Marlin_main.cpp 309 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. #ifdef SNMM_V2
  258. float default_retraction = DEFAULT_RETRACTION;
  259. #else //SNMM_V2
  260. float default_retraction = DEFAULT_RETRACTION_MM;
  261. #endif //SNMM_V2
  262. float homing_feedrate[] = HOMING_FEEDRATE;
  263. // Currently only the extruder axis may be switched to a relative mode.
  264. // Other axes are always absolute or relative based on the common relative_mode flag.
  265. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  266. int feedmultiply=100; //100->1 200->2
  267. int saved_feedmultiply;
  268. int extrudemultiply=100; //100->1 200->2
  269. int extruder_multiply[EXTRUDERS] = {100
  270. #if EXTRUDERS > 1
  271. , 100
  272. #if EXTRUDERS > 2
  273. , 100
  274. #endif
  275. #endif
  276. };
  277. int bowden_length[4] = {385, 385, 385, 385};
  278. bool is_usb_printing = false;
  279. bool homing_flag = false;
  280. bool temp_cal_active = false;
  281. unsigned long kicktime = millis()+100000;
  282. unsigned int usb_printing_counter;
  283. int8_t lcd_change_fil_state = 0;
  284. int feedmultiplyBckp = 100;
  285. float HotendTempBckp = 0;
  286. int fanSpeedBckp = 0;
  287. float pause_lastpos[4];
  288. unsigned long pause_time = 0;
  289. unsigned long start_pause_print = millis();
  290. unsigned long t_fan_rising_edge = millis();
  291. static LongTimer safetyTimer;
  292. static LongTimer crashDetTimer;
  293. //unsigned long load_filament_time;
  294. bool mesh_bed_leveling_flag = false;
  295. bool mesh_bed_run_from_menu = false;
  296. int8_t FarmMode = 0;
  297. bool prusa_sd_card_upload = false;
  298. unsigned int status_number = 0;
  299. unsigned long total_filament_used;
  300. unsigned int heating_status;
  301. unsigned int heating_status_counter;
  302. bool custom_message;
  303. bool loading_flag = false;
  304. unsigned int custom_message_type;
  305. unsigned int custom_message_state;
  306. char snmm_filaments_used = 0;
  307. bool fan_state[2];
  308. int fan_edge_counter[2];
  309. int fan_speed[2];
  310. char dir_names[3][9];
  311. bool sortAlpha = false;
  312. bool volumetric_enabled = false;
  313. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  314. #if EXTRUDERS > 1
  315. , DEFAULT_NOMINAL_FILAMENT_DIA
  316. #if EXTRUDERS > 2
  317. , DEFAULT_NOMINAL_FILAMENT_DIA
  318. #endif
  319. #endif
  320. };
  321. float extruder_multiplier[EXTRUDERS] = {1.0
  322. #if EXTRUDERS > 1
  323. , 1.0
  324. #if EXTRUDERS > 2
  325. , 1.0
  326. #endif
  327. #endif
  328. };
  329. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  330. //shortcuts for more readable code
  331. #define _x current_position[X_AXIS]
  332. #define _y current_position[Y_AXIS]
  333. #define _z current_position[Z_AXIS]
  334. #define _e current_position[E_AXIS]
  335. float add_homing[3]={0,0,0};
  336. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  337. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  338. bool axis_known_position[3] = {false, false, false};
  339. float zprobe_zoffset;
  340. // Extruder offset
  341. #if EXTRUDERS > 1
  342. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  343. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  344. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  345. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  346. #endif
  347. };
  348. #endif
  349. uint8_t active_extruder = 0;
  350. int fanSpeed=0;
  351. #ifdef FWRETRACT
  352. bool autoretract_enabled=false;
  353. bool retracted[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. bool retracted_swap[EXTRUDERS]={false
  362. #if EXTRUDERS > 1
  363. , false
  364. #if EXTRUDERS > 2
  365. , false
  366. #endif
  367. #endif
  368. };
  369. float retract_length = RETRACT_LENGTH;
  370. float retract_length_swap = RETRACT_LENGTH_SWAP;
  371. float retract_feedrate = RETRACT_FEEDRATE;
  372. float retract_zlift = RETRACT_ZLIFT;
  373. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  374. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  375. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  376. #endif
  377. #ifdef PS_DEFAULT_OFF
  378. bool powersupply = false;
  379. #else
  380. bool powersupply = true;
  381. #endif
  382. bool cancel_heatup = false ;
  383. #ifdef HOST_KEEPALIVE_FEATURE
  384. int busy_state = NOT_BUSY;
  385. static long prev_busy_signal_ms = -1;
  386. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  387. #else
  388. #define host_keepalive();
  389. #define KEEPALIVE_STATE(n);
  390. #endif
  391. const char errormagic[] PROGMEM = "Error:";
  392. const char echomagic[] PROGMEM = "echo:";
  393. bool no_response = false;
  394. uint8_t important_status;
  395. uint8_t saved_filament_type;
  396. // save/restore printing
  397. bool saved_printing = false;
  398. // save/restore printing in case that mmu was not responding
  399. bool mmu_print_saved = false;
  400. // storing estimated time to end of print counted by slicer
  401. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  402. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  403. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  404. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  405. //===========================================================================
  406. //=============================Private Variables=============================
  407. //===========================================================================
  408. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  409. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  410. // For tracing an arc
  411. static float offset[3] = {0.0, 0.0, 0.0};
  412. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  413. // Determines Absolute or Relative Coordinates.
  414. // Also there is bool axis_relative_modes[] per axis flag.
  415. static bool relative_mode = false;
  416. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  417. //static float tt = 0;
  418. //static float bt = 0;
  419. //Inactivity shutdown variables
  420. static unsigned long previous_millis_cmd = 0;
  421. unsigned long max_inactive_time = 0;
  422. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  423. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  424. unsigned long starttime=0;
  425. unsigned long stoptime=0;
  426. unsigned long _usb_timer = 0;
  427. static uint8_t tmp_extruder;
  428. bool extruder_under_pressure = true;
  429. bool Stopped=false;
  430. #if NUM_SERVOS > 0
  431. Servo servos[NUM_SERVOS];
  432. #endif
  433. bool CooldownNoWait = true;
  434. bool target_direction;
  435. //Insert variables if CHDK is defined
  436. #ifdef CHDK
  437. unsigned long chdkHigh = 0;
  438. boolean chdkActive = false;
  439. #endif
  440. // save/restore printing
  441. static uint32_t saved_sdpos = 0;
  442. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  443. static float saved_pos[4] = { 0, 0, 0, 0 };
  444. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  445. static float saved_feedrate2 = 0;
  446. static uint8_t saved_active_extruder = 0;
  447. static bool saved_extruder_under_pressure = false;
  448. static bool saved_extruder_relative_mode = false;
  449. //===========================================================================
  450. //=============================Routines======================================
  451. //===========================================================================
  452. static void get_arc_coordinates();
  453. static bool setTargetedHotend(int code);
  454. static void print_time_remaining_init();
  455. uint16_t gcode_in_progress = 0;
  456. uint16_t mcode_in_progress = 0;
  457. void serial_echopair_P(const char *s_P, float v)
  458. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  459. void serial_echopair_P(const char *s_P, double v)
  460. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  461. void serial_echopair_P(const char *s_P, unsigned long v)
  462. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  463. #ifdef SDSUPPORT
  464. #include "SdFatUtil.h"
  465. int freeMemory() { return SdFatUtil::FreeRam(); }
  466. #else
  467. extern "C" {
  468. extern unsigned int __bss_end;
  469. extern unsigned int __heap_start;
  470. extern void *__brkval;
  471. int freeMemory() {
  472. int free_memory;
  473. if ((int)__brkval == 0)
  474. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  475. else
  476. free_memory = ((int)&free_memory) - ((int)__brkval);
  477. return free_memory;
  478. }
  479. }
  480. #endif //!SDSUPPORT
  481. void setup_killpin()
  482. {
  483. #if defined(KILL_PIN) && KILL_PIN > -1
  484. SET_INPUT(KILL_PIN);
  485. WRITE(KILL_PIN,HIGH);
  486. #endif
  487. }
  488. // Set home pin
  489. void setup_homepin(void)
  490. {
  491. #if defined(HOME_PIN) && HOME_PIN > -1
  492. SET_INPUT(HOME_PIN);
  493. WRITE(HOME_PIN,HIGH);
  494. #endif
  495. }
  496. void setup_photpin()
  497. {
  498. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  499. SET_OUTPUT(PHOTOGRAPH_PIN);
  500. WRITE(PHOTOGRAPH_PIN, LOW);
  501. #endif
  502. }
  503. void setup_powerhold()
  504. {
  505. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  506. SET_OUTPUT(SUICIDE_PIN);
  507. WRITE(SUICIDE_PIN, HIGH);
  508. #endif
  509. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  510. SET_OUTPUT(PS_ON_PIN);
  511. #if defined(PS_DEFAULT_OFF)
  512. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  513. #else
  514. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  515. #endif
  516. #endif
  517. }
  518. void suicide()
  519. {
  520. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  521. SET_OUTPUT(SUICIDE_PIN);
  522. WRITE(SUICIDE_PIN, LOW);
  523. #endif
  524. }
  525. void servo_init()
  526. {
  527. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  528. servos[0].attach(SERVO0_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  531. servos[1].attach(SERVO1_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  534. servos[2].attach(SERVO2_PIN);
  535. #endif
  536. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  537. servos[3].attach(SERVO3_PIN);
  538. #endif
  539. #if (NUM_SERVOS >= 5)
  540. #error "TODO: enter initalisation code for more servos"
  541. #endif
  542. }
  543. void stop_and_save_print_to_ram(float z_move, float e_move);
  544. void restore_print_from_ram_and_continue(float e_move);
  545. bool fans_check_enabled = true;
  546. #ifdef TMC2130
  547. extern int8_t CrashDetectMenu;
  548. void crashdet_enable()
  549. {
  550. tmc2130_sg_stop_on_crash = true;
  551. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  552. CrashDetectMenu = 1;
  553. }
  554. void crashdet_disable()
  555. {
  556. tmc2130_sg_stop_on_crash = false;
  557. tmc2130_sg_crash = 0;
  558. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  559. CrashDetectMenu = 0;
  560. }
  561. void crashdet_stop_and_save_print()
  562. {
  563. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  564. }
  565. void crashdet_restore_print_and_continue()
  566. {
  567. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  568. // babystep_apply();
  569. }
  570. void crashdet_stop_and_save_print2()
  571. {
  572. cli();
  573. planner_abort_hard(); //abort printing
  574. cmdqueue_reset(); //empty cmdqueue
  575. card.sdprinting = false;
  576. card.closefile();
  577. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  578. st_reset_timer();
  579. sei();
  580. }
  581. void crashdet_detected(uint8_t mask)
  582. {
  583. st_synchronize();
  584. static uint8_t crashDet_counter = 0;
  585. bool automatic_recovery_after_crash = true;
  586. if (crashDet_counter++ == 0) {
  587. crashDetTimer.start();
  588. }
  589. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  594. automatic_recovery_after_crash = false;
  595. crashDetTimer.stop();
  596. crashDet_counter = 0;
  597. }
  598. else {
  599. crashDetTimer.start();
  600. }
  601. lcd_update_enable(true);
  602. lcd_clear();
  603. lcd_update(2);
  604. if (mask & X_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  608. }
  609. if (mask & Y_AXIS_MASK)
  610. {
  611. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  612. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  613. }
  614. lcd_update_enable(true);
  615. lcd_update(2);
  616. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  617. gcode_G28(true, true, false); //home X and Y
  618. st_synchronize();
  619. if (automatic_recovery_after_crash) {
  620. enquecommand_P(PSTR("CRASH_RECOVER"));
  621. }else{
  622. HotendTempBckp = degTargetHotend(active_extruder);
  623. setTargetHotend(0, active_extruder);
  624. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  625. lcd_update_enable(true);
  626. if (yesno)
  627. {
  628. char cmd1[10];
  629. strcpy(cmd1, "M109 S");
  630. strcat(cmd1, ftostr3(HotendTempBckp));
  631. enquecommand(cmd1);
  632. enquecommand_P(PSTR("CRASH_RECOVER"));
  633. }
  634. else
  635. {
  636. enquecommand_P(PSTR("CRASH_CANCEL"));
  637. }
  638. }
  639. }
  640. void crashdet_recover()
  641. {
  642. crashdet_restore_print_and_continue();
  643. tmc2130_sg_stop_on_crash = true;
  644. }
  645. void crashdet_cancel()
  646. {
  647. tmc2130_sg_stop_on_crash = true;
  648. if (saved_printing_type == PRINTING_TYPE_SD) {
  649. lcd_print_stop();
  650. }else if(saved_printing_type == PRINTING_TYPE_USB){
  651. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  652. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  653. }
  654. }
  655. #endif //TMC2130
  656. void failstats_reset_print()
  657. {
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  661. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  662. }
  663. #ifdef MESH_BED_LEVELING
  664. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  665. #endif
  666. // Factory reset function
  667. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  668. // Level input parameter sets depth of reset
  669. // Quiet parameter masks all waitings for user interact.
  670. int er_progress = 0;
  671. void factory_reset(char level, bool quiet)
  672. {
  673. lcd_clear();
  674. switch (level) {
  675. // Level 0: Language reset
  676. case 0:
  677. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  678. WRITE(BEEPER, HIGH);
  679. _delay_ms(100);
  680. WRITE(BEEPER, LOW);
  681. lang_reset();
  682. break;
  683. //Level 1: Reset statistics
  684. case 1:
  685. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  686. WRITE(BEEPER, HIGH);
  687. _delay_ms(100);
  688. WRITE(BEEPER, LOW);
  689. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  690. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  693. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  694. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  697. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  698. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  699. lcd_menu_statistics();
  700. break;
  701. // Level 2: Prepare for shipping
  702. case 2:
  703. //lcd_puts_P(PSTR("Factory RESET"));
  704. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  705. // Force language selection at the next boot up.
  706. lang_reset();
  707. // Force the "Follow calibration flow" message at the next boot up.
  708. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  709. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  710. farm_no = 0;
  711. farm_mode = false;
  712. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  713. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  714. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  715. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  717. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  718. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  719. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  720. #ifdef FILAMENT_SENSOR
  721. fsensor_enable();
  722. fsensor_autoload_set(true);
  723. #endif //FILAMENT_SENSOR
  724. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. //_delay_ms(2000);
  729. break;
  730. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  731. case 3:
  732. lcd_puts_P(PSTR("Factory RESET"));
  733. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  734. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. er_progress = 0;
  739. lcd_puts_at_P(3, 3, PSTR(" "));
  740. lcd_set_cursor(3, 3);
  741. lcd_print(er_progress);
  742. // Erase EEPROM
  743. for (int i = 0; i < 4096; i++) {
  744. eeprom_write_byte((uint8_t*)i, 0xFF);
  745. if (i % 41 == 0) {
  746. er_progress++;
  747. lcd_puts_at_P(3, 3, PSTR(" "));
  748. lcd_set_cursor(3, 3);
  749. lcd_print(er_progress);
  750. lcd_puts_P(PSTR("%"));
  751. }
  752. }
  753. break;
  754. case 4:
  755. bowden_menu();
  756. break;
  757. default:
  758. break;
  759. }
  760. }
  761. FILE _uartout = {0};
  762. int uart_putchar(char c, FILE *stream)
  763. {
  764. MYSERIAL.write(c);
  765. return 0;
  766. }
  767. void lcd_splash()
  768. {
  769. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  770. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  771. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  772. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  773. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  774. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  775. }
  776. void factory_reset()
  777. {
  778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  779. if (!READ(BTN_ENC))
  780. {
  781. _delay_ms(1000);
  782. if (!READ(BTN_ENC))
  783. {
  784. lcd_clear();
  785. lcd_puts_P(PSTR("Factory RESET"));
  786. SET_OUTPUT(BEEPER);
  787. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  788. WRITE(BEEPER, HIGH);
  789. while (!READ(BTN_ENC));
  790. WRITE(BEEPER, LOW);
  791. _delay_ms(2000);
  792. char level = reset_menu();
  793. factory_reset(level, false);
  794. switch (level) {
  795. case 0: _delay_ms(0); break;
  796. case 1: _delay_ms(0); break;
  797. case 2: _delay_ms(0); break;
  798. case 3: _delay_ms(0); break;
  799. }
  800. // _delay_ms(100);
  801. /*
  802. #ifdef MESH_BED_LEVELING
  803. _delay_ms(2000);
  804. if (!READ(BTN_ENC))
  805. {
  806. WRITE(BEEPER, HIGH);
  807. _delay_ms(100);
  808. WRITE(BEEPER, LOW);
  809. _delay_ms(200);
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. int _z = 0;
  814. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  815. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  816. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  817. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  818. }
  819. else
  820. {
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. }
  825. #endif // mesh */
  826. }
  827. }
  828. else
  829. {
  830. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  831. }
  832. KEEPALIVE_STATE(IN_HANDLER);
  833. }
  834. void show_fw_version_warnings() {
  835. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  836. switch (FW_DEV_VERSION) {
  837. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  838. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  839. case(FW_VERSION_DEVEL):
  840. case(FW_VERSION_DEBUG):
  841. lcd_update_enable(false);
  842. lcd_clear();
  843. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  844. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  845. #else
  846. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  847. #endif
  848. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  849. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  850. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  851. lcd_wait_for_click();
  852. break;
  853. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  854. }
  855. lcd_update_enable(true);
  856. }
  857. uint8_t check_printer_version()
  858. {
  859. uint8_t version_changed = 0;
  860. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  861. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  862. if (printer_type != PRINTER_TYPE) {
  863. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  864. else version_changed |= 0b10;
  865. }
  866. if (motherboard != MOTHERBOARD) {
  867. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  868. else version_changed |= 0b01;
  869. }
  870. return version_changed;
  871. }
  872. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  873. {
  874. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  875. }
  876. #ifdef BOOTAPP
  877. #include "bootapp.h" //bootloader support
  878. #endif //BOOTAPP
  879. #if (LANG_MODE != 0) //secondary language support
  880. #ifdef W25X20CL
  881. // language update from external flash
  882. #define LANGBOOT_BLOCKSIZE 0x1000u
  883. #define LANGBOOT_RAMBUFFER 0x0800
  884. void update_sec_lang_from_external_flash()
  885. {
  886. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  887. {
  888. uint8_t lang = boot_reserved >> 4;
  889. uint8_t state = boot_reserved & 0xf;
  890. lang_table_header_t header;
  891. uint32_t src_addr;
  892. if (lang_get_header(lang, &header, &src_addr))
  893. {
  894. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  895. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  896. delay(100);
  897. boot_reserved = (state + 1) | (lang << 4);
  898. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  899. {
  900. cli();
  901. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  902. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  903. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  904. if (state == 0)
  905. {
  906. //TODO - check header integrity
  907. }
  908. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  909. }
  910. else
  911. {
  912. //TODO - check sec lang data integrity
  913. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  914. }
  915. }
  916. }
  917. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  918. }
  919. #ifdef DEBUG_W25X20CL
  920. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  921. {
  922. lang_table_header_t header;
  923. uint8_t count = 0;
  924. uint32_t addr = 0x00000;
  925. while (1)
  926. {
  927. printf_P(_n("LANGTABLE%d:"), count);
  928. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  929. if (header.magic != LANG_MAGIC)
  930. {
  931. printf_P(_n("NG!\n"));
  932. break;
  933. }
  934. printf_P(_n("OK\n"));
  935. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  936. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  937. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  938. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  939. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  940. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  941. addr += header.size;
  942. codes[count] = header.code;
  943. count ++;
  944. }
  945. return count;
  946. }
  947. void list_sec_lang_from_external_flash()
  948. {
  949. uint16_t codes[8];
  950. uint8_t count = lang_xflash_enum_codes(codes);
  951. printf_P(_n("XFlash lang count = %hhd\n"), count);
  952. }
  953. #endif //DEBUG_W25X20CL
  954. #endif //W25X20CL
  955. #endif //(LANG_MODE != 0)
  956. // "Setup" function is called by the Arduino framework on startup.
  957. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  958. // are initialized by the main() routine provided by the Arduino framework.
  959. void setup()
  960. {
  961. ultralcd_init();
  962. spi_init();
  963. lcd_splash();
  964. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  965. #ifdef W25X20CL
  966. if (!w25x20cl_init())
  967. kill(_i("External SPI flash W25X20CL not responding."));
  968. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  969. optiboot_w25x20cl_enter();
  970. #endif
  971. #if (LANG_MODE != 0) //secondary language support
  972. #ifdef W25X20CL
  973. if (w25x20cl_init())
  974. update_sec_lang_from_external_flash();
  975. #endif //W25X20CL
  976. #endif //(LANG_MODE != 0)
  977. setup_killpin();
  978. setup_powerhold();
  979. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  980. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  981. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  982. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  983. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  984. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  985. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  986. if (farm_mode)
  987. {
  988. no_response = true; //we need confirmation by recieving PRUSA thx
  989. important_status = 8;
  990. prusa_statistics(8);
  991. selectedSerialPort = 1;
  992. #ifdef TMC2130
  993. //increased extruder current (PFW363)
  994. tmc2130_current_h[E_AXIS] = 36;
  995. tmc2130_current_r[E_AXIS] = 36;
  996. #endif //TMC2130
  997. #ifdef FILAMENT_SENSOR
  998. //disabled filament autoload (PFW360)
  999. fsensor_autoload_set(false);
  1000. #endif //FILAMENT_SENSOR
  1001. }
  1002. MYSERIAL.begin(BAUDRATE);
  1003. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1004. stdout = uartout;
  1005. SERIAL_PROTOCOLLNPGM("start");
  1006. SERIAL_ECHO_START;
  1007. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1008. uart2_init();
  1009. #ifdef DEBUG_SEC_LANG
  1010. lang_table_header_t header;
  1011. uint32_t src_addr = 0x00000;
  1012. if (lang_get_header(1, &header, &src_addr))
  1013. {
  1014. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1015. #define LT_PRINT_TEST 2
  1016. // flash usage
  1017. // total p.test
  1018. //0 252718 t+c text code
  1019. //1 253142 424 170 254
  1020. //2 253040 322 164 158
  1021. //3 253248 530 135 395
  1022. #if (LT_PRINT_TEST==1) //not optimized printf
  1023. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1024. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1025. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1026. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1027. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1028. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1029. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1030. #elif (LT_PRINT_TEST==2) //optimized printf
  1031. printf_P(
  1032. _n(
  1033. " _src_addr = 0x%08lx\n"
  1034. " _lt_magic = 0x%08lx %S\n"
  1035. " _lt_size = 0x%04x (%d)\n"
  1036. " _lt_count = 0x%04x (%d)\n"
  1037. " _lt_chsum = 0x%04x\n"
  1038. " _lt_code = 0x%04x (%c%c)\n"
  1039. " _lt_resv1 = 0x%08lx\n"
  1040. ),
  1041. src_addr,
  1042. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1043. header.size, header.size,
  1044. header.count, header.count,
  1045. header.checksum,
  1046. header.code, header.code >> 8, header.code & 0xff,
  1047. header.signature
  1048. );
  1049. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1050. MYSERIAL.print(" _src_addr = 0x");
  1051. MYSERIAL.println(src_addr, 16);
  1052. MYSERIAL.print(" _lt_magic = 0x");
  1053. MYSERIAL.print(header.magic, 16);
  1054. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1055. MYSERIAL.print(" _lt_size = 0x");
  1056. MYSERIAL.print(header.size, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print(header.size, 10);
  1059. MYSERIAL.println(")");
  1060. MYSERIAL.print(" _lt_count = 0x");
  1061. MYSERIAL.print(header.count, 16);
  1062. MYSERIAL.print(" (");
  1063. MYSERIAL.print(header.count, 10);
  1064. MYSERIAL.println(")");
  1065. MYSERIAL.print(" _lt_chsum = 0x");
  1066. MYSERIAL.println(header.checksum, 16);
  1067. MYSERIAL.print(" _lt_code = 0x");
  1068. MYSERIAL.print(header.code, 16);
  1069. MYSERIAL.print(" (");
  1070. MYSERIAL.print((char)(header.code >> 8), 0);
  1071. MYSERIAL.print((char)(header.code & 0xff), 0);
  1072. MYSERIAL.println(")");
  1073. MYSERIAL.print(" _lt_resv1 = 0x");
  1074. MYSERIAL.println(header.signature, 16);
  1075. #endif //(LT_PRINT_TEST==)
  1076. #undef LT_PRINT_TEST
  1077. #if 0
  1078. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1079. for (uint16_t i = 0; i < 1024; i++)
  1080. {
  1081. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1082. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1083. if ((i % 16) == 15) putchar('\n');
  1084. }
  1085. #endif
  1086. uint16_t sum = 0;
  1087. for (uint16_t i = 0; i < header.size; i++)
  1088. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1089. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1090. sum -= header.checksum; //subtract checksum
  1091. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1092. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1093. if (sum == header.checksum)
  1094. printf_P(_n("Checksum OK\n"), sum);
  1095. else
  1096. printf_P(_n("Checksum NG\n"), sum);
  1097. }
  1098. else
  1099. printf_P(_n("lang_get_header failed!\n"));
  1100. #if 0
  1101. for (uint16_t i = 0; i < 1024*10; i++)
  1102. {
  1103. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1104. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1105. if ((i % 16) == 15) putchar('\n');
  1106. }
  1107. #endif
  1108. #if 0
  1109. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1110. for (int i = 0; i < 4096; ++i) {
  1111. int b = eeprom_read_byte((unsigned char*)i);
  1112. if (b != 255) {
  1113. SERIAL_ECHO(i);
  1114. SERIAL_ECHO(":");
  1115. SERIAL_ECHO(b);
  1116. SERIAL_ECHOLN("");
  1117. }
  1118. }
  1119. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1120. #endif
  1121. #endif //DEBUG_SEC_LANG
  1122. // Check startup - does nothing if bootloader sets MCUSR to 0
  1123. byte mcu = MCUSR;
  1124. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1125. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1126. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1127. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1128. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1129. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1130. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1131. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1132. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1133. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1134. MCUSR = 0;
  1135. //SERIAL_ECHORPGM(MSG_MARLIN);
  1136. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1137. #ifdef STRING_VERSION_CONFIG_H
  1138. #ifdef STRING_CONFIG_H_AUTHOR
  1139. SERIAL_ECHO_START;
  1140. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1141. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1142. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1143. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1144. SERIAL_ECHOPGM("Compiled: ");
  1145. SERIAL_ECHOLNPGM(__DATE__);
  1146. #endif
  1147. #endif
  1148. SERIAL_ECHO_START;
  1149. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1150. SERIAL_ECHO(freeMemory());
  1151. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1152. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1153. //lcd_update_enable(false); // why do we need this?? - andre
  1154. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1155. bool previous_settings_retrieved = false;
  1156. uint8_t hw_changed = check_printer_version();
  1157. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1158. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1159. }
  1160. else { //printer version was changed so use default settings
  1161. Config_ResetDefault();
  1162. }
  1163. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1164. tp_init(); // Initialize temperature loop
  1165. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1166. plan_init(); // Initialize planner;
  1167. factory_reset();
  1168. #ifdef TMC2130
  1169. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1170. if (silentMode == 0xff) silentMode = 0;
  1171. tmc2130_mode = TMC2130_MODE_NORMAL;
  1172. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1173. if (crashdet && !farm_mode)
  1174. {
  1175. crashdet_enable();
  1176. puts_P(_N("CrashDetect ENABLED!"));
  1177. }
  1178. else
  1179. {
  1180. crashdet_disable();
  1181. puts_P(_N("CrashDetect DISABLED"));
  1182. }
  1183. #ifdef TMC2130_LINEARITY_CORRECTION
  1184. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1185. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1186. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1187. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1188. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1189. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1190. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1191. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1192. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1193. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1194. #endif //TMC2130_LINEARITY_CORRECTION
  1195. #ifdef TMC2130_VARIABLE_RESOLUTION
  1196. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1197. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1198. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1199. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1200. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1201. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1202. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1203. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1205. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1206. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1207. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1208. #else //TMC2130_VARIABLE_RESOLUTION
  1209. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1210. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1211. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1212. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1213. #endif //TMC2130_VARIABLE_RESOLUTION
  1214. #endif //TMC2130
  1215. st_init(); // Initialize stepper, this enables interrupts!
  1216. #ifdef TMC2130
  1217. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1218. update_mode_profile();
  1219. tmc2130_init();
  1220. #endif //TMC2130
  1221. setup_photpin();
  1222. servo_init();
  1223. // Reset the machine correction matrix.
  1224. // It does not make sense to load the correction matrix until the machine is homed.
  1225. world2machine_reset();
  1226. #ifdef FILAMENT_SENSOR
  1227. fsensor_init();
  1228. #endif //FILAMENT_SENSOR
  1229. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1230. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1231. #endif
  1232. setup_homepin();
  1233. #ifdef TMC2130
  1234. if (1) {
  1235. // try to run to zero phase before powering the Z motor.
  1236. // Move in negative direction
  1237. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1238. // Round the current micro-micro steps to micro steps.
  1239. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1240. // Until the phase counter is reset to zero.
  1241. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1242. delay(2);
  1243. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1244. delay(2);
  1245. }
  1246. }
  1247. #endif //TMC2130
  1248. #if defined(Z_AXIS_ALWAYS_ON)
  1249. enable_z();
  1250. #endif
  1251. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1252. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1253. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1254. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1255. if (farm_mode)
  1256. {
  1257. prusa_statistics(8);
  1258. }
  1259. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1260. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1261. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1262. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1263. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1264. // where all the EEPROM entries are set to 0x0ff.
  1265. // Once a firmware boots up, it forces at least a language selection, which changes
  1266. // EEPROM_LANG to number lower than 0x0ff.
  1267. // 1) Set a high power mode.
  1268. #ifdef TMC2130
  1269. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1270. tmc2130_mode = TMC2130_MODE_NORMAL;
  1271. #endif //TMC2130
  1272. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1273. }
  1274. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1275. // but this times out if a blocking dialog is shown in setup().
  1276. card.initsd();
  1277. #ifdef DEBUG_SD_SPEED_TEST
  1278. if (card.cardOK)
  1279. {
  1280. uint8_t* buff = (uint8_t*)block_buffer;
  1281. uint32_t block = 0;
  1282. uint32_t sumr = 0;
  1283. uint32_t sumw = 0;
  1284. for (int i = 0; i < 1024; i++)
  1285. {
  1286. uint32_t u = micros();
  1287. bool res = card.card.readBlock(i, buff);
  1288. u = micros() - u;
  1289. if (res)
  1290. {
  1291. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1292. sumr += u;
  1293. u = micros();
  1294. res = card.card.writeBlock(i, buff);
  1295. u = micros() - u;
  1296. if (res)
  1297. {
  1298. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1299. sumw += u;
  1300. }
  1301. else
  1302. {
  1303. printf_P(PSTR("writeBlock %4d error\n"), i);
  1304. break;
  1305. }
  1306. }
  1307. else
  1308. {
  1309. printf_P(PSTR("readBlock %4d error\n"), i);
  1310. break;
  1311. }
  1312. }
  1313. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1314. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1315. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1316. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1317. }
  1318. else
  1319. printf_P(PSTR("Card NG!\n"));
  1320. #endif //DEBUG_SD_SPEED_TEST
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1325. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1326. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1327. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1328. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1329. #ifdef SNMM
  1330. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1331. int _z = BOWDEN_LENGTH;
  1332. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1333. }
  1334. #endif
  1335. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1336. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1337. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1338. #if (LANG_MODE != 0) //secondary language support
  1339. #ifdef DEBUG_W25X20CL
  1340. W25X20CL_SPI_ENTER();
  1341. uint8_t uid[8]; // 64bit unique id
  1342. w25x20cl_rd_uid(uid);
  1343. puts_P(_n("W25X20CL UID="));
  1344. for (uint8_t i = 0; i < 8; i ++)
  1345. printf_P(PSTR("%02hhx"), uid[i]);
  1346. putchar('\n');
  1347. list_sec_lang_from_external_flash();
  1348. #endif //DEBUG_W25X20CL
  1349. // lang_reset();
  1350. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1351. lcd_language();
  1352. #ifdef DEBUG_SEC_LANG
  1353. uint16_t sec_lang_code = lang_get_code(1);
  1354. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1355. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1356. // lang_print_sec_lang(uartout);
  1357. #endif //DEBUG_SEC_LANG
  1358. #endif //(LANG_MODE != 0)
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1361. temp_cal_active = false;
  1362. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1363. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1364. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1365. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1366. int16_t z_shift = 0;
  1367. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1368. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1369. temp_cal_active = false;
  1370. }
  1371. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1372. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1373. }
  1374. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1375. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1376. }
  1377. check_babystep(); //checking if Z babystep is in allowed range
  1378. #ifdef UVLO_SUPPORT
  1379. setup_uvlo_interrupt();
  1380. #endif //UVLO_SUPPORT
  1381. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1382. setup_fan_interrupt();
  1383. #endif //DEBUG_DISABLE_FANCHECK
  1384. #ifdef FILAMENT_SENSOR
  1385. fsensor_setup_interrupt();
  1386. #endif //FILAMENT_SENSOR
  1387. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1388. #ifndef DEBUG_DISABLE_STARTMSGS
  1389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1390. show_fw_version_warnings();
  1391. switch (hw_changed) {
  1392. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1393. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1394. case(0b01):
  1395. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1396. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1397. break;
  1398. case(0b10):
  1399. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1400. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1401. break;
  1402. case(0b11):
  1403. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1404. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1405. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1406. break;
  1407. default: break; //no change, show no message
  1408. }
  1409. if (!previous_settings_retrieved) {
  1410. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1411. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1412. }
  1413. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1414. lcd_wizard(0);
  1415. }
  1416. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1417. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1418. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1419. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1420. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1421. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1422. // Show the message.
  1423. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1424. }
  1425. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1426. // Show the message.
  1427. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1428. lcd_update_enable(true);
  1429. }
  1430. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1431. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1432. lcd_update_enable(true);
  1433. }
  1434. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1435. // Show the message.
  1436. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1437. }
  1438. }
  1439. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1440. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1441. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1442. update_current_firmware_version_to_eeprom();
  1443. lcd_selftest();
  1444. }
  1445. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1446. KEEPALIVE_STATE(IN_PROCESS);
  1447. #endif //DEBUG_DISABLE_STARTMSGS
  1448. lcd_update_enable(true);
  1449. lcd_clear();
  1450. lcd_update(2);
  1451. // Store the currently running firmware into an eeprom,
  1452. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1453. update_current_firmware_version_to_eeprom();
  1454. #ifdef TMC2130
  1455. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1456. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1457. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1458. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1459. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1460. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1461. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1462. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1463. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1464. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1465. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1466. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1467. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1468. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1469. #endif //TMC2130
  1470. #ifdef UVLO_SUPPORT
  1471. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1472. /*
  1473. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1474. else {
  1475. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1476. lcd_update_enable(true);
  1477. lcd_update(2);
  1478. lcd_setstatuspgm(_T(WELCOME_MSG));
  1479. }
  1480. */
  1481. manage_heater(); // Update temperatures
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1484. #endif
  1485. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1486. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1487. puts_P(_N("Automatic recovery!"));
  1488. #endif
  1489. recover_print(1);
  1490. }
  1491. else{
  1492. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1493. puts_P(_N("Normal recovery!"));
  1494. #endif
  1495. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1496. else {
  1497. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1498. lcd_update_enable(true);
  1499. lcd_update(2);
  1500. lcd_setstatuspgm(_T(WELCOME_MSG));
  1501. }
  1502. }
  1503. }
  1504. #endif //UVLO_SUPPORT
  1505. KEEPALIVE_STATE(NOT_BUSY);
  1506. #ifdef WATCHDOG
  1507. wdt_enable(WDTO_4S);
  1508. #endif //WATCHDOG
  1509. }
  1510. void trace();
  1511. #define CHUNK_SIZE 64 // bytes
  1512. #define SAFETY_MARGIN 1
  1513. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1514. int chunkHead = 0;
  1515. void serial_read_stream() {
  1516. setAllTargetHotends(0);
  1517. setTargetBed(0);
  1518. lcd_clear();
  1519. lcd_puts_P(PSTR(" Upload in progress"));
  1520. // first wait for how many bytes we will receive
  1521. uint32_t bytesToReceive;
  1522. // receive the four bytes
  1523. char bytesToReceiveBuffer[4];
  1524. for (int i=0; i<4; i++) {
  1525. int data;
  1526. while ((data = MYSERIAL.read()) == -1) {};
  1527. bytesToReceiveBuffer[i] = data;
  1528. }
  1529. // make it a uint32
  1530. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1531. // we're ready, notify the sender
  1532. MYSERIAL.write('+');
  1533. // lock in the routine
  1534. uint32_t receivedBytes = 0;
  1535. while (prusa_sd_card_upload) {
  1536. int i;
  1537. for (i=0; i<CHUNK_SIZE; i++) {
  1538. int data;
  1539. // check if we're not done
  1540. if (receivedBytes == bytesToReceive) {
  1541. break;
  1542. }
  1543. // read the next byte
  1544. while ((data = MYSERIAL.read()) == -1) {};
  1545. receivedBytes++;
  1546. // save it to the chunk
  1547. chunk[i] = data;
  1548. }
  1549. // write the chunk to SD
  1550. card.write_command_no_newline(&chunk[0]);
  1551. // notify the sender we're ready for more data
  1552. MYSERIAL.write('+');
  1553. // for safety
  1554. manage_heater();
  1555. // check if we're done
  1556. if(receivedBytes == bytesToReceive) {
  1557. trace(); // beep
  1558. card.closefile();
  1559. prusa_sd_card_upload = false;
  1560. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1561. }
  1562. }
  1563. }
  1564. #ifdef HOST_KEEPALIVE_FEATURE
  1565. /**
  1566. * Output a "busy" message at regular intervals
  1567. * while the machine is not accepting commands.
  1568. */
  1569. void host_keepalive() {
  1570. if (farm_mode) return;
  1571. long ms = millis();
  1572. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1573. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1574. switch (busy_state) {
  1575. case IN_HANDLER:
  1576. case IN_PROCESS:
  1577. SERIAL_ECHO_START;
  1578. SERIAL_ECHOLNPGM("busy: processing");
  1579. break;
  1580. case PAUSED_FOR_USER:
  1581. SERIAL_ECHO_START;
  1582. SERIAL_ECHOLNPGM("busy: paused for user");
  1583. break;
  1584. case PAUSED_FOR_INPUT:
  1585. SERIAL_ECHO_START;
  1586. SERIAL_ECHOLNPGM("busy: paused for input");
  1587. break;
  1588. default:
  1589. break;
  1590. }
  1591. }
  1592. prev_busy_signal_ms = ms;
  1593. }
  1594. #endif
  1595. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1596. // Before loop(), the setup() function is called by the main() routine.
  1597. void loop()
  1598. {
  1599. KEEPALIVE_STATE(NOT_BUSY);
  1600. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1601. {
  1602. is_usb_printing = true;
  1603. usb_printing_counter--;
  1604. _usb_timer = millis();
  1605. }
  1606. if (usb_printing_counter == 0)
  1607. {
  1608. is_usb_printing = false;
  1609. }
  1610. if (prusa_sd_card_upload)
  1611. {
  1612. //we read byte-by byte
  1613. serial_read_stream();
  1614. } else
  1615. {
  1616. get_command();
  1617. #ifdef SDSUPPORT
  1618. card.checkautostart(false);
  1619. #endif
  1620. if(buflen)
  1621. {
  1622. cmdbuffer_front_already_processed = false;
  1623. #ifdef SDSUPPORT
  1624. if(card.saving)
  1625. {
  1626. // Saving a G-code file onto an SD-card is in progress.
  1627. // Saving starts with M28, saving until M29 is seen.
  1628. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1629. card.write_command(CMDBUFFER_CURRENT_STRING);
  1630. if(card.logging)
  1631. process_commands();
  1632. else
  1633. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1634. } else {
  1635. card.closefile();
  1636. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1637. }
  1638. } else {
  1639. process_commands();
  1640. }
  1641. #else
  1642. process_commands();
  1643. #endif //SDSUPPORT
  1644. if (! cmdbuffer_front_already_processed && buflen)
  1645. {
  1646. // ptr points to the start of the block currently being processed.
  1647. // The first character in the block is the block type.
  1648. char *ptr = cmdbuffer + bufindr;
  1649. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1650. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1651. union {
  1652. struct {
  1653. char lo;
  1654. char hi;
  1655. } lohi;
  1656. uint16_t value;
  1657. } sdlen;
  1658. sdlen.value = 0;
  1659. {
  1660. // This block locks the interrupts globally for 3.25 us,
  1661. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1662. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1663. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1664. cli();
  1665. // Reset the command to something, which will be ignored by the power panic routine,
  1666. // so this buffer length will not be counted twice.
  1667. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1668. // Extract the current buffer length.
  1669. sdlen.lohi.lo = *ptr ++;
  1670. sdlen.lohi.hi = *ptr;
  1671. // and pass it to the planner queue.
  1672. planner_add_sd_length(sdlen.value);
  1673. sei();
  1674. }
  1675. }
  1676. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1677. cli();
  1678. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1679. // and one for each command to previous block in the planner queue.
  1680. planner_add_sd_length(1);
  1681. sei();
  1682. }
  1683. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1684. // this block's SD card length will not be counted twice as its command type has been replaced
  1685. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1686. cmdqueue_pop_front();
  1687. }
  1688. host_keepalive();
  1689. }
  1690. }
  1691. //check heater every n milliseconds
  1692. manage_heater();
  1693. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1694. checkHitEndstops();
  1695. lcd_update(0);
  1696. #ifdef FILAMENT_SENSOR
  1697. if (mcode_in_progress != 600) //M600 not in progress
  1698. fsensor_update();
  1699. #endif //FILAMENT_SENSOR
  1700. #ifdef TMC2130
  1701. tmc2130_check_overtemp();
  1702. if (tmc2130_sg_crash)
  1703. {
  1704. uint8_t crash = tmc2130_sg_crash;
  1705. tmc2130_sg_crash = 0;
  1706. // crashdet_stop_and_save_print();
  1707. switch (crash)
  1708. {
  1709. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1710. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1711. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1712. }
  1713. }
  1714. #endif //TMC2130
  1715. }
  1716. #define DEFINE_PGM_READ_ANY(type, reader) \
  1717. static inline type pgm_read_any(const type *p) \
  1718. { return pgm_read_##reader##_near(p); }
  1719. DEFINE_PGM_READ_ANY(float, float);
  1720. DEFINE_PGM_READ_ANY(signed char, byte);
  1721. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1722. static const PROGMEM type array##_P[3] = \
  1723. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1724. static inline type array(int axis) \
  1725. { return pgm_read_any(&array##_P[axis]); } \
  1726. type array##_ext(int axis) \
  1727. { return pgm_read_any(&array##_P[axis]); }
  1728. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1729. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1730. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1731. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1732. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1733. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1734. static void axis_is_at_home(int axis) {
  1735. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1736. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1737. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1738. }
  1739. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1740. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1741. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1742. saved_feedrate = feedrate;
  1743. saved_feedmultiply = feedmultiply;
  1744. feedmultiply = 100;
  1745. previous_millis_cmd = millis();
  1746. enable_endstops(enable_endstops_now);
  1747. }
  1748. static void clean_up_after_endstop_move() {
  1749. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1750. enable_endstops(false);
  1751. #endif
  1752. feedrate = saved_feedrate;
  1753. feedmultiply = saved_feedmultiply;
  1754. previous_millis_cmd = millis();
  1755. }
  1756. #ifdef ENABLE_AUTO_BED_LEVELING
  1757. #ifdef AUTO_BED_LEVELING_GRID
  1758. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1759. {
  1760. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1761. planeNormal.debug("planeNormal");
  1762. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1763. //bedLevel.debug("bedLevel");
  1764. //plan_bed_level_matrix.debug("bed level before");
  1765. //vector_3 uncorrected_position = plan_get_position_mm();
  1766. //uncorrected_position.debug("position before");
  1767. vector_3 corrected_position = plan_get_position();
  1768. // corrected_position.debug("position after");
  1769. current_position[X_AXIS] = corrected_position.x;
  1770. current_position[Y_AXIS] = corrected_position.y;
  1771. current_position[Z_AXIS] = corrected_position.z;
  1772. // put the bed at 0 so we don't go below it.
  1773. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. }
  1776. #else // not AUTO_BED_LEVELING_GRID
  1777. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1778. plan_bed_level_matrix.set_to_identity();
  1779. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1780. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1781. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1782. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1783. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1784. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1785. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1786. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1787. vector_3 corrected_position = plan_get_position();
  1788. current_position[X_AXIS] = corrected_position.x;
  1789. current_position[Y_AXIS] = corrected_position.y;
  1790. current_position[Z_AXIS] = corrected_position.z;
  1791. // put the bed at 0 so we don't go below it.
  1792. current_position[Z_AXIS] = zprobe_zoffset;
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. }
  1795. #endif // AUTO_BED_LEVELING_GRID
  1796. static void run_z_probe() {
  1797. plan_bed_level_matrix.set_to_identity();
  1798. feedrate = homing_feedrate[Z_AXIS];
  1799. // move down until you find the bed
  1800. float zPosition = -10;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1802. st_synchronize();
  1803. // we have to let the planner know where we are right now as it is not where we said to go.
  1804. zPosition = st_get_position_mm(Z_AXIS);
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1806. // move up the retract distance
  1807. zPosition += home_retract_mm(Z_AXIS);
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1809. st_synchronize();
  1810. // move back down slowly to find bed
  1811. feedrate = homing_feedrate[Z_AXIS]/4;
  1812. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1814. st_synchronize();
  1815. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1816. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. }
  1819. static void do_blocking_move_to(float x, float y, float z) {
  1820. float oldFeedRate = feedrate;
  1821. feedrate = homing_feedrate[Z_AXIS];
  1822. current_position[Z_AXIS] = z;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. feedrate = XY_TRAVEL_SPEED;
  1826. current_position[X_AXIS] = x;
  1827. current_position[Y_AXIS] = y;
  1828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. feedrate = oldFeedRate;
  1831. }
  1832. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1833. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1834. }
  1835. /// Probe bed height at position (x,y), returns the measured z value
  1836. static float probe_pt(float x, float y, float z_before) {
  1837. // move to right place
  1838. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1839. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1840. run_z_probe();
  1841. float measured_z = current_position[Z_AXIS];
  1842. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1843. SERIAL_PROTOCOLPGM(" x: ");
  1844. SERIAL_PROTOCOL(x);
  1845. SERIAL_PROTOCOLPGM(" y: ");
  1846. SERIAL_PROTOCOL(y);
  1847. SERIAL_PROTOCOLPGM(" z: ");
  1848. SERIAL_PROTOCOL(measured_z);
  1849. SERIAL_PROTOCOLPGM("\n");
  1850. return measured_z;
  1851. }
  1852. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1853. #ifdef LIN_ADVANCE
  1854. /**
  1855. * M900: Set and/or Get advance K factor and WH/D ratio
  1856. *
  1857. * K<factor> Set advance K factor
  1858. * R<ratio> Set ratio directly (overrides WH/D)
  1859. * W<width> H<height> D<diam> Set ratio from WH/D
  1860. */
  1861. inline void gcode_M900() {
  1862. st_synchronize();
  1863. const float newK = code_seen('K') ? code_value_float() : -1;
  1864. if (newK >= 0) extruder_advance_k = newK;
  1865. float newR = code_seen('R') ? code_value_float() : -1;
  1866. if (newR < 0) {
  1867. const float newD = code_seen('D') ? code_value_float() : -1,
  1868. newW = code_seen('W') ? code_value_float() : -1,
  1869. newH = code_seen('H') ? code_value_float() : -1;
  1870. if (newD >= 0 && newW >= 0 && newH >= 0)
  1871. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1872. }
  1873. if (newR >= 0) advance_ed_ratio = newR;
  1874. SERIAL_ECHO_START;
  1875. SERIAL_ECHOPGM("Advance K=");
  1876. SERIAL_ECHOLN(extruder_advance_k);
  1877. SERIAL_ECHOPGM(" E/D=");
  1878. const float ratio = advance_ed_ratio;
  1879. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1880. }
  1881. #endif // LIN_ADVANCE
  1882. bool check_commands() {
  1883. bool end_command_found = false;
  1884. while (buflen)
  1885. {
  1886. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1887. if (!cmdbuffer_front_already_processed)
  1888. cmdqueue_pop_front();
  1889. cmdbuffer_front_already_processed = false;
  1890. }
  1891. return end_command_found;
  1892. }
  1893. #ifdef TMC2130
  1894. bool calibrate_z_auto()
  1895. {
  1896. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1897. lcd_clear();
  1898. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1899. bool endstops_enabled = enable_endstops(true);
  1900. int axis_up_dir = -home_dir(Z_AXIS);
  1901. tmc2130_home_enter(Z_AXIS_MASK);
  1902. current_position[Z_AXIS] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. set_destination_to_current();
  1905. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1906. feedrate = homing_feedrate[Z_AXIS];
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. // current_position[axis] = 0;
  1910. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. tmc2130_home_exit();
  1912. enable_endstops(false);
  1913. current_position[Z_AXIS] = 0;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. set_destination_to_current();
  1916. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1917. feedrate = homing_feedrate[Z_AXIS] / 2;
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. enable_endstops(endstops_enabled);
  1921. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. return true;
  1924. }
  1925. #endif //TMC2130
  1926. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1927. {
  1928. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1929. #define HOMEAXIS_DO(LETTER) \
  1930. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1931. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1932. {
  1933. int axis_home_dir = home_dir(axis);
  1934. feedrate = homing_feedrate[axis];
  1935. #ifdef TMC2130
  1936. tmc2130_home_enter(X_AXIS_MASK << axis);
  1937. #endif //TMC2130
  1938. // Move right a bit, so that the print head does not touch the left end position,
  1939. // and the following left movement has a chance to achieve the required velocity
  1940. // for the stall guard to work.
  1941. current_position[axis] = 0;
  1942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1943. set_destination_to_current();
  1944. // destination[axis] = 11.f;
  1945. destination[axis] = 3.f;
  1946. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1947. st_synchronize();
  1948. // Move left away from the possible collision with the collision detection disabled.
  1949. endstops_hit_on_purpose();
  1950. enable_endstops(false);
  1951. current_position[axis] = 0;
  1952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1953. destination[axis] = - 1.;
  1954. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1955. st_synchronize();
  1956. // Now continue to move up to the left end stop with the collision detection enabled.
  1957. enable_endstops(true);
  1958. destination[axis] = - 1.1 * max_length(axis);
  1959. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1960. st_synchronize();
  1961. for (uint8_t i = 0; i < cnt; i++)
  1962. {
  1963. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1964. endstops_hit_on_purpose();
  1965. enable_endstops(false);
  1966. current_position[axis] = 0;
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. destination[axis] = 10.f;
  1969. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1970. st_synchronize();
  1971. endstops_hit_on_purpose();
  1972. // Now move left up to the collision, this time with a repeatable velocity.
  1973. enable_endstops(true);
  1974. destination[axis] = - 11.f;
  1975. #ifdef TMC2130
  1976. feedrate = homing_feedrate[axis];
  1977. #else //TMC2130
  1978. feedrate = homing_feedrate[axis] / 2;
  1979. #endif //TMC2130
  1980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1981. st_synchronize();
  1982. #ifdef TMC2130
  1983. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1984. if (pstep) pstep[i] = mscnt >> 4;
  1985. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1986. #endif //TMC2130
  1987. }
  1988. endstops_hit_on_purpose();
  1989. enable_endstops(false);
  1990. #ifdef TMC2130
  1991. uint8_t orig = tmc2130_home_origin[axis];
  1992. uint8_t back = tmc2130_home_bsteps[axis];
  1993. if (tmc2130_home_enabled && (orig <= 63))
  1994. {
  1995. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1996. if (back > 0)
  1997. tmc2130_do_steps(axis, back, 1, 1000);
  1998. }
  1999. else
  2000. tmc2130_do_steps(axis, 8, 2, 1000);
  2001. tmc2130_home_exit();
  2002. #endif //TMC2130
  2003. axis_is_at_home(axis);
  2004. axis_known_position[axis] = true;
  2005. // Move from minimum
  2006. #ifdef TMC2130
  2007. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2008. #else //TMC2130
  2009. float dist = 0.01f * 64;
  2010. #endif //TMC2130
  2011. current_position[axis] -= dist;
  2012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2013. current_position[axis] += dist;
  2014. destination[axis] = current_position[axis];
  2015. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2016. st_synchronize();
  2017. feedrate = 0.0;
  2018. }
  2019. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2020. {
  2021. #ifdef TMC2130
  2022. FORCE_HIGH_POWER_START;
  2023. #endif
  2024. int axis_home_dir = home_dir(axis);
  2025. current_position[axis] = 0;
  2026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2027. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2028. feedrate = homing_feedrate[axis];
  2029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2030. st_synchronize();
  2031. #ifdef TMC2130
  2032. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2033. FORCE_HIGH_POWER_END;
  2034. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2035. return;
  2036. }
  2037. #endif //TMC2130
  2038. current_position[axis] = 0;
  2039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2040. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2041. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2042. st_synchronize();
  2043. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2044. feedrate = homing_feedrate[axis]/2 ;
  2045. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2046. st_synchronize();
  2047. #ifdef TMC2130
  2048. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2049. FORCE_HIGH_POWER_END;
  2050. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2051. return;
  2052. }
  2053. #endif //TMC2130
  2054. axis_is_at_home(axis);
  2055. destination[axis] = current_position[axis];
  2056. feedrate = 0.0;
  2057. endstops_hit_on_purpose();
  2058. axis_known_position[axis] = true;
  2059. #ifdef TMC2130
  2060. FORCE_HIGH_POWER_END;
  2061. #endif
  2062. }
  2063. enable_endstops(endstops_enabled);
  2064. }
  2065. /**/
  2066. void home_xy()
  2067. {
  2068. set_destination_to_current();
  2069. homeaxis(X_AXIS);
  2070. homeaxis(Y_AXIS);
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. endstops_hit_on_purpose();
  2073. }
  2074. void refresh_cmd_timeout(void)
  2075. {
  2076. previous_millis_cmd = millis();
  2077. }
  2078. #ifdef FWRETRACT
  2079. void retract(bool retracting, bool swapretract = false) {
  2080. if(retracting && !retracted[active_extruder]) {
  2081. destination[X_AXIS]=current_position[X_AXIS];
  2082. destination[Y_AXIS]=current_position[Y_AXIS];
  2083. destination[Z_AXIS]=current_position[Z_AXIS];
  2084. destination[E_AXIS]=current_position[E_AXIS];
  2085. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2086. plan_set_e_position(current_position[E_AXIS]);
  2087. float oldFeedrate = feedrate;
  2088. feedrate=retract_feedrate*60;
  2089. retracted[active_extruder]=true;
  2090. prepare_move();
  2091. current_position[Z_AXIS]-=retract_zlift;
  2092. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2093. prepare_move();
  2094. feedrate = oldFeedrate;
  2095. } else if(!retracting && retracted[active_extruder]) {
  2096. destination[X_AXIS]=current_position[X_AXIS];
  2097. destination[Y_AXIS]=current_position[Y_AXIS];
  2098. destination[Z_AXIS]=current_position[Z_AXIS];
  2099. destination[E_AXIS]=current_position[E_AXIS];
  2100. current_position[Z_AXIS]+=retract_zlift;
  2101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2102. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2103. plan_set_e_position(current_position[E_AXIS]);
  2104. float oldFeedrate = feedrate;
  2105. feedrate=retract_recover_feedrate*60;
  2106. retracted[active_extruder]=false;
  2107. prepare_move();
  2108. feedrate = oldFeedrate;
  2109. }
  2110. } //retract
  2111. #endif //FWRETRACT
  2112. void trace() {
  2113. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2114. tone(BEEPER, 440);
  2115. delay(25);
  2116. noTone(BEEPER);
  2117. delay(20);
  2118. }
  2119. /*
  2120. void ramming() {
  2121. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2122. if (current_temperature[0] < 230) {
  2123. //PLA
  2124. max_feedrate[E_AXIS] = 50;
  2125. //current_position[E_AXIS] -= 8;
  2126. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2127. //current_position[E_AXIS] += 8;
  2128. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2129. current_position[E_AXIS] += 5.4;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2131. current_position[E_AXIS] += 3.2;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2133. current_position[E_AXIS] += 3;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2135. st_synchronize();
  2136. max_feedrate[E_AXIS] = 80;
  2137. current_position[E_AXIS] -= 82;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2139. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2140. current_position[E_AXIS] -= 20;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2142. current_position[E_AXIS] += 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2144. current_position[E_AXIS] += 5;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2146. current_position[E_AXIS] -= 10;
  2147. st_synchronize();
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2149. current_position[E_AXIS] += 10;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2151. current_position[E_AXIS] -= 10;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2153. current_position[E_AXIS] += 10;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2155. current_position[E_AXIS] -= 10;
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2157. st_synchronize();
  2158. }
  2159. else {
  2160. //ABS
  2161. max_feedrate[E_AXIS] = 50;
  2162. //current_position[E_AXIS] -= 8;
  2163. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2164. //current_position[E_AXIS] += 8;
  2165. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2166. current_position[E_AXIS] += 3.1;
  2167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2168. current_position[E_AXIS] += 3.1;
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2170. current_position[E_AXIS] += 4;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2172. st_synchronize();
  2173. //current_position[X_AXIS] += 23; //delay
  2174. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2175. //current_position[X_AXIS] -= 23; //delay
  2176. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2177. delay(4700);
  2178. max_feedrate[E_AXIS] = 80;
  2179. current_position[E_AXIS] -= 92;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2181. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2182. current_position[E_AXIS] -= 5;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2184. current_position[E_AXIS] += 5;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2186. current_position[E_AXIS] -= 5;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2188. st_synchronize();
  2189. current_position[E_AXIS] += 5;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2191. current_position[E_AXIS] -= 5;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2193. current_position[E_AXIS] += 5;
  2194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2195. current_position[E_AXIS] -= 5;
  2196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2197. st_synchronize();
  2198. }
  2199. }
  2200. */
  2201. #ifdef TMC2130
  2202. void force_high_power_mode(bool start_high_power_section) {
  2203. uint8_t silent;
  2204. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2205. if (silent == 1) {
  2206. //we are in silent mode, set to normal mode to enable crash detection
  2207. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2208. st_synchronize();
  2209. cli();
  2210. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2211. update_mode_profile();
  2212. tmc2130_init();
  2213. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2214. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2215. st_reset_timer();
  2216. sei();
  2217. }
  2218. }
  2219. #endif //TMC2130
  2220. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2221. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2222. }
  2223. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2224. st_synchronize();
  2225. #if 0
  2226. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2227. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2228. #endif
  2229. // Flag for the display update routine and to disable the print cancelation during homing.
  2230. homing_flag = true;
  2231. // Which axes should be homed?
  2232. bool home_x = home_x_axis;
  2233. bool home_y = home_y_axis;
  2234. bool home_z = home_z_axis;
  2235. // Either all X,Y,Z codes are present, or none of them.
  2236. bool home_all_axes = home_x == home_y && home_x == home_z;
  2237. if (home_all_axes)
  2238. // No X/Y/Z code provided means to home all axes.
  2239. home_x = home_y = home_z = true;
  2240. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2241. if (home_all_axes) {
  2242. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2243. feedrate = homing_feedrate[Z_AXIS];
  2244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2245. st_synchronize();
  2246. }
  2247. #ifdef ENABLE_AUTO_BED_LEVELING
  2248. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2249. #endif //ENABLE_AUTO_BED_LEVELING
  2250. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2251. // the planner will not perform any adjustments in the XY plane.
  2252. // Wait for the motors to stop and update the current position with the absolute values.
  2253. world2machine_revert_to_uncorrected();
  2254. // For mesh bed leveling deactivate the matrix temporarily.
  2255. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2256. // in a single axis only.
  2257. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2258. #ifdef MESH_BED_LEVELING
  2259. uint8_t mbl_was_active = mbl.active;
  2260. mbl.active = 0;
  2261. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2262. #endif
  2263. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2264. // consumed during the first movements following this statement.
  2265. if (home_z)
  2266. babystep_undo();
  2267. saved_feedrate = feedrate;
  2268. saved_feedmultiply = feedmultiply;
  2269. feedmultiply = 100;
  2270. previous_millis_cmd = millis();
  2271. enable_endstops(true);
  2272. memcpy(destination, current_position, sizeof(destination));
  2273. feedrate = 0.0;
  2274. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2275. if(home_z)
  2276. homeaxis(Z_AXIS);
  2277. #endif
  2278. #ifdef QUICK_HOME
  2279. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2280. if(home_x && home_y) //first diagonal move
  2281. {
  2282. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2283. int x_axis_home_dir = home_dir(X_AXIS);
  2284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2285. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2286. feedrate = homing_feedrate[X_AXIS];
  2287. if(homing_feedrate[Y_AXIS]<feedrate)
  2288. feedrate = homing_feedrate[Y_AXIS];
  2289. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2290. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2291. } else {
  2292. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2293. }
  2294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2295. st_synchronize();
  2296. axis_is_at_home(X_AXIS);
  2297. axis_is_at_home(Y_AXIS);
  2298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2299. destination[X_AXIS] = current_position[X_AXIS];
  2300. destination[Y_AXIS] = current_position[Y_AXIS];
  2301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2302. feedrate = 0.0;
  2303. st_synchronize();
  2304. endstops_hit_on_purpose();
  2305. current_position[X_AXIS] = destination[X_AXIS];
  2306. current_position[Y_AXIS] = destination[Y_AXIS];
  2307. current_position[Z_AXIS] = destination[Z_AXIS];
  2308. }
  2309. #endif /* QUICK_HOME */
  2310. #ifdef TMC2130
  2311. if(home_x)
  2312. {
  2313. if (!calib)
  2314. homeaxis(X_AXIS);
  2315. else
  2316. tmc2130_home_calibrate(X_AXIS);
  2317. }
  2318. if(home_y)
  2319. {
  2320. if (!calib)
  2321. homeaxis(Y_AXIS);
  2322. else
  2323. tmc2130_home_calibrate(Y_AXIS);
  2324. }
  2325. #endif //TMC2130
  2326. if(home_x_axis && home_x_value != 0)
  2327. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2328. if(home_y_axis && home_y_value != 0)
  2329. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2330. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2331. #ifndef Z_SAFE_HOMING
  2332. if(home_z) {
  2333. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2334. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2335. feedrate = max_feedrate[Z_AXIS];
  2336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2337. st_synchronize();
  2338. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2339. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2340. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2341. {
  2342. homeaxis(X_AXIS);
  2343. homeaxis(Y_AXIS);
  2344. }
  2345. // 1st mesh bed leveling measurement point, corrected.
  2346. world2machine_initialize();
  2347. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2348. world2machine_reset();
  2349. if (destination[Y_AXIS] < Y_MIN_POS)
  2350. destination[Y_AXIS] = Y_MIN_POS;
  2351. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2352. feedrate = homing_feedrate[Z_AXIS]/10;
  2353. current_position[Z_AXIS] = 0;
  2354. enable_endstops(false);
  2355. #ifdef DEBUG_BUILD
  2356. SERIAL_ECHOLNPGM("plan_set_position()");
  2357. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2358. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2359. #endif
  2360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2361. #ifdef DEBUG_BUILD
  2362. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2363. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2364. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2365. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2366. #endif
  2367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2368. st_synchronize();
  2369. current_position[X_AXIS] = destination[X_AXIS];
  2370. current_position[Y_AXIS] = destination[Y_AXIS];
  2371. enable_endstops(true);
  2372. endstops_hit_on_purpose();
  2373. homeaxis(Z_AXIS);
  2374. #else // MESH_BED_LEVELING
  2375. homeaxis(Z_AXIS);
  2376. #endif // MESH_BED_LEVELING
  2377. }
  2378. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2379. if(home_all_axes) {
  2380. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2381. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2382. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2383. feedrate = XY_TRAVEL_SPEED/60;
  2384. current_position[Z_AXIS] = 0;
  2385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2386. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2387. st_synchronize();
  2388. current_position[X_AXIS] = destination[X_AXIS];
  2389. current_position[Y_AXIS] = destination[Y_AXIS];
  2390. homeaxis(Z_AXIS);
  2391. }
  2392. // Let's see if X and Y are homed and probe is inside bed area.
  2393. if(home_z) {
  2394. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2395. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2396. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2397. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2398. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2399. current_position[Z_AXIS] = 0;
  2400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2401. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2402. feedrate = max_feedrate[Z_AXIS];
  2403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2404. st_synchronize();
  2405. homeaxis(Z_AXIS);
  2406. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2407. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2408. SERIAL_ECHO_START;
  2409. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2410. } else {
  2411. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2412. SERIAL_ECHO_START;
  2413. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2414. }
  2415. }
  2416. #endif // Z_SAFE_HOMING
  2417. #endif // Z_HOME_DIR < 0
  2418. if(home_z_axis && home_z_value != 0)
  2419. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2420. #ifdef ENABLE_AUTO_BED_LEVELING
  2421. if(home_z)
  2422. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2423. #endif
  2424. // Set the planner and stepper routine positions.
  2425. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2426. // contains the machine coordinates.
  2427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2428. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2429. enable_endstops(false);
  2430. #endif
  2431. feedrate = saved_feedrate;
  2432. feedmultiply = saved_feedmultiply;
  2433. previous_millis_cmd = millis();
  2434. endstops_hit_on_purpose();
  2435. #ifndef MESH_BED_LEVELING
  2436. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2437. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2438. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2439. lcd_adjust_z();
  2440. #endif
  2441. // Load the machine correction matrix
  2442. world2machine_initialize();
  2443. // and correct the current_position XY axes to match the transformed coordinate system.
  2444. world2machine_update_current();
  2445. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2446. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2447. {
  2448. if (! home_z && mbl_was_active) {
  2449. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2450. mbl.active = true;
  2451. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2452. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2453. }
  2454. }
  2455. else
  2456. {
  2457. st_synchronize();
  2458. homing_flag = false;
  2459. }
  2460. #endif
  2461. if (farm_mode) { prusa_statistics(20); };
  2462. homing_flag = false;
  2463. #if 0
  2464. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2465. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2466. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2467. #endif
  2468. }
  2469. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2470. {
  2471. bool final_result = false;
  2472. #ifdef TMC2130
  2473. FORCE_HIGH_POWER_START;
  2474. #endif // TMC2130
  2475. // Only Z calibration?
  2476. if (!onlyZ)
  2477. {
  2478. setTargetBed(0);
  2479. setAllTargetHotends(0);
  2480. adjust_bed_reset(); //reset bed level correction
  2481. }
  2482. // Disable the default update procedure of the display. We will do a modal dialog.
  2483. lcd_update_enable(false);
  2484. // Let the planner use the uncorrected coordinates.
  2485. mbl.reset();
  2486. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2487. // the planner will not perform any adjustments in the XY plane.
  2488. // Wait for the motors to stop and update the current position with the absolute values.
  2489. world2machine_revert_to_uncorrected();
  2490. // Reset the baby step value applied without moving the axes.
  2491. babystep_reset();
  2492. // Mark all axes as in a need for homing.
  2493. memset(axis_known_position, 0, sizeof(axis_known_position));
  2494. // Home in the XY plane.
  2495. //set_destination_to_current();
  2496. setup_for_endstop_move();
  2497. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2498. home_xy();
  2499. enable_endstops(false);
  2500. current_position[X_AXIS] += 5;
  2501. current_position[Y_AXIS] += 5;
  2502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2503. st_synchronize();
  2504. // Let the user move the Z axes up to the end stoppers.
  2505. #ifdef TMC2130
  2506. if (calibrate_z_auto())
  2507. {
  2508. #else //TMC2130
  2509. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2510. {
  2511. #endif //TMC2130
  2512. refresh_cmd_timeout();
  2513. #ifndef STEEL_SHEET
  2514. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2515. {
  2516. lcd_wait_for_cool_down();
  2517. }
  2518. #endif //STEEL_SHEET
  2519. if(!onlyZ)
  2520. {
  2521. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2522. #ifdef STEEL_SHEET
  2523. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2524. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2525. #endif //STEEL_SHEET
  2526. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2527. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2528. KEEPALIVE_STATE(IN_HANDLER);
  2529. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2530. lcd_set_cursor(0, 2);
  2531. lcd_print(1);
  2532. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2533. }
  2534. // Move the print head close to the bed.
  2535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2536. bool endstops_enabled = enable_endstops(true);
  2537. #ifdef TMC2130
  2538. tmc2130_home_enter(Z_AXIS_MASK);
  2539. #endif //TMC2130
  2540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2541. st_synchronize();
  2542. #ifdef TMC2130
  2543. tmc2130_home_exit();
  2544. #endif //TMC2130
  2545. enable_endstops(endstops_enabled);
  2546. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2547. {
  2548. int8_t verbosity_level = 0;
  2549. if (code_seen('V'))
  2550. {
  2551. // Just 'V' without a number counts as V1.
  2552. char c = strchr_pointer[1];
  2553. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2554. }
  2555. if (onlyZ)
  2556. {
  2557. clean_up_after_endstop_move();
  2558. // Z only calibration.
  2559. // Load the machine correction matrix
  2560. world2machine_initialize();
  2561. // and correct the current_position to match the transformed coordinate system.
  2562. world2machine_update_current();
  2563. //FIXME
  2564. bool result = sample_mesh_and_store_reference();
  2565. if (result)
  2566. {
  2567. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2568. // Shipped, the nozzle height has been set already. The user can start printing now.
  2569. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2570. final_result = true;
  2571. // babystep_apply();
  2572. }
  2573. }
  2574. else
  2575. {
  2576. // Reset the baby step value and the baby step applied flag.
  2577. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2578. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2579. // Complete XYZ calibration.
  2580. uint8_t point_too_far_mask = 0;
  2581. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2582. clean_up_after_endstop_move();
  2583. // Print head up.
  2584. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2586. st_synchronize();
  2587. //#ifndef NEW_XYZCAL
  2588. if (result >= 0)
  2589. {
  2590. #ifdef HEATBED_V2
  2591. sample_z();
  2592. #else //HEATBED_V2
  2593. point_too_far_mask = 0;
  2594. // Second half: The fine adjustment.
  2595. // Let the planner use the uncorrected coordinates.
  2596. mbl.reset();
  2597. world2machine_reset();
  2598. // Home in the XY plane.
  2599. setup_for_endstop_move();
  2600. home_xy();
  2601. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2602. clean_up_after_endstop_move();
  2603. // Print head up.
  2604. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2606. st_synchronize();
  2607. // if (result >= 0) babystep_apply();
  2608. #endif //HEATBED_V2
  2609. }
  2610. //#endif //NEW_XYZCAL
  2611. lcd_update_enable(true);
  2612. lcd_update(2);
  2613. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2614. if (result >= 0)
  2615. {
  2616. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2617. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2618. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2619. final_result = true;
  2620. }
  2621. }
  2622. #ifdef TMC2130
  2623. tmc2130_home_exit();
  2624. #endif
  2625. }
  2626. else
  2627. {
  2628. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2629. final_result = false;
  2630. }
  2631. }
  2632. else
  2633. {
  2634. // Timeouted.
  2635. }
  2636. lcd_update_enable(true);
  2637. #ifdef TMC2130
  2638. FORCE_HIGH_POWER_END;
  2639. #endif // TMC2130
  2640. return final_result;
  2641. }
  2642. void gcode_M114()
  2643. {
  2644. SERIAL_PROTOCOLPGM("X:");
  2645. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2646. SERIAL_PROTOCOLPGM(" Y:");
  2647. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" Z:");
  2649. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2650. SERIAL_PROTOCOLPGM(" E:");
  2651. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2652. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2653. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2654. SERIAL_PROTOCOLPGM(" Y:");
  2655. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2656. SERIAL_PROTOCOLPGM(" Z:");
  2657. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2658. SERIAL_PROTOCOLPGM(" E:");
  2659. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2660. SERIAL_PROTOCOLLN("");
  2661. }
  2662. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2663. st_synchronize();
  2664. float lastpos[4];
  2665. if (farm_mode)
  2666. {
  2667. prusa_statistics(22);
  2668. }
  2669. //First backup current position and settings
  2670. feedmultiplyBckp=feedmultiply;
  2671. float HotendTempBckp = degTargetHotend(active_extruder);
  2672. int fanSpeedBckp = fanSpeed;
  2673. lastpos[X_AXIS]=current_position[X_AXIS];
  2674. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2675. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2676. lastpos[E_AXIS]=current_position[E_AXIS];
  2677. //Retract E
  2678. current_position[E_AXIS]+= e_shift;
  2679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2680. st_synchronize();
  2681. //Lift Z
  2682. current_position[Z_AXIS]+= z_shift;
  2683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2684. st_synchronize();
  2685. //Move XY to side
  2686. current_position[X_AXIS]= x_position;
  2687. current_position[Y_AXIS]= y_position;
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2689. st_synchronize();
  2690. //Beep, manage nozzle heater and wait for user to start unload filament
  2691. if(!automatic) M600_wait_for_user();
  2692. lcd_change_fil_state = 0;
  2693. // Unload filament
  2694. #if defined (SNMM) || defined (SNMM_V2)
  2695. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2696. #else
  2697. unload_filament(); //unload filament for single material (used also in M702)
  2698. #endif
  2699. //finish moves
  2700. st_synchronize();
  2701. #if !defined(SNMM_V2) && !defined(SNMM)
  2702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2703. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2704. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2705. lcd_update_enable(true);
  2706. #endif
  2707. #ifdef SNMM_V2
  2708. mmu_M600_load_filament(automatic);
  2709. #else
  2710. M600_load_filament();
  2711. #endif
  2712. if(!automatic) M600_check_state();
  2713. //Not let's go back to print
  2714. fanSpeed = fanSpeedBckp;
  2715. //Feed a little of filament to stabilize pressure
  2716. if (!automatic) {
  2717. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2719. }
  2720. //Move XY back
  2721. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2722. st_synchronize();
  2723. //Move Z back
  2724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2725. st_synchronize();
  2726. //Unretract
  2727. current_position[E_AXIS]= current_position[E_AXIS] - e_shift;
  2728. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2729. st_synchronize();
  2730. //Set E position to original
  2731. plan_set_e_position(lastpos[E_AXIS]);
  2732. memcpy(current_position, lastpos, sizeof(lastpos));
  2733. memcpy(destination, current_position, sizeof(current_position));
  2734. //Recover feed rate
  2735. feedmultiply=feedmultiplyBckp;
  2736. char cmd[9];
  2737. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2738. enquecommand(cmd);
  2739. lcd_setstatuspgm(_T(WELCOME_MSG));
  2740. custom_message = false;
  2741. custom_message_type = 0;
  2742. }
  2743. void gcode_M701()
  2744. {
  2745. printf_P(PSTR("gcode_M701 begin\n"));
  2746. #if defined (SNMM) || defined (SNMM_V2)
  2747. extr_adj(snmm_extruder);//loads current extruder
  2748. #else //defined (SNMM) || defined (SNMM_V2)
  2749. enable_z();
  2750. custom_message = true;
  2751. custom_message_type = 2;
  2752. #ifdef FILAMENT_SENSOR
  2753. fsensor_oq_meassure_start(40);
  2754. #endif //FILAMENT_SENSOR
  2755. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2756. current_position[E_AXIS] += 40;
  2757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2758. st_synchronize();
  2759. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2760. current_position[E_AXIS] += 30;
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2762. st_synchronize();
  2763. current_position[E_AXIS] += 25;
  2764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2765. st_synchronize();
  2766. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2767. tone(BEEPER, 500);
  2768. delay_keep_alive(50);
  2769. noTone(BEEPER);
  2770. if (!farm_mode && loading_flag) {
  2771. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2772. while (!clean) {
  2773. lcd_update_enable(true);
  2774. lcd_update(2);
  2775. current_position[E_AXIS] += 25;
  2776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2777. st_synchronize();
  2778. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2779. }
  2780. }
  2781. lcd_update_enable(true);
  2782. lcd_update(2);
  2783. lcd_setstatuspgm(_T(WELCOME_MSG));
  2784. disable_z();
  2785. loading_flag = false;
  2786. custom_message = false;
  2787. custom_message_type = 0;
  2788. #ifdef FILAMENT_SENSOR
  2789. fsensor_oq_meassure_stop();
  2790. if (!fsensor_oq_result())
  2791. {
  2792. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2793. lcd_update_enable(true);
  2794. lcd_update(2);
  2795. if (disable)
  2796. fsensor_disable();
  2797. }
  2798. #endif //FILAMENT_SENSOR
  2799. #endif //defined (SNMM) || defined (SNMM_V2)
  2800. }
  2801. /**
  2802. * @brief Get serial number from 32U2 processor
  2803. *
  2804. * Typical format of S/N is:CZPX0917X003XC13518
  2805. *
  2806. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2807. *
  2808. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2809. * reply is transmitted to serial port 1 character by character.
  2810. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2811. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2812. * in any case.
  2813. */
  2814. static void gcode_PRUSA_SN()
  2815. {
  2816. if (farm_mode) {
  2817. selectedSerialPort = 0;
  2818. putchar(';');
  2819. putchar('S');
  2820. int numbersRead = 0;
  2821. ShortTimer timeout;
  2822. timeout.start();
  2823. while (numbersRead < 19) {
  2824. while (MSerial.available() > 0) {
  2825. uint8_t serial_char = MSerial.read();
  2826. selectedSerialPort = 1;
  2827. putchar(serial_char);
  2828. numbersRead++;
  2829. selectedSerialPort = 0;
  2830. }
  2831. if (timeout.expired(100u)) break;
  2832. }
  2833. selectedSerialPort = 1;
  2834. putchar('\n');
  2835. #if 0
  2836. for (int b = 0; b < 3; b++) {
  2837. tone(BEEPER, 110);
  2838. delay(50);
  2839. noTone(BEEPER);
  2840. delay(50);
  2841. }
  2842. #endif
  2843. } else {
  2844. puts_P(_N("Not in farm mode."));
  2845. }
  2846. }
  2847. #ifdef BACKLASH_X
  2848. extern uint8_t st_backlash_x;
  2849. #endif //BACKLASH_X
  2850. #ifdef BACKLASH_Y
  2851. extern uint8_t st_backlash_y;
  2852. #endif //BACKLASH_Y
  2853. void process_commands()
  2854. {
  2855. if (!buflen) return; //empty command
  2856. #ifdef FILAMENT_RUNOUT_SUPPORT
  2857. SET_INPUT(FR_SENS);
  2858. #endif
  2859. #ifdef CMDBUFFER_DEBUG
  2860. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2861. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2862. SERIAL_ECHOLNPGM("");
  2863. SERIAL_ECHOPGM("In cmdqueue: ");
  2864. SERIAL_ECHO(buflen);
  2865. SERIAL_ECHOLNPGM("");
  2866. #endif /* CMDBUFFER_DEBUG */
  2867. unsigned long codenum; //throw away variable
  2868. char *starpos = NULL;
  2869. #ifdef ENABLE_AUTO_BED_LEVELING
  2870. float x_tmp, y_tmp, z_tmp, real_z;
  2871. #endif
  2872. // PRUSA GCODES
  2873. KEEPALIVE_STATE(IN_HANDLER);
  2874. #ifdef SNMM
  2875. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2876. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2877. int8_t SilentMode;
  2878. #endif
  2879. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2880. starpos = (strchr(strchr_pointer + 5, '*'));
  2881. if (starpos != NULL)
  2882. *(starpos) = '\0';
  2883. lcd_setstatus(strchr_pointer + 5);
  2884. }
  2885. #ifdef TMC2130
  2886. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2887. {
  2888. if(code_seen("CRASH_DETECTED"))
  2889. {
  2890. uint8_t mask = 0;
  2891. if (code_seen('X')) mask |= X_AXIS_MASK;
  2892. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2893. crashdet_detected(mask);
  2894. }
  2895. else if(code_seen("CRASH_RECOVER"))
  2896. crashdet_recover();
  2897. else if(code_seen("CRASH_CANCEL"))
  2898. crashdet_cancel();
  2899. }
  2900. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2901. {
  2902. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2903. {
  2904. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2905. axis = (axis == 'E')?3:(axis - 'X');
  2906. if (axis < 4)
  2907. {
  2908. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2909. tmc2130_set_wave(axis, 247, fac);
  2910. }
  2911. }
  2912. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2913. {
  2914. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2915. axis = (axis == 'E')?3:(axis - 'X');
  2916. if (axis < 4)
  2917. {
  2918. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2919. uint16_t res = tmc2130_get_res(axis);
  2920. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2921. }
  2922. }
  2923. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2924. {
  2925. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2926. axis = (axis == 'E')?3:(axis - 'X');
  2927. if (axis < 4)
  2928. {
  2929. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2930. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2931. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2932. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2933. char* str_end = 0;
  2934. if (CMDBUFFER_CURRENT_STRING[14])
  2935. {
  2936. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2937. if (str_end && *str_end)
  2938. {
  2939. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2940. if (str_end && *str_end)
  2941. {
  2942. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2943. if (str_end && *str_end)
  2944. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2945. }
  2946. }
  2947. }
  2948. tmc2130_chopper_config[axis].toff = chop0;
  2949. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2950. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2951. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2952. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2953. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2954. }
  2955. }
  2956. }
  2957. #ifdef BACKLASH_X
  2958. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2959. {
  2960. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2961. st_backlash_x = bl;
  2962. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2963. }
  2964. #endif //BACKLASH_X
  2965. #ifdef BACKLASH_Y
  2966. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2967. {
  2968. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2969. st_backlash_y = bl;
  2970. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2971. }
  2972. #endif //BACKLASH_Y
  2973. #endif //TMC2130
  2974. else if(code_seen("PRUSA")){
  2975. if (code_seen("Ping")) { //PRUSA Ping
  2976. if (farm_mode) {
  2977. PingTime = millis();
  2978. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2979. }
  2980. }
  2981. else if (code_seen("PRN")) {
  2982. printf_P(_N("%d"), status_number);
  2983. }else if (code_seen("FAN")) {
  2984. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2985. }else if (code_seen("fn")) {
  2986. if (farm_mode) {
  2987. printf_P(_N("%d"), farm_no);
  2988. }
  2989. else {
  2990. puts_P(_N("Not in farm mode."));
  2991. }
  2992. }
  2993. else if (code_seen("thx")) {
  2994. no_response = false;
  2995. }
  2996. else if (code_seen("uvlo")) {
  2997. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2998. enquecommand_P(PSTR("M24"));
  2999. }
  3000. else if (code_seen("MMURES")) {
  3001. printf_P(PSTR("X0\n"));
  3002. fprintf_P(uart2io, PSTR("X0\n"));
  3003. }
  3004. else if (code_seen("RESET")) {
  3005. // careful!
  3006. if (farm_mode) {
  3007. #ifdef WATCHDOG
  3008. boot_app_magic = BOOT_APP_MAGIC;
  3009. boot_app_flags = BOOT_APP_FLG_RUN;
  3010. wdt_enable(WDTO_15MS);
  3011. cli();
  3012. while(1);
  3013. #else //WATCHDOG
  3014. asm volatile("jmp 0x3E000");
  3015. #endif //WATCHDOG
  3016. }
  3017. else {
  3018. MYSERIAL.println("Not in farm mode.");
  3019. }
  3020. }else if (code_seen("fv")) {
  3021. // get file version
  3022. #ifdef SDSUPPORT
  3023. card.openFile(strchr_pointer + 3,true);
  3024. while (true) {
  3025. uint16_t readByte = card.get();
  3026. MYSERIAL.write(readByte);
  3027. if (readByte=='\n') {
  3028. break;
  3029. }
  3030. }
  3031. card.closefile();
  3032. #endif // SDSUPPORT
  3033. } else if (code_seen("M28")) {
  3034. trace();
  3035. prusa_sd_card_upload = true;
  3036. card.openFile(strchr_pointer+4,false);
  3037. } else if (code_seen("SN")) {
  3038. gcode_PRUSA_SN();
  3039. } else if(code_seen("Fir")){
  3040. SERIAL_PROTOCOLLN(FW_VERSION);
  3041. } else if(code_seen("Rev")){
  3042. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3043. } else if(code_seen("Lang")) {
  3044. lang_reset();
  3045. } else if(code_seen("Lz")) {
  3046. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3047. } else if(code_seen("Beat")) {
  3048. // Kick farm link timer
  3049. kicktime = millis();
  3050. } else if(code_seen("FR")) {
  3051. // Factory full reset
  3052. factory_reset(0,true);
  3053. }
  3054. //else if (code_seen('Cal')) {
  3055. // lcd_calibration();
  3056. // }
  3057. }
  3058. else if (code_seen('^')) {
  3059. // nothing, this is a version line
  3060. } else if(code_seen('G'))
  3061. {
  3062. gcode_in_progress = (int)code_value();
  3063. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3064. switch (gcode_in_progress)
  3065. {
  3066. case 0: // G0 -> G1
  3067. case 1: // G1
  3068. if(Stopped == false) {
  3069. #ifdef FILAMENT_RUNOUT_SUPPORT
  3070. if(READ(FR_SENS)){
  3071. feedmultiplyBckp=feedmultiply;
  3072. float target[4];
  3073. float lastpos[4];
  3074. target[X_AXIS]=current_position[X_AXIS];
  3075. target[Y_AXIS]=current_position[Y_AXIS];
  3076. target[Z_AXIS]=current_position[Z_AXIS];
  3077. target[E_AXIS]=current_position[E_AXIS];
  3078. lastpos[X_AXIS]=current_position[X_AXIS];
  3079. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3080. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3081. lastpos[E_AXIS]=current_position[E_AXIS];
  3082. //retract by E
  3083. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3084. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3085. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3086. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3087. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3088. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3089. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3090. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3091. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3092. //finish moves
  3093. st_synchronize();
  3094. //disable extruder steppers so filament can be removed
  3095. disable_e0();
  3096. disable_e1();
  3097. disable_e2();
  3098. delay(100);
  3099. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3100. uint8_t cnt=0;
  3101. int counterBeep = 0;
  3102. lcd_wait_interact();
  3103. while(!lcd_clicked()){
  3104. cnt++;
  3105. manage_heater();
  3106. manage_inactivity(true);
  3107. //lcd_update(0);
  3108. if(cnt==0)
  3109. {
  3110. #if BEEPER > 0
  3111. if (counterBeep== 500){
  3112. counterBeep = 0;
  3113. }
  3114. SET_OUTPUT(BEEPER);
  3115. if (counterBeep== 0){
  3116. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3117. WRITE(BEEPER,HIGH);
  3118. }
  3119. if (counterBeep== 20){
  3120. WRITE(BEEPER,LOW);
  3121. }
  3122. counterBeep++;
  3123. #else
  3124. #endif
  3125. }
  3126. }
  3127. WRITE(BEEPER,LOW);
  3128. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3130. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3132. lcd_change_fil_state = 0;
  3133. lcd_loading_filament();
  3134. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3135. lcd_change_fil_state = 0;
  3136. lcd_alright();
  3137. switch(lcd_change_fil_state){
  3138. case 2:
  3139. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3140. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3141. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3143. lcd_loading_filament();
  3144. break;
  3145. case 3:
  3146. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3148. lcd_loading_color();
  3149. break;
  3150. default:
  3151. lcd_change_success();
  3152. break;
  3153. }
  3154. }
  3155. target[E_AXIS]+= 5;
  3156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3157. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3159. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3160. //plan_set_e_position(current_position[E_AXIS]);
  3161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3162. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3163. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3164. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3165. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3166. plan_set_e_position(lastpos[E_AXIS]);
  3167. feedmultiply=feedmultiplyBckp;
  3168. char cmd[9];
  3169. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3170. enquecommand(cmd);
  3171. }
  3172. #endif
  3173. get_coordinates(); // For X Y Z E F
  3174. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3175. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3176. }
  3177. #ifdef FWRETRACT
  3178. if(autoretract_enabled)
  3179. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3180. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3181. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3182. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3183. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3184. retract(!retracted[active_extruder]);
  3185. return;
  3186. }
  3187. }
  3188. #endif //FWRETRACT
  3189. prepare_move();
  3190. //ClearToSend();
  3191. }
  3192. break;
  3193. case 2: // G2 - CW ARC
  3194. if(Stopped == false) {
  3195. get_arc_coordinates();
  3196. prepare_arc_move(true);
  3197. }
  3198. break;
  3199. case 3: // G3 - CCW ARC
  3200. if(Stopped == false) {
  3201. get_arc_coordinates();
  3202. prepare_arc_move(false);
  3203. }
  3204. break;
  3205. case 4: // G4 dwell
  3206. codenum = 0;
  3207. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3208. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3209. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3210. st_synchronize();
  3211. codenum += millis(); // keep track of when we started waiting
  3212. previous_millis_cmd = millis();
  3213. while(millis() < codenum) {
  3214. manage_heater();
  3215. manage_inactivity();
  3216. lcd_update(0);
  3217. }
  3218. break;
  3219. #ifdef FWRETRACT
  3220. case 10: // G10 retract
  3221. #if EXTRUDERS > 1
  3222. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3223. retract(true,retracted_swap[active_extruder]);
  3224. #else
  3225. retract(true);
  3226. #endif
  3227. break;
  3228. case 11: // G11 retract_recover
  3229. #if EXTRUDERS > 1
  3230. retract(false,retracted_swap[active_extruder]);
  3231. #else
  3232. retract(false);
  3233. #endif
  3234. break;
  3235. #endif //FWRETRACT
  3236. case 28: //G28 Home all Axis one at a time
  3237. {
  3238. long home_x_value = 0;
  3239. long home_y_value = 0;
  3240. long home_z_value = 0;
  3241. // Which axes should be homed?
  3242. bool home_x = code_seen(axis_codes[X_AXIS]);
  3243. home_x_value = code_value_long();
  3244. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3245. home_y_value = code_value_long();
  3246. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3247. home_z_value = code_value_long();
  3248. bool without_mbl = code_seen('W');
  3249. // calibrate?
  3250. bool calib = code_seen('C');
  3251. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3252. if ((home_x || home_y || without_mbl || home_z) == false) {
  3253. // Push the commands to the front of the message queue in the reverse order!
  3254. // There shall be always enough space reserved for these commands.
  3255. goto case_G80;
  3256. }
  3257. break;
  3258. }
  3259. #ifdef ENABLE_AUTO_BED_LEVELING
  3260. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3261. {
  3262. #if Z_MIN_PIN == -1
  3263. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3264. #endif
  3265. // Prevent user from running a G29 without first homing in X and Y
  3266. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3267. {
  3268. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3269. SERIAL_ECHO_START;
  3270. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3271. break; // abort G29, since we don't know where we are
  3272. }
  3273. st_synchronize();
  3274. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3275. //vector_3 corrected_position = plan_get_position_mm();
  3276. //corrected_position.debug("position before G29");
  3277. plan_bed_level_matrix.set_to_identity();
  3278. vector_3 uncorrected_position = plan_get_position();
  3279. //uncorrected_position.debug("position durring G29");
  3280. current_position[X_AXIS] = uncorrected_position.x;
  3281. current_position[Y_AXIS] = uncorrected_position.y;
  3282. current_position[Z_AXIS] = uncorrected_position.z;
  3283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3284. setup_for_endstop_move();
  3285. feedrate = homing_feedrate[Z_AXIS];
  3286. #ifdef AUTO_BED_LEVELING_GRID
  3287. // probe at the points of a lattice grid
  3288. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3289. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3290. // solve the plane equation ax + by + d = z
  3291. // A is the matrix with rows [x y 1] for all the probed points
  3292. // B is the vector of the Z positions
  3293. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3294. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3295. // "A" matrix of the linear system of equations
  3296. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3297. // "B" vector of Z points
  3298. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3299. int probePointCounter = 0;
  3300. bool zig = true;
  3301. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3302. {
  3303. int xProbe, xInc;
  3304. if (zig)
  3305. {
  3306. xProbe = LEFT_PROBE_BED_POSITION;
  3307. //xEnd = RIGHT_PROBE_BED_POSITION;
  3308. xInc = xGridSpacing;
  3309. zig = false;
  3310. } else // zag
  3311. {
  3312. xProbe = RIGHT_PROBE_BED_POSITION;
  3313. //xEnd = LEFT_PROBE_BED_POSITION;
  3314. xInc = -xGridSpacing;
  3315. zig = true;
  3316. }
  3317. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3318. {
  3319. float z_before;
  3320. if (probePointCounter == 0)
  3321. {
  3322. // raise before probing
  3323. z_before = Z_RAISE_BEFORE_PROBING;
  3324. } else
  3325. {
  3326. // raise extruder
  3327. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3328. }
  3329. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3330. eqnBVector[probePointCounter] = measured_z;
  3331. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3332. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3333. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3334. probePointCounter++;
  3335. xProbe += xInc;
  3336. }
  3337. }
  3338. clean_up_after_endstop_move();
  3339. // solve lsq problem
  3340. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3341. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3342. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3343. SERIAL_PROTOCOLPGM(" b: ");
  3344. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3345. SERIAL_PROTOCOLPGM(" d: ");
  3346. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3347. set_bed_level_equation_lsq(plane_equation_coefficients);
  3348. free(plane_equation_coefficients);
  3349. #else // AUTO_BED_LEVELING_GRID not defined
  3350. // Probe at 3 arbitrary points
  3351. // probe 1
  3352. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3353. // probe 2
  3354. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3355. // probe 3
  3356. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3357. clean_up_after_endstop_move();
  3358. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3359. #endif // AUTO_BED_LEVELING_GRID
  3360. st_synchronize();
  3361. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3362. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3363. // When the bed is uneven, this height must be corrected.
  3364. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3365. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3366. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3367. z_tmp = current_position[Z_AXIS];
  3368. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3369. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3371. }
  3372. break;
  3373. #ifndef Z_PROBE_SLED
  3374. case 30: // G30 Single Z Probe
  3375. {
  3376. st_synchronize();
  3377. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3378. setup_for_endstop_move();
  3379. feedrate = homing_feedrate[Z_AXIS];
  3380. run_z_probe();
  3381. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3382. SERIAL_PROTOCOLPGM(" X: ");
  3383. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3384. SERIAL_PROTOCOLPGM(" Y: ");
  3385. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3386. SERIAL_PROTOCOLPGM(" Z: ");
  3387. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3388. SERIAL_PROTOCOLPGM("\n");
  3389. clean_up_after_endstop_move();
  3390. }
  3391. break;
  3392. #else
  3393. case 31: // dock the sled
  3394. dock_sled(true);
  3395. break;
  3396. case 32: // undock the sled
  3397. dock_sled(false);
  3398. break;
  3399. #endif // Z_PROBE_SLED
  3400. #endif // ENABLE_AUTO_BED_LEVELING
  3401. #ifdef MESH_BED_LEVELING
  3402. case 30: // G30 Single Z Probe
  3403. {
  3404. st_synchronize();
  3405. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3406. setup_for_endstop_move();
  3407. feedrate = homing_feedrate[Z_AXIS];
  3408. find_bed_induction_sensor_point_z(-10.f, 3);
  3409. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3410. clean_up_after_endstop_move();
  3411. }
  3412. break;
  3413. case 75:
  3414. {
  3415. for (int i = 40; i <= 110; i++)
  3416. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3417. }
  3418. break;
  3419. case 76: //PINDA probe temperature calibration
  3420. {
  3421. #ifdef PINDA_THERMISTOR
  3422. if (true)
  3423. {
  3424. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3425. //we need to know accurate position of first calibration point
  3426. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3427. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3428. break;
  3429. }
  3430. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3431. {
  3432. // We don't know where we are! HOME!
  3433. // Push the commands to the front of the message queue in the reverse order!
  3434. // There shall be always enough space reserved for these commands.
  3435. repeatcommand_front(); // repeat G76 with all its parameters
  3436. enquecommand_front_P((PSTR("G28 W0")));
  3437. break;
  3438. }
  3439. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3440. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3441. if (result)
  3442. {
  3443. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3445. current_position[Z_AXIS] = 50;
  3446. current_position[Y_AXIS] = 180;
  3447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3448. st_synchronize();
  3449. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3450. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3451. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3453. st_synchronize();
  3454. gcode_G28(false, false, true);
  3455. }
  3456. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3457. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3458. current_position[Z_AXIS] = 100;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3460. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3461. lcd_temp_cal_show_result(false);
  3462. break;
  3463. }
  3464. }
  3465. lcd_update_enable(true);
  3466. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3467. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3468. float zero_z;
  3469. int z_shift = 0; //unit: steps
  3470. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3471. if (start_temp < 35) start_temp = 35;
  3472. if (start_temp < current_temperature_pinda) start_temp += 5;
  3473. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3474. // setTargetHotend(200, 0);
  3475. setTargetBed(70 + (start_temp - 30));
  3476. custom_message = true;
  3477. custom_message_type = 4;
  3478. custom_message_state = 1;
  3479. custom_message = _T(MSG_TEMP_CALIBRATION);
  3480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3483. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3487. st_synchronize();
  3488. while (current_temperature_pinda < start_temp)
  3489. {
  3490. delay_keep_alive(1000);
  3491. serialecho_temperatures();
  3492. }
  3493. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3497. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3499. st_synchronize();
  3500. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3501. if (find_z_result == false) {
  3502. lcd_temp_cal_show_result(find_z_result);
  3503. break;
  3504. }
  3505. zero_z = current_position[Z_AXIS];
  3506. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3507. int i = -1; for (; i < 5; i++)
  3508. {
  3509. float temp = (40 + i * 5);
  3510. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3511. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3512. if (start_temp <= temp) break;
  3513. }
  3514. for (i++; i < 5; i++)
  3515. {
  3516. float temp = (40 + i * 5);
  3517. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3518. custom_message_state = i + 2;
  3519. setTargetBed(50 + 10 * (temp - 30) / 5);
  3520. // setTargetHotend(255, 0);
  3521. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3523. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3524. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3526. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3528. st_synchronize();
  3529. while (current_temperature_pinda < temp)
  3530. {
  3531. delay_keep_alive(1000);
  3532. serialecho_temperatures();
  3533. }
  3534. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3536. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3537. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3539. st_synchronize();
  3540. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3541. if (find_z_result == false) {
  3542. lcd_temp_cal_show_result(find_z_result);
  3543. break;
  3544. }
  3545. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3546. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3547. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3548. }
  3549. lcd_temp_cal_show_result(true);
  3550. break;
  3551. }
  3552. #endif //PINDA_THERMISTOR
  3553. setTargetBed(PINDA_MIN_T);
  3554. float zero_z;
  3555. int z_shift = 0; //unit: steps
  3556. int t_c; // temperature
  3557. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3558. // We don't know where we are! HOME!
  3559. // Push the commands to the front of the message queue in the reverse order!
  3560. // There shall be always enough space reserved for these commands.
  3561. repeatcommand_front(); // repeat G76 with all its parameters
  3562. enquecommand_front_P((PSTR("G28 W0")));
  3563. break;
  3564. }
  3565. puts_P(_N("PINDA probe calibration start"));
  3566. custom_message = true;
  3567. custom_message_type = 4;
  3568. custom_message_state = 1;
  3569. custom_message = _T(MSG_TEMP_CALIBRATION);
  3570. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3571. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3572. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3574. st_synchronize();
  3575. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3576. delay_keep_alive(1000);
  3577. serialecho_temperatures();
  3578. }
  3579. //enquecommand_P(PSTR("M190 S50"));
  3580. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3581. delay_keep_alive(1000);
  3582. serialecho_temperatures();
  3583. }
  3584. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3585. current_position[Z_AXIS] = 5;
  3586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3587. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3588. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3590. st_synchronize();
  3591. find_bed_induction_sensor_point_z(-1.f);
  3592. zero_z = current_position[Z_AXIS];
  3593. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3594. for (int i = 0; i<5; i++) {
  3595. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3596. custom_message_state = i + 2;
  3597. t_c = 60 + i * 10;
  3598. setTargetBed(t_c);
  3599. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3600. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3601. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. st_synchronize();
  3604. while (degBed() < t_c) {
  3605. delay_keep_alive(1000);
  3606. serialecho_temperatures();
  3607. }
  3608. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3609. delay_keep_alive(1000);
  3610. serialecho_temperatures();
  3611. }
  3612. current_position[Z_AXIS] = 5;
  3613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3614. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3615. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3617. st_synchronize();
  3618. find_bed_induction_sensor_point_z(-1.f);
  3619. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3620. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3621. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3622. }
  3623. custom_message_type = 0;
  3624. custom_message = false;
  3625. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3626. puts_P(_N("Temperature calibration done."));
  3627. disable_x();
  3628. disable_y();
  3629. disable_z();
  3630. disable_e0();
  3631. disable_e1();
  3632. disable_e2();
  3633. setTargetBed(0); //set bed target temperature back to 0
  3634. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3635. temp_cal_active = true;
  3636. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3637. lcd_update_enable(true);
  3638. lcd_update(2);
  3639. }
  3640. break;
  3641. #ifdef DIS
  3642. case 77:
  3643. {
  3644. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3645. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3646. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3647. float dimension_x = 40;
  3648. float dimension_y = 40;
  3649. int points_x = 40;
  3650. int points_y = 40;
  3651. float offset_x = 74;
  3652. float offset_y = 33;
  3653. if (code_seen('X')) dimension_x = code_value();
  3654. if (code_seen('Y')) dimension_y = code_value();
  3655. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3656. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3657. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3658. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3659. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3660. } break;
  3661. #endif
  3662. case 79: {
  3663. for (int i = 255; i > 0; i = i - 5) {
  3664. fanSpeed = i;
  3665. //delay_keep_alive(2000);
  3666. for (int j = 0; j < 100; j++) {
  3667. delay_keep_alive(100);
  3668. }
  3669. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3670. }
  3671. }break;
  3672. /**
  3673. * G80: Mesh-based Z probe, probes a grid and produces a
  3674. * mesh to compensate for variable bed height
  3675. *
  3676. * The S0 report the points as below
  3677. *
  3678. * +----> X-axis
  3679. * |
  3680. * |
  3681. * v Y-axis
  3682. *
  3683. */
  3684. case 80:
  3685. #ifdef MK1BP
  3686. break;
  3687. #endif //MK1BP
  3688. case_G80:
  3689. {
  3690. mesh_bed_leveling_flag = true;
  3691. static bool run = false;
  3692. #ifdef SUPPORT_VERBOSITY
  3693. int8_t verbosity_level = 0;
  3694. if (code_seen('V')) {
  3695. // Just 'V' without a number counts as V1.
  3696. char c = strchr_pointer[1];
  3697. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3698. }
  3699. #endif //SUPPORT_VERBOSITY
  3700. // Firstly check if we know where we are
  3701. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3702. // We don't know where we are! HOME!
  3703. // Push the commands to the front of the message queue in the reverse order!
  3704. // There shall be always enough space reserved for these commands.
  3705. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3706. repeatcommand_front(); // repeat G80 with all its parameters
  3707. enquecommand_front_P((PSTR("G28 W0")));
  3708. }
  3709. else {
  3710. mesh_bed_leveling_flag = false;
  3711. }
  3712. break;
  3713. }
  3714. bool temp_comp_start = true;
  3715. #ifdef PINDA_THERMISTOR
  3716. temp_comp_start = false;
  3717. #endif //PINDA_THERMISTOR
  3718. if (temp_comp_start)
  3719. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3720. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3721. temp_compensation_start();
  3722. run = true;
  3723. repeatcommand_front(); // repeat G80 with all its parameters
  3724. enquecommand_front_P((PSTR("G28 W0")));
  3725. }
  3726. else {
  3727. mesh_bed_leveling_flag = false;
  3728. }
  3729. break;
  3730. }
  3731. run = false;
  3732. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3733. mesh_bed_leveling_flag = false;
  3734. break;
  3735. }
  3736. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3737. bool custom_message_old = custom_message;
  3738. unsigned int custom_message_type_old = custom_message_type;
  3739. unsigned int custom_message_state_old = custom_message_state;
  3740. custom_message = true;
  3741. custom_message_type = 1;
  3742. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3743. lcd_update(1);
  3744. mbl.reset(); //reset mesh bed leveling
  3745. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3746. // consumed during the first movements following this statement.
  3747. babystep_undo();
  3748. // Cycle through all points and probe them
  3749. // First move up. During this first movement, the babystepping will be reverted.
  3750. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3752. // The move to the first calibration point.
  3753. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3754. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3755. #ifdef SUPPORT_VERBOSITY
  3756. if (verbosity_level >= 1)
  3757. {
  3758. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3759. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3760. }
  3761. #endif //SUPPORT_VERBOSITY
  3762. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3764. // Wait until the move is finished.
  3765. st_synchronize();
  3766. int mesh_point = 0; //index number of calibration point
  3767. int ix = 0;
  3768. int iy = 0;
  3769. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3770. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3771. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3772. #ifdef SUPPORT_VERBOSITY
  3773. if (verbosity_level >= 1) {
  3774. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3775. }
  3776. #endif // SUPPORT_VERBOSITY
  3777. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3778. const char *kill_message = NULL;
  3779. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3780. // Get coords of a measuring point.
  3781. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3782. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3783. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3784. float z0 = 0.f;
  3785. if (has_z && mesh_point > 0) {
  3786. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3787. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3788. //#if 0
  3789. #ifdef SUPPORT_VERBOSITY
  3790. if (verbosity_level >= 1) {
  3791. SERIAL_ECHOLNPGM("");
  3792. SERIAL_ECHOPGM("Bed leveling, point: ");
  3793. MYSERIAL.print(mesh_point);
  3794. SERIAL_ECHOPGM(", calibration z: ");
  3795. MYSERIAL.print(z0, 5);
  3796. SERIAL_ECHOLNPGM("");
  3797. }
  3798. #endif // SUPPORT_VERBOSITY
  3799. //#endif
  3800. }
  3801. // Move Z up to MESH_HOME_Z_SEARCH.
  3802. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3804. st_synchronize();
  3805. // Move to XY position of the sensor point.
  3806. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3807. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3808. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3809. #ifdef SUPPORT_VERBOSITY
  3810. if (verbosity_level >= 1) {
  3811. SERIAL_PROTOCOL(mesh_point);
  3812. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3813. }
  3814. #endif // SUPPORT_VERBOSITY
  3815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3816. st_synchronize();
  3817. // Go down until endstop is hit
  3818. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3819. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3820. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3821. break;
  3822. }
  3823. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3824. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3825. break;
  3826. }
  3827. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3828. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3829. break;
  3830. }
  3831. #ifdef SUPPORT_VERBOSITY
  3832. if (verbosity_level >= 10) {
  3833. SERIAL_ECHOPGM("X: ");
  3834. MYSERIAL.print(current_position[X_AXIS], 5);
  3835. SERIAL_ECHOLNPGM("");
  3836. SERIAL_ECHOPGM("Y: ");
  3837. MYSERIAL.print(current_position[Y_AXIS], 5);
  3838. SERIAL_PROTOCOLPGM("\n");
  3839. }
  3840. #endif // SUPPORT_VERBOSITY
  3841. float offset_z = 0;
  3842. #ifdef PINDA_THERMISTOR
  3843. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3844. #endif //PINDA_THERMISTOR
  3845. // #ifdef SUPPORT_VERBOSITY
  3846. /* if (verbosity_level >= 1)
  3847. {
  3848. SERIAL_ECHOPGM("mesh bed leveling: ");
  3849. MYSERIAL.print(current_position[Z_AXIS], 5);
  3850. SERIAL_ECHOPGM(" offset: ");
  3851. MYSERIAL.print(offset_z, 5);
  3852. SERIAL_ECHOLNPGM("");
  3853. }*/
  3854. // #endif // SUPPORT_VERBOSITY
  3855. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3856. custom_message_state--;
  3857. mesh_point++;
  3858. lcd_update(1);
  3859. }
  3860. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3861. #ifdef SUPPORT_VERBOSITY
  3862. if (verbosity_level >= 20) {
  3863. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3864. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3865. MYSERIAL.print(current_position[Z_AXIS], 5);
  3866. }
  3867. #endif // SUPPORT_VERBOSITY
  3868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3869. st_synchronize();
  3870. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3871. kill(kill_message);
  3872. SERIAL_ECHOLNPGM("killed");
  3873. }
  3874. clean_up_after_endstop_move();
  3875. // SERIAL_ECHOLNPGM("clean up finished ");
  3876. bool apply_temp_comp = true;
  3877. #ifdef PINDA_THERMISTOR
  3878. apply_temp_comp = false;
  3879. #endif
  3880. if (apply_temp_comp)
  3881. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3882. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3883. // SERIAL_ECHOLNPGM("babystep applied");
  3884. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3885. #ifdef SUPPORT_VERBOSITY
  3886. if (verbosity_level >= 1) {
  3887. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3888. }
  3889. #endif // SUPPORT_VERBOSITY
  3890. for (uint8_t i = 0; i < 4; ++i) {
  3891. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3892. long correction = 0;
  3893. if (code_seen(codes[i]))
  3894. correction = code_value_long();
  3895. else if (eeprom_bed_correction_valid) {
  3896. unsigned char *addr = (i < 2) ?
  3897. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3898. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3899. correction = eeprom_read_int8(addr);
  3900. }
  3901. if (correction == 0)
  3902. continue;
  3903. float offset = float(correction) * 0.001f;
  3904. if (fabs(offset) > 0.101f) {
  3905. SERIAL_ERROR_START;
  3906. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3907. SERIAL_ECHO(offset);
  3908. SERIAL_ECHOLNPGM(" microns");
  3909. }
  3910. else {
  3911. switch (i) {
  3912. case 0:
  3913. for (uint8_t row = 0; row < 3; ++row) {
  3914. mbl.z_values[row][1] += 0.5f * offset;
  3915. mbl.z_values[row][0] += offset;
  3916. }
  3917. break;
  3918. case 1:
  3919. for (uint8_t row = 0; row < 3; ++row) {
  3920. mbl.z_values[row][1] += 0.5f * offset;
  3921. mbl.z_values[row][2] += offset;
  3922. }
  3923. break;
  3924. case 2:
  3925. for (uint8_t col = 0; col < 3; ++col) {
  3926. mbl.z_values[1][col] += 0.5f * offset;
  3927. mbl.z_values[0][col] += offset;
  3928. }
  3929. break;
  3930. case 3:
  3931. for (uint8_t col = 0; col < 3; ++col) {
  3932. mbl.z_values[1][col] += 0.5f * offset;
  3933. mbl.z_values[2][col] += offset;
  3934. }
  3935. break;
  3936. }
  3937. }
  3938. }
  3939. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3940. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3941. // SERIAL_ECHOLNPGM("Upsample finished");
  3942. mbl.active = 1; //activate mesh bed leveling
  3943. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3944. go_home_with_z_lift();
  3945. // SERIAL_ECHOLNPGM("Go home finished");
  3946. //unretract (after PINDA preheat retraction)
  3947. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3948. current_position[E_AXIS] += default_retraction;
  3949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3950. }
  3951. KEEPALIVE_STATE(NOT_BUSY);
  3952. // Restore custom message state
  3953. lcd_setstatuspgm(_T(WELCOME_MSG));
  3954. custom_message = custom_message_old;
  3955. custom_message_type = custom_message_type_old;
  3956. custom_message_state = custom_message_state_old;
  3957. mesh_bed_leveling_flag = false;
  3958. mesh_bed_run_from_menu = false;
  3959. lcd_update(2);
  3960. }
  3961. break;
  3962. /**
  3963. * G81: Print mesh bed leveling status and bed profile if activated
  3964. */
  3965. case 81:
  3966. if (mbl.active) {
  3967. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3968. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3969. SERIAL_PROTOCOLPGM(",");
  3970. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3971. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3972. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3973. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3974. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3975. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3976. SERIAL_PROTOCOLPGM(" ");
  3977. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3978. }
  3979. SERIAL_PROTOCOLPGM("\n");
  3980. }
  3981. }
  3982. else
  3983. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3984. break;
  3985. #if 0
  3986. /**
  3987. * G82: Single Z probe at current location
  3988. *
  3989. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3990. *
  3991. */
  3992. case 82:
  3993. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3994. setup_for_endstop_move();
  3995. find_bed_induction_sensor_point_z();
  3996. clean_up_after_endstop_move();
  3997. SERIAL_PROTOCOLPGM("Bed found at: ");
  3998. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3999. SERIAL_PROTOCOLPGM("\n");
  4000. break;
  4001. /**
  4002. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4003. */
  4004. case 83:
  4005. {
  4006. int babystepz = code_seen('S') ? code_value() : 0;
  4007. int BabyPosition = code_seen('P') ? code_value() : 0;
  4008. if (babystepz != 0) {
  4009. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4010. // Is the axis indexed starting with zero or one?
  4011. if (BabyPosition > 4) {
  4012. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4013. }else{
  4014. // Save it to the eeprom
  4015. babystepLoadZ = babystepz;
  4016. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4017. // adjust the Z
  4018. babystepsTodoZadd(babystepLoadZ);
  4019. }
  4020. }
  4021. }
  4022. break;
  4023. /**
  4024. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4025. */
  4026. case 84:
  4027. babystepsTodoZsubtract(babystepLoadZ);
  4028. // babystepLoadZ = 0;
  4029. break;
  4030. /**
  4031. * G85: Prusa3D specific: Pick best babystep
  4032. */
  4033. case 85:
  4034. lcd_pick_babystep();
  4035. break;
  4036. #endif
  4037. /**
  4038. * G86: Prusa3D specific: Disable babystep correction after home.
  4039. * This G-code will be performed at the start of a calibration script.
  4040. */
  4041. case 86:
  4042. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4043. break;
  4044. /**
  4045. * G87: Prusa3D specific: Enable babystep correction after home
  4046. * This G-code will be performed at the end of a calibration script.
  4047. */
  4048. case 87:
  4049. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4050. break;
  4051. /**
  4052. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4053. */
  4054. case 88:
  4055. break;
  4056. #endif // ENABLE_MESH_BED_LEVELING
  4057. case 90: // G90
  4058. relative_mode = false;
  4059. break;
  4060. case 91: // G91
  4061. relative_mode = true;
  4062. break;
  4063. case 92: // G92
  4064. if(!code_seen(axis_codes[E_AXIS]))
  4065. st_synchronize();
  4066. for(int8_t i=0; i < NUM_AXIS; i++) {
  4067. if(code_seen(axis_codes[i])) {
  4068. if(i == E_AXIS) {
  4069. current_position[i] = code_value();
  4070. plan_set_e_position(current_position[E_AXIS]);
  4071. }
  4072. else {
  4073. current_position[i] = code_value()+add_homing[i];
  4074. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4075. }
  4076. }
  4077. }
  4078. break;
  4079. case 98: // G98 (activate farm mode)
  4080. farm_mode = 1;
  4081. PingTime = millis();
  4082. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4083. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4084. SilentModeMenu = SILENT_MODE_OFF;
  4085. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4086. break;
  4087. case 99: // G99 (deactivate farm mode)
  4088. farm_mode = 0;
  4089. lcd_printer_connected();
  4090. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4091. lcd_update(2);
  4092. break;
  4093. default:
  4094. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4095. }
  4096. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4097. gcode_in_progress = 0;
  4098. } // end if(code_seen('G'))
  4099. else if(code_seen('M'))
  4100. {
  4101. int index;
  4102. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4103. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4104. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4105. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4106. } else
  4107. {
  4108. mcode_in_progress = (int)code_value();
  4109. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4110. switch(mcode_in_progress)
  4111. {
  4112. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4113. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4114. {
  4115. char *src = strchr_pointer + 2;
  4116. codenum = 0;
  4117. bool hasP = false, hasS = false;
  4118. if (code_seen('P')) {
  4119. codenum = code_value(); // milliseconds to wait
  4120. hasP = codenum > 0;
  4121. }
  4122. if (code_seen('S')) {
  4123. codenum = code_value() * 1000; // seconds to wait
  4124. hasS = codenum > 0;
  4125. }
  4126. starpos = strchr(src, '*');
  4127. if (starpos != NULL) *(starpos) = '\0';
  4128. while (*src == ' ') ++src;
  4129. if (!hasP && !hasS && *src != '\0') {
  4130. lcd_setstatus(src);
  4131. } else {
  4132. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4133. }
  4134. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4135. st_synchronize();
  4136. previous_millis_cmd = millis();
  4137. if (codenum > 0){
  4138. codenum += millis(); // keep track of when we started waiting
  4139. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4140. while(millis() < codenum && !lcd_clicked()){
  4141. manage_heater();
  4142. manage_inactivity(true);
  4143. lcd_update(0);
  4144. }
  4145. KEEPALIVE_STATE(IN_HANDLER);
  4146. lcd_ignore_click(false);
  4147. }else{
  4148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4149. while(!lcd_clicked()){
  4150. manage_heater();
  4151. manage_inactivity(true);
  4152. lcd_update(0);
  4153. }
  4154. KEEPALIVE_STATE(IN_HANDLER);
  4155. }
  4156. if (IS_SD_PRINTING)
  4157. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4158. else
  4159. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4160. }
  4161. break;
  4162. case 17:
  4163. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4164. enable_x();
  4165. enable_y();
  4166. enable_z();
  4167. enable_e0();
  4168. enable_e1();
  4169. enable_e2();
  4170. break;
  4171. #ifdef SDSUPPORT
  4172. case 20: // M20 - list SD card
  4173. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4174. card.ls();
  4175. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4176. break;
  4177. case 21: // M21 - init SD card
  4178. card.initsd();
  4179. break;
  4180. case 22: //M22 - release SD card
  4181. card.release();
  4182. break;
  4183. case 23: //M23 - Select file
  4184. starpos = (strchr(strchr_pointer + 4,'*'));
  4185. if(starpos!=NULL)
  4186. *(starpos)='\0';
  4187. card.openFile(strchr_pointer + 4,true);
  4188. break;
  4189. case 24: //M24 - Start SD print
  4190. if (!card.paused)
  4191. failstats_reset_print();
  4192. card.startFileprint();
  4193. starttime=millis();
  4194. break;
  4195. case 25: //M25 - Pause SD print
  4196. card.pauseSDPrint();
  4197. break;
  4198. case 26: //M26 - Set SD index
  4199. if(card.cardOK && code_seen('S')) {
  4200. card.setIndex(code_value_long());
  4201. }
  4202. break;
  4203. case 27: //M27 - Get SD status
  4204. card.getStatus();
  4205. break;
  4206. case 28: //M28 - Start SD write
  4207. starpos = (strchr(strchr_pointer + 4,'*'));
  4208. if(starpos != NULL){
  4209. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4210. strchr_pointer = strchr(npos,' ') + 1;
  4211. *(starpos) = '\0';
  4212. }
  4213. card.openFile(strchr_pointer+4,false);
  4214. break;
  4215. case 29: //M29 - Stop SD write
  4216. //processed in write to file routine above
  4217. //card,saving = false;
  4218. break;
  4219. case 30: //M30 <filename> Delete File
  4220. if (card.cardOK){
  4221. card.closefile();
  4222. starpos = (strchr(strchr_pointer + 4,'*'));
  4223. if(starpos != NULL){
  4224. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4225. strchr_pointer = strchr(npos,' ') + 1;
  4226. *(starpos) = '\0';
  4227. }
  4228. card.removeFile(strchr_pointer + 4);
  4229. }
  4230. break;
  4231. case 32: //M32 - Select file and start SD print
  4232. {
  4233. if(card.sdprinting) {
  4234. st_synchronize();
  4235. }
  4236. starpos = (strchr(strchr_pointer + 4,'*'));
  4237. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4238. if(namestartpos==NULL)
  4239. {
  4240. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4241. }
  4242. else
  4243. namestartpos++; //to skip the '!'
  4244. if(starpos!=NULL)
  4245. *(starpos)='\0';
  4246. bool call_procedure=(code_seen('P'));
  4247. if(strchr_pointer>namestartpos)
  4248. call_procedure=false; //false alert, 'P' found within filename
  4249. if( card.cardOK )
  4250. {
  4251. card.openFile(namestartpos,true,!call_procedure);
  4252. if(code_seen('S'))
  4253. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4254. card.setIndex(code_value_long());
  4255. card.startFileprint();
  4256. if(!call_procedure)
  4257. starttime=millis(); //procedure calls count as normal print time.
  4258. }
  4259. } break;
  4260. case 928: //M928 - Start SD write
  4261. starpos = (strchr(strchr_pointer + 5,'*'));
  4262. if(starpos != NULL){
  4263. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4264. strchr_pointer = strchr(npos,' ') + 1;
  4265. *(starpos) = '\0';
  4266. }
  4267. card.openLogFile(strchr_pointer+5);
  4268. break;
  4269. #endif //SDSUPPORT
  4270. case 31: //M31 take time since the start of the SD print or an M109 command
  4271. {
  4272. stoptime=millis();
  4273. char time[30];
  4274. unsigned long t=(stoptime-starttime)/1000;
  4275. int sec,min;
  4276. min=t/60;
  4277. sec=t%60;
  4278. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4279. SERIAL_ECHO_START;
  4280. SERIAL_ECHOLN(time);
  4281. lcd_setstatus(time);
  4282. autotempShutdown();
  4283. }
  4284. break;
  4285. case 42: //M42 -Change pin status via gcode
  4286. if (code_seen('S'))
  4287. {
  4288. int pin_status = code_value();
  4289. int pin_number = LED_PIN;
  4290. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4291. pin_number = code_value();
  4292. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4293. {
  4294. if (sensitive_pins[i] == pin_number)
  4295. {
  4296. pin_number = -1;
  4297. break;
  4298. }
  4299. }
  4300. #if defined(FAN_PIN) && FAN_PIN > -1
  4301. if (pin_number == FAN_PIN)
  4302. fanSpeed = pin_status;
  4303. #endif
  4304. if (pin_number > -1)
  4305. {
  4306. pinMode(pin_number, OUTPUT);
  4307. digitalWrite(pin_number, pin_status);
  4308. analogWrite(pin_number, pin_status);
  4309. }
  4310. }
  4311. break;
  4312. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4313. // Reset the baby step value and the baby step applied flag.
  4314. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4315. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4316. // Reset the skew and offset in both RAM and EEPROM.
  4317. reset_bed_offset_and_skew();
  4318. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4319. // the planner will not perform any adjustments in the XY plane.
  4320. // Wait for the motors to stop and update the current position with the absolute values.
  4321. world2machine_revert_to_uncorrected();
  4322. break;
  4323. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4324. {
  4325. int8_t verbosity_level = 0;
  4326. bool only_Z = code_seen('Z');
  4327. #ifdef SUPPORT_VERBOSITY
  4328. if (code_seen('V'))
  4329. {
  4330. // Just 'V' without a number counts as V1.
  4331. char c = strchr_pointer[1];
  4332. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4333. }
  4334. #endif //SUPPORT_VERBOSITY
  4335. gcode_M45(only_Z, verbosity_level);
  4336. }
  4337. break;
  4338. /*
  4339. case 46:
  4340. {
  4341. // M46: Prusa3D: Show the assigned IP address.
  4342. uint8_t ip[4];
  4343. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4344. if (hasIP) {
  4345. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4346. SERIAL_ECHO(int(ip[0]));
  4347. SERIAL_ECHOPGM(".");
  4348. SERIAL_ECHO(int(ip[1]));
  4349. SERIAL_ECHOPGM(".");
  4350. SERIAL_ECHO(int(ip[2]));
  4351. SERIAL_ECHOPGM(".");
  4352. SERIAL_ECHO(int(ip[3]));
  4353. SERIAL_ECHOLNPGM("");
  4354. } else {
  4355. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4356. }
  4357. break;
  4358. }
  4359. */
  4360. case 47:
  4361. // M47: Prusa3D: Show end stops dialog on the display.
  4362. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4363. lcd_diag_show_end_stops();
  4364. KEEPALIVE_STATE(IN_HANDLER);
  4365. break;
  4366. #if 0
  4367. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4368. {
  4369. // Disable the default update procedure of the display. We will do a modal dialog.
  4370. lcd_update_enable(false);
  4371. // Let the planner use the uncorrected coordinates.
  4372. mbl.reset();
  4373. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4374. // the planner will not perform any adjustments in the XY plane.
  4375. // Wait for the motors to stop and update the current position with the absolute values.
  4376. world2machine_revert_to_uncorrected();
  4377. // Move the print head close to the bed.
  4378. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4380. st_synchronize();
  4381. // Home in the XY plane.
  4382. set_destination_to_current();
  4383. setup_for_endstop_move();
  4384. home_xy();
  4385. int8_t verbosity_level = 0;
  4386. if (code_seen('V')) {
  4387. // Just 'V' without a number counts as V1.
  4388. char c = strchr_pointer[1];
  4389. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4390. }
  4391. bool success = scan_bed_induction_points(verbosity_level);
  4392. clean_up_after_endstop_move();
  4393. // Print head up.
  4394. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4396. st_synchronize();
  4397. lcd_update_enable(true);
  4398. break;
  4399. }
  4400. #endif
  4401. // M48 Z-Probe repeatability measurement function.
  4402. //
  4403. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4404. //
  4405. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4406. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4407. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4408. // regenerated.
  4409. //
  4410. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4411. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4412. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4413. //
  4414. #ifdef ENABLE_AUTO_BED_LEVELING
  4415. #ifdef Z_PROBE_REPEATABILITY_TEST
  4416. case 48: // M48 Z-Probe repeatability
  4417. {
  4418. #if Z_MIN_PIN == -1
  4419. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4420. #endif
  4421. double sum=0.0;
  4422. double mean=0.0;
  4423. double sigma=0.0;
  4424. double sample_set[50];
  4425. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4426. double X_current, Y_current, Z_current;
  4427. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4428. if (code_seen('V') || code_seen('v')) {
  4429. verbose_level = code_value();
  4430. if (verbose_level<0 || verbose_level>4 ) {
  4431. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4432. goto Sigma_Exit;
  4433. }
  4434. }
  4435. if (verbose_level > 0) {
  4436. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4437. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4438. }
  4439. if (code_seen('n')) {
  4440. n_samples = code_value();
  4441. if (n_samples<4 || n_samples>50 ) {
  4442. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4443. goto Sigma_Exit;
  4444. }
  4445. }
  4446. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4447. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4448. Z_current = st_get_position_mm(Z_AXIS);
  4449. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4450. ext_position = st_get_position_mm(E_AXIS);
  4451. if (code_seen('X') || code_seen('x') ) {
  4452. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4453. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4454. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4455. goto Sigma_Exit;
  4456. }
  4457. }
  4458. if (code_seen('Y') || code_seen('y') ) {
  4459. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4460. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4461. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4462. goto Sigma_Exit;
  4463. }
  4464. }
  4465. if (code_seen('L') || code_seen('l') ) {
  4466. n_legs = code_value();
  4467. if ( n_legs==1 )
  4468. n_legs = 2;
  4469. if ( n_legs<0 || n_legs>15 ) {
  4470. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4471. goto Sigma_Exit;
  4472. }
  4473. }
  4474. //
  4475. // Do all the preliminary setup work. First raise the probe.
  4476. //
  4477. st_synchronize();
  4478. plan_bed_level_matrix.set_to_identity();
  4479. plan_buffer_line( X_current, Y_current, Z_start_location,
  4480. ext_position,
  4481. homing_feedrate[Z_AXIS]/60,
  4482. active_extruder);
  4483. st_synchronize();
  4484. //
  4485. // Now get everything to the specified probe point So we can safely do a probe to
  4486. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4487. // use that as a starting point for each probe.
  4488. //
  4489. if (verbose_level > 2)
  4490. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4491. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4492. ext_position,
  4493. homing_feedrate[X_AXIS]/60,
  4494. active_extruder);
  4495. st_synchronize();
  4496. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4497. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4498. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4499. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4500. //
  4501. // OK, do the inital probe to get us close to the bed.
  4502. // Then retrace the right amount and use that in subsequent probes
  4503. //
  4504. setup_for_endstop_move();
  4505. run_z_probe();
  4506. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4507. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4508. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4509. ext_position,
  4510. homing_feedrate[X_AXIS]/60,
  4511. active_extruder);
  4512. st_synchronize();
  4513. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4514. for( n=0; n<n_samples; n++) {
  4515. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4516. if ( n_legs) {
  4517. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4518. int rotational_direction, l;
  4519. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4520. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4521. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4522. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4523. //SERIAL_ECHOPAIR(" theta: ",theta);
  4524. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4525. //SERIAL_PROTOCOLLNPGM("");
  4526. for( l=0; l<n_legs-1; l++) {
  4527. if (rotational_direction==1)
  4528. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4529. else
  4530. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4531. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4532. if ( radius<0.0 )
  4533. radius = -radius;
  4534. X_current = X_probe_location + cos(theta) * radius;
  4535. Y_current = Y_probe_location + sin(theta) * radius;
  4536. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4537. X_current = X_MIN_POS;
  4538. if ( X_current>X_MAX_POS)
  4539. X_current = X_MAX_POS;
  4540. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4541. Y_current = Y_MIN_POS;
  4542. if ( Y_current>Y_MAX_POS)
  4543. Y_current = Y_MAX_POS;
  4544. if (verbose_level>3 ) {
  4545. SERIAL_ECHOPAIR("x: ", X_current);
  4546. SERIAL_ECHOPAIR("y: ", Y_current);
  4547. SERIAL_PROTOCOLLNPGM("");
  4548. }
  4549. do_blocking_move_to( X_current, Y_current, Z_current );
  4550. }
  4551. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4552. }
  4553. setup_for_endstop_move();
  4554. run_z_probe();
  4555. sample_set[n] = current_position[Z_AXIS];
  4556. //
  4557. // Get the current mean for the data points we have so far
  4558. //
  4559. sum=0.0;
  4560. for( j=0; j<=n; j++) {
  4561. sum = sum + sample_set[j];
  4562. }
  4563. mean = sum / (double (n+1));
  4564. //
  4565. // Now, use that mean to calculate the standard deviation for the
  4566. // data points we have so far
  4567. //
  4568. sum=0.0;
  4569. for( j=0; j<=n; j++) {
  4570. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4571. }
  4572. sigma = sqrt( sum / (double (n+1)) );
  4573. if (verbose_level > 1) {
  4574. SERIAL_PROTOCOL(n+1);
  4575. SERIAL_PROTOCOL(" of ");
  4576. SERIAL_PROTOCOL(n_samples);
  4577. SERIAL_PROTOCOLPGM(" z: ");
  4578. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4579. }
  4580. if (verbose_level > 2) {
  4581. SERIAL_PROTOCOL(" mean: ");
  4582. SERIAL_PROTOCOL_F(mean,6);
  4583. SERIAL_PROTOCOL(" sigma: ");
  4584. SERIAL_PROTOCOL_F(sigma,6);
  4585. }
  4586. if (verbose_level > 0)
  4587. SERIAL_PROTOCOLPGM("\n");
  4588. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4589. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4590. st_synchronize();
  4591. }
  4592. delay(1000);
  4593. clean_up_after_endstop_move();
  4594. // enable_endstops(true);
  4595. if (verbose_level > 0) {
  4596. SERIAL_PROTOCOLPGM("Mean: ");
  4597. SERIAL_PROTOCOL_F(mean, 6);
  4598. SERIAL_PROTOCOLPGM("\n");
  4599. }
  4600. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4601. SERIAL_PROTOCOL_F(sigma, 6);
  4602. SERIAL_PROTOCOLPGM("\n\n");
  4603. Sigma_Exit:
  4604. break;
  4605. }
  4606. #endif // Z_PROBE_REPEATABILITY_TEST
  4607. #endif // ENABLE_AUTO_BED_LEVELING
  4608. case 73: //M73 show percent done and time remaining
  4609. if(code_seen('P')) print_percent_done_normal = code_value();
  4610. if(code_seen('R')) print_time_remaining_normal = code_value();
  4611. if(code_seen('Q')) print_percent_done_silent = code_value();
  4612. if(code_seen('S')) print_time_remaining_silent = code_value();
  4613. {
  4614. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4615. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4616. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4617. }
  4618. break;
  4619. case 104: // M104
  4620. if(setTargetedHotend(104)){
  4621. break;
  4622. }
  4623. if (code_seen('S'))
  4624. {
  4625. setTargetHotendSafe(code_value(), tmp_extruder);
  4626. }
  4627. setWatch();
  4628. break;
  4629. case 112: // M112 -Emergency Stop
  4630. kill(_n(""), 3);
  4631. break;
  4632. case 140: // M140 set bed temp
  4633. if (code_seen('S')) setTargetBed(code_value());
  4634. break;
  4635. case 105 : // M105
  4636. if(setTargetedHotend(105)){
  4637. break;
  4638. }
  4639. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4640. SERIAL_PROTOCOLPGM("ok T:");
  4641. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4642. SERIAL_PROTOCOLPGM(" /");
  4643. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4644. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4645. SERIAL_PROTOCOLPGM(" B:");
  4646. SERIAL_PROTOCOL_F(degBed(),1);
  4647. SERIAL_PROTOCOLPGM(" /");
  4648. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4649. #endif //TEMP_BED_PIN
  4650. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4651. SERIAL_PROTOCOLPGM(" T");
  4652. SERIAL_PROTOCOL(cur_extruder);
  4653. SERIAL_PROTOCOLPGM(":");
  4654. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4655. SERIAL_PROTOCOLPGM(" /");
  4656. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4657. }
  4658. #else
  4659. SERIAL_ERROR_START;
  4660. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4661. #endif
  4662. SERIAL_PROTOCOLPGM(" @:");
  4663. #ifdef EXTRUDER_WATTS
  4664. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4665. SERIAL_PROTOCOLPGM("W");
  4666. #else
  4667. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4668. #endif
  4669. SERIAL_PROTOCOLPGM(" B@:");
  4670. #ifdef BED_WATTS
  4671. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4672. SERIAL_PROTOCOLPGM("W");
  4673. #else
  4674. SERIAL_PROTOCOL(getHeaterPower(-1));
  4675. #endif
  4676. #ifdef PINDA_THERMISTOR
  4677. SERIAL_PROTOCOLPGM(" P:");
  4678. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4679. #endif //PINDA_THERMISTOR
  4680. #ifdef AMBIENT_THERMISTOR
  4681. SERIAL_PROTOCOLPGM(" A:");
  4682. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4683. #endif //AMBIENT_THERMISTOR
  4684. #ifdef SHOW_TEMP_ADC_VALUES
  4685. {float raw = 0.0;
  4686. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4687. SERIAL_PROTOCOLPGM(" ADC B:");
  4688. SERIAL_PROTOCOL_F(degBed(),1);
  4689. SERIAL_PROTOCOLPGM("C->");
  4690. raw = rawBedTemp();
  4691. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4692. SERIAL_PROTOCOLPGM(" Rb->");
  4693. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4694. SERIAL_PROTOCOLPGM(" Rxb->");
  4695. SERIAL_PROTOCOL_F(raw, 5);
  4696. #endif
  4697. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4698. SERIAL_PROTOCOLPGM(" T");
  4699. SERIAL_PROTOCOL(cur_extruder);
  4700. SERIAL_PROTOCOLPGM(":");
  4701. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4702. SERIAL_PROTOCOLPGM("C->");
  4703. raw = rawHotendTemp(cur_extruder);
  4704. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4705. SERIAL_PROTOCOLPGM(" Rt");
  4706. SERIAL_PROTOCOL(cur_extruder);
  4707. SERIAL_PROTOCOLPGM("->");
  4708. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4709. SERIAL_PROTOCOLPGM(" Rx");
  4710. SERIAL_PROTOCOL(cur_extruder);
  4711. SERIAL_PROTOCOLPGM("->");
  4712. SERIAL_PROTOCOL_F(raw, 5);
  4713. }}
  4714. #endif
  4715. SERIAL_PROTOCOLLN("");
  4716. KEEPALIVE_STATE(NOT_BUSY);
  4717. return;
  4718. break;
  4719. case 109:
  4720. {// M109 - Wait for extruder heater to reach target.
  4721. if(setTargetedHotend(109)){
  4722. break;
  4723. }
  4724. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4725. heating_status = 1;
  4726. if (farm_mode) { prusa_statistics(1); };
  4727. #ifdef AUTOTEMP
  4728. autotemp_enabled=false;
  4729. #endif
  4730. if (code_seen('S')) {
  4731. setTargetHotendSafe(code_value(), tmp_extruder);
  4732. CooldownNoWait = true;
  4733. } else if (code_seen('R')) {
  4734. setTargetHotendSafe(code_value(), tmp_extruder);
  4735. CooldownNoWait = false;
  4736. }
  4737. #ifdef AUTOTEMP
  4738. if (code_seen('S')) autotemp_min=code_value();
  4739. if (code_seen('B')) autotemp_max=code_value();
  4740. if (code_seen('F'))
  4741. {
  4742. autotemp_factor=code_value();
  4743. autotemp_enabled=true;
  4744. }
  4745. #endif
  4746. setWatch();
  4747. codenum = millis();
  4748. /* See if we are heating up or cooling down */
  4749. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4750. KEEPALIVE_STATE(NOT_BUSY);
  4751. cancel_heatup = false;
  4752. wait_for_heater(codenum); //loops until target temperature is reached
  4753. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4754. KEEPALIVE_STATE(IN_HANDLER);
  4755. heating_status = 2;
  4756. if (farm_mode) { prusa_statistics(2); };
  4757. //starttime=millis();
  4758. previous_millis_cmd = millis();
  4759. }
  4760. break;
  4761. case 190: // M190 - Wait for bed heater to reach target.
  4762. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4763. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4764. heating_status = 3;
  4765. if (farm_mode) { prusa_statistics(1); };
  4766. if (code_seen('S'))
  4767. {
  4768. setTargetBed(code_value());
  4769. CooldownNoWait = true;
  4770. }
  4771. else if (code_seen('R'))
  4772. {
  4773. setTargetBed(code_value());
  4774. CooldownNoWait = false;
  4775. }
  4776. codenum = millis();
  4777. cancel_heatup = false;
  4778. target_direction = isHeatingBed(); // true if heating, false if cooling
  4779. KEEPALIVE_STATE(NOT_BUSY);
  4780. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4781. {
  4782. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4783. {
  4784. if (!farm_mode) {
  4785. float tt = degHotend(active_extruder);
  4786. SERIAL_PROTOCOLPGM("T:");
  4787. SERIAL_PROTOCOL(tt);
  4788. SERIAL_PROTOCOLPGM(" E:");
  4789. SERIAL_PROTOCOL((int)active_extruder);
  4790. SERIAL_PROTOCOLPGM(" B:");
  4791. SERIAL_PROTOCOL_F(degBed(), 1);
  4792. SERIAL_PROTOCOLLN("");
  4793. }
  4794. codenum = millis();
  4795. }
  4796. manage_heater();
  4797. manage_inactivity();
  4798. lcd_update(0);
  4799. }
  4800. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4801. KEEPALIVE_STATE(IN_HANDLER);
  4802. heating_status = 4;
  4803. previous_millis_cmd = millis();
  4804. #endif
  4805. break;
  4806. #if defined(FAN_PIN) && FAN_PIN > -1
  4807. case 106: //M106 Fan On
  4808. if (code_seen('S')){
  4809. fanSpeed=constrain(code_value(),0,255);
  4810. }
  4811. else {
  4812. fanSpeed=255;
  4813. }
  4814. break;
  4815. case 107: //M107 Fan Off
  4816. fanSpeed = 0;
  4817. break;
  4818. #endif //FAN_PIN
  4819. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4820. case 80: // M80 - Turn on Power Supply
  4821. SET_OUTPUT(PS_ON_PIN); //GND
  4822. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4823. // If you have a switch on suicide pin, this is useful
  4824. // if you want to start another print with suicide feature after
  4825. // a print without suicide...
  4826. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4827. SET_OUTPUT(SUICIDE_PIN);
  4828. WRITE(SUICIDE_PIN, HIGH);
  4829. #endif
  4830. powersupply = true;
  4831. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4832. lcd_update(0);
  4833. break;
  4834. #endif
  4835. case 81: // M81 - Turn off Power Supply
  4836. disable_heater();
  4837. st_synchronize();
  4838. disable_e0();
  4839. disable_e1();
  4840. disable_e2();
  4841. finishAndDisableSteppers();
  4842. fanSpeed = 0;
  4843. delay(1000); // Wait a little before to switch off
  4844. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4845. st_synchronize();
  4846. suicide();
  4847. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4848. SET_OUTPUT(PS_ON_PIN);
  4849. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4850. #endif
  4851. powersupply = false;
  4852. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4853. lcd_update(0);
  4854. break;
  4855. case 82:
  4856. axis_relative_modes[3] = false;
  4857. break;
  4858. case 83:
  4859. axis_relative_modes[3] = true;
  4860. break;
  4861. case 18: //compatibility
  4862. case 84: // M84
  4863. if(code_seen('S')){
  4864. stepper_inactive_time = code_value() * 1000;
  4865. }
  4866. else
  4867. {
  4868. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4869. if(all_axis)
  4870. {
  4871. st_synchronize();
  4872. disable_e0();
  4873. disable_e1();
  4874. disable_e2();
  4875. finishAndDisableSteppers();
  4876. }
  4877. else
  4878. {
  4879. st_synchronize();
  4880. if (code_seen('X')) disable_x();
  4881. if (code_seen('Y')) disable_y();
  4882. if (code_seen('Z')) disable_z();
  4883. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4884. if (code_seen('E')) {
  4885. disable_e0();
  4886. disable_e1();
  4887. disable_e2();
  4888. }
  4889. #endif
  4890. }
  4891. }
  4892. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4893. print_time_remaining_init();
  4894. snmm_filaments_used = 0;
  4895. break;
  4896. case 85: // M85
  4897. if(code_seen('S')) {
  4898. max_inactive_time = code_value() * 1000;
  4899. }
  4900. break;
  4901. #ifdef SAFETYTIMER
  4902. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4903. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4904. if (code_seen('S')) {
  4905. safetytimer_inactive_time = code_value() * 1000;
  4906. safetyTimer.start();
  4907. }
  4908. break;
  4909. #endif
  4910. case 92: // M92
  4911. for(int8_t i=0; i < NUM_AXIS; i++)
  4912. {
  4913. if(code_seen(axis_codes[i]))
  4914. {
  4915. if(i == 3) { // E
  4916. float value = code_value();
  4917. if(value < 20.0) {
  4918. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4919. max_jerk[E_AXIS] *= factor;
  4920. max_feedrate[i] *= factor;
  4921. axis_steps_per_sqr_second[i] *= factor;
  4922. }
  4923. axis_steps_per_unit[i] = value;
  4924. }
  4925. else {
  4926. axis_steps_per_unit[i] = code_value();
  4927. }
  4928. }
  4929. }
  4930. break;
  4931. case 110: // M110 - reset line pos
  4932. if (code_seen('N'))
  4933. gcode_LastN = code_value_long();
  4934. break;
  4935. #ifdef HOST_KEEPALIVE_FEATURE
  4936. case 113: // M113 - Get or set Host Keepalive interval
  4937. if (code_seen('S')) {
  4938. host_keepalive_interval = (uint8_t)code_value_short();
  4939. // NOMORE(host_keepalive_interval, 60);
  4940. }
  4941. else {
  4942. SERIAL_ECHO_START;
  4943. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4944. SERIAL_PROTOCOLLN("");
  4945. }
  4946. break;
  4947. #endif
  4948. case 115: // M115
  4949. if (code_seen('V')) {
  4950. // Report the Prusa version number.
  4951. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4952. } else if (code_seen('U')) {
  4953. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4954. // pause the print and ask the user to upgrade the firmware.
  4955. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4956. } else {
  4957. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4958. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4959. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4960. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4961. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4962. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4963. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4964. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4965. SERIAL_ECHOPGM(" UUID:");
  4966. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4967. }
  4968. break;
  4969. /* case 117: // M117 display message
  4970. starpos = (strchr(strchr_pointer + 5,'*'));
  4971. if(starpos!=NULL)
  4972. *(starpos)='\0';
  4973. lcd_setstatus(strchr_pointer + 5);
  4974. break;*/
  4975. case 114: // M114
  4976. gcode_M114();
  4977. break;
  4978. case 120: // M120
  4979. enable_endstops(false) ;
  4980. break;
  4981. case 121: // M121
  4982. enable_endstops(true) ;
  4983. break;
  4984. case 119: // M119
  4985. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4986. SERIAL_PROTOCOLLN("");
  4987. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4988. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4989. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4990. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4991. }else{
  4992. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4993. }
  4994. SERIAL_PROTOCOLLN("");
  4995. #endif
  4996. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4997. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4998. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4999. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5000. }else{
  5001. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5002. }
  5003. SERIAL_PROTOCOLLN("");
  5004. #endif
  5005. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5006. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5007. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5008. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5009. }else{
  5010. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5011. }
  5012. SERIAL_PROTOCOLLN("");
  5013. #endif
  5014. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5015. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5016. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5017. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5018. }else{
  5019. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5020. }
  5021. SERIAL_PROTOCOLLN("");
  5022. #endif
  5023. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5024. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5025. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5026. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5027. }else{
  5028. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5029. }
  5030. SERIAL_PROTOCOLLN("");
  5031. #endif
  5032. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5033. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5034. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5035. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5036. }else{
  5037. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5038. }
  5039. SERIAL_PROTOCOLLN("");
  5040. #endif
  5041. break;
  5042. //TODO: update for all axis, use for loop
  5043. #ifdef BLINKM
  5044. case 150: // M150
  5045. {
  5046. byte red;
  5047. byte grn;
  5048. byte blu;
  5049. if(code_seen('R')) red = code_value();
  5050. if(code_seen('U')) grn = code_value();
  5051. if(code_seen('B')) blu = code_value();
  5052. SendColors(red,grn,blu);
  5053. }
  5054. break;
  5055. #endif //BLINKM
  5056. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5057. {
  5058. tmp_extruder = active_extruder;
  5059. if(code_seen('T')) {
  5060. tmp_extruder = code_value();
  5061. if(tmp_extruder >= EXTRUDERS) {
  5062. SERIAL_ECHO_START;
  5063. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5064. break;
  5065. }
  5066. }
  5067. if(code_seen('D')) {
  5068. float diameter = (float)code_value();
  5069. if (diameter == 0.0) {
  5070. // setting any extruder filament size disables volumetric on the assumption that
  5071. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5072. // for all extruders
  5073. volumetric_enabled = false;
  5074. } else {
  5075. filament_size[tmp_extruder] = (float)code_value();
  5076. // make sure all extruders have some sane value for the filament size
  5077. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5078. #if EXTRUDERS > 1
  5079. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5080. #if EXTRUDERS > 2
  5081. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5082. #endif
  5083. #endif
  5084. volumetric_enabled = true;
  5085. }
  5086. } else {
  5087. //reserved for setting filament diameter via UFID or filament measuring device
  5088. break;
  5089. }
  5090. calculate_extruder_multipliers();
  5091. }
  5092. break;
  5093. case 201: // M201
  5094. for (int8_t i = 0; i < NUM_AXIS; i++)
  5095. {
  5096. if (code_seen(axis_codes[i]))
  5097. {
  5098. unsigned long val = code_value();
  5099. #ifdef TMC2130
  5100. unsigned long val_silent = val;
  5101. if ((i == X_AXIS) || (i == Y_AXIS))
  5102. {
  5103. if (val > NORMAL_MAX_ACCEL_XY)
  5104. val = NORMAL_MAX_ACCEL_XY;
  5105. if (val_silent > SILENT_MAX_ACCEL_XY)
  5106. val_silent = SILENT_MAX_ACCEL_XY;
  5107. }
  5108. max_acceleration_units_per_sq_second_normal[i] = val;
  5109. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5110. #else //TMC2130
  5111. max_acceleration_units_per_sq_second[i] = val;
  5112. #endif //TMC2130
  5113. }
  5114. }
  5115. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5116. reset_acceleration_rates();
  5117. break;
  5118. #if 0 // Not used for Sprinter/grbl gen6
  5119. case 202: // M202
  5120. for(int8_t i=0; i < NUM_AXIS; i++) {
  5121. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5122. }
  5123. break;
  5124. #endif
  5125. case 203: // M203 max feedrate mm/sec
  5126. for (int8_t i = 0; i < NUM_AXIS; i++)
  5127. {
  5128. if (code_seen(axis_codes[i]))
  5129. {
  5130. float val = code_value();
  5131. #ifdef TMC2130
  5132. float val_silent = val;
  5133. if ((i == X_AXIS) || (i == Y_AXIS))
  5134. {
  5135. if (val > NORMAL_MAX_FEEDRATE_XY)
  5136. val = NORMAL_MAX_FEEDRATE_XY;
  5137. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5138. val_silent = SILENT_MAX_FEEDRATE_XY;
  5139. }
  5140. max_feedrate_normal[i] = val;
  5141. max_feedrate_silent[i] = val_silent;
  5142. #else //TMC2130
  5143. max_feedrate[i] = val;
  5144. #endif //TMC2130
  5145. }
  5146. }
  5147. break;
  5148. case 204: // M204 acclereration S normal moves T filmanent only moves
  5149. {
  5150. if(code_seen('S')) acceleration = code_value() ;
  5151. if(code_seen('T')) retract_acceleration = code_value() ;
  5152. }
  5153. break;
  5154. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5155. {
  5156. if(code_seen('S')) minimumfeedrate = code_value();
  5157. if(code_seen('T')) mintravelfeedrate = code_value();
  5158. if(code_seen('B')) minsegmenttime = code_value() ;
  5159. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5160. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5161. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5162. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5163. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5164. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5165. }
  5166. break;
  5167. case 206: // M206 additional homing offset
  5168. for(int8_t i=0; i < 3; i++)
  5169. {
  5170. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5171. }
  5172. break;
  5173. #ifdef FWRETRACT
  5174. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5175. {
  5176. if(code_seen('S'))
  5177. {
  5178. retract_length = code_value() ;
  5179. }
  5180. if(code_seen('F'))
  5181. {
  5182. retract_feedrate = code_value()/60 ;
  5183. }
  5184. if(code_seen('Z'))
  5185. {
  5186. retract_zlift = code_value() ;
  5187. }
  5188. }break;
  5189. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5190. {
  5191. if(code_seen('S'))
  5192. {
  5193. retract_recover_length = code_value() ;
  5194. }
  5195. if(code_seen('F'))
  5196. {
  5197. retract_recover_feedrate = code_value()/60 ;
  5198. }
  5199. }break;
  5200. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5201. {
  5202. if(code_seen('S'))
  5203. {
  5204. int t= code_value() ;
  5205. switch(t)
  5206. {
  5207. case 0:
  5208. {
  5209. autoretract_enabled=false;
  5210. retracted[0]=false;
  5211. #if EXTRUDERS > 1
  5212. retracted[1]=false;
  5213. #endif
  5214. #if EXTRUDERS > 2
  5215. retracted[2]=false;
  5216. #endif
  5217. }break;
  5218. case 1:
  5219. {
  5220. autoretract_enabled=true;
  5221. retracted[0]=false;
  5222. #if EXTRUDERS > 1
  5223. retracted[1]=false;
  5224. #endif
  5225. #if EXTRUDERS > 2
  5226. retracted[2]=false;
  5227. #endif
  5228. }break;
  5229. default:
  5230. SERIAL_ECHO_START;
  5231. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5232. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5233. SERIAL_ECHOLNPGM("\"(1)");
  5234. }
  5235. }
  5236. }break;
  5237. #endif // FWRETRACT
  5238. #if EXTRUDERS > 1
  5239. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5240. {
  5241. if(setTargetedHotend(218)){
  5242. break;
  5243. }
  5244. if(code_seen('X'))
  5245. {
  5246. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5247. }
  5248. if(code_seen('Y'))
  5249. {
  5250. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5251. }
  5252. SERIAL_ECHO_START;
  5253. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5254. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5255. {
  5256. SERIAL_ECHO(" ");
  5257. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5258. SERIAL_ECHO(",");
  5259. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5260. }
  5261. SERIAL_ECHOLN("");
  5262. }break;
  5263. #endif
  5264. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5265. {
  5266. if(code_seen('S'))
  5267. {
  5268. feedmultiply = code_value() ;
  5269. }
  5270. }
  5271. break;
  5272. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5273. {
  5274. if(code_seen('S'))
  5275. {
  5276. int tmp_code = code_value();
  5277. if (code_seen('T'))
  5278. {
  5279. if(setTargetedHotend(221)){
  5280. break;
  5281. }
  5282. extruder_multiply[tmp_extruder] = tmp_code;
  5283. }
  5284. else
  5285. {
  5286. extrudemultiply = tmp_code ;
  5287. }
  5288. }
  5289. calculate_extruder_multipliers();
  5290. }
  5291. break;
  5292. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5293. {
  5294. if(code_seen('P')){
  5295. int pin_number = code_value(); // pin number
  5296. int pin_state = -1; // required pin state - default is inverted
  5297. if(code_seen('S')) pin_state = code_value(); // required pin state
  5298. if(pin_state >= -1 && pin_state <= 1){
  5299. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5300. {
  5301. if (sensitive_pins[i] == pin_number)
  5302. {
  5303. pin_number = -1;
  5304. break;
  5305. }
  5306. }
  5307. if (pin_number > -1)
  5308. {
  5309. int target = LOW;
  5310. st_synchronize();
  5311. pinMode(pin_number, INPUT);
  5312. switch(pin_state){
  5313. case 1:
  5314. target = HIGH;
  5315. break;
  5316. case 0:
  5317. target = LOW;
  5318. break;
  5319. case -1:
  5320. target = !digitalRead(pin_number);
  5321. break;
  5322. }
  5323. while(digitalRead(pin_number) != target){
  5324. manage_heater();
  5325. manage_inactivity();
  5326. lcd_update(0);
  5327. }
  5328. }
  5329. }
  5330. }
  5331. }
  5332. break;
  5333. #if NUM_SERVOS > 0
  5334. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5335. {
  5336. int servo_index = -1;
  5337. int servo_position = 0;
  5338. if (code_seen('P'))
  5339. servo_index = code_value();
  5340. if (code_seen('S')) {
  5341. servo_position = code_value();
  5342. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5343. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5344. servos[servo_index].attach(0);
  5345. #endif
  5346. servos[servo_index].write(servo_position);
  5347. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5348. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5349. servos[servo_index].detach();
  5350. #endif
  5351. }
  5352. else {
  5353. SERIAL_ECHO_START;
  5354. SERIAL_ECHO("Servo ");
  5355. SERIAL_ECHO(servo_index);
  5356. SERIAL_ECHOLN(" out of range");
  5357. }
  5358. }
  5359. else if (servo_index >= 0) {
  5360. SERIAL_PROTOCOL(_T(MSG_OK));
  5361. SERIAL_PROTOCOL(" Servo ");
  5362. SERIAL_PROTOCOL(servo_index);
  5363. SERIAL_PROTOCOL(": ");
  5364. SERIAL_PROTOCOL(servos[servo_index].read());
  5365. SERIAL_PROTOCOLLN("");
  5366. }
  5367. }
  5368. break;
  5369. #endif // NUM_SERVOS > 0
  5370. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5371. case 300: // M300
  5372. {
  5373. int beepS = code_seen('S') ? code_value() : 110;
  5374. int beepP = code_seen('P') ? code_value() : 1000;
  5375. if (beepS > 0)
  5376. {
  5377. #if BEEPER > 0
  5378. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5379. tone(BEEPER, beepS);
  5380. delay(beepP);
  5381. noTone(BEEPER);
  5382. #endif
  5383. }
  5384. else
  5385. {
  5386. delay(beepP);
  5387. }
  5388. }
  5389. break;
  5390. #endif // M300
  5391. #ifdef PIDTEMP
  5392. case 301: // M301
  5393. {
  5394. if(code_seen('P')) Kp = code_value();
  5395. if(code_seen('I')) Ki = scalePID_i(code_value());
  5396. if(code_seen('D')) Kd = scalePID_d(code_value());
  5397. #ifdef PID_ADD_EXTRUSION_RATE
  5398. if(code_seen('C')) Kc = code_value();
  5399. #endif
  5400. updatePID();
  5401. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5402. SERIAL_PROTOCOL(" p:");
  5403. SERIAL_PROTOCOL(Kp);
  5404. SERIAL_PROTOCOL(" i:");
  5405. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5406. SERIAL_PROTOCOL(" d:");
  5407. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5408. #ifdef PID_ADD_EXTRUSION_RATE
  5409. SERIAL_PROTOCOL(" c:");
  5410. //Kc does not have scaling applied above, or in resetting defaults
  5411. SERIAL_PROTOCOL(Kc);
  5412. #endif
  5413. SERIAL_PROTOCOLLN("");
  5414. }
  5415. break;
  5416. #endif //PIDTEMP
  5417. #ifdef PIDTEMPBED
  5418. case 304: // M304
  5419. {
  5420. if(code_seen('P')) bedKp = code_value();
  5421. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5422. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5423. updatePID();
  5424. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5425. SERIAL_PROTOCOL(" p:");
  5426. SERIAL_PROTOCOL(bedKp);
  5427. SERIAL_PROTOCOL(" i:");
  5428. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5429. SERIAL_PROTOCOL(" d:");
  5430. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5431. SERIAL_PROTOCOLLN("");
  5432. }
  5433. break;
  5434. #endif //PIDTEMP
  5435. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5436. {
  5437. #ifdef CHDK
  5438. SET_OUTPUT(CHDK);
  5439. WRITE(CHDK, HIGH);
  5440. chdkHigh = millis();
  5441. chdkActive = true;
  5442. #else
  5443. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5444. const uint8_t NUM_PULSES=16;
  5445. const float PULSE_LENGTH=0.01524;
  5446. for(int i=0; i < NUM_PULSES; i++) {
  5447. WRITE(PHOTOGRAPH_PIN, HIGH);
  5448. _delay_ms(PULSE_LENGTH);
  5449. WRITE(PHOTOGRAPH_PIN, LOW);
  5450. _delay_ms(PULSE_LENGTH);
  5451. }
  5452. delay(7.33);
  5453. for(int i=0; i < NUM_PULSES; i++) {
  5454. WRITE(PHOTOGRAPH_PIN, HIGH);
  5455. _delay_ms(PULSE_LENGTH);
  5456. WRITE(PHOTOGRAPH_PIN, LOW);
  5457. _delay_ms(PULSE_LENGTH);
  5458. }
  5459. #endif
  5460. #endif //chdk end if
  5461. }
  5462. break;
  5463. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5464. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5465. {
  5466. float temp = .0;
  5467. if (code_seen('S')) temp=code_value();
  5468. set_extrude_min_temp(temp);
  5469. }
  5470. break;
  5471. #endif
  5472. case 303: // M303 PID autotune
  5473. {
  5474. float temp = 150.0;
  5475. int e=0;
  5476. int c=5;
  5477. if (code_seen('E')) e=code_value();
  5478. if (e<0)
  5479. temp=70;
  5480. if (code_seen('S')) temp=code_value();
  5481. if (code_seen('C')) c=code_value();
  5482. PID_autotune(temp, e, c);
  5483. }
  5484. break;
  5485. case 400: // M400 finish all moves
  5486. {
  5487. st_synchronize();
  5488. }
  5489. break;
  5490. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5491. {
  5492. //currently three different materials are needed (default, flex and PVA)
  5493. //add storing this information for different load/unload profiles etc. in the future
  5494. //firmware does not wait for "ok" from mmu
  5495. uint8_t extruder;
  5496. uint8_t filament;
  5497. if(code_seen('E')) extruder = code_value();
  5498. if(code_seen('F')) filament = code_value();
  5499. printf_P(PSTR("Extruder: %d; "), extruder);
  5500. switch (filament) {
  5501. case FILAMENT_FLEX: printf_P(PSTR("Flex\n")); break;
  5502. case FILAMENT_PVA: printf_P(PSTR("PVA\n")); break;
  5503. default: printf_P(PSTR("Default\n")); break;
  5504. }
  5505. printf_P(PSTR("F%d%d\n"), extruder, filament);
  5506. fprintf_P(uart2io, PSTR("F%d%d\n"), extruder, filament);
  5507. }
  5508. break;
  5509. case 500: // M500 Store settings in EEPROM
  5510. {
  5511. Config_StoreSettings(EEPROM_OFFSET);
  5512. }
  5513. break;
  5514. case 501: // M501 Read settings from EEPROM
  5515. {
  5516. Config_RetrieveSettings(EEPROM_OFFSET);
  5517. }
  5518. break;
  5519. case 502: // M502 Revert to default settings
  5520. {
  5521. Config_ResetDefault();
  5522. }
  5523. break;
  5524. case 503: // M503 print settings currently in memory
  5525. {
  5526. Config_PrintSettings();
  5527. }
  5528. break;
  5529. case 509: //M509 Force language selection
  5530. {
  5531. lang_reset();
  5532. SERIAL_ECHO_START;
  5533. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5534. }
  5535. break;
  5536. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5537. case 540:
  5538. {
  5539. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5540. }
  5541. break;
  5542. #endif
  5543. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5544. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5545. {
  5546. float value;
  5547. if (code_seen('Z'))
  5548. {
  5549. value = code_value();
  5550. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5551. {
  5552. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5553. SERIAL_ECHO_START;
  5554. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5555. SERIAL_PROTOCOLLN("");
  5556. }
  5557. else
  5558. {
  5559. SERIAL_ECHO_START;
  5560. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5561. SERIAL_ECHORPGM(MSG_Z_MIN);
  5562. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5563. SERIAL_ECHORPGM(MSG_Z_MAX);
  5564. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5565. SERIAL_PROTOCOLLN("");
  5566. }
  5567. }
  5568. else
  5569. {
  5570. SERIAL_ECHO_START;
  5571. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5572. SERIAL_ECHO(-zprobe_zoffset);
  5573. SERIAL_PROTOCOLLN("");
  5574. }
  5575. break;
  5576. }
  5577. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5578. #ifdef FILAMENTCHANGEENABLE
  5579. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5580. {
  5581. st_synchronize();
  5582. float x_position = current_position[X_AXIS];
  5583. float y_position = current_position[Y_AXIS];
  5584. float z_shift = 0;
  5585. float e_shift_init = 0;
  5586. float e_shift_late = 0;
  5587. bool automatic = false;
  5588. //Retract extruder
  5589. if(code_seen('E'))
  5590. {
  5591. e_shift_init = code_value();
  5592. }
  5593. else
  5594. {
  5595. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5596. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5597. #endif
  5598. }
  5599. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5600. if (code_seen('L'))
  5601. {
  5602. e_shift_late = code_value();
  5603. }
  5604. else
  5605. {
  5606. #ifdef FILAMENTCHANGE_FINALRETRACT
  5607. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5608. #endif
  5609. }
  5610. //Lift Z
  5611. if(code_seen('Z'))
  5612. {
  5613. z_shift = code_value();
  5614. }
  5615. else
  5616. {
  5617. #ifdef FILAMENTCHANGE_ZADD
  5618. z_shift= FILAMENTCHANGE_ZADD ;
  5619. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5620. #endif
  5621. }
  5622. //Move XY to side
  5623. if(code_seen('X'))
  5624. {
  5625. x_position = code_value();
  5626. }
  5627. else
  5628. {
  5629. #ifdef FILAMENTCHANGE_XPOS
  5630. x_position = FILAMENTCHANGE_XPOS;
  5631. #endif
  5632. }
  5633. if(code_seen('Y'))
  5634. {
  5635. y_position = code_value();
  5636. }
  5637. else
  5638. {
  5639. #ifdef FILAMENTCHANGE_YPOS
  5640. y_position = FILAMENTCHANGE_YPOS ;
  5641. #endif
  5642. }
  5643. #ifdef SNMM_V2
  5644. if (code_seen("AUTO")) {
  5645. automatic = true;
  5646. }
  5647. #endif //SNMM_V2
  5648. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5649. }
  5650. break;
  5651. #endif //FILAMENTCHANGEENABLE
  5652. case 601: {
  5653. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5654. }
  5655. break;
  5656. case 602: {
  5657. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5658. }
  5659. break;
  5660. #ifdef PINDA_THERMISTOR
  5661. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5662. {
  5663. int set_target_pinda = 0;
  5664. if (code_seen('S')) {
  5665. set_target_pinda = code_value();
  5666. }
  5667. else {
  5668. break;
  5669. }
  5670. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5671. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5672. SERIAL_PROTOCOL(set_target_pinda);
  5673. SERIAL_PROTOCOLLN("");
  5674. codenum = millis();
  5675. cancel_heatup = false;
  5676. bool is_pinda_cooling = false;
  5677. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5678. is_pinda_cooling = true;
  5679. }
  5680. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5681. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5682. {
  5683. SERIAL_PROTOCOLPGM("P:");
  5684. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5685. SERIAL_PROTOCOLPGM("/");
  5686. SERIAL_PROTOCOL(set_target_pinda);
  5687. SERIAL_PROTOCOLLN("");
  5688. codenum = millis();
  5689. }
  5690. manage_heater();
  5691. manage_inactivity();
  5692. lcd_update(0);
  5693. }
  5694. LCD_MESSAGERPGM(_T(MSG_OK));
  5695. break;
  5696. }
  5697. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5698. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5699. uint8_t cal_status = calibration_status_pinda();
  5700. int16_t usteps = 0;
  5701. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5702. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5703. for (uint8_t i = 0; i < 6; i++)
  5704. {
  5705. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5706. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5707. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5708. SERIAL_PROTOCOLPGM(", ");
  5709. SERIAL_PROTOCOL(35 + (i * 5));
  5710. SERIAL_PROTOCOLPGM(", ");
  5711. SERIAL_PROTOCOL(usteps);
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(mm * 1000);
  5714. SERIAL_PROTOCOLLN("");
  5715. }
  5716. }
  5717. else if (code_seen('!')) { // ! - Set factory default values
  5718. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5719. int16_t z_shift = 8; //40C - 20um - 8usteps
  5720. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5721. z_shift = 24; //45C - 60um - 24usteps
  5722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5723. z_shift = 48; //50C - 120um - 48usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5725. z_shift = 80; //55C - 200um - 80usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5727. z_shift = 120; //60C - 300um - 120usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5729. SERIAL_PROTOCOLLN("factory restored");
  5730. }
  5731. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5732. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5733. int16_t z_shift = 0;
  5734. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5735. SERIAL_PROTOCOLLN("zerorized");
  5736. }
  5737. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5738. int16_t usteps = code_value();
  5739. if (code_seen('I')) {
  5740. byte index = code_value();
  5741. if ((index >= 0) && (index < 5)) {
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5743. SERIAL_PROTOCOLLN("OK");
  5744. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5745. for (uint8_t i = 0; i < 6; i++)
  5746. {
  5747. usteps = 0;
  5748. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5749. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5750. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5751. SERIAL_PROTOCOLPGM(", ");
  5752. SERIAL_PROTOCOL(35 + (i * 5));
  5753. SERIAL_PROTOCOLPGM(", ");
  5754. SERIAL_PROTOCOL(usteps);
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(mm * 1000);
  5757. SERIAL_PROTOCOLLN("");
  5758. }
  5759. }
  5760. }
  5761. }
  5762. else {
  5763. SERIAL_PROTOCOLPGM("no valid command");
  5764. }
  5765. break;
  5766. #endif //PINDA_THERMISTOR
  5767. #ifdef LIN_ADVANCE
  5768. case 900: // M900: Set LIN_ADVANCE options.
  5769. gcode_M900();
  5770. break;
  5771. #endif
  5772. case 907: // M907 Set digital trimpot motor current using axis codes.
  5773. {
  5774. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5775. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5776. if(code_seen('B')) st_current_set(4,code_value());
  5777. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5778. #endif
  5779. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5780. if(code_seen('X')) st_current_set(0, code_value());
  5781. #endif
  5782. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5783. if(code_seen('Z')) st_current_set(1, code_value());
  5784. #endif
  5785. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5786. if(code_seen('E')) st_current_set(2, code_value());
  5787. #endif
  5788. }
  5789. break;
  5790. case 908: // M908 Control digital trimpot directly.
  5791. {
  5792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5793. uint8_t channel,current;
  5794. if(code_seen('P')) channel=code_value();
  5795. if(code_seen('S')) current=code_value();
  5796. digitalPotWrite(channel, current);
  5797. #endif
  5798. }
  5799. break;
  5800. #ifdef TMC2130
  5801. case 910: // M910 TMC2130 init
  5802. {
  5803. tmc2130_init();
  5804. }
  5805. break;
  5806. case 911: // M911 Set TMC2130 holding currents
  5807. {
  5808. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5809. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5810. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5811. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5812. }
  5813. break;
  5814. case 912: // M912 Set TMC2130 running currents
  5815. {
  5816. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5817. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5818. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5819. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5820. }
  5821. break;
  5822. case 913: // M913 Print TMC2130 currents
  5823. {
  5824. tmc2130_print_currents();
  5825. }
  5826. break;
  5827. case 914: // M914 Set normal mode
  5828. {
  5829. tmc2130_mode = TMC2130_MODE_NORMAL;
  5830. update_mode_profile();
  5831. tmc2130_init();
  5832. }
  5833. break;
  5834. case 915: // M915 Set silent mode
  5835. {
  5836. tmc2130_mode = TMC2130_MODE_SILENT;
  5837. update_mode_profile();
  5838. tmc2130_init();
  5839. }
  5840. break;
  5841. case 916: // M916 Set sg_thrs
  5842. {
  5843. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5844. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5845. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5846. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5847. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5848. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5849. }
  5850. break;
  5851. case 917: // M917 Set TMC2130 pwm_ampl
  5852. {
  5853. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5854. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5855. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5856. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5857. }
  5858. break;
  5859. case 918: // M918 Set TMC2130 pwm_grad
  5860. {
  5861. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5865. }
  5866. break;
  5867. #endif //TMC2130
  5868. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5869. {
  5870. #ifdef TMC2130
  5871. if(code_seen('E'))
  5872. {
  5873. uint16_t res_new = code_value();
  5874. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5875. {
  5876. st_synchronize();
  5877. uint8_t axis = E_AXIS;
  5878. uint16_t res = tmc2130_get_res(axis);
  5879. tmc2130_set_res(axis, res_new);
  5880. if (res_new > res)
  5881. {
  5882. uint16_t fac = (res_new / res);
  5883. axis_steps_per_unit[axis] *= fac;
  5884. position[E_AXIS] *= fac;
  5885. }
  5886. else
  5887. {
  5888. uint16_t fac = (res / res_new);
  5889. axis_steps_per_unit[axis] /= fac;
  5890. position[E_AXIS] /= fac;
  5891. }
  5892. }
  5893. }
  5894. #else //TMC2130
  5895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5896. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5898. if(code_seen('B')) microstep_mode(4,code_value());
  5899. microstep_readings();
  5900. #endif
  5901. #endif //TMC2130
  5902. }
  5903. break;
  5904. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5905. {
  5906. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5907. if(code_seen('S')) switch((int)code_value())
  5908. {
  5909. case 1:
  5910. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5911. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5912. break;
  5913. case 2:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5915. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5916. break;
  5917. }
  5918. microstep_readings();
  5919. #endif
  5920. }
  5921. break;
  5922. case 701: //M701: load filament
  5923. {
  5924. #ifdef SNMM_V2
  5925. if (code_seen('E'))
  5926. {
  5927. snmm_extruder = code_value();
  5928. }
  5929. #endif
  5930. gcode_M701();
  5931. }
  5932. break;
  5933. case 702:
  5934. {
  5935. #if defined (SNMM) || defined (SNMM_V2)
  5936. if (code_seen('U')) {
  5937. extr_unload_used(); //unload all filaments which were used in current print
  5938. }
  5939. else if (code_seen('C')) {
  5940. extr_unload(); //unload just current filament
  5941. }
  5942. else {
  5943. extr_unload_all(); //unload all filaments
  5944. }
  5945. #else
  5946. unload_filament();
  5947. #endif
  5948. }
  5949. break;
  5950. case 999: // M999: Restart after being stopped
  5951. Stopped = false;
  5952. lcd_reset_alert_level();
  5953. gcode_LastN = Stopped_gcode_LastN;
  5954. FlushSerialRequestResend();
  5955. break;
  5956. default:
  5957. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5958. }
  5959. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5960. mcode_in_progress = 0;
  5961. }
  5962. } // end if(code_seen('M')) (end of M codes)
  5963. else if(code_seen('T'))
  5964. {
  5965. int index;
  5966. st_synchronize();
  5967. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5968. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5969. SERIAL_ECHOLNPGM("Invalid T code.");
  5970. }
  5971. else {
  5972. if (*(strchr_pointer + index) == '?') {
  5973. tmp_extruder = choose_extruder_menu();
  5974. }
  5975. else {
  5976. tmp_extruder = code_value();
  5977. }
  5978. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5979. #if defined (SNMM_V2)
  5980. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  5981. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  5982. manage_response();
  5983. snmm_extruder = tmp_extruder; //filament change is finished
  5984. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  5985. mmu_load_to_nozzle();
  5986. }
  5987. #elif defined(SNMM)
  5988. #ifdef LIN_ADVANCE
  5989. if (snmm_extruder != tmp_extruder)
  5990. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5991. #endif
  5992. snmm_extruder = tmp_extruder;
  5993. delay(100);
  5994. disable_e0();
  5995. disable_e1();
  5996. disable_e2();
  5997. pinMode(E_MUX0_PIN, OUTPUT);
  5998. pinMode(E_MUX1_PIN, OUTPUT);
  5999. delay(100);
  6000. SERIAL_ECHO_START;
  6001. SERIAL_ECHO("T:");
  6002. SERIAL_ECHOLN((int)tmp_extruder);
  6003. switch (tmp_extruder) {
  6004. case 1:
  6005. WRITE(E_MUX0_PIN, HIGH);
  6006. WRITE(E_MUX1_PIN, LOW);
  6007. break;
  6008. case 2:
  6009. WRITE(E_MUX0_PIN, LOW);
  6010. WRITE(E_MUX1_PIN, HIGH);
  6011. break;
  6012. case 3:
  6013. WRITE(E_MUX0_PIN, HIGH);
  6014. WRITE(E_MUX1_PIN, HIGH);
  6015. break;
  6016. default:
  6017. WRITE(E_MUX0_PIN, LOW);
  6018. WRITE(E_MUX1_PIN, LOW);
  6019. break;
  6020. }
  6021. delay(100);
  6022. #else //SNMM and SNMM_V2 undefined:
  6023. if (tmp_extruder >= EXTRUDERS) {
  6024. SERIAL_ECHO_START;
  6025. SERIAL_ECHOPGM("T");
  6026. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6027. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6028. }
  6029. else {
  6030. #if EXTRUDERS > 1
  6031. boolean make_move = false;
  6032. #endif
  6033. if (code_seen('F')) {
  6034. #if EXTRUDERS > 1
  6035. make_move = true;
  6036. #endif
  6037. next_feedrate = code_value();
  6038. if (next_feedrate > 0.0) {
  6039. feedrate = next_feedrate;
  6040. }
  6041. }
  6042. #if EXTRUDERS > 1
  6043. if (tmp_extruder != active_extruder) {
  6044. // Save current position to return to after applying extruder offset
  6045. memcpy(destination, current_position, sizeof(destination));
  6046. // Offset extruder (only by XY)
  6047. int i;
  6048. for (i = 0; i < 2; i++) {
  6049. current_position[i] = current_position[i] -
  6050. extruder_offset[i][active_extruder] +
  6051. extruder_offset[i][tmp_extruder];
  6052. }
  6053. // Set the new active extruder and position
  6054. active_extruder = tmp_extruder;
  6055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6056. // Move to the old position if 'F' was in the parameters
  6057. if (make_move && Stopped == false) {
  6058. prepare_move();
  6059. }
  6060. }
  6061. #endif
  6062. SERIAL_ECHO_START;
  6063. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6064. SERIAL_PROTOCOLLN((int)active_extruder);
  6065. }
  6066. #endif
  6067. }
  6068. } // end if(code_seen('T')) (end of T codes)
  6069. else if (code_seen('D')) // D codes (debug)
  6070. {
  6071. switch((int)code_value())
  6072. {
  6073. #ifdef DEBUG_DCODES
  6074. case -1: // D-1 - Endless loop
  6075. dcode__1(); break;
  6076. case 0: // D0 - Reset
  6077. dcode_0(); break;
  6078. case 1: // D1 - Clear EEPROM
  6079. dcode_1(); break;
  6080. case 2: // D2 - Read/Write RAM
  6081. dcode_2(); break;
  6082. #endif //DEBUG_DCODES
  6083. #ifdef DEBUG_DCODE3
  6084. case 3: // D3 - Read/Write EEPROM
  6085. dcode_3(); break;
  6086. #endif //DEBUG_DCODE3
  6087. #ifdef DEBUG_DCODES
  6088. case 4: // D4 - Read/Write PIN
  6089. dcode_4(); break;
  6090. case 5: // D5 - Read/Write FLASH
  6091. // dcode_5(); break;
  6092. break;
  6093. case 6: // D6 - Read/Write external FLASH
  6094. dcode_6(); break;
  6095. case 7: // D7 - Read/Write Bootloader
  6096. dcode_7(); break;
  6097. case 8: // D8 - Read/Write PINDA
  6098. dcode_8(); break;
  6099. case 9: // D9 - Read/Write ADC
  6100. dcode_9(); break;
  6101. case 10: // D10 - XYZ calibration = OK
  6102. dcode_10(); break;
  6103. #ifdef TMC2130
  6104. case 2130: // D9125 - TMC2130
  6105. dcode_2130(); break;
  6106. #endif //TMC2130
  6107. #ifdef FILAMENT_SENSOR
  6108. case 9125: // D9125 - FILAMENT_SENSOR
  6109. dcode_9125(); break;
  6110. #endif //FILAMENT_SENSOR
  6111. #endif //DEBUG_DCODES
  6112. }
  6113. }
  6114. else
  6115. {
  6116. SERIAL_ECHO_START;
  6117. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6118. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6119. SERIAL_ECHOLNPGM("\"(2)");
  6120. }
  6121. KEEPALIVE_STATE(NOT_BUSY);
  6122. ClearToSend();
  6123. }
  6124. void FlushSerialRequestResend()
  6125. {
  6126. //char cmdbuffer[bufindr][100]="Resend:";
  6127. MYSERIAL.flush();
  6128. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6129. }
  6130. // Confirm the execution of a command, if sent from a serial line.
  6131. // Execution of a command from a SD card will not be confirmed.
  6132. void ClearToSend()
  6133. {
  6134. previous_millis_cmd = millis();
  6135. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6136. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6137. }
  6138. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6139. void update_currents() {
  6140. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6141. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6142. float tmp_motor[3];
  6143. //SERIAL_ECHOLNPGM("Currents updated: ");
  6144. if (destination[Z_AXIS] < Z_SILENT) {
  6145. //SERIAL_ECHOLNPGM("LOW");
  6146. for (uint8_t i = 0; i < 3; i++) {
  6147. st_current_set(i, current_low[i]);
  6148. /*MYSERIAL.print(int(i));
  6149. SERIAL_ECHOPGM(": ");
  6150. MYSERIAL.println(current_low[i]);*/
  6151. }
  6152. }
  6153. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6154. //SERIAL_ECHOLNPGM("HIGH");
  6155. for (uint8_t i = 0; i < 3; i++) {
  6156. st_current_set(i, current_high[i]);
  6157. /*MYSERIAL.print(int(i));
  6158. SERIAL_ECHOPGM(": ");
  6159. MYSERIAL.println(current_high[i]);*/
  6160. }
  6161. }
  6162. else {
  6163. for (uint8_t i = 0; i < 3; i++) {
  6164. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6165. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6166. st_current_set(i, tmp_motor[i]);
  6167. /*MYSERIAL.print(int(i));
  6168. SERIAL_ECHOPGM(": ");
  6169. MYSERIAL.println(tmp_motor[i]);*/
  6170. }
  6171. }
  6172. }
  6173. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6174. void get_coordinates()
  6175. {
  6176. bool seen[4]={false,false,false,false};
  6177. for(int8_t i=0; i < NUM_AXIS; i++) {
  6178. if(code_seen(axis_codes[i]))
  6179. {
  6180. bool relative = axis_relative_modes[i] || relative_mode;
  6181. destination[i] = (float)code_value();
  6182. if (i == E_AXIS) {
  6183. float emult = extruder_multiplier[active_extruder];
  6184. if (emult != 1.) {
  6185. if (! relative) {
  6186. destination[i] -= current_position[i];
  6187. relative = true;
  6188. }
  6189. destination[i] *= emult;
  6190. }
  6191. }
  6192. if (relative)
  6193. destination[i] += current_position[i];
  6194. seen[i]=true;
  6195. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6196. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6197. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6198. }
  6199. else destination[i] = current_position[i]; //Are these else lines really needed?
  6200. }
  6201. if(code_seen('F')) {
  6202. next_feedrate = code_value();
  6203. #ifdef MAX_SILENT_FEEDRATE
  6204. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6205. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6206. #endif //MAX_SILENT_FEEDRATE
  6207. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6208. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6209. {
  6210. // float e_max_speed =
  6211. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6212. }
  6213. }
  6214. }
  6215. void get_arc_coordinates()
  6216. {
  6217. #ifdef SF_ARC_FIX
  6218. bool relative_mode_backup = relative_mode;
  6219. relative_mode = true;
  6220. #endif
  6221. get_coordinates();
  6222. #ifdef SF_ARC_FIX
  6223. relative_mode=relative_mode_backup;
  6224. #endif
  6225. if(code_seen('I')) {
  6226. offset[0] = code_value();
  6227. }
  6228. else {
  6229. offset[0] = 0.0;
  6230. }
  6231. if(code_seen('J')) {
  6232. offset[1] = code_value();
  6233. }
  6234. else {
  6235. offset[1] = 0.0;
  6236. }
  6237. }
  6238. void clamp_to_software_endstops(float target[3])
  6239. {
  6240. #ifdef DEBUG_DISABLE_SWLIMITS
  6241. return;
  6242. #endif //DEBUG_DISABLE_SWLIMITS
  6243. world2machine_clamp(target[0], target[1]);
  6244. // Clamp the Z coordinate.
  6245. if (min_software_endstops) {
  6246. float negative_z_offset = 0;
  6247. #ifdef ENABLE_AUTO_BED_LEVELING
  6248. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6249. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6250. #endif
  6251. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6252. }
  6253. if (max_software_endstops) {
  6254. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6255. }
  6256. }
  6257. #ifdef MESH_BED_LEVELING
  6258. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6259. float dx = x - current_position[X_AXIS];
  6260. float dy = y - current_position[Y_AXIS];
  6261. float dz = z - current_position[Z_AXIS];
  6262. int n_segments = 0;
  6263. if (mbl.active) {
  6264. float len = abs(dx) + abs(dy);
  6265. if (len > 0)
  6266. // Split to 3cm segments or shorter.
  6267. n_segments = int(ceil(len / 30.f));
  6268. }
  6269. if (n_segments > 1) {
  6270. float de = e - current_position[E_AXIS];
  6271. for (int i = 1; i < n_segments; ++ i) {
  6272. float t = float(i) / float(n_segments);
  6273. if (saved_printing || (mbl.active == false)) return;
  6274. plan_buffer_line(
  6275. current_position[X_AXIS] + t * dx,
  6276. current_position[Y_AXIS] + t * dy,
  6277. current_position[Z_AXIS] + t * dz,
  6278. current_position[E_AXIS] + t * de,
  6279. feed_rate, extruder);
  6280. }
  6281. }
  6282. // The rest of the path.
  6283. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6284. current_position[X_AXIS] = x;
  6285. current_position[Y_AXIS] = y;
  6286. current_position[Z_AXIS] = z;
  6287. current_position[E_AXIS] = e;
  6288. }
  6289. #endif // MESH_BED_LEVELING
  6290. void prepare_move()
  6291. {
  6292. clamp_to_software_endstops(destination);
  6293. previous_millis_cmd = millis();
  6294. // Do not use feedmultiply for E or Z only moves
  6295. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6297. }
  6298. else {
  6299. #ifdef MESH_BED_LEVELING
  6300. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6301. #else
  6302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6303. #endif
  6304. }
  6305. for(int8_t i=0; i < NUM_AXIS; i++) {
  6306. current_position[i] = destination[i];
  6307. }
  6308. }
  6309. void prepare_arc_move(char isclockwise) {
  6310. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6311. // Trace the arc
  6312. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6313. // As far as the parser is concerned, the position is now == target. In reality the
  6314. // motion control system might still be processing the action and the real tool position
  6315. // in any intermediate location.
  6316. for(int8_t i=0; i < NUM_AXIS; i++) {
  6317. current_position[i] = destination[i];
  6318. }
  6319. previous_millis_cmd = millis();
  6320. }
  6321. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6322. #if defined(FAN_PIN)
  6323. #if CONTROLLERFAN_PIN == FAN_PIN
  6324. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6325. #endif
  6326. #endif
  6327. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6328. unsigned long lastMotorCheck = 0;
  6329. void controllerFan()
  6330. {
  6331. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6332. {
  6333. lastMotorCheck = millis();
  6334. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6335. #if EXTRUDERS > 2
  6336. || !READ(E2_ENABLE_PIN)
  6337. #endif
  6338. #if EXTRUDER > 1
  6339. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6340. || !READ(X2_ENABLE_PIN)
  6341. #endif
  6342. || !READ(E1_ENABLE_PIN)
  6343. #endif
  6344. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6345. {
  6346. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6347. }
  6348. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6349. {
  6350. digitalWrite(CONTROLLERFAN_PIN, 0);
  6351. analogWrite(CONTROLLERFAN_PIN, 0);
  6352. }
  6353. else
  6354. {
  6355. // allows digital or PWM fan output to be used (see M42 handling)
  6356. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6357. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6358. }
  6359. }
  6360. }
  6361. #endif
  6362. #ifdef TEMP_STAT_LEDS
  6363. static bool blue_led = false;
  6364. static bool red_led = false;
  6365. static uint32_t stat_update = 0;
  6366. void handle_status_leds(void) {
  6367. float max_temp = 0.0;
  6368. if(millis() > stat_update) {
  6369. stat_update += 500; // Update every 0.5s
  6370. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6371. max_temp = max(max_temp, degHotend(cur_extruder));
  6372. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6373. }
  6374. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6375. max_temp = max(max_temp, degTargetBed());
  6376. max_temp = max(max_temp, degBed());
  6377. #endif
  6378. if((max_temp > 55.0) && (red_led == false)) {
  6379. digitalWrite(STAT_LED_RED, 1);
  6380. digitalWrite(STAT_LED_BLUE, 0);
  6381. red_led = true;
  6382. blue_led = false;
  6383. }
  6384. if((max_temp < 54.0) && (blue_led == false)) {
  6385. digitalWrite(STAT_LED_RED, 0);
  6386. digitalWrite(STAT_LED_BLUE, 1);
  6387. red_led = false;
  6388. blue_led = true;
  6389. }
  6390. }
  6391. }
  6392. #endif
  6393. #ifdef SAFETYTIMER
  6394. /**
  6395. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6396. *
  6397. * Full screen blocking notification message is shown after heater turning off.
  6398. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6399. * damage print.
  6400. *
  6401. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6402. */
  6403. static void handleSafetyTimer()
  6404. {
  6405. #if (EXTRUDERS > 1)
  6406. #error Implemented only for one extruder.
  6407. #endif //(EXTRUDERS > 1)
  6408. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6409. {
  6410. safetyTimer.stop();
  6411. }
  6412. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6413. {
  6414. safetyTimer.start();
  6415. }
  6416. else if (safetyTimer.expired(safetytimer_inactive_time))
  6417. {
  6418. setTargetBed(0);
  6419. setAllTargetHotends(0);
  6420. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6421. }
  6422. }
  6423. #endif //SAFETYTIMER
  6424. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6425. {
  6426. #ifdef FILAMENT_SENSOR
  6427. if (mcode_in_progress != 600) //M600 not in progress
  6428. {
  6429. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6430. {
  6431. if (fsensor_check_autoload())
  6432. {
  6433. fsensor_autoload_check_stop();
  6434. if (degHotend0() > EXTRUDE_MINTEMP)
  6435. {
  6436. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  6437. tone(BEEPER, 1000);
  6438. delay_keep_alive(50);
  6439. noTone(BEEPER);
  6440. loading_flag = true;
  6441. enquecommand_front_P((PSTR("M701")));
  6442. }
  6443. else
  6444. {
  6445. lcd_update_enable(false);
  6446. lcd_clear();
  6447. lcd_set_cursor(0, 0);
  6448. lcd_puts_P(_T(MSG_ERROR));
  6449. lcd_set_cursor(0, 2);
  6450. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6451. delay(2000);
  6452. lcd_clear();
  6453. lcd_update_enable(true);
  6454. }
  6455. }
  6456. }
  6457. else
  6458. fsensor_autoload_check_stop();
  6459. }
  6460. #endif //FILAMENT_SENSOR
  6461. #ifdef SAFETYTIMER
  6462. handleSafetyTimer();
  6463. #endif //SAFETYTIMER
  6464. #if defined(KILL_PIN) && KILL_PIN > -1
  6465. static int killCount = 0; // make the inactivity button a bit less responsive
  6466. const int KILL_DELAY = 10000;
  6467. #endif
  6468. if(buflen < (BUFSIZE-1)){
  6469. get_command();
  6470. }
  6471. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6472. if(max_inactive_time)
  6473. kill(_n(""), 4);
  6474. if(stepper_inactive_time) {
  6475. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6476. {
  6477. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6478. disable_x();
  6479. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6480. disable_y();
  6481. disable_z();
  6482. disable_e0();
  6483. disable_e1();
  6484. disable_e2();
  6485. }
  6486. }
  6487. }
  6488. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6489. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6490. {
  6491. chdkActive = false;
  6492. WRITE(CHDK, LOW);
  6493. }
  6494. #endif
  6495. #if defined(KILL_PIN) && KILL_PIN > -1
  6496. // Check if the kill button was pressed and wait just in case it was an accidental
  6497. // key kill key press
  6498. // -------------------------------------------------------------------------------
  6499. if( 0 == READ(KILL_PIN) )
  6500. {
  6501. killCount++;
  6502. }
  6503. else if (killCount > 0)
  6504. {
  6505. killCount--;
  6506. }
  6507. // Exceeded threshold and we can confirm that it was not accidental
  6508. // KILL the machine
  6509. // ----------------------------------------------------------------
  6510. if ( killCount >= KILL_DELAY)
  6511. {
  6512. kill("", 5);
  6513. }
  6514. #endif
  6515. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6516. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6517. #endif
  6518. #ifdef EXTRUDER_RUNOUT_PREVENT
  6519. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6520. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6521. {
  6522. bool oldstatus=READ(E0_ENABLE_PIN);
  6523. enable_e0();
  6524. float oldepos=current_position[E_AXIS];
  6525. float oldedes=destination[E_AXIS];
  6526. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6527. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6528. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6529. current_position[E_AXIS]=oldepos;
  6530. destination[E_AXIS]=oldedes;
  6531. plan_set_e_position(oldepos);
  6532. previous_millis_cmd=millis();
  6533. st_synchronize();
  6534. WRITE(E0_ENABLE_PIN,oldstatus);
  6535. }
  6536. #endif
  6537. #ifdef TEMP_STAT_LEDS
  6538. handle_status_leds();
  6539. #endif
  6540. check_axes_activity();
  6541. }
  6542. void kill(const char *full_screen_message, unsigned char id)
  6543. {
  6544. printf_P(_N("KILL: %d\n"), id);
  6545. //return;
  6546. cli(); // Stop interrupts
  6547. disable_heater();
  6548. disable_x();
  6549. // SERIAL_ECHOLNPGM("kill - disable Y");
  6550. disable_y();
  6551. disable_z();
  6552. disable_e0();
  6553. disable_e1();
  6554. disable_e2();
  6555. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6556. pinMode(PS_ON_PIN,INPUT);
  6557. #endif
  6558. SERIAL_ERROR_START;
  6559. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6560. if (full_screen_message != NULL) {
  6561. SERIAL_ERRORLNRPGM(full_screen_message);
  6562. lcd_display_message_fullscreen_P(full_screen_message);
  6563. } else {
  6564. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6565. }
  6566. // FMC small patch to update the LCD before ending
  6567. sei(); // enable interrupts
  6568. for ( int i=5; i--; lcd_update(0))
  6569. {
  6570. delay(200);
  6571. }
  6572. cli(); // disable interrupts
  6573. suicide();
  6574. while(1)
  6575. {
  6576. #ifdef WATCHDOG
  6577. wdt_reset();
  6578. #endif //WATCHDOG
  6579. /* Intentionally left empty */
  6580. } // Wait for reset
  6581. }
  6582. void Stop()
  6583. {
  6584. disable_heater();
  6585. if(Stopped == false) {
  6586. Stopped = true;
  6587. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6588. SERIAL_ERROR_START;
  6589. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6590. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6591. }
  6592. }
  6593. bool IsStopped() { return Stopped; };
  6594. #ifdef FAST_PWM_FAN
  6595. void setPwmFrequency(uint8_t pin, int val)
  6596. {
  6597. val &= 0x07;
  6598. switch(digitalPinToTimer(pin))
  6599. {
  6600. #if defined(TCCR0A)
  6601. case TIMER0A:
  6602. case TIMER0B:
  6603. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6604. // TCCR0B |= val;
  6605. break;
  6606. #endif
  6607. #if defined(TCCR1A)
  6608. case TIMER1A:
  6609. case TIMER1B:
  6610. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6611. // TCCR1B |= val;
  6612. break;
  6613. #endif
  6614. #if defined(TCCR2)
  6615. case TIMER2:
  6616. case TIMER2:
  6617. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6618. TCCR2 |= val;
  6619. break;
  6620. #endif
  6621. #if defined(TCCR2A)
  6622. case TIMER2A:
  6623. case TIMER2B:
  6624. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6625. TCCR2B |= val;
  6626. break;
  6627. #endif
  6628. #if defined(TCCR3A)
  6629. case TIMER3A:
  6630. case TIMER3B:
  6631. case TIMER3C:
  6632. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6633. TCCR3B |= val;
  6634. break;
  6635. #endif
  6636. #if defined(TCCR4A)
  6637. case TIMER4A:
  6638. case TIMER4B:
  6639. case TIMER4C:
  6640. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6641. TCCR4B |= val;
  6642. break;
  6643. #endif
  6644. #if defined(TCCR5A)
  6645. case TIMER5A:
  6646. case TIMER5B:
  6647. case TIMER5C:
  6648. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6649. TCCR5B |= val;
  6650. break;
  6651. #endif
  6652. }
  6653. }
  6654. #endif //FAST_PWM_FAN
  6655. bool setTargetedHotend(int code){
  6656. tmp_extruder = active_extruder;
  6657. if(code_seen('T')) {
  6658. tmp_extruder = code_value();
  6659. if(tmp_extruder >= EXTRUDERS) {
  6660. SERIAL_ECHO_START;
  6661. switch(code){
  6662. case 104:
  6663. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6664. break;
  6665. case 105:
  6666. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6667. break;
  6668. case 109:
  6669. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6670. break;
  6671. case 218:
  6672. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6673. break;
  6674. case 221:
  6675. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6676. break;
  6677. }
  6678. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6679. return true;
  6680. }
  6681. }
  6682. return false;
  6683. }
  6684. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6685. {
  6686. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6687. {
  6688. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6689. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6690. }
  6691. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6692. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6693. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6694. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6695. total_filament_used = 0;
  6696. }
  6697. float calculate_extruder_multiplier(float diameter) {
  6698. float out = 1.f;
  6699. if (volumetric_enabled && diameter > 0.f) {
  6700. float area = M_PI * diameter * diameter * 0.25;
  6701. out = 1.f / area;
  6702. }
  6703. if (extrudemultiply != 100)
  6704. out *= float(extrudemultiply) * 0.01f;
  6705. return out;
  6706. }
  6707. void calculate_extruder_multipliers() {
  6708. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6709. #if EXTRUDERS > 1
  6710. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6711. #if EXTRUDERS > 2
  6712. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6713. #endif
  6714. #endif
  6715. }
  6716. void delay_keep_alive(unsigned int ms)
  6717. {
  6718. for (;;) {
  6719. manage_heater();
  6720. // Manage inactivity, but don't disable steppers on timeout.
  6721. manage_inactivity(true);
  6722. lcd_update(0);
  6723. if (ms == 0)
  6724. break;
  6725. else if (ms >= 50) {
  6726. delay(50);
  6727. ms -= 50;
  6728. } else {
  6729. delay(ms);
  6730. ms = 0;
  6731. }
  6732. }
  6733. }
  6734. void wait_for_heater(long codenum) {
  6735. #ifdef TEMP_RESIDENCY_TIME
  6736. long residencyStart;
  6737. residencyStart = -1;
  6738. /* continue to loop until we have reached the target temp
  6739. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6740. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6741. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6742. #else
  6743. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6744. #endif //TEMP_RESIDENCY_TIME
  6745. if ((millis() - codenum) > 1000UL)
  6746. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6747. if (!farm_mode) {
  6748. SERIAL_PROTOCOLPGM("T:");
  6749. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6750. SERIAL_PROTOCOLPGM(" E:");
  6751. SERIAL_PROTOCOL((int)tmp_extruder);
  6752. #ifdef TEMP_RESIDENCY_TIME
  6753. SERIAL_PROTOCOLPGM(" W:");
  6754. if (residencyStart > -1)
  6755. {
  6756. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6757. SERIAL_PROTOCOLLN(codenum);
  6758. }
  6759. else
  6760. {
  6761. SERIAL_PROTOCOLLN("?");
  6762. }
  6763. }
  6764. #else
  6765. SERIAL_PROTOCOLLN("");
  6766. #endif
  6767. codenum = millis();
  6768. }
  6769. manage_heater();
  6770. manage_inactivity();
  6771. lcd_update(0);
  6772. #ifdef TEMP_RESIDENCY_TIME
  6773. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6774. or when current temp falls outside the hysteresis after target temp was reached */
  6775. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6776. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6777. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6778. {
  6779. residencyStart = millis();
  6780. }
  6781. #endif //TEMP_RESIDENCY_TIME
  6782. }
  6783. }
  6784. void check_babystep() {
  6785. int babystep_z;
  6786. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6787. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6788. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6789. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6790. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6791. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6792. lcd_update_enable(true);
  6793. }
  6794. }
  6795. #ifdef DIS
  6796. void d_setup()
  6797. {
  6798. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6799. pinMode(D_DATA, INPUT_PULLUP);
  6800. pinMode(D_REQUIRE, OUTPUT);
  6801. digitalWrite(D_REQUIRE, HIGH);
  6802. }
  6803. float d_ReadData()
  6804. {
  6805. int digit[13];
  6806. String mergeOutput;
  6807. float output;
  6808. digitalWrite(D_REQUIRE, HIGH);
  6809. for (int i = 0; i<13; i++)
  6810. {
  6811. for (int j = 0; j < 4; j++)
  6812. {
  6813. while (digitalRead(D_DATACLOCK) == LOW) {}
  6814. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6815. bitWrite(digit[i], j, digitalRead(D_DATA));
  6816. }
  6817. }
  6818. digitalWrite(D_REQUIRE, LOW);
  6819. mergeOutput = "";
  6820. output = 0;
  6821. for (int r = 5; r <= 10; r++) //Merge digits
  6822. {
  6823. mergeOutput += digit[r];
  6824. }
  6825. output = mergeOutput.toFloat();
  6826. if (digit[4] == 8) //Handle sign
  6827. {
  6828. output *= -1;
  6829. }
  6830. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6831. {
  6832. output /= 10;
  6833. }
  6834. return output;
  6835. }
  6836. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6837. int t1 = 0;
  6838. int t_delay = 0;
  6839. int digit[13];
  6840. int m;
  6841. char str[3];
  6842. //String mergeOutput;
  6843. char mergeOutput[15];
  6844. float output;
  6845. int mesh_point = 0; //index number of calibration point
  6846. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6847. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6848. float mesh_home_z_search = 4;
  6849. float row[x_points_num];
  6850. int ix = 0;
  6851. int iy = 0;
  6852. const char* filename_wldsd = "wldsd.txt";
  6853. char data_wldsd[70];
  6854. char numb_wldsd[10];
  6855. d_setup();
  6856. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6857. // We don't know where we are! HOME!
  6858. // Push the commands to the front of the message queue in the reverse order!
  6859. // There shall be always enough space reserved for these commands.
  6860. repeatcommand_front(); // repeat G80 with all its parameters
  6861. enquecommand_front_P((PSTR("G28 W0")));
  6862. enquecommand_front_P((PSTR("G1 Z5")));
  6863. return;
  6864. }
  6865. bool custom_message_old = custom_message;
  6866. unsigned int custom_message_type_old = custom_message_type;
  6867. unsigned int custom_message_state_old = custom_message_state;
  6868. custom_message = true;
  6869. custom_message_type = 1;
  6870. custom_message_state = (x_points_num * y_points_num) + 10;
  6871. lcd_update(1);
  6872. mbl.reset();
  6873. babystep_undo();
  6874. card.openFile(filename_wldsd, false);
  6875. current_position[Z_AXIS] = mesh_home_z_search;
  6876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6877. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6878. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6879. setup_for_endstop_move(false);
  6880. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6881. SERIAL_PROTOCOL(x_points_num);
  6882. SERIAL_PROTOCOLPGM(",");
  6883. SERIAL_PROTOCOL(y_points_num);
  6884. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6885. SERIAL_PROTOCOL(mesh_home_z_search);
  6886. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6887. SERIAL_PROTOCOL(x_dimension);
  6888. SERIAL_PROTOCOLPGM(",");
  6889. SERIAL_PROTOCOL(y_dimension);
  6890. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6891. while (mesh_point != x_points_num * y_points_num) {
  6892. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6893. iy = mesh_point / x_points_num;
  6894. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6895. float z0 = 0.f;
  6896. current_position[Z_AXIS] = mesh_home_z_search;
  6897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6898. st_synchronize();
  6899. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6900. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6902. st_synchronize();
  6903. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6904. break;
  6905. card.closefile();
  6906. }
  6907. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6908. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6909. //strcat(data_wldsd, numb_wldsd);
  6910. //MYSERIAL.println(data_wldsd);
  6911. //delay(1000);
  6912. //delay(3000);
  6913. //t1 = millis();
  6914. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6915. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6916. memset(digit, 0, sizeof(digit));
  6917. //cli();
  6918. digitalWrite(D_REQUIRE, LOW);
  6919. for (int i = 0; i<13; i++)
  6920. {
  6921. //t1 = millis();
  6922. for (int j = 0; j < 4; j++)
  6923. {
  6924. while (digitalRead(D_DATACLOCK) == LOW) {}
  6925. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6926. bitWrite(digit[i], j, digitalRead(D_DATA));
  6927. }
  6928. //t_delay = (millis() - t1);
  6929. //SERIAL_PROTOCOLPGM(" ");
  6930. //SERIAL_PROTOCOL_F(t_delay, 5);
  6931. //SERIAL_PROTOCOLPGM(" ");
  6932. }
  6933. //sei();
  6934. digitalWrite(D_REQUIRE, HIGH);
  6935. mergeOutput[0] = '\0';
  6936. output = 0;
  6937. for (int r = 5; r <= 10; r++) //Merge digits
  6938. {
  6939. sprintf(str, "%d", digit[r]);
  6940. strcat(mergeOutput, str);
  6941. }
  6942. output = atof(mergeOutput);
  6943. if (digit[4] == 8) //Handle sign
  6944. {
  6945. output *= -1;
  6946. }
  6947. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6948. {
  6949. output *= 0.1;
  6950. }
  6951. //output = d_ReadData();
  6952. //row[ix] = current_position[Z_AXIS];
  6953. memset(data_wldsd, 0, sizeof(data_wldsd));
  6954. for (int i = 0; i <3; i++) {
  6955. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6956. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6957. strcat(data_wldsd, numb_wldsd);
  6958. strcat(data_wldsd, ";");
  6959. }
  6960. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6961. dtostrf(output, 8, 5, numb_wldsd);
  6962. strcat(data_wldsd, numb_wldsd);
  6963. //strcat(data_wldsd, ";");
  6964. card.write_command(data_wldsd);
  6965. //row[ix] = d_ReadData();
  6966. row[ix] = output; // current_position[Z_AXIS];
  6967. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6968. for (int i = 0; i < x_points_num; i++) {
  6969. SERIAL_PROTOCOLPGM(" ");
  6970. SERIAL_PROTOCOL_F(row[i], 5);
  6971. }
  6972. SERIAL_PROTOCOLPGM("\n");
  6973. }
  6974. custom_message_state--;
  6975. mesh_point++;
  6976. lcd_update(1);
  6977. }
  6978. card.closefile();
  6979. }
  6980. #endif
  6981. void temp_compensation_start() {
  6982. custom_message = true;
  6983. custom_message_type = 5;
  6984. custom_message_state = PINDA_HEAT_T + 1;
  6985. lcd_update(2);
  6986. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6987. current_position[E_AXIS] -= default_retraction;
  6988. }
  6989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6990. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6991. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6992. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6994. st_synchronize();
  6995. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6996. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6997. delay_keep_alive(1000);
  6998. custom_message_state = PINDA_HEAT_T - i;
  6999. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7000. else lcd_update(1);
  7001. }
  7002. custom_message_type = 0;
  7003. custom_message_state = 0;
  7004. custom_message = false;
  7005. }
  7006. void temp_compensation_apply() {
  7007. int i_add;
  7008. int z_shift = 0;
  7009. float z_shift_mm;
  7010. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7011. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7012. i_add = (target_temperature_bed - 60) / 10;
  7013. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7014. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7015. }else {
  7016. //interpolation
  7017. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7018. }
  7019. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7021. st_synchronize();
  7022. plan_set_z_position(current_position[Z_AXIS]);
  7023. }
  7024. else {
  7025. //we have no temp compensation data
  7026. }
  7027. }
  7028. float temp_comp_interpolation(float inp_temperature) {
  7029. //cubic spline interpolation
  7030. int n, i, j;
  7031. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7032. int shift[10];
  7033. int temp_C[10];
  7034. n = 6; //number of measured points
  7035. shift[0] = 0;
  7036. for (i = 0; i < n; i++) {
  7037. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7038. temp_C[i] = 50 + i * 10; //temperature in C
  7039. #ifdef PINDA_THERMISTOR
  7040. temp_C[i] = 35 + i * 5; //temperature in C
  7041. #else
  7042. temp_C[i] = 50 + i * 10; //temperature in C
  7043. #endif
  7044. x[i] = (float)temp_C[i];
  7045. f[i] = (float)shift[i];
  7046. }
  7047. if (inp_temperature < x[0]) return 0;
  7048. for (i = n - 1; i>0; i--) {
  7049. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7050. h[i - 1] = x[i] - x[i - 1];
  7051. }
  7052. //*********** formation of h, s , f matrix **************
  7053. for (i = 1; i<n - 1; i++) {
  7054. m[i][i] = 2 * (h[i - 1] + h[i]);
  7055. if (i != 1) {
  7056. m[i][i - 1] = h[i - 1];
  7057. m[i - 1][i] = h[i - 1];
  7058. }
  7059. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7060. }
  7061. //*********** forward elimination **************
  7062. for (i = 1; i<n - 2; i++) {
  7063. temp = (m[i + 1][i] / m[i][i]);
  7064. for (j = 1; j <= n - 1; j++)
  7065. m[i + 1][j] -= temp*m[i][j];
  7066. }
  7067. //*********** backward substitution *********
  7068. for (i = n - 2; i>0; i--) {
  7069. sum = 0;
  7070. for (j = i; j <= n - 2; j++)
  7071. sum += m[i][j] * s[j];
  7072. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7073. }
  7074. for (i = 0; i<n - 1; i++)
  7075. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7076. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7077. b = s[i] / 2;
  7078. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7079. d = f[i];
  7080. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7081. }
  7082. return sum;
  7083. }
  7084. #ifdef PINDA_THERMISTOR
  7085. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7086. {
  7087. if (!temp_cal_active) return 0;
  7088. if (!calibration_status_pinda()) return 0;
  7089. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7090. }
  7091. #endif //PINDA_THERMISTOR
  7092. void long_pause() //long pause print
  7093. {
  7094. st_synchronize();
  7095. //save currently set parameters to global variables
  7096. saved_feedmultiply = feedmultiply;
  7097. HotendTempBckp = degTargetHotend(active_extruder);
  7098. fanSpeedBckp = fanSpeed;
  7099. start_pause_print = millis();
  7100. //save position
  7101. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7102. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7103. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7104. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7105. //retract
  7106. current_position[E_AXIS] -= default_retraction;
  7107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7108. //lift z
  7109. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7110. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7112. //set nozzle target temperature to 0
  7113. setAllTargetHotends(0);
  7114. //Move XY to side
  7115. current_position[X_AXIS] = X_PAUSE_POS;
  7116. current_position[Y_AXIS] = Y_PAUSE_POS;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7118. // Turn off the print fan
  7119. fanSpeed = 0;
  7120. st_synchronize();
  7121. }
  7122. void serialecho_temperatures() {
  7123. float tt = degHotend(active_extruder);
  7124. SERIAL_PROTOCOLPGM("T:");
  7125. SERIAL_PROTOCOL(tt);
  7126. SERIAL_PROTOCOLPGM(" E:");
  7127. SERIAL_PROTOCOL((int)active_extruder);
  7128. SERIAL_PROTOCOLPGM(" B:");
  7129. SERIAL_PROTOCOL_F(degBed(), 1);
  7130. SERIAL_PROTOCOLLN("");
  7131. }
  7132. extern uint32_t sdpos_atomic;
  7133. #ifdef UVLO_SUPPORT
  7134. void uvlo_()
  7135. {
  7136. unsigned long time_start = millis();
  7137. bool sd_print = card.sdprinting;
  7138. // Conserve power as soon as possible.
  7139. disable_x();
  7140. disable_y();
  7141. #ifdef TMC2130
  7142. tmc2130_set_current_h(Z_AXIS, 20);
  7143. tmc2130_set_current_r(Z_AXIS, 20);
  7144. tmc2130_set_current_h(E_AXIS, 20);
  7145. tmc2130_set_current_r(E_AXIS, 20);
  7146. #endif //TMC2130
  7147. // Indicate that the interrupt has been triggered.
  7148. // SERIAL_ECHOLNPGM("UVLO");
  7149. // Read out the current Z motor microstep counter. This will be later used
  7150. // for reaching the zero full step before powering off.
  7151. uint16_t z_microsteps = 0;
  7152. #ifdef TMC2130
  7153. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7154. #endif //TMC2130
  7155. // Calculate the file position, from which to resume this print.
  7156. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7157. {
  7158. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7159. sd_position -= sdlen_planner;
  7160. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7161. sd_position -= sdlen_cmdqueue;
  7162. if (sd_position < 0) sd_position = 0;
  7163. }
  7164. // Backup the feedrate in mm/min.
  7165. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7166. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7167. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7168. // are in action.
  7169. planner_abort_hard();
  7170. // Store the current extruder position.
  7171. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7172. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7173. // Clean the input command queue.
  7174. cmdqueue_reset();
  7175. card.sdprinting = false;
  7176. // card.closefile();
  7177. // Enable stepper driver interrupt to move Z axis.
  7178. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7179. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7180. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7181. sei();
  7182. plan_buffer_line(
  7183. current_position[X_AXIS],
  7184. current_position[Y_AXIS],
  7185. current_position[Z_AXIS],
  7186. current_position[E_AXIS] - default_retraction,
  7187. 95, active_extruder);
  7188. st_synchronize();
  7189. disable_e0();
  7190. plan_buffer_line(
  7191. current_position[X_AXIS],
  7192. current_position[Y_AXIS],
  7193. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7194. current_position[E_AXIS] - default_retraction,
  7195. 40, active_extruder);
  7196. st_synchronize();
  7197. disable_e0();
  7198. plan_buffer_line(
  7199. current_position[X_AXIS],
  7200. current_position[Y_AXIS],
  7201. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7202. current_position[E_AXIS] - default_retraction,
  7203. 40, active_extruder);
  7204. st_synchronize();
  7205. disable_e0();
  7206. disable_z();
  7207. // Move Z up to the next 0th full step.
  7208. // Write the file position.
  7209. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7210. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7211. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7212. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7213. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7214. // Scale the z value to 1u resolution.
  7215. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7216. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7217. }
  7218. // Read out the current Z motor microstep counter. This will be later used
  7219. // for reaching the zero full step before powering off.
  7220. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7221. // Store the current position.
  7222. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7223. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7224. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7225. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7226. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7227. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7228. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7229. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7230. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7231. #if EXTRUDERS > 1
  7232. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7233. #if EXTRUDERS > 2
  7234. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7235. #endif
  7236. #endif
  7237. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7238. // Finaly store the "power outage" flag.
  7239. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7240. st_synchronize();
  7241. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7242. disable_z();
  7243. // Increment power failure counter
  7244. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7245. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7246. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7247. #if 0
  7248. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7249. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7251. st_synchronize();
  7252. #endif
  7253. wdt_enable(WDTO_500MS);
  7254. WRITE(BEEPER,HIGH);
  7255. while(1)
  7256. ;
  7257. }
  7258. void uvlo_tiny()
  7259. {
  7260. uint16_t z_microsteps=0;
  7261. // Conserve power as soon as possible.
  7262. disable_x();
  7263. disable_y();
  7264. disable_e0();
  7265. #ifdef TMC2130
  7266. tmc2130_set_current_h(Z_AXIS, 20);
  7267. tmc2130_set_current_r(Z_AXIS, 20);
  7268. #endif //TMC2130
  7269. // Read out the current Z motor microstep counter
  7270. #ifdef TMC2130
  7271. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7272. #endif //TMC2130
  7273. planner_abort_hard();
  7274. sei();
  7275. plan_buffer_line(
  7276. current_position[X_AXIS],
  7277. current_position[Y_AXIS],
  7278. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7279. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7280. current_position[E_AXIS],
  7281. 40, active_extruder);
  7282. st_synchronize();
  7283. disable_z();
  7284. // Finaly store the "power outage" flag.
  7285. //if(sd_print)
  7286. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7287. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7288. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7289. // Increment power failure counter
  7290. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7291. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7292. wdt_enable(WDTO_500MS);
  7293. WRITE(BEEPER,HIGH);
  7294. while(1)
  7295. ;
  7296. }
  7297. #endif //UVLO_SUPPORT
  7298. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7299. void setup_fan_interrupt() {
  7300. //INT7
  7301. DDRE &= ~(1 << 7); //input pin
  7302. PORTE &= ~(1 << 7); //no internal pull-up
  7303. //start with sensing rising edge
  7304. EICRB &= ~(1 << 6);
  7305. EICRB |= (1 << 7);
  7306. //enable INT7 interrupt
  7307. EIMSK |= (1 << 7);
  7308. }
  7309. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7310. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7311. ISR(INT7_vect) {
  7312. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7313. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7314. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7315. t_fan_rising_edge = millis_nc();
  7316. }
  7317. else { //interrupt was triggered by falling edge
  7318. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7319. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7320. }
  7321. }
  7322. EICRB ^= (1 << 6); //change edge
  7323. }
  7324. #endif
  7325. #ifdef UVLO_SUPPORT
  7326. void setup_uvlo_interrupt() {
  7327. DDRE &= ~(1 << 4); //input pin
  7328. PORTE &= ~(1 << 4); //no internal pull-up
  7329. //sensing falling edge
  7330. EICRB |= (1 << 0);
  7331. EICRB &= ~(1 << 1);
  7332. //enable INT4 interrupt
  7333. EIMSK |= (1 << 4);
  7334. }
  7335. ISR(INT4_vect) {
  7336. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7337. SERIAL_ECHOLNPGM("INT4");
  7338. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7339. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7340. }
  7341. void recover_print(uint8_t automatic) {
  7342. char cmd[30];
  7343. lcd_update_enable(true);
  7344. lcd_update(2);
  7345. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7346. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7347. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7348. // Lift the print head, so one may remove the excess priming material.
  7349. if(!bTiny&&(current_position[Z_AXIS]<25))
  7350. enquecommand_P(PSTR("G1 Z25 F800"));
  7351. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7352. enquecommand_P(PSTR("G28 X Y"));
  7353. // Set the target bed and nozzle temperatures and wait.
  7354. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7355. enquecommand(cmd);
  7356. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7357. enquecommand(cmd);
  7358. enquecommand_P(PSTR("M83")); //E axis relative mode
  7359. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7360. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7361. if(automatic == 0){
  7362. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7363. }
  7364. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7365. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7366. // Restart the print.
  7367. restore_print_from_eeprom();
  7368. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7369. }
  7370. void recover_machine_state_after_power_panic(bool bTiny)
  7371. {
  7372. char cmd[30];
  7373. // 1) Recover the logical cordinates at the time of the power panic.
  7374. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7375. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7376. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7377. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7378. // The current position after power panic is moved to the next closest 0th full step.
  7379. if(bTiny)
  7380. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7381. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7382. else
  7383. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7384. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7385. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7386. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7387. sprintf_P(cmd, PSTR("G92 E"));
  7388. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7389. enquecommand(cmd);
  7390. }
  7391. memcpy(destination, current_position, sizeof(destination));
  7392. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7393. print_world_coordinates();
  7394. // 2) Initialize the logical to physical coordinate system transformation.
  7395. world2machine_initialize();
  7396. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7397. mbl.active = false;
  7398. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7399. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7400. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7401. // Scale the z value to 10u resolution.
  7402. int16_t v;
  7403. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7404. if (v != 0)
  7405. mbl.active = true;
  7406. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7407. }
  7408. if (mbl.active)
  7409. mbl.upsample_3x3();
  7410. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7411. // print_mesh_bed_leveling_table();
  7412. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7413. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7414. babystep_load();
  7415. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7417. // 6) Power up the motors, mark their positions as known.
  7418. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7419. axis_known_position[X_AXIS] = true; enable_x();
  7420. axis_known_position[Y_AXIS] = true; enable_y();
  7421. axis_known_position[Z_AXIS] = true; enable_z();
  7422. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7423. print_physical_coordinates();
  7424. // 7) Recover the target temperatures.
  7425. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7426. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7427. // 8) Recover extruder multipilers
  7428. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7429. #if EXTRUDERS > 1
  7430. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7431. #if EXTRUDERS > 2
  7432. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7433. #endif
  7434. #endif
  7435. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7436. }
  7437. void restore_print_from_eeprom() {
  7438. int feedrate_rec;
  7439. uint8_t fan_speed_rec;
  7440. char cmd[30];
  7441. char filename[13];
  7442. uint8_t depth = 0;
  7443. char dir_name[9];
  7444. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7445. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7446. SERIAL_ECHOPGM("Feedrate:");
  7447. MYSERIAL.println(feedrate_rec);
  7448. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7449. MYSERIAL.println(int(depth));
  7450. for (int i = 0; i < depth; i++) {
  7451. for (int j = 0; j < 8; j++) {
  7452. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7453. }
  7454. dir_name[8] = '\0';
  7455. MYSERIAL.println(dir_name);
  7456. strcpy(dir_names[i], dir_name);
  7457. card.chdir(dir_name);
  7458. }
  7459. for (int i = 0; i < 8; i++) {
  7460. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7461. }
  7462. filename[8] = '\0';
  7463. MYSERIAL.print(filename);
  7464. strcat_P(filename, PSTR(".gco"));
  7465. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7466. enquecommand(cmd);
  7467. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7468. SERIAL_ECHOPGM("Position read from eeprom:");
  7469. MYSERIAL.println(position);
  7470. // E axis relative mode.
  7471. enquecommand_P(PSTR("M83"));
  7472. // Move to the XY print position in logical coordinates, where the print has been killed.
  7473. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7474. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7475. strcat_P(cmd, PSTR(" F2000"));
  7476. enquecommand(cmd);
  7477. // Move the Z axis down to the print, in logical coordinates.
  7478. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7479. enquecommand(cmd);
  7480. // Unretract.
  7481. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7482. // Set the feedrate saved at the power panic.
  7483. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7484. enquecommand(cmd);
  7485. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7486. {
  7487. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7488. }
  7489. // Set the fan speed saved at the power panic.
  7490. strcpy_P(cmd, PSTR("M106 S"));
  7491. strcat(cmd, itostr3(int(fan_speed_rec)));
  7492. enquecommand(cmd);
  7493. // Set a position in the file.
  7494. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7495. enquecommand(cmd);
  7496. enquecommand_P(PSTR("G4 S0"));
  7497. enquecommand_P(PSTR("PRUSA uvlo"));
  7498. }
  7499. #endif //UVLO_SUPPORT
  7500. ////////////////////////////////////////////////////////////////////////////////
  7501. // save/restore printing
  7502. void stop_and_save_print_to_ram(float z_move, float e_move)
  7503. {
  7504. if (saved_printing) return;
  7505. #if 0
  7506. unsigned char nplanner_blocks;
  7507. #endif
  7508. unsigned char nlines;
  7509. uint16_t sdlen_planner;
  7510. uint16_t sdlen_cmdqueue;
  7511. cli();
  7512. if (card.sdprinting) {
  7513. #if 0
  7514. nplanner_blocks = number_of_blocks();
  7515. #endif
  7516. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7517. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7518. saved_sdpos -= sdlen_planner;
  7519. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7520. saved_sdpos -= sdlen_cmdqueue;
  7521. saved_printing_type = PRINTING_TYPE_SD;
  7522. }
  7523. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7524. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7525. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7526. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7527. saved_sdpos -= nlines;
  7528. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7529. saved_printing_type = PRINTING_TYPE_USB;
  7530. }
  7531. else {
  7532. //not sd printing nor usb printing
  7533. }
  7534. #if 0
  7535. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7536. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7537. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7538. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7539. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7540. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7541. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7542. {
  7543. card.setIndex(saved_sdpos);
  7544. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7545. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7546. MYSERIAL.print(char(card.get()));
  7547. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7548. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7549. MYSERIAL.print(char(card.get()));
  7550. SERIAL_ECHOLNPGM("End of command buffer");
  7551. }
  7552. {
  7553. // Print the content of the planner buffer, line by line:
  7554. card.setIndex(saved_sdpos);
  7555. int8_t iline = 0;
  7556. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7557. SERIAL_ECHOPGM("Planner line (from file): ");
  7558. MYSERIAL.print(int(iline), DEC);
  7559. SERIAL_ECHOPGM(", length: ");
  7560. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7561. SERIAL_ECHOPGM(", steps: (");
  7562. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7563. SERIAL_ECHOPGM(",");
  7564. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7565. SERIAL_ECHOPGM(",");
  7566. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7567. SERIAL_ECHOPGM(",");
  7568. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7569. SERIAL_ECHOPGM("), events: ");
  7570. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7571. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7572. MYSERIAL.print(char(card.get()));
  7573. }
  7574. }
  7575. {
  7576. // Print the content of the command buffer, line by line:
  7577. int8_t iline = 0;
  7578. union {
  7579. struct {
  7580. char lo;
  7581. char hi;
  7582. } lohi;
  7583. uint16_t value;
  7584. } sdlen_single;
  7585. int _bufindr = bufindr;
  7586. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7587. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7588. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7589. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7590. }
  7591. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7592. MYSERIAL.print(int(iline), DEC);
  7593. SERIAL_ECHOPGM(", type: ");
  7594. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7595. SERIAL_ECHOPGM(", len: ");
  7596. MYSERIAL.println(sdlen_single.value, DEC);
  7597. // Print the content of the buffer line.
  7598. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7599. SERIAL_ECHOPGM("Buffer line (from file): ");
  7600. MYSERIAL.println(int(iline), DEC);
  7601. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7602. MYSERIAL.print(char(card.get()));
  7603. if (-- _buflen == 0)
  7604. break;
  7605. // First skip the current command ID and iterate up to the end of the string.
  7606. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7607. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7608. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7609. // If the end of the buffer was empty,
  7610. if (_bufindr == sizeof(cmdbuffer)) {
  7611. // skip to the start and find the nonzero command.
  7612. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7613. }
  7614. }
  7615. }
  7616. #endif
  7617. #if 0
  7618. saved_feedrate2 = feedrate; //save feedrate
  7619. #else
  7620. // Try to deduce the feedrate from the first block of the planner.
  7621. // Speed is in mm/min.
  7622. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7623. #endif
  7624. planner_abort_hard(); //abort printing
  7625. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7626. saved_active_extruder = active_extruder; //save active_extruder
  7627. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7628. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7629. cmdqueue_reset(); //empty cmdqueue
  7630. card.sdprinting = false;
  7631. // card.closefile();
  7632. saved_printing = true;
  7633. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7634. st_reset_timer();
  7635. sei();
  7636. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7637. #if 1
  7638. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7639. char buf[48];
  7640. // First unretract (relative extrusion)
  7641. if(!saved_extruder_relative_mode){
  7642. strcpy_P(buf, PSTR("M83"));
  7643. enquecommand(buf, false);
  7644. }
  7645. //retract 45mm/s
  7646. strcpy_P(buf, PSTR("G1 E"));
  7647. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7648. strcat_P(buf, PSTR(" F"));
  7649. dtostrf(2700, 8, 3, buf + strlen(buf));
  7650. enquecommand(buf, false);
  7651. // Then lift Z axis
  7652. strcpy_P(buf, PSTR("G1 Z"));
  7653. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7654. strcat_P(buf, PSTR(" F"));
  7655. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7656. // At this point the command queue is empty.
  7657. enquecommand(buf, false);
  7658. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7659. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7660. repeatcommand_front();
  7661. #else
  7662. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7663. st_synchronize(); //wait moving
  7664. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7665. memcpy(destination, current_position, sizeof(destination));
  7666. #endif
  7667. }
  7668. }
  7669. void restore_print_from_ram_and_continue(float e_move)
  7670. {
  7671. if (!saved_printing) return;
  7672. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7673. // current_position[axis] = st_get_position_mm(axis);
  7674. active_extruder = saved_active_extruder; //restore active_extruder
  7675. feedrate = saved_feedrate2; //restore feedrate
  7676. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7677. float e = saved_pos[E_AXIS] - e_move;
  7678. plan_set_e_position(e);
  7679. //first move print head in XY to the saved position:
  7680. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7681. st_synchronize();
  7682. //then move Z
  7683. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7684. st_synchronize();
  7685. //and finaly unretract (35mm/s)
  7686. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7687. st_synchronize();
  7688. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7689. memcpy(destination, current_position, sizeof(destination));
  7690. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7691. card.setIndex(saved_sdpos);
  7692. sdpos_atomic = saved_sdpos;
  7693. card.sdprinting = true;
  7694. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7695. }
  7696. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7697. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7698. serial_count = 0;
  7699. FlushSerialRequestResend();
  7700. }
  7701. else {
  7702. //not sd printing nor usb printing
  7703. }
  7704. lcd_setstatuspgm(_T(WELCOME_MSG));
  7705. saved_printing = false;
  7706. }
  7707. void print_world_coordinates()
  7708. {
  7709. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7710. }
  7711. void print_physical_coordinates()
  7712. {
  7713. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7714. }
  7715. void print_mesh_bed_leveling_table()
  7716. {
  7717. SERIAL_ECHOPGM("mesh bed leveling: ");
  7718. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7719. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7720. MYSERIAL.print(mbl.z_values[y][x], 3);
  7721. SERIAL_ECHOPGM(" ");
  7722. }
  7723. SERIAL_ECHOLNPGM("");
  7724. }
  7725. uint16_t print_time_remaining() {
  7726. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7727. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7728. else print_t = print_time_remaining_silent;
  7729. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7730. return print_t;
  7731. }
  7732. uint8_t print_percent_done() {
  7733. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7734. uint8_t percent_done = 0;
  7735. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7736. percent_done = print_percent_done_normal;
  7737. }
  7738. else if (print_percent_done_silent <= 100) {
  7739. percent_done = print_percent_done_silent;
  7740. }
  7741. else {
  7742. percent_done = card.percentDone();
  7743. }
  7744. return percent_done;
  7745. }
  7746. static void print_time_remaining_init() {
  7747. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7748. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7749. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7750. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7751. }
  7752. bool mmu_get_response(bool timeout) {
  7753. bool response = true;
  7754. LongTimer mmu_get_reponse_timeout;
  7755. uart2_rx_clr();
  7756. mmu_get_reponse_timeout.start();
  7757. while (!uart2_rx_ok())
  7758. {
  7759. delay_keep_alive(100);
  7760. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout
  7761. response = false;
  7762. break;
  7763. }
  7764. }
  7765. return response;
  7766. }
  7767. void manage_response() {
  7768. bool response = false;
  7769. mmu_print_saved = false;
  7770. bool lcd_update_was_enabled = false;
  7771. float hotend_temp_bckp;
  7772. float z_position_bckp, x_position_bckp, y_position_bckp;
  7773. while(!response) {
  7774. response = mmu_get_response(true);
  7775. if (!response) {
  7776. if (!mmu_print_saved) { //first occurence
  7777. if (lcd_update_enabled) {
  7778. lcd_update_was_enabled = true;
  7779. lcd_update_enable(false);
  7780. }
  7781. st_synchronize();
  7782. mmu_print_saved = true;
  7783. hotend_temp_bckp = degTargetHotend(active_extruder);
  7784. z_position_bckp = current_position[Z_AXIS];
  7785. x_position_bckp = current_position[X_AXIS];
  7786. y_position_bckp = current_position[Y_AXIS];
  7787. //lift z
  7788. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7789. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7791. st_synchronize();
  7792. //set nozzle target temperature to 0
  7793. setAllTargetHotends(0);
  7794. //Move XY to side
  7795. current_position[X_AXIS] = X_PAUSE_POS;
  7796. current_position[Y_AXIS] = Y_PAUSE_POS;
  7797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7798. st_synchronize();
  7799. }
  7800. printf_P(PSTR("MMU not responding\n"));
  7801. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  7802. setTargetHotend(hotend_temp_bckp, active_extruder);
  7803. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  7804. delay_keep_alive(1000);
  7805. lcd_wait_for_heater();
  7806. }
  7807. lcd_display_message_fullscreen_P(_i("Now check MMU. Fix the issue and then press knob on MMU unit."));
  7808. }
  7809. else if (mmu_print_saved) {
  7810. printf_P(PSTR("MMU start responding\n"));
  7811. lcd_clear();
  7812. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  7813. current_position[X_AXIS] = x_position_bckp;
  7814. current_position[Y_AXIS] = y_position_bckp;
  7815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7816. st_synchronize();
  7817. current_position[Z_AXIS] = z_position_bckp;
  7818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7819. st_synchronize();
  7820. }
  7821. }
  7822. if (lcd_update_was_enabled) lcd_update_enable(true);
  7823. }
  7824. void mmu_load_to_nozzle() {
  7825. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7826. if (!saved_e_relative_mode) {
  7827. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7828. }
  7829. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7830. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7831. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7832. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7833. if (!saved_e_relative_mode) {
  7834. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7835. }*/
  7836. st_synchronize();
  7837. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7838. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7839. current_position[E_AXIS] += 7.2f;
  7840. float feedrate = 562;
  7841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7842. st_synchronize();
  7843. current_position[E_AXIS] += 14.4f;
  7844. feedrate = 871;
  7845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7846. st_synchronize();
  7847. current_position[E_AXIS] += 36.0f;
  7848. feedrate = 1393;
  7849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7850. st_synchronize();
  7851. current_position[E_AXIS] += 14.4f;
  7852. feedrate = 871;
  7853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7854. st_synchronize();
  7855. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7856. }
  7857. void mmu_switch_extruder(uint8_t extruder) {
  7858. }
  7859. void M600_check_state() {
  7860. //Wait for user to check the state
  7861. lcd_change_fil_state = 0;
  7862. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  7863. lcd_change_fil_state = 0;
  7864. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7865. lcd_alright();
  7866. KEEPALIVE_STATE(IN_HANDLER);
  7867. switch(lcd_change_fil_state){
  7868. // Filament failed to load so load it again
  7869. case 2:
  7870. #ifdef SNMM_V2
  7871. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7872. #else
  7873. M600_load_filament_movements();
  7874. #endif
  7875. break;
  7876. // Filament loaded properly but color is not clear
  7877. case 3:
  7878. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7880. lcd_loading_color();
  7881. break;
  7882. // Everything good
  7883. default:
  7884. lcd_change_success();
  7885. lcd_update_enable(true);
  7886. break;
  7887. }
  7888. }
  7889. }
  7890. void M600_wait_for_user() {
  7891. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7892. int counterBeep = 0;
  7893. unsigned long waiting_start_time = millis();
  7894. uint8_t wait_for_user_state = 0;
  7895. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7896. //-//
  7897. bool bFirst=true;
  7898. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7899. manage_heater();
  7900. manage_inactivity(true);
  7901. #if BEEPER > 0
  7902. if (counterBeep == 500) {
  7903. counterBeep = 0;
  7904. }
  7905. SET_OUTPUT(BEEPER);
  7906. if (counterBeep == 0) {
  7907. //-//
  7908. //if(eSoundMode==e_SOUND_MODE_LOUD)
  7909. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7910. {
  7911. bFirst=false;
  7912. WRITE(BEEPER, HIGH);
  7913. }
  7914. }
  7915. if (counterBeep == 20) {
  7916. WRITE(BEEPER, LOW);
  7917. }
  7918. counterBeep++;
  7919. #endif
  7920. switch (wait_for_user_state) {
  7921. case 0:
  7922. delay_keep_alive(4);
  7923. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7924. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7925. wait_for_user_state = 1;
  7926. setTargetHotend(0, 0);
  7927. setTargetHotend(0, 1);
  7928. setTargetHotend(0, 2);
  7929. st_synchronize();
  7930. disable_e0();
  7931. disable_e1();
  7932. disable_e2();
  7933. }
  7934. break;
  7935. case 1:
  7936. delay_keep_alive(4);
  7937. if (lcd_clicked()) {
  7938. setTargetHotend(HotendTempBckp, active_extruder);
  7939. lcd_wait_for_heater();
  7940. wait_for_user_state = 2;
  7941. }
  7942. break;
  7943. case 2:
  7944. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7945. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7946. waiting_start_time = millis();
  7947. wait_for_user_state = 0;
  7948. }
  7949. else {
  7950. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7951. lcd_set_cursor(1, 4);
  7952. lcd_print(ftostr3(degHotend(active_extruder)));
  7953. }
  7954. break;
  7955. }
  7956. }
  7957. WRITE(BEEPER, LOW);
  7958. }
  7959. void mmu_M600_load_filament(bool automatic) {
  7960. //load filament for mmu v2
  7961. #ifdef SNMM_V2
  7962. bool response = false;
  7963. bool yes = false;
  7964. if (!automatic) {
  7965. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  7966. if(yes) tmp_extruder = choose_extruder_menu();
  7967. else tmp_extruder = snmm_extruder;
  7968. }
  7969. else {
  7970. tmp_extruder = (tmp_extruder+1)%5;
  7971. }
  7972. lcd_update_enable(false);
  7973. lcd_clear();
  7974. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7975. lcd_print(" ");
  7976. lcd_print(tmp_extruder + 1);
  7977. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7978. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7979. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7980. manage_response();
  7981. snmm_extruder = tmp_extruder; //filament change is finished
  7982. mmu_load_to_nozzle();
  7983. #endif
  7984. }
  7985. void M600_load_filament_movements() {
  7986. #ifdef SNMM
  7987. display_loading();
  7988. do {
  7989. current_position[E_AXIS] += 0.002;
  7990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7991. delay_keep_alive(2);
  7992. } while (!lcd_clicked());
  7993. st_synchronize();
  7994. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7996. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7998. current_position[E_AXIS] += 40;
  7999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8000. current_position[E_AXIS] += 10;
  8001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8002. #else
  8003. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  8005. #endif
  8006. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  8007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  8008. lcd_loading_filament();
  8009. }
  8010. void M600_load_filament() {
  8011. //load filament for single material and SNMM
  8012. lcd_wait_interact();
  8013. //load_filament_time = millis();
  8014. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8015. #ifdef FILAMENT_SENSOR
  8016. fsensor_autoload_check_start();
  8017. #endif //FILAMENT_SENSOR
  8018. while(!lcd_clicked())
  8019. {
  8020. manage_heater();
  8021. manage_inactivity(true);
  8022. #ifdef FILAMENT_SENSOR
  8023. if (fsensor_check_autoload())
  8024. {
  8025. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8026. tone(BEEPER, 1000);
  8027. delay_keep_alive(50);
  8028. noTone(BEEPER);
  8029. break;
  8030. }
  8031. #endif //FILAMENT_SENSOR
  8032. }
  8033. #ifdef FILAMENT_SENSOR
  8034. fsensor_autoload_check_stop();
  8035. #endif //FILAMENT_SENSOR
  8036. KEEPALIVE_STATE(IN_HANDLER);
  8037. #ifdef FILAMENT_SENSOR
  8038. fsensor_oq_meassure_start(70);
  8039. #endif //FILAMENT_SENSOR
  8040. M600_load_filament_movements();
  8041. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8042. tone(BEEPER, 500);
  8043. delay_keep_alive(50);
  8044. noTone(BEEPER);
  8045. #ifdef FILAMENT_SENSOR
  8046. fsensor_oq_meassure_stop();
  8047. if (!fsensor_oq_result())
  8048. {
  8049. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8050. lcd_update_enable(true);
  8051. lcd_update(2);
  8052. if (disable)
  8053. fsensor_disable();
  8054. }
  8055. #endif //FILAMENT_SENSOR
  8056. }
  8057. #define FIL_LOAD_LENGTH 60