Marlin_main.cpp 230 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  180. // M907 - Set digital trimpot motor current using axis codes.
  181. // M908 - Control digital trimpot directly.
  182. // M350 - Set microstepping mode.
  183. // M351 - Toggle MS1 MS2 pins directly.
  184. // M928 - Start SD logging (M928 filename.g) - ended by M29
  185. // M999 - Restart after being stopped by error
  186. //Stepper Movement Variables
  187. //===========================================================================
  188. //=============================imported variables============================
  189. //===========================================================================
  190. //===========================================================================
  191. //=============================public variables=============================
  192. //===========================================================================
  193. #ifdef SDSUPPORT
  194. CardReader card;
  195. #endif
  196. unsigned long TimeSent = millis();
  197. unsigned long TimeNow = millis();
  198. unsigned long PingTime = millis();
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef HOST_KEEPALIVE_FEATURE
  319. // States for managing Marlin and host communication
  320. // Marlin sends messages if blocked or busy
  321. enum MarlinBusyState {
  322. NOT_BUSY, // Not in a handler
  323. IN_HANDLER, // Processing a GCode
  324. IN_PROCESS, // Known to be blocking command input (as in G29)
  325. PAUSED_FOR_USER, // Blocking pending any input
  326. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  327. };
  328. static MarlinBusyState busy_state = NOT_BUSY;
  329. static long prev_busy_signal_ms = -1;
  330. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  331. #define KEEPALIVE_STATE(n) do { busy_state = n; } while (0)
  332. #else
  333. #define host_keepalive();
  334. #define KEEPALIVE_STATE(n);
  335. #endif
  336. #ifdef FILAMENT_SENSOR
  337. //Variables for Filament Sensor input
  338. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  339. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  340. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  341. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  342. int delay_index1=0; //index into ring buffer
  343. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  344. float delay_dist=0; //delay distance counter
  345. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. //===========================================================================
  350. //=============================Private Variables=============================
  351. //===========================================================================
  352. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  353. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  354. static float delta[3] = {0.0, 0.0, 0.0};
  355. // For tracing an arc
  356. static float offset[3] = {0.0, 0.0, 0.0};
  357. static bool home_all_axis = true;
  358. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  359. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  360. // Determines Absolute or Relative Coordinates.
  361. // Also there is bool axis_relative_modes[] per axis flag.
  362. static bool relative_mode = false;
  363. // String circular buffer. Commands may be pushed to the buffer from both sides:
  364. // Chained commands will be pushed to the front, interactive (from LCD menu)
  365. // and printing commands (from serial line or from SD card) are pushed to the tail.
  366. // First character of each entry indicates the type of the entry:
  367. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  368. // Command in cmdbuffer was sent over USB.
  369. #define CMDBUFFER_CURRENT_TYPE_USB 1
  370. // Command in cmdbuffer was read from SDCARD.
  371. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  372. // Command in cmdbuffer was generated by the UI.
  373. #define CMDBUFFER_CURRENT_TYPE_UI 3
  374. // Command in cmdbuffer was generated by another G-code.
  375. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  376. // How much space to reserve for the chained commands
  377. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  378. // which are pushed to the front of the queue?
  379. // Maximum 5 commands of max length 20 + null terminator.
  380. #define CMDBUFFER_RESERVE_FRONT (5*21)
  381. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  382. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  383. // Head of the circular buffer, where to read.
  384. static int bufindr = 0;
  385. // Tail of the buffer, where to write.
  386. static int bufindw = 0;
  387. // Number of lines in cmdbuffer.
  388. static int buflen = 0;
  389. // Flag for processing the current command inside the main Arduino loop().
  390. // If a new command was pushed to the front of a command buffer while
  391. // processing another command, this replaces the command on the top.
  392. // Therefore don't remove the command from the queue in the loop() function.
  393. static bool cmdbuffer_front_already_processed = false;
  394. // Type of a command, which is to be executed right now.
  395. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  396. // String of a command, which is to be executed right now.
  397. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  398. // Enable debugging of the command buffer.
  399. // Debugging information will be sent to serial line.
  400. // #define CMDBUFFER_DEBUG
  401. static int serial_count = 0; //index of character read from serial line
  402. static boolean comment_mode = false;
  403. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  404. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  405. //static float tt = 0;
  406. //static float bt = 0;
  407. //Inactivity shutdown variables
  408. static unsigned long previous_millis_cmd = 0;
  409. unsigned long max_inactive_time = 0;
  410. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  411. unsigned long starttime=0;
  412. unsigned long stoptime=0;
  413. unsigned long _usb_timer = 0;
  414. static uint8_t tmp_extruder;
  415. bool Stopped=false;
  416. #if NUM_SERVOS > 0
  417. Servo servos[NUM_SERVOS];
  418. #endif
  419. bool CooldownNoWait = true;
  420. bool target_direction;
  421. //Insert variables if CHDK is defined
  422. #ifdef CHDK
  423. unsigned long chdkHigh = 0;
  424. boolean chdkActive = false;
  425. #endif
  426. //===========================================================================
  427. //=============================Routines======================================
  428. //===========================================================================
  429. void get_arc_coordinates();
  430. bool setTargetedHotend(int code);
  431. void serial_echopair_P(const char *s_P, float v)
  432. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  433. void serial_echopair_P(const char *s_P, double v)
  434. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  435. void serial_echopair_P(const char *s_P, unsigned long v)
  436. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  437. #ifdef SDSUPPORT
  438. #include "SdFatUtil.h"
  439. int freeMemory() { return SdFatUtil::FreeRam(); }
  440. #else
  441. extern "C" {
  442. extern unsigned int __bss_end;
  443. extern unsigned int __heap_start;
  444. extern void *__brkval;
  445. int freeMemory() {
  446. int free_memory;
  447. if ((int)__brkval == 0)
  448. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  449. else
  450. free_memory = ((int)&free_memory) - ((int)__brkval);
  451. return free_memory;
  452. }
  453. }
  454. #endif //!SDSUPPORT
  455. // Pop the currently processed command from the queue.
  456. // It is expected, that there is at least one command in the queue.
  457. bool cmdqueue_pop_front()
  458. {
  459. if (buflen > 0) {
  460. #ifdef CMDBUFFER_DEBUG
  461. SERIAL_ECHOPGM("Dequeing ");
  462. SERIAL_ECHO(cmdbuffer+bufindr+1);
  463. SERIAL_ECHOLNPGM("");
  464. SERIAL_ECHOPGM("Old indices: buflen ");
  465. SERIAL_ECHO(buflen);
  466. SERIAL_ECHOPGM(", bufindr ");
  467. SERIAL_ECHO(bufindr);
  468. SERIAL_ECHOPGM(", bufindw ");
  469. SERIAL_ECHO(bufindw);
  470. SERIAL_ECHOPGM(", serial_count ");
  471. SERIAL_ECHO(serial_count);
  472. SERIAL_ECHOPGM(", bufsize ");
  473. SERIAL_ECHO(sizeof(cmdbuffer));
  474. SERIAL_ECHOLNPGM("");
  475. #endif /* CMDBUFFER_DEBUG */
  476. if (-- buflen == 0) {
  477. // Empty buffer.
  478. if (serial_count == 0)
  479. // No serial communication is pending. Reset both pointers to zero.
  480. bufindw = 0;
  481. bufindr = bufindw;
  482. } else {
  483. // There is at least one ready line in the buffer.
  484. // First skip the current command ID and iterate up to the end of the string.
  485. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  486. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  487. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  488. // If the end of the buffer was empty,
  489. if (bufindr == sizeof(cmdbuffer)) {
  490. // skip to the start and find the nonzero command.
  491. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  492. }
  493. #ifdef CMDBUFFER_DEBUG
  494. SERIAL_ECHOPGM("New indices: buflen ");
  495. SERIAL_ECHO(buflen);
  496. SERIAL_ECHOPGM(", bufindr ");
  497. SERIAL_ECHO(bufindr);
  498. SERIAL_ECHOPGM(", bufindw ");
  499. SERIAL_ECHO(bufindw);
  500. SERIAL_ECHOPGM(", serial_count ");
  501. SERIAL_ECHO(serial_count);
  502. SERIAL_ECHOPGM(" new command on the top: ");
  503. SERIAL_ECHO(cmdbuffer+bufindr+1);
  504. SERIAL_ECHOLNPGM("");
  505. #endif /* CMDBUFFER_DEBUG */
  506. }
  507. return true;
  508. }
  509. return false;
  510. }
  511. void cmdqueue_reset()
  512. {
  513. while (cmdqueue_pop_front()) ;
  514. }
  515. // How long a string could be pushed to the front of the command queue?
  516. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  517. // len_asked does not contain the zero terminator size.
  518. bool cmdqueue_could_enqueue_front(int len_asked)
  519. {
  520. // MAX_CMD_SIZE has to accommodate the zero terminator.
  521. if (len_asked >= MAX_CMD_SIZE)
  522. return false;
  523. // Remove the currently processed command from the queue.
  524. if (! cmdbuffer_front_already_processed) {
  525. cmdqueue_pop_front();
  526. cmdbuffer_front_already_processed = true;
  527. }
  528. if (bufindr == bufindw && buflen > 0)
  529. // Full buffer.
  530. return false;
  531. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  532. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  533. if (bufindw < bufindr) {
  534. int bufindr_new = bufindr - len_asked - 2;
  535. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  536. if (endw <= bufindr_new) {
  537. bufindr = bufindr_new;
  538. return true;
  539. }
  540. } else {
  541. // Otherwise the free space is split between the start and end.
  542. if (len_asked + 2 <= bufindr) {
  543. // Could fit at the start.
  544. bufindr -= len_asked + 2;
  545. return true;
  546. }
  547. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  548. if (endw <= bufindr_new) {
  549. memset(cmdbuffer, 0, bufindr);
  550. bufindr = bufindr_new;
  551. return true;
  552. }
  553. }
  554. return false;
  555. }
  556. // Could one enqueue a command of lenthg len_asked into the buffer,
  557. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  558. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  559. // len_asked does not contain the zero terminator size.
  560. bool cmdqueue_could_enqueue_back(int len_asked)
  561. {
  562. // MAX_CMD_SIZE has to accommodate the zero terminator.
  563. if (len_asked >= MAX_CMD_SIZE)
  564. return false;
  565. if (bufindr == bufindw && buflen > 0)
  566. // Full buffer.
  567. return false;
  568. if (serial_count > 0) {
  569. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  570. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  571. // serial data.
  572. // How much memory to reserve for the commands pushed to the front?
  573. // End of the queue, when pushing to the end.
  574. int endw = bufindw + len_asked + 2;
  575. if (bufindw < bufindr)
  576. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  577. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  578. // Otherwise the free space is split between the start and end.
  579. if (// Could one fit to the end, including the reserve?
  580. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  581. // Could one fit to the end, and the reserve to the start?
  582. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  583. return true;
  584. // Could one fit both to the start?
  585. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  586. // Mark the rest of the buffer as used.
  587. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  588. // and point to the start.
  589. bufindw = 0;
  590. return true;
  591. }
  592. } else {
  593. // How much memory to reserve for the commands pushed to the front?
  594. // End of the queue, when pushing to the end.
  595. int endw = bufindw + len_asked + 2;
  596. if (bufindw < bufindr)
  597. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  598. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  599. // Otherwise the free space is split between the start and end.
  600. if (// Could one fit to the end, including the reserve?
  601. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  602. // Could one fit to the end, and the reserve to the start?
  603. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  604. return true;
  605. // Could one fit both to the start?
  606. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  607. // Mark the rest of the buffer as used.
  608. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  609. // and point to the start.
  610. bufindw = 0;
  611. return true;
  612. }
  613. }
  614. return false;
  615. }
  616. #ifdef CMDBUFFER_DEBUG
  617. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  618. {
  619. SERIAL_ECHOPGM("Entry nr: ");
  620. SERIAL_ECHO(nr);
  621. SERIAL_ECHOPGM(", type: ");
  622. SERIAL_ECHO(int(*p));
  623. SERIAL_ECHOPGM(", cmd: ");
  624. SERIAL_ECHO(p+1);
  625. SERIAL_ECHOLNPGM("");
  626. }
  627. static void cmdqueue_dump_to_serial()
  628. {
  629. if (buflen == 0) {
  630. SERIAL_ECHOLNPGM("The command buffer is empty.");
  631. } else {
  632. SERIAL_ECHOPGM("Content of the buffer: entries ");
  633. SERIAL_ECHO(buflen);
  634. SERIAL_ECHOPGM(", indr ");
  635. SERIAL_ECHO(bufindr);
  636. SERIAL_ECHOPGM(", indw ");
  637. SERIAL_ECHO(bufindw);
  638. SERIAL_ECHOLNPGM("");
  639. int nr = 0;
  640. if (bufindr < bufindw) {
  641. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. } else {
  649. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  650. cmdqueue_dump_to_serial_single_line(nr, p);
  651. // Skip the command.
  652. for (++p; *p != 0; ++ p);
  653. // Skip the gaps.
  654. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  655. }
  656. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  657. cmdqueue_dump_to_serial_single_line(nr, p);
  658. // Skip the command.
  659. for (++p; *p != 0; ++ p);
  660. // Skip the gaps.
  661. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  662. }
  663. }
  664. SERIAL_ECHOLNPGM("End of the buffer.");
  665. }
  666. }
  667. #endif /* CMDBUFFER_DEBUG */
  668. //adds an command to the main command buffer
  669. //thats really done in a non-safe way.
  670. //needs overworking someday
  671. // Currently the maximum length of a command piped through this function is around 20 characters
  672. void enquecommand(const char *cmd, bool from_progmem)
  673. {
  674. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  675. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  676. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  677. if (cmdqueue_could_enqueue_back(len)) {
  678. // This is dangerous if a mixing of serial and this happens
  679. // This may easily be tested: If serial_count > 0, we have a problem.
  680. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  681. if (from_progmem)
  682. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  683. else
  684. strcpy(cmdbuffer + bufindw + 1, cmd);
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHORPGM(MSG_Enqueing);
  687. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  688. SERIAL_ECHOLNPGM("\"");
  689. bufindw += len + 2;
  690. if (bufindw == sizeof(cmdbuffer))
  691. bufindw = 0;
  692. ++ buflen;
  693. #ifdef CMDBUFFER_DEBUG
  694. cmdqueue_dump_to_serial();
  695. #endif /* CMDBUFFER_DEBUG */
  696. } else {
  697. SERIAL_ERROR_START;
  698. SERIAL_ECHORPGM(MSG_Enqueing);
  699. if (from_progmem)
  700. SERIAL_PROTOCOLRPGM(cmd);
  701. else
  702. SERIAL_ECHO(cmd);
  703. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  704. #ifdef CMDBUFFER_DEBUG
  705. cmdqueue_dump_to_serial();
  706. #endif /* CMDBUFFER_DEBUG */
  707. }
  708. }
  709. void enquecommand_front(const char *cmd, bool from_progmem)
  710. {
  711. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  712. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  713. if (cmdqueue_could_enqueue_front(len)) {
  714. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  715. if (from_progmem)
  716. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  717. else
  718. strcpy(cmdbuffer + bufindr + 1, cmd);
  719. ++ buflen;
  720. SERIAL_ECHO_START;
  721. SERIAL_ECHOPGM("Enqueing to the front: \"");
  722. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  723. SERIAL_ECHOLNPGM("\"");
  724. #ifdef CMDBUFFER_DEBUG
  725. cmdqueue_dump_to_serial();
  726. #endif /* CMDBUFFER_DEBUG */
  727. } else {
  728. SERIAL_ERROR_START;
  729. SERIAL_ECHOPGM("Enqueing to the front: \"");
  730. if (from_progmem)
  731. SERIAL_PROTOCOLRPGM(cmd);
  732. else
  733. SERIAL_ECHO(cmd);
  734. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  735. #ifdef CMDBUFFER_DEBUG
  736. cmdqueue_dump_to_serial();
  737. #endif /* CMDBUFFER_DEBUG */
  738. }
  739. }
  740. // Mark the command at the top of the command queue as new.
  741. // Therefore it will not be removed from the queue.
  742. void repeatcommand_front()
  743. {
  744. cmdbuffer_front_already_processed = true;
  745. }
  746. bool is_buffer_empty()
  747. {
  748. if (buflen == 0) return true;
  749. else return false;
  750. }
  751. void setup_killpin()
  752. {
  753. #if defined(KILL_PIN) && KILL_PIN > -1
  754. SET_INPUT(KILL_PIN);
  755. WRITE(KILL_PIN,HIGH);
  756. #endif
  757. }
  758. // Set home pin
  759. void setup_homepin(void)
  760. {
  761. #if defined(HOME_PIN) && HOME_PIN > -1
  762. SET_INPUT(HOME_PIN);
  763. WRITE(HOME_PIN,HIGH);
  764. #endif
  765. }
  766. void setup_photpin()
  767. {
  768. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  769. SET_OUTPUT(PHOTOGRAPH_PIN);
  770. WRITE(PHOTOGRAPH_PIN, LOW);
  771. #endif
  772. }
  773. void setup_powerhold()
  774. {
  775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  776. SET_OUTPUT(SUICIDE_PIN);
  777. WRITE(SUICIDE_PIN, HIGH);
  778. #endif
  779. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  780. SET_OUTPUT(PS_ON_PIN);
  781. #if defined(PS_DEFAULT_OFF)
  782. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  783. #else
  784. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  785. #endif
  786. #endif
  787. }
  788. void suicide()
  789. {
  790. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  791. SET_OUTPUT(SUICIDE_PIN);
  792. WRITE(SUICIDE_PIN, LOW);
  793. #endif
  794. }
  795. void servo_init()
  796. {
  797. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  798. servos[0].attach(SERVO0_PIN);
  799. #endif
  800. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  801. servos[1].attach(SERVO1_PIN);
  802. #endif
  803. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  804. servos[2].attach(SERVO2_PIN);
  805. #endif
  806. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  807. servos[3].attach(SERVO3_PIN);
  808. #endif
  809. #if (NUM_SERVOS >= 5)
  810. #error "TODO: enter initalisation code for more servos"
  811. #endif
  812. }
  813. static void lcd_language_menu();
  814. #ifdef MESH_BED_LEVELING
  815. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  816. #endif
  817. // Factory reset function
  818. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  819. // Level input parameter sets depth of reset
  820. // Quiet parameter masks all waitings for user interact.
  821. int er_progress = 0;
  822. void factory_reset(char level, bool quiet)
  823. {
  824. lcd_implementation_clear();
  825. int cursor_pos = 0;
  826. switch (level) {
  827. // Level 0: Language reset
  828. case 0:
  829. WRITE(BEEPER, HIGH);
  830. _delay_ms(100);
  831. WRITE(BEEPER, LOW);
  832. lcd_force_language_selection();
  833. break;
  834. //Level 1: Reset statistics
  835. case 1:
  836. WRITE(BEEPER, HIGH);
  837. _delay_ms(100);
  838. WRITE(BEEPER, LOW);
  839. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  840. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  841. lcd_menu_statistics();
  842. break;
  843. // Level 2: Prepare for shipping
  844. case 2:
  845. //lcd_printPGM(PSTR("Factory RESET"));
  846. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  847. // Force language selection at the next boot up.
  848. lcd_force_language_selection();
  849. // Force the "Follow calibration flow" message at the next boot up.
  850. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  851. farm_no = 0;
  852. farm_mode == false;
  853. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  854. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  855. WRITE(BEEPER, HIGH);
  856. _delay_ms(100);
  857. WRITE(BEEPER, LOW);
  858. //_delay_ms(2000);
  859. break;
  860. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  861. case 3:
  862. lcd_printPGM(PSTR("Factory RESET"));
  863. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  864. WRITE(BEEPER, HIGH);
  865. _delay_ms(100);
  866. WRITE(BEEPER, LOW);
  867. er_progress = 0;
  868. lcd_print_at_PGM(3, 3, PSTR(" "));
  869. lcd_implementation_print_at(3, 3, er_progress);
  870. // Erase EEPROM
  871. for (int i = 0; i < 4096; i++) {
  872. eeprom_write_byte((uint8_t*)i, 0xFF);
  873. if (i % 41 == 0) {
  874. er_progress++;
  875. lcd_print_at_PGM(3, 3, PSTR(" "));
  876. lcd_implementation_print_at(3, 3, er_progress);
  877. lcd_printPGM(PSTR("%"));
  878. }
  879. }
  880. break;
  881. case 4:
  882. bowden_menu();
  883. break;
  884. default:
  885. break;
  886. }
  887. }
  888. // "Setup" function is called by the Arduino framework on startup.
  889. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  890. // are initialized by the main() routine provided by the Arduino framework.
  891. void setup()
  892. {
  893. lcd_init();
  894. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  895. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  896. setup_killpin();
  897. setup_powerhold();
  898. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  899. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  900. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  901. if (farm_no == 0xFFFF) farm_no = 0;
  902. if (farm_mode)
  903. {
  904. prusa_statistics(8);
  905. selectedSerialPort = 1;
  906. } else {
  907. selectedSerialPort = 0;
  908. }
  909. MYSERIAL.begin(BAUDRATE);
  910. SERIAL_PROTOCOLLNPGM("start");
  911. SERIAL_ECHO_START;
  912. #if 0
  913. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  914. for (int i = 0; i < 4096; ++i) {
  915. int b = eeprom_read_byte((unsigned char*)i);
  916. if (b != 255) {
  917. SERIAL_ECHO(i);
  918. SERIAL_ECHO(":");
  919. SERIAL_ECHO(b);
  920. SERIAL_ECHOLN("");
  921. }
  922. }
  923. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  924. #endif
  925. // Check startup - does nothing if bootloader sets MCUSR to 0
  926. byte mcu = MCUSR;
  927. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  928. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  929. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  930. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  931. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  932. MCUSR = 0;
  933. //SERIAL_ECHORPGM(MSG_MARLIN);
  934. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  935. #ifdef STRING_VERSION_CONFIG_H
  936. #ifdef STRING_CONFIG_H_AUTHOR
  937. SERIAL_ECHO_START;
  938. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  939. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  940. SERIAL_ECHORPGM(MSG_AUTHOR);
  941. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  942. SERIAL_ECHOPGM("Compiled: ");
  943. SERIAL_ECHOLNPGM(__DATE__);
  944. #endif
  945. #endif
  946. SERIAL_ECHO_START;
  947. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  948. SERIAL_ECHO(freeMemory());
  949. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  950. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  951. lcd_update_enable(false);
  952. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  953. bool previous_settings_retrieved = Config_RetrieveSettings();
  954. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  955. tp_init(); // Initialize temperature loop
  956. plan_init(); // Initialize planner;
  957. watchdog_init();
  958. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  959. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  960. st_init(); // Initialize stepper, this enables interrupts!
  961. setup_photpin();
  962. servo_init();
  963. // Reset the machine correction matrix.
  964. // It does not make sense to load the correction matrix until the machine is homed.
  965. world2machine_reset();
  966. lcd_init();
  967. if (!READ(BTN_ENC))
  968. {
  969. _delay_ms(1000);
  970. if (!READ(BTN_ENC))
  971. {
  972. lcd_implementation_clear();
  973. lcd_printPGM(PSTR("Factory RESET"));
  974. SET_OUTPUT(BEEPER);
  975. WRITE(BEEPER, HIGH);
  976. while (!READ(BTN_ENC));
  977. WRITE(BEEPER, LOW);
  978. _delay_ms(2000);
  979. char level = reset_menu();
  980. factory_reset(level, false);
  981. switch (level) {
  982. case 0: _delay_ms(0); break;
  983. case 1: _delay_ms(0); break;
  984. case 2: _delay_ms(0); break;
  985. case 3: _delay_ms(0); break;
  986. }
  987. // _delay_ms(100);
  988. /*
  989. #ifdef MESH_BED_LEVELING
  990. _delay_ms(2000);
  991. if (!READ(BTN_ENC))
  992. {
  993. WRITE(BEEPER, HIGH);
  994. _delay_ms(100);
  995. WRITE(BEEPER, LOW);
  996. _delay_ms(200);
  997. WRITE(BEEPER, HIGH);
  998. _delay_ms(100);
  999. WRITE(BEEPER, LOW);
  1000. int _z = 0;
  1001. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1002. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1003. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1004. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1005. }
  1006. else
  1007. {
  1008. WRITE(BEEPER, HIGH);
  1009. _delay_ms(100);
  1010. WRITE(BEEPER, LOW);
  1011. }
  1012. #endif // mesh */
  1013. }
  1014. }
  1015. else
  1016. {
  1017. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1018. }
  1019. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1020. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1021. #endif
  1022. #ifdef DIGIPOT_I2C
  1023. digipot_i2c_init();
  1024. #endif
  1025. setup_homepin();
  1026. #if defined(Z_AXIS_ALWAYS_ON)
  1027. enable_z();
  1028. #endif
  1029. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1030. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1031. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1032. if (farm_no == 0xFFFF) farm_no = 0;
  1033. if (farm_mode)
  1034. {
  1035. prusa_statistics(8);
  1036. }
  1037. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1038. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1039. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1040. // but this times out if a blocking dialog is shown in setup().
  1041. card.initsd();
  1042. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1043. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1044. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1045. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1046. // where all the EEPROM entries are set to 0x0ff.
  1047. // Once a firmware boots up, it forces at least a language selection, which changes
  1048. // EEPROM_LANG to number lower than 0x0ff.
  1049. // 1) Set a high power mode.
  1050. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1051. }
  1052. #ifdef SNMM
  1053. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1054. int _z = BOWDEN_LENGTH;
  1055. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1056. }
  1057. #endif
  1058. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1059. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1060. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1061. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1062. if (lang_selected >= LANG_NUM){
  1063. lcd_mylang();
  1064. }
  1065. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1066. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1067. temp_cal_active = false;
  1068. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1069. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1070. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1071. }
  1072. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1073. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1074. }
  1075. #ifndef DEBUG_DISABLE_STARTMSGS
  1076. check_babystep(); //checking if Z babystep is in allowed range
  1077. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1078. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1079. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1080. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1081. // Show the message.
  1082. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1083. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1084. // Show the message.
  1085. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1086. lcd_update_enable(true);
  1087. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1088. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1089. lcd_update_enable(true);
  1090. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1091. // Show the message.
  1092. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1093. }
  1094. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1095. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1096. if (!previous_settings_retrieved) {
  1097. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1098. }
  1099. #endif //DEBUG_DISABLE_STARTMSGS
  1100. lcd_update_enable(true);
  1101. // Store the currently running firmware into an eeprom,
  1102. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1103. update_current_firmware_version_to_eeprom();
  1104. }
  1105. void trace();
  1106. #define CHUNK_SIZE 64 // bytes
  1107. #define SAFETY_MARGIN 1
  1108. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1109. int chunkHead = 0;
  1110. int serial_read_stream() {
  1111. setTargetHotend(0, 0);
  1112. setTargetBed(0);
  1113. lcd_implementation_clear();
  1114. lcd_printPGM(PSTR(" Upload in progress"));
  1115. // first wait for how many bytes we will receive
  1116. uint32_t bytesToReceive;
  1117. // receive the four bytes
  1118. char bytesToReceiveBuffer[4];
  1119. for (int i=0; i<4; i++) {
  1120. int data;
  1121. while ((data = MYSERIAL.read()) == -1) {};
  1122. bytesToReceiveBuffer[i] = data;
  1123. }
  1124. // make it a uint32
  1125. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1126. // we're ready, notify the sender
  1127. MYSERIAL.write('+');
  1128. // lock in the routine
  1129. uint32_t receivedBytes = 0;
  1130. while (prusa_sd_card_upload) {
  1131. int i;
  1132. for (i=0; i<CHUNK_SIZE; i++) {
  1133. int data;
  1134. // check if we're not done
  1135. if (receivedBytes == bytesToReceive) {
  1136. break;
  1137. }
  1138. // read the next byte
  1139. while ((data = MYSERIAL.read()) == -1) {};
  1140. receivedBytes++;
  1141. // save it to the chunk
  1142. chunk[i] = data;
  1143. }
  1144. // write the chunk to SD
  1145. card.write_command_no_newline(&chunk[0]);
  1146. // notify the sender we're ready for more data
  1147. MYSERIAL.write('+');
  1148. // for safety
  1149. manage_heater();
  1150. // check if we're done
  1151. if(receivedBytes == bytesToReceive) {
  1152. trace(); // beep
  1153. card.closefile();
  1154. prusa_sd_card_upload = false;
  1155. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1156. return 0;
  1157. }
  1158. }
  1159. }
  1160. #ifdef HOST_KEEPALIVE_FEATURE
  1161. /**
  1162. * Output a "busy" message at regular intervals
  1163. * while the machine is not accepting commands.
  1164. */
  1165. void host_keepalive() {
  1166. long ms = millis();
  1167. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1168. if (ms - prev_busy_signal_ms < 1000UL * host_keepalive_interval) return;
  1169. switch (busy_state) {
  1170. case IN_HANDLER:
  1171. case IN_PROCESS:
  1172. SERIAL_ECHO_START;
  1173. SERIAL_ECHOLNPGM("busy: processing");
  1174. break;
  1175. case PAUSED_FOR_USER:
  1176. SERIAL_ECHO_START;
  1177. SERIAL_ECHOLNPGM("busy: paused for user");
  1178. break;
  1179. case PAUSED_FOR_INPUT:
  1180. SERIAL_ECHO_START;
  1181. SERIAL_ECHOLNPGM("busy: paused for input");
  1182. break;
  1183. }
  1184. }
  1185. prev_busy_signal_ms = ms;
  1186. }
  1187. #endif
  1188. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1189. // Before loop(), the setup() function is called by the main() routine.
  1190. void loop()
  1191. {
  1192. bool stack_integrity = true;
  1193. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1194. {
  1195. is_usb_printing = true;
  1196. usb_printing_counter--;
  1197. _usb_timer = millis();
  1198. }
  1199. if (usb_printing_counter == 0)
  1200. {
  1201. is_usb_printing = false;
  1202. }
  1203. if (prusa_sd_card_upload)
  1204. {
  1205. //we read byte-by byte
  1206. serial_read_stream();
  1207. } else
  1208. {
  1209. get_command();
  1210. #ifdef SDSUPPORT
  1211. card.checkautostart(false);
  1212. #endif
  1213. if(buflen)
  1214. {
  1215. #ifdef SDSUPPORT
  1216. if(card.saving)
  1217. {
  1218. // Saving a G-code file onto an SD-card is in progress.
  1219. // Saving starts with M28, saving until M29 is seen.
  1220. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1221. card.write_command(CMDBUFFER_CURRENT_STRING);
  1222. if(card.logging)
  1223. process_commands();
  1224. else
  1225. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1226. } else {
  1227. card.closefile();
  1228. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1229. }
  1230. } else {
  1231. process_commands();
  1232. }
  1233. #else
  1234. process_commands();
  1235. #endif //SDSUPPORT
  1236. if (! cmdbuffer_front_already_processed)
  1237. cmdqueue_pop_front();
  1238. cmdbuffer_front_already_processed = false;
  1239. }
  1240. }
  1241. //check heater every n milliseconds
  1242. manage_heater();
  1243. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1244. checkHitEndstops();
  1245. host_keepalive();
  1246. lcd_update();
  1247. }
  1248. void get_command()
  1249. {
  1250. // Test and reserve space for the new command string.
  1251. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1252. return;
  1253. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1254. while (MYSERIAL.available() > 0) {
  1255. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1256. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1257. rx_buffer_full = true; //sets flag that buffer was full
  1258. }
  1259. char serial_char = MYSERIAL.read();
  1260. if (selectedSerialPort == 1) {
  1261. selectedSerialPort = 0;
  1262. MYSERIAL.write(serial_char);
  1263. selectedSerialPort = 1;
  1264. }
  1265. TimeSent = millis();
  1266. TimeNow = millis();
  1267. if (serial_char < 0)
  1268. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1269. // and Marlin does not support such file names anyway.
  1270. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1271. // to a hang-up of the print process from an SD card.
  1272. continue;
  1273. if(serial_char == '\n' ||
  1274. serial_char == '\r' ||
  1275. (serial_char == ':' && comment_mode == false) ||
  1276. serial_count >= (MAX_CMD_SIZE - 1) )
  1277. {
  1278. if(!serial_count) { //if empty line
  1279. comment_mode = false; //for new command
  1280. return;
  1281. }
  1282. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1283. if(!comment_mode){
  1284. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1285. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1286. {
  1287. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1288. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1289. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1290. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1291. // M110 - set current line number.
  1292. // Line numbers not sent in succession.
  1293. SERIAL_ERROR_START;
  1294. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1295. SERIAL_ERRORLN(gcode_LastN);
  1296. //Serial.println(gcode_N);
  1297. FlushSerialRequestResend();
  1298. serial_count = 0;
  1299. return;
  1300. }
  1301. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1302. {
  1303. byte checksum = 0;
  1304. char *p = cmdbuffer+bufindw+1;
  1305. while (p != strchr_pointer)
  1306. checksum = checksum^(*p++);
  1307. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1308. SERIAL_ERROR_START;
  1309. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1310. SERIAL_ERRORLN(gcode_LastN);
  1311. FlushSerialRequestResend();
  1312. serial_count = 0;
  1313. return;
  1314. }
  1315. // If no errors, remove the checksum and continue parsing.
  1316. *strchr_pointer = 0;
  1317. }
  1318. else
  1319. {
  1320. SERIAL_ERROR_START;
  1321. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1322. SERIAL_ERRORLN(gcode_LastN);
  1323. FlushSerialRequestResend();
  1324. serial_count = 0;
  1325. return;
  1326. }
  1327. gcode_LastN = gcode_N;
  1328. //if no errors, continue parsing
  1329. } // end of 'N' command
  1330. }
  1331. else // if we don't receive 'N' but still see '*'
  1332. {
  1333. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1334. {
  1335. SERIAL_ERROR_START;
  1336. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1337. SERIAL_ERRORLN(gcode_LastN);
  1338. serial_count = 0;
  1339. return;
  1340. }
  1341. } // end of '*' command
  1342. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1343. if (! IS_SD_PRINTING) {
  1344. usb_printing_counter = 10;
  1345. is_usb_printing = true;
  1346. }
  1347. if (Stopped == true) {
  1348. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1349. if (gcode >= 0 && gcode <= 3) {
  1350. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1351. LCD_MESSAGERPGM(MSG_STOPPED);
  1352. }
  1353. }
  1354. } // end of 'G' command
  1355. //If command was e-stop process now
  1356. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1357. kill();
  1358. // Store the current line into buffer, move to the next line.
  1359. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1360. #ifdef CMDBUFFER_DEBUG
  1361. SERIAL_ECHO_START;
  1362. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1363. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1364. SERIAL_ECHOLNPGM("");
  1365. #endif /* CMDBUFFER_DEBUG */
  1366. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1367. if (bufindw == sizeof(cmdbuffer))
  1368. bufindw = 0;
  1369. ++ buflen;
  1370. #ifdef CMDBUFFER_DEBUG
  1371. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1372. SERIAL_ECHO(buflen);
  1373. SERIAL_ECHOLNPGM("");
  1374. #endif /* CMDBUFFER_DEBUG */
  1375. } // end of 'not comment mode'
  1376. serial_count = 0; //clear buffer
  1377. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1378. // in the queue, as this function will reserve the memory.
  1379. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1380. return;
  1381. } // end of "end of line" processing
  1382. else {
  1383. // Not an "end of line" symbol. Store the new character into a buffer.
  1384. if(serial_char == ';') comment_mode = true;
  1385. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1386. }
  1387. } // end of serial line processing loop
  1388. if(farm_mode){
  1389. TimeNow = millis();
  1390. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1391. cmdbuffer[bufindw+serial_count+1] = 0;
  1392. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1393. if (bufindw == sizeof(cmdbuffer))
  1394. bufindw = 0;
  1395. ++ buflen;
  1396. serial_count = 0;
  1397. SERIAL_ECHOPGM("TIMEOUT:");
  1398. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1399. return;
  1400. }
  1401. }
  1402. //add comment
  1403. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1404. rx_buffer_full = false;
  1405. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1406. serial_count = 0;
  1407. }
  1408. #ifdef SDSUPPORT
  1409. if(!card.sdprinting || serial_count!=0){
  1410. // If there is a half filled buffer from serial line, wait until return before
  1411. // continuing with the serial line.
  1412. return;
  1413. }
  1414. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1415. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1416. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1417. static bool stop_buffering=false;
  1418. if(buflen==0) stop_buffering=false;
  1419. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1420. while( !card.eof() && !stop_buffering) {
  1421. int16_t n=card.get();
  1422. char serial_char = (char)n;
  1423. if(serial_char == '\n' ||
  1424. serial_char == '\r' ||
  1425. (serial_char == '#' && comment_mode == false) ||
  1426. (serial_char == ':' && comment_mode == false) ||
  1427. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1428. {
  1429. if(card.eof()){
  1430. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1431. stoptime=millis();
  1432. char time[30];
  1433. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1434. pause_time = 0;
  1435. int hours, minutes;
  1436. minutes=(t/60)%60;
  1437. hours=t/60/60;
  1438. save_statistics(total_filament_used, t);
  1439. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1440. SERIAL_ECHO_START;
  1441. SERIAL_ECHOLN(time);
  1442. lcd_setstatus(time);
  1443. card.printingHasFinished();
  1444. card.checkautostart(true);
  1445. if (farm_mode)
  1446. {
  1447. prusa_statistics(6);
  1448. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1449. }
  1450. }
  1451. if(serial_char=='#')
  1452. stop_buffering=true;
  1453. if(!serial_count)
  1454. {
  1455. comment_mode = false; //for new command
  1456. return; //if empty line
  1457. }
  1458. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1459. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1460. ++ buflen;
  1461. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1462. if (bufindw == sizeof(cmdbuffer))
  1463. bufindw = 0;
  1464. comment_mode = false; //for new command
  1465. serial_count = 0; //clear buffer
  1466. // The following line will reserve buffer space if available.
  1467. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1468. return;
  1469. }
  1470. else
  1471. {
  1472. if(serial_char == ';') comment_mode = true;
  1473. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1474. }
  1475. }
  1476. #endif //SDSUPPORT
  1477. }
  1478. // Return True if a character was found
  1479. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1480. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1481. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1482. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1483. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1484. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1485. static inline float code_value_float() {
  1486. char* e = strchr(strchr_pointer, 'E');
  1487. if (!e) return strtod(strchr_pointer + 1, NULL);
  1488. *e = 0;
  1489. float ret = strtod(strchr_pointer + 1, NULL);
  1490. *e = 'E';
  1491. return ret;
  1492. }
  1493. #define DEFINE_PGM_READ_ANY(type, reader) \
  1494. static inline type pgm_read_any(const type *p) \
  1495. { return pgm_read_##reader##_near(p); }
  1496. DEFINE_PGM_READ_ANY(float, float);
  1497. DEFINE_PGM_READ_ANY(signed char, byte);
  1498. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1499. static const PROGMEM type array##_P[3] = \
  1500. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1501. static inline type array(int axis) \
  1502. { return pgm_read_any(&array##_P[axis]); } \
  1503. type array##_ext(int axis) \
  1504. { return pgm_read_any(&array##_P[axis]); }
  1505. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1506. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1507. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1508. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1509. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1510. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1511. static void axis_is_at_home(int axis) {
  1512. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1513. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1514. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1515. }
  1516. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1517. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1518. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1519. saved_feedrate = feedrate;
  1520. saved_feedmultiply = feedmultiply;
  1521. feedmultiply = 100;
  1522. previous_millis_cmd = millis();
  1523. enable_endstops(enable_endstops_now);
  1524. }
  1525. static void clean_up_after_endstop_move() {
  1526. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1527. enable_endstops(false);
  1528. #endif
  1529. feedrate = saved_feedrate;
  1530. feedmultiply = saved_feedmultiply;
  1531. previous_millis_cmd = millis();
  1532. }
  1533. #ifdef ENABLE_AUTO_BED_LEVELING
  1534. #ifdef AUTO_BED_LEVELING_GRID
  1535. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1536. {
  1537. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1538. planeNormal.debug("planeNormal");
  1539. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1540. //bedLevel.debug("bedLevel");
  1541. //plan_bed_level_matrix.debug("bed level before");
  1542. //vector_3 uncorrected_position = plan_get_position_mm();
  1543. //uncorrected_position.debug("position before");
  1544. vector_3 corrected_position = plan_get_position();
  1545. // corrected_position.debug("position after");
  1546. current_position[X_AXIS] = corrected_position.x;
  1547. current_position[Y_AXIS] = corrected_position.y;
  1548. current_position[Z_AXIS] = corrected_position.z;
  1549. // put the bed at 0 so we don't go below it.
  1550. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1552. }
  1553. #else // not AUTO_BED_LEVELING_GRID
  1554. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1555. plan_bed_level_matrix.set_to_identity();
  1556. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1557. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1558. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1559. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1560. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1561. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1562. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1563. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1564. vector_3 corrected_position = plan_get_position();
  1565. current_position[X_AXIS] = corrected_position.x;
  1566. current_position[Y_AXIS] = corrected_position.y;
  1567. current_position[Z_AXIS] = corrected_position.z;
  1568. // put the bed at 0 so we don't go below it.
  1569. current_position[Z_AXIS] = zprobe_zoffset;
  1570. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1571. }
  1572. #endif // AUTO_BED_LEVELING_GRID
  1573. static void run_z_probe() {
  1574. plan_bed_level_matrix.set_to_identity();
  1575. feedrate = homing_feedrate[Z_AXIS];
  1576. // move down until you find the bed
  1577. float zPosition = -10;
  1578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1579. st_synchronize();
  1580. // we have to let the planner know where we are right now as it is not where we said to go.
  1581. zPosition = st_get_position_mm(Z_AXIS);
  1582. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1583. // move up the retract distance
  1584. zPosition += home_retract_mm(Z_AXIS);
  1585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1586. st_synchronize();
  1587. // move back down slowly to find bed
  1588. feedrate = homing_feedrate[Z_AXIS]/4;
  1589. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1591. st_synchronize();
  1592. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1593. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1595. }
  1596. static void do_blocking_move_to(float x, float y, float z) {
  1597. float oldFeedRate = feedrate;
  1598. feedrate = homing_feedrate[Z_AXIS];
  1599. current_position[Z_AXIS] = z;
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1601. st_synchronize();
  1602. feedrate = XY_TRAVEL_SPEED;
  1603. current_position[X_AXIS] = x;
  1604. current_position[Y_AXIS] = y;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1606. st_synchronize();
  1607. feedrate = oldFeedRate;
  1608. }
  1609. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1610. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1611. }
  1612. /// Probe bed height at position (x,y), returns the measured z value
  1613. static float probe_pt(float x, float y, float z_before) {
  1614. // move to right place
  1615. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1616. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1617. run_z_probe();
  1618. float measured_z = current_position[Z_AXIS];
  1619. SERIAL_PROTOCOLRPGM(MSG_BED);
  1620. SERIAL_PROTOCOLPGM(" x: ");
  1621. SERIAL_PROTOCOL(x);
  1622. SERIAL_PROTOCOLPGM(" y: ");
  1623. SERIAL_PROTOCOL(y);
  1624. SERIAL_PROTOCOLPGM(" z: ");
  1625. SERIAL_PROTOCOL(measured_z);
  1626. SERIAL_PROTOCOLPGM("\n");
  1627. return measured_z;
  1628. }
  1629. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1630. #ifdef LIN_ADVANCE
  1631. /**
  1632. * M900: Set and/or Get advance K factor and WH/D ratio
  1633. *
  1634. * K<factor> Set advance K factor
  1635. * R<ratio> Set ratio directly (overrides WH/D)
  1636. * W<width> H<height> D<diam> Set ratio from WH/D
  1637. */
  1638. inline void gcode_M900() {
  1639. st_synchronize();
  1640. const float newK = code_seen('K') ? code_value_float() : -1;
  1641. if (newK >= 0) extruder_advance_k = newK;
  1642. float newR = code_seen('R') ? code_value_float() : -1;
  1643. if (newR < 0) {
  1644. const float newD = code_seen('D') ? code_value_float() : -1,
  1645. newW = code_seen('W') ? code_value_float() : -1,
  1646. newH = code_seen('H') ? code_value_float() : -1;
  1647. if (newD >= 0 && newW >= 0 && newH >= 0)
  1648. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1649. }
  1650. if (newR >= 0) advance_ed_ratio = newR;
  1651. SERIAL_ECHO_START;
  1652. SERIAL_ECHOPGM("Advance K=");
  1653. SERIAL_ECHOLN(extruder_advance_k);
  1654. SERIAL_ECHOPGM(" E/D=");
  1655. const float ratio = advance_ed_ratio;
  1656. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1657. }
  1658. #endif // LIN_ADVANCE
  1659. void homeaxis(int axis) {
  1660. #define HOMEAXIS_DO(LETTER) \
  1661. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1662. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1663. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1664. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1665. 0) {
  1666. int axis_home_dir = home_dir(axis);
  1667. current_position[axis] = 0;
  1668. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1669. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1670. feedrate = homing_feedrate[axis];
  1671. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1672. st_synchronize();
  1673. current_position[axis] = 0;
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1675. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1679. feedrate = homing_feedrate[axis]/2 ;
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. axis_is_at_home(axis);
  1683. destination[axis] = current_position[axis];
  1684. feedrate = 0.0;
  1685. endstops_hit_on_purpose();
  1686. axis_known_position[axis] = true;
  1687. }
  1688. }
  1689. void home_xy()
  1690. {
  1691. set_destination_to_current();
  1692. homeaxis(X_AXIS);
  1693. homeaxis(Y_AXIS);
  1694. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1695. endstops_hit_on_purpose();
  1696. }
  1697. void refresh_cmd_timeout(void)
  1698. {
  1699. previous_millis_cmd = millis();
  1700. }
  1701. #ifdef FWRETRACT
  1702. void retract(bool retracting, bool swapretract = false) {
  1703. if(retracting && !retracted[active_extruder]) {
  1704. destination[X_AXIS]=current_position[X_AXIS];
  1705. destination[Y_AXIS]=current_position[Y_AXIS];
  1706. destination[Z_AXIS]=current_position[Z_AXIS];
  1707. destination[E_AXIS]=current_position[E_AXIS];
  1708. if (swapretract) {
  1709. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1710. } else {
  1711. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1712. }
  1713. plan_set_e_position(current_position[E_AXIS]);
  1714. float oldFeedrate = feedrate;
  1715. feedrate=retract_feedrate*60;
  1716. retracted[active_extruder]=true;
  1717. prepare_move();
  1718. current_position[Z_AXIS]-=retract_zlift;
  1719. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1720. prepare_move();
  1721. feedrate = oldFeedrate;
  1722. } else if(!retracting && retracted[active_extruder]) {
  1723. destination[X_AXIS]=current_position[X_AXIS];
  1724. destination[Y_AXIS]=current_position[Y_AXIS];
  1725. destination[Z_AXIS]=current_position[Z_AXIS];
  1726. destination[E_AXIS]=current_position[E_AXIS];
  1727. current_position[Z_AXIS]+=retract_zlift;
  1728. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. //prepare_move();
  1730. if (swapretract) {
  1731. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1732. } else {
  1733. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1734. }
  1735. plan_set_e_position(current_position[E_AXIS]);
  1736. float oldFeedrate = feedrate;
  1737. feedrate=retract_recover_feedrate*60;
  1738. retracted[active_extruder]=false;
  1739. prepare_move();
  1740. feedrate = oldFeedrate;
  1741. }
  1742. } //retract
  1743. #endif //FWRETRACT
  1744. void trace() {
  1745. tone(BEEPER, 440);
  1746. delay(25);
  1747. noTone(BEEPER);
  1748. delay(20);
  1749. }
  1750. /*
  1751. void ramming() {
  1752. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1753. if (current_temperature[0] < 230) {
  1754. //PLA
  1755. max_feedrate[E_AXIS] = 50;
  1756. //current_position[E_AXIS] -= 8;
  1757. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1758. //current_position[E_AXIS] += 8;
  1759. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1760. current_position[E_AXIS] += 5.4;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1762. current_position[E_AXIS] += 3.2;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1764. current_position[E_AXIS] += 3;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1766. st_synchronize();
  1767. max_feedrate[E_AXIS] = 80;
  1768. current_position[E_AXIS] -= 82;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1770. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1771. current_position[E_AXIS] -= 20;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1773. current_position[E_AXIS] += 5;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1775. current_position[E_AXIS] += 5;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1777. current_position[E_AXIS] -= 10;
  1778. st_synchronize();
  1779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1780. current_position[E_AXIS] += 10;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1782. current_position[E_AXIS] -= 10;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1784. current_position[E_AXIS] += 10;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1786. current_position[E_AXIS] -= 10;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1788. st_synchronize();
  1789. }
  1790. else {
  1791. //ABS
  1792. max_feedrate[E_AXIS] = 50;
  1793. //current_position[E_AXIS] -= 8;
  1794. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1795. //current_position[E_AXIS] += 8;
  1796. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1797. current_position[E_AXIS] += 3.1;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1799. current_position[E_AXIS] += 3.1;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1801. current_position[E_AXIS] += 4;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1803. st_synchronize();
  1804. //current_position[X_AXIS] += 23; //delay
  1805. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1806. //current_position[X_AXIS] -= 23; //delay
  1807. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1808. delay(4700);
  1809. max_feedrate[E_AXIS] = 80;
  1810. current_position[E_AXIS] -= 92;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1812. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1813. current_position[E_AXIS] -= 5;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1815. current_position[E_AXIS] += 5;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1817. current_position[E_AXIS] -= 5;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1819. st_synchronize();
  1820. current_position[E_AXIS] += 5;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1822. current_position[E_AXIS] -= 5;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1824. current_position[E_AXIS] += 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1826. current_position[E_AXIS] -= 5;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1828. st_synchronize();
  1829. }
  1830. }
  1831. */
  1832. void process_commands()
  1833. {
  1834. #ifdef FILAMENT_RUNOUT_SUPPORT
  1835. SET_INPUT(FR_SENS);
  1836. #endif
  1837. #ifdef CMDBUFFER_DEBUG
  1838. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1839. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1840. SERIAL_ECHOLNPGM("");
  1841. SERIAL_ECHOPGM("In cmdqueue: ");
  1842. SERIAL_ECHO(buflen);
  1843. SERIAL_ECHOLNPGM("");
  1844. #endif /* CMDBUFFER_DEBUG */
  1845. unsigned long codenum; //throw away variable
  1846. char *starpos = NULL;
  1847. #ifdef ENABLE_AUTO_BED_LEVELING
  1848. float x_tmp, y_tmp, z_tmp, real_z;
  1849. #endif
  1850. // PRUSA GCODES
  1851. #ifdef SNMM
  1852. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1853. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1854. int8_t SilentMode;
  1855. #endif
  1856. KEEPALIVE_STATE(IN_HANDLER);
  1857. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1858. starpos = (strchr(strchr_pointer + 5, '*'));
  1859. if (starpos != NULL)
  1860. *(starpos) = '\0';
  1861. lcd_setstatus(strchr_pointer + 5);
  1862. }
  1863. else if(code_seen("PRUSA")){
  1864. if (code_seen("Ping")) { //PRUSA Ping
  1865. if (farm_mode) {
  1866. PingTime = millis();
  1867. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1868. }
  1869. }
  1870. else if (code_seen("PRN")) {
  1871. MYSERIAL.println(status_number);
  1872. }else if (code_seen("fn")) {
  1873. if (farm_mode) {
  1874. MYSERIAL.println(farm_no);
  1875. }
  1876. else {
  1877. MYSERIAL.println("Not in farm mode.");
  1878. }
  1879. }else if (code_seen("fv")) {
  1880. // get file version
  1881. #ifdef SDSUPPORT
  1882. card.openFile(strchr_pointer + 3,true);
  1883. while (true) {
  1884. uint16_t readByte = card.get();
  1885. MYSERIAL.write(readByte);
  1886. if (readByte=='\n') {
  1887. break;
  1888. }
  1889. }
  1890. card.closefile();
  1891. #endif // SDSUPPORT
  1892. } else if (code_seen("M28")) {
  1893. trace();
  1894. prusa_sd_card_upload = true;
  1895. card.openFile(strchr_pointer+4,false);
  1896. } else if (code_seen("SN")) {
  1897. if (farm_mode) {
  1898. selectedSerialPort = 0;
  1899. MSerial.write(";S");
  1900. // S/N is:CZPX0917X003XC13518
  1901. int numbersRead = 0;
  1902. while (numbersRead < 19) {
  1903. while (MSerial.available() > 0) {
  1904. uint8_t serial_char = MSerial.read();
  1905. selectedSerialPort = 1;
  1906. MSerial.write(serial_char);
  1907. numbersRead++;
  1908. selectedSerialPort = 0;
  1909. }
  1910. }
  1911. selectedSerialPort = 1;
  1912. MSerial.write('\n');
  1913. /*for (int b = 0; b < 3; b++) {
  1914. tone(BEEPER, 110);
  1915. delay(50);
  1916. noTone(BEEPER);
  1917. delay(50);
  1918. }*/
  1919. } else {
  1920. MYSERIAL.println("Not in farm mode.");
  1921. }
  1922. } else if(code_seen("Fir")){
  1923. SERIAL_PROTOCOLLN(FW_version);
  1924. } else if(code_seen("Rev")){
  1925. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1926. } else if(code_seen("Lang")) {
  1927. lcd_force_language_selection();
  1928. } else if(code_seen("Lz")) {
  1929. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1930. } else if (code_seen("SERIAL LOW")) {
  1931. MYSERIAL.println("SERIAL LOW");
  1932. MYSERIAL.begin(BAUDRATE);
  1933. return;
  1934. } else if (code_seen("SERIAL HIGH")) {
  1935. MYSERIAL.println("SERIAL HIGH");
  1936. MYSERIAL.begin(1152000);
  1937. return;
  1938. } else if(code_seen("Beat")) {
  1939. // Kick farm link timer
  1940. kicktime = millis();
  1941. } else if(code_seen("FR")) {
  1942. // Factory full reset
  1943. factory_reset(0,true);
  1944. }
  1945. //else if (code_seen('Cal')) {
  1946. // lcd_calibration();
  1947. // }
  1948. }
  1949. else if (code_seen('^')) {
  1950. // nothing, this is a version line
  1951. } else if(code_seen('G'))
  1952. {
  1953. switch((int)code_value())
  1954. {
  1955. case 0: // G0 -> G1
  1956. case 1: // G1
  1957. if(Stopped == false) {
  1958. #ifdef FILAMENT_RUNOUT_SUPPORT
  1959. if(READ(FR_SENS)){
  1960. feedmultiplyBckp=feedmultiply;
  1961. float target[4];
  1962. float lastpos[4];
  1963. target[X_AXIS]=current_position[X_AXIS];
  1964. target[Y_AXIS]=current_position[Y_AXIS];
  1965. target[Z_AXIS]=current_position[Z_AXIS];
  1966. target[E_AXIS]=current_position[E_AXIS];
  1967. lastpos[X_AXIS]=current_position[X_AXIS];
  1968. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1969. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1970. lastpos[E_AXIS]=current_position[E_AXIS];
  1971. //retract by E
  1972. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1973. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1974. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1975. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1976. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1977. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1978. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1979. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1981. //finish moves
  1982. st_synchronize();
  1983. //disable extruder steppers so filament can be removed
  1984. disable_e0();
  1985. disable_e1();
  1986. disable_e2();
  1987. delay(100);
  1988. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1989. uint8_t cnt=0;
  1990. int counterBeep = 0;
  1991. lcd_wait_interact();
  1992. while(!lcd_clicked()){
  1993. cnt++;
  1994. manage_heater();
  1995. manage_inactivity(true);
  1996. //lcd_update();
  1997. if(cnt==0)
  1998. {
  1999. #if BEEPER > 0
  2000. if (counterBeep== 500){
  2001. counterBeep = 0;
  2002. }
  2003. SET_OUTPUT(BEEPER);
  2004. if (counterBeep== 0){
  2005. WRITE(BEEPER,HIGH);
  2006. }
  2007. if (counterBeep== 20){
  2008. WRITE(BEEPER,LOW);
  2009. }
  2010. counterBeep++;
  2011. #else
  2012. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2013. lcd_buzz(1000/6,100);
  2014. #else
  2015. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2016. #endif
  2017. #endif
  2018. }
  2019. }
  2020. WRITE(BEEPER,LOW);
  2021. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2022. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2023. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2025. lcd_change_fil_state = 0;
  2026. lcd_loading_filament();
  2027. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2028. lcd_change_fil_state = 0;
  2029. lcd_alright();
  2030. switch(lcd_change_fil_state){
  2031. case 2:
  2032. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2033. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2034. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2036. lcd_loading_filament();
  2037. break;
  2038. case 3:
  2039. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2041. lcd_loading_color();
  2042. break;
  2043. default:
  2044. lcd_change_success();
  2045. break;
  2046. }
  2047. }
  2048. target[E_AXIS]+= 5;
  2049. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2050. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2052. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2053. //plan_set_e_position(current_position[E_AXIS]);
  2054. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2055. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2056. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2057. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2058. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2059. plan_set_e_position(lastpos[E_AXIS]);
  2060. feedmultiply=feedmultiplyBckp;
  2061. char cmd[9];
  2062. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2063. enquecommand(cmd);
  2064. }
  2065. #endif
  2066. get_coordinates(); // For X Y Z E F
  2067. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2068. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2069. }
  2070. #ifdef FWRETRACT
  2071. if(autoretract_enabled)
  2072. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2073. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2074. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2075. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2076. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2077. retract(!retracted);
  2078. return;
  2079. }
  2080. }
  2081. #endif //FWRETRACT
  2082. prepare_move();
  2083. //ClearToSend();
  2084. }
  2085. break;
  2086. case 2: // G2 - CW ARC
  2087. if(Stopped == false) {
  2088. get_arc_coordinates();
  2089. prepare_arc_move(true);
  2090. }
  2091. break;
  2092. case 3: // G3 - CCW ARC
  2093. if(Stopped == false) {
  2094. get_arc_coordinates();
  2095. prepare_arc_move(false);
  2096. }
  2097. break;
  2098. case 4: // G4 dwell
  2099. codenum = 0;
  2100. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2101. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2102. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2103. st_synchronize();
  2104. codenum += millis(); // keep track of when we started waiting
  2105. previous_millis_cmd = millis();
  2106. while(millis() < codenum) {
  2107. manage_heater();
  2108. manage_inactivity();
  2109. lcd_update();
  2110. }
  2111. break;
  2112. #ifdef FWRETRACT
  2113. case 10: // G10 retract
  2114. #if EXTRUDERS > 1
  2115. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2116. retract(true,retracted_swap[active_extruder]);
  2117. #else
  2118. retract(true);
  2119. #endif
  2120. break;
  2121. case 11: // G11 retract_recover
  2122. #if EXTRUDERS > 1
  2123. retract(false,retracted_swap[active_extruder]);
  2124. #else
  2125. retract(false);
  2126. #endif
  2127. break;
  2128. #endif //FWRETRACT
  2129. case 28: //G28 Home all Axis one at a time
  2130. homing_flag = true;
  2131. KEEPALIVE_STATE(IN_HANDLER);
  2132. #ifdef ENABLE_AUTO_BED_LEVELING
  2133. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2134. #endif //ENABLE_AUTO_BED_LEVELING
  2135. // For mesh bed leveling deactivate the matrix temporarily
  2136. #ifdef MESH_BED_LEVELING
  2137. mbl.active = 0;
  2138. #endif
  2139. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2140. // the planner will not perform any adjustments in the XY plane.
  2141. // Wait for the motors to stop and update the current position with the absolute values.
  2142. world2machine_revert_to_uncorrected();
  2143. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2144. // consumed during the first movements following this statement.
  2145. babystep_undo();
  2146. saved_feedrate = feedrate;
  2147. saved_feedmultiply = feedmultiply;
  2148. feedmultiply = 100;
  2149. previous_millis_cmd = millis();
  2150. enable_endstops(true);
  2151. for(int8_t i=0; i < NUM_AXIS; i++)
  2152. destination[i] = current_position[i];
  2153. feedrate = 0.0;
  2154. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2155. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2156. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2157. homeaxis(Z_AXIS);
  2158. }
  2159. #endif
  2160. #ifdef QUICK_HOME
  2161. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2162. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2163. {
  2164. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2165. int x_axis_home_dir = home_dir(X_AXIS);
  2166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2167. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2168. feedrate = homing_feedrate[X_AXIS];
  2169. if(homing_feedrate[Y_AXIS]<feedrate)
  2170. feedrate = homing_feedrate[Y_AXIS];
  2171. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2172. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2173. } else {
  2174. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2175. }
  2176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2177. st_synchronize();
  2178. axis_is_at_home(X_AXIS);
  2179. axis_is_at_home(Y_AXIS);
  2180. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2181. destination[X_AXIS] = current_position[X_AXIS];
  2182. destination[Y_AXIS] = current_position[Y_AXIS];
  2183. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2184. feedrate = 0.0;
  2185. st_synchronize();
  2186. endstops_hit_on_purpose();
  2187. current_position[X_AXIS] = destination[X_AXIS];
  2188. current_position[Y_AXIS] = destination[Y_AXIS];
  2189. current_position[Z_AXIS] = destination[Z_AXIS];
  2190. }
  2191. #endif /* QUICK_HOME */
  2192. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2193. homeaxis(X_AXIS);
  2194. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2195. homeaxis(Y_AXIS);
  2196. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2197. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2198. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2199. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2200. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2201. #ifndef Z_SAFE_HOMING
  2202. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2203. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2204. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2205. feedrate = max_feedrate[Z_AXIS];
  2206. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2207. st_synchronize();
  2208. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2209. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2210. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2211. {
  2212. homeaxis(X_AXIS);
  2213. homeaxis(Y_AXIS);
  2214. }
  2215. // 1st mesh bed leveling measurement point, corrected.
  2216. world2machine_initialize();
  2217. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2218. world2machine_reset();
  2219. if (destination[Y_AXIS] < Y_MIN_POS)
  2220. destination[Y_AXIS] = Y_MIN_POS;
  2221. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2222. feedrate = homing_feedrate[Z_AXIS]/10;
  2223. current_position[Z_AXIS] = 0;
  2224. enable_endstops(false);
  2225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2227. st_synchronize();
  2228. current_position[X_AXIS] = destination[X_AXIS];
  2229. current_position[Y_AXIS] = destination[Y_AXIS];
  2230. enable_endstops(true);
  2231. endstops_hit_on_purpose();
  2232. homeaxis(Z_AXIS);
  2233. #else // MESH_BED_LEVELING
  2234. homeaxis(Z_AXIS);
  2235. #endif // MESH_BED_LEVELING
  2236. }
  2237. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2238. if(home_all_axis) {
  2239. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2240. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2241. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2242. feedrate = XY_TRAVEL_SPEED/60;
  2243. current_position[Z_AXIS] = 0;
  2244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2245. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2246. st_synchronize();
  2247. current_position[X_AXIS] = destination[X_AXIS];
  2248. current_position[Y_AXIS] = destination[Y_AXIS];
  2249. homeaxis(Z_AXIS);
  2250. }
  2251. // Let's see if X and Y are homed and probe is inside bed area.
  2252. if(code_seen(axis_codes[Z_AXIS])) {
  2253. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2254. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2255. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2256. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2257. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2258. current_position[Z_AXIS] = 0;
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2261. feedrate = max_feedrate[Z_AXIS];
  2262. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2263. st_synchronize();
  2264. homeaxis(Z_AXIS);
  2265. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2266. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2267. SERIAL_ECHO_START;
  2268. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2269. } else {
  2270. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2271. SERIAL_ECHO_START;
  2272. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2273. }
  2274. }
  2275. #endif // Z_SAFE_HOMING
  2276. #endif // Z_HOME_DIR < 0
  2277. if(code_seen(axis_codes[Z_AXIS])) {
  2278. if(code_value_long() != 0) {
  2279. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2280. }
  2281. }
  2282. #ifdef ENABLE_AUTO_BED_LEVELING
  2283. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2284. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2285. }
  2286. #endif
  2287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2288. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2289. enable_endstops(false);
  2290. #endif
  2291. feedrate = saved_feedrate;
  2292. feedmultiply = saved_feedmultiply;
  2293. previous_millis_cmd = millis();
  2294. endstops_hit_on_purpose();
  2295. #ifndef MESH_BED_LEVELING
  2296. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2297. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2298. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2299. lcd_adjust_z();
  2300. #endif
  2301. // Load the machine correction matrix
  2302. world2machine_initialize();
  2303. // and correct the current_position to match the transformed coordinate system.
  2304. world2machine_update_current();
  2305. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2306. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2307. {
  2308. }
  2309. else
  2310. {
  2311. st_synchronize();
  2312. homing_flag = false;
  2313. // Push the commands to the front of the message queue in the reverse order!
  2314. // There shall be always enough space reserved for these commands.
  2315. // enquecommand_front_P((PSTR("G80")));
  2316. goto case_G80;
  2317. }
  2318. #endif
  2319. if (farm_mode) { prusa_statistics(20); };
  2320. homing_flag = false;
  2321. break;
  2322. #ifdef ENABLE_AUTO_BED_LEVELING
  2323. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2324. {
  2325. #if Z_MIN_PIN == -1
  2326. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2327. #endif
  2328. // Prevent user from running a G29 without first homing in X and Y
  2329. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2330. {
  2331. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2332. SERIAL_ECHO_START;
  2333. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2334. break; // abort G29, since we don't know where we are
  2335. }
  2336. st_synchronize();
  2337. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2338. //vector_3 corrected_position = plan_get_position_mm();
  2339. //corrected_position.debug("position before G29");
  2340. plan_bed_level_matrix.set_to_identity();
  2341. vector_3 uncorrected_position = plan_get_position();
  2342. //uncorrected_position.debug("position durring G29");
  2343. current_position[X_AXIS] = uncorrected_position.x;
  2344. current_position[Y_AXIS] = uncorrected_position.y;
  2345. current_position[Z_AXIS] = uncorrected_position.z;
  2346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2347. setup_for_endstop_move();
  2348. feedrate = homing_feedrate[Z_AXIS];
  2349. #ifdef AUTO_BED_LEVELING_GRID
  2350. // probe at the points of a lattice grid
  2351. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2352. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2353. // solve the plane equation ax + by + d = z
  2354. // A is the matrix with rows [x y 1] for all the probed points
  2355. // B is the vector of the Z positions
  2356. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2357. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2358. // "A" matrix of the linear system of equations
  2359. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2360. // "B" vector of Z points
  2361. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2362. int probePointCounter = 0;
  2363. bool zig = true;
  2364. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2365. {
  2366. int xProbe, xInc;
  2367. if (zig)
  2368. {
  2369. xProbe = LEFT_PROBE_BED_POSITION;
  2370. //xEnd = RIGHT_PROBE_BED_POSITION;
  2371. xInc = xGridSpacing;
  2372. zig = false;
  2373. } else // zag
  2374. {
  2375. xProbe = RIGHT_PROBE_BED_POSITION;
  2376. //xEnd = LEFT_PROBE_BED_POSITION;
  2377. xInc = -xGridSpacing;
  2378. zig = true;
  2379. }
  2380. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2381. {
  2382. float z_before;
  2383. if (probePointCounter == 0)
  2384. {
  2385. // raise before probing
  2386. z_before = Z_RAISE_BEFORE_PROBING;
  2387. } else
  2388. {
  2389. // raise extruder
  2390. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2391. }
  2392. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2393. eqnBVector[probePointCounter] = measured_z;
  2394. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2395. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2396. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2397. probePointCounter++;
  2398. xProbe += xInc;
  2399. }
  2400. }
  2401. clean_up_after_endstop_move();
  2402. // solve lsq problem
  2403. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2404. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2405. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2406. SERIAL_PROTOCOLPGM(" b: ");
  2407. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2408. SERIAL_PROTOCOLPGM(" d: ");
  2409. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2410. set_bed_level_equation_lsq(plane_equation_coefficients);
  2411. free(plane_equation_coefficients);
  2412. #else // AUTO_BED_LEVELING_GRID not defined
  2413. // Probe at 3 arbitrary points
  2414. // probe 1
  2415. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2416. // probe 2
  2417. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2418. // probe 3
  2419. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2420. clean_up_after_endstop_move();
  2421. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2422. #endif // AUTO_BED_LEVELING_GRID
  2423. st_synchronize();
  2424. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2425. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2426. // When the bed is uneven, this height must be corrected.
  2427. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2428. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2429. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2430. z_tmp = current_position[Z_AXIS];
  2431. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2432. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2433. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2434. }
  2435. break;
  2436. #ifndef Z_PROBE_SLED
  2437. case 30: // G30 Single Z Probe
  2438. {
  2439. st_synchronize();
  2440. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2441. setup_for_endstop_move();
  2442. feedrate = homing_feedrate[Z_AXIS];
  2443. run_z_probe();
  2444. SERIAL_PROTOCOLPGM(MSG_BED);
  2445. SERIAL_PROTOCOLPGM(" X: ");
  2446. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2447. SERIAL_PROTOCOLPGM(" Y: ");
  2448. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2449. SERIAL_PROTOCOLPGM(" Z: ");
  2450. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2451. SERIAL_PROTOCOLPGM("\n");
  2452. clean_up_after_endstop_move();
  2453. }
  2454. break;
  2455. #else
  2456. case 31: // dock the sled
  2457. dock_sled(true);
  2458. break;
  2459. case 32: // undock the sled
  2460. dock_sled(false);
  2461. break;
  2462. #endif // Z_PROBE_SLED
  2463. #endif // ENABLE_AUTO_BED_LEVELING
  2464. #ifdef MESH_BED_LEVELING
  2465. case 30: // G30 Single Z Probe
  2466. {
  2467. st_synchronize();
  2468. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2469. setup_for_endstop_move();
  2470. feedrate = homing_feedrate[Z_AXIS];
  2471. find_bed_induction_sensor_point_z(-10.f, 3);
  2472. SERIAL_PROTOCOLRPGM(MSG_BED);
  2473. SERIAL_PROTOCOLPGM(" X: ");
  2474. MYSERIAL.print(current_position[X_AXIS], 5);
  2475. SERIAL_PROTOCOLPGM(" Y: ");
  2476. MYSERIAL.print(current_position[Y_AXIS], 5);
  2477. SERIAL_PROTOCOLPGM(" Z: ");
  2478. MYSERIAL.print(current_position[Z_AXIS], 5);
  2479. SERIAL_PROTOCOLPGM("\n");
  2480. clean_up_after_endstop_move();
  2481. }
  2482. break;
  2483. case 75:
  2484. {
  2485. for (int i = 40; i <= 110; i++) {
  2486. MYSERIAL.print(i);
  2487. MYSERIAL.print(" ");
  2488. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2489. }
  2490. }
  2491. break;
  2492. case 76: //PINDA probe temperature calibration
  2493. {
  2494. setTargetBed(PINDA_MIN_T);
  2495. float zero_z;
  2496. int z_shift = 0; //unit: steps
  2497. int t_c; // temperature
  2498. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2499. // We don't know where we are! HOME!
  2500. // Push the commands to the front of the message queue in the reverse order!
  2501. // There shall be always enough space reserved for these commands.
  2502. repeatcommand_front(); // repeat G76 with all its parameters
  2503. enquecommand_front_P((PSTR("G28 W0")));
  2504. break;
  2505. }
  2506. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2507. custom_message = true;
  2508. custom_message_type = 4;
  2509. custom_message_state = 1;
  2510. custom_message = MSG_TEMP_CALIBRATION;
  2511. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2512. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2513. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2515. st_synchronize();
  2516. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2517. delay_keep_alive(1000);
  2518. serialecho_temperatures();
  2519. }
  2520. //enquecommand_P(PSTR("M190 S50"));
  2521. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2522. delay_keep_alive(1000);
  2523. serialecho_temperatures();
  2524. }
  2525. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2526. current_position[Z_AXIS] = 5;
  2527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2528. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2529. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2531. st_synchronize();
  2532. find_bed_induction_sensor_point_z(-1.f);
  2533. zero_z = current_position[Z_AXIS];
  2534. //current_position[Z_AXIS]
  2535. SERIAL_ECHOLNPGM("");
  2536. SERIAL_ECHOPGM("ZERO: ");
  2537. MYSERIAL.print(current_position[Z_AXIS]);
  2538. SERIAL_ECHOLNPGM("");
  2539. for (int i = 0; i<5; i++) {
  2540. SERIAL_ECHOPGM("Step: ");
  2541. MYSERIAL.print(i+2);
  2542. SERIAL_ECHOLNPGM("/6");
  2543. custom_message_state = i + 2;
  2544. t_c = 60 + i * 10;
  2545. setTargetBed(t_c);
  2546. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2547. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2548. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2550. st_synchronize();
  2551. while (degBed() < t_c) {
  2552. delay_keep_alive(1000);
  2553. serialecho_temperatures();
  2554. }
  2555. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2556. delay_keep_alive(1000);
  2557. serialecho_temperatures();
  2558. }
  2559. current_position[Z_AXIS] = 5;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2561. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2562. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2564. st_synchronize();
  2565. find_bed_induction_sensor_point_z(-1.f);
  2566. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2567. SERIAL_ECHOLNPGM("");
  2568. SERIAL_ECHOPGM("Temperature: ");
  2569. MYSERIAL.print(t_c);
  2570. SERIAL_ECHOPGM(" Z shift (mm):");
  2571. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2572. SERIAL_ECHOLNPGM("");
  2573. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2574. }
  2575. custom_message_type = 0;
  2576. custom_message = false;
  2577. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2578. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2579. disable_x();
  2580. disable_y();
  2581. disable_z();
  2582. disable_e0();
  2583. disable_e1();
  2584. disable_e2();
  2585. setTargetBed(0); //set bed target temperature back to 0
  2586. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2587. lcd_update_enable(true);
  2588. lcd_update(2);
  2589. }
  2590. break;
  2591. #ifdef DIS
  2592. case 77:
  2593. {
  2594. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2595. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2596. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2597. float dimension_x = 40;
  2598. float dimension_y = 40;
  2599. int points_x = 40;
  2600. int points_y = 40;
  2601. float offset_x = 74;
  2602. float offset_y = 33;
  2603. if (code_seen('X')) dimension_x = code_value();
  2604. if (code_seen('Y')) dimension_y = code_value();
  2605. if (code_seen('XP')) points_x = code_value();
  2606. if (code_seen('YP')) points_y = code_value();
  2607. if (code_seen('XO')) offset_x = code_value();
  2608. if (code_seen('YO')) offset_y = code_value();
  2609. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2610. } break;
  2611. #endif
  2612. /**
  2613. * G80: Mesh-based Z probe, probes a grid and produces a
  2614. * mesh to compensate for variable bed height
  2615. *
  2616. * The S0 report the points as below
  2617. *
  2618. * +----> X-axis
  2619. * |
  2620. * |
  2621. * v Y-axis
  2622. *
  2623. */
  2624. case 80:
  2625. #ifdef MK1BP
  2626. break;
  2627. #endif //MK1BP
  2628. case_G80:
  2629. {
  2630. mesh_bed_leveling_flag = true;
  2631. int8_t verbosity_level = 0;
  2632. static bool run = false;
  2633. if (code_seen('V')) {
  2634. // Just 'V' without a number counts as V1.
  2635. char c = strchr_pointer[1];
  2636. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2637. }
  2638. // Firstly check if we know where we are
  2639. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2640. // We don't know where we are! HOME!
  2641. // Push the commands to the front of the message queue in the reverse order!
  2642. // There shall be always enough space reserved for these commands.
  2643. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2644. repeatcommand_front(); // repeat G80 with all its parameters
  2645. enquecommand_front_P((PSTR("G28 W0")));
  2646. }
  2647. else {
  2648. mesh_bed_leveling_flag = false;
  2649. }
  2650. break;
  2651. }
  2652. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2653. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2654. temp_compensation_start();
  2655. run = true;
  2656. repeatcommand_front(); // repeat G80 with all its parameters
  2657. enquecommand_front_P((PSTR("G28 W0")));
  2658. }
  2659. else {
  2660. mesh_bed_leveling_flag = false;
  2661. }
  2662. break;
  2663. }
  2664. run = false;
  2665. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2666. mesh_bed_leveling_flag = false;
  2667. break;
  2668. }
  2669. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2670. bool custom_message_old = custom_message;
  2671. unsigned int custom_message_type_old = custom_message_type;
  2672. unsigned int custom_message_state_old = custom_message_state;
  2673. custom_message = true;
  2674. custom_message_type = 1;
  2675. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2676. lcd_update(1);
  2677. mbl.reset(); //reset mesh bed leveling
  2678. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2679. // consumed during the first movements following this statement.
  2680. babystep_undo();
  2681. // Cycle through all points and probe them
  2682. // First move up. During this first movement, the babystepping will be reverted.
  2683. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2685. // The move to the first calibration point.
  2686. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2687. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2688. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2689. if (verbosity_level >= 1) {
  2690. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2691. }
  2692. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2694. // Wait until the move is finished.
  2695. st_synchronize();
  2696. int mesh_point = 0; //index number of calibration point
  2697. int ix = 0;
  2698. int iy = 0;
  2699. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2700. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2701. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2702. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2703. if (verbosity_level >= 1) {
  2704. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2705. }
  2706. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2707. const char *kill_message = NULL;
  2708. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2709. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2710. // Get coords of a measuring point.
  2711. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2712. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2713. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2714. float z0 = 0.f;
  2715. if (has_z && mesh_point > 0) {
  2716. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2717. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2718. //#if 0
  2719. if (verbosity_level >= 1) {
  2720. SERIAL_ECHOPGM("Bed leveling, point: ");
  2721. MYSERIAL.print(mesh_point);
  2722. SERIAL_ECHOPGM(", calibration z: ");
  2723. MYSERIAL.print(z0, 5);
  2724. SERIAL_ECHOLNPGM("");
  2725. }
  2726. //#endif
  2727. }
  2728. // Move Z up to MESH_HOME_Z_SEARCH.
  2729. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2731. st_synchronize();
  2732. // Move to XY position of the sensor point.
  2733. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2734. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2735. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2736. if (verbosity_level >= 1) {
  2737. SERIAL_PROTOCOL(mesh_point);
  2738. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2739. }
  2740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2741. st_synchronize();
  2742. // Go down until endstop is hit
  2743. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2744. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2745. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2746. break;
  2747. }
  2748. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2749. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2750. break;
  2751. }
  2752. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2753. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2754. break;
  2755. }
  2756. if (verbosity_level >= 10) {
  2757. SERIAL_ECHOPGM("X: ");
  2758. MYSERIAL.print(current_position[X_AXIS], 5);
  2759. SERIAL_ECHOLNPGM("");
  2760. SERIAL_ECHOPGM("Y: ");
  2761. MYSERIAL.print(current_position[Y_AXIS], 5);
  2762. SERIAL_PROTOCOLPGM("\n");
  2763. }
  2764. if (verbosity_level >= 1) {
  2765. SERIAL_ECHOPGM("mesh bed leveling: ");
  2766. MYSERIAL.print(current_position[Z_AXIS], 5);
  2767. SERIAL_ECHOLNPGM("");
  2768. }
  2769. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2770. custom_message_state--;
  2771. mesh_point++;
  2772. lcd_update(1);
  2773. }
  2774. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2775. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2776. if (verbosity_level >= 20) {
  2777. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2778. MYSERIAL.print(current_position[Z_AXIS], 5);
  2779. }
  2780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2781. st_synchronize();
  2782. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2783. kill(kill_message);
  2784. SERIAL_ECHOLNPGM("killed");
  2785. }
  2786. clean_up_after_endstop_move();
  2787. SERIAL_ECHOLNPGM("clean up finished ");
  2788. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2789. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2790. SERIAL_ECHOLNPGM("babystep applied");
  2791. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2792. if (verbosity_level >= 1) {
  2793. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2794. }
  2795. for (uint8_t i = 0; i < 4; ++i) {
  2796. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2797. long correction = 0;
  2798. if (code_seen(codes[i]))
  2799. correction = code_value_long();
  2800. else if (eeprom_bed_correction_valid) {
  2801. unsigned char *addr = (i < 2) ?
  2802. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2803. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2804. correction = eeprom_read_int8(addr);
  2805. }
  2806. if (correction == 0)
  2807. continue;
  2808. float offset = float(correction) * 0.001f;
  2809. if (fabs(offset) > 0.101f) {
  2810. SERIAL_ERROR_START;
  2811. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2812. SERIAL_ECHO(offset);
  2813. SERIAL_ECHOLNPGM(" microns");
  2814. }
  2815. else {
  2816. switch (i) {
  2817. case 0:
  2818. for (uint8_t row = 0; row < 3; ++row) {
  2819. mbl.z_values[row][1] += 0.5f * offset;
  2820. mbl.z_values[row][0] += offset;
  2821. }
  2822. break;
  2823. case 1:
  2824. for (uint8_t row = 0; row < 3; ++row) {
  2825. mbl.z_values[row][1] += 0.5f * offset;
  2826. mbl.z_values[row][2] += offset;
  2827. }
  2828. break;
  2829. case 2:
  2830. for (uint8_t col = 0; col < 3; ++col) {
  2831. mbl.z_values[1][col] += 0.5f * offset;
  2832. mbl.z_values[0][col] += offset;
  2833. }
  2834. break;
  2835. case 3:
  2836. for (uint8_t col = 0; col < 3; ++col) {
  2837. mbl.z_values[1][col] += 0.5f * offset;
  2838. mbl.z_values[2][col] += offset;
  2839. }
  2840. break;
  2841. }
  2842. }
  2843. }
  2844. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2845. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2846. SERIAL_ECHOLNPGM("Upsample finished");
  2847. mbl.active = 1; //activate mesh bed leveling
  2848. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2849. go_home_with_z_lift();
  2850. SERIAL_ECHOLNPGM("Go home finished");
  2851. //unretract (after PINDA preheat retraction)
  2852. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2853. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2855. }
  2856. // Restore custom message state
  2857. custom_message = custom_message_old;
  2858. custom_message_type = custom_message_type_old;
  2859. custom_message_state = custom_message_state_old;
  2860. mesh_bed_leveling_flag = false;
  2861. mesh_bed_run_from_menu = false;
  2862. lcd_update(2);
  2863. }
  2864. break;
  2865. /**
  2866. * G81: Print mesh bed leveling status and bed profile if activated
  2867. */
  2868. case 81:
  2869. if (mbl.active) {
  2870. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2871. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2872. SERIAL_PROTOCOLPGM(",");
  2873. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2874. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2875. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2876. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2877. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2878. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2879. SERIAL_PROTOCOLPGM(" ");
  2880. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2881. }
  2882. SERIAL_PROTOCOLPGM("\n");
  2883. }
  2884. }
  2885. else
  2886. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2887. break;
  2888. #if 0
  2889. /**
  2890. * G82: Single Z probe at current location
  2891. *
  2892. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2893. *
  2894. */
  2895. case 82:
  2896. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2897. setup_for_endstop_move();
  2898. find_bed_induction_sensor_point_z();
  2899. clean_up_after_endstop_move();
  2900. SERIAL_PROTOCOLPGM("Bed found at: ");
  2901. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2902. SERIAL_PROTOCOLPGM("\n");
  2903. break;
  2904. /**
  2905. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2906. */
  2907. case 83:
  2908. {
  2909. int babystepz = code_seen('S') ? code_value() : 0;
  2910. int BabyPosition = code_seen('P') ? code_value() : 0;
  2911. if (babystepz != 0) {
  2912. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2913. // Is the axis indexed starting with zero or one?
  2914. if (BabyPosition > 4) {
  2915. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2916. }else{
  2917. // Save it to the eeprom
  2918. babystepLoadZ = babystepz;
  2919. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2920. // adjust the Z
  2921. babystepsTodoZadd(babystepLoadZ);
  2922. }
  2923. }
  2924. }
  2925. break;
  2926. /**
  2927. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2928. */
  2929. case 84:
  2930. babystepsTodoZsubtract(babystepLoadZ);
  2931. // babystepLoadZ = 0;
  2932. break;
  2933. /**
  2934. * G85: Prusa3D specific: Pick best babystep
  2935. */
  2936. case 85:
  2937. lcd_pick_babystep();
  2938. break;
  2939. #endif
  2940. /**
  2941. * G86: Prusa3D specific: Disable babystep correction after home.
  2942. * This G-code will be performed at the start of a calibration script.
  2943. */
  2944. case 86:
  2945. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2946. break;
  2947. /**
  2948. * G87: Prusa3D specific: Enable babystep correction after home
  2949. * This G-code will be performed at the end of a calibration script.
  2950. */
  2951. case 87:
  2952. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2953. break;
  2954. /**
  2955. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2956. */
  2957. case 88:
  2958. break;
  2959. #endif // ENABLE_MESH_BED_LEVELING
  2960. case 90: // G90
  2961. relative_mode = false;
  2962. break;
  2963. case 91: // G91
  2964. relative_mode = true;
  2965. break;
  2966. case 92: // G92
  2967. if(!code_seen(axis_codes[E_AXIS]))
  2968. st_synchronize();
  2969. for(int8_t i=0; i < NUM_AXIS; i++) {
  2970. if(code_seen(axis_codes[i])) {
  2971. if(i == E_AXIS) {
  2972. current_position[i] = code_value();
  2973. plan_set_e_position(current_position[E_AXIS]);
  2974. }
  2975. else {
  2976. current_position[i] = code_value()+add_homing[i];
  2977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2978. }
  2979. }
  2980. }
  2981. break;
  2982. case 98: //activate farm mode
  2983. farm_mode = 1;
  2984. PingTime = millis();
  2985. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2986. break;
  2987. case 99: //deactivate farm mode
  2988. farm_mode = 0;
  2989. lcd_printer_connected();
  2990. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2991. lcd_update(2);
  2992. break;
  2993. }
  2994. } // end if(code_seen('G'))
  2995. else if(code_seen('M'))
  2996. {
  2997. int index;
  2998. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2999. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3000. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3001. SERIAL_ECHOLNPGM("Invalid M code");
  3002. } else
  3003. switch((int)code_value())
  3004. {
  3005. #ifdef ULTIPANEL
  3006. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3007. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3008. {
  3009. char *src = strchr_pointer + 2;
  3010. codenum = 0;
  3011. bool hasP = false, hasS = false;
  3012. if (code_seen('P')) {
  3013. codenum = code_value(); // milliseconds to wait
  3014. hasP = codenum > 0;
  3015. }
  3016. if (code_seen('S')) {
  3017. codenum = code_value() * 1000; // seconds to wait
  3018. hasS = codenum > 0;
  3019. }
  3020. starpos = strchr(src, '*');
  3021. if (starpos != NULL) *(starpos) = '\0';
  3022. while (*src == ' ') ++src;
  3023. if (!hasP && !hasS && *src != '\0') {
  3024. lcd_setstatus(src);
  3025. } else {
  3026. LCD_MESSAGERPGM(MSG_USERWAIT);
  3027. }
  3028. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3029. st_synchronize();
  3030. previous_millis_cmd = millis();
  3031. if (codenum > 0){
  3032. codenum += millis(); // keep track of when we started waiting
  3033. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3034. while(millis() < codenum && !lcd_clicked()){
  3035. manage_heater();
  3036. manage_inactivity(true);
  3037. lcd_update();
  3038. }
  3039. KEEPALIVE_STATE(IN_HANDLER);
  3040. lcd_ignore_click(false);
  3041. }else{
  3042. if (!lcd_detected())
  3043. break;
  3044. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3045. while(!lcd_clicked()){
  3046. manage_heater();
  3047. manage_inactivity(true);
  3048. lcd_update();
  3049. }
  3050. KEEPALIVE_STATE(IN_HANDLER);
  3051. }
  3052. if (IS_SD_PRINTING)
  3053. LCD_MESSAGERPGM(MSG_RESUMING);
  3054. else
  3055. LCD_MESSAGERPGM(WELCOME_MSG);
  3056. }
  3057. break;
  3058. #endif
  3059. case 17:
  3060. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3061. enable_x();
  3062. enable_y();
  3063. enable_z();
  3064. enable_e0();
  3065. enable_e1();
  3066. enable_e2();
  3067. break;
  3068. #ifdef SDSUPPORT
  3069. case 20: // M20 - list SD card
  3070. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3071. card.ls();
  3072. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3073. break;
  3074. case 21: // M21 - init SD card
  3075. card.initsd();
  3076. break;
  3077. case 22: //M22 - release SD card
  3078. card.release();
  3079. break;
  3080. case 23: //M23 - Select file
  3081. starpos = (strchr(strchr_pointer + 4,'*'));
  3082. if(starpos!=NULL)
  3083. *(starpos)='\0';
  3084. card.openFile(strchr_pointer + 4,true);
  3085. break;
  3086. case 24: //M24 - Start SD print
  3087. card.startFileprint();
  3088. starttime=millis();
  3089. break;
  3090. case 25: //M25 - Pause SD print
  3091. card.pauseSDPrint();
  3092. break;
  3093. case 26: //M26 - Set SD index
  3094. if(card.cardOK && code_seen('S')) {
  3095. card.setIndex(code_value_long());
  3096. }
  3097. break;
  3098. case 27: //M27 - Get SD status
  3099. card.getStatus();
  3100. break;
  3101. case 28: //M28 - Start SD write
  3102. starpos = (strchr(strchr_pointer + 4,'*'));
  3103. if(starpos != NULL){
  3104. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3105. strchr_pointer = strchr(npos,' ') + 1;
  3106. *(starpos) = '\0';
  3107. }
  3108. card.openFile(strchr_pointer+4,false);
  3109. break;
  3110. case 29: //M29 - Stop SD write
  3111. //processed in write to file routine above
  3112. //card,saving = false;
  3113. break;
  3114. case 30: //M30 <filename> Delete File
  3115. if (card.cardOK){
  3116. card.closefile();
  3117. starpos = (strchr(strchr_pointer + 4,'*'));
  3118. if(starpos != NULL){
  3119. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3120. strchr_pointer = strchr(npos,' ') + 1;
  3121. *(starpos) = '\0';
  3122. }
  3123. card.removeFile(strchr_pointer + 4);
  3124. }
  3125. break;
  3126. case 32: //M32 - Select file and start SD print
  3127. {
  3128. if(card.sdprinting) {
  3129. st_synchronize();
  3130. }
  3131. starpos = (strchr(strchr_pointer + 4,'*'));
  3132. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3133. if(namestartpos==NULL)
  3134. {
  3135. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3136. }
  3137. else
  3138. namestartpos++; //to skip the '!'
  3139. if(starpos!=NULL)
  3140. *(starpos)='\0';
  3141. bool call_procedure=(code_seen('P'));
  3142. if(strchr_pointer>namestartpos)
  3143. call_procedure=false; //false alert, 'P' found within filename
  3144. if( card.cardOK )
  3145. {
  3146. card.openFile(namestartpos,true,!call_procedure);
  3147. if(code_seen('S'))
  3148. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3149. card.setIndex(code_value_long());
  3150. card.startFileprint();
  3151. if(!call_procedure)
  3152. starttime=millis(); //procedure calls count as normal print time.
  3153. }
  3154. } break;
  3155. case 928: //M928 - Start SD write
  3156. starpos = (strchr(strchr_pointer + 5,'*'));
  3157. if(starpos != NULL){
  3158. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3159. strchr_pointer = strchr(npos,' ') + 1;
  3160. *(starpos) = '\0';
  3161. }
  3162. card.openLogFile(strchr_pointer+5);
  3163. break;
  3164. #endif //SDSUPPORT
  3165. case 31: //M31 take time since the start of the SD print or an M109 command
  3166. {
  3167. stoptime=millis();
  3168. char time[30];
  3169. unsigned long t=(stoptime-starttime)/1000;
  3170. int sec,min;
  3171. min=t/60;
  3172. sec=t%60;
  3173. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3174. SERIAL_ECHO_START;
  3175. SERIAL_ECHOLN(time);
  3176. lcd_setstatus(time);
  3177. autotempShutdown();
  3178. }
  3179. break;
  3180. case 42: //M42 -Change pin status via gcode
  3181. if (code_seen('S'))
  3182. {
  3183. int pin_status = code_value();
  3184. int pin_number = LED_PIN;
  3185. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3186. pin_number = code_value();
  3187. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3188. {
  3189. if (sensitive_pins[i] == pin_number)
  3190. {
  3191. pin_number = -1;
  3192. break;
  3193. }
  3194. }
  3195. #if defined(FAN_PIN) && FAN_PIN > -1
  3196. if (pin_number == FAN_PIN)
  3197. fanSpeed = pin_status;
  3198. #endif
  3199. if (pin_number > -1)
  3200. {
  3201. pinMode(pin_number, OUTPUT);
  3202. digitalWrite(pin_number, pin_status);
  3203. analogWrite(pin_number, pin_status);
  3204. }
  3205. }
  3206. break;
  3207. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3208. // Reset the baby step value and the baby step applied flag.
  3209. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3210. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3211. // Reset the skew and offset in both RAM and EEPROM.
  3212. reset_bed_offset_and_skew();
  3213. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3214. // the planner will not perform any adjustments in the XY plane.
  3215. // Wait for the motors to stop and update the current position with the absolute values.
  3216. world2machine_revert_to_uncorrected();
  3217. break;
  3218. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3219. {
  3220. // Only Z calibration?
  3221. bool onlyZ = code_seen('Z');
  3222. if (!onlyZ) {
  3223. setTargetBed(0);
  3224. setTargetHotend(0, 0);
  3225. setTargetHotend(0, 1);
  3226. setTargetHotend(0, 2);
  3227. adjust_bed_reset(); //reset bed level correction
  3228. }
  3229. // Disable the default update procedure of the display. We will do a modal dialog.
  3230. lcd_update_enable(false);
  3231. // Let the planner use the uncorrected coordinates.
  3232. mbl.reset();
  3233. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3234. // the planner will not perform any adjustments in the XY plane.
  3235. // Wait for the motors to stop and update the current position with the absolute values.
  3236. world2machine_revert_to_uncorrected();
  3237. // Reset the baby step value applied without moving the axes.
  3238. babystep_reset();
  3239. // Mark all axes as in a need for homing.
  3240. memset(axis_known_position, 0, sizeof(axis_known_position));
  3241. // Let the user move the Z axes up to the end stoppers.
  3242. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3243. refresh_cmd_timeout();
  3244. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3245. lcd_wait_for_cool_down();
  3246. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3247. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3248. lcd_implementation_print_at(0, 2, 1);
  3249. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3250. }
  3251. // Move the print head close to the bed.
  3252. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3254. st_synchronize();
  3255. // Home in the XY plane.
  3256. set_destination_to_current();
  3257. setup_for_endstop_move();
  3258. home_xy();
  3259. int8_t verbosity_level = 0;
  3260. if (code_seen('V')) {
  3261. // Just 'V' without a number counts as V1.
  3262. char c = strchr_pointer[1];
  3263. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3264. }
  3265. if (onlyZ) {
  3266. clean_up_after_endstop_move();
  3267. // Z only calibration.
  3268. // Load the machine correction matrix
  3269. world2machine_initialize();
  3270. // and correct the current_position to match the transformed coordinate system.
  3271. world2machine_update_current();
  3272. //FIXME
  3273. bool result = sample_mesh_and_store_reference();
  3274. if (result) {
  3275. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3276. // Shipped, the nozzle height has been set already. The user can start printing now.
  3277. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3278. // babystep_apply();
  3279. }
  3280. } else {
  3281. // Reset the baby step value and the baby step applied flag.
  3282. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3283. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3284. // Complete XYZ calibration.
  3285. uint8_t point_too_far_mask = 0;
  3286. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3287. clean_up_after_endstop_move();
  3288. // Print head up.
  3289. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3290. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3291. st_synchronize();
  3292. if (result >= 0) {
  3293. point_too_far_mask = 0;
  3294. // Second half: The fine adjustment.
  3295. // Let the planner use the uncorrected coordinates.
  3296. mbl.reset();
  3297. world2machine_reset();
  3298. // Home in the XY plane.
  3299. setup_for_endstop_move();
  3300. home_xy();
  3301. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3302. clean_up_after_endstop_move();
  3303. // Print head up.
  3304. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3306. st_synchronize();
  3307. // if (result >= 0) babystep_apply();
  3308. }
  3309. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3310. if (result >= 0) {
  3311. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3312. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3313. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3314. }
  3315. }
  3316. } else {
  3317. // Timeouted.
  3318. }
  3319. lcd_update_enable(true);
  3320. break;
  3321. }
  3322. /*
  3323. case 46:
  3324. {
  3325. // M46: Prusa3D: Show the assigned IP address.
  3326. uint8_t ip[4];
  3327. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3328. if (hasIP) {
  3329. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3330. SERIAL_ECHO(int(ip[0]));
  3331. SERIAL_ECHOPGM(".");
  3332. SERIAL_ECHO(int(ip[1]));
  3333. SERIAL_ECHOPGM(".");
  3334. SERIAL_ECHO(int(ip[2]));
  3335. SERIAL_ECHOPGM(".");
  3336. SERIAL_ECHO(int(ip[3]));
  3337. SERIAL_ECHOLNPGM("");
  3338. } else {
  3339. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3340. }
  3341. break;
  3342. }
  3343. */
  3344. case 47:
  3345. // M47: Prusa3D: Show end stops dialog on the display.
  3346. lcd_diag_show_end_stops();
  3347. break;
  3348. #if 0
  3349. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3350. {
  3351. // Disable the default update procedure of the display. We will do a modal dialog.
  3352. lcd_update_enable(false);
  3353. // Let the planner use the uncorrected coordinates.
  3354. mbl.reset();
  3355. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3356. // the planner will not perform any adjustments in the XY plane.
  3357. // Wait for the motors to stop and update the current position with the absolute values.
  3358. world2machine_revert_to_uncorrected();
  3359. // Move the print head close to the bed.
  3360. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3362. st_synchronize();
  3363. // Home in the XY plane.
  3364. set_destination_to_current();
  3365. setup_for_endstop_move();
  3366. home_xy();
  3367. int8_t verbosity_level = 0;
  3368. if (code_seen('V')) {
  3369. // Just 'V' without a number counts as V1.
  3370. char c = strchr_pointer[1];
  3371. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3372. }
  3373. bool success = scan_bed_induction_points(verbosity_level);
  3374. clean_up_after_endstop_move();
  3375. // Print head up.
  3376. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3378. st_synchronize();
  3379. lcd_update_enable(true);
  3380. break;
  3381. }
  3382. #endif
  3383. // M48 Z-Probe repeatability measurement function.
  3384. //
  3385. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3386. //
  3387. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3388. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3389. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3390. // regenerated.
  3391. //
  3392. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3393. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3394. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3395. //
  3396. #ifdef ENABLE_AUTO_BED_LEVELING
  3397. #ifdef Z_PROBE_REPEATABILITY_TEST
  3398. case 48: // M48 Z-Probe repeatability
  3399. {
  3400. #if Z_MIN_PIN == -1
  3401. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3402. #endif
  3403. double sum=0.0;
  3404. double mean=0.0;
  3405. double sigma=0.0;
  3406. double sample_set[50];
  3407. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3408. double X_current, Y_current, Z_current;
  3409. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3410. if (code_seen('V') || code_seen('v')) {
  3411. verbose_level = code_value();
  3412. if (verbose_level<0 || verbose_level>4 ) {
  3413. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3414. goto Sigma_Exit;
  3415. }
  3416. }
  3417. if (verbose_level > 0) {
  3418. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3419. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3420. }
  3421. if (code_seen('n')) {
  3422. n_samples = code_value();
  3423. if (n_samples<4 || n_samples>50 ) {
  3424. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3425. goto Sigma_Exit;
  3426. }
  3427. }
  3428. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3429. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3430. Z_current = st_get_position_mm(Z_AXIS);
  3431. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3432. ext_position = st_get_position_mm(E_AXIS);
  3433. if (code_seen('X') || code_seen('x') ) {
  3434. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3435. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3436. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3437. goto Sigma_Exit;
  3438. }
  3439. }
  3440. if (code_seen('Y') || code_seen('y') ) {
  3441. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3442. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3443. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3444. goto Sigma_Exit;
  3445. }
  3446. }
  3447. if (code_seen('L') || code_seen('l') ) {
  3448. n_legs = code_value();
  3449. if ( n_legs==1 )
  3450. n_legs = 2;
  3451. if ( n_legs<0 || n_legs>15 ) {
  3452. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3453. goto Sigma_Exit;
  3454. }
  3455. }
  3456. //
  3457. // Do all the preliminary setup work. First raise the probe.
  3458. //
  3459. st_synchronize();
  3460. plan_bed_level_matrix.set_to_identity();
  3461. plan_buffer_line( X_current, Y_current, Z_start_location,
  3462. ext_position,
  3463. homing_feedrate[Z_AXIS]/60,
  3464. active_extruder);
  3465. st_synchronize();
  3466. //
  3467. // Now get everything to the specified probe point So we can safely do a probe to
  3468. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3469. // use that as a starting point for each probe.
  3470. //
  3471. if (verbose_level > 2)
  3472. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3473. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3474. ext_position,
  3475. homing_feedrate[X_AXIS]/60,
  3476. active_extruder);
  3477. st_synchronize();
  3478. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3479. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3480. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3481. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3482. //
  3483. // OK, do the inital probe to get us close to the bed.
  3484. // Then retrace the right amount and use that in subsequent probes
  3485. //
  3486. setup_for_endstop_move();
  3487. run_z_probe();
  3488. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3489. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3490. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3491. ext_position,
  3492. homing_feedrate[X_AXIS]/60,
  3493. active_extruder);
  3494. st_synchronize();
  3495. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3496. for( n=0; n<n_samples; n++) {
  3497. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3498. if ( n_legs) {
  3499. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3500. int rotational_direction, l;
  3501. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3502. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3503. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3504. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3505. //SERIAL_ECHOPAIR(" theta: ",theta);
  3506. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3507. //SERIAL_PROTOCOLLNPGM("");
  3508. for( l=0; l<n_legs-1; l++) {
  3509. if (rotational_direction==1)
  3510. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3511. else
  3512. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3513. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3514. if ( radius<0.0 )
  3515. radius = -radius;
  3516. X_current = X_probe_location + cos(theta) * radius;
  3517. Y_current = Y_probe_location + sin(theta) * radius;
  3518. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3519. X_current = X_MIN_POS;
  3520. if ( X_current>X_MAX_POS)
  3521. X_current = X_MAX_POS;
  3522. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3523. Y_current = Y_MIN_POS;
  3524. if ( Y_current>Y_MAX_POS)
  3525. Y_current = Y_MAX_POS;
  3526. if (verbose_level>3 ) {
  3527. SERIAL_ECHOPAIR("x: ", X_current);
  3528. SERIAL_ECHOPAIR("y: ", Y_current);
  3529. SERIAL_PROTOCOLLNPGM("");
  3530. }
  3531. do_blocking_move_to( X_current, Y_current, Z_current );
  3532. }
  3533. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3534. }
  3535. setup_for_endstop_move();
  3536. run_z_probe();
  3537. sample_set[n] = current_position[Z_AXIS];
  3538. //
  3539. // Get the current mean for the data points we have so far
  3540. //
  3541. sum=0.0;
  3542. for( j=0; j<=n; j++) {
  3543. sum = sum + sample_set[j];
  3544. }
  3545. mean = sum / (double (n+1));
  3546. //
  3547. // Now, use that mean to calculate the standard deviation for the
  3548. // data points we have so far
  3549. //
  3550. sum=0.0;
  3551. for( j=0; j<=n; j++) {
  3552. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3553. }
  3554. sigma = sqrt( sum / (double (n+1)) );
  3555. if (verbose_level > 1) {
  3556. SERIAL_PROTOCOL(n+1);
  3557. SERIAL_PROTOCOL(" of ");
  3558. SERIAL_PROTOCOL(n_samples);
  3559. SERIAL_PROTOCOLPGM(" z: ");
  3560. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3561. }
  3562. if (verbose_level > 2) {
  3563. SERIAL_PROTOCOL(" mean: ");
  3564. SERIAL_PROTOCOL_F(mean,6);
  3565. SERIAL_PROTOCOL(" sigma: ");
  3566. SERIAL_PROTOCOL_F(sigma,6);
  3567. }
  3568. if (verbose_level > 0)
  3569. SERIAL_PROTOCOLPGM("\n");
  3570. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3571. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3572. st_synchronize();
  3573. }
  3574. delay(1000);
  3575. clean_up_after_endstop_move();
  3576. // enable_endstops(true);
  3577. if (verbose_level > 0) {
  3578. SERIAL_PROTOCOLPGM("Mean: ");
  3579. SERIAL_PROTOCOL_F(mean, 6);
  3580. SERIAL_PROTOCOLPGM("\n");
  3581. }
  3582. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3583. SERIAL_PROTOCOL_F(sigma, 6);
  3584. SERIAL_PROTOCOLPGM("\n\n");
  3585. Sigma_Exit:
  3586. break;
  3587. }
  3588. #endif // Z_PROBE_REPEATABILITY_TEST
  3589. #endif // ENABLE_AUTO_BED_LEVELING
  3590. case 104: // M104
  3591. if(setTargetedHotend(104)){
  3592. break;
  3593. }
  3594. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3595. setWatch();
  3596. break;
  3597. case 112: // M112 -Emergency Stop
  3598. kill();
  3599. break;
  3600. case 140: // M140 set bed temp
  3601. if (code_seen('S')) setTargetBed(code_value());
  3602. break;
  3603. case 105 : // M105
  3604. if(setTargetedHotend(105)){
  3605. break;
  3606. }
  3607. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3608. SERIAL_PROTOCOLPGM("ok T:");
  3609. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3610. SERIAL_PROTOCOLPGM(" /");
  3611. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3612. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3613. SERIAL_PROTOCOLPGM(" B:");
  3614. SERIAL_PROTOCOL_F(degBed(),1);
  3615. SERIAL_PROTOCOLPGM(" /");
  3616. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3617. #endif //TEMP_BED_PIN
  3618. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3619. SERIAL_PROTOCOLPGM(" T");
  3620. SERIAL_PROTOCOL(cur_extruder);
  3621. SERIAL_PROTOCOLPGM(":");
  3622. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3623. SERIAL_PROTOCOLPGM(" /");
  3624. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3625. }
  3626. #else
  3627. SERIAL_ERROR_START;
  3628. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3629. #endif
  3630. SERIAL_PROTOCOLPGM(" @:");
  3631. #ifdef EXTRUDER_WATTS
  3632. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3633. SERIAL_PROTOCOLPGM("W");
  3634. #else
  3635. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3636. #endif
  3637. SERIAL_PROTOCOLPGM(" B@:");
  3638. #ifdef BED_WATTS
  3639. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3640. SERIAL_PROTOCOLPGM("W");
  3641. #else
  3642. SERIAL_PROTOCOL(getHeaterPower(-1));
  3643. #endif
  3644. #ifdef SHOW_TEMP_ADC_VALUES
  3645. {float raw = 0.0;
  3646. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3647. SERIAL_PROTOCOLPGM(" ADC B:");
  3648. SERIAL_PROTOCOL_F(degBed(),1);
  3649. SERIAL_PROTOCOLPGM("C->");
  3650. raw = rawBedTemp();
  3651. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3652. SERIAL_PROTOCOLPGM(" Rb->");
  3653. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3654. SERIAL_PROTOCOLPGM(" Rxb->");
  3655. SERIAL_PROTOCOL_F(raw, 5);
  3656. #endif
  3657. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3658. SERIAL_PROTOCOLPGM(" T");
  3659. SERIAL_PROTOCOL(cur_extruder);
  3660. SERIAL_PROTOCOLPGM(":");
  3661. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3662. SERIAL_PROTOCOLPGM("C->");
  3663. raw = rawHotendTemp(cur_extruder);
  3664. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3665. SERIAL_PROTOCOLPGM(" Rt");
  3666. SERIAL_PROTOCOL(cur_extruder);
  3667. SERIAL_PROTOCOLPGM("->");
  3668. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3669. SERIAL_PROTOCOLPGM(" Rx");
  3670. SERIAL_PROTOCOL(cur_extruder);
  3671. SERIAL_PROTOCOLPGM("->");
  3672. SERIAL_PROTOCOL_F(raw, 5);
  3673. }}
  3674. #endif
  3675. SERIAL_PROTOCOLLN("");
  3676. KEEPALIVE_STATE(NOT_BUSY);
  3677. return;
  3678. break;
  3679. case 109:
  3680. {// M109 - Wait for extruder heater to reach target.
  3681. if(setTargetedHotend(109)){
  3682. break;
  3683. }
  3684. LCD_MESSAGERPGM(MSG_HEATING);
  3685. heating_status = 1;
  3686. if (farm_mode) { prusa_statistics(1); };
  3687. #ifdef AUTOTEMP
  3688. autotemp_enabled=false;
  3689. #endif
  3690. if (code_seen('S')) {
  3691. setTargetHotend(code_value(), tmp_extruder);
  3692. CooldownNoWait = true;
  3693. } else if (code_seen('R')) {
  3694. setTargetHotend(code_value(), tmp_extruder);
  3695. CooldownNoWait = false;
  3696. }
  3697. #ifdef AUTOTEMP
  3698. if (code_seen('S')) autotemp_min=code_value();
  3699. if (code_seen('B')) autotemp_max=code_value();
  3700. if (code_seen('F'))
  3701. {
  3702. autotemp_factor=code_value();
  3703. autotemp_enabled=true;
  3704. }
  3705. #endif
  3706. setWatch();
  3707. codenum = millis();
  3708. /* See if we are heating up or cooling down */
  3709. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3710. KEEPALIVE_STATE(NOT_BUSY);
  3711. cancel_heatup = false;
  3712. wait_for_heater(codenum); //loops until target temperature is reached
  3713. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3714. KEEPALIVE_STATE(IN_HANDLER);
  3715. heating_status = 2;
  3716. if (farm_mode) { prusa_statistics(2); };
  3717. //starttime=millis();
  3718. previous_millis_cmd = millis();
  3719. }
  3720. break;
  3721. case 190: // M190 - Wait for bed heater to reach target.
  3722. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3723. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3724. heating_status = 3;
  3725. if (farm_mode) { prusa_statistics(1); };
  3726. if (code_seen('S'))
  3727. {
  3728. setTargetBed(code_value());
  3729. CooldownNoWait = true;
  3730. }
  3731. else if (code_seen('R'))
  3732. {
  3733. setTargetBed(code_value());
  3734. CooldownNoWait = false;
  3735. }
  3736. codenum = millis();
  3737. cancel_heatup = false;
  3738. target_direction = isHeatingBed(); // true if heating, false if cooling
  3739. KEEPALIVE_STATE(NOT_BUSY);
  3740. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3741. {
  3742. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3743. {
  3744. if (!farm_mode) {
  3745. float tt = degHotend(active_extruder);
  3746. SERIAL_PROTOCOLPGM("T:");
  3747. SERIAL_PROTOCOL(tt);
  3748. SERIAL_PROTOCOLPGM(" E:");
  3749. SERIAL_PROTOCOL((int)active_extruder);
  3750. SERIAL_PROTOCOLPGM(" B:");
  3751. SERIAL_PROTOCOL_F(degBed(), 1);
  3752. SERIAL_PROTOCOLLN("");
  3753. }
  3754. codenum = millis();
  3755. }
  3756. manage_heater();
  3757. manage_inactivity();
  3758. lcd_update();
  3759. }
  3760. LCD_MESSAGERPGM(MSG_BED_DONE);
  3761. KEEPALIVE_STATE(IN_HANDLER);
  3762. heating_status = 4;
  3763. previous_millis_cmd = millis();
  3764. #endif
  3765. break;
  3766. #if defined(FAN_PIN) && FAN_PIN > -1
  3767. case 106: //M106 Fan On
  3768. if (code_seen('S')){
  3769. fanSpeed=constrain(code_value(),0,255);
  3770. }
  3771. else {
  3772. fanSpeed=255;
  3773. }
  3774. break;
  3775. case 107: //M107 Fan Off
  3776. fanSpeed = 0;
  3777. break;
  3778. #endif //FAN_PIN
  3779. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3780. case 80: // M80 - Turn on Power Supply
  3781. SET_OUTPUT(PS_ON_PIN); //GND
  3782. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3783. // If you have a switch on suicide pin, this is useful
  3784. // if you want to start another print with suicide feature after
  3785. // a print without suicide...
  3786. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3787. SET_OUTPUT(SUICIDE_PIN);
  3788. WRITE(SUICIDE_PIN, HIGH);
  3789. #endif
  3790. #ifdef ULTIPANEL
  3791. powersupply = true;
  3792. LCD_MESSAGERPGM(WELCOME_MSG);
  3793. lcd_update();
  3794. #endif
  3795. break;
  3796. #endif
  3797. case 81: // M81 - Turn off Power Supply
  3798. disable_heater();
  3799. st_synchronize();
  3800. disable_e0();
  3801. disable_e1();
  3802. disable_e2();
  3803. finishAndDisableSteppers();
  3804. fanSpeed = 0;
  3805. delay(1000); // Wait a little before to switch off
  3806. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3807. st_synchronize();
  3808. suicide();
  3809. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3810. SET_OUTPUT(PS_ON_PIN);
  3811. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3812. #endif
  3813. #ifdef ULTIPANEL
  3814. powersupply = false;
  3815. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3816. /*
  3817. MACHNAME = "Prusa i3"
  3818. MSGOFF = "Vypnuto"
  3819. "Prusai3"" ""vypnuto""."
  3820. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3821. */
  3822. lcd_update();
  3823. #endif
  3824. break;
  3825. case 82:
  3826. axis_relative_modes[3] = false;
  3827. break;
  3828. case 83:
  3829. axis_relative_modes[3] = true;
  3830. break;
  3831. case 18: //compatibility
  3832. case 84: // M84
  3833. if(code_seen('S')){
  3834. stepper_inactive_time = code_value() * 1000;
  3835. }
  3836. else
  3837. {
  3838. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3839. if(all_axis)
  3840. {
  3841. st_synchronize();
  3842. disable_e0();
  3843. disable_e1();
  3844. disable_e2();
  3845. finishAndDisableSteppers();
  3846. }
  3847. else
  3848. {
  3849. st_synchronize();
  3850. if (code_seen('X')) disable_x();
  3851. if (code_seen('Y')) disable_y();
  3852. if (code_seen('Z')) disable_z();
  3853. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3854. if (code_seen('E')) {
  3855. disable_e0();
  3856. disable_e1();
  3857. disable_e2();
  3858. }
  3859. #endif
  3860. }
  3861. }
  3862. snmm_filaments_used = 0;
  3863. break;
  3864. case 85: // M85
  3865. if(code_seen('S')) {
  3866. max_inactive_time = code_value() * 1000;
  3867. }
  3868. break;
  3869. case 92: // M92
  3870. for(int8_t i=0; i < NUM_AXIS; i++)
  3871. {
  3872. if(code_seen(axis_codes[i]))
  3873. {
  3874. if(i == 3) { // E
  3875. float value = code_value();
  3876. if(value < 20.0) {
  3877. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3878. max_jerk[E_AXIS] *= factor;
  3879. max_feedrate[i] *= factor;
  3880. axis_steps_per_sqr_second[i] *= factor;
  3881. }
  3882. axis_steps_per_unit[i] = value;
  3883. }
  3884. else {
  3885. axis_steps_per_unit[i] = code_value();
  3886. }
  3887. }
  3888. }
  3889. break;
  3890. case 110: // M110 - reset line pos
  3891. if (code_seen('N'))
  3892. gcode_LastN = code_value_long();
  3893. else
  3894. gcode_LastN = 0;
  3895. break;
  3896. #ifdef HOST_KEEPALIVE_FEATURE
  3897. case 113: // M113 - Get or set Host Keepalive interval
  3898. if (code_seen('S')) {
  3899. host_keepalive_interval = (uint8_t)code_value_short();
  3900. NOMORE(host_keepalive_interval, 60);
  3901. } else {
  3902. SERIAL_ECHO_START;
  3903. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3904. SERIAL_PROTOCOLLN("");
  3905. }
  3906. #endif
  3907. case 115: // M115
  3908. if (code_seen('V')) {
  3909. // Report the Prusa version number.
  3910. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3911. } else if (code_seen('U')) {
  3912. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3913. // pause the print and ask the user to upgrade the firmware.
  3914. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3915. } else {
  3916. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3917. }
  3918. break;
  3919. /* case 117: // M117 display message
  3920. starpos = (strchr(strchr_pointer + 5,'*'));
  3921. if(starpos!=NULL)
  3922. *(starpos)='\0';
  3923. lcd_setstatus(strchr_pointer + 5);
  3924. break;*/
  3925. case 114: // M114
  3926. SERIAL_PROTOCOLPGM("X:");
  3927. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3928. SERIAL_PROTOCOLPGM(" Y:");
  3929. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3930. SERIAL_PROTOCOLPGM(" Z:");
  3931. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3932. SERIAL_PROTOCOLPGM(" E:");
  3933. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3934. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3935. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3936. SERIAL_PROTOCOLPGM(" Y:");
  3937. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3938. SERIAL_PROTOCOLPGM(" Z:");
  3939. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3940. SERIAL_PROTOCOLLN("");
  3941. break;
  3942. case 120: // M120
  3943. enable_endstops(false) ;
  3944. break;
  3945. case 121: // M121
  3946. enable_endstops(true) ;
  3947. break;
  3948. case 119: // M119
  3949. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3950. SERIAL_PROTOCOLLN("");
  3951. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3952. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3953. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3954. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3955. }else{
  3956. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3957. }
  3958. SERIAL_PROTOCOLLN("");
  3959. #endif
  3960. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3961. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3962. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3963. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3964. }else{
  3965. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3966. }
  3967. SERIAL_PROTOCOLLN("");
  3968. #endif
  3969. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3970. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3971. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3972. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3973. }else{
  3974. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3975. }
  3976. SERIAL_PROTOCOLLN("");
  3977. #endif
  3978. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3979. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3980. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3981. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3982. }else{
  3983. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3984. }
  3985. SERIAL_PROTOCOLLN("");
  3986. #endif
  3987. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3988. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3989. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3990. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3991. }else{
  3992. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3993. }
  3994. SERIAL_PROTOCOLLN("");
  3995. #endif
  3996. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3997. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3998. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3999. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4000. }else{
  4001. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4002. }
  4003. SERIAL_PROTOCOLLN("");
  4004. #endif
  4005. break;
  4006. //TODO: update for all axis, use for loop
  4007. #ifdef BLINKM
  4008. case 150: // M150
  4009. {
  4010. byte red;
  4011. byte grn;
  4012. byte blu;
  4013. if(code_seen('R')) red = code_value();
  4014. if(code_seen('U')) grn = code_value();
  4015. if(code_seen('B')) blu = code_value();
  4016. SendColors(red,grn,blu);
  4017. }
  4018. break;
  4019. #endif //BLINKM
  4020. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4021. {
  4022. tmp_extruder = active_extruder;
  4023. if(code_seen('T')) {
  4024. tmp_extruder = code_value();
  4025. if(tmp_extruder >= EXTRUDERS) {
  4026. SERIAL_ECHO_START;
  4027. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4028. break;
  4029. }
  4030. }
  4031. float area = .0;
  4032. if(code_seen('D')) {
  4033. float diameter = (float)code_value();
  4034. if (diameter == 0.0) {
  4035. // setting any extruder filament size disables volumetric on the assumption that
  4036. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4037. // for all extruders
  4038. volumetric_enabled = false;
  4039. } else {
  4040. filament_size[tmp_extruder] = (float)code_value();
  4041. // make sure all extruders have some sane value for the filament size
  4042. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4043. #if EXTRUDERS > 1
  4044. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4045. #if EXTRUDERS > 2
  4046. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4047. #endif
  4048. #endif
  4049. volumetric_enabled = true;
  4050. }
  4051. } else {
  4052. //reserved for setting filament diameter via UFID or filament measuring device
  4053. break;
  4054. }
  4055. calculate_volumetric_multipliers();
  4056. }
  4057. break;
  4058. case 201: // M201
  4059. for(int8_t i=0; i < NUM_AXIS; i++)
  4060. {
  4061. if(code_seen(axis_codes[i]))
  4062. {
  4063. max_acceleration_units_per_sq_second[i] = code_value();
  4064. }
  4065. }
  4066. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4067. reset_acceleration_rates();
  4068. break;
  4069. #if 0 // Not used for Sprinter/grbl gen6
  4070. case 202: // M202
  4071. for(int8_t i=0; i < NUM_AXIS; i++) {
  4072. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4073. }
  4074. break;
  4075. #endif
  4076. case 203: // M203 max feedrate mm/sec
  4077. for(int8_t i=0; i < NUM_AXIS; i++) {
  4078. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4079. }
  4080. break;
  4081. case 204: // M204 acclereration S normal moves T filmanent only moves
  4082. {
  4083. if(code_seen('S')) acceleration = code_value() ;
  4084. if(code_seen('T')) retract_acceleration = code_value() ;
  4085. }
  4086. break;
  4087. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4088. {
  4089. if(code_seen('S')) minimumfeedrate = code_value();
  4090. if(code_seen('T')) mintravelfeedrate = code_value();
  4091. if(code_seen('B')) minsegmenttime = code_value() ;
  4092. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4093. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4094. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4095. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4096. }
  4097. break;
  4098. case 206: // M206 additional homing offset
  4099. for(int8_t i=0; i < 3; i++)
  4100. {
  4101. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4102. }
  4103. break;
  4104. #ifdef FWRETRACT
  4105. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4106. {
  4107. if(code_seen('S'))
  4108. {
  4109. retract_length = code_value() ;
  4110. }
  4111. if(code_seen('F'))
  4112. {
  4113. retract_feedrate = code_value()/60 ;
  4114. }
  4115. if(code_seen('Z'))
  4116. {
  4117. retract_zlift = code_value() ;
  4118. }
  4119. }break;
  4120. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4121. {
  4122. if(code_seen('S'))
  4123. {
  4124. retract_recover_length = code_value() ;
  4125. }
  4126. if(code_seen('F'))
  4127. {
  4128. retract_recover_feedrate = code_value()/60 ;
  4129. }
  4130. }break;
  4131. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4132. {
  4133. if(code_seen('S'))
  4134. {
  4135. int t= code_value() ;
  4136. switch(t)
  4137. {
  4138. case 0:
  4139. {
  4140. autoretract_enabled=false;
  4141. retracted[0]=false;
  4142. #if EXTRUDERS > 1
  4143. retracted[1]=false;
  4144. #endif
  4145. #if EXTRUDERS > 2
  4146. retracted[2]=false;
  4147. #endif
  4148. }break;
  4149. case 1:
  4150. {
  4151. autoretract_enabled=true;
  4152. retracted[0]=false;
  4153. #if EXTRUDERS > 1
  4154. retracted[1]=false;
  4155. #endif
  4156. #if EXTRUDERS > 2
  4157. retracted[2]=false;
  4158. #endif
  4159. }break;
  4160. default:
  4161. SERIAL_ECHO_START;
  4162. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4163. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4164. SERIAL_ECHOLNPGM("\"");
  4165. }
  4166. }
  4167. }break;
  4168. #endif // FWRETRACT
  4169. #if EXTRUDERS > 1
  4170. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4171. {
  4172. if(setTargetedHotend(218)){
  4173. break;
  4174. }
  4175. if(code_seen('X'))
  4176. {
  4177. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4178. }
  4179. if(code_seen('Y'))
  4180. {
  4181. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4182. }
  4183. SERIAL_ECHO_START;
  4184. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4185. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4186. {
  4187. SERIAL_ECHO(" ");
  4188. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4189. SERIAL_ECHO(",");
  4190. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4191. }
  4192. SERIAL_ECHOLN("");
  4193. }break;
  4194. #endif
  4195. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4196. {
  4197. if(code_seen('S'))
  4198. {
  4199. feedmultiply = code_value() ;
  4200. }
  4201. }
  4202. break;
  4203. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4204. {
  4205. if(code_seen('S'))
  4206. {
  4207. int tmp_code = code_value();
  4208. if (code_seen('T'))
  4209. {
  4210. if(setTargetedHotend(221)){
  4211. break;
  4212. }
  4213. extruder_multiply[tmp_extruder] = tmp_code;
  4214. }
  4215. else
  4216. {
  4217. extrudemultiply = tmp_code ;
  4218. }
  4219. }
  4220. }
  4221. break;
  4222. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4223. {
  4224. if(code_seen('P')){
  4225. int pin_number = code_value(); // pin number
  4226. int pin_state = -1; // required pin state - default is inverted
  4227. if(code_seen('S')) pin_state = code_value(); // required pin state
  4228. if(pin_state >= -1 && pin_state <= 1){
  4229. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4230. {
  4231. if (sensitive_pins[i] == pin_number)
  4232. {
  4233. pin_number = -1;
  4234. break;
  4235. }
  4236. }
  4237. if (pin_number > -1)
  4238. {
  4239. int target = LOW;
  4240. st_synchronize();
  4241. pinMode(pin_number, INPUT);
  4242. switch(pin_state){
  4243. case 1:
  4244. target = HIGH;
  4245. break;
  4246. case 0:
  4247. target = LOW;
  4248. break;
  4249. case -1:
  4250. target = !digitalRead(pin_number);
  4251. break;
  4252. }
  4253. while(digitalRead(pin_number) != target){
  4254. manage_heater();
  4255. manage_inactivity();
  4256. lcd_update();
  4257. }
  4258. }
  4259. }
  4260. }
  4261. }
  4262. break;
  4263. #if NUM_SERVOS > 0
  4264. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4265. {
  4266. int servo_index = -1;
  4267. int servo_position = 0;
  4268. if (code_seen('P'))
  4269. servo_index = code_value();
  4270. if (code_seen('S')) {
  4271. servo_position = code_value();
  4272. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4273. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4274. servos[servo_index].attach(0);
  4275. #endif
  4276. servos[servo_index].write(servo_position);
  4277. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4278. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4279. servos[servo_index].detach();
  4280. #endif
  4281. }
  4282. else {
  4283. SERIAL_ECHO_START;
  4284. SERIAL_ECHO("Servo ");
  4285. SERIAL_ECHO(servo_index);
  4286. SERIAL_ECHOLN(" out of range");
  4287. }
  4288. }
  4289. else if (servo_index >= 0) {
  4290. SERIAL_PROTOCOL(MSG_OK);
  4291. SERIAL_PROTOCOL(" Servo ");
  4292. SERIAL_PROTOCOL(servo_index);
  4293. SERIAL_PROTOCOL(": ");
  4294. SERIAL_PROTOCOL(servos[servo_index].read());
  4295. SERIAL_PROTOCOLLN("");
  4296. }
  4297. }
  4298. break;
  4299. #endif // NUM_SERVOS > 0
  4300. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4301. case 300: // M300
  4302. {
  4303. int beepS = code_seen('S') ? code_value() : 110;
  4304. int beepP = code_seen('P') ? code_value() : 1000;
  4305. if (beepS > 0)
  4306. {
  4307. #if BEEPER > 0
  4308. tone(BEEPER, beepS);
  4309. delay(beepP);
  4310. noTone(BEEPER);
  4311. #elif defined(ULTRALCD)
  4312. lcd_buzz(beepS, beepP);
  4313. #elif defined(LCD_USE_I2C_BUZZER)
  4314. lcd_buzz(beepP, beepS);
  4315. #endif
  4316. }
  4317. else
  4318. {
  4319. delay(beepP);
  4320. }
  4321. }
  4322. break;
  4323. #endif // M300
  4324. #ifdef PIDTEMP
  4325. case 301: // M301
  4326. {
  4327. if(code_seen('P')) Kp = code_value();
  4328. if(code_seen('I')) Ki = scalePID_i(code_value());
  4329. if(code_seen('D')) Kd = scalePID_d(code_value());
  4330. #ifdef PID_ADD_EXTRUSION_RATE
  4331. if(code_seen('C')) Kc = code_value();
  4332. #endif
  4333. updatePID();
  4334. SERIAL_PROTOCOLRPGM(MSG_OK);
  4335. SERIAL_PROTOCOL(" p:");
  4336. SERIAL_PROTOCOL(Kp);
  4337. SERIAL_PROTOCOL(" i:");
  4338. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4339. SERIAL_PROTOCOL(" d:");
  4340. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4341. #ifdef PID_ADD_EXTRUSION_RATE
  4342. SERIAL_PROTOCOL(" c:");
  4343. //Kc does not have scaling applied above, or in resetting defaults
  4344. SERIAL_PROTOCOL(Kc);
  4345. #endif
  4346. SERIAL_PROTOCOLLN("");
  4347. }
  4348. break;
  4349. #endif //PIDTEMP
  4350. #ifdef PIDTEMPBED
  4351. case 304: // M304
  4352. {
  4353. if(code_seen('P')) bedKp = code_value();
  4354. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4355. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4356. updatePID();
  4357. SERIAL_PROTOCOLRPGM(MSG_OK);
  4358. SERIAL_PROTOCOL(" p:");
  4359. SERIAL_PROTOCOL(bedKp);
  4360. SERIAL_PROTOCOL(" i:");
  4361. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4362. SERIAL_PROTOCOL(" d:");
  4363. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4364. SERIAL_PROTOCOLLN("");
  4365. }
  4366. break;
  4367. #endif //PIDTEMP
  4368. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4369. {
  4370. #ifdef CHDK
  4371. SET_OUTPUT(CHDK);
  4372. WRITE(CHDK, HIGH);
  4373. chdkHigh = millis();
  4374. chdkActive = true;
  4375. #else
  4376. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4377. const uint8_t NUM_PULSES=16;
  4378. const float PULSE_LENGTH=0.01524;
  4379. for(int i=0; i < NUM_PULSES; i++) {
  4380. WRITE(PHOTOGRAPH_PIN, HIGH);
  4381. _delay_ms(PULSE_LENGTH);
  4382. WRITE(PHOTOGRAPH_PIN, LOW);
  4383. _delay_ms(PULSE_LENGTH);
  4384. }
  4385. delay(7.33);
  4386. for(int i=0; i < NUM_PULSES; i++) {
  4387. WRITE(PHOTOGRAPH_PIN, HIGH);
  4388. _delay_ms(PULSE_LENGTH);
  4389. WRITE(PHOTOGRAPH_PIN, LOW);
  4390. _delay_ms(PULSE_LENGTH);
  4391. }
  4392. #endif
  4393. #endif //chdk end if
  4394. }
  4395. break;
  4396. #ifdef DOGLCD
  4397. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4398. {
  4399. if (code_seen('C')) {
  4400. lcd_setcontrast( ((int)code_value())&63 );
  4401. }
  4402. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4403. SERIAL_PROTOCOL(lcd_contrast);
  4404. SERIAL_PROTOCOLLN("");
  4405. }
  4406. break;
  4407. #endif
  4408. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4409. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4410. {
  4411. float temp = .0;
  4412. if (code_seen('S')) temp=code_value();
  4413. set_extrude_min_temp(temp);
  4414. }
  4415. break;
  4416. #endif
  4417. case 303: // M303 PID autotune
  4418. {
  4419. float temp = 150.0;
  4420. int e=0;
  4421. int c=5;
  4422. if (code_seen('E')) e=code_value();
  4423. if (e<0)
  4424. temp=70;
  4425. if (code_seen('S')) temp=code_value();
  4426. if (code_seen('C')) c=code_value();
  4427. KEEPALIVE_STATE(NOT_BUSY);
  4428. PID_autotune(temp, e, c);
  4429. }
  4430. break;
  4431. case 400: // M400 finish all moves
  4432. {
  4433. st_synchronize();
  4434. }
  4435. break;
  4436. #ifdef FILAMENT_SENSOR
  4437. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4438. {
  4439. #if (FILWIDTH_PIN > -1)
  4440. if(code_seen('N')) filament_width_nominal=code_value();
  4441. else{
  4442. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4443. SERIAL_PROTOCOLLN(filament_width_nominal);
  4444. }
  4445. #endif
  4446. }
  4447. break;
  4448. case 405: //M405 Turn on filament sensor for control
  4449. {
  4450. if(code_seen('D')) meas_delay_cm=code_value();
  4451. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4452. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4453. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4454. {
  4455. int temp_ratio = widthFil_to_size_ratio();
  4456. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4457. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4458. }
  4459. delay_index1=0;
  4460. delay_index2=0;
  4461. }
  4462. filament_sensor = true ;
  4463. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4464. //SERIAL_PROTOCOL(filament_width_meas);
  4465. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4466. //SERIAL_PROTOCOL(extrudemultiply);
  4467. }
  4468. break;
  4469. case 406: //M406 Turn off filament sensor for control
  4470. {
  4471. filament_sensor = false ;
  4472. }
  4473. break;
  4474. case 407: //M407 Display measured filament diameter
  4475. {
  4476. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4477. SERIAL_PROTOCOLLN(filament_width_meas);
  4478. }
  4479. break;
  4480. #endif
  4481. case 500: // M500 Store settings in EEPROM
  4482. {
  4483. Config_StoreSettings();
  4484. }
  4485. break;
  4486. case 501: // M501 Read settings from EEPROM
  4487. {
  4488. Config_RetrieveSettings();
  4489. }
  4490. break;
  4491. case 502: // M502 Revert to default settings
  4492. {
  4493. Config_ResetDefault();
  4494. }
  4495. break;
  4496. case 503: // M503 print settings currently in memory
  4497. {
  4498. Config_PrintSettings();
  4499. }
  4500. break;
  4501. case 509: //M509 Force language selection
  4502. {
  4503. lcd_force_language_selection();
  4504. SERIAL_ECHO_START;
  4505. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4506. }
  4507. break;
  4508. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4509. case 540:
  4510. {
  4511. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4512. }
  4513. break;
  4514. #endif
  4515. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4516. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4517. {
  4518. float value;
  4519. if (code_seen('Z'))
  4520. {
  4521. value = code_value();
  4522. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4523. {
  4524. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4525. SERIAL_ECHO_START;
  4526. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4527. SERIAL_PROTOCOLLN("");
  4528. }
  4529. else
  4530. {
  4531. SERIAL_ECHO_START;
  4532. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4533. SERIAL_ECHORPGM(MSG_Z_MIN);
  4534. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4535. SERIAL_ECHORPGM(MSG_Z_MAX);
  4536. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4537. SERIAL_PROTOCOLLN("");
  4538. }
  4539. }
  4540. else
  4541. {
  4542. SERIAL_ECHO_START;
  4543. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4544. SERIAL_ECHO(-zprobe_zoffset);
  4545. SERIAL_PROTOCOLLN("");
  4546. }
  4547. break;
  4548. }
  4549. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4550. #ifdef FILAMENTCHANGEENABLE
  4551. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4552. {
  4553. st_synchronize();
  4554. float target[4];
  4555. float lastpos[4];
  4556. if (farm_mode)
  4557. {
  4558. prusa_statistics(22);
  4559. }
  4560. feedmultiplyBckp=feedmultiply;
  4561. int8_t TooLowZ = 0;
  4562. target[X_AXIS]=current_position[X_AXIS];
  4563. target[Y_AXIS]=current_position[Y_AXIS];
  4564. target[Z_AXIS]=current_position[Z_AXIS];
  4565. target[E_AXIS]=current_position[E_AXIS];
  4566. lastpos[X_AXIS]=current_position[X_AXIS];
  4567. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4568. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4569. lastpos[E_AXIS]=current_position[E_AXIS];
  4570. //Retract extruder
  4571. if(code_seen('E'))
  4572. {
  4573. target[E_AXIS]+= code_value();
  4574. }
  4575. else
  4576. {
  4577. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4578. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4579. #endif
  4580. }
  4581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4582. //Lift Z
  4583. if(code_seen('Z'))
  4584. {
  4585. target[Z_AXIS]+= code_value();
  4586. }
  4587. else
  4588. {
  4589. #ifdef FILAMENTCHANGE_ZADD
  4590. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4591. if(target[Z_AXIS] < 10){
  4592. target[Z_AXIS]+= 10 ;
  4593. TooLowZ = 1;
  4594. }else{
  4595. TooLowZ = 0;
  4596. }
  4597. #endif
  4598. }
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4600. //Move XY to side
  4601. if(code_seen('X'))
  4602. {
  4603. target[X_AXIS]+= code_value();
  4604. }
  4605. else
  4606. {
  4607. #ifdef FILAMENTCHANGE_XPOS
  4608. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4609. #endif
  4610. }
  4611. if(code_seen('Y'))
  4612. {
  4613. target[Y_AXIS]= code_value();
  4614. }
  4615. else
  4616. {
  4617. #ifdef FILAMENTCHANGE_YPOS
  4618. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4619. #endif
  4620. }
  4621. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4622. st_synchronize();
  4623. custom_message = true;
  4624. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4625. // Unload filament
  4626. if(code_seen('L'))
  4627. {
  4628. target[E_AXIS]+= code_value();
  4629. }
  4630. else
  4631. {
  4632. #ifdef SNMM
  4633. #else
  4634. #ifdef FILAMENTCHANGE_FINALRETRACT
  4635. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4636. #endif
  4637. #endif // SNMM
  4638. }
  4639. #ifdef SNMM
  4640. target[E_AXIS] += 12;
  4641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4642. target[E_AXIS] += 6;
  4643. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4644. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4645. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4646. st_synchronize();
  4647. target[E_AXIS] += (FIL_COOLING);
  4648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4649. target[E_AXIS] += (FIL_COOLING*-1);
  4650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4651. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4653. st_synchronize();
  4654. #else
  4655. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4656. #endif // SNMM
  4657. //finish moves
  4658. st_synchronize();
  4659. //disable extruder steppers so filament can be removed
  4660. disable_e0();
  4661. disable_e1();
  4662. disable_e2();
  4663. delay(100);
  4664. //Wait for user to insert filament
  4665. uint8_t cnt=0;
  4666. int counterBeep = 0;
  4667. lcd_wait_interact();
  4668. load_filament_time = millis();
  4669. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4670. while(!lcd_clicked()){
  4671. cnt++;
  4672. manage_heater();
  4673. manage_inactivity(true);
  4674. /*#ifdef SNMM
  4675. target[E_AXIS] += 0.002;
  4676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4677. #endif // SNMM*/
  4678. if(cnt==0)
  4679. {
  4680. #if BEEPER > 0
  4681. if (counterBeep== 500){
  4682. counterBeep = 0;
  4683. }
  4684. SET_OUTPUT(BEEPER);
  4685. if (counterBeep== 0){
  4686. WRITE(BEEPER,HIGH);
  4687. }
  4688. if (counterBeep== 20){
  4689. WRITE(BEEPER,LOW);
  4690. }
  4691. counterBeep++;
  4692. #else
  4693. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4694. lcd_buzz(1000/6,100);
  4695. #else
  4696. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4697. #endif
  4698. #endif
  4699. }
  4700. }
  4701. KEEPALIVE_STATE(IN_HANDLER);
  4702. WRITE(BEEPER, LOW);
  4703. #ifdef SNMM
  4704. display_loading();
  4705. do {
  4706. target[E_AXIS] += 0.002;
  4707. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4708. delay_keep_alive(2);
  4709. } while (!lcd_clicked());
  4710. /*if (millis() - load_filament_time > 2) {
  4711. load_filament_time = millis();
  4712. target[E_AXIS] += 0.001;
  4713. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4714. }*/
  4715. #endif
  4716. //Filament inserted
  4717. //Feed the filament to the end of nozzle quickly
  4718. #ifdef SNMM
  4719. st_synchronize();
  4720. target[E_AXIS] += bowden_length[snmm_extruder];
  4721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4722. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4723. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4724. target[E_AXIS] += 40;
  4725. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4726. target[E_AXIS] += 10;
  4727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4728. #else
  4729. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4730. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4731. #endif // SNMM
  4732. //Extrude some filament
  4733. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4734. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4735. //Wait for user to check the state
  4736. lcd_change_fil_state = 0;
  4737. lcd_loading_filament();
  4738. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4739. lcd_change_fil_state = 0;
  4740. lcd_alright();
  4741. switch(lcd_change_fil_state){
  4742. // Filament failed to load so load it again
  4743. case 2:
  4744. #ifdef SNMM
  4745. display_loading();
  4746. do {
  4747. target[E_AXIS] += 0.002;
  4748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4749. delay_keep_alive(2);
  4750. } while (!lcd_clicked());
  4751. st_synchronize();
  4752. target[E_AXIS] += bowden_length[snmm_extruder];
  4753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4754. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4756. target[E_AXIS] += 40;
  4757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4758. target[E_AXIS] += 10;
  4759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4760. #else
  4761. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4762. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4763. #endif
  4764. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4765. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4766. lcd_loading_filament();
  4767. break;
  4768. // Filament loaded properly but color is not clear
  4769. case 3:
  4770. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4771. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4772. lcd_loading_color();
  4773. break;
  4774. // Everything good
  4775. default:
  4776. lcd_change_success();
  4777. lcd_update_enable(true);
  4778. break;
  4779. }
  4780. }
  4781. //Not let's go back to print
  4782. //Feed a little of filament to stabilize pressure
  4783. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4784. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4785. //Retract
  4786. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4788. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4789. //Move XY back
  4790. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4791. //Move Z back
  4792. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4793. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4794. //Unretract
  4795. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4796. //Set E position to original
  4797. plan_set_e_position(lastpos[E_AXIS]);
  4798. //Recover feed rate
  4799. feedmultiply=feedmultiplyBckp;
  4800. char cmd[9];
  4801. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4802. enquecommand(cmd);
  4803. lcd_setstatuspgm(WELCOME_MSG);
  4804. custom_message = false;
  4805. custom_message_type = 0;
  4806. }
  4807. break;
  4808. #endif //FILAMENTCHANGEENABLE
  4809. case 601: {
  4810. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4811. }
  4812. break;
  4813. case 602: {
  4814. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4815. }
  4816. break;
  4817. #ifdef LIN_ADVANCE
  4818. case 900: // M900: Set LIN_ADVANCE options.
  4819. gcode_M900();
  4820. break;
  4821. #endif
  4822. case 907: // M907 Set digital trimpot motor current using axis codes.
  4823. {
  4824. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4825. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4826. if(code_seen('B')) digipot_current(4,code_value());
  4827. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4828. #endif
  4829. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4830. if(code_seen('X')) digipot_current(0, code_value());
  4831. #endif
  4832. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4833. if(code_seen('Z')) digipot_current(1, code_value());
  4834. #endif
  4835. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4836. if(code_seen('E')) digipot_current(2, code_value());
  4837. #endif
  4838. #ifdef DIGIPOT_I2C
  4839. // this one uses actual amps in floating point
  4840. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4841. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4842. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4843. #endif
  4844. }
  4845. break;
  4846. case 908: // M908 Control digital trimpot directly.
  4847. {
  4848. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4849. uint8_t channel,current;
  4850. if(code_seen('P')) channel=code_value();
  4851. if(code_seen('S')) current=code_value();
  4852. digitalPotWrite(channel, current);
  4853. #endif
  4854. }
  4855. break;
  4856. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4857. {
  4858. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4859. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4860. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4861. if(code_seen('B')) microstep_mode(4,code_value());
  4862. microstep_readings();
  4863. #endif
  4864. }
  4865. break;
  4866. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4867. {
  4868. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4869. if(code_seen('S')) switch((int)code_value())
  4870. {
  4871. case 1:
  4872. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4873. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4874. break;
  4875. case 2:
  4876. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4877. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4878. break;
  4879. }
  4880. microstep_readings();
  4881. #endif
  4882. }
  4883. break;
  4884. case 701: //M701: load filament
  4885. {
  4886. enable_z();
  4887. custom_message = true;
  4888. custom_message_type = 2;
  4889. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4890. current_position[E_AXIS] += 70;
  4891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4892. current_position[E_AXIS] += 25;
  4893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4894. st_synchronize();
  4895. if (!farm_mode && loading_flag) {
  4896. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4897. while (!clean) {
  4898. lcd_update_enable(true);
  4899. lcd_update(2);
  4900. current_position[E_AXIS] += 25;
  4901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4902. st_synchronize();
  4903. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4904. }
  4905. }
  4906. lcd_update_enable(true);
  4907. lcd_update(2);
  4908. lcd_setstatuspgm(WELCOME_MSG);
  4909. disable_z();
  4910. loading_flag = false;
  4911. custom_message = false;
  4912. custom_message_type = 0;
  4913. }
  4914. break;
  4915. case 702:
  4916. {
  4917. #ifdef SNMM
  4918. if (code_seen('U')) {
  4919. extr_unload_used(); //unload all filaments which were used in current print
  4920. }
  4921. else if (code_seen('C')) {
  4922. extr_unload(); //unload just current filament
  4923. }
  4924. else {
  4925. extr_unload_all(); //unload all filaments
  4926. }
  4927. #else
  4928. custom_message = true;
  4929. custom_message_type = 2;
  4930. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4931. current_position[E_AXIS] -= 80;
  4932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4933. st_synchronize();
  4934. lcd_setstatuspgm(WELCOME_MSG);
  4935. custom_message = false;
  4936. custom_message_type = 0;
  4937. #endif
  4938. }
  4939. break;
  4940. case 999: // M999: Restart after being stopped
  4941. Stopped = false;
  4942. lcd_reset_alert_level();
  4943. gcode_LastN = Stopped_gcode_LastN;
  4944. FlushSerialRequestResend();
  4945. break;
  4946. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4947. }
  4948. } // end if(code_seen('M')) (end of M codes)
  4949. else if(code_seen('T'))
  4950. {
  4951. int index;
  4952. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4953. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4954. SERIAL_ECHOLNPGM("Invalid T code.");
  4955. }
  4956. else {
  4957. if (*(strchr_pointer + index) == '?') {
  4958. tmp_extruder = choose_extruder_menu();
  4959. }
  4960. else {
  4961. tmp_extruder = code_value();
  4962. }
  4963. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4964. #ifdef SNMM
  4965. #ifdef LIN_ADVANCE
  4966. if (snmm_extruder != tmp_extruder)
  4967. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4968. #endif
  4969. snmm_extruder = tmp_extruder;
  4970. st_synchronize();
  4971. delay(100);
  4972. disable_e0();
  4973. disable_e1();
  4974. disable_e2();
  4975. pinMode(E_MUX0_PIN, OUTPUT);
  4976. pinMode(E_MUX1_PIN, OUTPUT);
  4977. pinMode(E_MUX2_PIN, OUTPUT);
  4978. delay(100);
  4979. SERIAL_ECHO_START;
  4980. SERIAL_ECHO("T:");
  4981. SERIAL_ECHOLN((int)tmp_extruder);
  4982. switch (tmp_extruder) {
  4983. case 1:
  4984. WRITE(E_MUX0_PIN, HIGH);
  4985. WRITE(E_MUX1_PIN, LOW);
  4986. WRITE(E_MUX2_PIN, LOW);
  4987. break;
  4988. case 2:
  4989. WRITE(E_MUX0_PIN, LOW);
  4990. WRITE(E_MUX1_PIN, HIGH);
  4991. WRITE(E_MUX2_PIN, LOW);
  4992. break;
  4993. case 3:
  4994. WRITE(E_MUX0_PIN, HIGH);
  4995. WRITE(E_MUX1_PIN, HIGH);
  4996. WRITE(E_MUX2_PIN, LOW);
  4997. break;
  4998. default:
  4999. WRITE(E_MUX0_PIN, LOW);
  5000. WRITE(E_MUX1_PIN, LOW);
  5001. WRITE(E_MUX2_PIN, LOW);
  5002. break;
  5003. }
  5004. delay(100);
  5005. #else
  5006. if (tmp_extruder >= EXTRUDERS) {
  5007. SERIAL_ECHO_START;
  5008. SERIAL_ECHOPGM("T");
  5009. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5010. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5011. }
  5012. else {
  5013. boolean make_move = false;
  5014. if (code_seen('F')) {
  5015. make_move = true;
  5016. next_feedrate = code_value();
  5017. if (next_feedrate > 0.0) {
  5018. feedrate = next_feedrate;
  5019. }
  5020. }
  5021. #if EXTRUDERS > 1
  5022. if (tmp_extruder != active_extruder) {
  5023. // Save current position to return to after applying extruder offset
  5024. memcpy(destination, current_position, sizeof(destination));
  5025. // Offset extruder (only by XY)
  5026. int i;
  5027. for (i = 0; i < 2; i++) {
  5028. current_position[i] = current_position[i] -
  5029. extruder_offset[i][active_extruder] +
  5030. extruder_offset[i][tmp_extruder];
  5031. }
  5032. // Set the new active extruder and position
  5033. active_extruder = tmp_extruder;
  5034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5035. // Move to the old position if 'F' was in the parameters
  5036. if (make_move && Stopped == false) {
  5037. prepare_move();
  5038. }
  5039. }
  5040. #endif
  5041. SERIAL_ECHO_START;
  5042. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5043. SERIAL_PROTOCOLLN((int)active_extruder);
  5044. }
  5045. #endif
  5046. }
  5047. } // end if(code_seen('T')) (end of T codes)
  5048. #ifdef DEBUG_DCODES
  5049. else if (code_seen('D')) // D codes (debug)
  5050. {
  5051. switch((int)code_value_uint8())
  5052. {
  5053. case 0: // D0 - Reset
  5054. if (*(strchr_pointer + 1) == 0) break;
  5055. MYSERIAL.println("D0 - Reset");
  5056. asm volatile("jmp 0x00000");
  5057. break;
  5058. case 1: // D1 - Clear EEPROM
  5059. {
  5060. MYSERIAL.println("D1 - Clear EEPROM");
  5061. cli();
  5062. for (int i = 0; i < 4096; i++)
  5063. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5064. sei();
  5065. }
  5066. break;
  5067. case 2: // D2 - Read/Write PIN
  5068. {
  5069. if (code_seen('P')) // Pin (0-255)
  5070. {
  5071. int pin = (int)code_value();
  5072. if ((pin >= 0) && (pin <= 255))
  5073. {
  5074. if (code_seen('F')) // Function in/out (0/1)
  5075. {
  5076. int fnc = (int)code_value();
  5077. if (fnc == 0) pinMode(pin, INPUT);
  5078. else if (fnc == 1) pinMode(pin, OUTPUT);
  5079. }
  5080. if (code_seen('V')) // Value (0/1)
  5081. {
  5082. int val = (int)code_value();
  5083. if (val == 0) digitalWrite(pin, LOW);
  5084. else if (val == 1) digitalWrite(pin, HIGH);
  5085. }
  5086. else
  5087. {
  5088. int val = (digitalRead(pin) != LOW)?1:0;
  5089. MYSERIAL.print("PIN");
  5090. MYSERIAL.print(pin);
  5091. MYSERIAL.print("=");
  5092. MYSERIAL.println(val);
  5093. }
  5094. }
  5095. }
  5096. }
  5097. break;
  5098. }
  5099. }
  5100. #endif //DEBUG_DCODES
  5101. else
  5102. {
  5103. SERIAL_ECHO_START;
  5104. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5105. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5106. SERIAL_ECHOLNPGM("\"");
  5107. }
  5108. KEEPALIVE_STATE(NOT_BUSY);
  5109. ClearToSend();
  5110. }
  5111. void FlushSerialRequestResend()
  5112. {
  5113. //char cmdbuffer[bufindr][100]="Resend:";
  5114. MYSERIAL.flush();
  5115. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5116. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5117. ClearToSend();
  5118. }
  5119. // Confirm the execution of a command, if sent from a serial line.
  5120. // Execution of a command from a SD card will not be confirmed.
  5121. void ClearToSend()
  5122. {
  5123. previous_millis_cmd = millis();
  5124. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5125. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5126. }
  5127. void get_coordinates()
  5128. {
  5129. bool seen[4]={false,false,false,false};
  5130. for(int8_t i=0; i < NUM_AXIS; i++) {
  5131. if(code_seen(axis_codes[i]))
  5132. {
  5133. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5134. seen[i]=true;
  5135. }
  5136. else destination[i] = current_position[i]; //Are these else lines really needed?
  5137. }
  5138. if(code_seen('F')) {
  5139. next_feedrate = code_value();
  5140. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5141. }
  5142. }
  5143. void get_arc_coordinates()
  5144. {
  5145. #ifdef SF_ARC_FIX
  5146. bool relative_mode_backup = relative_mode;
  5147. relative_mode = true;
  5148. #endif
  5149. get_coordinates();
  5150. #ifdef SF_ARC_FIX
  5151. relative_mode=relative_mode_backup;
  5152. #endif
  5153. if(code_seen('I')) {
  5154. offset[0] = code_value();
  5155. }
  5156. else {
  5157. offset[0] = 0.0;
  5158. }
  5159. if(code_seen('J')) {
  5160. offset[1] = code_value();
  5161. }
  5162. else {
  5163. offset[1] = 0.0;
  5164. }
  5165. }
  5166. void clamp_to_software_endstops(float target[3])
  5167. {
  5168. #ifdef DEBUG_DISABLE_SWLIMITS
  5169. return;
  5170. #endif //DEBUG_DISABLE_SWLIMITS
  5171. world2machine_clamp(target[0], target[1]);
  5172. // Clamp the Z coordinate.
  5173. if (min_software_endstops) {
  5174. float negative_z_offset = 0;
  5175. #ifdef ENABLE_AUTO_BED_LEVELING
  5176. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5177. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5178. #endif
  5179. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5180. }
  5181. if (max_software_endstops) {
  5182. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5183. }
  5184. }
  5185. #ifdef MESH_BED_LEVELING
  5186. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5187. float dx = x - current_position[X_AXIS];
  5188. float dy = y - current_position[Y_AXIS];
  5189. float dz = z - current_position[Z_AXIS];
  5190. int n_segments = 0;
  5191. if (mbl.active) {
  5192. float len = abs(dx) + abs(dy);
  5193. if (len > 0)
  5194. // Split to 3cm segments or shorter.
  5195. n_segments = int(ceil(len / 30.f));
  5196. }
  5197. if (n_segments > 1) {
  5198. float de = e - current_position[E_AXIS];
  5199. for (int i = 1; i < n_segments; ++ i) {
  5200. float t = float(i) / float(n_segments);
  5201. plan_buffer_line(
  5202. current_position[X_AXIS] + t * dx,
  5203. current_position[Y_AXIS] + t * dy,
  5204. current_position[Z_AXIS] + t * dz,
  5205. current_position[E_AXIS] + t * de,
  5206. feed_rate, extruder);
  5207. }
  5208. }
  5209. // The rest of the path.
  5210. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5211. current_position[X_AXIS] = x;
  5212. current_position[Y_AXIS] = y;
  5213. current_position[Z_AXIS] = z;
  5214. current_position[E_AXIS] = e;
  5215. }
  5216. #endif // MESH_BED_LEVELING
  5217. void prepare_move()
  5218. {
  5219. clamp_to_software_endstops(destination);
  5220. previous_millis_cmd = millis();
  5221. // Do not use feedmultiply for E or Z only moves
  5222. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5223. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5224. }
  5225. else {
  5226. #ifdef MESH_BED_LEVELING
  5227. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5228. #else
  5229. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5230. #endif
  5231. }
  5232. for(int8_t i=0; i < NUM_AXIS; i++) {
  5233. current_position[i] = destination[i];
  5234. }
  5235. }
  5236. void prepare_arc_move(char isclockwise) {
  5237. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5238. // Trace the arc
  5239. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5240. // As far as the parser is concerned, the position is now == target. In reality the
  5241. // motion control system might still be processing the action and the real tool position
  5242. // in any intermediate location.
  5243. for(int8_t i=0; i < NUM_AXIS; i++) {
  5244. current_position[i] = destination[i];
  5245. }
  5246. previous_millis_cmd = millis();
  5247. }
  5248. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5249. #if defined(FAN_PIN)
  5250. #if CONTROLLERFAN_PIN == FAN_PIN
  5251. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5252. #endif
  5253. #endif
  5254. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5255. unsigned long lastMotorCheck = 0;
  5256. void controllerFan()
  5257. {
  5258. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5259. {
  5260. lastMotorCheck = millis();
  5261. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5262. #if EXTRUDERS > 2
  5263. || !READ(E2_ENABLE_PIN)
  5264. #endif
  5265. #if EXTRUDER > 1
  5266. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5267. || !READ(X2_ENABLE_PIN)
  5268. #endif
  5269. || !READ(E1_ENABLE_PIN)
  5270. #endif
  5271. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5272. {
  5273. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5274. }
  5275. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5276. {
  5277. digitalWrite(CONTROLLERFAN_PIN, 0);
  5278. analogWrite(CONTROLLERFAN_PIN, 0);
  5279. }
  5280. else
  5281. {
  5282. // allows digital or PWM fan output to be used (see M42 handling)
  5283. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5284. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5285. }
  5286. }
  5287. }
  5288. #endif
  5289. #ifdef TEMP_STAT_LEDS
  5290. static bool blue_led = false;
  5291. static bool red_led = false;
  5292. static uint32_t stat_update = 0;
  5293. void handle_status_leds(void) {
  5294. float max_temp = 0.0;
  5295. if(millis() > stat_update) {
  5296. stat_update += 500; // Update every 0.5s
  5297. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5298. max_temp = max(max_temp, degHotend(cur_extruder));
  5299. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5300. }
  5301. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5302. max_temp = max(max_temp, degTargetBed());
  5303. max_temp = max(max_temp, degBed());
  5304. #endif
  5305. if((max_temp > 55.0) && (red_led == false)) {
  5306. digitalWrite(STAT_LED_RED, 1);
  5307. digitalWrite(STAT_LED_BLUE, 0);
  5308. red_led = true;
  5309. blue_led = false;
  5310. }
  5311. if((max_temp < 54.0) && (blue_led == false)) {
  5312. digitalWrite(STAT_LED_RED, 0);
  5313. digitalWrite(STAT_LED_BLUE, 1);
  5314. red_led = false;
  5315. blue_led = true;
  5316. }
  5317. }
  5318. }
  5319. #endif
  5320. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5321. {
  5322. #if defined(KILL_PIN) && KILL_PIN > -1
  5323. static int killCount = 0; // make the inactivity button a bit less responsive
  5324. const int KILL_DELAY = 10000;
  5325. #endif
  5326. if(buflen < (BUFSIZE-1)){
  5327. get_command();
  5328. }
  5329. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5330. if(max_inactive_time)
  5331. kill();
  5332. if(stepper_inactive_time) {
  5333. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5334. {
  5335. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5336. disable_x();
  5337. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5338. disable_y();
  5339. disable_z();
  5340. disable_e0();
  5341. disable_e1();
  5342. disable_e2();
  5343. }
  5344. }
  5345. }
  5346. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5347. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5348. {
  5349. chdkActive = false;
  5350. WRITE(CHDK, LOW);
  5351. }
  5352. #endif
  5353. #if defined(KILL_PIN) && KILL_PIN > -1
  5354. // Check if the kill button was pressed and wait just in case it was an accidental
  5355. // key kill key press
  5356. // -------------------------------------------------------------------------------
  5357. if( 0 == READ(KILL_PIN) )
  5358. {
  5359. killCount++;
  5360. }
  5361. else if (killCount > 0)
  5362. {
  5363. killCount--;
  5364. }
  5365. // Exceeded threshold and we can confirm that it was not accidental
  5366. // KILL the machine
  5367. // ----------------------------------------------------------------
  5368. if ( killCount >= KILL_DELAY)
  5369. {
  5370. kill();
  5371. }
  5372. #endif
  5373. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5374. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5375. #endif
  5376. #ifdef EXTRUDER_RUNOUT_PREVENT
  5377. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5378. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5379. {
  5380. bool oldstatus=READ(E0_ENABLE_PIN);
  5381. enable_e0();
  5382. float oldepos=current_position[E_AXIS];
  5383. float oldedes=destination[E_AXIS];
  5384. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5385. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5386. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5387. current_position[E_AXIS]=oldepos;
  5388. destination[E_AXIS]=oldedes;
  5389. plan_set_e_position(oldepos);
  5390. previous_millis_cmd=millis();
  5391. st_synchronize();
  5392. WRITE(E0_ENABLE_PIN,oldstatus);
  5393. }
  5394. #endif
  5395. #ifdef TEMP_STAT_LEDS
  5396. handle_status_leds();
  5397. #endif
  5398. check_axes_activity();
  5399. }
  5400. void kill(const char *full_screen_message)
  5401. {
  5402. cli(); // Stop interrupts
  5403. disable_heater();
  5404. disable_x();
  5405. // SERIAL_ECHOLNPGM("kill - disable Y");
  5406. disable_y();
  5407. disable_z();
  5408. disable_e0();
  5409. disable_e1();
  5410. disable_e2();
  5411. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5412. pinMode(PS_ON_PIN,INPUT);
  5413. #endif
  5414. SERIAL_ERROR_START;
  5415. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5416. if (full_screen_message != NULL) {
  5417. SERIAL_ERRORLNRPGM(full_screen_message);
  5418. lcd_display_message_fullscreen_P(full_screen_message);
  5419. } else {
  5420. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5421. }
  5422. // FMC small patch to update the LCD before ending
  5423. sei(); // enable interrupts
  5424. for ( int i=5; i--; lcd_update())
  5425. {
  5426. delay(200);
  5427. }
  5428. cli(); // disable interrupts
  5429. suicide();
  5430. while(1) { /* Intentionally left empty */ } // Wait for reset
  5431. }
  5432. void Stop()
  5433. {
  5434. disable_heater();
  5435. if(Stopped == false) {
  5436. Stopped = true;
  5437. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5438. SERIAL_ERROR_START;
  5439. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5440. LCD_MESSAGERPGM(MSG_STOPPED);
  5441. }
  5442. }
  5443. bool IsStopped() { return Stopped; };
  5444. #ifdef FAST_PWM_FAN
  5445. void setPwmFrequency(uint8_t pin, int val)
  5446. {
  5447. val &= 0x07;
  5448. switch(digitalPinToTimer(pin))
  5449. {
  5450. #if defined(TCCR0A)
  5451. case TIMER0A:
  5452. case TIMER0B:
  5453. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5454. // TCCR0B |= val;
  5455. break;
  5456. #endif
  5457. #if defined(TCCR1A)
  5458. case TIMER1A:
  5459. case TIMER1B:
  5460. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5461. // TCCR1B |= val;
  5462. break;
  5463. #endif
  5464. #if defined(TCCR2)
  5465. case TIMER2:
  5466. case TIMER2:
  5467. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5468. TCCR2 |= val;
  5469. break;
  5470. #endif
  5471. #if defined(TCCR2A)
  5472. case TIMER2A:
  5473. case TIMER2B:
  5474. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5475. TCCR2B |= val;
  5476. break;
  5477. #endif
  5478. #if defined(TCCR3A)
  5479. case TIMER3A:
  5480. case TIMER3B:
  5481. case TIMER3C:
  5482. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5483. TCCR3B |= val;
  5484. break;
  5485. #endif
  5486. #if defined(TCCR4A)
  5487. case TIMER4A:
  5488. case TIMER4B:
  5489. case TIMER4C:
  5490. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5491. TCCR4B |= val;
  5492. break;
  5493. #endif
  5494. #if defined(TCCR5A)
  5495. case TIMER5A:
  5496. case TIMER5B:
  5497. case TIMER5C:
  5498. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5499. TCCR5B |= val;
  5500. break;
  5501. #endif
  5502. }
  5503. }
  5504. #endif //FAST_PWM_FAN
  5505. bool setTargetedHotend(int code){
  5506. tmp_extruder = active_extruder;
  5507. if(code_seen('T')) {
  5508. tmp_extruder = code_value();
  5509. if(tmp_extruder >= EXTRUDERS) {
  5510. SERIAL_ECHO_START;
  5511. switch(code){
  5512. case 104:
  5513. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5514. break;
  5515. case 105:
  5516. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5517. break;
  5518. case 109:
  5519. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5520. break;
  5521. case 218:
  5522. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5523. break;
  5524. case 221:
  5525. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5526. break;
  5527. }
  5528. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5529. return true;
  5530. }
  5531. }
  5532. return false;
  5533. }
  5534. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5535. {
  5536. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5537. {
  5538. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5539. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5540. }
  5541. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5542. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5543. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5544. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5545. total_filament_used = 0;
  5546. }
  5547. float calculate_volumetric_multiplier(float diameter) {
  5548. float area = .0;
  5549. float radius = .0;
  5550. radius = diameter * .5;
  5551. if (! volumetric_enabled || radius == 0) {
  5552. area = 1;
  5553. }
  5554. else {
  5555. area = M_PI * pow(radius, 2);
  5556. }
  5557. return 1.0 / area;
  5558. }
  5559. void calculate_volumetric_multipliers() {
  5560. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5561. #if EXTRUDERS > 1
  5562. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5563. #if EXTRUDERS > 2
  5564. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5565. #endif
  5566. #endif
  5567. }
  5568. void delay_keep_alive(unsigned int ms)
  5569. {
  5570. for (;;) {
  5571. manage_heater();
  5572. // Manage inactivity, but don't disable steppers on timeout.
  5573. manage_inactivity(true);
  5574. lcd_update();
  5575. if (ms == 0)
  5576. break;
  5577. else if (ms >= 50) {
  5578. delay(50);
  5579. ms -= 50;
  5580. } else {
  5581. delay(ms);
  5582. ms = 0;
  5583. }
  5584. }
  5585. }
  5586. void wait_for_heater(long codenum) {
  5587. #ifdef TEMP_RESIDENCY_TIME
  5588. long residencyStart;
  5589. residencyStart = -1;
  5590. /* continue to loop until we have reached the target temp
  5591. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5592. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5593. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5594. #else
  5595. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5596. #endif //TEMP_RESIDENCY_TIME
  5597. if ((millis() - codenum) > 1000UL)
  5598. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5599. if (!farm_mode) {
  5600. SERIAL_PROTOCOLPGM("T:");
  5601. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5602. SERIAL_PROTOCOLPGM(" E:");
  5603. SERIAL_PROTOCOL((int)tmp_extruder);
  5604. #ifdef TEMP_RESIDENCY_TIME
  5605. SERIAL_PROTOCOLPGM(" W:");
  5606. if (residencyStart > -1)
  5607. {
  5608. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5609. SERIAL_PROTOCOLLN(codenum);
  5610. }
  5611. else
  5612. {
  5613. SERIAL_PROTOCOLLN("?");
  5614. }
  5615. }
  5616. #else
  5617. SERIAL_PROTOCOLLN("");
  5618. #endif
  5619. codenum = millis();
  5620. }
  5621. manage_heater();
  5622. manage_inactivity();
  5623. lcd_update();
  5624. #ifdef TEMP_RESIDENCY_TIME
  5625. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5626. or when current temp falls outside the hysteresis after target temp was reached */
  5627. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5628. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5629. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5630. {
  5631. residencyStart = millis();
  5632. }
  5633. #endif //TEMP_RESIDENCY_TIME
  5634. }
  5635. }
  5636. void check_babystep() {
  5637. int babystep_z;
  5638. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5639. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5640. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5641. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5642. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5643. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5644. lcd_update_enable(true);
  5645. }
  5646. }
  5647. #ifdef DIS
  5648. void d_setup()
  5649. {
  5650. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5651. pinMode(D_DATA, INPUT_PULLUP);
  5652. pinMode(D_REQUIRE, OUTPUT);
  5653. digitalWrite(D_REQUIRE, HIGH);
  5654. }
  5655. float d_ReadData()
  5656. {
  5657. int digit[13];
  5658. String mergeOutput;
  5659. float output;
  5660. digitalWrite(D_REQUIRE, HIGH);
  5661. for (int i = 0; i<13; i++)
  5662. {
  5663. for (int j = 0; j < 4; j++)
  5664. {
  5665. while (digitalRead(D_DATACLOCK) == LOW) {}
  5666. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5667. bitWrite(digit[i], j, digitalRead(D_DATA));
  5668. }
  5669. }
  5670. digitalWrite(D_REQUIRE, LOW);
  5671. mergeOutput = "";
  5672. output = 0;
  5673. for (int r = 5; r <= 10; r++) //Merge digits
  5674. {
  5675. mergeOutput += digit[r];
  5676. }
  5677. output = mergeOutput.toFloat();
  5678. if (digit[4] == 8) //Handle sign
  5679. {
  5680. output *= -1;
  5681. }
  5682. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5683. {
  5684. output /= 10;
  5685. }
  5686. return output;
  5687. }
  5688. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5689. int t1 = 0;
  5690. int t_delay = 0;
  5691. int digit[13];
  5692. int m;
  5693. char str[3];
  5694. //String mergeOutput;
  5695. char mergeOutput[15];
  5696. float output;
  5697. int mesh_point = 0; //index number of calibration point
  5698. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5699. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5700. float mesh_home_z_search = 4;
  5701. float row[x_points_num];
  5702. int ix = 0;
  5703. int iy = 0;
  5704. char* filename_wldsd = "wldsd.txt";
  5705. char data_wldsd[70];
  5706. char numb_wldsd[10];
  5707. d_setup();
  5708. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5709. // We don't know where we are! HOME!
  5710. // Push the commands to the front of the message queue in the reverse order!
  5711. // There shall be always enough space reserved for these commands.
  5712. repeatcommand_front(); // repeat G80 with all its parameters
  5713. enquecommand_front_P((PSTR("G28 W0")));
  5714. enquecommand_front_P((PSTR("G1 Z5")));
  5715. return;
  5716. }
  5717. bool custom_message_old = custom_message;
  5718. unsigned int custom_message_type_old = custom_message_type;
  5719. unsigned int custom_message_state_old = custom_message_state;
  5720. custom_message = true;
  5721. custom_message_type = 1;
  5722. custom_message_state = (x_points_num * y_points_num) + 10;
  5723. lcd_update(1);
  5724. mbl.reset();
  5725. babystep_undo();
  5726. card.openFile(filename_wldsd, false);
  5727. current_position[Z_AXIS] = mesh_home_z_search;
  5728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5729. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5730. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5731. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5732. setup_for_endstop_move(false);
  5733. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5734. SERIAL_PROTOCOL(x_points_num);
  5735. SERIAL_PROTOCOLPGM(",");
  5736. SERIAL_PROTOCOL(y_points_num);
  5737. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5738. SERIAL_PROTOCOL(mesh_home_z_search);
  5739. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5740. SERIAL_PROTOCOL(x_dimension);
  5741. SERIAL_PROTOCOLPGM(",");
  5742. SERIAL_PROTOCOL(y_dimension);
  5743. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5744. while (mesh_point != x_points_num * y_points_num) {
  5745. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5746. iy = mesh_point / x_points_num;
  5747. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5748. float z0 = 0.f;
  5749. current_position[Z_AXIS] = mesh_home_z_search;
  5750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5751. st_synchronize();
  5752. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5753. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5755. st_synchronize();
  5756. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5757. break;
  5758. card.closefile();
  5759. }
  5760. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5761. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5762. //strcat(data_wldsd, numb_wldsd);
  5763. //MYSERIAL.println(data_wldsd);
  5764. //delay(1000);
  5765. //delay(3000);
  5766. //t1 = millis();
  5767. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5768. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5769. memset(digit, 0, sizeof(digit));
  5770. //cli();
  5771. digitalWrite(D_REQUIRE, LOW);
  5772. for (int i = 0; i<13; i++)
  5773. {
  5774. //t1 = millis();
  5775. for (int j = 0; j < 4; j++)
  5776. {
  5777. while (digitalRead(D_DATACLOCK) == LOW) {}
  5778. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5779. bitWrite(digit[i], j, digitalRead(D_DATA));
  5780. }
  5781. //t_delay = (millis() - t1);
  5782. //SERIAL_PROTOCOLPGM(" ");
  5783. //SERIAL_PROTOCOL_F(t_delay, 5);
  5784. //SERIAL_PROTOCOLPGM(" ");
  5785. }
  5786. //sei();
  5787. digitalWrite(D_REQUIRE, HIGH);
  5788. mergeOutput[0] = '\0';
  5789. output = 0;
  5790. for (int r = 5; r <= 10; r++) //Merge digits
  5791. {
  5792. sprintf(str, "%d", digit[r]);
  5793. strcat(mergeOutput, str);
  5794. }
  5795. output = atof(mergeOutput);
  5796. if (digit[4] == 8) //Handle sign
  5797. {
  5798. output *= -1;
  5799. }
  5800. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5801. {
  5802. output *= 0.1;
  5803. }
  5804. //output = d_ReadData();
  5805. //row[ix] = current_position[Z_AXIS];
  5806. memset(data_wldsd, 0, sizeof(data_wldsd));
  5807. for (int i = 0; i <3; i++) {
  5808. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5809. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5810. strcat(data_wldsd, numb_wldsd);
  5811. strcat(data_wldsd, ";");
  5812. }
  5813. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5814. dtostrf(output, 8, 5, numb_wldsd);
  5815. strcat(data_wldsd, numb_wldsd);
  5816. //strcat(data_wldsd, ";");
  5817. card.write_command(data_wldsd);
  5818. //row[ix] = d_ReadData();
  5819. row[ix] = output; // current_position[Z_AXIS];
  5820. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5821. for (int i = 0; i < x_points_num; i++) {
  5822. SERIAL_PROTOCOLPGM(" ");
  5823. SERIAL_PROTOCOL_F(row[i], 5);
  5824. }
  5825. SERIAL_PROTOCOLPGM("\n");
  5826. }
  5827. custom_message_state--;
  5828. mesh_point++;
  5829. lcd_update(1);
  5830. }
  5831. card.closefile();
  5832. }
  5833. #endif
  5834. void temp_compensation_start() {
  5835. custom_message = true;
  5836. custom_message_type = 5;
  5837. custom_message_state = PINDA_HEAT_T + 1;
  5838. lcd_update(2);
  5839. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5840. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5841. }
  5842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5843. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5844. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5845. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5847. st_synchronize();
  5848. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5849. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5850. delay_keep_alive(1000);
  5851. custom_message_state = PINDA_HEAT_T - i;
  5852. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5853. else lcd_update(1);
  5854. }
  5855. custom_message_type = 0;
  5856. custom_message_state = 0;
  5857. custom_message = false;
  5858. }
  5859. void temp_compensation_apply() {
  5860. int i_add;
  5861. int compensation_value;
  5862. int z_shift = 0;
  5863. float z_shift_mm;
  5864. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5865. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5866. i_add = (target_temperature_bed - 60) / 10;
  5867. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5868. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5869. }else {
  5870. //interpolation
  5871. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5872. }
  5873. SERIAL_PROTOCOLPGM("\n");
  5874. SERIAL_PROTOCOLPGM("Z shift applied:");
  5875. MYSERIAL.print(z_shift_mm);
  5876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5877. st_synchronize();
  5878. plan_set_z_position(current_position[Z_AXIS]);
  5879. }
  5880. else {
  5881. //we have no temp compensation data
  5882. }
  5883. }
  5884. float temp_comp_interpolation(float inp_temperature) {
  5885. //cubic spline interpolation
  5886. int n, i, j, k;
  5887. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5888. int shift[10];
  5889. int temp_C[10];
  5890. n = 6; //number of measured points
  5891. shift[0] = 0;
  5892. for (i = 0; i < n; i++) {
  5893. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5894. temp_C[i] = 50 + i * 10; //temperature in C
  5895. x[i] = (float)temp_C[i];
  5896. f[i] = (float)shift[i];
  5897. }
  5898. if (inp_temperature < x[0]) return 0;
  5899. for (i = n - 1; i>0; i--) {
  5900. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5901. h[i - 1] = x[i] - x[i - 1];
  5902. }
  5903. //*********** formation of h, s , f matrix **************
  5904. for (i = 1; i<n - 1; i++) {
  5905. m[i][i] = 2 * (h[i - 1] + h[i]);
  5906. if (i != 1) {
  5907. m[i][i - 1] = h[i - 1];
  5908. m[i - 1][i] = h[i - 1];
  5909. }
  5910. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5911. }
  5912. //*********** forward elimination **************
  5913. for (i = 1; i<n - 2; i++) {
  5914. temp = (m[i + 1][i] / m[i][i]);
  5915. for (j = 1; j <= n - 1; j++)
  5916. m[i + 1][j] -= temp*m[i][j];
  5917. }
  5918. //*********** backward substitution *********
  5919. for (i = n - 2; i>0; i--) {
  5920. sum = 0;
  5921. for (j = i; j <= n - 2; j++)
  5922. sum += m[i][j] * s[j];
  5923. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5924. }
  5925. for (i = 0; i<n - 1; i++)
  5926. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5927. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5928. b = s[i] / 2;
  5929. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5930. d = f[i];
  5931. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5932. }
  5933. return sum;
  5934. }
  5935. void long_pause() //long pause print
  5936. {
  5937. st_synchronize();
  5938. //save currently set parameters to global variables
  5939. saved_feedmultiply = feedmultiply;
  5940. HotendTempBckp = degTargetHotend(active_extruder);
  5941. fanSpeedBckp = fanSpeed;
  5942. start_pause_print = millis();
  5943. //save position
  5944. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5945. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5946. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5947. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5948. //retract
  5949. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5951. //lift z
  5952. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5953. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5955. //set nozzle target temperature to 0
  5956. setTargetHotend(0, 0);
  5957. setTargetHotend(0, 1);
  5958. setTargetHotend(0, 2);
  5959. //Move XY to side
  5960. current_position[X_AXIS] = X_PAUSE_POS;
  5961. current_position[Y_AXIS] = Y_PAUSE_POS;
  5962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5963. // Turn off the print fan
  5964. fanSpeed = 0;
  5965. st_synchronize();
  5966. }
  5967. void serialecho_temperatures() {
  5968. float tt = degHotend(active_extruder);
  5969. SERIAL_PROTOCOLPGM("T:");
  5970. SERIAL_PROTOCOL(tt);
  5971. SERIAL_PROTOCOLPGM(" E:");
  5972. SERIAL_PROTOCOL((int)active_extruder);
  5973. SERIAL_PROTOCOLPGM(" B:");
  5974. SERIAL_PROTOCOL_F(degBed(), 1);
  5975. SERIAL_PROTOCOLLN("");
  5976. }