temperature.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. unsigned long extruder_autofan_last_check = _millis();
  117. uint8_t fanSpeedBckp = 255;
  118. bool fan_measuring = false;
  119. #endif
  120. #if EXTRUDERS > 3
  121. # error Unsupported number of extruders
  122. #elif EXTRUDERS > 2
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  124. #elif EXTRUDERS > 1
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  126. #else
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  128. #endif
  129. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  130. // Init min and max temp with extreme values to prevent false errors during startup
  131. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  132. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  133. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  134. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  135. #ifdef BED_MINTEMP
  136. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  137. #endif
  138. #ifdef BED_MAXTEMP
  139. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  140. #endif
  141. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  142. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  143. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  144. #else
  145. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  146. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  147. #endif
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifdef WATCH_TEMP_PERIOD
  159. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  160. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. #endif //WATCH_TEMP_PERIOD
  162. #ifndef SOFT_PWM_SCALE
  163. #define SOFT_PWM_SCALE 0
  164. #endif
  165. //===========================================================================
  166. //============================= functions ============================
  167. //===========================================================================
  168. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  169. static float temp_runaway_status[4];
  170. static float temp_runaway_target[4];
  171. static float temp_runaway_timer[4];
  172. static int temp_runaway_error_counter[4];
  173. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  174. static void temp_runaway_stop(bool isPreheat, bool isBed);
  175. #endif
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = _millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = _millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. timer02_set_pwm0(soft_pwm_bed << 1);
  215. bias = d = (MAX_BED_POWER)/2;
  216. }
  217. else
  218. {
  219. soft_pwm[extruder] = (PID_MAX)/2;
  220. bias = d = (PID_MAX)/2;
  221. }
  222. for(;;) {
  223. #ifdef WATCHDOG
  224. wdt_reset();
  225. #endif //WATCHDOG
  226. if(temp_meas_ready == true) { // temp sample ready
  227. updateTemperaturesFromRawValues();
  228. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  229. max=max(max,input);
  230. min=min(min,input);
  231. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  232. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  234. if(_millis() - extruder_autofan_last_check > 2500) {
  235. checkExtruderAutoFans();
  236. extruder_autofan_last_check = _millis();
  237. }
  238. #endif
  239. if(heating == true && input > temp) {
  240. if(_millis() - t2 > 5000) {
  241. heating=false;
  242. if (extruder<0)
  243. {
  244. soft_pwm_bed = (bias - d) >> 1;
  245. timer02_set_pwm0(soft_pwm_bed << 1);
  246. }
  247. else
  248. soft_pwm[extruder] = (bias - d) >> 1;
  249. t1=_millis();
  250. t_high=t1 - t2;
  251. max=temp;
  252. }
  253. }
  254. if(heating == false && input < temp) {
  255. if(_millis() - t1 > 5000) {
  256. heating=true;
  257. t2=_millis();
  258. t_low=t2 - t1;
  259. if(pid_cycle > 0) {
  260. bias += (d*(t_high - t_low))/(t_low + t_high);
  261. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  262. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  263. else d = bias;
  264. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  265. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  266. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  267. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  268. if(pid_cycle > 2) {
  269. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  270. Tu = ((float)(t_low + t_high)/1000.0);
  271. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  272. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  273. _Kp = 0.6*Ku;
  274. _Ki = 2*_Kp/Tu;
  275. _Kd = _Kp*Tu/8;
  276. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  277. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  278. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  279. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  280. /*
  281. _Kp = 0.33*Ku;
  282. _Ki = _Kp/Tu;
  283. _Kd = _Kp*Tu/3;
  284. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  285. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  286. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  287. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  288. _Kp = 0.2*Ku;
  289. _Ki = 2*_Kp/Tu;
  290. _Kd = _Kp*Tu/3;
  291. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  292. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  293. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  294. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  295. */
  296. }
  297. }
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias + d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias + d) >> 1;
  305. pid_cycle++;
  306. min=temp;
  307. }
  308. }
  309. }
  310. if(input > (temp + 20)) {
  311. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  312. pid_tuning_finished = true;
  313. pid_cycle = 0;
  314. return;
  315. }
  316. if(_millis() - temp_millis > 2000) {
  317. int p;
  318. if (extruder<0){
  319. p=soft_pwm_bed;
  320. SERIAL_PROTOCOLPGM("B:");
  321. }else{
  322. p=soft_pwm[extruder];
  323. SERIAL_PROTOCOLPGM("T:");
  324. }
  325. SERIAL_PROTOCOL(input);
  326. SERIAL_PROTOCOLPGM(" @:");
  327. SERIAL_PROTOCOLLN(p);
  328. if (safety_check_cycles == 0) { //save ambient temp
  329. temp_ambient = input;
  330. //SERIAL_ECHOPGM("Ambient T: ");
  331. //MYSERIAL.println(temp_ambient);
  332. safety_check_cycles++;
  333. }
  334. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  338. safety_check_cycles++;
  339. //SERIAL_ECHOPGM("Time from beginning: ");
  340. //MYSERIAL.print(safety_check_cycles_count * 2);
  341. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  342. //MYSERIAL.println(input - temp_ambient);
  343. if (abs(input - temp_ambient) < 5.0) {
  344. temp_runaway_stop(false, (extruder<0));
  345. pid_tuning_finished = true;
  346. return;
  347. }
  348. }
  349. temp_millis = _millis();
  350. }
  351. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. if(pid_cycle > ncycles) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. lcd_update(0);
  364. }
  365. }
  366. void updatePID()
  367. {
  368. #ifdef PIDTEMP
  369. for(int e = 0; e < EXTRUDERS; e++) {
  370. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  371. }
  372. #endif
  373. #ifdef PIDTEMPBED
  374. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  375. #endif
  376. }
  377. int getHeaterPower(int heater) {
  378. if (heater<0)
  379. return soft_pwm_bed;
  380. return soft_pwm[heater];
  381. }
  382. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  383. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  385. #if defined(FAN_PIN) && FAN_PIN > -1
  386. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  390. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  391. #endif
  392. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #endif
  396. void setExtruderAutoFanState(int pin, bool state)
  397. {
  398. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  399. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  400. pinMode(pin, OUTPUT);
  401. digitalWrite(pin, newFanSpeed);
  402. //analogWrite(pin, newFanSpeed);
  403. }
  404. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  405. void countFanSpeed()
  406. {
  407. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  408. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  409. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  410. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  411. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  412. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  413. SERIAL_ECHOLNPGM(" ");*/
  414. fan_edge_counter[0] = 0;
  415. fan_edge_counter[1] = 0;
  416. }
  417. extern bool fans_check_enabled;
  418. void checkFanSpeed()
  419. {
  420. uint8_t max_print_fan_errors = 0;
  421. uint8_t max_extruder_fan_errors = 0;
  422. #ifdef FAN_SOFT_PWM
  423. max_print_fan_errors = 3; //15 seconds
  424. max_extruder_fan_errors = 2; //10seconds
  425. #else //FAN_SOFT_PWM
  426. max_print_fan_errors = 15; //15 seconds
  427. max_extruder_fan_errors = 5; //5 seconds
  428. #endif //FAN_SOFT_PWM
  429. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  430. static unsigned char fan_speed_errors[2] = { 0,0 };
  431. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  432. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  433. else fan_speed_errors[0] = 0;
  434. #endif
  435. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  436. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  437. else fan_speed_errors[1] = 0;
  438. #endif
  439. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  440. fan_speed_errors[0] = 0;
  441. fanSpeedError(0); //extruder fan
  442. }
  443. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  444. fan_speed_errors[1] = 0;
  445. fanSpeedError(1); //print fan
  446. }
  447. }
  448. void fanSpeedError(unsigned char _fan) {
  449. if (get_message_level() != 0 && isPrintPaused) return;
  450. //to ensure that target temp. is not set to zero in case taht we are resuming print
  451. if (card.sdprinting) {
  452. if (heating_status != 0) {
  453. lcd_print_stop();
  454. }
  455. else {
  456. lcd_pause_print();
  457. }
  458. }
  459. else {
  460. setTargetHotend0(0);
  461. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  462. }
  463. switch (_fan) {
  464. case 0:
  465. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  466. if (get_message_level() == 0) {
  467. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  468. WRITE(BEEPER, HIGH);
  469. delayMicroseconds(200);
  470. WRITE(BEEPER, LOW);
  471. delayMicroseconds(100);
  472. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  473. }
  474. break;
  475. case 1:
  476. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  477. if (get_message_level() == 0) {
  478. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  479. WRITE(BEEPER, HIGH);
  480. delayMicroseconds(200);
  481. WRITE(BEEPER, LOW);
  482. delayMicroseconds(100);
  483. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  484. }
  485. break;
  486. }
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. #ifdef WATCH_TEMP_PERIOD
  631. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  632. {
  633. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  634. {
  635. setTargetHotend(0, e);
  636. LCD_MESSAGEPGM("Heating failed");
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOLN("Heating failed");
  639. }else{
  640. watchmillis[e] = 0;
  641. }
  642. }
  643. #endif
  644. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  645. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  646. disable_heater();
  647. if(IsStopped() == false) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  650. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  651. }
  652. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  653. Stop();
  654. #endif
  655. }
  656. #endif
  657. } // End extruder for loop
  658. #define FAN_CHECK_PERIOD 5000 //5s
  659. #define FAN_CHECK_DURATION 100 //100ms
  660. #ifndef DEBUG_DISABLE_FANCHECK
  661. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  662. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  663. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  664. #ifdef FAN_SOFT_PWM
  665. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  666. extruder_autofan_last_check = _millis();
  667. fanSpeedBckp = fanSpeedSoftPwm;
  668. if (fanSpeedSoftPwm > MIN_PRINT_FAN_SPEED) {
  669. fanSpeedSoftPwm = 255;
  670. }
  671. fan_measuring = true;
  672. }
  673. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  674. countFanSpeed();
  675. checkFanSpeed();
  676. fanSpeedSoftPwm = fanSpeedBckp;
  677. printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  678. extruder_autofan_last_check = _millis();
  679. fan_measuring = false;
  680. }
  681. checkExtruderAutoFans();
  682. #else //FAN_SOFT_PWM
  683. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  684. {
  685. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  686. countFanSpeed();
  687. checkFanSpeed();
  688. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  689. checkExtruderAutoFans();
  690. extruder_autofan_last_check = _millis();
  691. }
  692. #endif //FAN_SOFT_PWM
  693. #endif
  694. #endif //DEBUG_DISABLE_FANCHECK
  695. #ifndef PIDTEMPBED
  696. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  697. return;
  698. previous_millis_bed_heater = _millis();
  699. #endif
  700. #if TEMP_SENSOR_BED != 0
  701. #ifdef PIDTEMPBED
  702. pid_input = current_temperature_bed;
  703. #ifndef PID_OPENLOOP
  704. pid_error_bed = target_temperature_bed - pid_input;
  705. pTerm_bed = cs.bedKp * pid_error_bed;
  706. temp_iState_bed += pid_error_bed;
  707. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  708. iTerm_bed = cs.bedKi * temp_iState_bed;
  709. //K1 defined in Configuration.h in the PID settings
  710. #define K2 (1.0-K1)
  711. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  712. temp_dState_bed = pid_input;
  713. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  714. if (pid_output > MAX_BED_POWER) {
  715. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  716. pid_output=MAX_BED_POWER;
  717. } else if (pid_output < 0){
  718. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  719. pid_output=0;
  720. }
  721. #else
  722. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  723. #endif //PID_OPENLOOP
  724. if(current_temperature_bed < BED_MAXTEMP)
  725. {
  726. soft_pwm_bed = (int)pid_output >> 1;
  727. timer02_set_pwm0(soft_pwm_bed << 1);
  728. }
  729. else {
  730. soft_pwm_bed = 0;
  731. timer02_set_pwm0(soft_pwm_bed << 1);
  732. }
  733. #elif !defined(BED_LIMIT_SWITCHING)
  734. // Check if temperature is within the correct range
  735. if(current_temperature_bed < BED_MAXTEMP)
  736. {
  737. if(current_temperature_bed >= target_temperature_bed)
  738. {
  739. soft_pwm_bed = 0;
  740. timer02_set_pwm0(soft_pwm_bed << 1);
  741. }
  742. else
  743. {
  744. soft_pwm_bed = MAX_BED_POWER>>1;
  745. timer02_set_pwm0(soft_pwm_bed << 1);
  746. }
  747. }
  748. else
  749. {
  750. soft_pwm_bed = 0;
  751. timer02_set_pwm0(soft_pwm_bed << 1);
  752. WRITE(HEATER_BED_PIN,LOW);
  753. }
  754. #else //#ifdef BED_LIMIT_SWITCHING
  755. // Check if temperature is within the correct band
  756. if(current_temperature_bed < BED_MAXTEMP)
  757. {
  758. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  759. {
  760. soft_pwm_bed = 0;
  761. timer02_set_pwm0(soft_pwm_bed << 1);
  762. }
  763. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  764. {
  765. soft_pwm_bed = MAX_BED_POWER>>1;
  766. timer02_set_pwm0(soft_pwm_bed << 1);
  767. }
  768. }
  769. else
  770. {
  771. soft_pwm_bed = 0;
  772. timer02_set_pwm0(soft_pwm_bed << 1);
  773. WRITE(HEATER_BED_PIN,LOW);
  774. }
  775. #endif
  776. if(target_temperature_bed==0)
  777. {
  778. soft_pwm_bed = 0;
  779. timer02_set_pwm0(soft_pwm_bed << 1);
  780. }
  781. #endif
  782. #ifdef HOST_KEEPALIVE_FEATURE
  783. host_keepalive();
  784. #endif
  785. }
  786. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  787. // Derived from RepRap FiveD extruder::getTemperature()
  788. // For hot end temperature measurement.
  789. static float analog2temp(int raw, uint8_t e) {
  790. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  791. if(e > EXTRUDERS)
  792. #else
  793. if(e >= EXTRUDERS)
  794. #endif
  795. {
  796. SERIAL_ERROR_START;
  797. SERIAL_ERROR((int)e);
  798. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  799. kill(PSTR(""), 6);
  800. return 0.0;
  801. }
  802. #ifdef HEATER_0_USES_MAX6675
  803. if (e == 0)
  804. {
  805. return 0.25 * raw;
  806. }
  807. #endif
  808. if(heater_ttbl_map[e] != NULL)
  809. {
  810. float celsius = 0;
  811. uint8_t i;
  812. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  813. for (i=1; i<heater_ttbllen_map[e]; i++)
  814. {
  815. if (PGM_RD_W((*tt)[i][0]) > raw)
  816. {
  817. celsius = PGM_RD_W((*tt)[i-1][1]) +
  818. (raw - PGM_RD_W((*tt)[i-1][0])) *
  819. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  820. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  821. break;
  822. }
  823. }
  824. // Overflow: Set to last value in the table
  825. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  826. return celsius;
  827. }
  828. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  829. }
  830. // Derived from RepRap FiveD extruder::getTemperature()
  831. // For bed temperature measurement.
  832. static float analog2tempBed(int raw) {
  833. #ifdef BED_USES_THERMISTOR
  834. float celsius = 0;
  835. byte i;
  836. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  837. {
  838. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  839. {
  840. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  841. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  842. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  843. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  844. break;
  845. }
  846. }
  847. // Overflow: Set to last value in the table
  848. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  849. // temperature offset adjustment
  850. #ifdef BED_OFFSET
  851. float _offset = BED_OFFSET;
  852. float _offset_center = BED_OFFSET_CENTER;
  853. float _offset_start = BED_OFFSET_START;
  854. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  855. float _second_koef = (_offset / 2) / (100 - _offset_center);
  856. if (celsius >= _offset_start && celsius <= _offset_center)
  857. {
  858. celsius = celsius + (_first_koef * (celsius - _offset_start));
  859. }
  860. else if (celsius > _offset_center && celsius <= 100)
  861. {
  862. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  863. }
  864. else if (celsius > 100)
  865. {
  866. celsius = celsius + _offset;
  867. }
  868. #endif
  869. return celsius;
  870. #elif defined BED_USES_AD595
  871. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  872. #else
  873. return 0;
  874. #endif
  875. }
  876. #ifdef AMBIENT_THERMISTOR
  877. static float analog2tempAmbient(int raw)
  878. {
  879. float celsius = 0;
  880. byte i;
  881. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  882. {
  883. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  884. {
  885. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  886. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  887. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  888. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  889. break;
  890. }
  891. }
  892. // Overflow: Set to last value in the table
  893. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  894. return celsius;
  895. }
  896. #endif //AMBIENT_THERMISTOR
  897. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  898. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  899. static void updateTemperaturesFromRawValues()
  900. {
  901. for(uint8_t e=0;e<EXTRUDERS;e++)
  902. {
  903. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  904. }
  905. #ifdef PINDA_THERMISTOR
  906. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  907. #endif
  908. #ifdef AMBIENT_THERMISTOR
  909. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  910. #endif
  911. #ifdef DEBUG_HEATER_BED_SIM
  912. current_temperature_bed = target_temperature_bed;
  913. #else //DEBUG_HEATER_BED_SIM
  914. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  915. #endif //DEBUG_HEATER_BED_SIM
  916. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  917. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  918. #endif
  919. //Reset the watchdog after we know we have a temperature measurement.
  920. #ifdef WATCHDOG
  921. wdt_reset();
  922. #endif //WATCHDOG
  923. CRITICAL_SECTION_START;
  924. temp_meas_ready = false;
  925. CRITICAL_SECTION_END;
  926. }
  927. void tp_init()
  928. {
  929. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  930. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  931. MCUCR=(1<<JTD);
  932. MCUCR=(1<<JTD);
  933. #endif
  934. // Finish init of mult extruder arrays
  935. for(int e = 0; e < EXTRUDERS; e++) {
  936. // populate with the first value
  937. maxttemp[e] = maxttemp[0];
  938. #ifdef PIDTEMP
  939. iState_sum_min[e] = 0.0;
  940. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  941. #endif //PIDTEMP
  942. #ifdef PIDTEMPBED
  943. temp_iState_min_bed = 0.0;
  944. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  945. #endif //PIDTEMPBED
  946. }
  947. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  948. SET_OUTPUT(HEATER_0_PIN);
  949. #endif
  950. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  951. SET_OUTPUT(HEATER_1_PIN);
  952. #endif
  953. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  954. SET_OUTPUT(HEATER_2_PIN);
  955. #endif
  956. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  957. SET_OUTPUT(HEATER_BED_PIN);
  958. #endif
  959. #if defined(FAN_PIN) && (FAN_PIN > -1)
  960. SET_OUTPUT(FAN_PIN);
  961. #ifdef FAST_PWM_FAN
  962. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  963. #endif
  964. #ifdef FAN_SOFT_PWM
  965. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  966. #endif
  967. #endif
  968. #ifdef HEATER_0_USES_MAX6675
  969. #ifndef SDSUPPORT
  970. SET_OUTPUT(SCK_PIN);
  971. WRITE(SCK_PIN,0);
  972. SET_OUTPUT(MOSI_PIN);
  973. WRITE(MOSI_PIN,1);
  974. SET_INPUT(MISO_PIN);
  975. WRITE(MISO_PIN,1);
  976. #endif
  977. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  978. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  979. pinMode(SS_PIN, OUTPUT);
  980. digitalWrite(SS_PIN,0);
  981. pinMode(MAX6675_SS, OUTPUT);
  982. digitalWrite(MAX6675_SS,1);
  983. #endif
  984. adc_init();
  985. #ifdef SYSTEM_TIMER_2
  986. timer02_init();
  987. OCR2B = 128;
  988. TIMSK2 |= (1<<OCIE2B);
  989. #else //SYSTEM_TIMER_2
  990. // Use timer0 for temperature measurement
  991. // Interleave temperature interrupt with millies interrupt
  992. OCR0B = 128;
  993. TIMSK0 |= (1<<OCIE0B);
  994. #endif //SYSTEM_TIMER_2
  995. // Wait for temperature measurement to settle
  996. _delay(250);
  997. #ifdef HEATER_0_MINTEMP
  998. minttemp[0] = HEATER_0_MINTEMP;
  999. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1000. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1001. minttemp_raw[0] += OVERSAMPLENR;
  1002. #else
  1003. minttemp_raw[0] -= OVERSAMPLENR;
  1004. #endif
  1005. }
  1006. #endif //MINTEMP
  1007. #ifdef HEATER_0_MAXTEMP
  1008. maxttemp[0] = HEATER_0_MAXTEMP;
  1009. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1010. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1011. maxttemp_raw[0] -= OVERSAMPLENR;
  1012. #else
  1013. maxttemp_raw[0] += OVERSAMPLENR;
  1014. #endif
  1015. }
  1016. #endif //MAXTEMP
  1017. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1018. minttemp[1] = HEATER_1_MINTEMP;
  1019. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1020. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1021. minttemp_raw[1] += OVERSAMPLENR;
  1022. #else
  1023. minttemp_raw[1] -= OVERSAMPLENR;
  1024. #endif
  1025. }
  1026. #endif // MINTEMP 1
  1027. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1028. maxttemp[1] = HEATER_1_MAXTEMP;
  1029. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1030. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1031. maxttemp_raw[1] -= OVERSAMPLENR;
  1032. #else
  1033. maxttemp_raw[1] += OVERSAMPLENR;
  1034. #endif
  1035. }
  1036. #endif //MAXTEMP 1
  1037. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1038. minttemp[2] = HEATER_2_MINTEMP;
  1039. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1040. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1041. minttemp_raw[2] += OVERSAMPLENR;
  1042. #else
  1043. minttemp_raw[2] -= OVERSAMPLENR;
  1044. #endif
  1045. }
  1046. #endif //MINTEMP 2
  1047. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1048. maxttemp[2] = HEATER_2_MAXTEMP;
  1049. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1050. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1051. maxttemp_raw[2] -= OVERSAMPLENR;
  1052. #else
  1053. maxttemp_raw[2] += OVERSAMPLENR;
  1054. #endif
  1055. }
  1056. #endif //MAXTEMP 2
  1057. #ifdef BED_MINTEMP
  1058. /* No bed MINTEMP error implemented?!? */
  1059. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1060. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1061. bed_minttemp_raw += OVERSAMPLENR;
  1062. #else
  1063. bed_minttemp_raw -= OVERSAMPLENR;
  1064. #endif
  1065. }
  1066. #endif //BED_MINTEMP
  1067. #ifdef BED_MAXTEMP
  1068. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1069. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1070. bed_maxttemp_raw -= OVERSAMPLENR;
  1071. #else
  1072. bed_maxttemp_raw += OVERSAMPLENR;
  1073. #endif
  1074. }
  1075. #endif //BED_MAXTEMP
  1076. }
  1077. void setWatch()
  1078. {
  1079. #ifdef WATCH_TEMP_PERIOD
  1080. for (int e = 0; e < EXTRUDERS; e++)
  1081. {
  1082. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1083. {
  1084. watch_start_temp[e] = degHotend(e);
  1085. watchmillis[e] = _millis();
  1086. }
  1087. }
  1088. #endif
  1089. }
  1090. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1091. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1092. {
  1093. float __hysteresis = 0;
  1094. int __timeout = 0;
  1095. bool temp_runaway_check_active = false;
  1096. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1097. static int __preheat_counter[2] = { 0,0};
  1098. static int __preheat_errors[2] = { 0,0};
  1099. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1100. {
  1101. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1102. if (_isbed)
  1103. {
  1104. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1105. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1106. }
  1107. #endif
  1108. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1109. if (!_isbed)
  1110. {
  1111. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1112. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1113. }
  1114. #endif
  1115. temp_runaway_timer[_heater_id] = _millis();
  1116. if (_output == 0)
  1117. {
  1118. temp_runaway_check_active = false;
  1119. temp_runaway_error_counter[_heater_id] = 0;
  1120. }
  1121. if (temp_runaway_target[_heater_id] != _target_temperature)
  1122. {
  1123. if (_target_temperature > 0)
  1124. {
  1125. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1126. temp_runaway_target[_heater_id] = _target_temperature;
  1127. __preheat_start[_heater_id] = _current_temperature;
  1128. __preheat_counter[_heater_id] = 0;
  1129. }
  1130. else
  1131. {
  1132. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1133. temp_runaway_target[_heater_id] = _target_temperature;
  1134. }
  1135. }
  1136. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1137. {
  1138. __preheat_counter[_heater_id]++;
  1139. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1140. {
  1141. /*SERIAL_ECHOPGM("Heater:");
  1142. MYSERIAL.print(_heater_id);
  1143. SERIAL_ECHOPGM(" T:");
  1144. MYSERIAL.print(_current_temperature);
  1145. SERIAL_ECHOPGM(" Tstart:");
  1146. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1147. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1148. __preheat_errors[_heater_id]++;
  1149. /*SERIAL_ECHOPGM(" Preheat errors:");
  1150. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1151. }
  1152. else {
  1153. //SERIAL_ECHOLNPGM("");
  1154. __preheat_errors[_heater_id] = 0;
  1155. }
  1156. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1157. {
  1158. if (farm_mode) { prusa_statistics(0); }
  1159. temp_runaway_stop(true, _isbed);
  1160. if (farm_mode) { prusa_statistics(91); }
  1161. }
  1162. __preheat_start[_heater_id] = _current_temperature;
  1163. __preheat_counter[_heater_id] = 0;
  1164. }
  1165. }
  1166. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1167. {
  1168. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1169. temp_runaway_check_active = false;
  1170. }
  1171. if (_output > 0)
  1172. {
  1173. temp_runaway_check_active = true;
  1174. }
  1175. if (temp_runaway_check_active)
  1176. {
  1177. // we are in range
  1178. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1179. {
  1180. temp_runaway_check_active = false;
  1181. temp_runaway_error_counter[_heater_id] = 0;
  1182. }
  1183. else
  1184. {
  1185. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1186. {
  1187. temp_runaway_error_counter[_heater_id]++;
  1188. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1189. {
  1190. if (farm_mode) { prusa_statistics(0); }
  1191. temp_runaway_stop(false, _isbed);
  1192. if (farm_mode) { prusa_statistics(90); }
  1193. }
  1194. }
  1195. }
  1196. }
  1197. }
  1198. }
  1199. void temp_runaway_stop(bool isPreheat, bool isBed)
  1200. {
  1201. cancel_heatup = true;
  1202. quickStop();
  1203. if (card.sdprinting)
  1204. {
  1205. card.sdprinting = false;
  1206. card.closefile();
  1207. }
  1208. // Clean the input command queue
  1209. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1210. cmdqueue_reset();
  1211. disable_heater();
  1212. disable_x();
  1213. disable_y();
  1214. disable_e0();
  1215. disable_e1();
  1216. disable_e2();
  1217. manage_heater();
  1218. lcd_update(0);
  1219. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1220. WRITE(BEEPER, HIGH);
  1221. delayMicroseconds(500);
  1222. WRITE(BEEPER, LOW);
  1223. delayMicroseconds(100);
  1224. if (isPreheat)
  1225. {
  1226. Stop();
  1227. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1228. SERIAL_ERROR_START;
  1229. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1230. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1231. SET_OUTPUT(FAN_PIN);
  1232. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1233. #ifdef FAN_SOFT_PWM
  1234. fanSpeedSoftPwm = 255;
  1235. #else //FAN_SOFT_PWM
  1236. analogWrite(FAN_PIN, 255);
  1237. #endif //FAN_SOFT_PWM
  1238. fanSpeed = 255;
  1239. delayMicroseconds(2000);
  1240. }
  1241. else
  1242. {
  1243. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1244. SERIAL_ERROR_START;
  1245. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1246. }
  1247. }
  1248. #endif
  1249. void disable_heater()
  1250. {
  1251. setAllTargetHotends(0);
  1252. setTargetBed(0);
  1253. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1254. target_temperature[0]=0;
  1255. soft_pwm[0]=0;
  1256. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1257. WRITE(HEATER_0_PIN,LOW);
  1258. #endif
  1259. #endif
  1260. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1261. target_temperature[1]=0;
  1262. soft_pwm[1]=0;
  1263. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1264. WRITE(HEATER_1_PIN,LOW);
  1265. #endif
  1266. #endif
  1267. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1268. target_temperature[2]=0;
  1269. soft_pwm[2]=0;
  1270. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1271. WRITE(HEATER_2_PIN,LOW);
  1272. #endif
  1273. #endif
  1274. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1275. target_temperature_bed=0;
  1276. soft_pwm_bed=0;
  1277. timer02_set_pwm0(soft_pwm_bed << 1);
  1278. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1279. WRITE(HEATER_BED_PIN,LOW);
  1280. #endif
  1281. #endif
  1282. }
  1283. void max_temp_error(uint8_t e) {
  1284. disable_heater();
  1285. if(IsStopped() == false) {
  1286. SERIAL_ERROR_START;
  1287. SERIAL_ERRORLN((int)e);
  1288. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1289. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1290. }
  1291. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1292. Stop();
  1293. #endif
  1294. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1295. SET_OUTPUT(FAN_PIN);
  1296. SET_OUTPUT(BEEPER);
  1297. WRITE(FAN_PIN, 1);
  1298. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1299. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1300. WRITE(BEEPER, 1);
  1301. // fanSpeed will consumed by the check_axes_activity() routine.
  1302. fanSpeed=255;
  1303. if (farm_mode) { prusa_statistics(93); }
  1304. }
  1305. void min_temp_error(uint8_t e) {
  1306. #ifdef DEBUG_DISABLE_MINTEMP
  1307. return;
  1308. #endif
  1309. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1310. disable_heater();
  1311. if(IsStopped() == false) {
  1312. SERIAL_ERROR_START;
  1313. SERIAL_ERRORLN((int)e);
  1314. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1315. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1316. }
  1317. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1318. Stop();
  1319. #endif
  1320. if (farm_mode) { prusa_statistics(92); }
  1321. }
  1322. void bed_max_temp_error(void) {
  1323. #if HEATER_BED_PIN > -1
  1324. WRITE(HEATER_BED_PIN, 0);
  1325. #endif
  1326. if(IsStopped() == false) {
  1327. SERIAL_ERROR_START;
  1328. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1329. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1330. }
  1331. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1332. Stop();
  1333. #endif
  1334. }
  1335. void bed_min_temp_error(void) {
  1336. #ifdef DEBUG_DISABLE_MINTEMP
  1337. return;
  1338. #endif
  1339. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1340. #if HEATER_BED_PIN > -1
  1341. WRITE(HEATER_BED_PIN, 0);
  1342. #endif
  1343. if(IsStopped() == false) {
  1344. SERIAL_ERROR_START;
  1345. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1346. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1347. }
  1348. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1349. Stop();
  1350. #endif
  1351. }
  1352. #ifdef HEATER_0_USES_MAX6675
  1353. #define MAX6675_HEAT_INTERVAL 250
  1354. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1355. int max6675_temp = 2000;
  1356. int read_max6675()
  1357. {
  1358. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1359. return max6675_temp;
  1360. max6675_previous_millis = _millis();
  1361. max6675_temp = 0;
  1362. #ifdef PRR
  1363. PRR &= ~(1<<PRSPI);
  1364. #elif defined PRR0
  1365. PRR0 &= ~(1<<PRSPI);
  1366. #endif
  1367. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1368. // enable TT_MAX6675
  1369. WRITE(MAX6675_SS, 0);
  1370. // ensure 100ns delay - a bit extra is fine
  1371. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1372. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1373. // read MSB
  1374. SPDR = 0;
  1375. for (;(SPSR & (1<<SPIF)) == 0;);
  1376. max6675_temp = SPDR;
  1377. max6675_temp <<= 8;
  1378. // read LSB
  1379. SPDR = 0;
  1380. for (;(SPSR & (1<<SPIF)) == 0;);
  1381. max6675_temp |= SPDR;
  1382. // disable TT_MAX6675
  1383. WRITE(MAX6675_SS, 1);
  1384. if (max6675_temp & 4)
  1385. {
  1386. // thermocouple open
  1387. max6675_temp = 2000;
  1388. }
  1389. else
  1390. {
  1391. max6675_temp = max6675_temp >> 3;
  1392. }
  1393. return max6675_temp;
  1394. }
  1395. #endif
  1396. extern "C" {
  1397. void adc_ready(void) //callback from adc when sampling finished
  1398. {
  1399. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1400. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1401. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1402. #ifdef VOLT_PWR_PIN
  1403. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1404. #endif
  1405. #ifdef AMBIENT_THERMISTOR
  1406. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1407. #endif //AMBIENT_THERMISTOR
  1408. #ifdef VOLT_BED_PIN
  1409. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1410. #endif
  1411. temp_meas_ready = true;
  1412. }
  1413. } // extern "C"
  1414. // Timer2 (originaly timer0) is shared with millies
  1415. #ifdef SYSTEM_TIMER_2
  1416. ISR(TIMER2_COMPB_vect)
  1417. #else //SYSTEM_TIMER_2
  1418. ISR(TIMER0_COMPB_vect)
  1419. #endif //SYSTEM_TIMER_2
  1420. {
  1421. static bool _lock = false;
  1422. if (_lock) return;
  1423. _lock = true;
  1424. asm("sei");
  1425. if (!temp_meas_ready) adc_cycle();
  1426. lcd_buttons_update();
  1427. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1428. static unsigned char soft_pwm_0;
  1429. #ifdef SLOW_PWM_HEATERS
  1430. static unsigned char slow_pwm_count = 0;
  1431. static unsigned char state_heater_0 = 0;
  1432. static unsigned char state_timer_heater_0 = 0;
  1433. #endif
  1434. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1435. static unsigned char soft_pwm_1;
  1436. #ifdef SLOW_PWM_HEATERS
  1437. static unsigned char state_heater_1 = 0;
  1438. static unsigned char state_timer_heater_1 = 0;
  1439. #endif
  1440. #endif
  1441. #if EXTRUDERS > 2
  1442. static unsigned char soft_pwm_2;
  1443. #ifdef SLOW_PWM_HEATERS
  1444. static unsigned char state_heater_2 = 0;
  1445. static unsigned char state_timer_heater_2 = 0;
  1446. #endif
  1447. #endif
  1448. #if HEATER_BED_PIN > -1
  1449. static unsigned char soft_pwm_b;
  1450. #ifdef SLOW_PWM_HEATERS
  1451. static unsigned char state_heater_b = 0;
  1452. static unsigned char state_timer_heater_b = 0;
  1453. #endif
  1454. #endif
  1455. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1456. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1457. #endif
  1458. #ifndef SLOW_PWM_HEATERS
  1459. /*
  1460. * standard PWM modulation
  1461. */
  1462. if (pwm_count == 0)
  1463. {
  1464. soft_pwm_0 = soft_pwm[0];
  1465. if(soft_pwm_0 > 0)
  1466. {
  1467. WRITE(HEATER_0_PIN,1);
  1468. #ifdef HEATERS_PARALLEL
  1469. WRITE(HEATER_1_PIN,1);
  1470. #endif
  1471. } else WRITE(HEATER_0_PIN,0);
  1472. #if EXTRUDERS > 1
  1473. soft_pwm_1 = soft_pwm[1];
  1474. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1475. #endif
  1476. #if EXTRUDERS > 2
  1477. soft_pwm_2 = soft_pwm[2];
  1478. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1479. #endif
  1480. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1481. soft_pwm_b = soft_pwm_bed;
  1482. #ifndef SYSTEM_TIMER_2
  1483. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1484. #endif //SYSTEM_TIMER_2
  1485. #endif
  1486. }
  1487. #ifdef FAN_SOFT_PWM
  1488. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1489. {
  1490. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1491. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1492. }
  1493. #endif
  1494. if(soft_pwm_0 < pwm_count)
  1495. {
  1496. WRITE(HEATER_0_PIN,0);
  1497. #ifdef HEATERS_PARALLEL
  1498. WRITE(HEATER_1_PIN,0);
  1499. #endif
  1500. }
  1501. #if EXTRUDERS > 1
  1502. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1503. #endif
  1504. #if EXTRUDERS > 2
  1505. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1506. #endif
  1507. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1508. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1509. #endif
  1510. #ifdef FAN_SOFT_PWM
  1511. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1512. #endif
  1513. pwm_count += (1 << SOFT_PWM_SCALE);
  1514. pwm_count &= 0x7f;
  1515. #else //ifndef SLOW_PWM_HEATERS
  1516. /*
  1517. * SLOW PWM HEATERS
  1518. *
  1519. * for heaters drived by relay
  1520. */
  1521. #ifndef MIN_STATE_TIME
  1522. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1523. #endif
  1524. if (slow_pwm_count == 0) {
  1525. // EXTRUDER 0
  1526. soft_pwm_0 = soft_pwm[0];
  1527. if (soft_pwm_0 > 0) {
  1528. // turn ON heather only if the minimum time is up
  1529. if (state_timer_heater_0 == 0) {
  1530. // if change state set timer
  1531. if (state_heater_0 == 0) {
  1532. state_timer_heater_0 = MIN_STATE_TIME;
  1533. }
  1534. state_heater_0 = 1;
  1535. WRITE(HEATER_0_PIN, 1);
  1536. #ifdef HEATERS_PARALLEL
  1537. WRITE(HEATER_1_PIN, 1);
  1538. #endif
  1539. }
  1540. } else {
  1541. // turn OFF heather only if the minimum time is up
  1542. if (state_timer_heater_0 == 0) {
  1543. // if change state set timer
  1544. if (state_heater_0 == 1) {
  1545. state_timer_heater_0 = MIN_STATE_TIME;
  1546. }
  1547. state_heater_0 = 0;
  1548. WRITE(HEATER_0_PIN, 0);
  1549. #ifdef HEATERS_PARALLEL
  1550. WRITE(HEATER_1_PIN, 0);
  1551. #endif
  1552. }
  1553. }
  1554. #if EXTRUDERS > 1
  1555. // EXTRUDER 1
  1556. soft_pwm_1 = soft_pwm[1];
  1557. if (soft_pwm_1 > 0) {
  1558. // turn ON heather only if the minimum time is up
  1559. if (state_timer_heater_1 == 0) {
  1560. // if change state set timer
  1561. if (state_heater_1 == 0) {
  1562. state_timer_heater_1 = MIN_STATE_TIME;
  1563. }
  1564. state_heater_1 = 1;
  1565. WRITE(HEATER_1_PIN, 1);
  1566. }
  1567. } else {
  1568. // turn OFF heather only if the minimum time is up
  1569. if (state_timer_heater_1 == 0) {
  1570. // if change state set timer
  1571. if (state_heater_1 == 1) {
  1572. state_timer_heater_1 = MIN_STATE_TIME;
  1573. }
  1574. state_heater_1 = 0;
  1575. WRITE(HEATER_1_PIN, 0);
  1576. }
  1577. }
  1578. #endif
  1579. #if EXTRUDERS > 2
  1580. // EXTRUDER 2
  1581. soft_pwm_2 = soft_pwm[2];
  1582. if (soft_pwm_2 > 0) {
  1583. // turn ON heather only if the minimum time is up
  1584. if (state_timer_heater_2 == 0) {
  1585. // if change state set timer
  1586. if (state_heater_2 == 0) {
  1587. state_timer_heater_2 = MIN_STATE_TIME;
  1588. }
  1589. state_heater_2 = 1;
  1590. WRITE(HEATER_2_PIN, 1);
  1591. }
  1592. } else {
  1593. // turn OFF heather only if the minimum time is up
  1594. if (state_timer_heater_2 == 0) {
  1595. // if change state set timer
  1596. if (state_heater_2 == 1) {
  1597. state_timer_heater_2 = MIN_STATE_TIME;
  1598. }
  1599. state_heater_2 = 0;
  1600. WRITE(HEATER_2_PIN, 0);
  1601. }
  1602. }
  1603. #endif
  1604. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1605. // BED
  1606. soft_pwm_b = soft_pwm_bed;
  1607. if (soft_pwm_b > 0) {
  1608. // turn ON heather only if the minimum time is up
  1609. if (state_timer_heater_b == 0) {
  1610. // if change state set timer
  1611. if (state_heater_b == 0) {
  1612. state_timer_heater_b = MIN_STATE_TIME;
  1613. }
  1614. state_heater_b = 1;
  1615. //WRITE(HEATER_BED_PIN, 1);
  1616. }
  1617. } else {
  1618. // turn OFF heather only if the minimum time is up
  1619. if (state_timer_heater_b == 0) {
  1620. // if change state set timer
  1621. if (state_heater_b == 1) {
  1622. state_timer_heater_b = MIN_STATE_TIME;
  1623. }
  1624. state_heater_b = 0;
  1625. WRITE(HEATER_BED_PIN, 0);
  1626. }
  1627. }
  1628. #endif
  1629. } // if (slow_pwm_count == 0)
  1630. // EXTRUDER 0
  1631. if (soft_pwm_0 < slow_pwm_count) {
  1632. // turn OFF heather only if the minimum time is up
  1633. if (state_timer_heater_0 == 0) {
  1634. // if change state set timer
  1635. if (state_heater_0 == 1) {
  1636. state_timer_heater_0 = MIN_STATE_TIME;
  1637. }
  1638. state_heater_0 = 0;
  1639. WRITE(HEATER_0_PIN, 0);
  1640. #ifdef HEATERS_PARALLEL
  1641. WRITE(HEATER_1_PIN, 0);
  1642. #endif
  1643. }
  1644. }
  1645. #if EXTRUDERS > 1
  1646. // EXTRUDER 1
  1647. if (soft_pwm_1 < slow_pwm_count) {
  1648. // turn OFF heather only if the minimum time is up
  1649. if (state_timer_heater_1 == 0) {
  1650. // if change state set timer
  1651. if (state_heater_1 == 1) {
  1652. state_timer_heater_1 = MIN_STATE_TIME;
  1653. }
  1654. state_heater_1 = 0;
  1655. WRITE(HEATER_1_PIN, 0);
  1656. }
  1657. }
  1658. #endif
  1659. #if EXTRUDERS > 2
  1660. // EXTRUDER 2
  1661. if (soft_pwm_2 < slow_pwm_count) {
  1662. // turn OFF heather only if the minimum time is up
  1663. if (state_timer_heater_2 == 0) {
  1664. // if change state set timer
  1665. if (state_heater_2 == 1) {
  1666. state_timer_heater_2 = MIN_STATE_TIME;
  1667. }
  1668. state_heater_2 = 0;
  1669. WRITE(HEATER_2_PIN, 0);
  1670. }
  1671. }
  1672. #endif
  1673. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1674. // BED
  1675. if (soft_pwm_b < slow_pwm_count) {
  1676. // turn OFF heather only if the minimum time is up
  1677. if (state_timer_heater_b == 0) {
  1678. // if change state set timer
  1679. if (state_heater_b == 1) {
  1680. state_timer_heater_b = MIN_STATE_TIME;
  1681. }
  1682. state_heater_b = 0;
  1683. WRITE(HEATER_BED_PIN, 0);
  1684. }
  1685. }
  1686. #endif
  1687. #ifdef FAN_SOFT_PWM
  1688. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1689. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1690. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1691. }
  1692. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1693. #endif
  1694. pwm_count += (1 << SOFT_PWM_SCALE);
  1695. pwm_count &= 0x7f;
  1696. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1697. if ((pwm_count % 64) == 0) {
  1698. slow_pwm_count++;
  1699. slow_pwm_count &= 0x7f;
  1700. // Extruder 0
  1701. if (state_timer_heater_0 > 0) {
  1702. state_timer_heater_0--;
  1703. }
  1704. #if EXTRUDERS > 1
  1705. // Extruder 1
  1706. if (state_timer_heater_1 > 0)
  1707. state_timer_heater_1--;
  1708. #endif
  1709. #if EXTRUDERS > 2
  1710. // Extruder 2
  1711. if (state_timer_heater_2 > 0)
  1712. state_timer_heater_2--;
  1713. #endif
  1714. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1715. // Bed
  1716. if (state_timer_heater_b > 0)
  1717. state_timer_heater_b--;
  1718. #endif
  1719. } //if ((pwm_count % 64) == 0) {
  1720. #endif //ifndef SLOW_PWM_HEATERS
  1721. #ifdef BABYSTEPPING
  1722. for(uint8_t axis=0;axis<3;axis++)
  1723. {
  1724. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1725. if(curTodo>0)
  1726. {
  1727. asm("cli");
  1728. babystep(axis,/*fwd*/true);
  1729. babystepsTodo[axis]--; //less to do next time
  1730. asm("sei");
  1731. }
  1732. else
  1733. if(curTodo<0)
  1734. {
  1735. asm("cli");
  1736. babystep(axis,/*fwd*/false);
  1737. babystepsTodo[axis]++; //less to do next time
  1738. asm("sei");
  1739. }
  1740. }
  1741. #endif //BABYSTEPPING
  1742. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1743. check_fans();
  1744. #endif //(defined(TACH_0))
  1745. _lock = false;
  1746. }
  1747. void check_max_temp()
  1748. {
  1749. //heater
  1750. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1751. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1752. #else
  1753. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1754. #endif
  1755. max_temp_error(0);
  1756. }
  1757. //bed
  1758. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1759. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1760. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1761. #else
  1762. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1763. #endif
  1764. target_temperature_bed = 0;
  1765. bed_max_temp_error();
  1766. }
  1767. #endif
  1768. }
  1769. void check_min_temp_heater0()
  1770. {
  1771. //heater
  1772. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1773. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1774. #else
  1775. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1776. #endif
  1777. min_temp_error(0);
  1778. }
  1779. }
  1780. void check_min_temp_bed()
  1781. {
  1782. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1783. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1784. #else
  1785. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1786. #endif
  1787. bed_min_temp_error();
  1788. }
  1789. }
  1790. void check_min_temp()
  1791. {
  1792. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1793. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1794. #ifdef AMBIENT_THERMISTOR
  1795. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1796. { // ambient temperature is low
  1797. #endif //AMBIENT_THERMISTOR
  1798. // *** 'common' part of code for MK2.5 & MK3
  1799. // * nozzle checking
  1800. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1801. { // ~ nozzle heating is on
  1802. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1803. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1804. {
  1805. bCheckingOnHeater=true; // not necessary
  1806. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1807. }
  1808. }
  1809. else { // ~ nozzle heating is off
  1810. oTimer4minTempHeater.start();
  1811. bCheckingOnHeater=false;
  1812. }
  1813. // * bed checking
  1814. if(target_temperature_bed>BED_MINTEMP)
  1815. { // ~ bed heating is on
  1816. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1817. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1818. {
  1819. bCheckingOnBed=true; // not necessary
  1820. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1821. }
  1822. }
  1823. else { // ~ bed heating is off
  1824. oTimer4minTempBed.start();
  1825. bCheckingOnBed=false;
  1826. }
  1827. // *** end of 'common' part
  1828. #ifdef AMBIENT_THERMISTOR
  1829. }
  1830. else { // ambient temperature is standard
  1831. check_min_temp_heater0();
  1832. check_min_temp_bed();
  1833. }
  1834. #endif //AMBIENT_THERMISTOR
  1835. }
  1836. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1837. void check_fans() {
  1838. if (READ(TACH_0) != fan_state[0]) {
  1839. fan_edge_counter[0] ++;
  1840. fan_state[0] = !fan_state[0];
  1841. }
  1842. //if (READ(TACH_1) != fan_state[1]) {
  1843. // fan_edge_counter[1] ++;
  1844. // fan_state[1] = !fan_state[1];
  1845. //}
  1846. }
  1847. #endif //TACH_0
  1848. #ifdef PIDTEMP
  1849. // Apply the scale factors to the PID values
  1850. float scalePID_i(float i)
  1851. {
  1852. return i*PID_dT;
  1853. }
  1854. float unscalePID_i(float i)
  1855. {
  1856. return i/PID_dT;
  1857. }
  1858. float scalePID_d(float d)
  1859. {
  1860. return d/PID_dT;
  1861. }
  1862. float unscalePID_d(float d)
  1863. {
  1864. return d*PID_dT;
  1865. }
  1866. #endif //PIDTEMP