cpp 274 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "watchdog.h"
  43. #include "ConfigurationStore.h"
  44. #include "language.h"
  45. #include "pins_arduino.h"
  46. #include "math.h"
  47. #include "util.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. #ifdef TMC2130
  482. extern int8_t CrashDetectMenu;
  483. void crashdet_enable()
  484. {
  485. // MYSERIAL.println("crashdet_enable");
  486. tmc2130_sg_stop_on_crash = true;
  487. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  488. CrashDetectMenu = 1;
  489. }
  490. void crashdet_disable()
  491. {
  492. // MYSERIAL.println("crashdet_disable");
  493. tmc2130_sg_stop_on_crash = false;
  494. tmc2130_sg_crash = 0;
  495. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  496. CrashDetectMenu = 0;
  497. }
  498. void crashdet_stop_and_save_print()
  499. {
  500. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  501. }
  502. void crashdet_restore_print_and_continue()
  503. {
  504. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  505. // babystep_apply();
  506. }
  507. void crashdet_stop_and_save_print2()
  508. {
  509. cli();
  510. planner_abort_hard(); //abort printing
  511. cmdqueue_reset(); //empty cmdqueue
  512. card.sdprinting = false;
  513. card.closefile();
  514. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  515. st_reset_timer();
  516. sei();
  517. }
  518. void crashdet_detected(uint8_t mask)
  519. {
  520. // printf("CRASH_DETECTED");
  521. /* while (!is_buffer_empty())
  522. {
  523. process_commands();
  524. cmdqueue_pop_front();
  525. }*/
  526. st_synchronize();
  527. lcd_update_enable(true);
  528. lcd_implementation_clear();
  529. lcd_update(2);
  530. if (mask & X_AXIS_MASK)
  531. {
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  533. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  534. }
  535. if (mask & Y_AXIS_MASK)
  536. {
  537. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  538. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  539. }
  540. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  541. bool yesno = true;
  542. #else
  543. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  544. #endif
  545. lcd_update_enable(true);
  546. lcd_update(2);
  547. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  548. if (yesno)
  549. {
  550. enquecommand_P(PSTR("G28 X Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #endif //TMC2130
  570. void failstats_reset_print()
  571. {
  572. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  576. }
  577. #ifdef MESH_BED_LEVELING
  578. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  579. #endif
  580. // Factory reset function
  581. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  582. // Level input parameter sets depth of reset
  583. // Quiet parameter masks all waitings for user interact.
  584. int er_progress = 0;
  585. void factory_reset(char level, bool quiet)
  586. {
  587. lcd_implementation_clear();
  588. int cursor_pos = 0;
  589. switch (level) {
  590. // Level 0: Language reset
  591. case 0:
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. lcd_force_language_selection();
  596. break;
  597. //Level 1: Reset statistics
  598. case 1:
  599. WRITE(BEEPER, HIGH);
  600. _delay_ms(100);
  601. WRITE(BEEPER, LOW);
  602. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  603. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  610. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  611. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  612. lcd_menu_statistics();
  613. break;
  614. // Level 2: Prepare for shipping
  615. case 2:
  616. //lcd_printPGM(PSTR("Factory RESET"));
  617. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  618. // Force language selection at the next boot up.
  619. lcd_force_language_selection();
  620. // Force the "Follow calibration flow" message at the next boot up.
  621. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  622. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  623. farm_no = 0;
  624. farm_mode == false;
  625. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  626. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  627. WRITE(BEEPER, HIGH);
  628. _delay_ms(100);
  629. WRITE(BEEPER, LOW);
  630. //_delay_ms(2000);
  631. break;
  632. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  633. case 3:
  634. lcd_printPGM(PSTR("Factory RESET"));
  635. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  636. WRITE(BEEPER, HIGH);
  637. _delay_ms(100);
  638. WRITE(BEEPER, LOW);
  639. er_progress = 0;
  640. lcd_print_at_PGM(3, 3, PSTR(" "));
  641. lcd_implementation_print_at(3, 3, er_progress);
  642. // Erase EEPROM
  643. for (int i = 0; i < 4096; i++) {
  644. eeprom_write_byte((uint8_t*)i, 0xFF);
  645. if (i % 41 == 0) {
  646. er_progress++;
  647. lcd_print_at_PGM(3, 3, PSTR(" "));
  648. lcd_implementation_print_at(3, 3, er_progress);
  649. lcd_printPGM(PSTR("%"));
  650. }
  651. }
  652. break;
  653. case 4:
  654. bowden_menu();
  655. break;
  656. default:
  657. break;
  658. }
  659. }
  660. #include "LiquidCrystal.h"
  661. extern LiquidCrystal lcd;
  662. FILE _lcdout = {0};
  663. int lcd_putchar(char c, FILE *stream)
  664. {
  665. lcd.write(c);
  666. return 0;
  667. }
  668. FILE _uartout = {0};
  669. int uart_putchar(char c, FILE *stream)
  670. {
  671. MYSERIAL.write(c);
  672. return 0;
  673. }
  674. void lcd_splash()
  675. {
  676. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  677. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  678. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  679. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  680. }
  681. void factory_reset()
  682. {
  683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  684. if (!READ(BTN_ENC))
  685. {
  686. _delay_ms(1000);
  687. if (!READ(BTN_ENC))
  688. {
  689. lcd_implementation_clear();
  690. lcd_printPGM(PSTR("Factory RESET"));
  691. SET_OUTPUT(BEEPER);
  692. WRITE(BEEPER, HIGH);
  693. while (!READ(BTN_ENC));
  694. WRITE(BEEPER, LOW);
  695. _delay_ms(2000);
  696. char level = reset_menu();
  697. factory_reset(level, false);
  698. switch (level) {
  699. case 0: _delay_ms(0); break;
  700. case 1: _delay_ms(0); break;
  701. case 2: _delay_ms(0); break;
  702. case 3: _delay_ms(0); break;
  703. }
  704. // _delay_ms(100);
  705. /*
  706. #ifdef MESH_BED_LEVELING
  707. _delay_ms(2000);
  708. if (!READ(BTN_ENC))
  709. {
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. _delay_ms(200);
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. int _z = 0;
  718. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  719. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  720. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  721. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  722. }
  723. else
  724. {
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. }
  729. #endif // mesh */
  730. }
  731. }
  732. else
  733. {
  734. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  735. }
  736. KEEPALIVE_STATE(IN_HANDLER);
  737. }
  738. void show_fw_version_warnings() {
  739. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  740. switch (FW_DEV_VERSION) {
  741. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  742. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  743. case(FW_VERSION_DEVEL):
  744. case(FW_VERSION_DEBUG):
  745. lcd_update_enable(false);
  746. lcd_implementation_clear();
  747. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  748. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  749. #else
  750. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  751. #endif
  752. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  753. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  754. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  755. lcd_wait_for_click();
  756. break;
  757. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  758. }
  759. lcd_update_enable(true);
  760. }
  761. uint8_t check_printer_version()
  762. {
  763. uint8_t version_changed = 0;
  764. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  765. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  766. if (printer_type != PRINTER_TYPE) {
  767. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  768. else version_changed |= 0b10;
  769. }
  770. if (motherboard != MOTHERBOARD) {
  771. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  772. else version_changed |= 0b01;
  773. }
  774. return version_changed;
  775. }
  776. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  777. {
  778. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  779. }
  780. // "Setup" function is called by the Arduino framework on startup.
  781. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  782. // are initialized by the main() routine provided by the Arduino framework.
  783. void setup()
  784. {
  785. lcd_init();
  786. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  787. lcd_splash();
  788. setup_killpin();
  789. setup_powerhold();
  790. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  791. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  792. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  793. if (farm_no == 0xFFFF) farm_no = 0;
  794. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  795. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  796. if (farm_mode)
  797. {
  798. prusa_statistics(8);
  799. selectedSerialPort = 1;
  800. }
  801. MYSERIAL.begin(BAUDRATE);
  802. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  803. stdout = uartout;
  804. SERIAL_PROTOCOLLNPGM("start");
  805. SERIAL_ECHO_START;
  806. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  807. #if 0
  808. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  809. for (int i = 0; i < 4096; ++i) {
  810. int b = eeprom_read_byte((unsigned char*)i);
  811. if (b != 255) {
  812. SERIAL_ECHO(i);
  813. SERIAL_ECHO(":");
  814. SERIAL_ECHO(b);
  815. SERIAL_ECHOLN("");
  816. }
  817. }
  818. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  819. #endif
  820. // Check startup - does nothing if bootloader sets MCUSR to 0
  821. byte mcu = MCUSR;
  822. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  823. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  827. if (mcu & 1) puts_P(MSG_POWERUP);
  828. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  829. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  830. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  831. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  832. MCUSR = 0;
  833. //SERIAL_ECHORPGM(MSG_MARLIN);
  834. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  835. #ifdef STRING_VERSION_CONFIG_H
  836. #ifdef STRING_CONFIG_H_AUTHOR
  837. SERIAL_ECHO_START;
  838. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  839. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  840. SERIAL_ECHORPGM(MSG_AUTHOR);
  841. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  842. SERIAL_ECHOPGM("Compiled: ");
  843. SERIAL_ECHOLNPGM(__DATE__);
  844. #endif
  845. #endif
  846. SERIAL_ECHO_START;
  847. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  848. SERIAL_ECHO(freeMemory());
  849. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  850. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  851. //lcd_update_enable(false); // why do we need this?? - andre
  852. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  853. bool previous_settings_retrieved = false;
  854. uint8_t hw_changed = check_printer_version();
  855. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  856. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  857. }
  858. else { //printer version was changed so use default settings
  859. Config_ResetDefault();
  860. }
  861. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  862. tp_init(); // Initialize temperature loop
  863. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  864. plan_init(); // Initialize planner;
  865. watchdog_init();
  866. factory_reset();
  867. #ifdef TMC2130
  868. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  869. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  870. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  871. if (crashdet)
  872. {
  873. crashdet_enable();
  874. MYSERIAL.println("CrashDetect ENABLED!");
  875. }
  876. else
  877. {
  878. crashdet_disable();
  879. MYSERIAL.println("CrashDetect DISABLED");
  880. }
  881. #endif //TMC2130
  882. st_init(); // Initialize stepper, this enables interrupts!
  883. setup_photpin();
  884. servo_init();
  885. // Reset the machine correction matrix.
  886. // It does not make sense to load the correction matrix until the machine is homed.
  887. world2machine_reset();
  888. #ifdef PAT9125
  889. fsensor_init();
  890. #endif //PAT9125
  891. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  892. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  893. #endif
  894. #ifdef DIGIPOT_I2C
  895. digipot_i2c_init();
  896. #endif
  897. setup_homepin();
  898. #ifdef TMC2130
  899. if (1) {
  900. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  901. // try to run to zero phase before powering the Z motor.
  902. // Move in negative direction
  903. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  904. // Round the current micro-micro steps to micro steps.
  905. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  906. // Until the phase counter is reset to zero.
  907. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  908. delay(2);
  909. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  910. delay(2);
  911. }
  912. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  913. }
  914. #endif //TMC2130
  915. #if defined(Z_AXIS_ALWAYS_ON)
  916. enable_z();
  917. #endif
  918. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  919. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  920. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  921. if (farm_no == 0xFFFF) farm_no = 0;
  922. if (farm_mode)
  923. {
  924. prusa_statistics(8);
  925. }
  926. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  927. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  928. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  929. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  930. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  931. // where all the EEPROM entries are set to 0x0ff.
  932. // Once a firmware boots up, it forces at least a language selection, which changes
  933. // EEPROM_LANG to number lower than 0x0ff.
  934. // 1) Set a high power mode.
  935. #ifdef TMC2130
  936. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  937. tmc2130_mode = TMC2130_MODE_NORMAL;
  938. #endif //TMC2130
  939. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  940. }
  941. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  942. // but this times out if a blocking dialog is shown in setup().
  943. card.initsd();
  944. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  945. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  946. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  947. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  948. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  949. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  950. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  951. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  952. #ifdef SNMM
  953. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  954. int _z = BOWDEN_LENGTH;
  955. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  956. }
  957. #endif
  958. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  959. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  960. // is being written into the EEPROM, so the update procedure will be triggered only once.
  961. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  962. if (lang_selected >= LANG_NUM){
  963. lcd_mylang();
  964. }
  965. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  966. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  967. temp_cal_active = false;
  968. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  969. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  970. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  971. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  972. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  973. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  974. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  975. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  976. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  977. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  978. temp_cal_active = true;
  979. }
  980. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  981. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  982. }
  983. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  984. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  985. }
  986. check_babystep(); //checking if Z babystep is in allowed range
  987. #ifdef UVLO_SUPPORT
  988. setup_uvlo_interrupt();
  989. #endif //UVLO_SUPPORT
  990. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  991. setup_fan_interrupt();
  992. #endif //DEBUG_DISABLE_FANCHECK
  993. #ifdef PAT9125
  994. #ifndef DEBUG_DISABLE_FSENSORCHECK
  995. fsensor_setup_interrupt();
  996. #endif //DEBUG_DISABLE_FSENSORCHECK
  997. #endif //PAT9125
  998. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  999. #ifndef DEBUG_DISABLE_STARTMSGS
  1000. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1001. show_fw_version_warnings();
  1002. switch (hw_changed) {
  1003. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1004. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1005. case(0b01):
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1007. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1008. break;
  1009. case(0b10):
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1011. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1012. break;
  1013. case(0b11):
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1015. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1016. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1017. break;
  1018. default: break; //no change, show no message
  1019. }
  1020. if (!previous_settings_retrieved) {
  1021. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1022. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1023. }
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1025. lcd_wizard(0);
  1026. }
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1028. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1029. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1030. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1031. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1032. // Show the message.
  1033. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1034. }
  1035. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1036. // Show the message.
  1037. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1038. lcd_update_enable(true);
  1039. }
  1040. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1041. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1042. lcd_update_enable(true);
  1043. }
  1044. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1045. // Show the message.
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1047. }
  1048. }
  1049. KEEPALIVE_STATE(IN_PROCESS);
  1050. #endif //DEBUG_DISABLE_STARTMSGS
  1051. lcd_update_enable(true);
  1052. lcd_implementation_clear();
  1053. lcd_update(2);
  1054. // Store the currently running firmware into an eeprom,
  1055. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1056. update_current_firmware_version_to_eeprom();
  1057. #ifdef UVLO_SUPPORT
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1059. /*
  1060. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1061. else {
  1062. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1063. lcd_update_enable(true);
  1064. lcd_update(2);
  1065. lcd_setstatuspgm(WELCOME_MSG);
  1066. }
  1067. */
  1068. manage_heater(); // Update temperatures
  1069. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1070. MYSERIAL.println("Power panic detected!");
  1071. MYSERIAL.print("Current bed temp:");
  1072. MYSERIAL.println(degBed());
  1073. MYSERIAL.print("Saved bed temp:");
  1074. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1075. #endif
  1076. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1077. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1078. MYSERIAL.println("Automatic recovery!");
  1079. #endif
  1080. recover_print(1);
  1081. }
  1082. else{
  1083. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1084. MYSERIAL.println("Normal recovery!");
  1085. #endif
  1086. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1087. else {
  1088. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1089. lcd_update_enable(true);
  1090. lcd_update(2);
  1091. lcd_setstatuspgm(WELCOME_MSG);
  1092. }
  1093. }
  1094. }
  1095. #endif //UVLO_SUPPORT
  1096. KEEPALIVE_STATE(NOT_BUSY);
  1097. wdt_enable(WDTO_4S);
  1098. }
  1099. #ifdef PAT9125
  1100. void fsensor_init() {
  1101. int pat9125 = pat9125_init();
  1102. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1103. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1104. if (!pat9125)
  1105. {
  1106. fsensor = 0; //disable sensor
  1107. fsensor_not_responding = true;
  1108. }
  1109. else {
  1110. fsensor_not_responding = false;
  1111. }
  1112. puts_P(PSTR("FSensor "));
  1113. if (fsensor)
  1114. {
  1115. puts_P(PSTR("ENABLED\n"));
  1116. fsensor_enable();
  1117. }
  1118. else
  1119. {
  1120. puts_P(PSTR("DISABLED\n"));
  1121. fsensor_disable();
  1122. }
  1123. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1124. filament_autoload_enabled = false;
  1125. fsensor_disable();
  1126. #endif //DEBUG_DISABLE_FSENSORCHECK
  1127. }
  1128. #endif //PAT9125
  1129. void trace();
  1130. #define CHUNK_SIZE 64 // bytes
  1131. #define SAFETY_MARGIN 1
  1132. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1133. int chunkHead = 0;
  1134. int serial_read_stream() {
  1135. setTargetHotend(0, 0);
  1136. setTargetBed(0);
  1137. lcd_implementation_clear();
  1138. lcd_printPGM(PSTR(" Upload in progress"));
  1139. // first wait for how many bytes we will receive
  1140. uint32_t bytesToReceive;
  1141. // receive the four bytes
  1142. char bytesToReceiveBuffer[4];
  1143. for (int i=0; i<4; i++) {
  1144. int data;
  1145. while ((data = MYSERIAL.read()) == -1) {};
  1146. bytesToReceiveBuffer[i] = data;
  1147. }
  1148. // make it a uint32
  1149. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1150. // we're ready, notify the sender
  1151. MYSERIAL.write('+');
  1152. // lock in the routine
  1153. uint32_t receivedBytes = 0;
  1154. while (prusa_sd_card_upload) {
  1155. int i;
  1156. for (i=0; i<CHUNK_SIZE; i++) {
  1157. int data;
  1158. // check if we're not done
  1159. if (receivedBytes == bytesToReceive) {
  1160. break;
  1161. }
  1162. // read the next byte
  1163. while ((data = MYSERIAL.read()) == -1) {};
  1164. receivedBytes++;
  1165. // save it to the chunk
  1166. chunk[i] = data;
  1167. }
  1168. // write the chunk to SD
  1169. card.write_command_no_newline(&chunk[0]);
  1170. // notify the sender we're ready for more data
  1171. MYSERIAL.write('+');
  1172. // for safety
  1173. manage_heater();
  1174. // check if we're done
  1175. if(receivedBytes == bytesToReceive) {
  1176. trace(); // beep
  1177. card.closefile();
  1178. prusa_sd_card_upload = false;
  1179. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1180. return 0;
  1181. }
  1182. }
  1183. }
  1184. #ifdef HOST_KEEPALIVE_FEATURE
  1185. /**
  1186. * Output a "busy" message at regular intervals
  1187. * while the machine is not accepting commands.
  1188. */
  1189. void host_keepalive() {
  1190. if (farm_mode) return;
  1191. long ms = millis();
  1192. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1193. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1194. switch (busy_state) {
  1195. case IN_HANDLER:
  1196. case IN_PROCESS:
  1197. SERIAL_ECHO_START;
  1198. SERIAL_ECHOLNPGM("busy: processing");
  1199. break;
  1200. case PAUSED_FOR_USER:
  1201. SERIAL_ECHO_START;
  1202. SERIAL_ECHOLNPGM("busy: paused for user");
  1203. break;
  1204. case PAUSED_FOR_INPUT:
  1205. SERIAL_ECHO_START;
  1206. SERIAL_ECHOLNPGM("busy: paused for input");
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. }
  1212. prev_busy_signal_ms = ms;
  1213. }
  1214. #endif
  1215. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1216. // Before loop(), the setup() function is called by the main() routine.
  1217. void loop()
  1218. {
  1219. KEEPALIVE_STATE(NOT_BUSY);
  1220. bool stack_integrity = true;
  1221. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1222. {
  1223. is_usb_printing = true;
  1224. usb_printing_counter--;
  1225. _usb_timer = millis();
  1226. }
  1227. if (usb_printing_counter == 0)
  1228. {
  1229. is_usb_printing = false;
  1230. }
  1231. if (prusa_sd_card_upload)
  1232. {
  1233. //we read byte-by byte
  1234. serial_read_stream();
  1235. } else
  1236. {
  1237. get_command();
  1238. #ifdef SDSUPPORT
  1239. card.checkautostart(false);
  1240. #endif
  1241. if(buflen)
  1242. {
  1243. cmdbuffer_front_already_processed = false;
  1244. #ifdef SDSUPPORT
  1245. if(card.saving)
  1246. {
  1247. // Saving a G-code file onto an SD-card is in progress.
  1248. // Saving starts with M28, saving until M29 is seen.
  1249. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1250. card.write_command(CMDBUFFER_CURRENT_STRING);
  1251. if(card.logging)
  1252. process_commands();
  1253. else
  1254. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1255. } else {
  1256. card.closefile();
  1257. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1258. }
  1259. } else {
  1260. process_commands();
  1261. }
  1262. #else
  1263. process_commands();
  1264. #endif //SDSUPPORT
  1265. if (! cmdbuffer_front_already_processed && buflen)
  1266. {
  1267. // ptr points to the start of the block currently being processed.
  1268. // The first character in the block is the block type.
  1269. char *ptr = cmdbuffer + bufindr;
  1270. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1271. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1272. union {
  1273. struct {
  1274. char lo;
  1275. char hi;
  1276. } lohi;
  1277. uint16_t value;
  1278. } sdlen;
  1279. sdlen.value = 0;
  1280. {
  1281. // This block locks the interrupts globally for 3.25 us,
  1282. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1283. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1284. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1285. cli();
  1286. // Reset the command to something, which will be ignored by the power panic routine,
  1287. // so this buffer length will not be counted twice.
  1288. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1289. // Extract the current buffer length.
  1290. sdlen.lohi.lo = *ptr ++;
  1291. sdlen.lohi.hi = *ptr;
  1292. // and pass it to the planner queue.
  1293. planner_add_sd_length(sdlen.value);
  1294. sei();
  1295. }
  1296. }
  1297. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1298. // this block's SD card length will not be counted twice as its command type has been replaced
  1299. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1300. cmdqueue_pop_front();
  1301. }
  1302. host_keepalive();
  1303. }
  1304. }
  1305. //check heater every n milliseconds
  1306. manage_heater();
  1307. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1308. checkHitEndstops();
  1309. lcd_update();
  1310. #ifdef PAT9125
  1311. fsensor_update();
  1312. #endif //PAT9125
  1313. #ifdef TMC2130
  1314. tmc2130_check_overtemp();
  1315. if (tmc2130_sg_crash)
  1316. {
  1317. uint8_t crash = tmc2130_sg_crash;
  1318. tmc2130_sg_crash = 0;
  1319. // crashdet_stop_and_save_print();
  1320. switch (crash)
  1321. {
  1322. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1323. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1324. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1325. }
  1326. }
  1327. #endif //TMC2130
  1328. }
  1329. #define DEFINE_PGM_READ_ANY(type, reader) \
  1330. static inline type pgm_read_any(const type *p) \
  1331. { return pgm_read_##reader##_near(p); }
  1332. DEFINE_PGM_READ_ANY(float, float);
  1333. DEFINE_PGM_READ_ANY(signed char, byte);
  1334. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1335. static const PROGMEM type array##_P[3] = \
  1336. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1337. static inline type array(int axis) \
  1338. { return pgm_read_any(&array##_P[axis]); } \
  1339. type array##_ext(int axis) \
  1340. { return pgm_read_any(&array##_P[axis]); }
  1341. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1342. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1343. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1344. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1345. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1346. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1347. static void axis_is_at_home(int axis) {
  1348. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1349. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1350. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1351. }
  1352. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1353. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1354. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1355. saved_feedrate = feedrate;
  1356. saved_feedmultiply = feedmultiply;
  1357. feedmultiply = 100;
  1358. previous_millis_cmd = millis();
  1359. enable_endstops(enable_endstops_now);
  1360. }
  1361. static void clean_up_after_endstop_move() {
  1362. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1363. enable_endstops(false);
  1364. #endif
  1365. feedrate = saved_feedrate;
  1366. feedmultiply = saved_feedmultiply;
  1367. previous_millis_cmd = millis();
  1368. }
  1369. #ifdef ENABLE_AUTO_BED_LEVELING
  1370. #ifdef AUTO_BED_LEVELING_GRID
  1371. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1372. {
  1373. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1374. planeNormal.debug("planeNormal");
  1375. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1376. //bedLevel.debug("bedLevel");
  1377. //plan_bed_level_matrix.debug("bed level before");
  1378. //vector_3 uncorrected_position = plan_get_position_mm();
  1379. //uncorrected_position.debug("position before");
  1380. vector_3 corrected_position = plan_get_position();
  1381. // corrected_position.debug("position after");
  1382. current_position[X_AXIS] = corrected_position.x;
  1383. current_position[Y_AXIS] = corrected_position.y;
  1384. current_position[Z_AXIS] = corrected_position.z;
  1385. // put the bed at 0 so we don't go below it.
  1386. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1388. }
  1389. #else // not AUTO_BED_LEVELING_GRID
  1390. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1391. plan_bed_level_matrix.set_to_identity();
  1392. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1393. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1394. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1395. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1396. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1397. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1398. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1399. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1400. vector_3 corrected_position = plan_get_position();
  1401. current_position[X_AXIS] = corrected_position.x;
  1402. current_position[Y_AXIS] = corrected_position.y;
  1403. current_position[Z_AXIS] = corrected_position.z;
  1404. // put the bed at 0 so we don't go below it.
  1405. current_position[Z_AXIS] = zprobe_zoffset;
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. }
  1408. #endif // AUTO_BED_LEVELING_GRID
  1409. static void run_z_probe() {
  1410. plan_bed_level_matrix.set_to_identity();
  1411. feedrate = homing_feedrate[Z_AXIS];
  1412. // move down until you find the bed
  1413. float zPosition = -10;
  1414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1415. st_synchronize();
  1416. // we have to let the planner know where we are right now as it is not where we said to go.
  1417. zPosition = st_get_position_mm(Z_AXIS);
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1419. // move up the retract distance
  1420. zPosition += home_retract_mm(Z_AXIS);
  1421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1422. st_synchronize();
  1423. // move back down slowly to find bed
  1424. feedrate = homing_feedrate[Z_AXIS]/4;
  1425. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1427. st_synchronize();
  1428. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1429. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1431. }
  1432. static void do_blocking_move_to(float x, float y, float z) {
  1433. float oldFeedRate = feedrate;
  1434. feedrate = homing_feedrate[Z_AXIS];
  1435. current_position[Z_AXIS] = z;
  1436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1437. st_synchronize();
  1438. feedrate = XY_TRAVEL_SPEED;
  1439. current_position[X_AXIS] = x;
  1440. current_position[Y_AXIS] = y;
  1441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1442. st_synchronize();
  1443. feedrate = oldFeedRate;
  1444. }
  1445. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1446. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1447. }
  1448. /// Probe bed height at position (x,y), returns the measured z value
  1449. static float probe_pt(float x, float y, float z_before) {
  1450. // move to right place
  1451. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1452. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1453. run_z_probe();
  1454. float measured_z = current_position[Z_AXIS];
  1455. SERIAL_PROTOCOLRPGM(MSG_BED);
  1456. SERIAL_PROTOCOLPGM(" x: ");
  1457. SERIAL_PROTOCOL(x);
  1458. SERIAL_PROTOCOLPGM(" y: ");
  1459. SERIAL_PROTOCOL(y);
  1460. SERIAL_PROTOCOLPGM(" z: ");
  1461. SERIAL_PROTOCOL(measured_z);
  1462. SERIAL_PROTOCOLPGM("\n");
  1463. return measured_z;
  1464. }
  1465. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1466. #ifdef LIN_ADVANCE
  1467. /**
  1468. * M900: Set and/or Get advance K factor and WH/D ratio
  1469. *
  1470. * K<factor> Set advance K factor
  1471. * R<ratio> Set ratio directly (overrides WH/D)
  1472. * W<width> H<height> D<diam> Set ratio from WH/D
  1473. */
  1474. inline void gcode_M900() {
  1475. st_synchronize();
  1476. const float newK = code_seen('K') ? code_value_float() : -1;
  1477. if (newK >= 0) extruder_advance_k = newK;
  1478. float newR = code_seen('R') ? code_value_float() : -1;
  1479. if (newR < 0) {
  1480. const float newD = code_seen('D') ? code_value_float() : -1,
  1481. newW = code_seen('W') ? code_value_float() : -1,
  1482. newH = code_seen('H') ? code_value_float() : -1;
  1483. if (newD >= 0 && newW >= 0 && newH >= 0)
  1484. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1485. }
  1486. if (newR >= 0) advance_ed_ratio = newR;
  1487. SERIAL_ECHO_START;
  1488. SERIAL_ECHOPGM("Advance K=");
  1489. SERIAL_ECHOLN(extruder_advance_k);
  1490. SERIAL_ECHOPGM(" E/D=");
  1491. const float ratio = advance_ed_ratio;
  1492. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1493. }
  1494. #endif // LIN_ADVANCE
  1495. bool check_commands() {
  1496. bool end_command_found = false;
  1497. while (buflen)
  1498. {
  1499. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1500. if (!cmdbuffer_front_already_processed)
  1501. cmdqueue_pop_front();
  1502. cmdbuffer_front_already_processed = false;
  1503. }
  1504. return end_command_found;
  1505. }
  1506. #ifdef TMC2130
  1507. bool calibrate_z_auto()
  1508. {
  1509. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1510. lcd_implementation_clear();
  1511. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1512. bool endstops_enabled = enable_endstops(true);
  1513. int axis_up_dir = -home_dir(Z_AXIS);
  1514. tmc2130_home_enter(Z_AXIS_MASK);
  1515. current_position[Z_AXIS] = 0;
  1516. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1517. set_destination_to_current();
  1518. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1519. feedrate = homing_feedrate[Z_AXIS];
  1520. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1521. st_synchronize();
  1522. // current_position[axis] = 0;
  1523. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1524. tmc2130_home_exit();
  1525. enable_endstops(false);
  1526. current_position[Z_AXIS] = 0;
  1527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1528. set_destination_to_current();
  1529. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1530. feedrate = homing_feedrate[Z_AXIS] / 2;
  1531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1532. st_synchronize();
  1533. enable_endstops(endstops_enabled);
  1534. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1536. return true;
  1537. }
  1538. #endif //TMC2130
  1539. void homeaxis(int axis)
  1540. {
  1541. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1542. #define HOMEAXIS_DO(LETTER) \
  1543. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1544. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1545. {
  1546. int axis_home_dir = home_dir(axis);
  1547. feedrate = homing_feedrate[axis];
  1548. #ifdef TMC2130
  1549. tmc2130_home_enter(X_AXIS_MASK << axis);
  1550. #endif
  1551. // Move right a bit, so that the print head does not touch the left end position,
  1552. // and the following left movement has a chance to achieve the required velocity
  1553. // for the stall guard to work.
  1554. current_position[axis] = 0;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. // destination[axis] = 11.f;
  1557. destination[axis] = 3.f;
  1558. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1559. st_synchronize();
  1560. // Move left away from the possible collision with the collision detection disabled.
  1561. endstops_hit_on_purpose();
  1562. enable_endstops(false);
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[axis] = - 1.;
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. // Now continue to move up to the left end stop with the collision detection enabled.
  1569. enable_endstops(true);
  1570. destination[axis] = - 1.1 * max_length(axis);
  1571. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1572. st_synchronize();
  1573. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1574. endstops_hit_on_purpose();
  1575. enable_endstops(false);
  1576. current_position[axis] = 0;
  1577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1578. destination[axis] = 10.f;
  1579. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1580. st_synchronize();
  1581. endstops_hit_on_purpose();
  1582. // Now move left up to the collision, this time with a repeatable velocity.
  1583. enable_endstops(true);
  1584. destination[axis] = - 15.f;
  1585. feedrate = homing_feedrate[axis]/2;
  1586. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1587. st_synchronize();
  1588. axis_is_at_home(axis);
  1589. axis_known_position[axis] = true;
  1590. #ifdef TMC2130
  1591. tmc2130_home_exit();
  1592. #endif
  1593. // Move the X carriage away from the collision.
  1594. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1595. endstops_hit_on_purpose();
  1596. enable_endstops(false);
  1597. {
  1598. // Two full periods (4 full steps).
  1599. float gap = 0.32f * 2.f;
  1600. current_position[axis] -= gap;
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. current_position[axis] += gap;
  1603. }
  1604. destination[axis] = current_position[axis];
  1605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1606. st_synchronize();
  1607. feedrate = 0.0;
  1608. }
  1609. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1610. {
  1611. int axis_home_dir = home_dir(axis);
  1612. current_position[axis] = 0;
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1615. feedrate = homing_feedrate[axis];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1617. st_synchronize();
  1618. current_position[axis] = 0;
  1619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1620. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1621. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1622. st_synchronize();
  1623. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1624. feedrate = homing_feedrate[axis]/2 ;
  1625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1626. st_synchronize();
  1627. axis_is_at_home(axis);
  1628. destination[axis] = current_position[axis];
  1629. feedrate = 0.0;
  1630. endstops_hit_on_purpose();
  1631. axis_known_position[axis] = true;
  1632. }
  1633. enable_endstops(endstops_enabled);
  1634. }
  1635. /**/
  1636. void home_xy()
  1637. {
  1638. set_destination_to_current();
  1639. homeaxis(X_AXIS);
  1640. homeaxis(Y_AXIS);
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. endstops_hit_on_purpose();
  1643. }
  1644. void refresh_cmd_timeout(void)
  1645. {
  1646. previous_millis_cmd = millis();
  1647. }
  1648. #ifdef FWRETRACT
  1649. void retract(bool retracting, bool swapretract = false) {
  1650. if(retracting && !retracted[active_extruder]) {
  1651. destination[X_AXIS]=current_position[X_AXIS];
  1652. destination[Y_AXIS]=current_position[Y_AXIS];
  1653. destination[Z_AXIS]=current_position[Z_AXIS];
  1654. destination[E_AXIS]=current_position[E_AXIS];
  1655. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1656. plan_set_e_position(current_position[E_AXIS]);
  1657. float oldFeedrate = feedrate;
  1658. feedrate=retract_feedrate*60;
  1659. retracted[active_extruder]=true;
  1660. prepare_move();
  1661. current_position[Z_AXIS]-=retract_zlift;
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. prepare_move();
  1664. feedrate = oldFeedrate;
  1665. } else if(!retracting && retracted[active_extruder]) {
  1666. destination[X_AXIS]=current_position[X_AXIS];
  1667. destination[Y_AXIS]=current_position[Y_AXIS];
  1668. destination[Z_AXIS]=current_position[Z_AXIS];
  1669. destination[E_AXIS]=current_position[E_AXIS];
  1670. current_position[Z_AXIS]+=retract_zlift;
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1672. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1673. plan_set_e_position(current_position[E_AXIS]);
  1674. float oldFeedrate = feedrate;
  1675. feedrate=retract_recover_feedrate*60;
  1676. retracted[active_extruder]=false;
  1677. prepare_move();
  1678. feedrate = oldFeedrate;
  1679. }
  1680. } //retract
  1681. #endif //FWRETRACT
  1682. void trace() {
  1683. tone(BEEPER, 440);
  1684. delay(25);
  1685. noTone(BEEPER);
  1686. delay(20);
  1687. }
  1688. /*
  1689. void ramming() {
  1690. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1691. if (current_temperature[0] < 230) {
  1692. //PLA
  1693. max_feedrate[E_AXIS] = 50;
  1694. //current_position[E_AXIS] -= 8;
  1695. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1696. //current_position[E_AXIS] += 8;
  1697. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1698. current_position[E_AXIS] += 5.4;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1700. current_position[E_AXIS] += 3.2;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1702. current_position[E_AXIS] += 3;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1704. st_synchronize();
  1705. max_feedrate[E_AXIS] = 80;
  1706. current_position[E_AXIS] -= 82;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1708. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1709. current_position[E_AXIS] -= 20;
  1710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1711. current_position[E_AXIS] += 5;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1713. current_position[E_AXIS] += 5;
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1715. current_position[E_AXIS] -= 10;
  1716. st_synchronize();
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1718. current_position[E_AXIS] += 10;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1720. current_position[E_AXIS] -= 10;
  1721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1722. current_position[E_AXIS] += 10;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1724. current_position[E_AXIS] -= 10;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1726. st_synchronize();
  1727. }
  1728. else {
  1729. //ABS
  1730. max_feedrate[E_AXIS] = 50;
  1731. //current_position[E_AXIS] -= 8;
  1732. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1733. //current_position[E_AXIS] += 8;
  1734. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1735. current_position[E_AXIS] += 3.1;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1737. current_position[E_AXIS] += 3.1;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1739. current_position[E_AXIS] += 4;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1741. st_synchronize();
  1742. //current_position[X_AXIS] += 23; //delay
  1743. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1744. //current_position[X_AXIS] -= 23; //delay
  1745. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1746. delay(4700);
  1747. max_feedrate[E_AXIS] = 80;
  1748. current_position[E_AXIS] -= 92;
  1749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1750. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1751. current_position[E_AXIS] -= 5;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1753. current_position[E_AXIS] += 5;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1755. current_position[E_AXIS] -= 5;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1757. st_synchronize();
  1758. current_position[E_AXIS] += 5;
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1760. current_position[E_AXIS] -= 5;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1762. current_position[E_AXIS] += 5;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1764. current_position[E_AXIS] -= 5;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1766. st_synchronize();
  1767. }
  1768. }
  1769. */
  1770. #ifdef TMC2130
  1771. void force_high_power_mode(bool start_high_power_section) {
  1772. uint8_t silent;
  1773. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1774. if (silent == 1) {
  1775. //we are in silent mode, set to normal mode to enable crash detection
  1776. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1777. st_synchronize();
  1778. cli();
  1779. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1780. tmc2130_init();
  1781. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1782. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1783. st_reset_timer();
  1784. sei();
  1785. digipot_init();
  1786. }
  1787. }
  1788. #endif //TMC2130
  1789. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1790. {
  1791. bool final_result = false;
  1792. #ifdef TMC2130
  1793. FORCE_HIGH_POWER_START;
  1794. #endif // TMC2130
  1795. // Only Z calibration?
  1796. if (!onlyZ)
  1797. {
  1798. setTargetBed(0);
  1799. setTargetHotend(0, 0);
  1800. setTargetHotend(0, 1);
  1801. setTargetHotend(0, 2);
  1802. adjust_bed_reset(); //reset bed level correction
  1803. }
  1804. // Disable the default update procedure of the display. We will do a modal dialog.
  1805. lcd_update_enable(false);
  1806. // Let the planner use the uncorrected coordinates.
  1807. mbl.reset();
  1808. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1809. // the planner will not perform any adjustments in the XY plane.
  1810. // Wait for the motors to stop and update the current position with the absolute values.
  1811. world2machine_revert_to_uncorrected();
  1812. // Reset the baby step value applied without moving the axes.
  1813. babystep_reset();
  1814. // Mark all axes as in a need for homing.
  1815. memset(axis_known_position, 0, sizeof(axis_known_position));
  1816. // Home in the XY plane.
  1817. //set_destination_to_current();
  1818. setup_for_endstop_move();
  1819. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1820. home_xy();
  1821. enable_endstops(false);
  1822. current_position[X_AXIS] += 5;
  1823. current_position[Y_AXIS] += 5;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1825. st_synchronize();
  1826. // Let the user move the Z axes up to the end stoppers.
  1827. #ifdef TMC2130
  1828. if (calibrate_z_auto())
  1829. {
  1830. #else //TMC2130
  1831. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1832. {
  1833. #endif //TMC2130
  1834. refresh_cmd_timeout();
  1835. #ifndef STEEL_SHEET
  1836. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1837. {
  1838. lcd_wait_for_cool_down();
  1839. }
  1840. #endif //STEEL_SHEET
  1841. if(!onlyZ)
  1842. {
  1843. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1844. #ifdef STEEL_SHEET
  1845. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1846. #endif //STEEL_SHEET
  1847. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1848. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1849. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1850. KEEPALIVE_STATE(IN_HANDLER);
  1851. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1852. lcd_implementation_print_at(0, 2, 1);
  1853. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1854. }
  1855. // Move the print head close to the bed.
  1856. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1857. bool endstops_enabled = enable_endstops(true);
  1858. #ifdef TMC2130
  1859. tmc2130_home_enter(Z_AXIS_MASK);
  1860. #endif //TMC2130
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1862. st_synchronize();
  1863. #ifdef TMC2130
  1864. tmc2130_home_exit();
  1865. #endif //TMC2130
  1866. enable_endstops(endstops_enabled);
  1867. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1868. {
  1869. int8_t verbosity_level = 0;
  1870. if (code_seen('V'))
  1871. {
  1872. // Just 'V' without a number counts as V1.
  1873. char c = strchr_pointer[1];
  1874. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1875. }
  1876. if (onlyZ)
  1877. {
  1878. clean_up_after_endstop_move();
  1879. // Z only calibration.
  1880. // Load the machine correction matrix
  1881. world2machine_initialize();
  1882. // and correct the current_position to match the transformed coordinate system.
  1883. world2machine_update_current();
  1884. //FIXME
  1885. bool result = sample_mesh_and_store_reference();
  1886. if (result)
  1887. {
  1888. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1889. // Shipped, the nozzle height has been set already. The user can start printing now.
  1890. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1891. final_result = true;
  1892. // babystep_apply();
  1893. }
  1894. }
  1895. else
  1896. {
  1897. // Reset the baby step value and the baby step applied flag.
  1898. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1899. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1900. // Complete XYZ calibration.
  1901. uint8_t point_too_far_mask = 0;
  1902. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1903. clean_up_after_endstop_move();
  1904. // Print head up.
  1905. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1907. st_synchronize();
  1908. if (result >= 0)
  1909. {
  1910. #ifdef HEATBED_V2
  1911. sample_z();
  1912. #else //HEATBED_V2
  1913. point_too_far_mask = 0;
  1914. // Second half: The fine adjustment.
  1915. // Let the planner use the uncorrected coordinates.
  1916. mbl.reset();
  1917. world2machine_reset();
  1918. // Home in the XY plane.
  1919. setup_for_endstop_move();
  1920. home_xy();
  1921. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1922. clean_up_after_endstop_move();
  1923. // Print head up.
  1924. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1926. st_synchronize();
  1927. // if (result >= 0) babystep_apply();
  1928. #endif //HEATBED_V2
  1929. }
  1930. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1931. if (result >= 0)
  1932. {
  1933. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1934. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1935. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1936. final_result = true;
  1937. }
  1938. }
  1939. #ifdef TMC2130
  1940. tmc2130_home_exit();
  1941. #endif
  1942. }
  1943. else
  1944. {
  1945. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1946. final_result = false;
  1947. }
  1948. }
  1949. else
  1950. {
  1951. // Timeouted.
  1952. }
  1953. lcd_update_enable(true);
  1954. #ifdef TMC2130
  1955. FORCE_HIGH_POWER_END;
  1956. #endif // TMC2130
  1957. return final_result;
  1958. }
  1959. void gcode_M114()
  1960. {
  1961. SERIAL_PROTOCOLPGM("X:");
  1962. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1963. SERIAL_PROTOCOLPGM(" Y:");
  1964. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1965. SERIAL_PROTOCOLPGM(" Z:");
  1966. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1967. SERIAL_PROTOCOLPGM(" E:");
  1968. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1969. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  1970. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  1971. SERIAL_PROTOCOLPGM(" Y:");
  1972. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  1973. SERIAL_PROTOCOLPGM(" Z:");
  1974. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  1975. SERIAL_PROTOCOLPGM(" E:");
  1976. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  1977. SERIAL_PROTOCOLLN("");
  1978. }
  1979. void gcode_M701()
  1980. {
  1981. #ifdef SNMM
  1982. extr_adj(snmm_extruder);//loads current extruder
  1983. #else
  1984. enable_z();
  1985. custom_message = true;
  1986. custom_message_type = 2;
  1987. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1988. current_position[E_AXIS] += 70;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1990. current_position[E_AXIS] += 25;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1992. st_synchronize();
  1993. tone(BEEPER, 500);
  1994. delay_keep_alive(50);
  1995. noTone(BEEPER);
  1996. if (!farm_mode && loading_flag) {
  1997. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1998. while (!clean) {
  1999. lcd_update_enable(true);
  2000. lcd_update(2);
  2001. current_position[E_AXIS] += 25;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2003. st_synchronize();
  2004. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2005. }
  2006. }
  2007. lcd_update_enable(true);
  2008. lcd_update(2);
  2009. lcd_setstatuspgm(WELCOME_MSG);
  2010. disable_z();
  2011. loading_flag = false;
  2012. custom_message = false;
  2013. custom_message_type = 0;
  2014. #endif
  2015. }
  2016. void process_commands()
  2017. {
  2018. #ifdef FILAMENT_RUNOUT_SUPPORT
  2019. SET_INPUT(FR_SENS);
  2020. #endif
  2021. #ifdef CMDBUFFER_DEBUG
  2022. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2023. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2024. SERIAL_ECHOLNPGM("");
  2025. SERIAL_ECHOPGM("In cmdqueue: ");
  2026. SERIAL_ECHO(buflen);
  2027. SERIAL_ECHOLNPGM("");
  2028. #endif /* CMDBUFFER_DEBUG */
  2029. unsigned long codenum; //throw away variable
  2030. char *starpos = NULL;
  2031. #ifdef ENABLE_AUTO_BED_LEVELING
  2032. float x_tmp, y_tmp, z_tmp, real_z;
  2033. #endif
  2034. // PRUSA GCODES
  2035. KEEPALIVE_STATE(IN_HANDLER);
  2036. #ifdef SNMM
  2037. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2038. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2039. int8_t SilentMode;
  2040. #endif
  2041. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2042. starpos = (strchr(strchr_pointer + 5, '*'));
  2043. if (starpos != NULL)
  2044. *(starpos) = '\0';
  2045. lcd_setstatus(strchr_pointer + 5);
  2046. }
  2047. #ifdef TMC2130
  2048. else if(code_seen("CRASH_DETECTED"))
  2049. {
  2050. uint8_t mask = 0;
  2051. if (code_seen("X")) mask |= X_AXIS_MASK;
  2052. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2053. crashdet_detected(mask);
  2054. }
  2055. else if(code_seen("CRASH_RECOVER"))
  2056. crashdet_recover();
  2057. else if(code_seen("CRASH_CANCEL"))
  2058. crashdet_cancel();
  2059. #endif //TMC2130
  2060. else if(code_seen("PRUSA")){
  2061. if (code_seen("Ping")) { //PRUSA Ping
  2062. if (farm_mode) {
  2063. PingTime = millis();
  2064. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2065. }
  2066. }
  2067. else if (code_seen("PRN")) {
  2068. MYSERIAL.println(status_number);
  2069. }else if (code_seen("FAN")) {
  2070. MYSERIAL.print("E0:");
  2071. MYSERIAL.print(60*fan_speed[0]);
  2072. MYSERIAL.println(" RPM");
  2073. MYSERIAL.print("PRN0:");
  2074. MYSERIAL.print(60*fan_speed[1]);
  2075. MYSERIAL.println(" RPM");
  2076. }else if (code_seen("fn")) {
  2077. if (farm_mode) {
  2078. MYSERIAL.println(farm_no);
  2079. }
  2080. else {
  2081. MYSERIAL.println("Not in farm mode.");
  2082. }
  2083. }else if (code_seen("fv")) {
  2084. // get file version
  2085. #ifdef SDSUPPORT
  2086. card.openFile(strchr_pointer + 3,true);
  2087. while (true) {
  2088. uint16_t readByte = card.get();
  2089. MYSERIAL.write(readByte);
  2090. if (readByte=='\n') {
  2091. break;
  2092. }
  2093. }
  2094. card.closefile();
  2095. #endif // SDSUPPORT
  2096. } else if (code_seen("M28")) {
  2097. trace();
  2098. prusa_sd_card_upload = true;
  2099. card.openFile(strchr_pointer+4,false);
  2100. } else if (code_seen("SN")) {
  2101. if (farm_mode) {
  2102. selectedSerialPort = 0;
  2103. MSerial.write(";S");
  2104. // S/N is:CZPX0917X003XC13518
  2105. int numbersRead = 0;
  2106. while (numbersRead < 19) {
  2107. while (MSerial.available() > 0) {
  2108. uint8_t serial_char = MSerial.read();
  2109. selectedSerialPort = 1;
  2110. MSerial.write(serial_char);
  2111. numbersRead++;
  2112. selectedSerialPort = 0;
  2113. }
  2114. }
  2115. selectedSerialPort = 1;
  2116. MSerial.write('\n');
  2117. /*for (int b = 0; b < 3; b++) {
  2118. tone(BEEPER, 110);
  2119. delay(50);
  2120. noTone(BEEPER);
  2121. delay(50);
  2122. }*/
  2123. } else {
  2124. MYSERIAL.println("Not in farm mode.");
  2125. }
  2126. } else if(code_seen("Fir")){
  2127. SERIAL_PROTOCOLLN(FW_VERSION);
  2128. } else if(code_seen("Rev")){
  2129. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2130. } else if(code_seen("Lang")) {
  2131. lcd_force_language_selection();
  2132. } else if(code_seen("Lz")) {
  2133. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2134. } else if (code_seen("SERIAL LOW")) {
  2135. MYSERIAL.println("SERIAL LOW");
  2136. MYSERIAL.begin(BAUDRATE);
  2137. return;
  2138. } else if (code_seen("SERIAL HIGH")) {
  2139. MYSERIAL.println("SERIAL HIGH");
  2140. MYSERIAL.begin(1152000);
  2141. return;
  2142. } else if(code_seen("Beat")) {
  2143. // Kick farm link timer
  2144. kicktime = millis();
  2145. } else if(code_seen("FR")) {
  2146. // Factory full reset
  2147. factory_reset(0,true);
  2148. }
  2149. //else if (code_seen('Cal')) {
  2150. // lcd_calibration();
  2151. // }
  2152. }
  2153. else if (code_seen('^')) {
  2154. // nothing, this is a version line
  2155. } else if(code_seen('G'))
  2156. {
  2157. switch((int)code_value())
  2158. {
  2159. case 0: // G0 -> G1
  2160. case 1: // G1
  2161. if(Stopped == false) {
  2162. #ifdef FILAMENT_RUNOUT_SUPPORT
  2163. if(READ(FR_SENS)){
  2164. feedmultiplyBckp=feedmultiply;
  2165. float target[4];
  2166. float lastpos[4];
  2167. target[X_AXIS]=current_position[X_AXIS];
  2168. target[Y_AXIS]=current_position[Y_AXIS];
  2169. target[Z_AXIS]=current_position[Z_AXIS];
  2170. target[E_AXIS]=current_position[E_AXIS];
  2171. lastpos[X_AXIS]=current_position[X_AXIS];
  2172. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2173. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2174. lastpos[E_AXIS]=current_position[E_AXIS];
  2175. //retract by E
  2176. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2177. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2178. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2180. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2181. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2183. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2185. //finish moves
  2186. st_synchronize();
  2187. //disable extruder steppers so filament can be removed
  2188. disable_e0();
  2189. disable_e1();
  2190. disable_e2();
  2191. delay(100);
  2192. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2193. uint8_t cnt=0;
  2194. int counterBeep = 0;
  2195. lcd_wait_interact();
  2196. while(!lcd_clicked()){
  2197. cnt++;
  2198. manage_heater();
  2199. manage_inactivity(true);
  2200. //lcd_update();
  2201. if(cnt==0)
  2202. {
  2203. #if BEEPER > 0
  2204. if (counterBeep== 500){
  2205. counterBeep = 0;
  2206. }
  2207. SET_OUTPUT(BEEPER);
  2208. if (counterBeep== 0){
  2209. WRITE(BEEPER,HIGH);
  2210. }
  2211. if (counterBeep== 20){
  2212. WRITE(BEEPER,LOW);
  2213. }
  2214. counterBeep++;
  2215. #else
  2216. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2217. lcd_buzz(1000/6,100);
  2218. #else
  2219. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2220. #endif
  2221. #endif
  2222. }
  2223. }
  2224. WRITE(BEEPER,LOW);
  2225. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2227. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2228. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2229. lcd_change_fil_state = 0;
  2230. lcd_loading_filament();
  2231. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2232. lcd_change_fil_state = 0;
  2233. lcd_alright();
  2234. switch(lcd_change_fil_state){
  2235. case 2:
  2236. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2238. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2239. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2240. lcd_loading_filament();
  2241. break;
  2242. case 3:
  2243. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2245. lcd_loading_color();
  2246. break;
  2247. default:
  2248. lcd_change_success();
  2249. break;
  2250. }
  2251. }
  2252. target[E_AXIS]+= 5;
  2253. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2254. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2255. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2256. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2257. //plan_set_e_position(current_position[E_AXIS]);
  2258. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2259. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2260. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2261. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2262. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2263. plan_set_e_position(lastpos[E_AXIS]);
  2264. feedmultiply=feedmultiplyBckp;
  2265. char cmd[9];
  2266. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2267. enquecommand(cmd);
  2268. }
  2269. #endif
  2270. get_coordinates(); // For X Y Z E F
  2271. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2272. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2273. }
  2274. #ifdef FWRETRACT
  2275. if(autoretract_enabled)
  2276. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2277. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2278. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2279. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2280. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2281. retract(!retracted);
  2282. return;
  2283. }
  2284. }
  2285. #endif //FWRETRACT
  2286. prepare_move();
  2287. //ClearToSend();
  2288. }
  2289. break;
  2290. case 2: // G2 - CW ARC
  2291. if(Stopped == false) {
  2292. get_arc_coordinates();
  2293. prepare_arc_move(true);
  2294. }
  2295. break;
  2296. case 3: // G3 - CCW ARC
  2297. if(Stopped == false) {
  2298. get_arc_coordinates();
  2299. prepare_arc_move(false);
  2300. }
  2301. break;
  2302. case 4: // G4 dwell
  2303. codenum = 0;
  2304. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2305. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2306. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2307. st_synchronize();
  2308. codenum += millis(); // keep track of when we started waiting
  2309. previous_millis_cmd = millis();
  2310. while(millis() < codenum) {
  2311. manage_heater();
  2312. manage_inactivity();
  2313. lcd_update();
  2314. }
  2315. break;
  2316. #ifdef FWRETRACT
  2317. case 10: // G10 retract
  2318. #if EXTRUDERS > 1
  2319. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2320. retract(true,retracted_swap[active_extruder]);
  2321. #else
  2322. retract(true);
  2323. #endif
  2324. break;
  2325. case 11: // G11 retract_recover
  2326. #if EXTRUDERS > 1
  2327. retract(false,retracted_swap[active_extruder]);
  2328. #else
  2329. retract(false);
  2330. #endif
  2331. break;
  2332. #endif //FWRETRACT
  2333. case 28: //G28 Home all Axis one at a time
  2334. {
  2335. st_synchronize();
  2336. #if 0
  2337. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2338. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2339. #endif
  2340. // Flag for the display update routine and to disable the print cancelation during homing.
  2341. homing_flag = true;
  2342. // Which axes should be homed?
  2343. bool home_x = code_seen(axis_codes[X_AXIS]);
  2344. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2345. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2346. // Either all X,Y,Z codes are present, or none of them.
  2347. bool home_all_axes = home_x == home_y && home_x == home_z;
  2348. if (home_all_axes)
  2349. // No X/Y/Z code provided means to home all axes.
  2350. home_x = home_y = home_z = true;
  2351. #ifdef ENABLE_AUTO_BED_LEVELING
  2352. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2353. #endif //ENABLE_AUTO_BED_LEVELING
  2354. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2355. // the planner will not perform any adjustments in the XY plane.
  2356. // Wait for the motors to stop and update the current position with the absolute values.
  2357. world2machine_revert_to_uncorrected();
  2358. // For mesh bed leveling deactivate the matrix temporarily.
  2359. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2360. // in a single axis only.
  2361. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2362. #ifdef MESH_BED_LEVELING
  2363. uint8_t mbl_was_active = mbl.active;
  2364. mbl.active = 0;
  2365. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2366. #endif
  2367. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2368. // consumed during the first movements following this statement.
  2369. if (home_z)
  2370. babystep_undo();
  2371. saved_feedrate = feedrate;
  2372. saved_feedmultiply = feedmultiply;
  2373. feedmultiply = 100;
  2374. previous_millis_cmd = millis();
  2375. enable_endstops(true);
  2376. memcpy(destination, current_position, sizeof(destination));
  2377. feedrate = 0.0;
  2378. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2379. if(home_z)
  2380. homeaxis(Z_AXIS);
  2381. #endif
  2382. #ifdef QUICK_HOME
  2383. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2384. if(home_x && home_y) //first diagonal move
  2385. {
  2386. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2387. int x_axis_home_dir = home_dir(X_AXIS);
  2388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2389. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2390. feedrate = homing_feedrate[X_AXIS];
  2391. if(homing_feedrate[Y_AXIS]<feedrate)
  2392. feedrate = homing_feedrate[Y_AXIS];
  2393. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2394. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2395. } else {
  2396. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2397. }
  2398. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2399. st_synchronize();
  2400. axis_is_at_home(X_AXIS);
  2401. axis_is_at_home(Y_AXIS);
  2402. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2403. destination[X_AXIS] = current_position[X_AXIS];
  2404. destination[Y_AXIS] = current_position[Y_AXIS];
  2405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2406. feedrate = 0.0;
  2407. st_synchronize();
  2408. endstops_hit_on_purpose();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. current_position[Z_AXIS] = destination[Z_AXIS];
  2412. }
  2413. #endif /* QUICK_HOME */
  2414. if(home_x)
  2415. homeaxis(X_AXIS);
  2416. if(home_y)
  2417. homeaxis(Y_AXIS);
  2418. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2419. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2420. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2421. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2422. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2423. #ifndef Z_SAFE_HOMING
  2424. if(home_z) {
  2425. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2426. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2427. feedrate = max_feedrate[Z_AXIS];
  2428. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2429. st_synchronize();
  2430. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2431. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2432. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2433. {
  2434. homeaxis(X_AXIS);
  2435. homeaxis(Y_AXIS);
  2436. }
  2437. // 1st mesh bed leveling measurement point, corrected.
  2438. world2machine_initialize();
  2439. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2440. world2machine_reset();
  2441. if (destination[Y_AXIS] < Y_MIN_POS)
  2442. destination[Y_AXIS] = Y_MIN_POS;
  2443. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2444. feedrate = homing_feedrate[Z_AXIS]/10;
  2445. current_position[Z_AXIS] = 0;
  2446. enable_endstops(false);
  2447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2448. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2449. st_synchronize();
  2450. current_position[X_AXIS] = destination[X_AXIS];
  2451. current_position[Y_AXIS] = destination[Y_AXIS];
  2452. enable_endstops(true);
  2453. endstops_hit_on_purpose();
  2454. homeaxis(Z_AXIS);
  2455. #else // MESH_BED_LEVELING
  2456. homeaxis(Z_AXIS);
  2457. #endif // MESH_BED_LEVELING
  2458. }
  2459. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2460. if(home_all_axes) {
  2461. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2462. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2463. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2464. feedrate = XY_TRAVEL_SPEED/60;
  2465. current_position[Z_AXIS] = 0;
  2466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2468. st_synchronize();
  2469. current_position[X_AXIS] = destination[X_AXIS];
  2470. current_position[Y_AXIS] = destination[Y_AXIS];
  2471. homeaxis(Z_AXIS);
  2472. }
  2473. // Let's see if X and Y are homed and probe is inside bed area.
  2474. if(home_z) {
  2475. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2476. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2477. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2478. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2479. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2480. current_position[Z_AXIS] = 0;
  2481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2482. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2483. feedrate = max_feedrate[Z_AXIS];
  2484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2485. st_synchronize();
  2486. homeaxis(Z_AXIS);
  2487. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2488. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2491. } else {
  2492. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2493. SERIAL_ECHO_START;
  2494. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2495. }
  2496. }
  2497. #endif // Z_SAFE_HOMING
  2498. #endif // Z_HOME_DIR < 0
  2499. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2500. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2501. #ifdef ENABLE_AUTO_BED_LEVELING
  2502. if(home_z)
  2503. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2504. #endif
  2505. // Set the planner and stepper routine positions.
  2506. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2507. // contains the machine coordinates.
  2508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2509. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2510. enable_endstops(false);
  2511. #endif
  2512. feedrate = saved_feedrate;
  2513. feedmultiply = saved_feedmultiply;
  2514. previous_millis_cmd = millis();
  2515. endstops_hit_on_purpose();
  2516. #ifndef MESH_BED_LEVELING
  2517. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2518. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2519. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2520. lcd_adjust_z();
  2521. #endif
  2522. // Load the machine correction matrix
  2523. world2machine_initialize();
  2524. // and correct the current_position XY axes to match the transformed coordinate system.
  2525. world2machine_update_current();
  2526. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2527. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2528. {
  2529. if (! home_z && mbl_was_active) {
  2530. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2531. mbl.active = true;
  2532. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2533. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2534. }
  2535. }
  2536. else
  2537. {
  2538. st_synchronize();
  2539. homing_flag = false;
  2540. // Push the commands to the front of the message queue in the reverse order!
  2541. // There shall be always enough space reserved for these commands.
  2542. // enquecommand_front_P((PSTR("G80")));
  2543. goto case_G80;
  2544. }
  2545. #endif
  2546. if (farm_mode) { prusa_statistics(20); };
  2547. homing_flag = false;
  2548. #if 0
  2549. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2550. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2551. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2552. #endif
  2553. break;
  2554. }
  2555. #ifdef ENABLE_AUTO_BED_LEVELING
  2556. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2557. {
  2558. #if Z_MIN_PIN == -1
  2559. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2560. #endif
  2561. // Prevent user from running a G29 without first homing in X and Y
  2562. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2563. {
  2564. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2565. SERIAL_ECHO_START;
  2566. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2567. break; // abort G29, since we don't know where we are
  2568. }
  2569. st_synchronize();
  2570. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2571. //vector_3 corrected_position = plan_get_position_mm();
  2572. //corrected_position.debug("position before G29");
  2573. plan_bed_level_matrix.set_to_identity();
  2574. vector_3 uncorrected_position = plan_get_position();
  2575. //uncorrected_position.debug("position durring G29");
  2576. current_position[X_AXIS] = uncorrected_position.x;
  2577. current_position[Y_AXIS] = uncorrected_position.y;
  2578. current_position[Z_AXIS] = uncorrected_position.z;
  2579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2580. setup_for_endstop_move();
  2581. feedrate = homing_feedrate[Z_AXIS];
  2582. #ifdef AUTO_BED_LEVELING_GRID
  2583. // probe at the points of a lattice grid
  2584. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2585. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2586. // solve the plane equation ax + by + d = z
  2587. // A is the matrix with rows [x y 1] for all the probed points
  2588. // B is the vector of the Z positions
  2589. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2590. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2591. // "A" matrix of the linear system of equations
  2592. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2593. // "B" vector of Z points
  2594. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2595. int probePointCounter = 0;
  2596. bool zig = true;
  2597. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2598. {
  2599. int xProbe, xInc;
  2600. if (zig)
  2601. {
  2602. xProbe = LEFT_PROBE_BED_POSITION;
  2603. //xEnd = RIGHT_PROBE_BED_POSITION;
  2604. xInc = xGridSpacing;
  2605. zig = false;
  2606. } else // zag
  2607. {
  2608. xProbe = RIGHT_PROBE_BED_POSITION;
  2609. //xEnd = LEFT_PROBE_BED_POSITION;
  2610. xInc = -xGridSpacing;
  2611. zig = true;
  2612. }
  2613. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2614. {
  2615. float z_before;
  2616. if (probePointCounter == 0)
  2617. {
  2618. // raise before probing
  2619. z_before = Z_RAISE_BEFORE_PROBING;
  2620. } else
  2621. {
  2622. // raise extruder
  2623. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2624. }
  2625. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2626. eqnBVector[probePointCounter] = measured_z;
  2627. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2628. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2629. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2630. probePointCounter++;
  2631. xProbe += xInc;
  2632. }
  2633. }
  2634. clean_up_after_endstop_move();
  2635. // solve lsq problem
  2636. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2637. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2638. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2639. SERIAL_PROTOCOLPGM(" b: ");
  2640. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2641. SERIAL_PROTOCOLPGM(" d: ");
  2642. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2643. set_bed_level_equation_lsq(plane_equation_coefficients);
  2644. free(plane_equation_coefficients);
  2645. #else // AUTO_BED_LEVELING_GRID not defined
  2646. // Probe at 3 arbitrary points
  2647. // probe 1
  2648. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2649. // probe 2
  2650. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2651. // probe 3
  2652. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2653. clean_up_after_endstop_move();
  2654. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2655. #endif // AUTO_BED_LEVELING_GRID
  2656. st_synchronize();
  2657. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2658. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2659. // When the bed is uneven, this height must be corrected.
  2660. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2661. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2662. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2663. z_tmp = current_position[Z_AXIS];
  2664. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2665. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2667. }
  2668. break;
  2669. #ifndef Z_PROBE_SLED
  2670. case 30: // G30 Single Z Probe
  2671. {
  2672. st_synchronize();
  2673. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2674. setup_for_endstop_move();
  2675. feedrate = homing_feedrate[Z_AXIS];
  2676. run_z_probe();
  2677. SERIAL_PROTOCOLPGM(MSG_BED);
  2678. SERIAL_PROTOCOLPGM(" X: ");
  2679. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" Y: ");
  2681. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2682. SERIAL_PROTOCOLPGM(" Z: ");
  2683. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2684. SERIAL_PROTOCOLPGM("\n");
  2685. clean_up_after_endstop_move();
  2686. }
  2687. break;
  2688. #else
  2689. case 31: // dock the sled
  2690. dock_sled(true);
  2691. break;
  2692. case 32: // undock the sled
  2693. dock_sled(false);
  2694. break;
  2695. #endif // Z_PROBE_SLED
  2696. #endif // ENABLE_AUTO_BED_LEVELING
  2697. #ifdef MESH_BED_LEVELING
  2698. case 30: // G30 Single Z Probe
  2699. {
  2700. st_synchronize();
  2701. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2702. setup_for_endstop_move();
  2703. feedrate = homing_feedrate[Z_AXIS];
  2704. find_bed_induction_sensor_point_z(-10.f, 3);
  2705. SERIAL_PROTOCOLRPGM(MSG_BED);
  2706. SERIAL_PROTOCOLPGM(" X: ");
  2707. MYSERIAL.print(current_position[X_AXIS], 5);
  2708. SERIAL_PROTOCOLPGM(" Y: ");
  2709. MYSERIAL.print(current_position[Y_AXIS], 5);
  2710. SERIAL_PROTOCOLPGM(" Z: ");
  2711. MYSERIAL.print(current_position[Z_AXIS], 5);
  2712. SERIAL_PROTOCOLPGM("\n");
  2713. clean_up_after_endstop_move();
  2714. }
  2715. break;
  2716. case 75:
  2717. {
  2718. for (int i = 40; i <= 110; i++) {
  2719. MYSERIAL.print(i);
  2720. MYSERIAL.print(" ");
  2721. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2722. }
  2723. }
  2724. break;
  2725. case 76: //PINDA probe temperature calibration
  2726. {
  2727. #ifdef PINDA_THERMISTOR
  2728. if (true)
  2729. {
  2730. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2731. // We don't know where we are! HOME!
  2732. // Push the commands to the front of the message queue in the reverse order!
  2733. // There shall be always enough space reserved for these commands.
  2734. repeatcommand_front(); // repeat G76 with all its parameters
  2735. enquecommand_front_P((PSTR("G28 W0")));
  2736. break;
  2737. }
  2738. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2739. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2740. if (result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2741. lcd_update_enable(true);
  2742. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2743. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2744. float zero_z;
  2745. int z_shift = 0; //unit: steps
  2746. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2747. if (start_temp < 35) start_temp = 35;
  2748. if (start_temp < current_temperature_pinda) start_temp += 5;
  2749. SERIAL_ECHOPGM("start temperature: ");
  2750. MYSERIAL.println(start_temp);
  2751. // setTargetHotend(200, 0);
  2752. setTargetBed(70 + (start_temp - 30));
  2753. custom_message = true;
  2754. custom_message_type = 4;
  2755. custom_message_state = 1;
  2756. custom_message = MSG_TEMP_CALIBRATION;
  2757. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2758. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2759. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2761. st_synchronize();
  2762. while (current_temperature_pinda < start_temp)
  2763. {
  2764. delay_keep_alive(1000);
  2765. serialecho_temperatures();
  2766. }
  2767. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2768. current_position[Z_AXIS] = 5;
  2769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2770. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2771. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2773. st_synchronize();
  2774. find_bed_induction_sensor_point_z(-1.f);
  2775. zero_z = current_position[Z_AXIS];
  2776. //current_position[Z_AXIS]
  2777. SERIAL_ECHOLNPGM("");
  2778. SERIAL_ECHOPGM("ZERO: ");
  2779. MYSERIAL.print(current_position[Z_AXIS]);
  2780. SERIAL_ECHOLNPGM("");
  2781. int i = -1; for (; i < 5; i++)
  2782. {
  2783. float temp = (40 + i * 5);
  2784. SERIAL_ECHOPGM("Step: ");
  2785. MYSERIAL.print(i + 2);
  2786. SERIAL_ECHOLNPGM("/6 (skipped)");
  2787. SERIAL_ECHOPGM("PINDA temperature: ");
  2788. MYSERIAL.print((40 + i*5));
  2789. SERIAL_ECHOPGM(" Z shift (mm):");
  2790. MYSERIAL.print(0);
  2791. SERIAL_ECHOLNPGM("");
  2792. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2793. if (start_temp <= temp) break;
  2794. }
  2795. for (i++; i < 5; i++)
  2796. {
  2797. float temp = (40 + i * 5);
  2798. SERIAL_ECHOPGM("Step: ");
  2799. MYSERIAL.print(i + 2);
  2800. SERIAL_ECHOLNPGM("/6");
  2801. custom_message_state = i + 2;
  2802. setTargetBed(50 + 10 * (temp - 30) / 5);
  2803. // setTargetHotend(255, 0);
  2804. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2805. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2806. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2808. st_synchronize();
  2809. while (current_temperature_pinda < temp)
  2810. {
  2811. delay_keep_alive(1000);
  2812. serialecho_temperatures();
  2813. }
  2814. current_position[Z_AXIS] = 5;
  2815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2816. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2817. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2819. st_synchronize();
  2820. find_bed_induction_sensor_point_z(-1.f);
  2821. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2822. SERIAL_ECHOLNPGM("");
  2823. SERIAL_ECHOPGM("PINDA temperature: ");
  2824. MYSERIAL.print(current_temperature_pinda);
  2825. SERIAL_ECHOPGM(" Z shift (mm):");
  2826. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2827. SERIAL_ECHOLNPGM("");
  2828. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2829. }
  2830. custom_message_type = 0;
  2831. custom_message = false;
  2832. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2833. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2834. disable_x();
  2835. disable_y();
  2836. disable_z();
  2837. disable_e0();
  2838. disable_e1();
  2839. disable_e2();
  2840. setTargetBed(0); //set bed target temperature back to 0
  2841. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2842. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2843. lcd_update_enable(true);
  2844. lcd_update(2);
  2845. break;
  2846. }
  2847. #endif //PINDA_THERMISTOR
  2848. setTargetBed(PINDA_MIN_T);
  2849. float zero_z;
  2850. int z_shift = 0; //unit: steps
  2851. int t_c; // temperature
  2852. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2853. // We don't know where we are! HOME!
  2854. // Push the commands to the front of the message queue in the reverse order!
  2855. // There shall be always enough space reserved for these commands.
  2856. repeatcommand_front(); // repeat G76 with all its parameters
  2857. enquecommand_front_P((PSTR("G28 W0")));
  2858. break;
  2859. }
  2860. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2861. custom_message = true;
  2862. custom_message_type = 4;
  2863. custom_message_state = 1;
  2864. custom_message = MSG_TEMP_CALIBRATION;
  2865. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2866. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2867. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2869. st_synchronize();
  2870. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2871. delay_keep_alive(1000);
  2872. serialecho_temperatures();
  2873. }
  2874. //enquecommand_P(PSTR("M190 S50"));
  2875. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2876. delay_keep_alive(1000);
  2877. serialecho_temperatures();
  2878. }
  2879. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2880. current_position[Z_AXIS] = 5;
  2881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2882. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2883. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2885. st_synchronize();
  2886. find_bed_induction_sensor_point_z(-1.f);
  2887. zero_z = current_position[Z_AXIS];
  2888. //current_position[Z_AXIS]
  2889. SERIAL_ECHOLNPGM("");
  2890. SERIAL_ECHOPGM("ZERO: ");
  2891. MYSERIAL.print(current_position[Z_AXIS]);
  2892. SERIAL_ECHOLNPGM("");
  2893. for (int i = 0; i<5; i++) {
  2894. SERIAL_ECHOPGM("Step: ");
  2895. MYSERIAL.print(i+2);
  2896. SERIAL_ECHOLNPGM("/6");
  2897. custom_message_state = i + 2;
  2898. t_c = 60 + i * 10;
  2899. setTargetBed(t_c);
  2900. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2901. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2902. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2904. st_synchronize();
  2905. while (degBed() < t_c) {
  2906. delay_keep_alive(1000);
  2907. serialecho_temperatures();
  2908. }
  2909. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2910. delay_keep_alive(1000);
  2911. serialecho_temperatures();
  2912. }
  2913. current_position[Z_AXIS] = 5;
  2914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2915. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2916. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2918. st_synchronize();
  2919. find_bed_induction_sensor_point_z(-1.f);
  2920. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2921. SERIAL_ECHOLNPGM("");
  2922. SERIAL_ECHOPGM("Temperature: ");
  2923. MYSERIAL.print(t_c);
  2924. SERIAL_ECHOPGM(" Z shift (mm):");
  2925. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2926. SERIAL_ECHOLNPGM("");
  2927. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2928. }
  2929. custom_message_type = 0;
  2930. custom_message = false;
  2931. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2932. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2933. disable_x();
  2934. disable_y();
  2935. disable_z();
  2936. disable_e0();
  2937. disable_e1();
  2938. disable_e2();
  2939. setTargetBed(0); //set bed target temperature back to 0
  2940. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2941. lcd_update_enable(true);
  2942. lcd_update(2);
  2943. }
  2944. break;
  2945. #ifdef DIS
  2946. case 77:
  2947. {
  2948. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2949. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2950. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2951. float dimension_x = 40;
  2952. float dimension_y = 40;
  2953. int points_x = 40;
  2954. int points_y = 40;
  2955. float offset_x = 74;
  2956. float offset_y = 33;
  2957. if (code_seen('X')) dimension_x = code_value();
  2958. if (code_seen('Y')) dimension_y = code_value();
  2959. if (code_seen('XP')) points_x = code_value();
  2960. if (code_seen('YP')) points_y = code_value();
  2961. if (code_seen('XO')) offset_x = code_value();
  2962. if (code_seen('YO')) offset_y = code_value();
  2963. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2964. } break;
  2965. #endif
  2966. case 79: {
  2967. for (int i = 255; i > 0; i = i - 5) {
  2968. fanSpeed = i;
  2969. //delay_keep_alive(2000);
  2970. for (int j = 0; j < 100; j++) {
  2971. delay_keep_alive(100);
  2972. }
  2973. fan_speed[1];
  2974. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2975. }
  2976. }break;
  2977. /**
  2978. * G80: Mesh-based Z probe, probes a grid and produces a
  2979. * mesh to compensate for variable bed height
  2980. *
  2981. * The S0 report the points as below
  2982. *
  2983. * +----> X-axis
  2984. * |
  2985. * |
  2986. * v Y-axis
  2987. *
  2988. */
  2989. case 80:
  2990. #ifdef MK1BP
  2991. break;
  2992. #endif //MK1BP
  2993. case_G80:
  2994. {
  2995. mesh_bed_leveling_flag = true;
  2996. int8_t verbosity_level = 0;
  2997. static bool run = false;
  2998. if (code_seen('V')) {
  2999. // Just 'V' without a number counts as V1.
  3000. char c = strchr_pointer[1];
  3001. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3002. }
  3003. // Firstly check if we know where we are
  3004. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3005. // We don't know where we are! HOME!
  3006. // Push the commands to the front of the message queue in the reverse order!
  3007. // There shall be always enough space reserved for these commands.
  3008. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3009. repeatcommand_front(); // repeat G80 with all its parameters
  3010. enquecommand_front_P((PSTR("G28 W0")));
  3011. }
  3012. else {
  3013. mesh_bed_leveling_flag = false;
  3014. }
  3015. break;
  3016. }
  3017. bool temp_comp_start = true;
  3018. #ifdef PINDA_THERMISTOR
  3019. temp_comp_start = false;
  3020. #endif //PINDA_THERMISTOR
  3021. if (temp_comp_start)
  3022. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3023. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3024. temp_compensation_start();
  3025. run = true;
  3026. repeatcommand_front(); // repeat G80 with all its parameters
  3027. enquecommand_front_P((PSTR("G28 W0")));
  3028. }
  3029. else {
  3030. mesh_bed_leveling_flag = false;
  3031. }
  3032. break;
  3033. }
  3034. run = false;
  3035. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3036. mesh_bed_leveling_flag = false;
  3037. break;
  3038. }
  3039. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3040. bool custom_message_old = custom_message;
  3041. unsigned int custom_message_type_old = custom_message_type;
  3042. unsigned int custom_message_state_old = custom_message_state;
  3043. custom_message = true;
  3044. custom_message_type = 1;
  3045. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3046. lcd_update(1);
  3047. mbl.reset(); //reset mesh bed leveling
  3048. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3049. // consumed during the first movements following this statement.
  3050. babystep_undo();
  3051. // Cycle through all points and probe them
  3052. // First move up. During this first movement, the babystepping will be reverted.
  3053. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3055. // The move to the first calibration point.
  3056. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3057. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3058. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3059. #ifdef SUPPORT_VERBOSITY
  3060. if (verbosity_level >= 1) {
  3061. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3062. }
  3063. #endif //SUPPORT_VERBOSITY
  3064. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3066. // Wait until the move is finished.
  3067. st_synchronize();
  3068. int mesh_point = 0; //index number of calibration point
  3069. int ix = 0;
  3070. int iy = 0;
  3071. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3072. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3073. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3074. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3075. #ifdef SUPPORT_VERBOSITY
  3076. if (verbosity_level >= 1) {
  3077. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3078. }
  3079. #endif // SUPPORT_VERBOSITY
  3080. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3081. const char *kill_message = NULL;
  3082. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3083. // Get coords of a measuring point.
  3084. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3085. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3086. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3087. float z0 = 0.f;
  3088. if (has_z && mesh_point > 0) {
  3089. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3090. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3091. //#if 0
  3092. #ifdef SUPPORT_VERBOSITY
  3093. if (verbosity_level >= 1) {
  3094. SERIAL_ECHOLNPGM("");
  3095. SERIAL_ECHOPGM("Bed leveling, point: ");
  3096. MYSERIAL.print(mesh_point);
  3097. SERIAL_ECHOPGM(", calibration z: ");
  3098. MYSERIAL.print(z0, 5);
  3099. SERIAL_ECHOLNPGM("");
  3100. }
  3101. #endif // SUPPORT_VERBOSITY
  3102. //#endif
  3103. }
  3104. // Move Z up to MESH_HOME_Z_SEARCH.
  3105. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3107. st_synchronize();
  3108. // Move to XY position of the sensor point.
  3109. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3110. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3111. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3112. #ifdef SUPPORT_VERBOSITY
  3113. if (verbosity_level >= 1) {
  3114. SERIAL_PROTOCOL(mesh_point);
  3115. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3116. }
  3117. #endif // SUPPORT_VERBOSITY
  3118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3119. st_synchronize();
  3120. // Go down until endstop is hit
  3121. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3122. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3123. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3124. break;
  3125. }
  3126. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3127. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3128. break;
  3129. }
  3130. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3131. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3132. break;
  3133. }
  3134. #ifdef SUPPORT_VERBOSITY
  3135. if (verbosity_level >= 10) {
  3136. SERIAL_ECHOPGM("X: ");
  3137. MYSERIAL.print(current_position[X_AXIS], 5);
  3138. SERIAL_ECHOLNPGM("");
  3139. SERIAL_ECHOPGM("Y: ");
  3140. MYSERIAL.print(current_position[Y_AXIS], 5);
  3141. SERIAL_PROTOCOLPGM("\n");
  3142. }
  3143. #endif // SUPPORT_VERBOSITY
  3144. float offset_z = 0;
  3145. #ifdef PINDA_THERMISTOR
  3146. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3147. #endif //PINDA_THERMISTOR
  3148. // #ifdef SUPPORT_VERBOSITY
  3149. /* if (verbosity_level >= 1)
  3150. {
  3151. SERIAL_ECHOPGM("mesh bed leveling: ");
  3152. MYSERIAL.print(current_position[Z_AXIS], 5);
  3153. SERIAL_ECHOPGM(" offset: ");
  3154. MYSERIAL.print(offset_z, 5);
  3155. SERIAL_ECHOLNPGM("");
  3156. }*/
  3157. // #endif // SUPPORT_VERBOSITY
  3158. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3159. custom_message_state--;
  3160. mesh_point++;
  3161. lcd_update(1);
  3162. }
  3163. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3164. #ifdef SUPPORT_VERBOSITY
  3165. if (verbosity_level >= 20) {
  3166. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3167. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3168. MYSERIAL.print(current_position[Z_AXIS], 5);
  3169. }
  3170. #endif // SUPPORT_VERBOSITY
  3171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3172. st_synchronize();
  3173. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3174. kill(kill_message);
  3175. SERIAL_ECHOLNPGM("killed");
  3176. }
  3177. clean_up_after_endstop_move();
  3178. // SERIAL_ECHOLNPGM("clean up finished ");
  3179. bool apply_temp_comp = true;
  3180. #ifdef PINDA_THERMISTOR
  3181. apply_temp_comp = false;
  3182. #endif
  3183. if (apply_temp_comp)
  3184. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3185. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3186. // SERIAL_ECHOLNPGM("babystep applied");
  3187. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3188. #ifdef SUPPORT_VERBOSITY
  3189. if (verbosity_level >= 1) {
  3190. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3191. }
  3192. #endif // SUPPORT_VERBOSITY
  3193. for (uint8_t i = 0; i < 4; ++i) {
  3194. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3195. long correction = 0;
  3196. if (code_seen(codes[i]))
  3197. correction = code_value_long();
  3198. else if (eeprom_bed_correction_valid) {
  3199. unsigned char *addr = (i < 2) ?
  3200. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3201. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3202. correction = eeprom_read_int8(addr);
  3203. }
  3204. if (correction == 0)
  3205. continue;
  3206. float offset = float(correction) * 0.001f;
  3207. if (fabs(offset) > 0.101f) {
  3208. SERIAL_ERROR_START;
  3209. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3210. SERIAL_ECHO(offset);
  3211. SERIAL_ECHOLNPGM(" microns");
  3212. }
  3213. else {
  3214. switch (i) {
  3215. case 0:
  3216. for (uint8_t row = 0; row < 3; ++row) {
  3217. mbl.z_values[row][1] += 0.5f * offset;
  3218. mbl.z_values[row][0] += offset;
  3219. }
  3220. break;
  3221. case 1:
  3222. for (uint8_t row = 0; row < 3; ++row) {
  3223. mbl.z_values[row][1] += 0.5f * offset;
  3224. mbl.z_values[row][2] += offset;
  3225. }
  3226. break;
  3227. case 2:
  3228. for (uint8_t col = 0; col < 3; ++col) {
  3229. mbl.z_values[1][col] += 0.5f * offset;
  3230. mbl.z_values[0][col] += offset;
  3231. }
  3232. break;
  3233. case 3:
  3234. for (uint8_t col = 0; col < 3; ++col) {
  3235. mbl.z_values[1][col] += 0.5f * offset;
  3236. mbl.z_values[2][col] += offset;
  3237. }
  3238. break;
  3239. }
  3240. }
  3241. }
  3242. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3243. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3244. // SERIAL_ECHOLNPGM("Upsample finished");
  3245. mbl.active = 1; //activate mesh bed leveling
  3246. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3247. go_home_with_z_lift();
  3248. // SERIAL_ECHOLNPGM("Go home finished");
  3249. //unretract (after PINDA preheat retraction)
  3250. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3251. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3253. }
  3254. KEEPALIVE_STATE(NOT_BUSY);
  3255. // Restore custom message state
  3256. custom_message = custom_message_old;
  3257. custom_message_type = custom_message_type_old;
  3258. custom_message_state = custom_message_state_old;
  3259. mesh_bed_leveling_flag = false;
  3260. mesh_bed_run_from_menu = false;
  3261. lcd_update(2);
  3262. }
  3263. break;
  3264. /**
  3265. * G81: Print mesh bed leveling status and bed profile if activated
  3266. */
  3267. case 81:
  3268. if (mbl.active) {
  3269. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3270. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3271. SERIAL_PROTOCOLPGM(",");
  3272. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3273. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3274. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3275. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3276. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3277. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3278. SERIAL_PROTOCOLPGM(" ");
  3279. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3280. }
  3281. SERIAL_PROTOCOLPGM("\n");
  3282. }
  3283. }
  3284. else
  3285. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3286. break;
  3287. #if 0
  3288. /**
  3289. * G82: Single Z probe at current location
  3290. *
  3291. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3292. *
  3293. */
  3294. case 82:
  3295. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3296. setup_for_endstop_move();
  3297. find_bed_induction_sensor_point_z();
  3298. clean_up_after_endstop_move();
  3299. SERIAL_PROTOCOLPGM("Bed found at: ");
  3300. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3301. SERIAL_PROTOCOLPGM("\n");
  3302. break;
  3303. /**
  3304. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3305. */
  3306. case 83:
  3307. {
  3308. int babystepz = code_seen('S') ? code_value() : 0;
  3309. int BabyPosition = code_seen('P') ? code_value() : 0;
  3310. if (babystepz != 0) {
  3311. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3312. // Is the axis indexed starting with zero or one?
  3313. if (BabyPosition > 4) {
  3314. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3315. }else{
  3316. // Save it to the eeprom
  3317. babystepLoadZ = babystepz;
  3318. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3319. // adjust the Z
  3320. babystepsTodoZadd(babystepLoadZ);
  3321. }
  3322. }
  3323. }
  3324. break;
  3325. /**
  3326. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3327. */
  3328. case 84:
  3329. babystepsTodoZsubtract(babystepLoadZ);
  3330. // babystepLoadZ = 0;
  3331. break;
  3332. /**
  3333. * G85: Prusa3D specific: Pick best babystep
  3334. */
  3335. case 85:
  3336. lcd_pick_babystep();
  3337. break;
  3338. #endif
  3339. /**
  3340. * G86: Prusa3D specific: Disable babystep correction after home.
  3341. * This G-code will be performed at the start of a calibration script.
  3342. */
  3343. case 86:
  3344. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3345. break;
  3346. /**
  3347. * G87: Prusa3D specific: Enable babystep correction after home
  3348. * This G-code will be performed at the end of a calibration script.
  3349. */
  3350. case 87:
  3351. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3352. break;
  3353. /**
  3354. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3355. */
  3356. case 88:
  3357. break;
  3358. #endif // ENABLE_MESH_BED_LEVELING
  3359. case 90: // G90
  3360. relative_mode = false;
  3361. break;
  3362. case 91: // G91
  3363. relative_mode = true;
  3364. break;
  3365. case 92: // G92
  3366. if(!code_seen(axis_codes[E_AXIS]))
  3367. st_synchronize();
  3368. for(int8_t i=0; i < NUM_AXIS; i++) {
  3369. if(code_seen(axis_codes[i])) {
  3370. if(i == E_AXIS) {
  3371. current_position[i] = code_value();
  3372. plan_set_e_position(current_position[E_AXIS]);
  3373. }
  3374. else {
  3375. current_position[i] = code_value()+add_homing[i];
  3376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3377. }
  3378. }
  3379. }
  3380. break;
  3381. case 98: //activate farm mode
  3382. farm_mode = 1;
  3383. PingTime = millis();
  3384. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3385. break;
  3386. case 99: //deactivate farm mode
  3387. farm_mode = 0;
  3388. lcd_printer_connected();
  3389. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3390. lcd_update(2);
  3391. break;
  3392. default:
  3393. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3394. }
  3395. } // end if(code_seen('G'))
  3396. else if(code_seen('M'))
  3397. {
  3398. int index;
  3399. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3400. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3401. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3402. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3403. } else
  3404. switch((int)code_value())
  3405. {
  3406. #ifdef ULTIPANEL
  3407. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3408. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3409. {
  3410. char *src = strchr_pointer + 2;
  3411. codenum = 0;
  3412. bool hasP = false, hasS = false;
  3413. if (code_seen('P')) {
  3414. codenum = code_value(); // milliseconds to wait
  3415. hasP = codenum > 0;
  3416. }
  3417. if (code_seen('S')) {
  3418. codenum = code_value() * 1000; // seconds to wait
  3419. hasS = codenum > 0;
  3420. }
  3421. starpos = strchr(src, '*');
  3422. if (starpos != NULL) *(starpos) = '\0';
  3423. while (*src == ' ') ++src;
  3424. if (!hasP && !hasS && *src != '\0') {
  3425. lcd_setstatus(src);
  3426. } else {
  3427. LCD_MESSAGERPGM(MSG_USERWAIT);
  3428. }
  3429. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3430. st_synchronize();
  3431. previous_millis_cmd = millis();
  3432. if (codenum > 0){
  3433. codenum += millis(); // keep track of when we started waiting
  3434. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3435. while(millis() < codenum && !lcd_clicked()){
  3436. manage_heater();
  3437. manage_inactivity(true);
  3438. lcd_update();
  3439. }
  3440. KEEPALIVE_STATE(IN_HANDLER);
  3441. lcd_ignore_click(false);
  3442. }else{
  3443. if (!lcd_detected())
  3444. break;
  3445. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3446. while(!lcd_clicked()){
  3447. manage_heater();
  3448. manage_inactivity(true);
  3449. lcd_update();
  3450. }
  3451. KEEPALIVE_STATE(IN_HANDLER);
  3452. }
  3453. if (IS_SD_PRINTING)
  3454. LCD_MESSAGERPGM(MSG_RESUMING);
  3455. else
  3456. LCD_MESSAGERPGM(WELCOME_MSG);
  3457. }
  3458. break;
  3459. #endif
  3460. case 17:
  3461. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3462. enable_x();
  3463. enable_y();
  3464. enable_z();
  3465. enable_e0();
  3466. enable_e1();
  3467. enable_e2();
  3468. break;
  3469. #ifdef SDSUPPORT
  3470. case 20: // M20 - list SD card
  3471. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3472. card.ls();
  3473. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3474. break;
  3475. case 21: // M21 - init SD card
  3476. card.initsd();
  3477. break;
  3478. case 22: //M22 - release SD card
  3479. card.release();
  3480. break;
  3481. case 23: //M23 - Select file
  3482. starpos = (strchr(strchr_pointer + 4,'*'));
  3483. if(starpos!=NULL)
  3484. *(starpos)='\0';
  3485. card.openFile(strchr_pointer + 4,true);
  3486. break;
  3487. case 24: //M24 - Start SD print
  3488. if (!card.paused)
  3489. failstats_reset_print();
  3490. card.startFileprint();
  3491. starttime=millis();
  3492. break;
  3493. case 25: //M25 - Pause SD print
  3494. card.pauseSDPrint();
  3495. break;
  3496. case 26: //M26 - Set SD index
  3497. if(card.cardOK && code_seen('S')) {
  3498. card.setIndex(code_value_long());
  3499. }
  3500. break;
  3501. case 27: //M27 - Get SD status
  3502. card.getStatus();
  3503. break;
  3504. case 28: //M28 - Start SD write
  3505. starpos = (strchr(strchr_pointer + 4,'*'));
  3506. if(starpos != NULL){
  3507. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3508. strchr_pointer = strchr(npos,' ') + 1;
  3509. *(starpos) = '\0';
  3510. }
  3511. card.openFile(strchr_pointer+4,false);
  3512. break;
  3513. case 29: //M29 - Stop SD write
  3514. //processed in write to file routine above
  3515. //card,saving = false;
  3516. break;
  3517. case 30: //M30 <filename> Delete File
  3518. if (card.cardOK){
  3519. card.closefile();
  3520. starpos = (strchr(strchr_pointer + 4,'*'));
  3521. if(starpos != NULL){
  3522. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3523. strchr_pointer = strchr(npos,' ') + 1;
  3524. *(starpos) = '\0';
  3525. }
  3526. card.removeFile(strchr_pointer + 4);
  3527. }
  3528. break;
  3529. case 32: //M32 - Select file and start SD print
  3530. {
  3531. if(card.sdprinting) {
  3532. st_synchronize();
  3533. }
  3534. starpos = (strchr(strchr_pointer + 4,'*'));
  3535. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3536. if(namestartpos==NULL)
  3537. {
  3538. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3539. }
  3540. else
  3541. namestartpos++; //to skip the '!'
  3542. if(starpos!=NULL)
  3543. *(starpos)='\0';
  3544. bool call_procedure=(code_seen('P'));
  3545. if(strchr_pointer>namestartpos)
  3546. call_procedure=false; //false alert, 'P' found within filename
  3547. if( card.cardOK )
  3548. {
  3549. card.openFile(namestartpos,true,!call_procedure);
  3550. if(code_seen('S'))
  3551. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3552. card.setIndex(code_value_long());
  3553. card.startFileprint();
  3554. if(!call_procedure)
  3555. starttime=millis(); //procedure calls count as normal print time.
  3556. }
  3557. } break;
  3558. case 928: //M928 - Start SD write
  3559. starpos = (strchr(strchr_pointer + 5,'*'));
  3560. if(starpos != NULL){
  3561. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3562. strchr_pointer = strchr(npos,' ') + 1;
  3563. *(starpos) = '\0';
  3564. }
  3565. card.openLogFile(strchr_pointer+5);
  3566. break;
  3567. #endif //SDSUPPORT
  3568. case 31: //M31 take time since the start of the SD print or an M109 command
  3569. {
  3570. stoptime=millis();
  3571. char time[30];
  3572. unsigned long t=(stoptime-starttime)/1000;
  3573. int sec,min;
  3574. min=t/60;
  3575. sec=t%60;
  3576. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3577. SERIAL_ECHO_START;
  3578. SERIAL_ECHOLN(time);
  3579. lcd_setstatus(time);
  3580. autotempShutdown();
  3581. }
  3582. break;
  3583. #ifndef _DISABLE_M42_M226
  3584. case 42: //M42 -Change pin status via gcode
  3585. if (code_seen('S'))
  3586. {
  3587. int pin_status = code_value();
  3588. int pin_number = LED_PIN;
  3589. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3590. pin_number = code_value();
  3591. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3592. {
  3593. if (sensitive_pins[i] == pin_number)
  3594. {
  3595. pin_number = -1;
  3596. break;
  3597. }
  3598. }
  3599. #if defined(FAN_PIN) && FAN_PIN > -1
  3600. if (pin_number == FAN_PIN)
  3601. fanSpeed = pin_status;
  3602. #endif
  3603. if (pin_number > -1)
  3604. {
  3605. pinMode(pin_number, OUTPUT);
  3606. digitalWrite(pin_number, pin_status);
  3607. analogWrite(pin_number, pin_status);
  3608. }
  3609. }
  3610. break;
  3611. #endif //_DISABLE_M42_M226
  3612. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3613. // Reset the baby step value and the baby step applied flag.
  3614. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3615. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3616. // Reset the skew and offset in both RAM and EEPROM.
  3617. reset_bed_offset_and_skew();
  3618. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3619. // the planner will not perform any adjustments in the XY plane.
  3620. // Wait for the motors to stop and update the current position with the absolute values.
  3621. world2machine_revert_to_uncorrected();
  3622. break;
  3623. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3624. {
  3625. int8_t verbosity_level = 0;
  3626. bool only_Z = code_seen('Z');
  3627. #ifdef SUPPORT_VERBOSITY
  3628. if (code_seen('V'))
  3629. {
  3630. // Just 'V' without a number counts as V1.
  3631. char c = strchr_pointer[1];
  3632. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3633. }
  3634. #endif //SUPPORT_VERBOSITY
  3635. gcode_M45(only_Z, verbosity_level);
  3636. }
  3637. break;
  3638. /*
  3639. case 46:
  3640. {
  3641. // M46: Prusa3D: Show the assigned IP address.
  3642. uint8_t ip[4];
  3643. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3644. if (hasIP) {
  3645. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3646. SERIAL_ECHO(int(ip[0]));
  3647. SERIAL_ECHOPGM(".");
  3648. SERIAL_ECHO(int(ip[1]));
  3649. SERIAL_ECHOPGM(".");
  3650. SERIAL_ECHO(int(ip[2]));
  3651. SERIAL_ECHOPGM(".");
  3652. SERIAL_ECHO(int(ip[3]));
  3653. SERIAL_ECHOLNPGM("");
  3654. } else {
  3655. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3656. }
  3657. break;
  3658. }
  3659. */
  3660. case 47:
  3661. // M47: Prusa3D: Show end stops dialog on the display.
  3662. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3663. lcd_diag_show_end_stops();
  3664. KEEPALIVE_STATE(IN_HANDLER);
  3665. break;
  3666. #if 0
  3667. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3668. {
  3669. // Disable the default update procedure of the display. We will do a modal dialog.
  3670. lcd_update_enable(false);
  3671. // Let the planner use the uncorrected coordinates.
  3672. mbl.reset();
  3673. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3674. // the planner will not perform any adjustments in the XY plane.
  3675. // Wait for the motors to stop and update the current position with the absolute values.
  3676. world2machine_revert_to_uncorrected();
  3677. // Move the print head close to the bed.
  3678. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3680. st_synchronize();
  3681. // Home in the XY plane.
  3682. set_destination_to_current();
  3683. setup_for_endstop_move();
  3684. home_xy();
  3685. int8_t verbosity_level = 0;
  3686. if (code_seen('V')) {
  3687. // Just 'V' without a number counts as V1.
  3688. char c = strchr_pointer[1];
  3689. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3690. }
  3691. bool success = scan_bed_induction_points(verbosity_level);
  3692. clean_up_after_endstop_move();
  3693. // Print head up.
  3694. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3696. st_synchronize();
  3697. lcd_update_enable(true);
  3698. break;
  3699. }
  3700. #endif
  3701. // M48 Z-Probe repeatability measurement function.
  3702. //
  3703. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3704. //
  3705. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3706. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3707. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3708. // regenerated.
  3709. //
  3710. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3711. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3712. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3713. //
  3714. #ifdef ENABLE_AUTO_BED_LEVELING
  3715. #ifdef Z_PROBE_REPEATABILITY_TEST
  3716. case 48: // M48 Z-Probe repeatability
  3717. {
  3718. #if Z_MIN_PIN == -1
  3719. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3720. #endif
  3721. double sum=0.0;
  3722. double mean=0.0;
  3723. double sigma=0.0;
  3724. double sample_set[50];
  3725. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3726. double X_current, Y_current, Z_current;
  3727. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3728. if (code_seen('V') || code_seen('v')) {
  3729. verbose_level = code_value();
  3730. if (verbose_level<0 || verbose_level>4 ) {
  3731. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3732. goto Sigma_Exit;
  3733. }
  3734. }
  3735. if (verbose_level > 0) {
  3736. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3737. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3738. }
  3739. if (code_seen('n')) {
  3740. n_samples = code_value();
  3741. if (n_samples<4 || n_samples>50 ) {
  3742. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3743. goto Sigma_Exit;
  3744. }
  3745. }
  3746. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3747. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3748. Z_current = st_get_position_mm(Z_AXIS);
  3749. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3750. ext_position = st_get_position_mm(E_AXIS);
  3751. if (code_seen('X') || code_seen('x') ) {
  3752. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3753. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3754. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3755. goto Sigma_Exit;
  3756. }
  3757. }
  3758. if (code_seen('Y') || code_seen('y') ) {
  3759. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3760. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3761. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3762. goto Sigma_Exit;
  3763. }
  3764. }
  3765. if (code_seen('L') || code_seen('l') ) {
  3766. n_legs = code_value();
  3767. if ( n_legs==1 )
  3768. n_legs = 2;
  3769. if ( n_legs<0 || n_legs>15 ) {
  3770. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3771. goto Sigma_Exit;
  3772. }
  3773. }
  3774. //
  3775. // Do all the preliminary setup work. First raise the probe.
  3776. //
  3777. st_synchronize();
  3778. plan_bed_level_matrix.set_to_identity();
  3779. plan_buffer_line( X_current, Y_current, Z_start_location,
  3780. ext_position,
  3781. homing_feedrate[Z_AXIS]/60,
  3782. active_extruder);
  3783. st_synchronize();
  3784. //
  3785. // Now get everything to the specified probe point So we can safely do a probe to
  3786. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3787. // use that as a starting point for each probe.
  3788. //
  3789. if (verbose_level > 2)
  3790. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3791. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3792. ext_position,
  3793. homing_feedrate[X_AXIS]/60,
  3794. active_extruder);
  3795. st_synchronize();
  3796. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3797. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3798. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3799. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3800. //
  3801. // OK, do the inital probe to get us close to the bed.
  3802. // Then retrace the right amount and use that in subsequent probes
  3803. //
  3804. setup_for_endstop_move();
  3805. run_z_probe();
  3806. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3807. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3808. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3809. ext_position,
  3810. homing_feedrate[X_AXIS]/60,
  3811. active_extruder);
  3812. st_synchronize();
  3813. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3814. for( n=0; n<n_samples; n++) {
  3815. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3816. if ( n_legs) {
  3817. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3818. int rotational_direction, l;
  3819. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3820. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3821. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3822. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3823. //SERIAL_ECHOPAIR(" theta: ",theta);
  3824. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3825. //SERIAL_PROTOCOLLNPGM("");
  3826. for( l=0; l<n_legs-1; l++) {
  3827. if (rotational_direction==1)
  3828. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3829. else
  3830. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3831. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3832. if ( radius<0.0 )
  3833. radius = -radius;
  3834. X_current = X_probe_location + cos(theta) * radius;
  3835. Y_current = Y_probe_location + sin(theta) * radius;
  3836. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3837. X_current = X_MIN_POS;
  3838. if ( X_current>X_MAX_POS)
  3839. X_current = X_MAX_POS;
  3840. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3841. Y_current = Y_MIN_POS;
  3842. if ( Y_current>Y_MAX_POS)
  3843. Y_current = Y_MAX_POS;
  3844. if (verbose_level>3 ) {
  3845. SERIAL_ECHOPAIR("x: ", X_current);
  3846. SERIAL_ECHOPAIR("y: ", Y_current);
  3847. SERIAL_PROTOCOLLNPGM("");
  3848. }
  3849. do_blocking_move_to( X_current, Y_current, Z_current );
  3850. }
  3851. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3852. }
  3853. setup_for_endstop_move();
  3854. run_z_probe();
  3855. sample_set[n] = current_position[Z_AXIS];
  3856. //
  3857. // Get the current mean for the data points we have so far
  3858. //
  3859. sum=0.0;
  3860. for( j=0; j<=n; j++) {
  3861. sum = sum + sample_set[j];
  3862. }
  3863. mean = sum / (double (n+1));
  3864. //
  3865. // Now, use that mean to calculate the standard deviation for the
  3866. // data points we have so far
  3867. //
  3868. sum=0.0;
  3869. for( j=0; j<=n; j++) {
  3870. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3871. }
  3872. sigma = sqrt( sum / (double (n+1)) );
  3873. if (verbose_level > 1) {
  3874. SERIAL_PROTOCOL(n+1);
  3875. SERIAL_PROTOCOL(" of ");
  3876. SERIAL_PROTOCOL(n_samples);
  3877. SERIAL_PROTOCOLPGM(" z: ");
  3878. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3879. }
  3880. if (verbose_level > 2) {
  3881. SERIAL_PROTOCOL(" mean: ");
  3882. SERIAL_PROTOCOL_F(mean,6);
  3883. SERIAL_PROTOCOL(" sigma: ");
  3884. SERIAL_PROTOCOL_F(sigma,6);
  3885. }
  3886. if (verbose_level > 0)
  3887. SERIAL_PROTOCOLPGM("\n");
  3888. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3889. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3890. st_synchronize();
  3891. }
  3892. delay(1000);
  3893. clean_up_after_endstop_move();
  3894. // enable_endstops(true);
  3895. if (verbose_level > 0) {
  3896. SERIAL_PROTOCOLPGM("Mean: ");
  3897. SERIAL_PROTOCOL_F(mean, 6);
  3898. SERIAL_PROTOCOLPGM("\n");
  3899. }
  3900. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3901. SERIAL_PROTOCOL_F(sigma, 6);
  3902. SERIAL_PROTOCOLPGM("\n\n");
  3903. Sigma_Exit:
  3904. break;
  3905. }
  3906. #endif // Z_PROBE_REPEATABILITY_TEST
  3907. #endif // ENABLE_AUTO_BED_LEVELING
  3908. case 104: // M104
  3909. if(setTargetedHotend(104)){
  3910. break;
  3911. }
  3912. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3913. setWatch();
  3914. break;
  3915. case 112: // M112 -Emergency Stop
  3916. kill("", 3);
  3917. break;
  3918. case 140: // M140 set bed temp
  3919. if (code_seen('S')) setTargetBed(code_value());
  3920. break;
  3921. case 105 : // M105
  3922. if(setTargetedHotend(105)){
  3923. break;
  3924. }
  3925. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3926. SERIAL_PROTOCOLPGM("ok T:");
  3927. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3928. SERIAL_PROTOCOLPGM(" /");
  3929. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3930. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3931. SERIAL_PROTOCOLPGM(" B:");
  3932. SERIAL_PROTOCOL_F(degBed(),1);
  3933. SERIAL_PROTOCOLPGM(" /");
  3934. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3935. #endif //TEMP_BED_PIN
  3936. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3937. SERIAL_PROTOCOLPGM(" T");
  3938. SERIAL_PROTOCOL(cur_extruder);
  3939. SERIAL_PROTOCOLPGM(":");
  3940. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3941. SERIAL_PROTOCOLPGM(" /");
  3942. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3943. }
  3944. #else
  3945. SERIAL_ERROR_START;
  3946. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3947. #endif
  3948. SERIAL_PROTOCOLPGM(" @:");
  3949. #ifdef EXTRUDER_WATTS
  3950. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3951. SERIAL_PROTOCOLPGM("W");
  3952. #else
  3953. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3954. #endif
  3955. SERIAL_PROTOCOLPGM(" B@:");
  3956. #ifdef BED_WATTS
  3957. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3958. SERIAL_PROTOCOLPGM("W");
  3959. #else
  3960. SERIAL_PROTOCOL(getHeaterPower(-1));
  3961. #endif
  3962. #ifdef PINDA_THERMISTOR
  3963. SERIAL_PROTOCOLPGM(" P:");
  3964. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3965. #endif //PINDA_THERMISTOR
  3966. #ifdef AMBIENT_THERMISTOR
  3967. SERIAL_PROTOCOLPGM(" A:");
  3968. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3969. #endif //AMBIENT_THERMISTOR
  3970. #ifdef SHOW_TEMP_ADC_VALUES
  3971. {float raw = 0.0;
  3972. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3973. SERIAL_PROTOCOLPGM(" ADC B:");
  3974. SERIAL_PROTOCOL_F(degBed(),1);
  3975. SERIAL_PROTOCOLPGM("C->");
  3976. raw = rawBedTemp();
  3977. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3978. SERIAL_PROTOCOLPGM(" Rb->");
  3979. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3980. SERIAL_PROTOCOLPGM(" Rxb->");
  3981. SERIAL_PROTOCOL_F(raw, 5);
  3982. #endif
  3983. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3984. SERIAL_PROTOCOLPGM(" T");
  3985. SERIAL_PROTOCOL(cur_extruder);
  3986. SERIAL_PROTOCOLPGM(":");
  3987. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3988. SERIAL_PROTOCOLPGM("C->");
  3989. raw = rawHotendTemp(cur_extruder);
  3990. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3991. SERIAL_PROTOCOLPGM(" Rt");
  3992. SERIAL_PROTOCOL(cur_extruder);
  3993. SERIAL_PROTOCOLPGM("->");
  3994. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3995. SERIAL_PROTOCOLPGM(" Rx");
  3996. SERIAL_PROTOCOL(cur_extruder);
  3997. SERIAL_PROTOCOLPGM("->");
  3998. SERIAL_PROTOCOL_F(raw, 5);
  3999. }}
  4000. #endif
  4001. SERIAL_PROTOCOLLN("");
  4002. KEEPALIVE_STATE(NOT_BUSY);
  4003. return;
  4004. break;
  4005. case 109:
  4006. {// M109 - Wait for extruder heater to reach target.
  4007. if(setTargetedHotend(109)){
  4008. break;
  4009. }
  4010. LCD_MESSAGERPGM(MSG_HEATING);
  4011. heating_status = 1;
  4012. if (farm_mode) { prusa_statistics(1); };
  4013. #ifdef AUTOTEMP
  4014. autotemp_enabled=false;
  4015. #endif
  4016. if (code_seen('S')) {
  4017. setTargetHotend(code_value(), tmp_extruder);
  4018. CooldownNoWait = true;
  4019. } else if (code_seen('R')) {
  4020. setTargetHotend(code_value(), tmp_extruder);
  4021. CooldownNoWait = false;
  4022. }
  4023. #ifdef AUTOTEMP
  4024. if (code_seen('S')) autotemp_min=code_value();
  4025. if (code_seen('B')) autotemp_max=code_value();
  4026. if (code_seen('F'))
  4027. {
  4028. autotemp_factor=code_value();
  4029. autotemp_enabled=true;
  4030. }
  4031. #endif
  4032. setWatch();
  4033. codenum = millis();
  4034. /* See if we are heating up or cooling down */
  4035. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4036. KEEPALIVE_STATE(NOT_BUSY);
  4037. cancel_heatup = false;
  4038. wait_for_heater(codenum); //loops until target temperature is reached
  4039. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4040. KEEPALIVE_STATE(IN_HANDLER);
  4041. heating_status = 2;
  4042. if (farm_mode) { prusa_statistics(2); };
  4043. //starttime=millis();
  4044. previous_millis_cmd = millis();
  4045. }
  4046. break;
  4047. case 190: // M190 - Wait for bed heater to reach target.
  4048. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4049. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4050. heating_status = 3;
  4051. if (farm_mode) { prusa_statistics(1); };
  4052. if (code_seen('S'))
  4053. {
  4054. setTargetBed(code_value());
  4055. CooldownNoWait = true;
  4056. }
  4057. else if (code_seen('R'))
  4058. {
  4059. setTargetBed(code_value());
  4060. CooldownNoWait = false;
  4061. }
  4062. codenum = millis();
  4063. cancel_heatup = false;
  4064. target_direction = isHeatingBed(); // true if heating, false if cooling
  4065. KEEPALIVE_STATE(NOT_BUSY);
  4066. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4067. {
  4068. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4069. {
  4070. if (!farm_mode) {
  4071. float tt = degHotend(active_extruder);
  4072. SERIAL_PROTOCOLPGM("T:");
  4073. SERIAL_PROTOCOL(tt);
  4074. SERIAL_PROTOCOLPGM(" E:");
  4075. SERIAL_PROTOCOL((int)active_extruder);
  4076. SERIAL_PROTOCOLPGM(" B:");
  4077. SERIAL_PROTOCOL_F(degBed(), 1);
  4078. SERIAL_PROTOCOLLN("");
  4079. }
  4080. codenum = millis();
  4081. }
  4082. manage_heater();
  4083. manage_inactivity();
  4084. lcd_update();
  4085. }
  4086. LCD_MESSAGERPGM(MSG_BED_DONE);
  4087. KEEPALIVE_STATE(IN_HANDLER);
  4088. heating_status = 4;
  4089. previous_millis_cmd = millis();
  4090. #endif
  4091. break;
  4092. #if defined(FAN_PIN) && FAN_PIN > -1
  4093. case 106: //M106 Fan On
  4094. if (code_seen('S')){
  4095. fanSpeed=constrain(code_value(),0,255);
  4096. }
  4097. else {
  4098. fanSpeed=255;
  4099. }
  4100. break;
  4101. case 107: //M107 Fan Off
  4102. fanSpeed = 0;
  4103. break;
  4104. #endif //FAN_PIN
  4105. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4106. case 80: // M80 - Turn on Power Supply
  4107. SET_OUTPUT(PS_ON_PIN); //GND
  4108. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4109. // If you have a switch on suicide pin, this is useful
  4110. // if you want to start another print with suicide feature after
  4111. // a print without suicide...
  4112. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4113. SET_OUTPUT(SUICIDE_PIN);
  4114. WRITE(SUICIDE_PIN, HIGH);
  4115. #endif
  4116. #ifdef ULTIPANEL
  4117. powersupply = true;
  4118. LCD_MESSAGERPGM(WELCOME_MSG);
  4119. lcd_update();
  4120. #endif
  4121. break;
  4122. #endif
  4123. case 81: // M81 - Turn off Power Supply
  4124. disable_heater();
  4125. st_synchronize();
  4126. disable_e0();
  4127. disable_e1();
  4128. disable_e2();
  4129. finishAndDisableSteppers();
  4130. fanSpeed = 0;
  4131. delay(1000); // Wait a little before to switch off
  4132. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4133. st_synchronize();
  4134. suicide();
  4135. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4136. SET_OUTPUT(PS_ON_PIN);
  4137. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4138. #endif
  4139. #ifdef ULTIPANEL
  4140. powersupply = false;
  4141. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4142. /*
  4143. MACHNAME = "Prusa i3"
  4144. MSGOFF = "Vypnuto"
  4145. "Prusai3"" ""vypnuto""."
  4146. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4147. */
  4148. lcd_update();
  4149. #endif
  4150. break;
  4151. case 82:
  4152. axis_relative_modes[3] = false;
  4153. break;
  4154. case 83:
  4155. axis_relative_modes[3] = true;
  4156. break;
  4157. case 18: //compatibility
  4158. case 84: // M84
  4159. if(code_seen('S')){
  4160. stepper_inactive_time = code_value() * 1000;
  4161. }
  4162. else
  4163. {
  4164. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4165. if(all_axis)
  4166. {
  4167. st_synchronize();
  4168. disable_e0();
  4169. disable_e1();
  4170. disable_e2();
  4171. finishAndDisableSteppers();
  4172. }
  4173. else
  4174. {
  4175. st_synchronize();
  4176. if (code_seen('X')) disable_x();
  4177. if (code_seen('Y')) disable_y();
  4178. if (code_seen('Z')) disable_z();
  4179. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4180. if (code_seen('E')) {
  4181. disable_e0();
  4182. disable_e1();
  4183. disable_e2();
  4184. }
  4185. #endif
  4186. }
  4187. }
  4188. snmm_filaments_used = 0;
  4189. break;
  4190. case 85: // M85
  4191. if(code_seen('S')) {
  4192. max_inactive_time = code_value() * 1000;
  4193. }
  4194. break;
  4195. case 92: // M92
  4196. for(int8_t i=0; i < NUM_AXIS; i++)
  4197. {
  4198. if(code_seen(axis_codes[i]))
  4199. {
  4200. if(i == 3) { // E
  4201. float value = code_value();
  4202. if(value < 20.0) {
  4203. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4204. max_jerk[E_AXIS] *= factor;
  4205. max_feedrate[i] *= factor;
  4206. axis_steps_per_sqr_second[i] *= factor;
  4207. }
  4208. axis_steps_per_unit[i] = value;
  4209. }
  4210. else {
  4211. axis_steps_per_unit[i] = code_value();
  4212. }
  4213. }
  4214. }
  4215. break;
  4216. case 110: // M110 - reset line pos
  4217. if (code_seen('N'))
  4218. gcode_LastN = code_value_long();
  4219. break;
  4220. #ifdef HOST_KEEPALIVE_FEATURE
  4221. case 113: // M113 - Get or set Host Keepalive interval
  4222. if (code_seen('S')) {
  4223. host_keepalive_interval = (uint8_t)code_value_short();
  4224. // NOMORE(host_keepalive_interval, 60);
  4225. }
  4226. else {
  4227. SERIAL_ECHO_START;
  4228. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4229. SERIAL_PROTOCOLLN("");
  4230. }
  4231. break;
  4232. #endif
  4233. case 115: // M115
  4234. if (code_seen('V')) {
  4235. // Report the Prusa version number.
  4236. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4237. } else if (code_seen('U')) {
  4238. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4239. // pause the print and ask the user to upgrade the firmware.
  4240. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4241. } else {
  4242. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4243. }
  4244. break;
  4245. /* case 117: // M117 display message
  4246. starpos = (strchr(strchr_pointer + 5,'*'));
  4247. if(starpos!=NULL)
  4248. *(starpos)='\0';
  4249. lcd_setstatus(strchr_pointer + 5);
  4250. break;*/
  4251. case 114: // M114
  4252. gcode_M114();
  4253. break;
  4254. case 120: // M120
  4255. enable_endstops(false) ;
  4256. break;
  4257. case 121: // M121
  4258. enable_endstops(true) ;
  4259. break;
  4260. case 119: // M119
  4261. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4262. SERIAL_PROTOCOLLN("");
  4263. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4264. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4265. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4266. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4267. }else{
  4268. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4269. }
  4270. SERIAL_PROTOCOLLN("");
  4271. #endif
  4272. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4273. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4274. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4275. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4276. }else{
  4277. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4278. }
  4279. SERIAL_PROTOCOLLN("");
  4280. #endif
  4281. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4282. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4283. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4284. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4285. }else{
  4286. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4287. }
  4288. SERIAL_PROTOCOLLN("");
  4289. #endif
  4290. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4291. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4292. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4293. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4294. }else{
  4295. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4296. }
  4297. SERIAL_PROTOCOLLN("");
  4298. #endif
  4299. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4300. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4301. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4302. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4303. }else{
  4304. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4305. }
  4306. SERIAL_PROTOCOLLN("");
  4307. #endif
  4308. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4309. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4310. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4311. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4312. }else{
  4313. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4314. }
  4315. SERIAL_PROTOCOLLN("");
  4316. #endif
  4317. break;
  4318. //TODO: update for all axis, use for loop
  4319. #ifdef BLINKM
  4320. case 150: // M150
  4321. {
  4322. byte red;
  4323. byte grn;
  4324. byte blu;
  4325. if(code_seen('R')) red = code_value();
  4326. if(code_seen('U')) grn = code_value();
  4327. if(code_seen('B')) blu = code_value();
  4328. SendColors(red,grn,blu);
  4329. }
  4330. break;
  4331. #endif //BLINKM
  4332. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4333. {
  4334. tmp_extruder = active_extruder;
  4335. if(code_seen('T')) {
  4336. tmp_extruder = code_value();
  4337. if(tmp_extruder >= EXTRUDERS) {
  4338. SERIAL_ECHO_START;
  4339. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4340. break;
  4341. }
  4342. }
  4343. float area = .0;
  4344. if(code_seen('D')) {
  4345. float diameter = (float)code_value();
  4346. if (diameter == 0.0) {
  4347. // setting any extruder filament size disables volumetric on the assumption that
  4348. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4349. // for all extruders
  4350. volumetric_enabled = false;
  4351. } else {
  4352. filament_size[tmp_extruder] = (float)code_value();
  4353. // make sure all extruders have some sane value for the filament size
  4354. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4355. #if EXTRUDERS > 1
  4356. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4357. #if EXTRUDERS > 2
  4358. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4359. #endif
  4360. #endif
  4361. volumetric_enabled = true;
  4362. }
  4363. } else {
  4364. //reserved for setting filament diameter via UFID or filament measuring device
  4365. break;
  4366. }
  4367. calculate_extruder_multipliers();
  4368. }
  4369. break;
  4370. case 201: // M201
  4371. for(int8_t i=0; i < NUM_AXIS; i++)
  4372. {
  4373. if(code_seen(axis_codes[i]))
  4374. {
  4375. max_acceleration_units_per_sq_second[i] = code_value();
  4376. }
  4377. }
  4378. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4379. reset_acceleration_rates();
  4380. break;
  4381. #if 0 // Not used for Sprinter/grbl gen6
  4382. case 202: // M202
  4383. for(int8_t i=0; i < NUM_AXIS; i++) {
  4384. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4385. }
  4386. break;
  4387. #endif
  4388. case 203: // M203 max feedrate mm/sec
  4389. for(int8_t i=0; i < NUM_AXIS; i++) {
  4390. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4391. }
  4392. break;
  4393. case 204: // M204 acclereration S normal moves T filmanent only moves
  4394. {
  4395. if(code_seen('S')) acceleration = code_value() ;
  4396. if(code_seen('T')) retract_acceleration = code_value() ;
  4397. }
  4398. break;
  4399. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4400. {
  4401. if(code_seen('S')) minimumfeedrate = code_value();
  4402. if(code_seen('T')) mintravelfeedrate = code_value();
  4403. if(code_seen('B')) minsegmenttime = code_value() ;
  4404. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4405. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4406. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4407. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4408. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4409. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4410. }
  4411. break;
  4412. case 206: // M206 additional homing offset
  4413. for(int8_t i=0; i < 3; i++)
  4414. {
  4415. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4416. }
  4417. break;
  4418. #ifdef FWRETRACT
  4419. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4420. {
  4421. if(code_seen('S'))
  4422. {
  4423. retract_length = code_value() ;
  4424. }
  4425. if(code_seen('F'))
  4426. {
  4427. retract_feedrate = code_value()/60 ;
  4428. }
  4429. if(code_seen('Z'))
  4430. {
  4431. retract_zlift = code_value() ;
  4432. }
  4433. }break;
  4434. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4435. {
  4436. if(code_seen('S'))
  4437. {
  4438. retract_recover_length = code_value() ;
  4439. }
  4440. if(code_seen('F'))
  4441. {
  4442. retract_recover_feedrate = code_value()/60 ;
  4443. }
  4444. }break;
  4445. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4446. {
  4447. if(code_seen('S'))
  4448. {
  4449. int t= code_value() ;
  4450. switch(t)
  4451. {
  4452. case 0:
  4453. {
  4454. autoretract_enabled=false;
  4455. retracted[0]=false;
  4456. #if EXTRUDERS > 1
  4457. retracted[1]=false;
  4458. #endif
  4459. #if EXTRUDERS > 2
  4460. retracted[2]=false;
  4461. #endif
  4462. }break;
  4463. case 1:
  4464. {
  4465. autoretract_enabled=true;
  4466. retracted[0]=false;
  4467. #if EXTRUDERS > 1
  4468. retracted[1]=false;
  4469. #endif
  4470. #if EXTRUDERS > 2
  4471. retracted[2]=false;
  4472. #endif
  4473. }break;
  4474. default:
  4475. SERIAL_ECHO_START;
  4476. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4477. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4478. SERIAL_ECHOLNPGM("\"(1)");
  4479. }
  4480. }
  4481. }break;
  4482. #endif // FWRETRACT
  4483. #if EXTRUDERS > 1
  4484. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4485. {
  4486. if(setTargetedHotend(218)){
  4487. break;
  4488. }
  4489. if(code_seen('X'))
  4490. {
  4491. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4492. }
  4493. if(code_seen('Y'))
  4494. {
  4495. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4496. }
  4497. SERIAL_ECHO_START;
  4498. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4499. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4500. {
  4501. SERIAL_ECHO(" ");
  4502. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4503. SERIAL_ECHO(",");
  4504. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4505. }
  4506. SERIAL_ECHOLN("");
  4507. }break;
  4508. #endif
  4509. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4510. {
  4511. if(code_seen('S'))
  4512. {
  4513. feedmultiply = code_value() ;
  4514. }
  4515. }
  4516. break;
  4517. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4518. {
  4519. if(code_seen('S'))
  4520. {
  4521. int tmp_code = code_value();
  4522. if (code_seen('T'))
  4523. {
  4524. if(setTargetedHotend(221)){
  4525. break;
  4526. }
  4527. extruder_multiply[tmp_extruder] = tmp_code;
  4528. }
  4529. else
  4530. {
  4531. extrudemultiply = tmp_code ;
  4532. }
  4533. }
  4534. calculate_extruder_multipliers();
  4535. }
  4536. break;
  4537. #ifndef _DISABLE_M42_M226
  4538. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4539. {
  4540. if(code_seen('P')){
  4541. int pin_number = code_value(); // pin number
  4542. int pin_state = -1; // required pin state - default is inverted
  4543. if(code_seen('S')) pin_state = code_value(); // required pin state
  4544. if(pin_state >= -1 && pin_state <= 1){
  4545. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4546. {
  4547. if (sensitive_pins[i] == pin_number)
  4548. {
  4549. pin_number = -1;
  4550. break;
  4551. }
  4552. }
  4553. if (pin_number > -1)
  4554. {
  4555. int target = LOW;
  4556. st_synchronize();
  4557. pinMode(pin_number, INPUT);
  4558. switch(pin_state){
  4559. case 1:
  4560. target = HIGH;
  4561. break;
  4562. case 0:
  4563. target = LOW;
  4564. break;
  4565. case -1:
  4566. target = !digitalRead(pin_number);
  4567. break;
  4568. }
  4569. while(digitalRead(pin_number) != target){
  4570. manage_heater();
  4571. manage_inactivity();
  4572. lcd_update();
  4573. }
  4574. }
  4575. }
  4576. }
  4577. }
  4578. break;
  4579. #endif //_DISABLE_M42_M226
  4580. #if NUM_SERVOS > 0
  4581. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4582. {
  4583. int servo_index = -1;
  4584. int servo_position = 0;
  4585. if (code_seen('P'))
  4586. servo_index = code_value();
  4587. if (code_seen('S')) {
  4588. servo_position = code_value();
  4589. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4590. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4591. servos[servo_index].attach(0);
  4592. #endif
  4593. servos[servo_index].write(servo_position);
  4594. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4595. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4596. servos[servo_index].detach();
  4597. #endif
  4598. }
  4599. else {
  4600. SERIAL_ECHO_START;
  4601. SERIAL_ECHO("Servo ");
  4602. SERIAL_ECHO(servo_index);
  4603. SERIAL_ECHOLN(" out of range");
  4604. }
  4605. }
  4606. else if (servo_index >= 0) {
  4607. SERIAL_PROTOCOL(MSG_OK);
  4608. SERIAL_PROTOCOL(" Servo ");
  4609. SERIAL_PROTOCOL(servo_index);
  4610. SERIAL_PROTOCOL(": ");
  4611. SERIAL_PROTOCOL(servos[servo_index].read());
  4612. SERIAL_PROTOCOLLN("");
  4613. }
  4614. }
  4615. break;
  4616. #endif // NUM_SERVOS > 0
  4617. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4618. case 300: // M300
  4619. {
  4620. int beepS = code_seen('S') ? code_value() : 110;
  4621. int beepP = code_seen('P') ? code_value() : 1000;
  4622. if (beepS > 0)
  4623. {
  4624. #if BEEPER > 0
  4625. tone(BEEPER, beepS);
  4626. delay(beepP);
  4627. noTone(BEEPER);
  4628. #elif defined(ULTRALCD)
  4629. lcd_buzz(beepS, beepP);
  4630. #elif defined(LCD_USE_I2C_BUZZER)
  4631. lcd_buzz(beepP, beepS);
  4632. #endif
  4633. }
  4634. else
  4635. {
  4636. delay(beepP);
  4637. }
  4638. }
  4639. break;
  4640. #endif // M300
  4641. #ifdef PIDTEMP
  4642. case 301: // M301
  4643. {
  4644. if(code_seen('P')) Kp = code_value();
  4645. if(code_seen('I')) Ki = scalePID_i(code_value());
  4646. if(code_seen('D')) Kd = scalePID_d(code_value());
  4647. #ifdef PID_ADD_EXTRUSION_RATE
  4648. if(code_seen('C')) Kc = code_value();
  4649. #endif
  4650. updatePID();
  4651. SERIAL_PROTOCOLRPGM(MSG_OK);
  4652. SERIAL_PROTOCOL(" p:");
  4653. SERIAL_PROTOCOL(Kp);
  4654. SERIAL_PROTOCOL(" i:");
  4655. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4656. SERIAL_PROTOCOL(" d:");
  4657. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4658. #ifdef PID_ADD_EXTRUSION_RATE
  4659. SERIAL_PROTOCOL(" c:");
  4660. //Kc does not have scaling applied above, or in resetting defaults
  4661. SERIAL_PROTOCOL(Kc);
  4662. #endif
  4663. SERIAL_PROTOCOLLN("");
  4664. }
  4665. break;
  4666. #endif //PIDTEMP
  4667. #ifdef PIDTEMPBED
  4668. case 304: // M304
  4669. {
  4670. if(code_seen('P')) bedKp = code_value();
  4671. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4672. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4673. updatePID();
  4674. SERIAL_PROTOCOLRPGM(MSG_OK);
  4675. SERIAL_PROTOCOL(" p:");
  4676. SERIAL_PROTOCOL(bedKp);
  4677. SERIAL_PROTOCOL(" i:");
  4678. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4679. SERIAL_PROTOCOL(" d:");
  4680. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4681. SERIAL_PROTOCOLLN("");
  4682. }
  4683. break;
  4684. #endif //PIDTEMP
  4685. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4686. {
  4687. #ifdef CHDK
  4688. SET_OUTPUT(CHDK);
  4689. WRITE(CHDK, HIGH);
  4690. chdkHigh = millis();
  4691. chdkActive = true;
  4692. #else
  4693. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4694. const uint8_t NUM_PULSES=16;
  4695. const float PULSE_LENGTH=0.01524;
  4696. for(int i=0; i < NUM_PULSES; i++) {
  4697. WRITE(PHOTOGRAPH_PIN, HIGH);
  4698. _delay_ms(PULSE_LENGTH);
  4699. WRITE(PHOTOGRAPH_PIN, LOW);
  4700. _delay_ms(PULSE_LENGTH);
  4701. }
  4702. delay(7.33);
  4703. for(int i=0; i < NUM_PULSES; i++) {
  4704. WRITE(PHOTOGRAPH_PIN, HIGH);
  4705. _delay_ms(PULSE_LENGTH);
  4706. WRITE(PHOTOGRAPH_PIN, LOW);
  4707. _delay_ms(PULSE_LENGTH);
  4708. }
  4709. #endif
  4710. #endif //chdk end if
  4711. }
  4712. break;
  4713. #ifdef DOGLCD
  4714. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4715. {
  4716. if (code_seen('C')) {
  4717. lcd_setcontrast( ((int)code_value())&63 );
  4718. }
  4719. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4720. SERIAL_PROTOCOL(lcd_contrast);
  4721. SERIAL_PROTOCOLLN("");
  4722. }
  4723. break;
  4724. #endif
  4725. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4726. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4727. {
  4728. float temp = .0;
  4729. if (code_seen('S')) temp=code_value();
  4730. set_extrude_min_temp(temp);
  4731. }
  4732. break;
  4733. #endif
  4734. case 303: // M303 PID autotune
  4735. {
  4736. float temp = 150.0;
  4737. int e=0;
  4738. int c=5;
  4739. if (code_seen('E')) e=code_value();
  4740. if (e<0)
  4741. temp=70;
  4742. if (code_seen('S')) temp=code_value();
  4743. if (code_seen('C')) c=code_value();
  4744. PID_autotune(temp, e, c);
  4745. }
  4746. break;
  4747. case 400: // M400 finish all moves
  4748. {
  4749. st_synchronize();
  4750. }
  4751. break;
  4752. case 500: // M500 Store settings in EEPROM
  4753. {
  4754. Config_StoreSettings(EEPROM_OFFSET);
  4755. }
  4756. break;
  4757. case 501: // M501 Read settings from EEPROM
  4758. {
  4759. Config_RetrieveSettings(EEPROM_OFFSET);
  4760. }
  4761. break;
  4762. case 502: // M502 Revert to default settings
  4763. {
  4764. Config_ResetDefault();
  4765. }
  4766. break;
  4767. case 503: // M503 print settings currently in memory
  4768. {
  4769. Config_PrintSettings();
  4770. }
  4771. break;
  4772. case 509: //M509 Force language selection
  4773. {
  4774. lcd_force_language_selection();
  4775. SERIAL_ECHO_START;
  4776. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4777. }
  4778. break;
  4779. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4780. case 540:
  4781. {
  4782. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4783. }
  4784. break;
  4785. #endif
  4786. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4787. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4788. {
  4789. float value;
  4790. if (code_seen('Z'))
  4791. {
  4792. value = code_value();
  4793. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4794. {
  4795. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4796. SERIAL_ECHO_START;
  4797. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4798. SERIAL_PROTOCOLLN("");
  4799. }
  4800. else
  4801. {
  4802. SERIAL_ECHO_START;
  4803. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4804. SERIAL_ECHORPGM(MSG_Z_MIN);
  4805. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4806. SERIAL_ECHORPGM(MSG_Z_MAX);
  4807. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4808. SERIAL_PROTOCOLLN("");
  4809. }
  4810. }
  4811. else
  4812. {
  4813. SERIAL_ECHO_START;
  4814. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4815. SERIAL_ECHO(-zprobe_zoffset);
  4816. SERIAL_PROTOCOLLN("");
  4817. }
  4818. break;
  4819. }
  4820. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4821. #ifdef FILAMENTCHANGEENABLE
  4822. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4823. {
  4824. #ifdef PAT9125
  4825. bool old_fsensor_enabled = fsensor_enabled;
  4826. fsensor_enabled = false; //temporary solution for unexpected restarting
  4827. #endif //PAT9125
  4828. st_synchronize();
  4829. float target[4];
  4830. float lastpos[4];
  4831. if (farm_mode)
  4832. {
  4833. prusa_statistics(22);
  4834. }
  4835. feedmultiplyBckp=feedmultiply;
  4836. int8_t TooLowZ = 0;
  4837. float HotendTempBckp = degTargetHotend(active_extruder);
  4838. int fanSpeedBckp = fanSpeed;
  4839. target[X_AXIS]=current_position[X_AXIS];
  4840. target[Y_AXIS]=current_position[Y_AXIS];
  4841. target[Z_AXIS]=current_position[Z_AXIS];
  4842. target[E_AXIS]=current_position[E_AXIS];
  4843. lastpos[X_AXIS]=current_position[X_AXIS];
  4844. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4845. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4846. lastpos[E_AXIS]=current_position[E_AXIS];
  4847. //Restract extruder
  4848. if(code_seen('E'))
  4849. {
  4850. target[E_AXIS]+= code_value();
  4851. }
  4852. else
  4853. {
  4854. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4855. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4856. #endif
  4857. }
  4858. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4859. //Lift Z
  4860. if(code_seen('Z'))
  4861. {
  4862. target[Z_AXIS]+= code_value();
  4863. }
  4864. else
  4865. {
  4866. #ifdef FILAMENTCHANGE_ZADD
  4867. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4868. if(target[Z_AXIS] < 10){
  4869. target[Z_AXIS]+= 10 ;
  4870. TooLowZ = 1;
  4871. }else{
  4872. TooLowZ = 0;
  4873. }
  4874. #endif
  4875. }
  4876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4877. //Move XY to side
  4878. if(code_seen('X'))
  4879. {
  4880. target[X_AXIS]+= code_value();
  4881. }
  4882. else
  4883. {
  4884. #ifdef FILAMENTCHANGE_XPOS
  4885. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4886. #endif
  4887. }
  4888. if(code_seen('Y'))
  4889. {
  4890. target[Y_AXIS]= code_value();
  4891. }
  4892. else
  4893. {
  4894. #ifdef FILAMENTCHANGE_YPOS
  4895. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4896. #endif
  4897. }
  4898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4899. st_synchronize();
  4900. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4901. uint8_t cnt = 0;
  4902. int counterBeep = 0;
  4903. fanSpeed = 0;
  4904. unsigned long waiting_start_time = millis();
  4905. uint8_t wait_for_user_state = 0;
  4906. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4907. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4908. //cnt++;
  4909. manage_heater();
  4910. manage_inactivity(true);
  4911. /*#ifdef SNMM
  4912. target[E_AXIS] += 0.002;
  4913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4914. #endif // SNMM*/
  4915. //if (cnt == 0)
  4916. {
  4917. #if BEEPER > 0
  4918. if (counterBeep == 500) {
  4919. counterBeep = 0;
  4920. }
  4921. SET_OUTPUT(BEEPER);
  4922. if (counterBeep == 0) {
  4923. WRITE(BEEPER, HIGH);
  4924. }
  4925. if (counterBeep == 20) {
  4926. WRITE(BEEPER, LOW);
  4927. }
  4928. counterBeep++;
  4929. #else
  4930. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4931. lcd_buzz(1000 / 6, 100);
  4932. #else
  4933. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4934. #endif
  4935. #endif
  4936. }
  4937. switch (wait_for_user_state) {
  4938. case 0:
  4939. delay_keep_alive(4);
  4940. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4941. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4942. wait_for_user_state = 1;
  4943. setTargetHotend(0, 0);
  4944. setTargetHotend(0, 1);
  4945. setTargetHotend(0, 2);
  4946. st_synchronize();
  4947. disable_e0();
  4948. disable_e1();
  4949. disable_e2();
  4950. }
  4951. break;
  4952. case 1:
  4953. delay_keep_alive(4);
  4954. if (lcd_clicked()) {
  4955. setTargetHotend(HotendTempBckp, active_extruder);
  4956. lcd_wait_for_heater();
  4957. wait_for_user_state = 2;
  4958. }
  4959. break;
  4960. case 2:
  4961. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4962. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4963. waiting_start_time = millis();
  4964. wait_for_user_state = 0;
  4965. }
  4966. else {
  4967. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4968. lcd.setCursor(1, 4);
  4969. lcd.print(ftostr3(degHotend(active_extruder)));
  4970. }
  4971. break;
  4972. }
  4973. }
  4974. WRITE(BEEPER, LOW);
  4975. lcd_change_fil_state = 0;
  4976. // Unload filament
  4977. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4978. KEEPALIVE_STATE(IN_HANDLER);
  4979. custom_message = true;
  4980. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4981. if (code_seen('L'))
  4982. {
  4983. target[E_AXIS] += code_value();
  4984. }
  4985. else
  4986. {
  4987. #ifdef SNMM
  4988. #else
  4989. #ifdef FILAMENTCHANGE_FINALRETRACT
  4990. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4991. #endif
  4992. #endif // SNMM
  4993. }
  4994. #ifdef SNMM
  4995. target[E_AXIS] += 12;
  4996. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4997. target[E_AXIS] += 6;
  4998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4999. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5001. st_synchronize();
  5002. target[E_AXIS] += (FIL_COOLING);
  5003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5004. target[E_AXIS] += (FIL_COOLING*-1);
  5005. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5006. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5007. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5008. st_synchronize();
  5009. #else
  5010. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5011. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5012. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5013. st_synchronize();
  5014. #ifdef TMC2130
  5015. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5016. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5017. #else
  5018. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5019. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5020. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5021. #endif //TMC2130
  5022. target[E_AXIS] -= 45;
  5023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5024. st_synchronize();
  5025. target[E_AXIS] -= 15;
  5026. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5027. st_synchronize();
  5028. target[E_AXIS] -= 20;
  5029. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5030. st_synchronize();
  5031. #ifdef TMC2130
  5032. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5033. #else
  5034. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5035. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5036. else digipot_current(2, tmp_motor_loud[2]);
  5037. #endif //TMC2130
  5038. #endif // SNMM
  5039. //finish moves
  5040. st_synchronize();
  5041. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5042. //disable extruder steppers so filament can be removed
  5043. disable_e0();
  5044. disable_e1();
  5045. disable_e2();
  5046. delay(100);
  5047. WRITE(BEEPER, HIGH);
  5048. counterBeep = 0;
  5049. while(!lcd_clicked() && (counterBeep < 50)) {
  5050. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5051. delay_keep_alive(100);
  5052. counterBeep++;
  5053. }
  5054. WRITE(BEEPER, LOW);
  5055. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5056. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5057. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5058. //lcd_return_to_status();
  5059. lcd_update_enable(true);
  5060. //Wait for user to insert filament
  5061. lcd_wait_interact();
  5062. //load_filament_time = millis();
  5063. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5064. #ifdef PAT9125
  5065. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5066. #endif //PAT9125
  5067. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5068. while(!lcd_clicked())
  5069. {
  5070. manage_heater();
  5071. manage_inactivity(true);
  5072. #ifdef PAT9125
  5073. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5074. {
  5075. tone(BEEPER, 1000);
  5076. delay_keep_alive(50);
  5077. noTone(BEEPER);
  5078. break;
  5079. }
  5080. #endif //PAT9125
  5081. /*#ifdef SNMM
  5082. target[E_AXIS] += 0.002;
  5083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5084. #endif // SNMM*/
  5085. }
  5086. #ifdef PAT9125
  5087. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5088. #endif //PAT9125
  5089. //WRITE(BEEPER, LOW);
  5090. KEEPALIVE_STATE(IN_HANDLER);
  5091. #ifdef SNMM
  5092. display_loading();
  5093. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5094. do {
  5095. target[E_AXIS] += 0.002;
  5096. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5097. delay_keep_alive(2);
  5098. } while (!lcd_clicked());
  5099. KEEPALIVE_STATE(IN_HANDLER);
  5100. /*if (millis() - load_filament_time > 2) {
  5101. load_filament_time = millis();
  5102. target[E_AXIS] += 0.001;
  5103. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5104. }*/
  5105. //Filament inserted
  5106. //Feed the filament to the end of nozzle quickly
  5107. st_synchronize();
  5108. target[E_AXIS] += bowden_length[snmm_extruder];
  5109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5110. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5112. target[E_AXIS] += 40;
  5113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5114. target[E_AXIS] += 10;
  5115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5116. #else
  5117. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5119. #endif // SNMM
  5120. //Extrude some filament
  5121. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5123. //Wait for user to check the state
  5124. lcd_change_fil_state = 0;
  5125. lcd_loading_filament();
  5126. tone(BEEPER, 500);
  5127. delay_keep_alive(50);
  5128. noTone(BEEPER);
  5129. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5130. lcd_change_fil_state = 0;
  5131. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5132. lcd_alright();
  5133. KEEPALIVE_STATE(IN_HANDLER);
  5134. switch(lcd_change_fil_state){
  5135. // Filament failed to load so load it again
  5136. case 2:
  5137. #ifdef SNMM
  5138. display_loading();
  5139. do {
  5140. target[E_AXIS] += 0.002;
  5141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5142. delay_keep_alive(2);
  5143. } while (!lcd_clicked());
  5144. st_synchronize();
  5145. target[E_AXIS] += bowden_length[snmm_extruder];
  5146. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5147. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5148. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5149. target[E_AXIS] += 40;
  5150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5151. target[E_AXIS] += 10;
  5152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5153. #else
  5154. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5156. #endif
  5157. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5159. lcd_loading_filament();
  5160. break;
  5161. // Filament loaded properly but color is not clear
  5162. case 3:
  5163. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5165. lcd_loading_color();
  5166. break;
  5167. // Everything good
  5168. default:
  5169. lcd_change_success();
  5170. lcd_update_enable(true);
  5171. break;
  5172. }
  5173. }
  5174. //Not let's go back to print
  5175. fanSpeed = fanSpeedBckp;
  5176. //Feed a little of filament to stabilize pressure
  5177. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5178. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5179. //Retract
  5180. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5182. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5183. //Move XY back
  5184. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5185. //Move Z back
  5186. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5187. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5188. //Unretract
  5189. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5190. //Set E position to original
  5191. plan_set_e_position(lastpos[E_AXIS]);
  5192. //Recover feed rate
  5193. feedmultiply=feedmultiplyBckp;
  5194. char cmd[9];
  5195. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5196. enquecommand(cmd);
  5197. lcd_setstatuspgm(WELCOME_MSG);
  5198. custom_message = false;
  5199. custom_message_type = 0;
  5200. #ifdef PAT9125
  5201. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5202. if (fsensor_M600)
  5203. {
  5204. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5205. st_synchronize();
  5206. while (!is_buffer_empty())
  5207. {
  5208. process_commands();
  5209. cmdqueue_pop_front();
  5210. }
  5211. fsensor_enable();
  5212. fsensor_restore_print_and_continue();
  5213. }
  5214. #endif //PAT9125
  5215. }
  5216. break;
  5217. #endif //FILAMENTCHANGEENABLE
  5218. case 601: {
  5219. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5220. }
  5221. break;
  5222. case 602: {
  5223. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5224. }
  5225. break;
  5226. #ifdef LIN_ADVANCE
  5227. case 900: // M900: Set LIN_ADVANCE options.
  5228. gcode_M900();
  5229. break;
  5230. #endif
  5231. case 907: // M907 Set digital trimpot motor current using axis codes.
  5232. {
  5233. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5234. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5235. if(code_seen('B')) digipot_current(4,code_value());
  5236. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5237. #endif
  5238. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5239. if(code_seen('X')) digipot_current(0, code_value());
  5240. #endif
  5241. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5242. if(code_seen('Z')) digipot_current(1, code_value());
  5243. #endif
  5244. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5245. if(code_seen('E')) digipot_current(2, code_value());
  5246. #endif
  5247. #ifdef DIGIPOT_I2C
  5248. // this one uses actual amps in floating point
  5249. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5250. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5251. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5252. #endif
  5253. }
  5254. break;
  5255. case 908: // M908 Control digital trimpot directly.
  5256. {
  5257. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5258. uint8_t channel,current;
  5259. if(code_seen('P')) channel=code_value();
  5260. if(code_seen('S')) current=code_value();
  5261. digitalPotWrite(channel, current);
  5262. #endif
  5263. }
  5264. break;
  5265. #ifdef TMC2130
  5266. case 910: // M910 TMC2130 init
  5267. {
  5268. tmc2130_init();
  5269. }
  5270. break;
  5271. case 911: // M911 Set TMC2130 holding currents
  5272. {
  5273. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5274. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5275. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5276. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5277. }
  5278. break;
  5279. case 912: // M912 Set TMC2130 running currents
  5280. {
  5281. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5282. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5283. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5284. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5285. }
  5286. break;
  5287. case 913: // M913 Print TMC2130 currents
  5288. {
  5289. tmc2130_print_currents();
  5290. }
  5291. break;
  5292. case 914: // M914 Set normal mode
  5293. {
  5294. tmc2130_mode = TMC2130_MODE_NORMAL;
  5295. tmc2130_init();
  5296. }
  5297. break;
  5298. case 915: // M915 Set silent mode
  5299. {
  5300. tmc2130_mode = TMC2130_MODE_SILENT;
  5301. tmc2130_init();
  5302. }
  5303. break;
  5304. case 916: // M916 Set sg_thrs
  5305. {
  5306. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5307. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5308. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5309. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5310. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5311. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5312. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5313. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5314. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5315. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5316. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5317. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5318. }
  5319. break;
  5320. case 917: // M917 Set TMC2130 pwm_ampl
  5321. {
  5322. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5323. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5324. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5325. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5326. }
  5327. break;
  5328. case 918: // M918 Set TMC2130 pwm_grad
  5329. {
  5330. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5331. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5332. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5333. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5334. }
  5335. break;
  5336. #endif //TMC2130
  5337. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5338. {
  5339. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5340. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5341. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5342. if(code_seen('B')) microstep_mode(4,code_value());
  5343. microstep_readings();
  5344. #endif
  5345. }
  5346. break;
  5347. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5348. {
  5349. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5350. if(code_seen('S')) switch((int)code_value())
  5351. {
  5352. case 1:
  5353. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5354. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5355. break;
  5356. case 2:
  5357. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5358. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5359. break;
  5360. }
  5361. microstep_readings();
  5362. #endif
  5363. }
  5364. break;
  5365. case 701: //M701: load filament
  5366. {
  5367. gcode_M701();
  5368. }
  5369. break;
  5370. case 702:
  5371. {
  5372. #ifdef SNMM
  5373. if (code_seen('U')) {
  5374. extr_unload_used(); //unload all filaments which were used in current print
  5375. }
  5376. else if (code_seen('C')) {
  5377. extr_unload(); //unload just current filament
  5378. }
  5379. else {
  5380. extr_unload_all(); //unload all filaments
  5381. }
  5382. #else
  5383. #ifdef PAT9125
  5384. bool old_fsensor_enabled = fsensor_enabled;
  5385. fsensor_enabled = false;
  5386. #endif //PAT9125
  5387. custom_message = true;
  5388. custom_message_type = 2;
  5389. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5390. // extr_unload2();
  5391. current_position[E_AXIS] -= 45;
  5392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5393. st_synchronize();
  5394. current_position[E_AXIS] -= 15;
  5395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5396. st_synchronize();
  5397. current_position[E_AXIS] -= 20;
  5398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5399. st_synchronize();
  5400. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5401. //disable extruder steppers so filament can be removed
  5402. disable_e0();
  5403. disable_e1();
  5404. disable_e2();
  5405. delay(100);
  5406. WRITE(BEEPER, HIGH);
  5407. uint8_t counterBeep = 0;
  5408. while (!lcd_clicked() && (counterBeep < 50)) {
  5409. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5410. delay_keep_alive(100);
  5411. counterBeep++;
  5412. }
  5413. WRITE(BEEPER, LOW);
  5414. st_synchronize();
  5415. while (lcd_clicked()) delay_keep_alive(100);
  5416. lcd_update_enable(true);
  5417. lcd_setstatuspgm(WELCOME_MSG);
  5418. custom_message = false;
  5419. custom_message_type = 0;
  5420. #ifdef PAT9125
  5421. fsensor_enabled = old_fsensor_enabled;
  5422. #endif //PAT9125
  5423. #endif
  5424. }
  5425. break;
  5426. case 999: // M999: Restart after being stopped
  5427. Stopped = false;
  5428. lcd_reset_alert_level();
  5429. gcode_LastN = Stopped_gcode_LastN;
  5430. FlushSerialRequestResend();
  5431. break;
  5432. default:
  5433. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5434. }
  5435. } // end if(code_seen('M')) (end of M codes)
  5436. else if(code_seen('T'))
  5437. {
  5438. int index;
  5439. st_synchronize();
  5440. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5441. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5442. SERIAL_ECHOLNPGM("Invalid T code.");
  5443. }
  5444. else {
  5445. if (*(strchr_pointer + index) == '?') {
  5446. tmp_extruder = choose_extruder_menu();
  5447. }
  5448. else {
  5449. tmp_extruder = code_value();
  5450. }
  5451. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5452. #ifdef SNMM
  5453. #ifdef LIN_ADVANCE
  5454. if (snmm_extruder != tmp_extruder)
  5455. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5456. #endif
  5457. snmm_extruder = tmp_extruder;
  5458. delay(100);
  5459. disable_e0();
  5460. disable_e1();
  5461. disable_e2();
  5462. pinMode(E_MUX0_PIN, OUTPUT);
  5463. pinMode(E_MUX1_PIN, OUTPUT);
  5464. pinMode(E_MUX2_PIN, OUTPUT);
  5465. delay(100);
  5466. SERIAL_ECHO_START;
  5467. SERIAL_ECHO("T:");
  5468. SERIAL_ECHOLN((int)tmp_extruder);
  5469. switch (tmp_extruder) {
  5470. case 1:
  5471. WRITE(E_MUX0_PIN, HIGH);
  5472. WRITE(E_MUX1_PIN, LOW);
  5473. WRITE(E_MUX2_PIN, LOW);
  5474. break;
  5475. case 2:
  5476. WRITE(E_MUX0_PIN, LOW);
  5477. WRITE(E_MUX1_PIN, HIGH);
  5478. WRITE(E_MUX2_PIN, LOW);
  5479. break;
  5480. case 3:
  5481. WRITE(E_MUX0_PIN, HIGH);
  5482. WRITE(E_MUX1_PIN, HIGH);
  5483. WRITE(E_MUX2_PIN, LOW);
  5484. break;
  5485. default:
  5486. WRITE(E_MUX0_PIN, LOW);
  5487. WRITE(E_MUX1_PIN, LOW);
  5488. WRITE(E_MUX2_PIN, LOW);
  5489. break;
  5490. }
  5491. delay(100);
  5492. #else
  5493. if (tmp_extruder >= EXTRUDERS) {
  5494. SERIAL_ECHO_START;
  5495. SERIAL_ECHOPGM("T");
  5496. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5497. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5498. }
  5499. else {
  5500. boolean make_move = false;
  5501. if (code_seen('F')) {
  5502. make_move = true;
  5503. next_feedrate = code_value();
  5504. if (next_feedrate > 0.0) {
  5505. feedrate = next_feedrate;
  5506. }
  5507. }
  5508. #if EXTRUDERS > 1
  5509. if (tmp_extruder != active_extruder) {
  5510. // Save current position to return to after applying extruder offset
  5511. memcpy(destination, current_position, sizeof(destination));
  5512. // Offset extruder (only by XY)
  5513. int i;
  5514. for (i = 0; i < 2; i++) {
  5515. current_position[i] = current_position[i] -
  5516. extruder_offset[i][active_extruder] +
  5517. extruder_offset[i][tmp_extruder];
  5518. }
  5519. // Set the new active extruder and position
  5520. active_extruder = tmp_extruder;
  5521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5522. // Move to the old position if 'F' was in the parameters
  5523. if (make_move && Stopped == false) {
  5524. prepare_move();
  5525. }
  5526. }
  5527. #endif
  5528. SERIAL_ECHO_START;
  5529. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5530. SERIAL_PROTOCOLLN((int)active_extruder);
  5531. }
  5532. #endif
  5533. }
  5534. } // end if(code_seen('T')) (end of T codes)
  5535. #ifdef DEBUG_DCODES
  5536. else if (code_seen('D')) // D codes (debug)
  5537. {
  5538. switch((int)code_value())
  5539. {
  5540. case -1: // D-1 - Endless loop
  5541. dcode__1(); break;
  5542. case 0: // D0 - Reset
  5543. dcode_0(); break;
  5544. case 1: // D1 - Clear EEPROM
  5545. dcode_1(); break;
  5546. case 2: // D2 - Read/Write RAM
  5547. dcode_2(); break;
  5548. case 3: // D3 - Read/Write EEPROM
  5549. dcode_3(); break;
  5550. case 4: // D4 - Read/Write PIN
  5551. dcode_4(); break;
  5552. case 5: // D5 - Read/Write FLASH
  5553. // dcode_5(); break;
  5554. break;
  5555. case 6: // D6 - Read/Write external FLASH
  5556. dcode_6(); break;
  5557. case 7: // D7 - Read/Write Bootloader
  5558. dcode_7(); break;
  5559. case 8: // D8 - Read/Write PINDA
  5560. dcode_8(); break;
  5561. case 9: // D9 - Read/Write ADC
  5562. dcode_9(); break;
  5563. case 10: // D10 - XYZ calibration = OK
  5564. dcode_10(); break;
  5565. case 12: //D12 - Reset failstat counters
  5566. dcode_12(); break;
  5567. #ifdef TMC2130
  5568. case 2130: // D9125 - TMC2130
  5569. dcode_2130(); break;
  5570. #endif //TMC2130
  5571. #ifdef PAT9125
  5572. case 9125: // D9125 - PAT9125
  5573. dcode_9125(); break;
  5574. #endif //PAT9125
  5575. }
  5576. }
  5577. #endif //DEBUG_DCODES
  5578. else
  5579. {
  5580. SERIAL_ECHO_START;
  5581. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5582. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5583. SERIAL_ECHOLNPGM("\"(2)");
  5584. }
  5585. KEEPALIVE_STATE(NOT_BUSY);
  5586. ClearToSend();
  5587. }
  5588. void FlushSerialRequestResend()
  5589. {
  5590. //char cmdbuffer[bufindr][100]="Resend:";
  5591. MYSERIAL.flush();
  5592. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5593. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5594. previous_millis_cmd = millis();
  5595. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5596. }
  5597. // Confirm the execution of a command, if sent from a serial line.
  5598. // Execution of a command from a SD card will not be confirmed.
  5599. void ClearToSend()
  5600. {
  5601. previous_millis_cmd = millis();
  5602. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5603. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5604. }
  5605. void update_currents() {
  5606. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5607. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5608. float tmp_motor[3];
  5609. //SERIAL_ECHOLNPGM("Currents updated: ");
  5610. if (destination[Z_AXIS] < Z_SILENT) {
  5611. //SERIAL_ECHOLNPGM("LOW");
  5612. for (uint8_t i = 0; i < 3; i++) {
  5613. digipot_current(i, current_low[i]);
  5614. /*MYSERIAL.print(int(i));
  5615. SERIAL_ECHOPGM(": ");
  5616. MYSERIAL.println(current_low[i]);*/
  5617. }
  5618. }
  5619. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5620. //SERIAL_ECHOLNPGM("HIGH");
  5621. for (uint8_t i = 0; i < 3; i++) {
  5622. digipot_current(i, current_high[i]);
  5623. /*MYSERIAL.print(int(i));
  5624. SERIAL_ECHOPGM(": ");
  5625. MYSERIAL.println(current_high[i]);*/
  5626. }
  5627. }
  5628. else {
  5629. for (uint8_t i = 0; i < 3; i++) {
  5630. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5631. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5632. digipot_current(i, tmp_motor[i]);
  5633. /*MYSERIAL.print(int(i));
  5634. SERIAL_ECHOPGM(": ");
  5635. MYSERIAL.println(tmp_motor[i]);*/
  5636. }
  5637. }
  5638. }
  5639. void get_coordinates()
  5640. {
  5641. bool seen[4]={false,false,false,false};
  5642. for(int8_t i=0; i < NUM_AXIS; i++) {
  5643. if(code_seen(axis_codes[i]))
  5644. {
  5645. bool relative = axis_relative_modes[i] || relative_mode;
  5646. destination[i] = (float)code_value();
  5647. if (i == E_AXIS) {
  5648. float emult = extruder_multiplier[active_extruder];
  5649. if (emult != 1.) {
  5650. if (! relative) {
  5651. destination[i] -= current_position[i];
  5652. relative = true;
  5653. }
  5654. destination[i] *= emult;
  5655. }
  5656. }
  5657. if (relative)
  5658. destination[i] += current_position[i];
  5659. seen[i]=true;
  5660. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5661. }
  5662. else destination[i] = current_position[i]; //Are these else lines really needed?
  5663. }
  5664. if(code_seen('F')) {
  5665. next_feedrate = code_value();
  5666. #ifdef MAX_SILENT_FEEDRATE
  5667. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5668. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5669. #endif //MAX_SILENT_FEEDRATE
  5670. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5671. }
  5672. }
  5673. void get_arc_coordinates()
  5674. {
  5675. #ifdef SF_ARC_FIX
  5676. bool relative_mode_backup = relative_mode;
  5677. relative_mode = true;
  5678. #endif
  5679. get_coordinates();
  5680. #ifdef SF_ARC_FIX
  5681. relative_mode=relative_mode_backup;
  5682. #endif
  5683. if(code_seen('I')) {
  5684. offset[0] = code_value();
  5685. }
  5686. else {
  5687. offset[0] = 0.0;
  5688. }
  5689. if(code_seen('J')) {
  5690. offset[1] = code_value();
  5691. }
  5692. else {
  5693. offset[1] = 0.0;
  5694. }
  5695. }
  5696. void clamp_to_software_endstops(float target[3])
  5697. {
  5698. #ifdef DEBUG_DISABLE_SWLIMITS
  5699. return;
  5700. #endif //DEBUG_DISABLE_SWLIMITS
  5701. world2machine_clamp(target[0], target[1]);
  5702. // Clamp the Z coordinate.
  5703. if (min_software_endstops) {
  5704. float negative_z_offset = 0;
  5705. #ifdef ENABLE_AUTO_BED_LEVELING
  5706. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5707. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5708. #endif
  5709. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5710. }
  5711. if (max_software_endstops) {
  5712. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5713. }
  5714. }
  5715. #ifdef MESH_BED_LEVELING
  5716. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5717. float dx = x - current_position[X_AXIS];
  5718. float dy = y - current_position[Y_AXIS];
  5719. float dz = z - current_position[Z_AXIS];
  5720. int n_segments = 0;
  5721. if (mbl.active) {
  5722. float len = abs(dx) + abs(dy);
  5723. if (len > 0)
  5724. // Split to 3cm segments or shorter.
  5725. n_segments = int(ceil(len / 30.f));
  5726. }
  5727. if (n_segments > 1) {
  5728. float de = e - current_position[E_AXIS];
  5729. for (int i = 1; i < n_segments; ++ i) {
  5730. float t = float(i) / float(n_segments);
  5731. plan_buffer_line(
  5732. current_position[X_AXIS] + t * dx,
  5733. current_position[Y_AXIS] + t * dy,
  5734. current_position[Z_AXIS] + t * dz,
  5735. current_position[E_AXIS] + t * de,
  5736. feed_rate, extruder);
  5737. }
  5738. }
  5739. // The rest of the path.
  5740. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5741. current_position[X_AXIS] = x;
  5742. current_position[Y_AXIS] = y;
  5743. current_position[Z_AXIS] = z;
  5744. current_position[E_AXIS] = e;
  5745. }
  5746. #endif // MESH_BED_LEVELING
  5747. void prepare_move()
  5748. {
  5749. clamp_to_software_endstops(destination);
  5750. previous_millis_cmd = millis();
  5751. // Do not use feedmultiply for E or Z only moves
  5752. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5754. }
  5755. else {
  5756. #ifdef MESH_BED_LEVELING
  5757. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5758. #else
  5759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5760. #endif
  5761. }
  5762. for(int8_t i=0; i < NUM_AXIS; i++) {
  5763. current_position[i] = destination[i];
  5764. }
  5765. }
  5766. void prepare_arc_move(char isclockwise) {
  5767. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5768. // Trace the arc
  5769. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5770. // As far as the parser is concerned, the position is now == target. In reality the
  5771. // motion control system might still be processing the action and the real tool position
  5772. // in any intermediate location.
  5773. for(int8_t i=0; i < NUM_AXIS; i++) {
  5774. current_position[i] = destination[i];
  5775. }
  5776. previous_millis_cmd = millis();
  5777. }
  5778. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5779. #if defined(FAN_PIN)
  5780. #if CONTROLLERFAN_PIN == FAN_PIN
  5781. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5782. #endif
  5783. #endif
  5784. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5785. unsigned long lastMotorCheck = 0;
  5786. void controllerFan()
  5787. {
  5788. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5789. {
  5790. lastMotorCheck = millis();
  5791. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5792. #if EXTRUDERS > 2
  5793. || !READ(E2_ENABLE_PIN)
  5794. #endif
  5795. #if EXTRUDER > 1
  5796. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5797. || !READ(X2_ENABLE_PIN)
  5798. #endif
  5799. || !READ(E1_ENABLE_PIN)
  5800. #endif
  5801. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5802. {
  5803. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5804. }
  5805. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5806. {
  5807. digitalWrite(CONTROLLERFAN_PIN, 0);
  5808. analogWrite(CONTROLLERFAN_PIN, 0);
  5809. }
  5810. else
  5811. {
  5812. // allows digital or PWM fan output to be used (see M42 handling)
  5813. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5814. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5815. }
  5816. }
  5817. }
  5818. #endif
  5819. #ifdef TEMP_STAT_LEDS
  5820. static bool blue_led = false;
  5821. static bool red_led = false;
  5822. static uint32_t stat_update = 0;
  5823. void handle_status_leds(void) {
  5824. float max_temp = 0.0;
  5825. if(millis() > stat_update) {
  5826. stat_update += 500; // Update every 0.5s
  5827. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5828. max_temp = max(max_temp, degHotend(cur_extruder));
  5829. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5830. }
  5831. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5832. max_temp = max(max_temp, degTargetBed());
  5833. max_temp = max(max_temp, degBed());
  5834. #endif
  5835. if((max_temp > 55.0) && (red_led == false)) {
  5836. digitalWrite(STAT_LED_RED, 1);
  5837. digitalWrite(STAT_LED_BLUE, 0);
  5838. red_led = true;
  5839. blue_led = false;
  5840. }
  5841. if((max_temp < 54.0) && (blue_led == false)) {
  5842. digitalWrite(STAT_LED_RED, 0);
  5843. digitalWrite(STAT_LED_BLUE, 1);
  5844. red_led = false;
  5845. blue_led = true;
  5846. }
  5847. }
  5848. }
  5849. #endif
  5850. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5851. {
  5852. #ifdef PAT9125
  5853. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5854. {
  5855. if (fsensor_autoload_enabled)
  5856. {
  5857. if (fsensor_check_autoload())
  5858. {
  5859. if (degHotend0() > EXTRUDE_MINTEMP)
  5860. {
  5861. fsensor_autoload_check_stop();
  5862. tone(BEEPER, 1000);
  5863. delay_keep_alive(50);
  5864. noTone(BEEPER);
  5865. loading_flag = true;
  5866. enquecommand_front_P((PSTR("M701")));
  5867. }
  5868. else
  5869. {
  5870. lcd_update_enable(false);
  5871. lcd_implementation_clear();
  5872. lcd.setCursor(0, 0);
  5873. lcd_printPGM(MSG_ERROR);
  5874. lcd.setCursor(0, 2);
  5875. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5876. delay(2000);
  5877. lcd_implementation_clear();
  5878. lcd_update_enable(true);
  5879. }
  5880. }
  5881. }
  5882. else
  5883. fsensor_autoload_check_start();
  5884. }
  5885. else
  5886. if (fsensor_autoload_enabled)
  5887. fsensor_autoload_check_stop();
  5888. #endif //PAT9125
  5889. #if defined(KILL_PIN) && KILL_PIN > -1
  5890. static int killCount = 0; // make the inactivity button a bit less responsive
  5891. const int KILL_DELAY = 10000;
  5892. #endif
  5893. if(buflen < (BUFSIZE-1)){
  5894. get_command();
  5895. }
  5896. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5897. if(max_inactive_time)
  5898. kill("", 4);
  5899. if(stepper_inactive_time) {
  5900. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5901. {
  5902. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5903. disable_x();
  5904. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5905. disable_y();
  5906. disable_z();
  5907. disable_e0();
  5908. disable_e1();
  5909. disable_e2();
  5910. }
  5911. }
  5912. }
  5913. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5914. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5915. {
  5916. chdkActive = false;
  5917. WRITE(CHDK, LOW);
  5918. }
  5919. #endif
  5920. #if defined(KILL_PIN) && KILL_PIN > -1
  5921. // Check if the kill button was pressed and wait just in case it was an accidental
  5922. // key kill key press
  5923. // -------------------------------------------------------------------------------
  5924. if( 0 == READ(KILL_PIN) )
  5925. {
  5926. killCount++;
  5927. }
  5928. else if (killCount > 0)
  5929. {
  5930. killCount--;
  5931. }
  5932. // Exceeded threshold and we can confirm that it was not accidental
  5933. // KILL the machine
  5934. // ----------------------------------------------------------------
  5935. if ( killCount >= KILL_DELAY)
  5936. {
  5937. kill("", 5);
  5938. }
  5939. #endif
  5940. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5941. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5942. #endif
  5943. #ifdef EXTRUDER_RUNOUT_PREVENT
  5944. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5945. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5946. {
  5947. bool oldstatus=READ(E0_ENABLE_PIN);
  5948. enable_e0();
  5949. float oldepos=current_position[E_AXIS];
  5950. float oldedes=destination[E_AXIS];
  5951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5952. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5953. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5954. current_position[E_AXIS]=oldepos;
  5955. destination[E_AXIS]=oldedes;
  5956. plan_set_e_position(oldepos);
  5957. previous_millis_cmd=millis();
  5958. st_synchronize();
  5959. WRITE(E0_ENABLE_PIN,oldstatus);
  5960. }
  5961. #endif
  5962. #ifdef TEMP_STAT_LEDS
  5963. handle_status_leds();
  5964. #endif
  5965. check_axes_activity();
  5966. }
  5967. void kill(const char *full_screen_message, unsigned char id)
  5968. {
  5969. SERIAL_ECHOPGM("KILL: ");
  5970. MYSERIAL.println(int(id));
  5971. //return;
  5972. cli(); // Stop interrupts
  5973. disable_heater();
  5974. disable_x();
  5975. // SERIAL_ECHOLNPGM("kill - disable Y");
  5976. disable_y();
  5977. disable_z();
  5978. disable_e0();
  5979. disable_e1();
  5980. disable_e2();
  5981. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5982. pinMode(PS_ON_PIN,INPUT);
  5983. #endif
  5984. SERIAL_ERROR_START;
  5985. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5986. if (full_screen_message != NULL) {
  5987. SERIAL_ERRORLNRPGM(full_screen_message);
  5988. lcd_display_message_fullscreen_P(full_screen_message);
  5989. } else {
  5990. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5991. }
  5992. // FMC small patch to update the LCD before ending
  5993. sei(); // enable interrupts
  5994. for ( int i=5; i--; lcd_update())
  5995. {
  5996. delay(200);
  5997. }
  5998. cli(); // disable interrupts
  5999. suicide();
  6000. while(1)
  6001. {
  6002. wdt_reset();
  6003. /* Intentionally left empty */
  6004. } // Wait for reset
  6005. }
  6006. void Stop()
  6007. {
  6008. disable_heater();
  6009. if(Stopped == false) {
  6010. Stopped = true;
  6011. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6012. SERIAL_ERROR_START;
  6013. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6014. LCD_MESSAGERPGM(MSG_STOPPED);
  6015. }
  6016. }
  6017. bool IsStopped() { return Stopped; };
  6018. #ifdef FAST_PWM_FAN
  6019. void setPwmFrequency(uint8_t pin, int val)
  6020. {
  6021. val &= 0x07;
  6022. switch(digitalPinToTimer(pin))
  6023. {
  6024. #if defined(TCCR0A)
  6025. case TIMER0A:
  6026. case TIMER0B:
  6027. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6028. // TCCR0B |= val;
  6029. break;
  6030. #endif
  6031. #if defined(TCCR1A)
  6032. case TIMER1A:
  6033. case TIMER1B:
  6034. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6035. // TCCR1B |= val;
  6036. break;
  6037. #endif
  6038. #if defined(TCCR2)
  6039. case TIMER2:
  6040. case TIMER2:
  6041. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6042. TCCR2 |= val;
  6043. break;
  6044. #endif
  6045. #if defined(TCCR2A)
  6046. case TIMER2A:
  6047. case TIMER2B:
  6048. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6049. TCCR2B |= val;
  6050. break;
  6051. #endif
  6052. #if defined(TCCR3A)
  6053. case TIMER3A:
  6054. case TIMER3B:
  6055. case TIMER3C:
  6056. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6057. TCCR3B |= val;
  6058. break;
  6059. #endif
  6060. #if defined(TCCR4A)
  6061. case TIMER4A:
  6062. case TIMER4B:
  6063. case TIMER4C:
  6064. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6065. TCCR4B |= val;
  6066. break;
  6067. #endif
  6068. #if defined(TCCR5A)
  6069. case TIMER5A:
  6070. case TIMER5B:
  6071. case TIMER5C:
  6072. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6073. TCCR5B |= val;
  6074. break;
  6075. #endif
  6076. }
  6077. }
  6078. #endif //FAST_PWM_FAN
  6079. bool setTargetedHotend(int code){
  6080. tmp_extruder = active_extruder;
  6081. if(code_seen('T')) {
  6082. tmp_extruder = code_value();
  6083. if(tmp_extruder >= EXTRUDERS) {
  6084. SERIAL_ECHO_START;
  6085. switch(code){
  6086. case 104:
  6087. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6088. break;
  6089. case 105:
  6090. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6091. break;
  6092. case 109:
  6093. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6094. break;
  6095. case 218:
  6096. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6097. break;
  6098. case 221:
  6099. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6100. break;
  6101. }
  6102. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6103. return true;
  6104. }
  6105. }
  6106. return false;
  6107. }
  6108. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6109. {
  6110. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6111. {
  6112. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6113. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6114. }
  6115. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6116. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6117. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6118. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6119. total_filament_used = 0;
  6120. }
  6121. float calculate_extruder_multiplier(float diameter) {
  6122. float out = 1.f;
  6123. if (volumetric_enabled && diameter > 0.f) {
  6124. float area = M_PI * diameter * diameter * 0.25;
  6125. out = 1.f / area;
  6126. }
  6127. if (extrudemultiply != 100)
  6128. out *= float(extrudemultiply) * 0.01f;
  6129. return out;
  6130. }
  6131. void calculate_extruder_multipliers() {
  6132. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6133. #if EXTRUDERS > 1
  6134. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6135. #if EXTRUDERS > 2
  6136. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6137. #endif
  6138. #endif
  6139. }
  6140. void delay_keep_alive(unsigned int ms)
  6141. {
  6142. for (;;) {
  6143. manage_heater();
  6144. // Manage inactivity, but don't disable steppers on timeout.
  6145. manage_inactivity(true);
  6146. lcd_update();
  6147. if (ms == 0)
  6148. break;
  6149. else if (ms >= 50) {
  6150. delay(50);
  6151. ms -= 50;
  6152. } else {
  6153. delay(ms);
  6154. ms = 0;
  6155. }
  6156. }
  6157. }
  6158. void wait_for_heater(long codenum) {
  6159. #ifdef TEMP_RESIDENCY_TIME
  6160. long residencyStart;
  6161. residencyStart = -1;
  6162. /* continue to loop until we have reached the target temp
  6163. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6164. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6165. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6166. #else
  6167. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6168. #endif //TEMP_RESIDENCY_TIME
  6169. if ((millis() - codenum) > 1000UL)
  6170. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6171. if (!farm_mode) {
  6172. SERIAL_PROTOCOLPGM("T:");
  6173. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6174. SERIAL_PROTOCOLPGM(" E:");
  6175. SERIAL_PROTOCOL((int)tmp_extruder);
  6176. #ifdef TEMP_RESIDENCY_TIME
  6177. SERIAL_PROTOCOLPGM(" W:");
  6178. if (residencyStart > -1)
  6179. {
  6180. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6181. SERIAL_PROTOCOLLN(codenum);
  6182. }
  6183. else
  6184. {
  6185. SERIAL_PROTOCOLLN("?");
  6186. }
  6187. }
  6188. #else
  6189. SERIAL_PROTOCOLLN("");
  6190. #endif
  6191. codenum = millis();
  6192. }
  6193. manage_heater();
  6194. manage_inactivity();
  6195. lcd_update();
  6196. #ifdef TEMP_RESIDENCY_TIME
  6197. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6198. or when current temp falls outside the hysteresis after target temp was reached */
  6199. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6200. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6201. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6202. {
  6203. residencyStart = millis();
  6204. }
  6205. #endif //TEMP_RESIDENCY_TIME
  6206. }
  6207. }
  6208. void check_babystep() {
  6209. int babystep_z;
  6210. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6211. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6212. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6213. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6214. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6215. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6216. lcd_update_enable(true);
  6217. }
  6218. }
  6219. #ifdef DIS
  6220. void d_setup()
  6221. {
  6222. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6223. pinMode(D_DATA, INPUT_PULLUP);
  6224. pinMode(D_REQUIRE, OUTPUT);
  6225. digitalWrite(D_REQUIRE, HIGH);
  6226. }
  6227. float d_ReadData()
  6228. {
  6229. int digit[13];
  6230. String mergeOutput;
  6231. float output;
  6232. digitalWrite(D_REQUIRE, HIGH);
  6233. for (int i = 0; i<13; i++)
  6234. {
  6235. for (int j = 0; j < 4; j++)
  6236. {
  6237. while (digitalRead(D_DATACLOCK) == LOW) {}
  6238. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6239. bitWrite(digit[i], j, digitalRead(D_DATA));
  6240. }
  6241. }
  6242. digitalWrite(D_REQUIRE, LOW);
  6243. mergeOutput = "";
  6244. output = 0;
  6245. for (int r = 5; r <= 10; r++) //Merge digits
  6246. {
  6247. mergeOutput += digit[r];
  6248. }
  6249. output = mergeOutput.toFloat();
  6250. if (digit[4] == 8) //Handle sign
  6251. {
  6252. output *= -1;
  6253. }
  6254. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6255. {
  6256. output /= 10;
  6257. }
  6258. return output;
  6259. }
  6260. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6261. int t1 = 0;
  6262. int t_delay = 0;
  6263. int digit[13];
  6264. int m;
  6265. char str[3];
  6266. //String mergeOutput;
  6267. char mergeOutput[15];
  6268. float output;
  6269. int mesh_point = 0; //index number of calibration point
  6270. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6271. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6272. float mesh_home_z_search = 4;
  6273. float row[x_points_num];
  6274. int ix = 0;
  6275. int iy = 0;
  6276. char* filename_wldsd = "wldsd.txt";
  6277. char data_wldsd[70];
  6278. char numb_wldsd[10];
  6279. d_setup();
  6280. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6281. // We don't know where we are! HOME!
  6282. // Push the commands to the front of the message queue in the reverse order!
  6283. // There shall be always enough space reserved for these commands.
  6284. repeatcommand_front(); // repeat G80 with all its parameters
  6285. enquecommand_front_P((PSTR("G28 W0")));
  6286. enquecommand_front_P((PSTR("G1 Z5")));
  6287. return;
  6288. }
  6289. bool custom_message_old = custom_message;
  6290. unsigned int custom_message_type_old = custom_message_type;
  6291. unsigned int custom_message_state_old = custom_message_state;
  6292. custom_message = true;
  6293. custom_message_type = 1;
  6294. custom_message_state = (x_points_num * y_points_num) + 10;
  6295. lcd_update(1);
  6296. mbl.reset();
  6297. babystep_undo();
  6298. card.openFile(filename_wldsd, false);
  6299. current_position[Z_AXIS] = mesh_home_z_search;
  6300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6301. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6302. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6303. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6304. setup_for_endstop_move(false);
  6305. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6306. SERIAL_PROTOCOL(x_points_num);
  6307. SERIAL_PROTOCOLPGM(",");
  6308. SERIAL_PROTOCOL(y_points_num);
  6309. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6310. SERIAL_PROTOCOL(mesh_home_z_search);
  6311. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6312. SERIAL_PROTOCOL(x_dimension);
  6313. SERIAL_PROTOCOLPGM(",");
  6314. SERIAL_PROTOCOL(y_dimension);
  6315. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6316. while (mesh_point != x_points_num * y_points_num) {
  6317. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6318. iy = mesh_point / x_points_num;
  6319. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6320. float z0 = 0.f;
  6321. current_position[Z_AXIS] = mesh_home_z_search;
  6322. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6323. st_synchronize();
  6324. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6325. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6327. st_synchronize();
  6328. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6329. break;
  6330. card.closefile();
  6331. }
  6332. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6333. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6334. //strcat(data_wldsd, numb_wldsd);
  6335. //MYSERIAL.println(data_wldsd);
  6336. //delay(1000);
  6337. //delay(3000);
  6338. //t1 = millis();
  6339. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6340. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6341. memset(digit, 0, sizeof(digit));
  6342. //cli();
  6343. digitalWrite(D_REQUIRE, LOW);
  6344. for (int i = 0; i<13; i++)
  6345. {
  6346. //t1 = millis();
  6347. for (int j = 0; j < 4; j++)
  6348. {
  6349. while (digitalRead(D_DATACLOCK) == LOW) {}
  6350. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6351. bitWrite(digit[i], j, digitalRead(D_DATA));
  6352. }
  6353. //t_delay = (millis() - t1);
  6354. //SERIAL_PROTOCOLPGM(" ");
  6355. //SERIAL_PROTOCOL_F(t_delay, 5);
  6356. //SERIAL_PROTOCOLPGM(" ");
  6357. }
  6358. //sei();
  6359. digitalWrite(D_REQUIRE, HIGH);
  6360. mergeOutput[0] = '\0';
  6361. output = 0;
  6362. for (int r = 5; r <= 10; r++) //Merge digits
  6363. {
  6364. sprintf(str, "%d", digit[r]);
  6365. strcat(mergeOutput, str);
  6366. }
  6367. output = atof(mergeOutput);
  6368. if (digit[4] == 8) //Handle sign
  6369. {
  6370. output *= -1;
  6371. }
  6372. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6373. {
  6374. output *= 0.1;
  6375. }
  6376. //output = d_ReadData();
  6377. //row[ix] = current_position[Z_AXIS];
  6378. memset(data_wldsd, 0, sizeof(data_wldsd));
  6379. for (int i = 0; i <3; i++) {
  6380. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6381. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6382. strcat(data_wldsd, numb_wldsd);
  6383. strcat(data_wldsd, ";");
  6384. }
  6385. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6386. dtostrf(output, 8, 5, numb_wldsd);
  6387. strcat(data_wldsd, numb_wldsd);
  6388. //strcat(data_wldsd, ";");
  6389. card.write_command(data_wldsd);
  6390. //row[ix] = d_ReadData();
  6391. row[ix] = output; // current_position[Z_AXIS];
  6392. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6393. for (int i = 0; i < x_points_num; i++) {
  6394. SERIAL_PROTOCOLPGM(" ");
  6395. SERIAL_PROTOCOL_F(row[i], 5);
  6396. }
  6397. SERIAL_PROTOCOLPGM("\n");
  6398. }
  6399. custom_message_state--;
  6400. mesh_point++;
  6401. lcd_update(1);
  6402. }
  6403. card.closefile();
  6404. }
  6405. #endif
  6406. void temp_compensation_start() {
  6407. custom_message = true;
  6408. custom_message_type = 5;
  6409. custom_message_state = PINDA_HEAT_T + 1;
  6410. lcd_update(2);
  6411. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6412. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6413. }
  6414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6415. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6416. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6417. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6419. st_synchronize();
  6420. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6421. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6422. delay_keep_alive(1000);
  6423. custom_message_state = PINDA_HEAT_T - i;
  6424. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6425. else lcd_update(1);
  6426. }
  6427. custom_message_type = 0;
  6428. custom_message_state = 0;
  6429. custom_message = false;
  6430. }
  6431. void temp_compensation_apply() {
  6432. int i_add;
  6433. int compensation_value;
  6434. int z_shift = 0;
  6435. float z_shift_mm;
  6436. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6437. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6438. i_add = (target_temperature_bed - 60) / 10;
  6439. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6440. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6441. }else {
  6442. //interpolation
  6443. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6444. }
  6445. SERIAL_PROTOCOLPGM("\n");
  6446. SERIAL_PROTOCOLPGM("Z shift applied:");
  6447. MYSERIAL.print(z_shift_mm);
  6448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6449. st_synchronize();
  6450. plan_set_z_position(current_position[Z_AXIS]);
  6451. }
  6452. else {
  6453. //we have no temp compensation data
  6454. }
  6455. }
  6456. float temp_comp_interpolation(float inp_temperature) {
  6457. //cubic spline interpolation
  6458. int n, i, j, k;
  6459. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6460. int shift[10];
  6461. int temp_C[10];
  6462. n = 6; //number of measured points
  6463. shift[0] = 0;
  6464. for (i = 0; i < n; i++) {
  6465. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6466. temp_C[i] = 50 + i * 10; //temperature in C
  6467. #ifdef PINDA_THERMISTOR
  6468. temp_C[i] = 35 + i * 5; //temperature in C
  6469. #else
  6470. temp_C[i] = 50 + i * 10; //temperature in C
  6471. #endif
  6472. x[i] = (float)temp_C[i];
  6473. f[i] = (float)shift[i];
  6474. }
  6475. if (inp_temperature < x[0]) return 0;
  6476. for (i = n - 1; i>0; i--) {
  6477. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6478. h[i - 1] = x[i] - x[i - 1];
  6479. }
  6480. //*********** formation of h, s , f matrix **************
  6481. for (i = 1; i<n - 1; i++) {
  6482. m[i][i] = 2 * (h[i - 1] + h[i]);
  6483. if (i != 1) {
  6484. m[i][i - 1] = h[i - 1];
  6485. m[i - 1][i] = h[i - 1];
  6486. }
  6487. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6488. }
  6489. //*********** forward elimination **************
  6490. for (i = 1; i<n - 2; i++) {
  6491. temp = (m[i + 1][i] / m[i][i]);
  6492. for (j = 1; j <= n - 1; j++)
  6493. m[i + 1][j] -= temp*m[i][j];
  6494. }
  6495. //*********** backward substitution *********
  6496. for (i = n - 2; i>0; i--) {
  6497. sum = 0;
  6498. for (j = i; j <= n - 2; j++)
  6499. sum += m[i][j] * s[j];
  6500. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6501. }
  6502. for (i = 0; i<n - 1; i++)
  6503. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6504. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6505. b = s[i] / 2;
  6506. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6507. d = f[i];
  6508. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6509. }
  6510. return sum;
  6511. }
  6512. #ifdef PINDA_THERMISTOR
  6513. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6514. {
  6515. if (!temp_cal_active) return 0;
  6516. if (!calibration_status_pinda()) return 0;
  6517. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6518. }
  6519. #endif //PINDA_THERMISTOR
  6520. void long_pause() //long pause print
  6521. {
  6522. st_synchronize();
  6523. //save currently set parameters to global variables
  6524. saved_feedmultiply = feedmultiply;
  6525. HotendTempBckp = degTargetHotend(active_extruder);
  6526. fanSpeedBckp = fanSpeed;
  6527. start_pause_print = millis();
  6528. //save position
  6529. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6530. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6531. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6532. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6533. //retract
  6534. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6536. //lift z
  6537. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6538. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6540. //set nozzle target temperature to 0
  6541. setTargetHotend(0, 0);
  6542. setTargetHotend(0, 1);
  6543. setTargetHotend(0, 2);
  6544. //Move XY to side
  6545. current_position[X_AXIS] = X_PAUSE_POS;
  6546. current_position[Y_AXIS] = Y_PAUSE_POS;
  6547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6548. // Turn off the print fan
  6549. fanSpeed = 0;
  6550. st_synchronize();
  6551. }
  6552. void serialecho_temperatures() {
  6553. float tt = degHotend(active_extruder);
  6554. SERIAL_PROTOCOLPGM("T:");
  6555. SERIAL_PROTOCOL(tt);
  6556. SERIAL_PROTOCOLPGM(" E:");
  6557. SERIAL_PROTOCOL((int)active_extruder);
  6558. SERIAL_PROTOCOLPGM(" B:");
  6559. SERIAL_PROTOCOL_F(degBed(), 1);
  6560. SERIAL_PROTOCOLLN("");
  6561. }
  6562. extern uint32_t sdpos_atomic;
  6563. #ifdef UVLO_SUPPORT
  6564. void uvlo_()
  6565. {
  6566. unsigned long time_start = millis();
  6567. bool sd_print = card.sdprinting;
  6568. // Conserve power as soon as possible.
  6569. disable_x();
  6570. disable_y();
  6571. disable_e0();
  6572. #ifdef TMC2130
  6573. tmc2130_set_current_h(Z_AXIS, 20);
  6574. tmc2130_set_current_r(Z_AXIS, 20);
  6575. tmc2130_set_current_h(E_AXIS, 20);
  6576. tmc2130_set_current_r(E_AXIS, 20);
  6577. #endif //TMC2130
  6578. // Indicate that the interrupt has been triggered.
  6579. // SERIAL_ECHOLNPGM("UVLO");
  6580. // Read out the current Z motor microstep counter. This will be later used
  6581. // for reaching the zero full step before powering off.
  6582. uint16_t z_microsteps = 0;
  6583. #ifdef TMC2130
  6584. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6585. #endif //TMC2130
  6586. // Calculate the file position, from which to resume this print.
  6587. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6588. {
  6589. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6590. sd_position -= sdlen_planner;
  6591. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6592. sd_position -= sdlen_cmdqueue;
  6593. if (sd_position < 0) sd_position = 0;
  6594. }
  6595. // Backup the feedrate in mm/min.
  6596. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6597. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6598. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6599. // are in action.
  6600. planner_abort_hard();
  6601. // Store the current extruder position.
  6602. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6603. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6604. // Clean the input command queue.
  6605. cmdqueue_reset();
  6606. card.sdprinting = false;
  6607. // card.closefile();
  6608. // Enable stepper driver interrupt to move Z axis.
  6609. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6610. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6611. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6612. sei();
  6613. plan_buffer_line(
  6614. current_position[X_AXIS],
  6615. current_position[Y_AXIS],
  6616. current_position[Z_AXIS],
  6617. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6618. 95, active_extruder);
  6619. st_synchronize();
  6620. disable_e0();
  6621. plan_buffer_line(
  6622. current_position[X_AXIS],
  6623. current_position[Y_AXIS],
  6624. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6625. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6626. 40, active_extruder);
  6627. st_synchronize();
  6628. disable_e0();
  6629. plan_buffer_line(
  6630. current_position[X_AXIS],
  6631. current_position[Y_AXIS],
  6632. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6633. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6634. 40, active_extruder);
  6635. st_synchronize();
  6636. disable_e0();
  6637. disable_z();
  6638. // Move Z up to the next 0th full step.
  6639. // Write the file position.
  6640. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6641. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6642. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6643. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6644. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6645. // Scale the z value to 1u resolution.
  6646. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6647. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6648. }
  6649. // Read out the current Z motor microstep counter. This will be later used
  6650. // for reaching the zero full step before powering off.
  6651. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6652. // Store the current position.
  6653. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6654. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6655. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6656. // Store the current feed rate, temperatures and fan speed.
  6657. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6658. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6659. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6660. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6661. // Finaly store the "power outage" flag.
  6662. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6663. st_synchronize();
  6664. SERIAL_ECHOPGM("stps");
  6665. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6666. disable_z();
  6667. // Increment power failure counter
  6668. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6669. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6670. SERIAL_ECHOLNPGM("UVLO - end");
  6671. MYSERIAL.println(millis() - time_start);
  6672. #if 0
  6673. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6674. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6676. st_synchronize();
  6677. #endif
  6678. cli();
  6679. volatile unsigned int ppcount = 0;
  6680. SET_OUTPUT(BEEPER);
  6681. WRITE(BEEPER, HIGH);
  6682. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6683. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6684. }
  6685. WRITE(BEEPER, LOW);
  6686. while(1){
  6687. #if 1
  6688. WRITE(BEEPER, LOW);
  6689. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6690. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6691. }
  6692. #endif
  6693. };
  6694. }
  6695. #endif //UVLO_SUPPORT
  6696. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6697. void setup_fan_interrupt() {
  6698. //INT7
  6699. DDRE &= ~(1 << 7); //input pin
  6700. PORTE &= ~(1 << 7); //no internal pull-up
  6701. //start with sensing rising edge
  6702. EICRB &= ~(1 << 6);
  6703. EICRB |= (1 << 7);
  6704. //enable INT7 interrupt
  6705. EIMSK |= (1 << 7);
  6706. }
  6707. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6708. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6709. ISR(INT7_vect) {
  6710. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6711. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6712. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6713. t_fan_rising_edge = millis_nc();
  6714. }
  6715. else { //interrupt was triggered by falling edge
  6716. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6717. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6718. }
  6719. }
  6720. EICRB ^= (1 << 6); //change edge
  6721. }
  6722. #endif
  6723. #ifdef UVLO_SUPPORT
  6724. void setup_uvlo_interrupt() {
  6725. DDRE &= ~(1 << 4); //input pin
  6726. PORTE &= ~(1 << 4); //no internal pull-up
  6727. //sensing falling edge
  6728. EICRB |= (1 << 0);
  6729. EICRB &= ~(1 << 1);
  6730. //enable INT4 interrupt
  6731. EIMSK |= (1 << 4);
  6732. }
  6733. ISR(INT4_vect) {
  6734. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6735. SERIAL_ECHOLNPGM("INT4");
  6736. if (IS_SD_PRINTING) uvlo_();
  6737. }
  6738. void recover_print(uint8_t automatic) {
  6739. char cmd[30];
  6740. lcd_update_enable(true);
  6741. lcd_update(2);
  6742. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6743. recover_machine_state_after_power_panic();
  6744. // Set the target bed and nozzle temperatures.
  6745. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6746. enquecommand(cmd);
  6747. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6748. enquecommand(cmd);
  6749. // Lift the print head, so one may remove the excess priming material.
  6750. if (current_position[Z_AXIS] < 25)
  6751. enquecommand_P(PSTR("G1 Z25 F800"));
  6752. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6753. enquecommand_P(PSTR("G28 X Y"));
  6754. // Set the target bed and nozzle temperatures and wait.
  6755. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6756. enquecommand(cmd);
  6757. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6758. enquecommand(cmd);
  6759. enquecommand_P(PSTR("M83")); //E axis relative mode
  6760. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6761. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6762. if(automatic == 0){
  6763. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6764. }
  6765. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6766. // Mark the power panic status as inactive.
  6767. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6768. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6769. delay_keep_alive(1000);
  6770. }*/
  6771. SERIAL_ECHOPGM("After waiting for temp:");
  6772. SERIAL_ECHOPGM("Current position X_AXIS:");
  6773. MYSERIAL.println(current_position[X_AXIS]);
  6774. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6775. MYSERIAL.println(current_position[Y_AXIS]);
  6776. // Restart the print.
  6777. restore_print_from_eeprom();
  6778. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6779. MYSERIAL.print(current_position[Z_AXIS]);
  6780. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6781. MYSERIAL.print(current_position[E_AXIS]);
  6782. }
  6783. void recover_machine_state_after_power_panic()
  6784. {
  6785. char cmd[30];
  6786. // 1) Recover the logical cordinates at the time of the power panic.
  6787. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6788. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6789. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6790. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6791. // The current position after power panic is moved to the next closest 0th full step.
  6792. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6793. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6794. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6795. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6796. sprintf_P(cmd, PSTR("G92 E"));
  6797. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6798. enquecommand(cmd);
  6799. }
  6800. memcpy(destination, current_position, sizeof(destination));
  6801. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6802. print_world_coordinates();
  6803. // 2) Initialize the logical to physical coordinate system transformation.
  6804. world2machine_initialize();
  6805. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6806. mbl.active = false;
  6807. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6808. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6809. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6810. // Scale the z value to 10u resolution.
  6811. int16_t v;
  6812. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6813. if (v != 0)
  6814. mbl.active = true;
  6815. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6816. }
  6817. if (mbl.active)
  6818. mbl.upsample_3x3();
  6819. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6820. // print_mesh_bed_leveling_table();
  6821. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6822. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6823. babystep_load();
  6824. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6826. // 6) Power up the motors, mark their positions as known.
  6827. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6828. axis_known_position[X_AXIS] = true; enable_x();
  6829. axis_known_position[Y_AXIS] = true; enable_y();
  6830. axis_known_position[Z_AXIS] = true; enable_z();
  6831. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6832. print_physical_coordinates();
  6833. // 7) Recover the target temperatures.
  6834. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6835. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6836. }
  6837. void restore_print_from_eeprom() {
  6838. float x_rec, y_rec, z_pos;
  6839. int feedrate_rec;
  6840. uint8_t fan_speed_rec;
  6841. char cmd[30];
  6842. char* c;
  6843. char filename[13];
  6844. uint8_t depth = 0;
  6845. char dir_name[9];
  6846. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6847. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6848. SERIAL_ECHOPGM("Feedrate:");
  6849. MYSERIAL.println(feedrate_rec);
  6850. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6851. MYSERIAL.println(int(depth));
  6852. for (int i = 0; i < depth; i++) {
  6853. for (int j = 0; j < 8; j++) {
  6854. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6855. }
  6856. dir_name[8] = '\0';
  6857. MYSERIAL.println(dir_name);
  6858. card.chdir(dir_name);
  6859. }
  6860. for (int i = 0; i < 8; i++) {
  6861. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6862. }
  6863. filename[8] = '\0';
  6864. MYSERIAL.print(filename);
  6865. strcat_P(filename, PSTR(".gco"));
  6866. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6867. for (c = &cmd[4]; *c; c++)
  6868. *c = tolower(*c);
  6869. enquecommand(cmd);
  6870. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6871. SERIAL_ECHOPGM("Position read from eeprom:");
  6872. MYSERIAL.println(position);
  6873. // E axis relative mode.
  6874. enquecommand_P(PSTR("M83"));
  6875. // Move to the XY print position in logical coordinates, where the print has been killed.
  6876. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6877. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6878. strcat_P(cmd, PSTR(" F2000"));
  6879. enquecommand(cmd);
  6880. // Move the Z axis down to the print, in logical coordinates.
  6881. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6882. enquecommand(cmd);
  6883. // Unretract.
  6884. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6885. // Set the feedrate saved at the power panic.
  6886. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6887. enquecommand(cmd);
  6888. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6889. {
  6890. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6891. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6892. }
  6893. // Set the fan speed saved at the power panic.
  6894. strcpy_P(cmd, PSTR("M106 S"));
  6895. strcat(cmd, itostr3(int(fan_speed_rec)));
  6896. enquecommand(cmd);
  6897. // Set a position in the file.
  6898. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6899. enquecommand(cmd);
  6900. // Start SD print.
  6901. enquecommand_P(PSTR("M24"));
  6902. }
  6903. #endif //UVLO_SUPPORT
  6904. ////////////////////////////////////////////////////////////////////////////////
  6905. // new save/restore printing
  6906. //extern uint32_t sdpos_atomic;
  6907. bool saved_printing = false;
  6908. uint32_t saved_sdpos = 0;
  6909. float saved_pos[4] = {0, 0, 0, 0};
  6910. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6911. float saved_feedrate2 = 0;
  6912. uint8_t saved_active_extruder = 0;
  6913. bool saved_extruder_under_pressure = false;
  6914. void stop_and_save_print_to_ram(float z_move, float e_move)
  6915. {
  6916. if (saved_printing) return;
  6917. cli();
  6918. unsigned char nplanner_blocks = number_of_blocks();
  6919. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6920. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6921. saved_sdpos -= sdlen_planner;
  6922. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6923. saved_sdpos -= sdlen_cmdqueue;
  6924. #if 0
  6925. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6926. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6927. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6928. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6929. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6930. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6931. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6932. {
  6933. card.setIndex(saved_sdpos);
  6934. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6935. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6936. MYSERIAL.print(char(card.get()));
  6937. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6938. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6939. MYSERIAL.print(char(card.get()));
  6940. SERIAL_ECHOLNPGM("End of command buffer");
  6941. }
  6942. {
  6943. // Print the content of the planner buffer, line by line:
  6944. card.setIndex(saved_sdpos);
  6945. int8_t iline = 0;
  6946. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6947. SERIAL_ECHOPGM("Planner line (from file): ");
  6948. MYSERIAL.print(int(iline), DEC);
  6949. SERIAL_ECHOPGM(", length: ");
  6950. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6951. SERIAL_ECHOPGM(", steps: (");
  6952. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6953. SERIAL_ECHOPGM(",");
  6954. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6955. SERIAL_ECHOPGM(",");
  6956. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6957. SERIAL_ECHOPGM(",");
  6958. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6959. SERIAL_ECHOPGM("), events: ");
  6960. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6961. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6962. MYSERIAL.print(char(card.get()));
  6963. }
  6964. }
  6965. {
  6966. // Print the content of the command buffer, line by line:
  6967. int8_t iline = 0;
  6968. union {
  6969. struct {
  6970. char lo;
  6971. char hi;
  6972. } lohi;
  6973. uint16_t value;
  6974. } sdlen_single;
  6975. int _bufindr = bufindr;
  6976. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6977. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6978. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6979. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6980. }
  6981. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6982. MYSERIAL.print(int(iline), DEC);
  6983. SERIAL_ECHOPGM(", type: ");
  6984. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6985. SERIAL_ECHOPGM(", len: ");
  6986. MYSERIAL.println(sdlen_single.value, DEC);
  6987. // Print the content of the buffer line.
  6988. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6989. SERIAL_ECHOPGM("Buffer line (from file): ");
  6990. MYSERIAL.print(int(iline), DEC);
  6991. MYSERIAL.println(int(iline), DEC);
  6992. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6993. MYSERIAL.print(char(card.get()));
  6994. if (-- _buflen == 0)
  6995. break;
  6996. // First skip the current command ID and iterate up to the end of the string.
  6997. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6998. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6999. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7000. // If the end of the buffer was empty,
  7001. if (_bufindr == sizeof(cmdbuffer)) {
  7002. // skip to the start and find the nonzero command.
  7003. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7004. }
  7005. }
  7006. }
  7007. #endif
  7008. #if 0
  7009. saved_feedrate2 = feedrate; //save feedrate
  7010. #else
  7011. // Try to deduce the feedrate from the first block of the planner.
  7012. // Speed is in mm/min.
  7013. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7014. #endif
  7015. planner_abort_hard(); //abort printing
  7016. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7017. saved_active_extruder = active_extruder; //save active_extruder
  7018. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7019. cmdqueue_reset(); //empty cmdqueue
  7020. card.sdprinting = false;
  7021. // card.closefile();
  7022. saved_printing = true;
  7023. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7024. st_reset_timer();
  7025. sei();
  7026. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7027. #if 1
  7028. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7029. char buf[48];
  7030. strcpy_P(buf, PSTR("G1 Z"));
  7031. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7032. strcat_P(buf, PSTR(" E"));
  7033. // Relative extrusion
  7034. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7035. strcat_P(buf, PSTR(" F"));
  7036. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7037. // At this point the command queue is empty.
  7038. enquecommand(buf, false);
  7039. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7040. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7041. repeatcommand_front();
  7042. #else
  7043. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7044. st_synchronize(); //wait moving
  7045. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7046. memcpy(destination, current_position, sizeof(destination));
  7047. #endif
  7048. }
  7049. }
  7050. void restore_print_from_ram_and_continue(float e_move)
  7051. {
  7052. if (!saved_printing) return;
  7053. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7054. // current_position[axis] = st_get_position_mm(axis);
  7055. active_extruder = saved_active_extruder; //restore active_extruder
  7056. feedrate = saved_feedrate2; //restore feedrate
  7057. float e = saved_pos[E_AXIS] - e_move;
  7058. plan_set_e_position(e);
  7059. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7060. st_synchronize();
  7061. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7062. memcpy(destination, current_position, sizeof(destination));
  7063. card.setIndex(saved_sdpos);
  7064. sdpos_atomic = saved_sdpos;
  7065. card.sdprinting = true;
  7066. saved_printing = false;
  7067. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7068. }
  7069. void print_world_coordinates()
  7070. {
  7071. SERIAL_ECHOPGM("world coordinates: (");
  7072. MYSERIAL.print(current_position[X_AXIS], 3);
  7073. SERIAL_ECHOPGM(", ");
  7074. MYSERIAL.print(current_position[Y_AXIS], 3);
  7075. SERIAL_ECHOPGM(", ");
  7076. MYSERIAL.print(current_position[Z_AXIS], 3);
  7077. SERIAL_ECHOLNPGM(")");
  7078. }
  7079. void print_physical_coordinates()
  7080. {
  7081. SERIAL_ECHOPGM("physical coordinates: (");
  7082. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7083. SERIAL_ECHOPGM(", ");
  7084. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7085. SERIAL_ECHOPGM(", ");
  7086. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7087. SERIAL_ECHOLNPGM(")");
  7088. }
  7089. void print_mesh_bed_leveling_table()
  7090. {
  7091. SERIAL_ECHOPGM("mesh bed leveling: ");
  7092. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7093. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7094. MYSERIAL.print(mbl.z_values[y][x], 3);
  7095. SERIAL_ECHOPGM(" ");
  7096. }
  7097. SERIAL_ECHOLNPGM("");
  7098. }
  7099. #define FIL_LOAD_LENGTH 60
  7100. void extr_unload2() { //unloads filament
  7101. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7102. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7103. // int8_t SilentMode;
  7104. uint8_t snmm_extruder = 0;
  7105. if (degHotend0() > EXTRUDE_MINTEMP) {
  7106. lcd_implementation_clear();
  7107. lcd_display_message_fullscreen_P(PSTR(""));
  7108. max_feedrate[E_AXIS] = 50;
  7109. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7110. // lcd.print(" ");
  7111. // lcd.print(snmm_extruder + 1);
  7112. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7113. if (current_position[Z_AXIS] < 15) {
  7114. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7116. }
  7117. current_position[E_AXIS] += 10; //extrusion
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7119. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7120. if (current_temperature[0] < 230) { //PLA & all other filaments
  7121. current_position[E_AXIS] += 5.4;
  7122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7123. current_position[E_AXIS] += 3.2;
  7124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7125. current_position[E_AXIS] += 3;
  7126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7127. }
  7128. else { //ABS
  7129. current_position[E_AXIS] += 3.1;
  7130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7131. current_position[E_AXIS] += 3.1;
  7132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7133. current_position[E_AXIS] += 4;
  7134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7135. /*current_position[X_AXIS] += 23; //delay
  7136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7137. current_position[X_AXIS] -= 23; //delay
  7138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7139. delay_keep_alive(4700);
  7140. }
  7141. max_feedrate[E_AXIS] = 80;
  7142. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7144. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7146. st_synchronize();
  7147. //digipot_init();
  7148. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7149. // else digipot_current(2, tmp_motor_loud[2]);
  7150. lcd_update_enable(true);
  7151. // lcd_return_to_status();
  7152. max_feedrate[E_AXIS] = 50;
  7153. }
  7154. else {
  7155. lcd_implementation_clear();
  7156. lcd.setCursor(0, 0);
  7157. lcd_printPGM(MSG_ERROR);
  7158. lcd.setCursor(0, 2);
  7159. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7160. delay(2000);
  7161. lcd_implementation_clear();
  7162. }
  7163. // lcd_return_to_status();
  7164. }