Marlin_main.cpp 179 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. bool cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. return true;
  466. }
  467. return false;
  468. }
  469. void cmdqueue_reset()
  470. {
  471. while (cmdqueue_pop_front()) ;
  472. }
  473. // How long a string could be pushed to the front of the command queue?
  474. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  475. // len_asked does not contain the zero terminator size.
  476. bool cmdqueue_could_enqueue_front(int len_asked)
  477. {
  478. // MAX_CMD_SIZE has to accommodate the zero terminator.
  479. if (len_asked >= MAX_CMD_SIZE)
  480. return false;
  481. // Remove the currently processed command from the queue.
  482. if (! cmdbuffer_front_already_processed) {
  483. cmdqueue_pop_front();
  484. cmdbuffer_front_already_processed = true;
  485. }
  486. if (bufindr == bufindw && buflen > 0)
  487. // Full buffer.
  488. return false;
  489. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  490. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  491. if (bufindw < bufindr) {
  492. int bufindr_new = bufindr - len_asked - 2;
  493. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  494. if (endw <= bufindr_new) {
  495. bufindr = bufindr_new;
  496. return true;
  497. }
  498. } else {
  499. // Otherwise the free space is split between the start and end.
  500. if (len_asked + 2 <= bufindr) {
  501. // Could fit at the start.
  502. bufindr -= len_asked + 2;
  503. return true;
  504. }
  505. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  506. if (endw <= bufindr_new) {
  507. memset(cmdbuffer, 0, bufindr);
  508. bufindr = bufindr_new;
  509. return true;
  510. }
  511. }
  512. return false;
  513. }
  514. // Could one enqueue a command of lenthg len_asked into the buffer,
  515. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  516. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  517. // len_asked does not contain the zero terminator size.
  518. bool cmdqueue_could_enqueue_back(int len_asked)
  519. {
  520. // MAX_CMD_SIZE has to accommodate the zero terminator.
  521. if (len_asked >= MAX_CMD_SIZE)
  522. return false;
  523. if (bufindr == bufindw && buflen > 0)
  524. // Full buffer.
  525. return false;
  526. if (serial_count > 0) {
  527. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  528. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  529. // serial data.
  530. // How much memory to reserve for the commands pushed to the front?
  531. // End of the queue, when pushing to the end.
  532. int endw = bufindw + len_asked + 2;
  533. if (bufindw < bufindr)
  534. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  535. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  536. // Otherwise the free space is split between the start and end.
  537. if (// Could one fit to the end, including the reserve?
  538. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  539. // Could one fit to the end, and the reserve to the start?
  540. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  541. return true;
  542. // Could one fit both to the start?
  543. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  544. // Mark the rest of the buffer as used.
  545. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  546. // and point to the start.
  547. bufindw = 0;
  548. return true;
  549. }
  550. } else {
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. }
  572. return false;
  573. }
  574. #ifdef CMDBUFFER_DEBUG
  575. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  576. {
  577. SERIAL_ECHOPGM("Entry nr: ");
  578. SERIAL_ECHO(nr);
  579. SERIAL_ECHOPGM(", type: ");
  580. SERIAL_ECHO(int(*p));
  581. SERIAL_ECHOPGM(", cmd: ");
  582. SERIAL_ECHO(p+1);
  583. SERIAL_ECHOLNPGM("");
  584. }
  585. static void cmdqueue_dump_to_serial()
  586. {
  587. if (buflen == 0) {
  588. SERIAL_ECHOLNPGM("The command buffer is empty.");
  589. } else {
  590. SERIAL_ECHOPGM("Content of the buffer: entries ");
  591. SERIAL_ECHO(buflen);
  592. SERIAL_ECHOPGM(", indr ");
  593. SERIAL_ECHO(bufindr);
  594. SERIAL_ECHOPGM(", indw ");
  595. SERIAL_ECHO(bufindw);
  596. SERIAL_ECHOLNPGM("");
  597. int nr = 0;
  598. if (bufindr < bufindw) {
  599. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  600. cmdqueue_dump_to_serial_single_line(nr, p);
  601. // Skip the command.
  602. for (++p; *p != 0; ++ p);
  603. // Skip the gaps.
  604. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  605. }
  606. } else {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  613. }
  614. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  620. }
  621. }
  622. SERIAL_ECHOLNPGM("End of the buffer.");
  623. }
  624. }
  625. #endif /* CMDBUFFER_DEBUG */
  626. //adds an command to the main command buffer
  627. //thats really done in a non-safe way.
  628. //needs overworking someday
  629. // Currently the maximum length of a command piped through this function is around 20 characters
  630. void enquecommand(const char *cmd, bool from_progmem)
  631. {
  632. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  633. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  634. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  635. if (cmdqueue_could_enqueue_back(len)) {
  636. // This is dangerous if a mixing of serial and this happens
  637. // This may easily be tested: If serial_count > 0, we have a problem.
  638. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  639. if (from_progmem)
  640. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  641. else
  642. strcpy(cmdbuffer + bufindw + 1, cmd);
  643. SERIAL_ECHO_START;
  644. SERIAL_ECHORPGM(MSG_Enqueing);
  645. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  646. SERIAL_ECHOLNPGM("\"");
  647. bufindw += len + 2;
  648. if (bufindw == sizeof(cmdbuffer))
  649. bufindw = 0;
  650. ++ buflen;
  651. #ifdef CMDBUFFER_DEBUG
  652. cmdqueue_dump_to_serial();
  653. #endif /* CMDBUFFER_DEBUG */
  654. } else {
  655. SERIAL_ERROR_START;
  656. SERIAL_ECHORPGM(MSG_Enqueing);
  657. if (from_progmem)
  658. SERIAL_PROTOCOLRPGM(cmd);
  659. else
  660. SERIAL_ECHO(cmd);
  661. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  662. #ifdef CMDBUFFER_DEBUG
  663. cmdqueue_dump_to_serial();
  664. #endif /* CMDBUFFER_DEBUG */
  665. }
  666. }
  667. void enquecommand_front(const char *cmd, bool from_progmem)
  668. {
  669. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  670. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  671. if (cmdqueue_could_enqueue_front(len)) {
  672. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  673. if (from_progmem)
  674. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  675. else
  676. strcpy(cmdbuffer + bufindr + 1, cmd);
  677. ++ buflen;
  678. SERIAL_ECHO_START;
  679. SERIAL_ECHOPGM("Enqueing to the front: \"");
  680. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  681. SERIAL_ECHOLNPGM("\"");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. } else {
  686. SERIAL_ERROR_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. if (from_progmem)
  689. SERIAL_PROTOCOLRPGM(cmd);
  690. else
  691. SERIAL_ECHO(cmd);
  692. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  693. #ifdef CMDBUFFER_DEBUG
  694. cmdqueue_dump_to_serial();
  695. #endif /* CMDBUFFER_DEBUG */
  696. }
  697. }
  698. // Mark the command at the top of the command queue as new.
  699. // Therefore it will not be removed from the queue.
  700. void repeatcommand_front()
  701. {
  702. cmdbuffer_front_already_processed = true;
  703. }
  704. void setup_killpin()
  705. {
  706. #if defined(KILL_PIN) && KILL_PIN > -1
  707. SET_INPUT(KILL_PIN);
  708. WRITE(KILL_PIN,HIGH);
  709. #endif
  710. }
  711. // Set home pin
  712. void setup_homepin(void)
  713. {
  714. #if defined(HOME_PIN) && HOME_PIN > -1
  715. SET_INPUT(HOME_PIN);
  716. WRITE(HOME_PIN,HIGH);
  717. #endif
  718. }
  719. void setup_photpin()
  720. {
  721. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  722. SET_OUTPUT(PHOTOGRAPH_PIN);
  723. WRITE(PHOTOGRAPH_PIN, LOW);
  724. #endif
  725. }
  726. void setup_powerhold()
  727. {
  728. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  729. SET_OUTPUT(SUICIDE_PIN);
  730. WRITE(SUICIDE_PIN, HIGH);
  731. #endif
  732. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  733. SET_OUTPUT(PS_ON_PIN);
  734. #if defined(PS_DEFAULT_OFF)
  735. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  736. #else
  737. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  738. #endif
  739. #endif
  740. }
  741. void suicide()
  742. {
  743. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  744. SET_OUTPUT(SUICIDE_PIN);
  745. WRITE(SUICIDE_PIN, LOW);
  746. #endif
  747. }
  748. void servo_init()
  749. {
  750. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  751. servos[0].attach(SERVO0_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  754. servos[1].attach(SERVO1_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  757. servos[2].attach(SERVO2_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  760. servos[3].attach(SERVO3_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 5)
  763. #error "TODO: enter initalisation code for more servos"
  764. #endif
  765. }
  766. static void lcd_language_menu();
  767. #ifdef MESH_BED_LEVELING
  768. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  769. #endif
  770. // "Setup" function is called by the Arduino framework on startup.
  771. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  772. // are initialized by the main() routine provided by the Arduino framework.
  773. void setup()
  774. {
  775. setup_killpin();
  776. setup_powerhold();
  777. MYSERIAL.begin(BAUDRATE);
  778. SERIAL_PROTOCOLLNPGM("start");
  779. SERIAL_ECHO_START;
  780. #if 0
  781. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  782. for (int i = 0; i < 4096; ++ i) {
  783. int b = eeprom_read_byte((unsigned char*)i);
  784. if (b != 255) {
  785. SERIAL_ECHO(i);
  786. SERIAL_ECHO(":");
  787. SERIAL_ECHO(b);
  788. SERIAL_ECHOLN("");
  789. }
  790. }
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  792. #endif
  793. // Check startup - does nothing if bootloader sets MCUSR to 0
  794. byte mcu = MCUSR;
  795. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  796. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  797. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  798. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  799. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  800. MCUSR=0;
  801. //SERIAL_ECHORPGM(MSG_MARLIN);
  802. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  803. #ifdef STRING_VERSION_CONFIG_H
  804. #ifdef STRING_CONFIG_H_AUTHOR
  805. SERIAL_ECHO_START;
  806. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  807. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  808. SERIAL_ECHORPGM(MSG_AUTHOR);
  809. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  810. SERIAL_ECHOPGM("Compiled: ");
  811. SERIAL_ECHOLNPGM(__DATE__);
  812. #endif
  813. #endif
  814. SERIAL_ECHO_START;
  815. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  816. SERIAL_ECHO(freeMemory());
  817. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  818. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  819. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  820. Config_RetrieveSettings();
  821. tp_init(); // Initialize temperature loop
  822. plan_init(); // Initialize planner;
  823. watchdog_init();
  824. st_init(); // Initialize stepper, this enables interrupts!
  825. setup_photpin();
  826. servo_init();
  827. // Reset the machine correction matrix.
  828. // It does not make sense to load the correction matrix until the machine is homed.
  829. world2machine_reset();
  830. lcd_init();
  831. if (!READ(BTN_ENC))
  832. {
  833. _delay_ms(1000);
  834. if (!READ(BTN_ENC))
  835. {
  836. SET_OUTPUT(BEEPER);
  837. WRITE(BEEPER, HIGH);
  838. lcd_force_language_selection();
  839. farm_no = 0;
  840. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  841. farm_mode = false;
  842. while (!READ(BTN_ENC));
  843. WRITE(BEEPER, LOW);
  844. #ifdef MESH_BED_LEVELING
  845. _delay_ms(2000);
  846. if (!READ(BTN_ENC))
  847. {
  848. WRITE(BEEPER, HIGH);
  849. _delay_ms(100);
  850. WRITE(BEEPER, LOW);
  851. _delay_ms(200);
  852. WRITE(BEEPER, HIGH);
  853. _delay_ms(100);
  854. WRITE(BEEPER, LOW);
  855. int _z = 0;
  856. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  857. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  858. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  859. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  860. }
  861. else
  862. {
  863. WRITE(BEEPER, HIGH);
  864. _delay_ms(100);
  865. WRITE(BEEPER, LOW);
  866. }
  867. #endif // mesh
  868. }
  869. }
  870. else
  871. {
  872. _delay_ms(1000); // wait 1sec to display the splash screen
  873. }
  874. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  875. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  876. #endif
  877. #ifdef DIGIPOT_I2C
  878. digipot_i2c_init();
  879. #endif
  880. setup_homepin();
  881. #if defined(Z_AXIS_ALWAYS_ON)
  882. enable_z();
  883. #endif
  884. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  885. if (farm_no > 0)
  886. {
  887. farm_mode = true;
  888. farm_no = farm_no;
  889. prusa_statistics(8);
  890. }
  891. else
  892. {
  893. farm_mode = false;
  894. farm_no = 0;
  895. }
  896. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  897. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  898. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  899. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  900. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  901. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  902. // where all the EEPROM entries are set to 0x0ff.
  903. // Once a firmware boots up, it forces at least a language selection, which changes
  904. // EEPROM_LANG to number lower than 0x0ff.
  905. // 1) Set a high power mode.
  906. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  907. }
  908. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  909. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  910. // is being written into the EEPROM, so the update procedure will be triggered only once.
  911. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  912. if (lang_selected >= LANG_NUM){
  913. lcd_mylang();
  914. }
  915. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  916. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  917. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  918. // Show the message.
  919. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  920. lcd_update_enable(true);
  921. }
  922. // Store the currently running firmware into an eeprom,
  923. // so the next time the firmware gets updated, it will know from which version it has been updated.
  924. update_current_firmware_version_to_eeprom();
  925. }
  926. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  927. // Before loop(), the setup() function is called by the main() routine.
  928. void loop()
  929. {
  930. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  931. {
  932. is_usb_printing = true;
  933. usb_printing_counter--;
  934. _usb_timer = millis();
  935. }
  936. if (usb_printing_counter == 0)
  937. {
  938. is_usb_printing = false;
  939. }
  940. get_command();
  941. #ifdef SDSUPPORT
  942. card.checkautostart(false);
  943. #endif
  944. if(buflen)
  945. {
  946. #ifdef SDSUPPORT
  947. if(card.saving)
  948. {
  949. // Saving a G-code file onto an SD-card is in progress.
  950. // Saving starts with M28, saving until M29 is seen.
  951. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  952. card.write_command(CMDBUFFER_CURRENT_STRING);
  953. if(card.logging)
  954. process_commands();
  955. else
  956. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  957. } else {
  958. card.closefile();
  959. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  960. }
  961. } else {
  962. process_commands();
  963. }
  964. #else
  965. process_commands();
  966. #endif //SDSUPPORT
  967. if (! cmdbuffer_front_already_processed)
  968. cmdqueue_pop_front();
  969. cmdbuffer_front_already_processed = false;
  970. }
  971. //check heater every n milliseconds
  972. manage_heater();
  973. manage_inactivity();
  974. checkHitEndstops();
  975. lcd_update();
  976. }
  977. void get_command()
  978. {
  979. // Test and reserve space for the new command string.
  980. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  981. return;
  982. while (MYSERIAL.available() > 0) {
  983. char serial_char = MYSERIAL.read();
  984. TimeSent = millis();
  985. TimeNow = millis();
  986. if (serial_char < 0)
  987. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  988. // and Marlin does not support such file names anyway.
  989. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  990. // to a hang-up of the print process from an SD card.
  991. continue;
  992. if(serial_char == '\n' ||
  993. serial_char == '\r' ||
  994. (serial_char == ':' && comment_mode == false) ||
  995. serial_count >= (MAX_CMD_SIZE - 1) )
  996. {
  997. if(!serial_count) { //if empty line
  998. comment_mode = false; //for new command
  999. return;
  1000. }
  1001. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1002. if(!comment_mode){
  1003. comment_mode = false; //for new command
  1004. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1005. {
  1006. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1007. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1008. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1009. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1010. // M110 - set current line number.
  1011. // Line numbers not sent in succession.
  1012. SERIAL_ERROR_START;
  1013. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1014. SERIAL_ERRORLN(gcode_LastN);
  1015. //Serial.println(gcode_N);
  1016. FlushSerialRequestResend();
  1017. serial_count = 0;
  1018. return;
  1019. }
  1020. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1021. {
  1022. byte checksum = 0;
  1023. char *p = cmdbuffer+bufindw+1;
  1024. while (p != strchr_pointer)
  1025. checksum = checksum^(*p++);
  1026. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1027. SERIAL_ERROR_START;
  1028. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1029. SERIAL_ERRORLN(gcode_LastN);
  1030. FlushSerialRequestResend();
  1031. serial_count = 0;
  1032. return;
  1033. }
  1034. // If no errors, remove the checksum and continue parsing.
  1035. *strchr_pointer = 0;
  1036. }
  1037. else
  1038. {
  1039. SERIAL_ERROR_START;
  1040. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1041. SERIAL_ERRORLN(gcode_LastN);
  1042. FlushSerialRequestResend();
  1043. serial_count = 0;
  1044. return;
  1045. }
  1046. gcode_LastN = gcode_N;
  1047. //if no errors, continue parsing
  1048. } // end of 'N' command
  1049. else // if we don't receive 'N' but still see '*'
  1050. {
  1051. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1052. {
  1053. SERIAL_ERROR_START;
  1054. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1055. SERIAL_ERRORLN(gcode_LastN);
  1056. serial_count = 0;
  1057. return;
  1058. }
  1059. } // end of '*' command
  1060. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1061. if (! IS_SD_PRINTING) {
  1062. usb_printing_counter = 10;
  1063. is_usb_printing = true;
  1064. }
  1065. if (Stopped == true) {
  1066. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1067. if (gcode >= 0 && gcode <= 3) {
  1068. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1069. LCD_MESSAGERPGM(MSG_STOPPED);
  1070. }
  1071. }
  1072. } // end of 'G' command
  1073. //If command was e-stop process now
  1074. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1075. kill();
  1076. // Store the current line into buffer, move to the next line.
  1077. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1078. #ifdef CMDBUFFER_DEBUG
  1079. SERIAL_ECHO_START;
  1080. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1081. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1082. SERIAL_ECHOLNPGM("");
  1083. #endif /* CMDBUFFER_DEBUG */
  1084. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1085. if (bufindw == sizeof(cmdbuffer))
  1086. bufindw = 0;
  1087. ++ buflen;
  1088. #ifdef CMDBUFFER_DEBUG
  1089. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1090. SERIAL_ECHO(buflen);
  1091. SERIAL_ECHOLNPGM("");
  1092. #endif /* CMDBUFFER_DEBUG */
  1093. } // end of 'not comment mode'
  1094. serial_count = 0; //clear buffer
  1095. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1096. // in the queue, as this function will reserve the memory.
  1097. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1098. return;
  1099. } // end of "end of line" processing
  1100. else {
  1101. // Not an "end of line" symbol. Store the new character into a buffer.
  1102. if(serial_char == ';') comment_mode = true;
  1103. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1104. }
  1105. } // end of serial line processing loop
  1106. if(farm_mode){
  1107. TimeNow = millis();
  1108. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1109. cmdbuffer[bufindw+serial_count+1] = 0;
  1110. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1111. if (bufindw == sizeof(cmdbuffer))
  1112. bufindw = 0;
  1113. ++ buflen;
  1114. serial_count = 0;
  1115. SERIAL_ECHOPGM("TIMEOUT:");
  1116. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1117. return;
  1118. }
  1119. }
  1120. #ifdef SDSUPPORT
  1121. if(!card.sdprinting || serial_count!=0){
  1122. // If there is a half filled buffer from serial line, wait until return before
  1123. // continuing with the serial line.
  1124. return;
  1125. }
  1126. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1127. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1128. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1129. static bool stop_buffering=false;
  1130. if(buflen==0) stop_buffering=false;
  1131. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1132. while( !card.eof() && !stop_buffering) {
  1133. int16_t n=card.get();
  1134. char serial_char = (char)n;
  1135. if(serial_char == '\n' ||
  1136. serial_char == '\r' ||
  1137. (serial_char == '#' && comment_mode == false) ||
  1138. (serial_char == ':' && comment_mode == false) ||
  1139. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1140. {
  1141. if(card.eof()){
  1142. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1143. stoptime=millis();
  1144. char time[30];
  1145. unsigned long t=(stoptime-starttime)/1000;
  1146. int hours, minutes;
  1147. minutes=(t/60)%60;
  1148. hours=t/60/60;
  1149. save_statistics(total_filament_used, t);
  1150. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLN(time);
  1153. lcd_setstatus(time);
  1154. card.printingHasFinished();
  1155. card.checkautostart(true);
  1156. if (farm_mode)
  1157. {
  1158. prusa_statistics(6);
  1159. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1160. }
  1161. }
  1162. if(serial_char=='#')
  1163. stop_buffering=true;
  1164. if(!serial_count)
  1165. {
  1166. comment_mode = false; //for new command
  1167. return; //if empty line
  1168. }
  1169. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1170. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1171. ++ buflen;
  1172. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1173. if (bufindw == sizeof(cmdbuffer))
  1174. bufindw = 0;
  1175. comment_mode = false; //for new command
  1176. serial_count = 0; //clear buffer
  1177. // The following line will reserve buffer space if available.
  1178. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1179. return;
  1180. }
  1181. else
  1182. {
  1183. if(serial_char == ';') comment_mode = true;
  1184. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1185. }
  1186. }
  1187. #endif //SDSUPPORT
  1188. }
  1189. // Return True if a character was found
  1190. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1191. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1192. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1193. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1194. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1195. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1196. #define DEFINE_PGM_READ_ANY(type, reader) \
  1197. static inline type pgm_read_any(const type *p) \
  1198. { return pgm_read_##reader##_near(p); }
  1199. DEFINE_PGM_READ_ANY(float, float);
  1200. DEFINE_PGM_READ_ANY(signed char, byte);
  1201. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1202. static const PROGMEM type array##_P[3] = \
  1203. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1204. static inline type array(int axis) \
  1205. { return pgm_read_any(&array##_P[axis]); } \
  1206. type array##_ext(int axis) \
  1207. { return pgm_read_any(&array##_P[axis]); }
  1208. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1209. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1210. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1211. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1212. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1213. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1214. static void axis_is_at_home(int axis) {
  1215. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1216. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1217. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1218. }
  1219. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1220. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1221. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1222. saved_feedrate = feedrate;
  1223. saved_feedmultiply = feedmultiply;
  1224. feedmultiply = 100;
  1225. previous_millis_cmd = millis();
  1226. enable_endstops(enable_endstops_now);
  1227. }
  1228. static void clean_up_after_endstop_move() {
  1229. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1230. enable_endstops(false);
  1231. #endif
  1232. feedrate = saved_feedrate;
  1233. feedmultiply = saved_feedmultiply;
  1234. previous_millis_cmd = millis();
  1235. }
  1236. #ifdef ENABLE_AUTO_BED_LEVELING
  1237. #ifdef AUTO_BED_LEVELING_GRID
  1238. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1239. {
  1240. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1241. planeNormal.debug("planeNormal");
  1242. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1243. //bedLevel.debug("bedLevel");
  1244. //plan_bed_level_matrix.debug("bed level before");
  1245. //vector_3 uncorrected_position = plan_get_position_mm();
  1246. //uncorrected_position.debug("position before");
  1247. vector_3 corrected_position = plan_get_position();
  1248. // corrected_position.debug("position after");
  1249. current_position[X_AXIS] = corrected_position.x;
  1250. current_position[Y_AXIS] = corrected_position.y;
  1251. current_position[Z_AXIS] = corrected_position.z;
  1252. // put the bed at 0 so we don't go below it.
  1253. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1255. }
  1256. #else // not AUTO_BED_LEVELING_GRID
  1257. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1258. plan_bed_level_matrix.set_to_identity();
  1259. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1260. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1261. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1262. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1263. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1264. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1265. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1266. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1267. vector_3 corrected_position = plan_get_position();
  1268. current_position[X_AXIS] = corrected_position.x;
  1269. current_position[Y_AXIS] = corrected_position.y;
  1270. current_position[Z_AXIS] = corrected_position.z;
  1271. // put the bed at 0 so we don't go below it.
  1272. current_position[Z_AXIS] = zprobe_zoffset;
  1273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1274. }
  1275. #endif // AUTO_BED_LEVELING_GRID
  1276. static void run_z_probe() {
  1277. plan_bed_level_matrix.set_to_identity();
  1278. feedrate = homing_feedrate[Z_AXIS];
  1279. // move down until you find the bed
  1280. float zPosition = -10;
  1281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1282. st_synchronize();
  1283. // we have to let the planner know where we are right now as it is not where we said to go.
  1284. zPosition = st_get_position_mm(Z_AXIS);
  1285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1286. // move up the retract distance
  1287. zPosition += home_retract_mm(Z_AXIS);
  1288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1289. st_synchronize();
  1290. // move back down slowly to find bed
  1291. feedrate = homing_feedrate[Z_AXIS]/4;
  1292. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1294. st_synchronize();
  1295. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1296. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1298. }
  1299. static void do_blocking_move_to(float x, float y, float z) {
  1300. float oldFeedRate = feedrate;
  1301. feedrate = homing_feedrate[Z_AXIS];
  1302. current_position[Z_AXIS] = z;
  1303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1304. st_synchronize();
  1305. feedrate = XY_TRAVEL_SPEED;
  1306. current_position[X_AXIS] = x;
  1307. current_position[Y_AXIS] = y;
  1308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1309. st_synchronize();
  1310. feedrate = oldFeedRate;
  1311. }
  1312. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1313. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1314. }
  1315. /// Probe bed height at position (x,y), returns the measured z value
  1316. static float probe_pt(float x, float y, float z_before) {
  1317. // move to right place
  1318. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1319. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1320. run_z_probe();
  1321. float measured_z = current_position[Z_AXIS];
  1322. SERIAL_PROTOCOLRPGM(MSG_BED);
  1323. SERIAL_PROTOCOLPGM(" x: ");
  1324. SERIAL_PROTOCOL(x);
  1325. SERIAL_PROTOCOLPGM(" y: ");
  1326. SERIAL_PROTOCOL(y);
  1327. SERIAL_PROTOCOLPGM(" z: ");
  1328. SERIAL_PROTOCOL(measured_z);
  1329. SERIAL_PROTOCOLPGM("\n");
  1330. return measured_z;
  1331. }
  1332. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1333. void homeaxis(int axis) {
  1334. #define HOMEAXIS_DO(LETTER) \
  1335. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1336. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1337. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1338. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1339. 0) {
  1340. int axis_home_dir = home_dir(axis);
  1341. current_position[axis] = 0;
  1342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1344. feedrate = homing_feedrate[axis];
  1345. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1346. st_synchronize();
  1347. current_position[axis] = 0;
  1348. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1349. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1350. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1351. st_synchronize();
  1352. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1353. feedrate = homing_feedrate[axis]/2 ;
  1354. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1355. st_synchronize();
  1356. axis_is_at_home(axis);
  1357. destination[axis] = current_position[axis];
  1358. feedrate = 0.0;
  1359. endstops_hit_on_purpose();
  1360. axis_known_position[axis] = true;
  1361. }
  1362. }
  1363. void home_xy()
  1364. {
  1365. set_destination_to_current();
  1366. homeaxis(X_AXIS);
  1367. homeaxis(Y_AXIS);
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1369. endstops_hit_on_purpose();
  1370. }
  1371. void refresh_cmd_timeout(void)
  1372. {
  1373. previous_millis_cmd = millis();
  1374. }
  1375. #ifdef FWRETRACT
  1376. void retract(bool retracting, bool swapretract = false) {
  1377. if(retracting && !retracted[active_extruder]) {
  1378. destination[X_AXIS]=current_position[X_AXIS];
  1379. destination[Y_AXIS]=current_position[Y_AXIS];
  1380. destination[Z_AXIS]=current_position[Z_AXIS];
  1381. destination[E_AXIS]=current_position[E_AXIS];
  1382. if (swapretract) {
  1383. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1384. } else {
  1385. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1386. }
  1387. plan_set_e_position(current_position[E_AXIS]);
  1388. float oldFeedrate = feedrate;
  1389. feedrate=retract_feedrate*60;
  1390. retracted[active_extruder]=true;
  1391. prepare_move();
  1392. current_position[Z_AXIS]-=retract_zlift;
  1393. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1394. prepare_move();
  1395. feedrate = oldFeedrate;
  1396. } else if(!retracting && retracted[active_extruder]) {
  1397. destination[X_AXIS]=current_position[X_AXIS];
  1398. destination[Y_AXIS]=current_position[Y_AXIS];
  1399. destination[Z_AXIS]=current_position[Z_AXIS];
  1400. destination[E_AXIS]=current_position[E_AXIS];
  1401. current_position[Z_AXIS]+=retract_zlift;
  1402. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1403. //prepare_move();
  1404. if (swapretract) {
  1405. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1406. } else {
  1407. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1408. }
  1409. plan_set_e_position(current_position[E_AXIS]);
  1410. float oldFeedrate = feedrate;
  1411. feedrate=retract_recover_feedrate*60;
  1412. retracted[active_extruder]=false;
  1413. prepare_move();
  1414. feedrate = oldFeedrate;
  1415. }
  1416. } //retract
  1417. #endif //FWRETRACT
  1418. void process_commands()
  1419. {
  1420. #ifdef FILAMENT_RUNOUT_SUPPORT
  1421. SET_INPUT(FR_SENS);
  1422. #endif
  1423. #ifdef CMDBUFFER_DEBUG
  1424. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1425. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1426. SERIAL_ECHOLNPGM("");
  1427. SERIAL_ECHOPGM("In cmdqueue: ");
  1428. SERIAL_ECHO(buflen);
  1429. SERIAL_ECHOLNPGM("");
  1430. #endif /* CMDBUFFER_DEBUG */
  1431. unsigned long codenum; //throw away variable
  1432. char *starpos = NULL;
  1433. #ifdef ENABLE_AUTO_BED_LEVELING
  1434. float x_tmp, y_tmp, z_tmp, real_z;
  1435. #endif
  1436. // PRUSA GCODES
  1437. if(code_seen("PRUSA")){
  1438. if(code_seen("Fir")){
  1439. SERIAL_PROTOCOLLN(FW_version);
  1440. } else if(code_seen("Rev")){
  1441. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1442. } else if(code_seen("Lang")) {
  1443. lcd_force_language_selection();
  1444. } else if(code_seen("Lz")) {
  1445. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1446. }
  1447. //else if (code_seen('Cal')) {
  1448. // lcd_calibration();
  1449. // }
  1450. }
  1451. else
  1452. if(code_seen('G'))
  1453. {
  1454. switch((int)code_value())
  1455. {
  1456. case 0: // G0 -> G1
  1457. case 1: // G1
  1458. if(Stopped == false) {
  1459. #ifdef FILAMENT_RUNOUT_SUPPORT
  1460. if(READ(FR_SENS)){
  1461. feedmultiplyBckp=feedmultiply;
  1462. float target[4];
  1463. float lastpos[4];
  1464. target[X_AXIS]=current_position[X_AXIS];
  1465. target[Y_AXIS]=current_position[Y_AXIS];
  1466. target[Z_AXIS]=current_position[Z_AXIS];
  1467. target[E_AXIS]=current_position[E_AXIS];
  1468. lastpos[X_AXIS]=current_position[X_AXIS];
  1469. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1470. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1471. lastpos[E_AXIS]=current_position[E_AXIS];
  1472. //retract by E
  1473. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1475. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1477. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1478. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1479. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1480. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1482. //finish moves
  1483. st_synchronize();
  1484. //disable extruder steppers so filament can be removed
  1485. disable_e0();
  1486. disable_e1();
  1487. disable_e2();
  1488. delay(100);
  1489. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1490. uint8_t cnt=0;
  1491. int counterBeep = 0;
  1492. lcd_wait_interact();
  1493. while(!lcd_clicked()){
  1494. cnt++;
  1495. manage_heater();
  1496. manage_inactivity(true);
  1497. //lcd_update();
  1498. if(cnt==0)
  1499. {
  1500. #if BEEPER > 0
  1501. if (counterBeep== 500){
  1502. counterBeep = 0;
  1503. }
  1504. SET_OUTPUT(BEEPER);
  1505. if (counterBeep== 0){
  1506. WRITE(BEEPER,HIGH);
  1507. }
  1508. if (counterBeep== 20){
  1509. WRITE(BEEPER,LOW);
  1510. }
  1511. counterBeep++;
  1512. #else
  1513. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1514. lcd_buzz(1000/6,100);
  1515. #else
  1516. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1517. #endif
  1518. #endif
  1519. }
  1520. }
  1521. WRITE(BEEPER,LOW);
  1522. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1523. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1524. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1525. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1526. lcd_change_fil_state = 0;
  1527. lcd_loading_filament();
  1528. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1529. lcd_change_fil_state = 0;
  1530. lcd_alright();
  1531. switch(lcd_change_fil_state){
  1532. case 2:
  1533. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1535. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1537. lcd_loading_filament();
  1538. break;
  1539. case 3:
  1540. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1542. lcd_loading_color();
  1543. break;
  1544. default:
  1545. lcd_change_success();
  1546. break;
  1547. }
  1548. }
  1549. target[E_AXIS]+= 5;
  1550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1551. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1553. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1554. //plan_set_e_position(current_position[E_AXIS]);
  1555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1556. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1557. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1558. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1559. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1560. plan_set_e_position(lastpos[E_AXIS]);
  1561. feedmultiply=feedmultiplyBckp;
  1562. char cmd[9];
  1563. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1564. enquecommand(cmd);
  1565. }
  1566. #endif
  1567. get_coordinates(); // For X Y Z E F
  1568. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1569. #ifdef FWRETRACT
  1570. if(autoretract_enabled)
  1571. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1572. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1573. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1574. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1575. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1576. retract(!retracted);
  1577. return;
  1578. }
  1579. }
  1580. #endif //FWRETRACT
  1581. prepare_move();
  1582. //ClearToSend();
  1583. }
  1584. break;
  1585. case 2: // G2 - CW ARC
  1586. if(Stopped == false) {
  1587. get_arc_coordinates();
  1588. prepare_arc_move(true);
  1589. }
  1590. break;
  1591. case 3: // G3 - CCW ARC
  1592. if(Stopped == false) {
  1593. get_arc_coordinates();
  1594. prepare_arc_move(false);
  1595. }
  1596. break;
  1597. case 4: // G4 dwell
  1598. LCD_MESSAGERPGM(MSG_DWELL);
  1599. codenum = 0;
  1600. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1601. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1602. st_synchronize();
  1603. codenum += millis(); // keep track of when we started waiting
  1604. previous_millis_cmd = millis();
  1605. while(millis() < codenum) {
  1606. manage_heater();
  1607. manage_inactivity();
  1608. lcd_update();
  1609. }
  1610. break;
  1611. #ifdef FWRETRACT
  1612. case 10: // G10 retract
  1613. #if EXTRUDERS > 1
  1614. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1615. retract(true,retracted_swap[active_extruder]);
  1616. #else
  1617. retract(true);
  1618. #endif
  1619. break;
  1620. case 11: // G11 retract_recover
  1621. #if EXTRUDERS > 1
  1622. retract(false,retracted_swap[active_extruder]);
  1623. #else
  1624. retract(false);
  1625. #endif
  1626. break;
  1627. #endif //FWRETRACT
  1628. case 28: //G28 Home all Axis one at a time
  1629. #ifdef ENABLE_AUTO_BED_LEVELING
  1630. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1631. #endif //ENABLE_AUTO_BED_LEVELING
  1632. // For mesh bed leveling deactivate the matrix temporarily
  1633. #ifdef MESH_BED_LEVELING
  1634. mbl.active = 0;
  1635. #endif
  1636. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1637. // the planner will not perform any adjustments in the XY plane.
  1638. // Wait for the motors to stop and update the current position with the absolute values.
  1639. world2machine_revert_to_uncorrected();
  1640. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1641. // consumed during the first movements following this statement.
  1642. babystep_undo();
  1643. saved_feedrate = feedrate;
  1644. saved_feedmultiply = feedmultiply;
  1645. feedmultiply = 100;
  1646. previous_millis_cmd = millis();
  1647. enable_endstops(true);
  1648. for(int8_t i=0; i < NUM_AXIS; i++)
  1649. destination[i] = current_position[i];
  1650. feedrate = 0.0;
  1651. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1652. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1653. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1654. homeaxis(Z_AXIS);
  1655. }
  1656. #endif
  1657. #ifdef QUICK_HOME
  1658. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1659. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1660. {
  1661. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1662. int x_axis_home_dir = home_dir(X_AXIS);
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1665. feedrate = homing_feedrate[X_AXIS];
  1666. if(homing_feedrate[Y_AXIS]<feedrate)
  1667. feedrate = homing_feedrate[Y_AXIS];
  1668. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1669. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1670. } else {
  1671. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1672. }
  1673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1674. st_synchronize();
  1675. axis_is_at_home(X_AXIS);
  1676. axis_is_at_home(Y_AXIS);
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. destination[X_AXIS] = current_position[X_AXIS];
  1679. destination[Y_AXIS] = current_position[Y_AXIS];
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. feedrate = 0.0;
  1682. st_synchronize();
  1683. endstops_hit_on_purpose();
  1684. current_position[X_AXIS] = destination[X_AXIS];
  1685. current_position[Y_AXIS] = destination[Y_AXIS];
  1686. current_position[Z_AXIS] = destination[Z_AXIS];
  1687. }
  1688. #endif /* QUICK_HOME */
  1689. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1690. homeaxis(X_AXIS);
  1691. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1692. homeaxis(Y_AXIS);
  1693. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1694. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1695. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1696. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1697. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1698. #ifndef Z_SAFE_HOMING
  1699. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1700. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1701. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1702. feedrate = max_feedrate[Z_AXIS];
  1703. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1704. st_synchronize();
  1705. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1706. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1707. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1708. {
  1709. homeaxis(X_AXIS);
  1710. homeaxis(Y_AXIS);
  1711. }
  1712. // 1st mesh bed leveling measurement point, corrected.
  1713. world2machine_initialize();
  1714. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1715. world2machine_reset();
  1716. if (destination[Y_AXIS] < Y_MIN_POS)
  1717. destination[Y_AXIS] = Y_MIN_POS;
  1718. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1719. feedrate = homing_feedrate[Z_AXIS]/10;
  1720. current_position[Z_AXIS] = 0;
  1721. enable_endstops(false);
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1724. st_synchronize();
  1725. current_position[X_AXIS] = destination[X_AXIS];
  1726. current_position[Y_AXIS] = destination[Y_AXIS];
  1727. enable_endstops(true);
  1728. endstops_hit_on_purpose();
  1729. homeaxis(Z_AXIS);
  1730. #else // MESH_BED_LEVELING
  1731. homeaxis(Z_AXIS);
  1732. #endif // MESH_BED_LEVELING
  1733. }
  1734. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1735. if(home_all_axis) {
  1736. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1737. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1738. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1739. feedrate = XY_TRAVEL_SPEED/60;
  1740. current_position[Z_AXIS] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1743. st_synchronize();
  1744. current_position[X_AXIS] = destination[X_AXIS];
  1745. current_position[Y_AXIS] = destination[Y_AXIS];
  1746. homeaxis(Z_AXIS);
  1747. }
  1748. // Let's see if X and Y are homed and probe is inside bed area.
  1749. if(code_seen(axis_codes[Z_AXIS])) {
  1750. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1751. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1752. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1753. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1754. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1755. current_position[Z_AXIS] = 0;
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1758. feedrate = max_feedrate[Z_AXIS];
  1759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1760. st_synchronize();
  1761. homeaxis(Z_AXIS);
  1762. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1763. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1764. SERIAL_ECHO_START;
  1765. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1766. } else {
  1767. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1768. SERIAL_ECHO_START;
  1769. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1770. }
  1771. }
  1772. #endif // Z_SAFE_HOMING
  1773. #endif // Z_HOME_DIR < 0
  1774. if(code_seen(axis_codes[Z_AXIS])) {
  1775. if(code_value_long() != 0) {
  1776. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1777. }
  1778. }
  1779. #ifdef ENABLE_AUTO_BED_LEVELING
  1780. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1781. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1782. }
  1783. #endif
  1784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1785. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1786. enable_endstops(false);
  1787. #endif
  1788. feedrate = saved_feedrate;
  1789. feedmultiply = saved_feedmultiply;
  1790. previous_millis_cmd = millis();
  1791. endstops_hit_on_purpose();
  1792. #ifndef MESH_BED_LEVELING
  1793. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1794. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1795. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1796. lcd_adjust_z();
  1797. #endif
  1798. // Load the machine correction matrix
  1799. world2machine_initialize();
  1800. // and correct the current_position to match the transformed coordinate system.
  1801. world2machine_update_current();
  1802. #ifdef MESH_BED_LEVELING
  1803. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1804. {
  1805. }
  1806. else
  1807. {
  1808. st_synchronize();
  1809. // Push the commands to the front of the message queue in the reverse order!
  1810. // There shall be always enough space reserved for these commands.
  1811. // enquecommand_front_P((PSTR("G80")));
  1812. goto case_G80;
  1813. }
  1814. #endif
  1815. if (farm_mode) { prusa_statistics(20); };
  1816. break;
  1817. #ifdef ENABLE_AUTO_BED_LEVELING
  1818. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1819. {
  1820. #if Z_MIN_PIN == -1
  1821. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1822. #endif
  1823. // Prevent user from running a G29 without first homing in X and Y
  1824. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1825. {
  1826. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1827. SERIAL_ECHO_START;
  1828. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1829. break; // abort G29, since we don't know where we are
  1830. }
  1831. st_synchronize();
  1832. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1833. //vector_3 corrected_position = plan_get_position_mm();
  1834. //corrected_position.debug("position before G29");
  1835. plan_bed_level_matrix.set_to_identity();
  1836. vector_3 uncorrected_position = plan_get_position();
  1837. //uncorrected_position.debug("position durring G29");
  1838. current_position[X_AXIS] = uncorrected_position.x;
  1839. current_position[Y_AXIS] = uncorrected_position.y;
  1840. current_position[Z_AXIS] = uncorrected_position.z;
  1841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1842. setup_for_endstop_move();
  1843. feedrate = homing_feedrate[Z_AXIS];
  1844. #ifdef AUTO_BED_LEVELING_GRID
  1845. // probe at the points of a lattice grid
  1846. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1847. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1848. // solve the plane equation ax + by + d = z
  1849. // A is the matrix with rows [x y 1] for all the probed points
  1850. // B is the vector of the Z positions
  1851. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1852. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1853. // "A" matrix of the linear system of equations
  1854. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1855. // "B" vector of Z points
  1856. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1857. int probePointCounter = 0;
  1858. bool zig = true;
  1859. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1860. {
  1861. int xProbe, xInc;
  1862. if (zig)
  1863. {
  1864. xProbe = LEFT_PROBE_BED_POSITION;
  1865. //xEnd = RIGHT_PROBE_BED_POSITION;
  1866. xInc = xGridSpacing;
  1867. zig = false;
  1868. } else // zag
  1869. {
  1870. xProbe = RIGHT_PROBE_BED_POSITION;
  1871. //xEnd = LEFT_PROBE_BED_POSITION;
  1872. xInc = -xGridSpacing;
  1873. zig = true;
  1874. }
  1875. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1876. {
  1877. float z_before;
  1878. if (probePointCounter == 0)
  1879. {
  1880. // raise before probing
  1881. z_before = Z_RAISE_BEFORE_PROBING;
  1882. } else
  1883. {
  1884. // raise extruder
  1885. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1886. }
  1887. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1888. eqnBVector[probePointCounter] = measured_z;
  1889. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1890. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1891. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1892. probePointCounter++;
  1893. xProbe += xInc;
  1894. }
  1895. }
  1896. clean_up_after_endstop_move();
  1897. // solve lsq problem
  1898. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1899. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1900. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1901. SERIAL_PROTOCOLPGM(" b: ");
  1902. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1903. SERIAL_PROTOCOLPGM(" d: ");
  1904. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1905. set_bed_level_equation_lsq(plane_equation_coefficients);
  1906. free(plane_equation_coefficients);
  1907. #else // AUTO_BED_LEVELING_GRID not defined
  1908. // Probe at 3 arbitrary points
  1909. // probe 1
  1910. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1911. // probe 2
  1912. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1913. // probe 3
  1914. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1915. clean_up_after_endstop_move();
  1916. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1917. #endif // AUTO_BED_LEVELING_GRID
  1918. st_synchronize();
  1919. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1920. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1921. // When the bed is uneven, this height must be corrected.
  1922. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1923. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1924. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1925. z_tmp = current_position[Z_AXIS];
  1926. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1927. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1929. }
  1930. break;
  1931. #ifndef Z_PROBE_SLED
  1932. case 30: // G30 Single Z Probe
  1933. {
  1934. st_synchronize();
  1935. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1936. setup_for_endstop_move();
  1937. feedrate = homing_feedrate[Z_AXIS];
  1938. run_z_probe();
  1939. SERIAL_PROTOCOLPGM(MSG_BED);
  1940. SERIAL_PROTOCOLPGM(" X: ");
  1941. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1942. SERIAL_PROTOCOLPGM(" Y: ");
  1943. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1944. SERIAL_PROTOCOLPGM(" Z: ");
  1945. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1946. SERIAL_PROTOCOLPGM("\n");
  1947. clean_up_after_endstop_move();
  1948. }
  1949. break;
  1950. #else
  1951. case 31: // dock the sled
  1952. dock_sled(true);
  1953. break;
  1954. case 32: // undock the sled
  1955. dock_sled(false);
  1956. break;
  1957. #endif // Z_PROBE_SLED
  1958. #endif // ENABLE_AUTO_BED_LEVELING
  1959. #ifdef MESH_BED_LEVELING
  1960. case 30: // G30 Single Z Probe
  1961. {
  1962. st_synchronize();
  1963. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1964. setup_for_endstop_move();
  1965. feedrate = homing_feedrate[Z_AXIS];
  1966. find_bed_induction_sensor_point_z(-10.f, 3);
  1967. SERIAL_PROTOCOLRPGM(MSG_BED);
  1968. SERIAL_PROTOCOLPGM(" X: ");
  1969. MYSERIAL.print(current_position[X_AXIS], 5);
  1970. SERIAL_PROTOCOLPGM(" Y: ");
  1971. MYSERIAL.print(current_position[Y_AXIS], 5);
  1972. SERIAL_PROTOCOLPGM(" Z: ");
  1973. MYSERIAL.print(current_position[Z_AXIS], 5);
  1974. SERIAL_PROTOCOLPGM("\n");
  1975. clean_up_after_endstop_move();
  1976. }
  1977. break;
  1978. /**
  1979. * G80: Mesh-based Z probe, probes a grid and produces a
  1980. * mesh to compensate for variable bed height
  1981. *
  1982. * The S0 report the points as below
  1983. *
  1984. * +----> X-axis
  1985. * |
  1986. * |
  1987. * v Y-axis
  1988. *
  1989. */
  1990. case 80:
  1991. case_G80:
  1992. {
  1993. // Firstly check if we know where we are
  1994. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1995. // We don't know where we are! HOME!
  1996. // Push the commands to the front of the message queue in the reverse order!
  1997. // There shall be always enough space reserved for these commands.
  1998. repeatcommand_front(); // repeat G80 with all its parameters
  1999. enquecommand_front_P((PSTR("G28 W0")));
  2000. break;
  2001. }
  2002. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2003. bool custom_message_old = custom_message;
  2004. unsigned int custom_message_type_old = custom_message_type;
  2005. unsigned int custom_message_state_old = custom_message_state;
  2006. custom_message = true;
  2007. custom_message_type = 1;
  2008. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2009. lcd_update(1);
  2010. mbl.reset();
  2011. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2012. // consumed during the first movements following this statement.
  2013. babystep_undo();
  2014. // Cycle through all points and probe them
  2015. // First move up. During this first movement, the babystepping will be reverted.
  2016. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2018. // The move to the first calibration point.
  2019. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2020. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2021. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2022. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2024. // Wait until the move is finished.
  2025. st_synchronize();
  2026. int mesh_point = 0;
  2027. int ix = 0;
  2028. int iy = 0;
  2029. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2030. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2031. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2032. bool has_z = is_bed_z_jitter_data_valid();
  2033. setup_for_endstop_move(false);
  2034. const char *kill_message = NULL;
  2035. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2036. // Get coords of a measuring point.
  2037. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2038. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2039. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2040. float z0 = 0.f;
  2041. if (has_z && mesh_point > 0) {
  2042. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2043. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2044. #if 0
  2045. SERIAL_ECHOPGM("Bed leveling, point: ");
  2046. MYSERIAL.print(mesh_point);
  2047. SERIAL_ECHOPGM(", calibration z: ");
  2048. MYSERIAL.print(z0, 5);
  2049. SERIAL_ECHOLNPGM("");
  2050. #endif
  2051. }
  2052. // Move Z up to MESH_HOME_Z_SEARCH.
  2053. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2055. st_synchronize();
  2056. // Move to XY position of the sensor point.
  2057. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2058. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2059. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2061. st_synchronize();
  2062. // Go down until endstop is hit
  2063. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2064. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2065. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2066. break;
  2067. }
  2068. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2069. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2070. break;
  2071. }
  2072. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2073. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2074. break;
  2075. }
  2076. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2077. custom_message_state--;
  2078. mesh_point++;
  2079. lcd_update(1);
  2080. }
  2081. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2083. st_synchronize();
  2084. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2085. kill(kill_message);
  2086. }
  2087. clean_up_after_endstop_move();
  2088. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2089. babystep_apply();
  2090. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2091. for (uint8_t i = 0; i < 4; ++ i) {
  2092. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2093. long correction = 0;
  2094. if (code_seen(codes[i]))
  2095. correction = code_value_long();
  2096. else if (eeprom_bed_correction_valid) {
  2097. unsigned char *addr = (i < 2) ?
  2098. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2099. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2100. correction = eeprom_read_int8(addr);
  2101. }
  2102. if (correction == 0)
  2103. continue;
  2104. float offset = float(correction) * 0.001f;
  2105. if (fabs(offset) > 0.101f) {
  2106. SERIAL_ERROR_START;
  2107. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2108. SERIAL_ECHO(offset);
  2109. SERIAL_ECHOLNPGM(" microns");
  2110. } else {
  2111. switch (i) {
  2112. case 0:
  2113. for (uint8_t row = 0; row < 3; ++ row) {
  2114. mbl.z_values[row][1] += 0.5f * offset;
  2115. mbl.z_values[row][0] += offset;
  2116. }
  2117. break;
  2118. case 1:
  2119. for (uint8_t row = 0; row < 3; ++ row) {
  2120. mbl.z_values[row][1] += 0.5f * offset;
  2121. mbl.z_values[row][2] += offset;
  2122. }
  2123. break;
  2124. case 2:
  2125. for (uint8_t col = 0; col < 3; ++ col) {
  2126. mbl.z_values[1][col] += 0.5f * offset;
  2127. mbl.z_values[0][col] += offset;
  2128. }
  2129. break;
  2130. case 3:
  2131. for (uint8_t col = 0; col < 3; ++ col) {
  2132. mbl.z_values[1][col] += 0.5f * offset;
  2133. mbl.z_values[2][col] += offset;
  2134. }
  2135. break;
  2136. }
  2137. }
  2138. }
  2139. mbl.upsample_3x3();
  2140. mbl.active = 1;
  2141. go_home_with_z_lift();
  2142. // Restore custom message state
  2143. custom_message = custom_message_old;
  2144. custom_message_type = custom_message_type_old;
  2145. custom_message_state = custom_message_state_old;
  2146. lcd_update(1);
  2147. }
  2148. break;
  2149. /**
  2150. * G81: Print mesh bed leveling status and bed profile if activated
  2151. */
  2152. case 81:
  2153. if (mbl.active) {
  2154. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2155. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2156. SERIAL_PROTOCOLPGM(",");
  2157. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2158. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2159. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2160. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2161. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2162. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2163. SERIAL_PROTOCOLPGM(" ");
  2164. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2165. }
  2166. SERIAL_PROTOCOLPGM("\n");
  2167. }
  2168. }
  2169. else
  2170. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2171. break;
  2172. #if 0
  2173. /**
  2174. * G82: Single Z probe at current location
  2175. *
  2176. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2177. *
  2178. */
  2179. case 82:
  2180. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2181. setup_for_endstop_move();
  2182. find_bed_induction_sensor_point_z();
  2183. clean_up_after_endstop_move();
  2184. SERIAL_PROTOCOLPGM("Bed found at: ");
  2185. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2186. SERIAL_PROTOCOLPGM("\n");
  2187. break;
  2188. /**
  2189. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2190. */
  2191. case 83:
  2192. {
  2193. int babystepz = code_seen('S') ? code_value() : 0;
  2194. int BabyPosition = code_seen('P') ? code_value() : 0;
  2195. if (babystepz != 0) {
  2196. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2197. // Is the axis indexed starting with zero or one?
  2198. if (BabyPosition > 4) {
  2199. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2200. }else{
  2201. // Save it to the eeprom
  2202. babystepLoadZ = babystepz;
  2203. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2204. // adjust the Z
  2205. babystepsTodoZadd(babystepLoadZ);
  2206. }
  2207. }
  2208. }
  2209. break;
  2210. /**
  2211. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2212. */
  2213. case 84:
  2214. babystepsTodoZsubtract(babystepLoadZ);
  2215. // babystepLoadZ = 0;
  2216. break;
  2217. /**
  2218. * G85: Prusa3D specific: Pick best babystep
  2219. */
  2220. case 85:
  2221. lcd_pick_babystep();
  2222. break;
  2223. #endif
  2224. /**
  2225. * G86: Prusa3D specific: Disable babystep correction after home.
  2226. * This G-code will be performed at the start of a calibration script.
  2227. */
  2228. case 86:
  2229. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2230. break;
  2231. /**
  2232. * G87: Prusa3D specific: Enable babystep correction after home
  2233. * This G-code will be performed at the end of a calibration script.
  2234. */
  2235. case 87:
  2236. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2237. break;
  2238. /**
  2239. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2240. */
  2241. case 88:
  2242. break;
  2243. #endif // ENABLE_MESH_BED_LEVELING
  2244. case 90: // G90
  2245. relative_mode = false;
  2246. break;
  2247. case 91: // G91
  2248. relative_mode = true;
  2249. break;
  2250. case 92: // G92
  2251. if(!code_seen(axis_codes[E_AXIS]))
  2252. st_synchronize();
  2253. for(int8_t i=0; i < NUM_AXIS; i++) {
  2254. if(code_seen(axis_codes[i])) {
  2255. if(i == E_AXIS) {
  2256. current_position[i] = code_value();
  2257. plan_set_e_position(current_position[E_AXIS]);
  2258. }
  2259. else {
  2260. current_position[i] = code_value()+add_homing[i];
  2261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2262. }
  2263. }
  2264. }
  2265. break;
  2266. case 98:
  2267. farm_no = 21;
  2268. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2269. farm_mode = true;
  2270. break;
  2271. case 99:
  2272. farm_no = 0;
  2273. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2274. farm_mode = false;
  2275. break;
  2276. }
  2277. } // end if(code_seen('G'))
  2278. else if(code_seen('M'))
  2279. {
  2280. switch( (int)code_value() )
  2281. {
  2282. #ifdef ULTIPANEL
  2283. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2284. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2285. {
  2286. char *src = strchr_pointer + 2;
  2287. codenum = 0;
  2288. bool hasP = false, hasS = false;
  2289. if (code_seen('P')) {
  2290. codenum = code_value(); // milliseconds to wait
  2291. hasP = codenum > 0;
  2292. }
  2293. if (code_seen('S')) {
  2294. codenum = code_value() * 1000; // seconds to wait
  2295. hasS = codenum > 0;
  2296. }
  2297. starpos = strchr(src, '*');
  2298. if (starpos != NULL) *(starpos) = '\0';
  2299. while (*src == ' ') ++src;
  2300. if (!hasP && !hasS && *src != '\0') {
  2301. lcd_setstatus(src);
  2302. } else {
  2303. LCD_MESSAGERPGM(MSG_USERWAIT);
  2304. }
  2305. lcd_ignore_click();
  2306. st_synchronize();
  2307. previous_millis_cmd = millis();
  2308. if (codenum > 0){
  2309. codenum += millis(); // keep track of when we started waiting
  2310. while(millis() < codenum && !lcd_clicked()){
  2311. manage_heater();
  2312. manage_inactivity();
  2313. lcd_update();
  2314. }
  2315. lcd_ignore_click(false);
  2316. }else{
  2317. if (!lcd_detected())
  2318. break;
  2319. while(!lcd_clicked()){
  2320. manage_heater();
  2321. manage_inactivity();
  2322. lcd_update();
  2323. }
  2324. }
  2325. if (IS_SD_PRINTING)
  2326. LCD_MESSAGERPGM(MSG_RESUMING);
  2327. else
  2328. LCD_MESSAGERPGM(WELCOME_MSG);
  2329. }
  2330. break;
  2331. #endif
  2332. case 17:
  2333. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2334. enable_x();
  2335. enable_y();
  2336. enable_z();
  2337. enable_e0();
  2338. enable_e1();
  2339. enable_e2();
  2340. break;
  2341. #ifdef SDSUPPORT
  2342. case 20: // M20 - list SD card
  2343. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2344. card.ls();
  2345. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2346. break;
  2347. case 21: // M21 - init SD card
  2348. card.initsd();
  2349. break;
  2350. case 22: //M22 - release SD card
  2351. card.release();
  2352. break;
  2353. case 23: //M23 - Select file
  2354. starpos = (strchr(strchr_pointer + 4,'*'));
  2355. if(starpos!=NULL)
  2356. *(starpos)='\0';
  2357. card.openFile(strchr_pointer + 4,true);
  2358. break;
  2359. case 24: //M24 - Start SD print
  2360. card.startFileprint();
  2361. starttime=millis();
  2362. break;
  2363. case 25: //M25 - Pause SD print
  2364. card.pauseSDPrint();
  2365. break;
  2366. case 26: //M26 - Set SD index
  2367. if(card.cardOK && code_seen('S')) {
  2368. card.setIndex(code_value_long());
  2369. }
  2370. break;
  2371. case 27: //M27 - Get SD status
  2372. card.getStatus();
  2373. break;
  2374. case 28: //M28 - Start SD write
  2375. starpos = (strchr(strchr_pointer + 4,'*'));
  2376. if(starpos != NULL){
  2377. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2378. strchr_pointer = strchr(npos,' ') + 1;
  2379. *(starpos) = '\0';
  2380. }
  2381. card.openFile(strchr_pointer+4,false);
  2382. break;
  2383. case 29: //M29 - Stop SD write
  2384. //processed in write to file routine above
  2385. //card,saving = false;
  2386. break;
  2387. case 30: //M30 <filename> Delete File
  2388. if (card.cardOK){
  2389. card.closefile();
  2390. starpos = (strchr(strchr_pointer + 4,'*'));
  2391. if(starpos != NULL){
  2392. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2393. strchr_pointer = strchr(npos,' ') + 1;
  2394. *(starpos) = '\0';
  2395. }
  2396. card.removeFile(strchr_pointer + 4);
  2397. }
  2398. break;
  2399. case 32: //M32 - Select file and start SD print
  2400. {
  2401. if(card.sdprinting) {
  2402. st_synchronize();
  2403. }
  2404. starpos = (strchr(strchr_pointer + 4,'*'));
  2405. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2406. if(namestartpos==NULL)
  2407. {
  2408. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2409. }
  2410. else
  2411. namestartpos++; //to skip the '!'
  2412. if(starpos!=NULL)
  2413. *(starpos)='\0';
  2414. bool call_procedure=(code_seen('P'));
  2415. if(strchr_pointer>namestartpos)
  2416. call_procedure=false; //false alert, 'P' found within filename
  2417. if( card.cardOK )
  2418. {
  2419. card.openFile(namestartpos,true,!call_procedure);
  2420. if(code_seen('S'))
  2421. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2422. card.setIndex(code_value_long());
  2423. card.startFileprint();
  2424. if(!call_procedure)
  2425. starttime=millis(); //procedure calls count as normal print time.
  2426. }
  2427. } break;
  2428. case 928: //M928 - Start SD write
  2429. starpos = (strchr(strchr_pointer + 5,'*'));
  2430. if(starpos != NULL){
  2431. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2432. strchr_pointer = strchr(npos,' ') + 1;
  2433. *(starpos) = '\0';
  2434. }
  2435. card.openLogFile(strchr_pointer+5);
  2436. break;
  2437. #endif //SDSUPPORT
  2438. case 31: //M31 take time since the start of the SD print or an M109 command
  2439. {
  2440. stoptime=millis();
  2441. char time[30];
  2442. unsigned long t=(stoptime-starttime)/1000;
  2443. int sec,min;
  2444. min=t/60;
  2445. sec=t%60;
  2446. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2447. SERIAL_ECHO_START;
  2448. SERIAL_ECHOLN(time);
  2449. lcd_setstatus(time);
  2450. autotempShutdown();
  2451. }
  2452. break;
  2453. case 42: //M42 -Change pin status via gcode
  2454. if (code_seen('S'))
  2455. {
  2456. int pin_status = code_value();
  2457. int pin_number = LED_PIN;
  2458. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2459. pin_number = code_value();
  2460. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2461. {
  2462. if (sensitive_pins[i] == pin_number)
  2463. {
  2464. pin_number = -1;
  2465. break;
  2466. }
  2467. }
  2468. #if defined(FAN_PIN) && FAN_PIN > -1
  2469. if (pin_number == FAN_PIN)
  2470. fanSpeed = pin_status;
  2471. #endif
  2472. if (pin_number > -1)
  2473. {
  2474. pinMode(pin_number, OUTPUT);
  2475. digitalWrite(pin_number, pin_status);
  2476. analogWrite(pin_number, pin_status);
  2477. }
  2478. }
  2479. break;
  2480. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2481. // Reset the skew and offset in both RAM and EEPROM.
  2482. reset_bed_offset_and_skew();
  2483. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2484. // the planner will not perform any adjustments in the XY plane.
  2485. // Wait for the motors to stop and update the current position with the absolute values.
  2486. world2machine_revert_to_uncorrected();
  2487. break;
  2488. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2489. {
  2490. // Disable the default update procedure of the display. We will do a modal dialog.
  2491. lcd_update_enable(false);
  2492. // Let the planner use the uncorrected coordinates.
  2493. mbl.reset();
  2494. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2495. // the planner will not perform any adjustments in the XY plane.
  2496. // Wait for the motors to stop and update the current position with the absolute values.
  2497. world2machine_revert_to_uncorrected();
  2498. // Reset the baby step value applied without moving the axes.
  2499. babystep_reset();
  2500. // Mark all axes as in a need for homing.
  2501. memset(axis_known_position, 0, sizeof(axis_known_position));
  2502. // Only Z calibration?
  2503. bool onlyZ = code_seen('Z');
  2504. // Let the user move the Z axes up to the end stoppers.
  2505. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2506. refresh_cmd_timeout();
  2507. // Move the print head close to the bed.
  2508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2510. st_synchronize();
  2511. // Home in the XY plane.
  2512. set_destination_to_current();
  2513. setup_for_endstop_move();
  2514. home_xy();
  2515. int8_t verbosity_level = 0;
  2516. if (code_seen('V')) {
  2517. // Just 'V' without a number counts as V1.
  2518. char c = strchr_pointer[1];
  2519. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2520. }
  2521. if (onlyZ) {
  2522. clean_up_after_endstop_move();
  2523. // Z only calibration.
  2524. // Load the machine correction matrix
  2525. world2machine_initialize();
  2526. // and correct the current_position to match the transformed coordinate system.
  2527. world2machine_update_current();
  2528. //FIXME
  2529. bool result = sample_mesh_and_store_reference();
  2530. // if (result) babystep_apply();
  2531. } else {
  2532. // Reset the baby step value and the baby step applied flag.
  2533. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2534. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2535. // Complete XYZ calibration.
  2536. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2537. uint8_t point_too_far_mask = 0;
  2538. clean_up_after_endstop_move();
  2539. // Print head up.
  2540. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2542. st_synchronize();
  2543. if (result >= 0) {
  2544. // Second half: The fine adjustment.
  2545. // Let the planner use the uncorrected coordinates.
  2546. mbl.reset();
  2547. world2machine_reset();
  2548. // Home in the XY plane.
  2549. setup_for_endstop_move();
  2550. home_xy();
  2551. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2552. clean_up_after_endstop_move();
  2553. // Print head up.
  2554. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2556. st_synchronize();
  2557. // if (result >= 0) babystep_apply();
  2558. }
  2559. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2560. }
  2561. } else {
  2562. // Timeouted.
  2563. }
  2564. lcd_update_enable(true);
  2565. break;
  2566. }
  2567. /*
  2568. case 46:
  2569. {
  2570. // M46: Prusa3D: Show the assigned IP address.
  2571. uint8_t ip[4];
  2572. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2573. if (hasIP) {
  2574. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2575. SERIAL_ECHO(int(ip[0]));
  2576. SERIAL_ECHOPGM(".");
  2577. SERIAL_ECHO(int(ip[1]));
  2578. SERIAL_ECHOPGM(".");
  2579. SERIAL_ECHO(int(ip[2]));
  2580. SERIAL_ECHOPGM(".");
  2581. SERIAL_ECHO(int(ip[3]));
  2582. SERIAL_ECHOLNPGM("");
  2583. } else {
  2584. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2585. }
  2586. break;
  2587. }
  2588. */
  2589. case 47:
  2590. // M47: Prusa3D: Show end stops dialog on the display.
  2591. lcd_diag_show_end_stops();
  2592. break;
  2593. #if 0
  2594. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2595. {
  2596. // Disable the default update procedure of the display. We will do a modal dialog.
  2597. lcd_update_enable(false);
  2598. // Let the planner use the uncorrected coordinates.
  2599. mbl.reset();
  2600. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2601. // the planner will not perform any adjustments in the XY plane.
  2602. // Wait for the motors to stop and update the current position with the absolute values.
  2603. world2machine_revert_to_uncorrected();
  2604. // Move the print head close to the bed.
  2605. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2607. st_synchronize();
  2608. // Home in the XY plane.
  2609. set_destination_to_current();
  2610. setup_for_endstop_move();
  2611. home_xy();
  2612. int8_t verbosity_level = 0;
  2613. if (code_seen('V')) {
  2614. // Just 'V' without a number counts as V1.
  2615. char c = strchr_pointer[1];
  2616. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2617. }
  2618. bool success = scan_bed_induction_points(verbosity_level);
  2619. clean_up_after_endstop_move();
  2620. // Print head up.
  2621. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2623. st_synchronize();
  2624. lcd_update_enable(true);
  2625. break;
  2626. }
  2627. #endif
  2628. // M48 Z-Probe repeatability measurement function.
  2629. //
  2630. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2631. //
  2632. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2633. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2634. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2635. // regenerated.
  2636. //
  2637. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2638. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2639. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2640. //
  2641. #ifdef ENABLE_AUTO_BED_LEVELING
  2642. #ifdef Z_PROBE_REPEATABILITY_TEST
  2643. case 48: // M48 Z-Probe repeatability
  2644. {
  2645. #if Z_MIN_PIN == -1
  2646. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2647. #endif
  2648. double sum=0.0;
  2649. double mean=0.0;
  2650. double sigma=0.0;
  2651. double sample_set[50];
  2652. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2653. double X_current, Y_current, Z_current;
  2654. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2655. if (code_seen('V') || code_seen('v')) {
  2656. verbose_level = code_value();
  2657. if (verbose_level<0 || verbose_level>4 ) {
  2658. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2659. goto Sigma_Exit;
  2660. }
  2661. }
  2662. if (verbose_level > 0) {
  2663. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2664. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2665. }
  2666. if (code_seen('n')) {
  2667. n_samples = code_value();
  2668. if (n_samples<4 || n_samples>50 ) {
  2669. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2670. goto Sigma_Exit;
  2671. }
  2672. }
  2673. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2674. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2675. Z_current = st_get_position_mm(Z_AXIS);
  2676. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2677. ext_position = st_get_position_mm(E_AXIS);
  2678. if (code_seen('X') || code_seen('x') ) {
  2679. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2680. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2681. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2682. goto Sigma_Exit;
  2683. }
  2684. }
  2685. if (code_seen('Y') || code_seen('y') ) {
  2686. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2687. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2688. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2689. goto Sigma_Exit;
  2690. }
  2691. }
  2692. if (code_seen('L') || code_seen('l') ) {
  2693. n_legs = code_value();
  2694. if ( n_legs==1 )
  2695. n_legs = 2;
  2696. if ( n_legs<0 || n_legs>15 ) {
  2697. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2698. goto Sigma_Exit;
  2699. }
  2700. }
  2701. //
  2702. // Do all the preliminary setup work. First raise the probe.
  2703. //
  2704. st_synchronize();
  2705. plan_bed_level_matrix.set_to_identity();
  2706. plan_buffer_line( X_current, Y_current, Z_start_location,
  2707. ext_position,
  2708. homing_feedrate[Z_AXIS]/60,
  2709. active_extruder);
  2710. st_synchronize();
  2711. //
  2712. // Now get everything to the specified probe point So we can safely do a probe to
  2713. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2714. // use that as a starting point for each probe.
  2715. //
  2716. if (verbose_level > 2)
  2717. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2718. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2719. ext_position,
  2720. homing_feedrate[X_AXIS]/60,
  2721. active_extruder);
  2722. st_synchronize();
  2723. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2724. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2725. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2726. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2727. //
  2728. // OK, do the inital probe to get us close to the bed.
  2729. // Then retrace the right amount and use that in subsequent probes
  2730. //
  2731. setup_for_endstop_move();
  2732. run_z_probe();
  2733. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2734. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2735. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2736. ext_position,
  2737. homing_feedrate[X_AXIS]/60,
  2738. active_extruder);
  2739. st_synchronize();
  2740. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2741. for( n=0; n<n_samples; n++) {
  2742. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2743. if ( n_legs) {
  2744. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2745. int rotational_direction, l;
  2746. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2747. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2748. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2749. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2750. //SERIAL_ECHOPAIR(" theta: ",theta);
  2751. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2752. //SERIAL_PROTOCOLLNPGM("");
  2753. for( l=0; l<n_legs-1; l++) {
  2754. if (rotational_direction==1)
  2755. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2756. else
  2757. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2758. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2759. if ( radius<0.0 )
  2760. radius = -radius;
  2761. X_current = X_probe_location + cos(theta) * radius;
  2762. Y_current = Y_probe_location + sin(theta) * radius;
  2763. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2764. X_current = X_MIN_POS;
  2765. if ( X_current>X_MAX_POS)
  2766. X_current = X_MAX_POS;
  2767. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2768. Y_current = Y_MIN_POS;
  2769. if ( Y_current>Y_MAX_POS)
  2770. Y_current = Y_MAX_POS;
  2771. if (verbose_level>3 ) {
  2772. SERIAL_ECHOPAIR("x: ", X_current);
  2773. SERIAL_ECHOPAIR("y: ", Y_current);
  2774. SERIAL_PROTOCOLLNPGM("");
  2775. }
  2776. do_blocking_move_to( X_current, Y_current, Z_current );
  2777. }
  2778. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2779. }
  2780. setup_for_endstop_move();
  2781. run_z_probe();
  2782. sample_set[n] = current_position[Z_AXIS];
  2783. //
  2784. // Get the current mean for the data points we have so far
  2785. //
  2786. sum=0.0;
  2787. for( j=0; j<=n; j++) {
  2788. sum = sum + sample_set[j];
  2789. }
  2790. mean = sum / (double (n+1));
  2791. //
  2792. // Now, use that mean to calculate the standard deviation for the
  2793. // data points we have so far
  2794. //
  2795. sum=0.0;
  2796. for( j=0; j<=n; j++) {
  2797. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2798. }
  2799. sigma = sqrt( sum / (double (n+1)) );
  2800. if (verbose_level > 1) {
  2801. SERIAL_PROTOCOL(n+1);
  2802. SERIAL_PROTOCOL(" of ");
  2803. SERIAL_PROTOCOL(n_samples);
  2804. SERIAL_PROTOCOLPGM(" z: ");
  2805. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2806. }
  2807. if (verbose_level > 2) {
  2808. SERIAL_PROTOCOL(" mean: ");
  2809. SERIAL_PROTOCOL_F(mean,6);
  2810. SERIAL_PROTOCOL(" sigma: ");
  2811. SERIAL_PROTOCOL_F(sigma,6);
  2812. }
  2813. if (verbose_level > 0)
  2814. SERIAL_PROTOCOLPGM("\n");
  2815. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2816. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2817. st_synchronize();
  2818. }
  2819. delay(1000);
  2820. clean_up_after_endstop_move();
  2821. // enable_endstops(true);
  2822. if (verbose_level > 0) {
  2823. SERIAL_PROTOCOLPGM("Mean: ");
  2824. SERIAL_PROTOCOL_F(mean, 6);
  2825. SERIAL_PROTOCOLPGM("\n");
  2826. }
  2827. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2828. SERIAL_PROTOCOL_F(sigma, 6);
  2829. SERIAL_PROTOCOLPGM("\n\n");
  2830. Sigma_Exit:
  2831. break;
  2832. }
  2833. #endif // Z_PROBE_REPEATABILITY_TEST
  2834. #endif // ENABLE_AUTO_BED_LEVELING
  2835. case 104: // M104
  2836. if(setTargetedHotend(104)){
  2837. break;
  2838. }
  2839. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2840. setWatch();
  2841. break;
  2842. case 112: // M112 -Emergency Stop
  2843. kill();
  2844. break;
  2845. case 140: // M140 set bed temp
  2846. if (code_seen('S')) setTargetBed(code_value());
  2847. break;
  2848. case 105 : // M105
  2849. if(setTargetedHotend(105)){
  2850. break;
  2851. }
  2852. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2853. SERIAL_PROTOCOLPGM("ok T:");
  2854. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2855. SERIAL_PROTOCOLPGM(" /");
  2856. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2857. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2858. SERIAL_PROTOCOLPGM(" B:");
  2859. SERIAL_PROTOCOL_F(degBed(),1);
  2860. SERIAL_PROTOCOLPGM(" /");
  2861. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2862. #endif //TEMP_BED_PIN
  2863. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2864. SERIAL_PROTOCOLPGM(" T");
  2865. SERIAL_PROTOCOL(cur_extruder);
  2866. SERIAL_PROTOCOLPGM(":");
  2867. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2868. SERIAL_PROTOCOLPGM(" /");
  2869. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2870. }
  2871. #else
  2872. SERIAL_ERROR_START;
  2873. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2874. #endif
  2875. SERIAL_PROTOCOLPGM(" @:");
  2876. #ifdef EXTRUDER_WATTS
  2877. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2878. SERIAL_PROTOCOLPGM("W");
  2879. #else
  2880. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2881. #endif
  2882. SERIAL_PROTOCOLPGM(" B@:");
  2883. #ifdef BED_WATTS
  2884. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2885. SERIAL_PROTOCOLPGM("W");
  2886. #else
  2887. SERIAL_PROTOCOL(getHeaterPower(-1));
  2888. #endif
  2889. #ifdef SHOW_TEMP_ADC_VALUES
  2890. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2891. SERIAL_PROTOCOLPGM(" ADC B:");
  2892. SERIAL_PROTOCOL_F(degBed(),1);
  2893. SERIAL_PROTOCOLPGM("C->");
  2894. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2895. #endif
  2896. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2897. SERIAL_PROTOCOLPGM(" T");
  2898. SERIAL_PROTOCOL(cur_extruder);
  2899. SERIAL_PROTOCOLPGM(":");
  2900. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2901. SERIAL_PROTOCOLPGM("C->");
  2902. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2903. }
  2904. #endif
  2905. SERIAL_PROTOCOLLN("");
  2906. return;
  2907. break;
  2908. case 109:
  2909. {// M109 - Wait for extruder heater to reach target.
  2910. if(setTargetedHotend(109)){
  2911. break;
  2912. }
  2913. LCD_MESSAGERPGM(MSG_HEATING);
  2914. heating_status = 1;
  2915. if (farm_mode) { prusa_statistics(1); };
  2916. #ifdef AUTOTEMP
  2917. autotemp_enabled=false;
  2918. #endif
  2919. if (code_seen('S')) {
  2920. setTargetHotend(code_value(), tmp_extruder);
  2921. CooldownNoWait = true;
  2922. } else if (code_seen('R')) {
  2923. setTargetHotend(code_value(), tmp_extruder);
  2924. CooldownNoWait = false;
  2925. }
  2926. #ifdef AUTOTEMP
  2927. if (code_seen('S')) autotemp_min=code_value();
  2928. if (code_seen('B')) autotemp_max=code_value();
  2929. if (code_seen('F'))
  2930. {
  2931. autotemp_factor=code_value();
  2932. autotemp_enabled=true;
  2933. }
  2934. #endif
  2935. setWatch();
  2936. codenum = millis();
  2937. /* See if we are heating up or cooling down */
  2938. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2939. cancel_heatup = false;
  2940. #ifdef TEMP_RESIDENCY_TIME
  2941. long residencyStart;
  2942. residencyStart = -1;
  2943. /* continue to loop until we have reached the target temp
  2944. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2945. while((!cancel_heatup)&&((residencyStart == -1) ||
  2946. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2947. #else
  2948. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2949. #endif //TEMP_RESIDENCY_TIME
  2950. if( (millis() - codenum) > 1000UL )
  2951. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2952. SERIAL_PROTOCOLPGM("T:");
  2953. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2954. SERIAL_PROTOCOLPGM(" E:");
  2955. SERIAL_PROTOCOL((int)tmp_extruder);
  2956. #ifdef TEMP_RESIDENCY_TIME
  2957. SERIAL_PROTOCOLPGM(" W:");
  2958. if(residencyStart > -1)
  2959. {
  2960. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2961. SERIAL_PROTOCOLLN( codenum );
  2962. }
  2963. else
  2964. {
  2965. SERIAL_PROTOCOLLN( "?" );
  2966. }
  2967. #else
  2968. SERIAL_PROTOCOLLN("");
  2969. #endif
  2970. codenum = millis();
  2971. }
  2972. manage_heater();
  2973. manage_inactivity();
  2974. lcd_update();
  2975. #ifdef TEMP_RESIDENCY_TIME
  2976. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2977. or when current temp falls outside the hysteresis after target temp was reached */
  2978. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2979. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2980. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2981. {
  2982. residencyStart = millis();
  2983. }
  2984. #endif //TEMP_RESIDENCY_TIME
  2985. }
  2986. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2987. heating_status = 2;
  2988. if (farm_mode) { prusa_statistics(2); };
  2989. starttime=millis();
  2990. previous_millis_cmd = millis();
  2991. }
  2992. break;
  2993. case 190: // M190 - Wait for bed heater to reach target.
  2994. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2995. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2996. heating_status = 3;
  2997. if (farm_mode) { prusa_statistics(1); };
  2998. if (code_seen('S'))
  2999. {
  3000. setTargetBed(code_value());
  3001. CooldownNoWait = true;
  3002. }
  3003. else if (code_seen('R'))
  3004. {
  3005. setTargetBed(code_value());
  3006. CooldownNoWait = false;
  3007. }
  3008. codenum = millis();
  3009. cancel_heatup = false;
  3010. target_direction = isHeatingBed(); // true if heating, false if cooling
  3011. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3012. {
  3013. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3014. {
  3015. float tt=degHotend(active_extruder);
  3016. SERIAL_PROTOCOLPGM("T:");
  3017. SERIAL_PROTOCOL(tt);
  3018. SERIAL_PROTOCOLPGM(" E:");
  3019. SERIAL_PROTOCOL((int)active_extruder);
  3020. SERIAL_PROTOCOLPGM(" B:");
  3021. SERIAL_PROTOCOL_F(degBed(),1);
  3022. SERIAL_PROTOCOLLN("");
  3023. codenum = millis();
  3024. }
  3025. manage_heater();
  3026. manage_inactivity();
  3027. lcd_update();
  3028. }
  3029. LCD_MESSAGERPGM(MSG_BED_DONE);
  3030. heating_status = 4;
  3031. previous_millis_cmd = millis();
  3032. #endif
  3033. break;
  3034. #if defined(FAN_PIN) && FAN_PIN > -1
  3035. case 106: //M106 Fan On
  3036. if (code_seen('S')){
  3037. fanSpeed=constrain(code_value(),0,255);
  3038. }
  3039. else {
  3040. fanSpeed=255;
  3041. }
  3042. break;
  3043. case 107: //M107 Fan Off
  3044. fanSpeed = 0;
  3045. break;
  3046. #endif //FAN_PIN
  3047. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3048. case 80: // M80 - Turn on Power Supply
  3049. SET_OUTPUT(PS_ON_PIN); //GND
  3050. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3051. // If you have a switch on suicide pin, this is useful
  3052. // if you want to start another print with suicide feature after
  3053. // a print without suicide...
  3054. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3055. SET_OUTPUT(SUICIDE_PIN);
  3056. WRITE(SUICIDE_PIN, HIGH);
  3057. #endif
  3058. #ifdef ULTIPANEL
  3059. powersupply = true;
  3060. LCD_MESSAGERPGM(WELCOME_MSG);
  3061. lcd_update();
  3062. #endif
  3063. break;
  3064. #endif
  3065. case 81: // M81 - Turn off Power Supply
  3066. disable_heater();
  3067. st_synchronize();
  3068. disable_e0();
  3069. disable_e1();
  3070. disable_e2();
  3071. finishAndDisableSteppers();
  3072. fanSpeed = 0;
  3073. delay(1000); // Wait a little before to switch off
  3074. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3075. st_synchronize();
  3076. suicide();
  3077. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3078. SET_OUTPUT(PS_ON_PIN);
  3079. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3080. #endif
  3081. #ifdef ULTIPANEL
  3082. powersupply = false;
  3083. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3084. /*
  3085. MACHNAME = "Prusa i3"
  3086. MSGOFF = "Vypnuto"
  3087. "Prusai3"" ""vypnuto""."
  3088. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3089. */
  3090. lcd_update();
  3091. #endif
  3092. break;
  3093. case 82:
  3094. axis_relative_modes[3] = false;
  3095. break;
  3096. case 83:
  3097. axis_relative_modes[3] = true;
  3098. break;
  3099. case 18: //compatibility
  3100. case 84: // M84
  3101. if(code_seen('S')){
  3102. stepper_inactive_time = code_value() * 1000;
  3103. }
  3104. else
  3105. {
  3106. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3107. if(all_axis)
  3108. {
  3109. st_synchronize();
  3110. disable_e0();
  3111. disable_e1();
  3112. disable_e2();
  3113. finishAndDisableSteppers();
  3114. }
  3115. else
  3116. {
  3117. st_synchronize();
  3118. if(code_seen('X')) disable_x();
  3119. if(code_seen('Y')) disable_y();
  3120. if(code_seen('Z')) disable_z();
  3121. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3122. if(code_seen('E')) {
  3123. disable_e0();
  3124. disable_e1();
  3125. disable_e2();
  3126. }
  3127. #endif
  3128. }
  3129. }
  3130. break;
  3131. case 85: // M85
  3132. if(code_seen('S')) {
  3133. max_inactive_time = code_value() * 1000;
  3134. }
  3135. break;
  3136. case 92: // M92
  3137. for(int8_t i=0; i < NUM_AXIS; i++)
  3138. {
  3139. if(code_seen(axis_codes[i]))
  3140. {
  3141. if(i == 3) { // E
  3142. float value = code_value();
  3143. if(value < 20.0) {
  3144. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3145. max_jerk[E_AXIS] *= factor;
  3146. max_feedrate[i] *= factor;
  3147. axis_steps_per_sqr_second[i] *= factor;
  3148. }
  3149. axis_steps_per_unit[i] = value;
  3150. }
  3151. else {
  3152. axis_steps_per_unit[i] = code_value();
  3153. }
  3154. }
  3155. }
  3156. break;
  3157. case 115: // M115
  3158. if (code_seen('V')) {
  3159. // Report the Prusa version number.
  3160. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3161. } else if (code_seen('U')) {
  3162. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3163. // pause the print and ask the user to upgrade the firmware.
  3164. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3165. } else {
  3166. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3167. }
  3168. break;
  3169. case 117: // M117 display message
  3170. starpos = (strchr(strchr_pointer + 5,'*'));
  3171. if(starpos!=NULL)
  3172. *(starpos)='\0';
  3173. lcd_setstatus(strchr_pointer + 5);
  3174. break;
  3175. case 114: // M114
  3176. SERIAL_PROTOCOLPGM("X:");
  3177. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3178. SERIAL_PROTOCOLPGM(" Y:");
  3179. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3180. SERIAL_PROTOCOLPGM(" Z:");
  3181. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3182. SERIAL_PROTOCOLPGM(" E:");
  3183. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3184. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3185. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3186. SERIAL_PROTOCOLPGM(" Y:");
  3187. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3188. SERIAL_PROTOCOLPGM(" Z:");
  3189. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3190. SERIAL_PROTOCOLLN("");
  3191. break;
  3192. case 120: // M120
  3193. enable_endstops(false) ;
  3194. break;
  3195. case 121: // M121
  3196. enable_endstops(true) ;
  3197. break;
  3198. case 119: // M119
  3199. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3200. SERIAL_PROTOCOLLN("");
  3201. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3202. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3203. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3204. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3205. }else{
  3206. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3207. }
  3208. SERIAL_PROTOCOLLN("");
  3209. #endif
  3210. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3211. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3212. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3213. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3214. }else{
  3215. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3216. }
  3217. SERIAL_PROTOCOLLN("");
  3218. #endif
  3219. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3220. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3221. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3222. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3223. }else{
  3224. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3225. }
  3226. SERIAL_PROTOCOLLN("");
  3227. #endif
  3228. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3229. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3230. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3231. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3232. }else{
  3233. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3234. }
  3235. SERIAL_PROTOCOLLN("");
  3236. #endif
  3237. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3238. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3239. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3241. }else{
  3242. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3243. }
  3244. SERIAL_PROTOCOLLN("");
  3245. #endif
  3246. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3247. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3248. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3250. }else{
  3251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3252. }
  3253. SERIAL_PROTOCOLLN("");
  3254. #endif
  3255. break;
  3256. //TODO: update for all axis, use for loop
  3257. #ifdef BLINKM
  3258. case 150: // M150
  3259. {
  3260. byte red;
  3261. byte grn;
  3262. byte blu;
  3263. if(code_seen('R')) red = code_value();
  3264. if(code_seen('U')) grn = code_value();
  3265. if(code_seen('B')) blu = code_value();
  3266. SendColors(red,grn,blu);
  3267. }
  3268. break;
  3269. #endif //BLINKM
  3270. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3271. {
  3272. tmp_extruder = active_extruder;
  3273. if(code_seen('T')) {
  3274. tmp_extruder = code_value();
  3275. if(tmp_extruder >= EXTRUDERS) {
  3276. SERIAL_ECHO_START;
  3277. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3278. break;
  3279. }
  3280. }
  3281. float area = .0;
  3282. if(code_seen('D')) {
  3283. float diameter = (float)code_value();
  3284. if (diameter == 0.0) {
  3285. // setting any extruder filament size disables volumetric on the assumption that
  3286. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3287. // for all extruders
  3288. volumetric_enabled = false;
  3289. } else {
  3290. filament_size[tmp_extruder] = (float)code_value();
  3291. // make sure all extruders have some sane value for the filament size
  3292. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3293. #if EXTRUDERS > 1
  3294. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3295. #if EXTRUDERS > 2
  3296. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3297. #endif
  3298. #endif
  3299. volumetric_enabled = true;
  3300. }
  3301. } else {
  3302. //reserved for setting filament diameter via UFID or filament measuring device
  3303. break;
  3304. }
  3305. calculate_volumetric_multipliers();
  3306. }
  3307. break;
  3308. case 201: // M201
  3309. for(int8_t i=0; i < NUM_AXIS; i++)
  3310. {
  3311. if(code_seen(axis_codes[i]))
  3312. {
  3313. max_acceleration_units_per_sq_second[i] = code_value();
  3314. }
  3315. }
  3316. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3317. reset_acceleration_rates();
  3318. break;
  3319. #if 0 // Not used for Sprinter/grbl gen6
  3320. case 202: // M202
  3321. for(int8_t i=0; i < NUM_AXIS; i++) {
  3322. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3323. }
  3324. break;
  3325. #endif
  3326. case 203: // M203 max feedrate mm/sec
  3327. for(int8_t i=0; i < NUM_AXIS; i++) {
  3328. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3329. }
  3330. break;
  3331. case 204: // M204 acclereration S normal moves T filmanent only moves
  3332. {
  3333. if(code_seen('S')) acceleration = code_value() ;
  3334. if(code_seen('T')) retract_acceleration = code_value() ;
  3335. }
  3336. break;
  3337. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3338. {
  3339. if(code_seen('S')) minimumfeedrate = code_value();
  3340. if(code_seen('T')) mintravelfeedrate = code_value();
  3341. if(code_seen('B')) minsegmenttime = code_value() ;
  3342. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3343. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3344. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3345. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3346. }
  3347. break;
  3348. case 206: // M206 additional homing offset
  3349. for(int8_t i=0; i < 3; i++)
  3350. {
  3351. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3352. }
  3353. break;
  3354. #ifdef FWRETRACT
  3355. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3356. {
  3357. if(code_seen('S'))
  3358. {
  3359. retract_length = code_value() ;
  3360. }
  3361. if(code_seen('F'))
  3362. {
  3363. retract_feedrate = code_value()/60 ;
  3364. }
  3365. if(code_seen('Z'))
  3366. {
  3367. retract_zlift = code_value() ;
  3368. }
  3369. }break;
  3370. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3371. {
  3372. if(code_seen('S'))
  3373. {
  3374. retract_recover_length = code_value() ;
  3375. }
  3376. if(code_seen('F'))
  3377. {
  3378. retract_recover_feedrate = code_value()/60 ;
  3379. }
  3380. }break;
  3381. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3382. {
  3383. if(code_seen('S'))
  3384. {
  3385. int t= code_value() ;
  3386. switch(t)
  3387. {
  3388. case 0:
  3389. {
  3390. autoretract_enabled=false;
  3391. retracted[0]=false;
  3392. #if EXTRUDERS > 1
  3393. retracted[1]=false;
  3394. #endif
  3395. #if EXTRUDERS > 2
  3396. retracted[2]=false;
  3397. #endif
  3398. }break;
  3399. case 1:
  3400. {
  3401. autoretract_enabled=true;
  3402. retracted[0]=false;
  3403. #if EXTRUDERS > 1
  3404. retracted[1]=false;
  3405. #endif
  3406. #if EXTRUDERS > 2
  3407. retracted[2]=false;
  3408. #endif
  3409. }break;
  3410. default:
  3411. SERIAL_ECHO_START;
  3412. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3413. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3414. SERIAL_ECHOLNPGM("\"");
  3415. }
  3416. }
  3417. }break;
  3418. #endif // FWRETRACT
  3419. #if EXTRUDERS > 1
  3420. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3421. {
  3422. if(setTargetedHotend(218)){
  3423. break;
  3424. }
  3425. if(code_seen('X'))
  3426. {
  3427. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3428. }
  3429. if(code_seen('Y'))
  3430. {
  3431. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3432. }
  3433. SERIAL_ECHO_START;
  3434. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3435. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3436. {
  3437. SERIAL_ECHO(" ");
  3438. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3439. SERIAL_ECHO(",");
  3440. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3441. }
  3442. SERIAL_ECHOLN("");
  3443. }break;
  3444. #endif
  3445. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3446. {
  3447. if(code_seen('S'))
  3448. {
  3449. feedmultiply = code_value() ;
  3450. }
  3451. }
  3452. break;
  3453. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3454. {
  3455. if(code_seen('S'))
  3456. {
  3457. int tmp_code = code_value();
  3458. if (code_seen('T'))
  3459. {
  3460. if(setTargetedHotend(221)){
  3461. break;
  3462. }
  3463. extruder_multiply[tmp_extruder] = tmp_code;
  3464. }
  3465. else
  3466. {
  3467. extrudemultiply = tmp_code ;
  3468. }
  3469. }
  3470. }
  3471. break;
  3472. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3473. {
  3474. if(code_seen('P')){
  3475. int pin_number = code_value(); // pin number
  3476. int pin_state = -1; // required pin state - default is inverted
  3477. if(code_seen('S')) pin_state = code_value(); // required pin state
  3478. if(pin_state >= -1 && pin_state <= 1){
  3479. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3480. {
  3481. if (sensitive_pins[i] == pin_number)
  3482. {
  3483. pin_number = -1;
  3484. break;
  3485. }
  3486. }
  3487. if (pin_number > -1)
  3488. {
  3489. int target = LOW;
  3490. st_synchronize();
  3491. pinMode(pin_number, INPUT);
  3492. switch(pin_state){
  3493. case 1:
  3494. target = HIGH;
  3495. break;
  3496. case 0:
  3497. target = LOW;
  3498. break;
  3499. case -1:
  3500. target = !digitalRead(pin_number);
  3501. break;
  3502. }
  3503. while(digitalRead(pin_number) != target){
  3504. manage_heater();
  3505. manage_inactivity();
  3506. lcd_update();
  3507. }
  3508. }
  3509. }
  3510. }
  3511. }
  3512. break;
  3513. #if NUM_SERVOS > 0
  3514. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3515. {
  3516. int servo_index = -1;
  3517. int servo_position = 0;
  3518. if (code_seen('P'))
  3519. servo_index = code_value();
  3520. if (code_seen('S')) {
  3521. servo_position = code_value();
  3522. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3523. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3524. servos[servo_index].attach(0);
  3525. #endif
  3526. servos[servo_index].write(servo_position);
  3527. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3528. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3529. servos[servo_index].detach();
  3530. #endif
  3531. }
  3532. else {
  3533. SERIAL_ECHO_START;
  3534. SERIAL_ECHO("Servo ");
  3535. SERIAL_ECHO(servo_index);
  3536. SERIAL_ECHOLN(" out of range");
  3537. }
  3538. }
  3539. else if (servo_index >= 0) {
  3540. SERIAL_PROTOCOL(MSG_OK);
  3541. SERIAL_PROTOCOL(" Servo ");
  3542. SERIAL_PROTOCOL(servo_index);
  3543. SERIAL_PROTOCOL(": ");
  3544. SERIAL_PROTOCOL(servos[servo_index].read());
  3545. SERIAL_PROTOCOLLN("");
  3546. }
  3547. }
  3548. break;
  3549. #endif // NUM_SERVOS > 0
  3550. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3551. case 300: // M300
  3552. {
  3553. int beepS = code_seen('S') ? code_value() : 110;
  3554. int beepP = code_seen('P') ? code_value() : 1000;
  3555. if (beepS > 0)
  3556. {
  3557. #if BEEPER > 0
  3558. tone(BEEPER, beepS);
  3559. delay(beepP);
  3560. noTone(BEEPER);
  3561. #elif defined(ULTRALCD)
  3562. lcd_buzz(beepS, beepP);
  3563. #elif defined(LCD_USE_I2C_BUZZER)
  3564. lcd_buzz(beepP, beepS);
  3565. #endif
  3566. }
  3567. else
  3568. {
  3569. delay(beepP);
  3570. }
  3571. }
  3572. break;
  3573. #endif // M300
  3574. #ifdef PIDTEMP
  3575. case 301: // M301
  3576. {
  3577. if(code_seen('P')) Kp = code_value();
  3578. if(code_seen('I')) Ki = scalePID_i(code_value());
  3579. if(code_seen('D')) Kd = scalePID_d(code_value());
  3580. #ifdef PID_ADD_EXTRUSION_RATE
  3581. if(code_seen('C')) Kc = code_value();
  3582. #endif
  3583. updatePID();
  3584. SERIAL_PROTOCOL(MSG_OK);
  3585. SERIAL_PROTOCOL(" p:");
  3586. SERIAL_PROTOCOL(Kp);
  3587. SERIAL_PROTOCOL(" i:");
  3588. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3589. SERIAL_PROTOCOL(" d:");
  3590. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3591. #ifdef PID_ADD_EXTRUSION_RATE
  3592. SERIAL_PROTOCOL(" c:");
  3593. //Kc does not have scaling applied above, or in resetting defaults
  3594. SERIAL_PROTOCOL(Kc);
  3595. #endif
  3596. SERIAL_PROTOCOLLN("");
  3597. }
  3598. break;
  3599. #endif //PIDTEMP
  3600. #ifdef PIDTEMPBED
  3601. case 304: // M304
  3602. {
  3603. if(code_seen('P')) bedKp = code_value();
  3604. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3605. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3606. updatePID();
  3607. SERIAL_PROTOCOL(MSG_OK);
  3608. SERIAL_PROTOCOL(" p:");
  3609. SERIAL_PROTOCOL(bedKp);
  3610. SERIAL_PROTOCOL(" i:");
  3611. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3612. SERIAL_PROTOCOL(" d:");
  3613. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3614. SERIAL_PROTOCOLLN("");
  3615. }
  3616. break;
  3617. #endif //PIDTEMP
  3618. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3619. {
  3620. #ifdef CHDK
  3621. SET_OUTPUT(CHDK);
  3622. WRITE(CHDK, HIGH);
  3623. chdkHigh = millis();
  3624. chdkActive = true;
  3625. #else
  3626. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3627. const uint8_t NUM_PULSES=16;
  3628. const float PULSE_LENGTH=0.01524;
  3629. for(int i=0; i < NUM_PULSES; i++) {
  3630. WRITE(PHOTOGRAPH_PIN, HIGH);
  3631. _delay_ms(PULSE_LENGTH);
  3632. WRITE(PHOTOGRAPH_PIN, LOW);
  3633. _delay_ms(PULSE_LENGTH);
  3634. }
  3635. delay(7.33);
  3636. for(int i=0; i < NUM_PULSES; i++) {
  3637. WRITE(PHOTOGRAPH_PIN, HIGH);
  3638. _delay_ms(PULSE_LENGTH);
  3639. WRITE(PHOTOGRAPH_PIN, LOW);
  3640. _delay_ms(PULSE_LENGTH);
  3641. }
  3642. #endif
  3643. #endif //chdk end if
  3644. }
  3645. break;
  3646. #ifdef DOGLCD
  3647. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3648. {
  3649. if (code_seen('C')) {
  3650. lcd_setcontrast( ((int)code_value())&63 );
  3651. }
  3652. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3653. SERIAL_PROTOCOL(lcd_contrast);
  3654. SERIAL_PROTOCOLLN("");
  3655. }
  3656. break;
  3657. #endif
  3658. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3659. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3660. {
  3661. float temp = .0;
  3662. if (code_seen('S')) temp=code_value();
  3663. set_extrude_min_temp(temp);
  3664. }
  3665. break;
  3666. #endif
  3667. case 303: // M303 PID autotune
  3668. {
  3669. float temp = 150.0;
  3670. int e=0;
  3671. int c=5;
  3672. if (code_seen('E')) e=code_value();
  3673. if (e<0)
  3674. temp=70;
  3675. if (code_seen('S')) temp=code_value();
  3676. if (code_seen('C')) c=code_value();
  3677. PID_autotune(temp, e, c);
  3678. }
  3679. break;
  3680. case 400: // M400 finish all moves
  3681. {
  3682. st_synchronize();
  3683. }
  3684. break;
  3685. #ifdef FILAMENT_SENSOR
  3686. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3687. {
  3688. #if (FILWIDTH_PIN > -1)
  3689. if(code_seen('N')) filament_width_nominal=code_value();
  3690. else{
  3691. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3692. SERIAL_PROTOCOLLN(filament_width_nominal);
  3693. }
  3694. #endif
  3695. }
  3696. break;
  3697. case 405: //M405 Turn on filament sensor for control
  3698. {
  3699. if(code_seen('D')) meas_delay_cm=code_value();
  3700. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3701. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3702. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3703. {
  3704. int temp_ratio = widthFil_to_size_ratio();
  3705. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3706. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3707. }
  3708. delay_index1=0;
  3709. delay_index2=0;
  3710. }
  3711. filament_sensor = true ;
  3712. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3713. //SERIAL_PROTOCOL(filament_width_meas);
  3714. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3715. //SERIAL_PROTOCOL(extrudemultiply);
  3716. }
  3717. break;
  3718. case 406: //M406 Turn off filament sensor for control
  3719. {
  3720. filament_sensor = false ;
  3721. }
  3722. break;
  3723. case 407: //M407 Display measured filament diameter
  3724. {
  3725. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3726. SERIAL_PROTOCOLLN(filament_width_meas);
  3727. }
  3728. break;
  3729. #endif
  3730. case 500: // M500 Store settings in EEPROM
  3731. {
  3732. Config_StoreSettings();
  3733. }
  3734. break;
  3735. case 501: // M501 Read settings from EEPROM
  3736. {
  3737. Config_RetrieveSettings();
  3738. }
  3739. break;
  3740. case 502: // M502 Revert to default settings
  3741. {
  3742. Config_ResetDefault();
  3743. }
  3744. break;
  3745. case 503: // M503 print settings currently in memory
  3746. {
  3747. Config_PrintSettings();
  3748. }
  3749. break;
  3750. case 509: //M509 Force language selection
  3751. {
  3752. lcd_force_language_selection();
  3753. SERIAL_ECHO_START;
  3754. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3755. }
  3756. break;
  3757. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3758. case 540:
  3759. {
  3760. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3761. }
  3762. break;
  3763. #endif
  3764. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3765. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3766. {
  3767. float value;
  3768. if (code_seen('Z'))
  3769. {
  3770. value = code_value();
  3771. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3772. {
  3773. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3774. SERIAL_ECHO_START;
  3775. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3776. SERIAL_PROTOCOLLN("");
  3777. }
  3778. else
  3779. {
  3780. SERIAL_ECHO_START;
  3781. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3782. SERIAL_ECHORPGM(MSG_Z_MIN);
  3783. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3784. SERIAL_ECHORPGM(MSG_Z_MAX);
  3785. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3786. SERIAL_PROTOCOLLN("");
  3787. }
  3788. }
  3789. else
  3790. {
  3791. SERIAL_ECHO_START;
  3792. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3793. SERIAL_ECHO(-zprobe_zoffset);
  3794. SERIAL_PROTOCOLLN("");
  3795. }
  3796. break;
  3797. }
  3798. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3799. #ifdef FILAMENTCHANGEENABLE
  3800. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3801. {
  3802. st_synchronize();
  3803. if (farm_mode)
  3804. {
  3805. prusa_statistics(22);
  3806. }
  3807. feedmultiplyBckp=feedmultiply;
  3808. int8_t TooLowZ = 0;
  3809. float target[4];
  3810. float lastpos[4];
  3811. target[X_AXIS]=current_position[X_AXIS];
  3812. target[Y_AXIS]=current_position[Y_AXIS];
  3813. target[Z_AXIS]=current_position[Z_AXIS];
  3814. target[E_AXIS]=current_position[E_AXIS];
  3815. lastpos[X_AXIS]=current_position[X_AXIS];
  3816. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3817. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3818. lastpos[E_AXIS]=current_position[E_AXIS];
  3819. //Restract extruder
  3820. if(code_seen('E'))
  3821. {
  3822. target[E_AXIS]+= code_value();
  3823. }
  3824. else
  3825. {
  3826. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3827. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3828. #endif
  3829. }
  3830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3831. //Lift Z
  3832. if(code_seen('Z'))
  3833. {
  3834. target[Z_AXIS]+= code_value();
  3835. }
  3836. else
  3837. {
  3838. #ifdef FILAMENTCHANGE_ZADD
  3839. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3840. if(target[Z_AXIS] < 10){
  3841. target[Z_AXIS]+= 10 ;
  3842. TooLowZ = 1;
  3843. }else{
  3844. TooLowZ = 0;
  3845. }
  3846. #endif
  3847. }
  3848. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3849. //Move XY to side
  3850. if(code_seen('X'))
  3851. {
  3852. target[X_AXIS]+= code_value();
  3853. }
  3854. else
  3855. {
  3856. #ifdef FILAMENTCHANGE_XPOS
  3857. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3858. #endif
  3859. }
  3860. if(code_seen('Y'))
  3861. {
  3862. target[Y_AXIS]= code_value();
  3863. }
  3864. else
  3865. {
  3866. #ifdef FILAMENTCHANGE_YPOS
  3867. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3868. #endif
  3869. }
  3870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3871. // Unload filament
  3872. if(code_seen('L'))
  3873. {
  3874. target[E_AXIS]+= code_value();
  3875. }
  3876. else
  3877. {
  3878. #ifdef FILAMENTCHANGE_FINALRETRACT
  3879. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3880. #endif
  3881. }
  3882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3883. //finish moves
  3884. st_synchronize();
  3885. //disable extruder steppers so filament can be removed
  3886. disable_e0();
  3887. disable_e1();
  3888. disable_e2();
  3889. delay(100);
  3890. //Wait for user to insert filament
  3891. uint8_t cnt=0;
  3892. int counterBeep = 0;
  3893. lcd_wait_interact();
  3894. while(!lcd_clicked()){
  3895. cnt++;
  3896. manage_heater();
  3897. manage_inactivity(true);
  3898. if(cnt==0)
  3899. {
  3900. #if BEEPER > 0
  3901. if (counterBeep== 500){
  3902. counterBeep = 0;
  3903. }
  3904. SET_OUTPUT(BEEPER);
  3905. if (counterBeep== 0){
  3906. WRITE(BEEPER,HIGH);
  3907. }
  3908. if (counterBeep== 20){
  3909. WRITE(BEEPER,LOW);
  3910. }
  3911. counterBeep++;
  3912. #else
  3913. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3914. lcd_buzz(1000/6,100);
  3915. #else
  3916. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3917. #endif
  3918. #endif
  3919. }
  3920. }
  3921. //Filament inserted
  3922. WRITE(BEEPER,LOW);
  3923. //Feed the filament to the end of nozzle quickly
  3924. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3926. //Extrude some filament
  3927. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3929. //Wait for user to check the state
  3930. lcd_change_fil_state = 0;
  3931. lcd_loading_filament();
  3932. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3933. lcd_change_fil_state = 0;
  3934. lcd_alright();
  3935. switch(lcd_change_fil_state){
  3936. // Filament failed to load so load it again
  3937. case 2:
  3938. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3940. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3942. lcd_loading_filament();
  3943. break;
  3944. // Filament loaded properly but color is not clear
  3945. case 3:
  3946. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3948. lcd_loading_color();
  3949. break;
  3950. // Everything good
  3951. default:
  3952. lcd_change_success();
  3953. break;
  3954. }
  3955. }
  3956. //Not let's go back to print
  3957. //Feed a little of filament to stabilize pressure
  3958. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3959. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3960. //Retract
  3961. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3963. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3964. //Move XY back
  3965. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3966. //Move Z back
  3967. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3968. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3969. //Unretract
  3970. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3971. //Set E position to original
  3972. plan_set_e_position(lastpos[E_AXIS]);
  3973. //Recover feed rate
  3974. feedmultiply=feedmultiplyBckp;
  3975. char cmd[9];
  3976. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3977. enquecommand(cmd);
  3978. }
  3979. break;
  3980. #endif //FILAMENTCHANGEENABLE
  3981. case 907: // M907 Set digital trimpot motor current using axis codes.
  3982. {
  3983. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3984. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3985. if(code_seen('B')) digipot_current(4,code_value());
  3986. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3987. #endif
  3988. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3989. if(code_seen('X')) digipot_current(0, code_value());
  3990. #endif
  3991. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3992. if(code_seen('Z')) digipot_current(1, code_value());
  3993. #endif
  3994. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3995. if(code_seen('E')) digipot_current(2, code_value());
  3996. #endif
  3997. #ifdef DIGIPOT_I2C
  3998. // this one uses actual amps in floating point
  3999. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4000. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4001. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4002. #endif
  4003. }
  4004. break;
  4005. case 908: // M908 Control digital trimpot directly.
  4006. {
  4007. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4008. uint8_t channel,current;
  4009. if(code_seen('P')) channel=code_value();
  4010. if(code_seen('S')) current=code_value();
  4011. digitalPotWrite(channel, current);
  4012. #endif
  4013. }
  4014. break;
  4015. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4016. {
  4017. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4018. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4019. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4020. if(code_seen('B')) microstep_mode(4,code_value());
  4021. microstep_readings();
  4022. #endif
  4023. }
  4024. break;
  4025. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4026. {
  4027. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4028. if(code_seen('S')) switch((int)code_value())
  4029. {
  4030. case 1:
  4031. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4032. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4033. break;
  4034. case 2:
  4035. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4036. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4037. break;
  4038. }
  4039. microstep_readings();
  4040. #endif
  4041. }
  4042. break;
  4043. case 999: // M999: Restart after being stopped
  4044. Stopped = false;
  4045. lcd_reset_alert_level();
  4046. gcode_LastN = Stopped_gcode_LastN;
  4047. FlushSerialRequestResend();
  4048. break;
  4049. }
  4050. } // end if(code_seen('M')) (end of M codes)
  4051. else if(code_seen('T'))
  4052. {
  4053. tmp_extruder = code_value();
  4054. if(tmp_extruder >= EXTRUDERS) {
  4055. SERIAL_ECHO_START;
  4056. SERIAL_ECHO("T");
  4057. SERIAL_ECHO(tmp_extruder);
  4058. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4059. }
  4060. else {
  4061. boolean make_move = false;
  4062. if(code_seen('F')) {
  4063. make_move = true;
  4064. next_feedrate = code_value();
  4065. if(next_feedrate > 0.0) {
  4066. feedrate = next_feedrate;
  4067. }
  4068. }
  4069. #if EXTRUDERS > 1
  4070. if(tmp_extruder != active_extruder) {
  4071. // Save current position to return to after applying extruder offset
  4072. memcpy(destination, current_position, sizeof(destination));
  4073. // Offset extruder (only by XY)
  4074. int i;
  4075. for(i = 0; i < 2; i++) {
  4076. current_position[i] = current_position[i] -
  4077. extruder_offset[i][active_extruder] +
  4078. extruder_offset[i][tmp_extruder];
  4079. }
  4080. // Set the new active extruder and position
  4081. active_extruder = tmp_extruder;
  4082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4083. // Move to the old position if 'F' was in the parameters
  4084. if(make_move && Stopped == false) {
  4085. prepare_move();
  4086. }
  4087. }
  4088. #endif
  4089. SERIAL_ECHO_START;
  4090. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4091. SERIAL_PROTOCOLLN((int)active_extruder);
  4092. }
  4093. } // end if(code_seen('T')) (end of T codes)
  4094. else
  4095. {
  4096. SERIAL_ECHO_START;
  4097. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4098. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4099. SERIAL_ECHOLNPGM("\"");
  4100. }
  4101. ClearToSend();
  4102. }
  4103. void FlushSerialRequestResend()
  4104. {
  4105. //char cmdbuffer[bufindr][100]="Resend:";
  4106. MYSERIAL.flush();
  4107. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4108. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4109. ClearToSend();
  4110. }
  4111. // Confirm the execution of a command, if sent from a serial line.
  4112. // Execution of a command from a SD card will not be confirmed.
  4113. void ClearToSend()
  4114. {
  4115. previous_millis_cmd = millis();
  4116. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4117. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4118. }
  4119. void get_coordinates()
  4120. {
  4121. bool seen[4]={false,false,false,false};
  4122. for(int8_t i=0; i < NUM_AXIS; i++) {
  4123. if(code_seen(axis_codes[i]))
  4124. {
  4125. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4126. seen[i]=true;
  4127. }
  4128. else destination[i] = current_position[i]; //Are these else lines really needed?
  4129. }
  4130. if(code_seen('F')) {
  4131. next_feedrate = code_value();
  4132. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4133. }
  4134. }
  4135. void get_arc_coordinates()
  4136. {
  4137. #ifdef SF_ARC_FIX
  4138. bool relative_mode_backup = relative_mode;
  4139. relative_mode = true;
  4140. #endif
  4141. get_coordinates();
  4142. #ifdef SF_ARC_FIX
  4143. relative_mode=relative_mode_backup;
  4144. #endif
  4145. if(code_seen('I')) {
  4146. offset[0] = code_value();
  4147. }
  4148. else {
  4149. offset[0] = 0.0;
  4150. }
  4151. if(code_seen('J')) {
  4152. offset[1] = code_value();
  4153. }
  4154. else {
  4155. offset[1] = 0.0;
  4156. }
  4157. }
  4158. void clamp_to_software_endstops(float target[3])
  4159. {
  4160. world2machine_clamp(target[0], target[1]);
  4161. // Clamp the Z coordinate.
  4162. if (min_software_endstops) {
  4163. float negative_z_offset = 0;
  4164. #ifdef ENABLE_AUTO_BED_LEVELING
  4165. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4166. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4167. #endif
  4168. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4169. }
  4170. if (max_software_endstops) {
  4171. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4172. }
  4173. }
  4174. #ifdef MESH_BED_LEVELING
  4175. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4176. float dx = x - current_position[X_AXIS];
  4177. float dy = y - current_position[Y_AXIS];
  4178. float dz = z - current_position[Z_AXIS];
  4179. int n_segments = 0;
  4180. if (mbl.active) {
  4181. float len = abs(dx) + abs(dy);
  4182. if (len > 0)
  4183. // Split to 3cm segments or shorter.
  4184. n_segments = int(ceil(len / 30.f));
  4185. }
  4186. if (n_segments > 1) {
  4187. float de = e - current_position[E_AXIS];
  4188. for (int i = 1; i < n_segments; ++ i) {
  4189. float t = float(i) / float(n_segments);
  4190. plan_buffer_line(
  4191. current_position[X_AXIS] + t * dx,
  4192. current_position[Y_AXIS] + t * dy,
  4193. current_position[Z_AXIS] + t * dz,
  4194. current_position[E_AXIS] + t * de,
  4195. feed_rate, extruder);
  4196. }
  4197. }
  4198. // The rest of the path.
  4199. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4200. current_position[X_AXIS] = x;
  4201. current_position[Y_AXIS] = y;
  4202. current_position[Z_AXIS] = z;
  4203. current_position[E_AXIS] = e;
  4204. }
  4205. #endif // MESH_BED_LEVELING
  4206. void prepare_move()
  4207. {
  4208. clamp_to_software_endstops(destination);
  4209. previous_millis_cmd = millis();
  4210. // Do not use feedmultiply for E or Z only moves
  4211. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4212. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4213. }
  4214. else {
  4215. #ifdef MESH_BED_LEVELING
  4216. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4217. #else
  4218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4219. #endif
  4220. }
  4221. for(int8_t i=0; i < NUM_AXIS; i++) {
  4222. current_position[i] = destination[i];
  4223. }
  4224. }
  4225. void prepare_arc_move(char isclockwise) {
  4226. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4227. // Trace the arc
  4228. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4229. // As far as the parser is concerned, the position is now == target. In reality the
  4230. // motion control system might still be processing the action and the real tool position
  4231. // in any intermediate location.
  4232. for(int8_t i=0; i < NUM_AXIS; i++) {
  4233. current_position[i] = destination[i];
  4234. }
  4235. previous_millis_cmd = millis();
  4236. }
  4237. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4238. #if defined(FAN_PIN)
  4239. #if CONTROLLERFAN_PIN == FAN_PIN
  4240. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4241. #endif
  4242. #endif
  4243. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4244. unsigned long lastMotorCheck = 0;
  4245. void controllerFan()
  4246. {
  4247. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4248. {
  4249. lastMotorCheck = millis();
  4250. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4251. #if EXTRUDERS > 2
  4252. || !READ(E2_ENABLE_PIN)
  4253. #endif
  4254. #if EXTRUDER > 1
  4255. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4256. || !READ(X2_ENABLE_PIN)
  4257. #endif
  4258. || !READ(E1_ENABLE_PIN)
  4259. #endif
  4260. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4261. {
  4262. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4263. }
  4264. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4265. {
  4266. digitalWrite(CONTROLLERFAN_PIN, 0);
  4267. analogWrite(CONTROLLERFAN_PIN, 0);
  4268. }
  4269. else
  4270. {
  4271. // allows digital or PWM fan output to be used (see M42 handling)
  4272. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4273. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4274. }
  4275. }
  4276. }
  4277. #endif
  4278. #ifdef TEMP_STAT_LEDS
  4279. static bool blue_led = false;
  4280. static bool red_led = false;
  4281. static uint32_t stat_update = 0;
  4282. void handle_status_leds(void) {
  4283. float max_temp = 0.0;
  4284. if(millis() > stat_update) {
  4285. stat_update += 500; // Update every 0.5s
  4286. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4287. max_temp = max(max_temp, degHotend(cur_extruder));
  4288. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4289. }
  4290. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4291. max_temp = max(max_temp, degTargetBed());
  4292. max_temp = max(max_temp, degBed());
  4293. #endif
  4294. if((max_temp > 55.0) && (red_led == false)) {
  4295. digitalWrite(STAT_LED_RED, 1);
  4296. digitalWrite(STAT_LED_BLUE, 0);
  4297. red_led = true;
  4298. blue_led = false;
  4299. }
  4300. if((max_temp < 54.0) && (blue_led == false)) {
  4301. digitalWrite(STAT_LED_RED, 0);
  4302. digitalWrite(STAT_LED_BLUE, 1);
  4303. red_led = false;
  4304. blue_led = true;
  4305. }
  4306. }
  4307. }
  4308. #endif
  4309. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4310. {
  4311. #if defined(KILL_PIN) && KILL_PIN > -1
  4312. static int killCount = 0; // make the inactivity button a bit less responsive
  4313. const int KILL_DELAY = 10000;
  4314. #endif
  4315. if(buflen < (BUFSIZE-1)){
  4316. get_command();
  4317. }
  4318. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4319. if(max_inactive_time)
  4320. kill();
  4321. if(stepper_inactive_time) {
  4322. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4323. {
  4324. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4325. disable_x();
  4326. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4327. disable_y();
  4328. disable_z();
  4329. disable_e0();
  4330. disable_e1();
  4331. disable_e2();
  4332. }
  4333. }
  4334. }
  4335. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4336. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4337. {
  4338. chdkActive = false;
  4339. WRITE(CHDK, LOW);
  4340. }
  4341. #endif
  4342. #if defined(KILL_PIN) && KILL_PIN > -1
  4343. // Check if the kill button was pressed and wait just in case it was an accidental
  4344. // key kill key press
  4345. // -------------------------------------------------------------------------------
  4346. if( 0 == READ(KILL_PIN) )
  4347. {
  4348. killCount++;
  4349. }
  4350. else if (killCount > 0)
  4351. {
  4352. killCount--;
  4353. }
  4354. // Exceeded threshold and we can confirm that it was not accidental
  4355. // KILL the machine
  4356. // ----------------------------------------------------------------
  4357. if ( killCount >= KILL_DELAY)
  4358. {
  4359. kill();
  4360. }
  4361. #endif
  4362. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4363. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4364. #endif
  4365. #ifdef EXTRUDER_RUNOUT_PREVENT
  4366. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4367. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4368. {
  4369. bool oldstatus=READ(E0_ENABLE_PIN);
  4370. enable_e0();
  4371. float oldepos=current_position[E_AXIS];
  4372. float oldedes=destination[E_AXIS];
  4373. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4374. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4375. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4376. current_position[E_AXIS]=oldepos;
  4377. destination[E_AXIS]=oldedes;
  4378. plan_set_e_position(oldepos);
  4379. previous_millis_cmd=millis();
  4380. st_synchronize();
  4381. WRITE(E0_ENABLE_PIN,oldstatus);
  4382. }
  4383. #endif
  4384. #ifdef TEMP_STAT_LEDS
  4385. handle_status_leds();
  4386. #endif
  4387. check_axes_activity();
  4388. }
  4389. void kill(const char *full_screen_message)
  4390. {
  4391. cli(); // Stop interrupts
  4392. disable_heater();
  4393. disable_x();
  4394. // SERIAL_ECHOLNPGM("kill - disable Y");
  4395. disable_y();
  4396. disable_z();
  4397. disable_e0();
  4398. disable_e1();
  4399. disable_e2();
  4400. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4401. pinMode(PS_ON_PIN,INPUT);
  4402. #endif
  4403. SERIAL_ERROR_START;
  4404. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4405. if (full_screen_message != NULL) {
  4406. SERIAL_ERRORLNRPGM(full_screen_message);
  4407. lcd_display_message_fullscreen_P(full_screen_message);
  4408. } else {
  4409. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4410. }
  4411. // FMC small patch to update the LCD before ending
  4412. sei(); // enable interrupts
  4413. for ( int i=5; i--; lcd_update())
  4414. {
  4415. delay(200);
  4416. }
  4417. cli(); // disable interrupts
  4418. suicide();
  4419. while(1) { /* Intentionally left empty */ } // Wait for reset
  4420. }
  4421. void Stop()
  4422. {
  4423. disable_heater();
  4424. if(Stopped == false) {
  4425. Stopped = true;
  4426. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4427. SERIAL_ERROR_START;
  4428. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4429. LCD_MESSAGERPGM(MSG_STOPPED);
  4430. }
  4431. }
  4432. bool IsStopped() { return Stopped; };
  4433. #ifdef FAST_PWM_FAN
  4434. void setPwmFrequency(uint8_t pin, int val)
  4435. {
  4436. val &= 0x07;
  4437. switch(digitalPinToTimer(pin))
  4438. {
  4439. #if defined(TCCR0A)
  4440. case TIMER0A:
  4441. case TIMER0B:
  4442. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4443. // TCCR0B |= val;
  4444. break;
  4445. #endif
  4446. #if defined(TCCR1A)
  4447. case TIMER1A:
  4448. case TIMER1B:
  4449. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4450. // TCCR1B |= val;
  4451. break;
  4452. #endif
  4453. #if defined(TCCR2)
  4454. case TIMER2:
  4455. case TIMER2:
  4456. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4457. TCCR2 |= val;
  4458. break;
  4459. #endif
  4460. #if defined(TCCR2A)
  4461. case TIMER2A:
  4462. case TIMER2B:
  4463. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4464. TCCR2B |= val;
  4465. break;
  4466. #endif
  4467. #if defined(TCCR3A)
  4468. case TIMER3A:
  4469. case TIMER3B:
  4470. case TIMER3C:
  4471. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4472. TCCR3B |= val;
  4473. break;
  4474. #endif
  4475. #if defined(TCCR4A)
  4476. case TIMER4A:
  4477. case TIMER4B:
  4478. case TIMER4C:
  4479. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4480. TCCR4B |= val;
  4481. break;
  4482. #endif
  4483. #if defined(TCCR5A)
  4484. case TIMER5A:
  4485. case TIMER5B:
  4486. case TIMER5C:
  4487. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4488. TCCR5B |= val;
  4489. break;
  4490. #endif
  4491. }
  4492. }
  4493. #endif //FAST_PWM_FAN
  4494. bool setTargetedHotend(int code){
  4495. tmp_extruder = active_extruder;
  4496. if(code_seen('T')) {
  4497. tmp_extruder = code_value();
  4498. if(tmp_extruder >= EXTRUDERS) {
  4499. SERIAL_ECHO_START;
  4500. switch(code){
  4501. case 104:
  4502. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4503. break;
  4504. case 105:
  4505. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4506. break;
  4507. case 109:
  4508. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4509. break;
  4510. case 218:
  4511. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4512. break;
  4513. case 221:
  4514. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4515. break;
  4516. }
  4517. SERIAL_ECHOLN(tmp_extruder);
  4518. return true;
  4519. }
  4520. }
  4521. return false;
  4522. }
  4523. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4524. {
  4525. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4526. {
  4527. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4528. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4529. }
  4530. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4531. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4532. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4533. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4534. total_filament_used = 0;
  4535. }
  4536. float calculate_volumetric_multiplier(float diameter) {
  4537. float area = .0;
  4538. float radius = .0;
  4539. radius = diameter * .5;
  4540. if (! volumetric_enabled || radius == 0) {
  4541. area = 1;
  4542. }
  4543. else {
  4544. area = M_PI * pow(radius, 2);
  4545. }
  4546. return 1.0 / area;
  4547. }
  4548. void calculate_volumetric_multipliers() {
  4549. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4550. #if EXTRUDERS > 1
  4551. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4552. #if EXTRUDERS > 2
  4553. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4554. #endif
  4555. #endif
  4556. }
  4557. void delay_keep_alive(int ms)
  4558. {
  4559. for (;;) {
  4560. manage_heater();
  4561. // Manage inactivity, but don't disable steppers on timeout.
  4562. manage_inactivity(true);
  4563. lcd_update();
  4564. if (ms == 0)
  4565. break;
  4566. else if (ms >= 50) {
  4567. delay(50);
  4568. ms -= 50;
  4569. } else {
  4570. delay(ms);
  4571. ms = 0;
  4572. }
  4573. }
  4574. }