planner.cpp 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. //===========================================================================
  47. //=============================public variables ============================
  48. //===========================================================================
  49. unsigned long minsegmenttime;
  50. float max_feedrate[NUM_AXIS]; // set the max speeds
  51. float axis_steps_per_unit[NUM_AXIS];
  52. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  53. float minimumfeedrate;
  54. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  55. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  56. // Jerk is a maximum immediate velocity change.
  57. float max_jerk[NUM_AXIS];
  58. float mintravelfeedrate;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. float extrude_min_temp=EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef FILAMENT_SENSOR
  97. static char meas_sample; //temporary variable to hold filament measurement sample
  98. #endif
  99. // Returns the index of the next block in the ring buffer
  100. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  101. static inline int8_t next_block_index(int8_t block_index) {
  102. if (++ block_index == BLOCK_BUFFER_SIZE)
  103. block_index = 0;
  104. return block_index;
  105. }
  106. // Returns the index of the previous block in the ring buffer
  107. static inline int8_t prev_block_index(int8_t block_index) {
  108. if (block_index == 0)
  109. block_index = BLOCK_BUFFER_SIZE;
  110. -- block_index;
  111. return block_index;
  112. }
  113. //===========================================================================
  114. //=============================functions ============================
  115. //===========================================================================
  116. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  117. // given acceleration:
  118. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  119. {
  120. if (acceleration!=0) {
  121. return((target_rate*target_rate-initial_rate*initial_rate)/
  122. (2.0*acceleration));
  123. }
  124. else {
  125. return 0.0; // acceleration was 0, set acceleration distance to 0
  126. }
  127. }
  128. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  129. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  130. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  131. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  132. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  133. {
  134. if (acceleration!=0) {
  135. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  136. (4.0*acceleration) );
  137. }
  138. else {
  139. return 0.0; // acceleration was 0, set intersection distance to 0
  140. }
  141. }
  142. #define MINIMAL_STEP_RATE 120
  143. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  144. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  145. {
  146. // These two lines are the only floating point calculations performed in this routine.
  147. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  148. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  149. // Limit minimal step rate (Otherwise the timer will overflow.)
  150. if (initial_rate < MINIMAL_STEP_RATE)
  151. initial_rate = MINIMAL_STEP_RATE;
  152. if (initial_rate > block->nominal_rate)
  153. initial_rate = block->nominal_rate;
  154. if (final_rate < MINIMAL_STEP_RATE)
  155. final_rate = MINIMAL_STEP_RATE;
  156. if (final_rate > block->nominal_rate)
  157. final_rate = block->nominal_rate;
  158. uint32_t acceleration = block->acceleration_st;
  159. if (acceleration == 0)
  160. // Don't allow zero acceleration.
  161. acceleration = 1;
  162. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  163. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  164. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  165. //FIXME assert that this result fits a 64bit unsigned int.
  166. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  167. uint32_t final_rate_sqr = final_rate*final_rate;
  168. uint32_t acceleration_x2 = acceleration << 1;
  169. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  170. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  171. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  172. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  173. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  174. // Size of Plateau of Nominal Rate.
  175. uint32_t plateau_steps = 0;
  176. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  177. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  178. // in order to reach the final_rate exactly at the end of this block.
  179. if (accel_decel_steps < block->step_event_count) {
  180. plateau_steps = block->step_event_count - accel_decel_steps;
  181. } else {
  182. uint32_t acceleration_x4 = acceleration << 2;
  183. // Avoid negative numbers
  184. if (final_rate_sqr >= initial_rate_sqr) {
  185. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  186. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  187. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  188. // accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  189. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  190. if (block->step_event_count & 1)
  191. accelerate_steps += acceleration_x2;
  192. accelerate_steps += block->step_event_count >> 1;
  193. accelerate_steps /= acceleration_x4;
  194. if (accelerate_steps > block->step_event_count)
  195. accelerate_steps = block->step_event_count;
  196. } else {
  197. // decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  198. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  199. if (block->step_event_count & 1)
  200. decelerate_steps += acceleration_x2;
  201. decelerate_steps += block->step_event_count >> 1;
  202. decelerate_steps /= acceleration_x4;
  203. if (decelerate_steps > block->step_event_count)
  204. decelerate_steps = block->step_event_count;
  205. accelerate_steps = block->step_event_count - decelerate_steps;
  206. }
  207. }
  208. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  209. if (! block->busy) { // Don't update variables if block is busy.
  210. block->accelerate_until = accelerate_steps;
  211. block->decelerate_after = accelerate_steps+plateau_steps;
  212. block->initial_rate = initial_rate;
  213. block->final_rate = final_rate;
  214. }
  215. CRITICAL_SECTION_END;
  216. }
  217. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  218. // decceleration within the allotted distance.
  219. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  220. {
  221. // assert(decceleration < 0);
  222. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  223. }
  224. // Recalculates the motion plan according to the following algorithm:
  225. //
  226. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  227. // so that:
  228. // a. The junction jerk is within the set limit
  229. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  230. // acceleration.
  231. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  232. // a. The speed increase within one block would require faster accelleration than the one, true
  233. // constant acceleration.
  234. //
  235. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  236. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  237. // the set limit. Finally it will:
  238. //
  239. // 3. Recalculate trapezoids for all blocks.
  240. //
  241. //FIXME This routine is called 15x every time a new line is added to the planner,
  242. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  243. // if the CPU is found lacking computational power.
  244. //
  245. // Following sources may be used to optimize the 8-bit AVR code:
  246. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  247. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  248. //
  249. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  250. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  251. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  252. //
  253. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  254. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  255. // https://github.com/rekka/avrmultiplication
  256. //
  257. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  258. // https://courses.cit.cornell.edu/ee476/Math/
  259. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  260. //
  261. void planner_recalculate(const float &safe_final_speed)
  262. {
  263. // Reverse pass
  264. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  265. // by consuming the blocks, therefore shortening the queue.
  266. unsigned char tail = block_buffer_tail;
  267. uint8_t block_index;
  268. block_t *prev, *current, *next;
  269. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  270. // At least three blocks are in the queue?
  271. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  272. if (n_blocks >= 3) {
  273. // Initialize the last tripple of blocks.
  274. block_index = prev_block_index(block_buffer_head);
  275. next = block_buffer + block_index;
  276. current = block_buffer + (block_index = prev_block_index(block_index));
  277. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  278. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  279. // 1) it may already be running at the stepper interrupt,
  280. // 2) there is no way to limit it when going in the forward direction.
  281. while (block_index != tail) {
  282. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  283. // Don't modify the entry velocity of the starting block.
  284. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  285. // for the stepper interrupt routine to use them.
  286. tail = block_index;
  287. // Update the number of blocks to process.
  288. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  289. // SERIAL_ECHOLNPGM("START");
  290. break;
  291. }
  292. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  293. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  294. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  295. if (current->entry_speed != current->max_entry_speed) {
  296. // assert(current->entry_speed < current->max_entry_speed);
  297. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  298. // segment and the maximum acceleration allowed for this segment.
  299. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  300. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  301. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  302. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  303. // together with an assembly 32bit->16bit sqrt function.
  304. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  305. current->max_entry_speed :
  306. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  307. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  308. current->flag |= BLOCK_FLAG_RECALCULATE;
  309. }
  310. next = current;
  311. current = block_buffer + (block_index = prev_block_index(block_index));
  312. }
  313. }
  314. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  315. // Forward pass and recalculate the trapezoids.
  316. if (n_blocks >= 2) {
  317. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  318. block_index = tail;
  319. prev = block_buffer + block_index;
  320. current = block_buffer + (block_index = next_block_index(block_index));
  321. do {
  322. // If the previous block is an acceleration block, but it is not long enough to complete the
  323. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  324. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  325. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  326. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  327. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  328. // Check for junction speed change
  329. if (current->entry_speed != entry_speed) {
  330. current->entry_speed = entry_speed;
  331. current->flag |= BLOCK_FLAG_RECALCULATE;
  332. }
  333. }
  334. // Recalculate if current block entry or exit junction speed has changed.
  335. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  336. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  337. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  338. // Reset current only to ensure next trapezoid is computed.
  339. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  340. }
  341. prev = current;
  342. current = block_buffer + (block_index = next_block_index(block_index));
  343. } while (block_index != block_buffer_head);
  344. }
  345. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  346. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  347. current = block_buffer + prev_block_index(block_buffer_head);
  348. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  349. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  350. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  351. }
  352. void plan_init() {
  353. block_buffer_head = 0;
  354. block_buffer_tail = 0;
  355. memset(position, 0, sizeof(position)); // clear position
  356. previous_speed[0] = 0.0;
  357. previous_speed[1] = 0.0;
  358. previous_speed[2] = 0.0;
  359. previous_speed[3] = 0.0;
  360. previous_nominal_speed = 0.0;
  361. }
  362. #ifdef AUTOTEMP
  363. void getHighESpeed()
  364. {
  365. static float oldt=0;
  366. if(!autotemp_enabled){
  367. return;
  368. }
  369. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  370. return; //do nothing
  371. }
  372. float high=0.0;
  373. uint8_t block_index = block_buffer_tail;
  374. while(block_index != block_buffer_head) {
  375. if((block_buffer[block_index].steps_x != 0) ||
  376. (block_buffer[block_index].steps_y != 0) ||
  377. (block_buffer[block_index].steps_z != 0)) {
  378. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  379. //se; mm/sec;
  380. if(se>high)
  381. {
  382. high=se;
  383. }
  384. }
  385. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  386. }
  387. float g=autotemp_min+high*autotemp_factor;
  388. float t=g;
  389. if(t<autotemp_min)
  390. t=autotemp_min;
  391. if(t>autotemp_max)
  392. t=autotemp_max;
  393. if(oldt>t)
  394. {
  395. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  396. }
  397. oldt=t;
  398. setTargetHotend0(t);
  399. }
  400. #endif
  401. void check_axes_activity()
  402. {
  403. unsigned char x_active = 0;
  404. unsigned char y_active = 0;
  405. unsigned char z_active = 0;
  406. unsigned char e_active = 0;
  407. unsigned char tail_fan_speed = fanSpeed;
  408. block_t *block;
  409. if(block_buffer_tail != block_buffer_head)
  410. {
  411. uint8_t block_index = block_buffer_tail;
  412. tail_fan_speed = block_buffer[block_index].fan_speed;
  413. while(block_index != block_buffer_head)
  414. {
  415. block = &block_buffer[block_index];
  416. if(block->steps_x != 0) x_active++;
  417. if(block->steps_y != 0) y_active++;
  418. if(block->steps_z != 0) z_active++;
  419. if(block->steps_e != 0) e_active++;
  420. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  421. }
  422. }
  423. if((DISABLE_X) && (x_active == 0)) disable_x();
  424. if((DISABLE_Y) && (y_active == 0)) disable_y();
  425. if((DISABLE_Z) && (z_active == 0)) disable_z();
  426. if((DISABLE_E) && (e_active == 0))
  427. {
  428. disable_e0();
  429. disable_e1();
  430. disable_e2();
  431. }
  432. #if defined(FAN_PIN) && FAN_PIN > -1
  433. #ifdef FAN_KICKSTART_TIME
  434. static unsigned long fan_kick_end;
  435. if (tail_fan_speed) {
  436. if (fan_kick_end == 0) {
  437. // Just starting up fan - run at full power.
  438. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  439. tail_fan_speed = 255;
  440. } else if (fan_kick_end > millis())
  441. // Fan still spinning up.
  442. tail_fan_speed = 255;
  443. } else {
  444. fan_kick_end = 0;
  445. }
  446. #endif//FAN_KICKSTART_TIME
  447. #ifdef FAN_SOFT_PWM
  448. fanSpeedSoftPwm = tail_fan_speed;
  449. #else
  450. analogWrite(FAN_PIN,tail_fan_speed);
  451. #endif//!FAN_SOFT_PWM
  452. #endif//FAN_PIN > -1
  453. #ifdef AUTOTEMP
  454. getHighESpeed();
  455. #endif
  456. }
  457. bool waiting_inside_plan_buffer_line_print_aborted = false;
  458. /*
  459. void planner_abort_soft()
  460. {
  461. // Empty the queue.
  462. while (blocks_queued()) plan_discard_current_block();
  463. // Relay to planner wait routine, that the current line shall be canceled.
  464. waiting_inside_plan_buffer_line_print_aborted = true;
  465. //current_position[i]
  466. }
  467. */
  468. #ifdef PLANNER_DIAGNOSTICS
  469. static inline void planner_update_queue_min_counter()
  470. {
  471. uint8_t new_counter = moves_planned();
  472. if (new_counter < g_cntr_planner_queue_min)
  473. g_cntr_planner_queue_min = new_counter;
  474. }
  475. #endif /* PLANNER_DIAGNOSTICS */
  476. void planner_abort_hard()
  477. {
  478. // Abort the stepper routine and flush the planner queue.
  479. quickStop();
  480. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  481. // First update the planner's current position in the physical motor steps.
  482. position[X_AXIS] = st_get_position(X_AXIS);
  483. position[Y_AXIS] = st_get_position(Y_AXIS);
  484. position[Z_AXIS] = st_get_position(Z_AXIS);
  485. position[E_AXIS] = st_get_position(E_AXIS);
  486. // Second update the current position of the front end.
  487. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  488. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  489. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  490. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  491. // Apply the mesh bed leveling correction to the Z axis.
  492. #ifdef MESH_BED_LEVELING
  493. if (mbl.active)
  494. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  495. #endif
  496. // Apply inverse world correction matrix.
  497. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  498. memcpy(destination, current_position, sizeof(destination));
  499. // Resets planner junction speeds. Assumes start from rest.
  500. previous_nominal_speed = 0.0;
  501. previous_speed[0] = 0.0;
  502. previous_speed[1] = 0.0;
  503. previous_speed[2] = 0.0;
  504. previous_speed[3] = 0.0;
  505. // Relay to planner wait routine, that the current line shall be canceled.
  506. waiting_inside_plan_buffer_line_print_aborted = true;
  507. }
  508. float junction_deviation = 0.1;
  509. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  510. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  511. // calculation the caller must also provide the physical length of the line in millimeters.
  512. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  513. {
  514. // Calculate the buffer head after we push this byte
  515. int next_buffer_head = next_block_index(block_buffer_head);
  516. // If the buffer is full: good! That means we are well ahead of the robot.
  517. // Rest here until there is room in the buffer.
  518. if (block_buffer_tail == next_buffer_head) {
  519. waiting_inside_plan_buffer_line_print_aborted = false;
  520. do {
  521. manage_heater();
  522. // Vojtech: Don't disable motors inside the planner!
  523. manage_inactivity(false);
  524. lcd_update();
  525. } while (block_buffer_tail == next_buffer_head);
  526. if (waiting_inside_plan_buffer_line_print_aborted) {
  527. // Inside the lcd_update() routine the print has been aborted.
  528. // Cancel the print, do not plan the current line this routine is waiting on.
  529. #ifdef PLANNER_DIAGNOSTICS
  530. planner_update_queue_min_counter();
  531. #endif /* PLANNER_DIAGNOSTICS */
  532. return;
  533. }
  534. }
  535. #ifdef PLANNER_DIAGNOSTICS
  536. planner_update_queue_min_counter();
  537. #endif /* PLANNER_DIAGNOSTICS */
  538. #ifdef ENABLE_AUTO_BED_LEVELING
  539. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  540. #endif // ENABLE_AUTO_BED_LEVELING
  541. // Apply the machine correction matrix.
  542. {
  543. #if 0
  544. SERIAL_ECHOPGM("Planner, current position - servos: ");
  545. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  546. SERIAL_ECHOPGM(", ");
  547. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  548. SERIAL_ECHOPGM(", ");
  549. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  550. SERIAL_ECHOLNPGM("");
  551. SERIAL_ECHOPGM("Planner, target position, initial: ");
  552. MYSERIAL.print(x, 5);
  553. SERIAL_ECHOPGM(", ");
  554. MYSERIAL.print(y, 5);
  555. SERIAL_ECHOLNPGM("");
  556. SERIAL_ECHOPGM("Planner, world2machine: ");
  557. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  558. SERIAL_ECHOPGM(", ");
  559. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  560. SERIAL_ECHOPGM(", ");
  561. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  562. SERIAL_ECHOPGM(", ");
  563. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  564. SERIAL_ECHOLNPGM("");
  565. SERIAL_ECHOPGM("Planner, offset: ");
  566. MYSERIAL.print(world2machine_shift[0], 5);
  567. SERIAL_ECHOPGM(", ");
  568. MYSERIAL.print(world2machine_shift[1], 5);
  569. SERIAL_ECHOLNPGM("");
  570. #endif
  571. world2machine(x, y);
  572. #if 0
  573. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  574. MYSERIAL.print(x, 5);
  575. SERIAL_ECHOPGM(", ");
  576. MYSERIAL.print(y, 5);
  577. SERIAL_ECHOLNPGM("");
  578. #endif
  579. }
  580. // The target position of the tool in absolute steps
  581. // Calculate target position in absolute steps
  582. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  583. long target[4];
  584. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  585. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  586. #ifdef MESH_BED_LEVELING
  587. if (mbl.active){
  588. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  589. }else{
  590. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  591. }
  592. #else
  593. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  594. #endif // ENABLE_MESH_BED_LEVELING
  595. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  596. #ifdef PREVENT_DANGEROUS_EXTRUDE
  597. if(target[E_AXIS]!=position[E_AXIS])
  598. {
  599. if(degHotend(active_extruder)<extrude_min_temp)
  600. {
  601. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  602. SERIAL_ECHO_START;
  603. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  604. }
  605. #ifdef PREVENT_LENGTHY_EXTRUDE
  606. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  607. {
  608. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  609. SERIAL_ECHO_START;
  610. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  611. }
  612. #endif
  613. }
  614. #endif
  615. // Prepare to set up new block
  616. block_t *block = &block_buffer[block_buffer_head];
  617. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  618. block->busy = false;
  619. // Number of steps for each axis
  620. #ifndef COREXY
  621. // default non-h-bot planning
  622. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  623. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  624. #else
  625. // corexy planning
  626. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  627. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  628. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  629. #endif
  630. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  631. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  632. if (volumetric_multiplier[active_extruder] != 1.f)
  633. block->steps_e *= volumetric_multiplier[active_extruder];
  634. if (extrudemultiply != 100) {
  635. block->steps_e *= extrudemultiply;
  636. block->steps_e /= 100;
  637. }
  638. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  639. // Bail if this is a zero-length block
  640. if (block->step_event_count <= dropsegments)
  641. {
  642. #ifdef PLANNER_DIAGNOSTICS
  643. planner_update_queue_min_counter();
  644. #endif /* PLANNER_DIAGNOSTICS */
  645. return;
  646. }
  647. block->fan_speed = fanSpeed;
  648. // Compute direction bits for this block
  649. block->direction_bits = 0;
  650. #ifndef COREXY
  651. if (target[X_AXIS] < position[X_AXIS])
  652. {
  653. block->direction_bits |= (1<<X_AXIS);
  654. }
  655. if (target[Y_AXIS] < position[Y_AXIS])
  656. {
  657. block->direction_bits |= (1<<Y_AXIS);
  658. }
  659. #else
  660. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  661. {
  662. block->direction_bits |= (1<<X_AXIS);
  663. }
  664. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  665. {
  666. block->direction_bits |= (1<<Y_AXIS);
  667. }
  668. #endif
  669. if (target[Z_AXIS] < position[Z_AXIS])
  670. {
  671. block->direction_bits |= (1<<Z_AXIS);
  672. }
  673. if (target[E_AXIS] < position[E_AXIS])
  674. {
  675. block->direction_bits |= (1<<E_AXIS);
  676. }
  677. block->active_extruder = extruder;
  678. //enable active axes
  679. #ifdef COREXY
  680. if((block->steps_x != 0) || (block->steps_y != 0))
  681. {
  682. enable_x();
  683. enable_y();
  684. }
  685. #else
  686. if(block->steps_x != 0) enable_x();
  687. if(block->steps_y != 0) enable_y();
  688. #endif
  689. #ifndef Z_LATE_ENABLE
  690. if(block->steps_z != 0) enable_z();
  691. #endif
  692. // Enable extruder(s)
  693. if(block->steps_e != 0)
  694. {
  695. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  696. {
  697. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  698. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  699. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  700. switch(extruder)
  701. {
  702. case 0:
  703. enable_e0();
  704. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  705. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  706. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  707. break;
  708. case 1:
  709. enable_e1();
  710. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  711. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  712. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  713. break;
  714. case 2:
  715. enable_e2();
  716. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  717. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  718. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  719. break;
  720. }
  721. }
  722. else //enable all
  723. {
  724. enable_e0();
  725. enable_e1();
  726. enable_e2();
  727. }
  728. }
  729. if (block->steps_e == 0)
  730. {
  731. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  732. }
  733. else
  734. {
  735. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  736. }
  737. /* This part of the code calculates the total length of the movement.
  738. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  739. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  740. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  741. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  742. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  743. */
  744. #ifndef COREXY
  745. float delta_mm[4];
  746. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  747. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  748. #else
  749. float delta_mm[6];
  750. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  751. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  752. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  753. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  754. #endif
  755. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  756. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  757. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  758. {
  759. block->millimeters = fabs(delta_mm[E_AXIS]);
  760. }
  761. else
  762. {
  763. #ifndef COREXY
  764. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  765. #else
  766. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  767. #endif
  768. }
  769. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  770. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  771. float inverse_second = feed_rate * inverse_millimeters;
  772. int moves_queued = moves_planned();
  773. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  774. #ifdef SLOWDOWN
  775. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  776. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  777. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  778. // segment time in micro seconds
  779. unsigned long segment_time = lround(1000000.0/inverse_second);
  780. if (segment_time < minsegmenttime)
  781. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  782. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  783. }
  784. #endif // SLOWDOWN
  785. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  786. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  787. #ifdef FILAMENT_SENSOR
  788. //FMM update ring buffer used for delay with filament measurements
  789. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  790. {
  791. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  792. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  793. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  794. while (delay_dist<0)
  795. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  796. delay_index1=delay_dist/10.0; //calculate index
  797. //ensure the number is within range of the array after converting from floating point
  798. if(delay_index1<0)
  799. delay_index1=0;
  800. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  801. delay_index1=MAX_MEASUREMENT_DELAY;
  802. if(delay_index1 != delay_index2) //moved index
  803. {
  804. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  805. }
  806. while( delay_index1 != delay_index2)
  807. {
  808. delay_index2 = delay_index2 + 1;
  809. if(delay_index2>MAX_MEASUREMENT_DELAY)
  810. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  811. if(delay_index2<0)
  812. delay_index2=0;
  813. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  814. delay_index2=MAX_MEASUREMENT_DELAY;
  815. measurement_delay[delay_index2]=meas_sample;
  816. }
  817. }
  818. #endif
  819. // Calculate and limit speed in mm/sec for each axis
  820. float current_speed[4];
  821. float speed_factor = 1.0; //factor <=1 do decrease speed
  822. for(int i=0; i < 4; i++)
  823. {
  824. current_speed[i] = delta_mm[i] * inverse_second;
  825. if(fabs(current_speed[i]) > max_feedrate[i])
  826. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  827. }
  828. // Correct the speed
  829. if( speed_factor < 1.0)
  830. {
  831. for(unsigned char i=0; i < 4; i++)
  832. {
  833. current_speed[i] *= speed_factor;
  834. }
  835. block->nominal_speed *= speed_factor;
  836. block->nominal_rate *= speed_factor;
  837. }
  838. // Compute and limit the acceleration rate for the trapezoid generator.
  839. // block->step_event_count ... event count of the fastest axis
  840. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  841. float steps_per_mm = block->step_event_count/block->millimeters;
  842. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  843. {
  844. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  845. }
  846. else
  847. {
  848. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  849. // Limit acceleration per axis
  850. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  851. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  852. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  853. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  854. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  855. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  856. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  857. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  858. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  859. }
  860. // Acceleration of the segment, in mm/sec^2
  861. block->acceleration = block->acceleration_st / steps_per_mm;
  862. #if 1
  863. // Oversample diagonal movements by a power of 2 up to 8x
  864. // to achieve more accurate diagonal movements.
  865. uint8_t bresenham_oversample = 1;
  866. for (uint8_t i = 0; i < 3; ++ i) {
  867. if (block->nominal_rate >= 5000) // 5kHz
  868. break;
  869. block->nominal_rate << 1;
  870. bresenham_oversample << 1;
  871. block->step_event_count << 1;
  872. }
  873. if (bresenham_oversample > 1)
  874. // Lower the acceleration steps/sec^2 to account for the oversampling.
  875. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  876. #endif
  877. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  878. // Start with a safe speed.
  879. // Safe speed is the speed, from which the machine may halt to stop immediately.
  880. float safe_speed = block->nominal_speed;
  881. bool limited = false;
  882. for (uint8_t axis = 0; axis < 4; ++ axis) {
  883. float jerk = fabs(current_speed[axis]);
  884. if (jerk > max_jerk[axis]) {
  885. // The actual jerk is lower, if it has been limited by the XY jerk.
  886. if (limited) {
  887. // Spare one division by a following gymnastics:
  888. // Instead of jerk *= safe_speed / block->nominal_speed,
  889. // multiply max_jerk[axis] by the divisor.
  890. jerk *= safe_speed;
  891. float mjerk = max_jerk[axis] * block->nominal_speed;
  892. if (jerk > mjerk) {
  893. safe_speed *= mjerk / jerk;
  894. limited = true;
  895. }
  896. } else {
  897. safe_speed = max_jerk[axis];
  898. limited = true;
  899. }
  900. }
  901. }
  902. // Reset the block flag.
  903. block->flag = 0;
  904. // Initial limit on the segment entry velocity.
  905. float vmax_junction;
  906. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  907. // Is it because we don't want to tinker with the first buffer line, which
  908. // is likely to be executed by the stepper interrupt routine soon?
  909. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  910. // Estimate a maximum velocity allowed at a joint of two successive segments.
  911. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  912. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  913. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  914. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  915. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  916. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  917. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  918. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  919. float v_factor = 1.f;
  920. limited = false;
  921. // Now limit the jerk in all axes.
  922. for (uint8_t axis = 0; axis < 4; ++ axis) {
  923. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  924. float v_exit = previous_speed[axis];
  925. float v_entry = current_speed [axis];
  926. if (prev_speed_larger)
  927. v_exit *= smaller_speed_factor;
  928. if (limited) {
  929. v_exit *= v_factor;
  930. v_entry *= v_factor;
  931. }
  932. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  933. float jerk =
  934. (v_exit > v_entry) ?
  935. ((v_entry > 0.f || v_exit < 0.f) ?
  936. // coasting
  937. (v_exit - v_entry) :
  938. // axis reversal
  939. max(v_exit, - v_entry)) :
  940. // v_exit <= v_entry
  941. ((v_entry < 0.f || v_exit > 0.f) ?
  942. // coasting
  943. (v_entry - v_exit) :
  944. // axis reversal
  945. max(- v_exit, v_entry));
  946. if (jerk > max_jerk[axis]) {
  947. v_factor *= max_jerk[axis] / jerk;
  948. limited = true;
  949. }
  950. }
  951. if (limited)
  952. vmax_junction *= v_factor;
  953. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  954. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  955. float vmax_junction_threshold = vmax_junction * 0.99f;
  956. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  957. // Not coasting. The machine will stop and start the movements anyway,
  958. // better to start the segment from start.
  959. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  960. vmax_junction = safe_speed;
  961. }
  962. } else {
  963. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  964. vmax_junction = safe_speed;
  965. }
  966. // Max entry speed of this block equals the max exit speed of the previous block.
  967. block->max_entry_speed = vmax_junction;
  968. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  969. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  970. block->entry_speed = min(vmax_junction, v_allowable);
  971. // Initialize planner efficiency flags
  972. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  973. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  974. // the current block and next block junction speeds are guaranteed to always be at their maximum
  975. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  976. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  977. // the reverse and forward planners, the corresponding block junction speed will always be at the
  978. // the maximum junction speed and may always be ignored for any speed reduction checks.
  979. // Always calculate trapezoid for new block
  980. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  981. // Update previous path unit_vector and nominal speed
  982. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  983. previous_nominal_speed = block->nominal_speed;
  984. previous_safe_speed = safe_speed;
  985. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  986. block->speed_factor = block->nominal_rate / block->nominal_speed;
  987. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  988. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  989. block_buffer_head = next_buffer_head;
  990. // Update position
  991. memcpy(position, target, sizeof(target)); // position[] = target[]
  992. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  993. // the machine limits (maximum acceleration and maximum jerk).
  994. // This runs asynchronously with the stepper interrupt controller, which may
  995. // interfere with the process.
  996. planner_recalculate(safe_speed);
  997. // SERIAL_ECHOPGM("Q");
  998. // SERIAL_ECHO(int(moves_planned()));
  999. // SERIAL_ECHOLNPGM("");
  1000. #ifdef PLANNER_DIAGNOSTICS
  1001. planner_update_queue_min_counter();
  1002. #endif /* PLANNER_DIAGNOSTIC */
  1003. st_wake_up();
  1004. }
  1005. #ifdef ENABLE_AUTO_BED_LEVELING
  1006. vector_3 plan_get_position() {
  1007. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1008. //position.debug("in plan_get position");
  1009. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1010. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1011. //inverse.debug("in plan_get inverse");
  1012. position.apply_rotation(inverse);
  1013. //position.debug("after rotation");
  1014. return position;
  1015. }
  1016. #endif // ENABLE_AUTO_BED_LEVELING
  1017. void plan_set_position(float x, float y, float z, const float &e)
  1018. {
  1019. #ifdef ENABLE_AUTO_BED_LEVELING
  1020. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1021. #endif // ENABLE_AUTO_BED_LEVELING
  1022. // Apply the machine correction matrix.
  1023. {
  1024. float tmpx = x;
  1025. float tmpy = y;
  1026. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1027. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1028. }
  1029. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1030. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1031. #ifdef MESH_BED_LEVELING
  1032. if (mbl.active){
  1033. position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  1034. }else{
  1035. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1036. }
  1037. #else
  1038. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1039. #endif // ENABLE_MESH_BED_LEVELING
  1040. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1041. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1042. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1043. previous_speed[0] = 0.0;
  1044. previous_speed[1] = 0.0;
  1045. previous_speed[2] = 0.0;
  1046. previous_speed[3] = 0.0;
  1047. }
  1048. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1049. void plan_set_z_position(const float &z)
  1050. {
  1051. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1052. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1053. }
  1054. void plan_set_e_position(const float &e)
  1055. {
  1056. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1057. st_set_e_position(position[E_AXIS]);
  1058. }
  1059. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1060. void set_extrude_min_temp(float temp)
  1061. {
  1062. extrude_min_temp=temp;
  1063. }
  1064. #endif
  1065. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1066. void reset_acceleration_rates()
  1067. {
  1068. for(int8_t i=0; i < NUM_AXIS; i++)
  1069. {
  1070. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1071. }
  1072. }
  1073. #ifdef PLANNER_DIAGNOSTICS
  1074. uint8_t planner_queue_min()
  1075. {
  1076. return g_cntr_planner_queue_min;
  1077. }
  1078. void planner_queue_min_reset()
  1079. {
  1080. g_cntr_planner_queue_min = moves_planned();
  1081. }
  1082. #endif /* PLANNER_DIAGNOSTICS */