planner.cpp 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. float max_feedrate[NUM_AXIS]; // set the max speeds
  54. float axis_steps_per_unit[NUM_AXIS];
  55. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  56. float minimumfeedrate;
  57. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  58. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  59. // Jerk is a maximum immediate velocity change.
  60. float max_jerk[NUM_AXIS];
  61. float mintravelfeedrate;
  62. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  63. #ifdef ENABLE_AUTO_BED_LEVELING
  64. // this holds the required transform to compensate for bed level
  65. matrix_3x3 plan_bed_level_matrix = {
  66. 1.0, 0.0, 0.0,
  67. 0.0, 1.0, 0.0,
  68. 0.0, 0.0, 1.0,
  69. };
  70. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  71. // The current position of the tool in absolute steps
  72. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  73. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  74. static float previous_nominal_speed; // Nominal speed of previous path line segment
  75. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  76. #ifdef AUTOTEMP
  77. float autotemp_max=250;
  78. float autotemp_min=210;
  79. float autotemp_factor=0.1;
  80. bool autotemp_enabled=false;
  81. #endif
  82. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  83. //===========================================================================
  84. //=================semi-private variables, used in inline functions =====
  85. //===========================================================================
  86. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  87. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  88. volatile unsigned char block_buffer_tail; // Index of the block to process now
  89. #ifdef PLANNER_DIAGNOSTICS
  90. // Diagnostic function: Minimum number of planned moves since the last
  91. static uint8_t g_cntr_planner_queue_min = 0;
  92. #endif /* PLANNER_DIAGNOSTICS */
  93. //===========================================================================
  94. //=============================private variables ============================
  95. //===========================================================================
  96. #ifdef PREVENT_DANGEROUS_EXTRUDE
  97. float extrude_min_temp=EXTRUDE_MINTEMP;
  98. #endif
  99. #ifdef FILAMENT_SENSOR
  100. static char meas_sample; //temporary variable to hold filament measurement sample
  101. #endif
  102. #ifdef LIN_ADVANCE
  103. float extruder_advance_k = LIN_ADVANCE_K,
  104. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  105. position_float[NUM_AXIS] = { 0 };
  106. #endif
  107. // Returns the index of the next block in the ring buffer
  108. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  109. static inline int8_t next_block_index(int8_t block_index) {
  110. if (++ block_index == BLOCK_BUFFER_SIZE)
  111. block_index = 0;
  112. return block_index;
  113. }
  114. // Returns the index of the previous block in the ring buffer
  115. static inline int8_t prev_block_index(int8_t block_index) {
  116. if (block_index == 0)
  117. block_index = BLOCK_BUFFER_SIZE;
  118. -- block_index;
  119. return block_index;
  120. }
  121. //===========================================================================
  122. //=============================functions ============================
  123. //===========================================================================
  124. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  125. // given acceleration:
  126. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  127. {
  128. if (acceleration!=0) {
  129. return((target_rate*target_rate-initial_rate*initial_rate)/
  130. (2.0*acceleration));
  131. }
  132. else {
  133. return 0.0; // acceleration was 0, set acceleration distance to 0
  134. }
  135. }
  136. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  137. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  138. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  139. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  140. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  141. {
  142. if (acceleration!=0) {
  143. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  144. (4.0*acceleration) );
  145. }
  146. else {
  147. return 0.0; // acceleration was 0, set intersection distance to 0
  148. }
  149. }
  150. // Minimum stepper rate 120Hz.
  151. #define MINIMAL_STEP_RATE 120
  152. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  153. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  154. {
  155. // These two lines are the only floating point calculations performed in this routine.
  156. // initial_rate, final_rate in Hz.
  157. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  158. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  159. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  160. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  161. // Limit minimal step rate (Otherwise the timer will overflow.)
  162. if (initial_rate < MINIMAL_STEP_RATE)
  163. initial_rate = MINIMAL_STEP_RATE;
  164. if (initial_rate > block->nominal_rate)
  165. initial_rate = block->nominal_rate;
  166. if (final_rate < MINIMAL_STEP_RATE)
  167. final_rate = MINIMAL_STEP_RATE;
  168. if (final_rate > block->nominal_rate)
  169. final_rate = block->nominal_rate;
  170. uint32_t acceleration = block->acceleration_st;
  171. if (acceleration == 0)
  172. // Don't allow zero acceleration.
  173. acceleration = 1;
  174. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  175. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  176. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  177. //FIXME assert that this result fits a 64bit unsigned int.
  178. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  179. uint32_t final_rate_sqr = final_rate*final_rate;
  180. uint32_t acceleration_x2 = acceleration << 1;
  181. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  182. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  183. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  184. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  185. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  186. // Size of Plateau of Nominal Rate.
  187. uint32_t plateau_steps = 0;
  188. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  189. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  190. // in order to reach the final_rate exactly at the end of this block.
  191. if (accel_decel_steps < block->step_event_count.wide) {
  192. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  193. } else {
  194. uint32_t acceleration_x4 = acceleration << 2;
  195. // Avoid negative numbers
  196. if (final_rate_sqr >= initial_rate_sqr) {
  197. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  198. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  199. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  200. #if 0
  201. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  202. #else
  203. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  204. if (block->step_event_count.wide & 1)
  205. accelerate_steps += acceleration_x2;
  206. accelerate_steps /= acceleration_x4;
  207. accelerate_steps += (block->step_event_count.wide >> 1);
  208. #endif
  209. if (accelerate_steps > block->step_event_count.wide)
  210. accelerate_steps = block->step_event_count.wide;
  211. } else {
  212. #if 0
  213. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  214. #else
  215. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  216. if (block->step_event_count.wide & 1)
  217. decelerate_steps += acceleration_x2;
  218. decelerate_steps /= acceleration_x4;
  219. decelerate_steps += (block->step_event_count.wide >> 1);
  220. #endif
  221. if (decelerate_steps > block->step_event_count.wide)
  222. decelerate_steps = block->step_event_count.wide;
  223. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  224. }
  225. }
  226. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  227. // This block locks the interrupts globally for 4.38 us,
  228. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  229. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  230. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  231. if (! block->busy) { // Don't update variables if block is busy.
  232. block->accelerate_until = accelerate_steps;
  233. block->decelerate_after = accelerate_steps+plateau_steps;
  234. block->initial_rate = initial_rate;
  235. block->final_rate = final_rate;
  236. }
  237. CRITICAL_SECTION_END;
  238. }
  239. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  240. // decceleration within the allotted distance.
  241. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  242. {
  243. // assert(decceleration < 0);
  244. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  245. }
  246. // Recalculates the motion plan according to the following algorithm:
  247. //
  248. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  249. // so that:
  250. // a. The junction jerk is within the set limit
  251. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  252. // acceleration.
  253. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  254. // a. The speed increase within one block would require faster accelleration than the one, true
  255. // constant acceleration.
  256. //
  257. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  258. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  259. // the set limit. Finally it will:
  260. //
  261. // 3. Recalculate trapezoids for all blocks.
  262. //
  263. //FIXME This routine is called 15x every time a new line is added to the planner,
  264. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  265. // if the CPU is found lacking computational power.
  266. //
  267. // Following sources may be used to optimize the 8-bit AVR code:
  268. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  269. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  270. //
  271. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  272. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  273. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  274. //
  275. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  276. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  277. // https://github.com/rekka/avrmultiplication
  278. //
  279. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  280. // https://courses.cit.cornell.edu/ee476/Math/
  281. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  282. //
  283. void planner_recalculate(const float &safe_final_speed)
  284. {
  285. // Reverse pass
  286. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  287. // by consuming the blocks, therefore shortening the queue.
  288. unsigned char tail = block_buffer_tail;
  289. uint8_t block_index;
  290. block_t *prev, *current, *next;
  291. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  292. // At least three blocks are in the queue?
  293. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  294. if (n_blocks >= 3) {
  295. // Initialize the last tripple of blocks.
  296. block_index = prev_block_index(block_buffer_head);
  297. next = block_buffer + block_index;
  298. current = block_buffer + (block_index = prev_block_index(block_index));
  299. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  300. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  301. // 1) it may already be running at the stepper interrupt,
  302. // 2) there is no way to limit it when going in the forward direction.
  303. while (block_index != tail) {
  304. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  305. // Don't modify the entry velocity of the starting block.
  306. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  307. // for the stepper interrupt routine to use them.
  308. tail = block_index;
  309. // Update the number of blocks to process.
  310. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  311. // SERIAL_ECHOLNPGM("START");
  312. break;
  313. }
  314. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  315. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  316. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  317. if (current->entry_speed != current->max_entry_speed) {
  318. // assert(current->entry_speed < current->max_entry_speed);
  319. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  320. // segment and the maximum acceleration allowed for this segment.
  321. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  322. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  323. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  324. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  325. // together with an assembly 32bit->16bit sqrt function.
  326. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  327. current->max_entry_speed :
  328. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  329. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  330. current->flag |= BLOCK_FLAG_RECALCULATE;
  331. }
  332. next = current;
  333. current = block_buffer + (block_index = prev_block_index(block_index));
  334. }
  335. }
  336. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  337. // Forward pass and recalculate the trapezoids.
  338. if (n_blocks >= 2) {
  339. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  340. block_index = tail;
  341. prev = block_buffer + block_index;
  342. current = block_buffer + (block_index = next_block_index(block_index));
  343. do {
  344. // If the previous block is an acceleration block, but it is not long enough to complete the
  345. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  346. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  347. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  348. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  349. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  350. // Check for junction speed change
  351. if (current->entry_speed != entry_speed) {
  352. current->entry_speed = entry_speed;
  353. current->flag |= BLOCK_FLAG_RECALCULATE;
  354. }
  355. }
  356. // Recalculate if current block entry or exit junction speed has changed.
  357. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  358. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  359. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  360. // Reset current only to ensure next trapezoid is computed.
  361. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  362. }
  363. prev = current;
  364. current = block_buffer + (block_index = next_block_index(block_index));
  365. } while (block_index != block_buffer_head);
  366. }
  367. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  368. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  369. current = block_buffer + prev_block_index(block_buffer_head);
  370. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  371. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  372. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  373. }
  374. void plan_init() {
  375. block_buffer_head = 0;
  376. block_buffer_tail = 0;
  377. memset(position, 0, sizeof(position)); // clear position
  378. #ifdef LIN_ADVANCE
  379. memset(position_float, 0, sizeof(position)); // clear position
  380. #endif
  381. previous_speed[0] = 0.0;
  382. previous_speed[1] = 0.0;
  383. previous_speed[2] = 0.0;
  384. previous_speed[3] = 0.0;
  385. previous_nominal_speed = 0.0;
  386. }
  387. #ifdef AUTOTEMP
  388. void getHighESpeed()
  389. {
  390. static float oldt=0;
  391. if(!autotemp_enabled){
  392. return;
  393. }
  394. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  395. return; //do nothing
  396. }
  397. float high=0.0;
  398. uint8_t block_index = block_buffer_tail;
  399. while(block_index != block_buffer_head) {
  400. if((block_buffer[block_index].steps_x.wide != 0) ||
  401. (block_buffer[block_index].steps_y.wide != 0) ||
  402. (block_buffer[block_index].steps_z.wide != 0)) {
  403. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  404. //se; mm/sec;
  405. if(se>high)
  406. {
  407. high=se;
  408. }
  409. }
  410. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  411. }
  412. float g=autotemp_min+high*autotemp_factor;
  413. float t=g;
  414. if(t<autotemp_min)
  415. t=autotemp_min;
  416. if(t>autotemp_max)
  417. t=autotemp_max;
  418. if(oldt>t)
  419. {
  420. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  421. }
  422. oldt=t;
  423. setTargetHotend0(t);
  424. }
  425. #endif
  426. void check_axes_activity()
  427. {
  428. unsigned char x_active = 0;
  429. unsigned char y_active = 0;
  430. unsigned char z_active = 0;
  431. unsigned char e_active = 0;
  432. unsigned char tail_fan_speed = fanSpeed;
  433. block_t *block;
  434. if(block_buffer_tail != block_buffer_head)
  435. {
  436. uint8_t block_index = block_buffer_tail;
  437. tail_fan_speed = block_buffer[block_index].fan_speed;
  438. while(block_index != block_buffer_head)
  439. {
  440. block = &block_buffer[block_index];
  441. if(block->steps_x.wide != 0) x_active++;
  442. if(block->steps_y.wide != 0) y_active++;
  443. if(block->steps_z.wide != 0) z_active++;
  444. if(block->steps_e.wide != 0) e_active++;
  445. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  446. }
  447. }
  448. if((DISABLE_X) && (x_active == 0)) disable_x();
  449. if((DISABLE_Y) && (y_active == 0)) disable_y();
  450. if((DISABLE_Z) && (z_active == 0)) disable_z();
  451. if((DISABLE_E) && (e_active == 0))
  452. {
  453. disable_e0();
  454. disable_e1();
  455. disable_e2();
  456. }
  457. #if defined(FAN_PIN) && FAN_PIN > -1
  458. #ifdef FAN_KICKSTART_TIME
  459. static unsigned long fan_kick_end;
  460. if (tail_fan_speed) {
  461. if (fan_kick_end == 0) {
  462. // Just starting up fan - run at full power.
  463. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  464. tail_fan_speed = 255;
  465. } else if (fan_kick_end > millis())
  466. // Fan still spinning up.
  467. tail_fan_speed = 255;
  468. } else {
  469. fan_kick_end = 0;
  470. }
  471. #endif//FAN_KICKSTART_TIME
  472. #ifdef FAN_SOFT_PWM
  473. fanSpeedSoftPwm = tail_fan_speed;
  474. #else
  475. analogWrite(FAN_PIN,tail_fan_speed);
  476. #endif//!FAN_SOFT_PWM
  477. #endif//FAN_PIN > -1
  478. #ifdef AUTOTEMP
  479. getHighESpeed();
  480. #endif
  481. }
  482. bool waiting_inside_plan_buffer_line_print_aborted = false;
  483. /*
  484. void planner_abort_soft()
  485. {
  486. // Empty the queue.
  487. while (blocks_queued()) plan_discard_current_block();
  488. // Relay to planner wait routine, that the current line shall be canceled.
  489. waiting_inside_plan_buffer_line_print_aborted = true;
  490. //current_position[i]
  491. }
  492. */
  493. #ifdef PLANNER_DIAGNOSTICS
  494. static inline void planner_update_queue_min_counter()
  495. {
  496. uint8_t new_counter = moves_planned();
  497. if (new_counter < g_cntr_planner_queue_min)
  498. g_cntr_planner_queue_min = new_counter;
  499. }
  500. #endif /* PLANNER_DIAGNOSTICS */
  501. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  502. void planner_abort_hard()
  503. {
  504. // Abort the stepper routine and flush the planner queue.
  505. DISABLE_STEPPER_DRIVER_INTERRUPT();
  506. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  507. // First update the planner's current position in the physical motor steps.
  508. position[X_AXIS] = st_get_position(X_AXIS);
  509. position[Y_AXIS] = st_get_position(Y_AXIS);
  510. position[Z_AXIS] = st_get_position(Z_AXIS);
  511. position[E_AXIS] = st_get_position(E_AXIS);
  512. // Second update the current position of the front end.
  513. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  514. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  515. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  516. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  517. // Apply the mesh bed leveling correction to the Z axis.
  518. #ifdef MESH_BED_LEVELING
  519. if (mbl.active) {
  520. #if 1
  521. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  522. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  523. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  524. #else
  525. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  526. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  527. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  528. else {
  529. float t = float(step_events_completed) / float(current_block->step_event_count);
  530. float vec[3] = {
  531. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  532. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  533. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  534. };
  535. float pos1[3], pos2[3];
  536. for (int8_t i = 0; i < 3; ++ i) {
  537. if (current_block->direction_bits & (1<<i))
  538. vec[i] = - vec[i];
  539. pos1[i] = current_position[i] - vec[i] * t;
  540. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  541. }
  542. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  543. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  544. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  545. }
  546. #endif
  547. }
  548. #endif
  549. // Clear the planner queue, reset and re-enable the stepper timer.
  550. quickStop();
  551. // Apply inverse world correction matrix.
  552. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  553. memcpy(destination, current_position, sizeof(destination));
  554. // Resets planner junction speeds. Assumes start from rest.
  555. previous_nominal_speed = 0.0;
  556. previous_speed[0] = 0.0;
  557. previous_speed[1] = 0.0;
  558. previous_speed[2] = 0.0;
  559. previous_speed[3] = 0.0;
  560. // Relay to planner wait routine, that the current line shall be canceled.
  561. waiting_inside_plan_buffer_line_print_aborted = true;
  562. }
  563. float junction_deviation = 0.1;
  564. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  565. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  566. // calculation the caller must also provide the physical length of the line in millimeters.
  567. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  568. {
  569. // Calculate the buffer head after we push this byte
  570. int next_buffer_head = next_block_index(block_buffer_head);
  571. // If the buffer is full: good! That means we are well ahead of the robot.
  572. // Rest here until there is room in the buffer.
  573. if (block_buffer_tail == next_buffer_head) {
  574. waiting_inside_plan_buffer_line_print_aborted = false;
  575. do {
  576. manage_heater();
  577. // Vojtech: Don't disable motors inside the planner!
  578. manage_inactivity(false);
  579. lcd_update();
  580. } while (block_buffer_tail == next_buffer_head);
  581. if (waiting_inside_plan_buffer_line_print_aborted) {
  582. // Inside the lcd_update() routine the print has been aborted.
  583. // Cancel the print, do not plan the current line this routine is waiting on.
  584. #ifdef PLANNER_DIAGNOSTICS
  585. planner_update_queue_min_counter();
  586. #endif /* PLANNER_DIAGNOSTICS */
  587. return;
  588. }
  589. }
  590. #ifdef PLANNER_DIAGNOSTICS
  591. planner_update_queue_min_counter();
  592. #endif /* PLANNER_DIAGNOSTICS */
  593. #ifdef ENABLE_AUTO_BED_LEVELING
  594. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  595. #endif // ENABLE_AUTO_BED_LEVELING
  596. // Apply the machine correction matrix.
  597. {
  598. #if 0
  599. SERIAL_ECHOPGM("Planner, current position - servos: ");
  600. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  601. SERIAL_ECHOPGM(", ");
  602. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  603. SERIAL_ECHOPGM(", ");
  604. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  605. SERIAL_ECHOLNPGM("");
  606. SERIAL_ECHOPGM("Planner, target position, initial: ");
  607. MYSERIAL.print(x, 5);
  608. SERIAL_ECHOPGM(", ");
  609. MYSERIAL.print(y, 5);
  610. SERIAL_ECHOLNPGM("");
  611. SERIAL_ECHOPGM("Planner, world2machine: ");
  612. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  613. SERIAL_ECHOPGM(", ");
  614. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  615. SERIAL_ECHOPGM(", ");
  616. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  617. SERIAL_ECHOPGM(", ");
  618. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  619. SERIAL_ECHOLNPGM("");
  620. SERIAL_ECHOPGM("Planner, offset: ");
  621. MYSERIAL.print(world2machine_shift[0], 5);
  622. SERIAL_ECHOPGM(", ");
  623. MYSERIAL.print(world2machine_shift[1], 5);
  624. SERIAL_ECHOLNPGM("");
  625. #endif
  626. world2machine(x, y);
  627. #if 0
  628. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  629. MYSERIAL.print(x, 5);
  630. SERIAL_ECHOPGM(", ");
  631. MYSERIAL.print(y, 5);
  632. SERIAL_ECHOLNPGM("");
  633. #endif
  634. }
  635. // The target position of the tool in absolute steps
  636. // Calculate target position in absolute steps
  637. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  638. long target[4];
  639. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  640. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  641. #ifdef MESH_BED_LEVELING
  642. if (mbl.active){
  643. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  644. }else{
  645. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  646. }
  647. #else
  648. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  649. #endif // ENABLE_MESH_BED_LEVELING
  650. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  651. #ifdef LIN_ADVANCE
  652. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  653. float de_float = e - position_float[E_AXIS];
  654. #endif
  655. #ifdef PREVENT_DANGEROUS_EXTRUDE
  656. if(target[E_AXIS]!=position[E_AXIS])
  657. {
  658. if(degHotend(active_extruder)<extrude_min_temp)
  659. {
  660. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  661. #ifdef LIN_ADVANCE
  662. position_float[E_AXIS] = e;
  663. de_float = 0;
  664. #endif
  665. SERIAL_ECHO_START;
  666. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  667. }
  668. #ifdef PREVENT_LENGTHY_EXTRUDE
  669. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  670. {
  671. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  672. #ifdef LIN_ADVANCE
  673. position_float[E_AXIS] = e;
  674. de_float = 0;
  675. #endif
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  678. }
  679. #endif
  680. }
  681. #endif
  682. // Prepare to set up new block
  683. block_t *block = &block_buffer[block_buffer_head];
  684. // Set sdlen for calculating sd position
  685. block->sdlen = 0;
  686. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  687. block->busy = false;
  688. // Number of steps for each axis
  689. #ifndef COREXY
  690. // default non-h-bot planning
  691. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  692. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  693. #else
  694. // corexy planning
  695. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  696. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  697. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  698. #endif
  699. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  700. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  701. if (volumetric_multiplier[active_extruder] != 1.f)
  702. block->steps_e.wide *= volumetric_multiplier[active_extruder];
  703. if (extrudemultiply != 100)
  704. block->steps_e.wide *= extrudemultiply * 0.01;
  705. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  706. // Bail if this is a zero-length block
  707. if (block->step_event_count.wide <= dropsegments)
  708. {
  709. #ifdef PLANNER_DIAGNOSTICS
  710. planner_update_queue_min_counter();
  711. #endif /* PLANNER_DIAGNOSTICS */
  712. return;
  713. }
  714. block->fan_speed = fanSpeed;
  715. // Compute direction bits for this block
  716. block->direction_bits = 0;
  717. #ifndef COREXY
  718. if (target[X_AXIS] < position[X_AXIS])
  719. {
  720. block->direction_bits |= (1<<X_AXIS);
  721. }
  722. if (target[Y_AXIS] < position[Y_AXIS])
  723. {
  724. block->direction_bits |= (1<<Y_AXIS);
  725. }
  726. #else
  727. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  728. {
  729. block->direction_bits |= (1<<X_AXIS);
  730. }
  731. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  732. {
  733. block->direction_bits |= (1<<Y_AXIS);
  734. }
  735. #endif
  736. if (target[Z_AXIS] < position[Z_AXIS])
  737. {
  738. block->direction_bits |= (1<<Z_AXIS);
  739. }
  740. if (target[E_AXIS] < position[E_AXIS])
  741. {
  742. block->direction_bits |= (1<<E_AXIS);
  743. }
  744. block->active_extruder = extruder;
  745. //enable active axes
  746. #ifdef COREXY
  747. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  748. {
  749. enable_x();
  750. enable_y();
  751. }
  752. #else
  753. if(block->steps_x.wide != 0) enable_x();
  754. if(block->steps_y.wide != 0) enable_y();
  755. #endif
  756. if(block->steps_z.wide != 0) enable_z();
  757. // Enable extruder(s)
  758. if(block->steps_e.wide != 0)
  759. {
  760. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  761. {
  762. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  763. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  764. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  765. switch(extruder)
  766. {
  767. case 0:
  768. enable_e0();
  769. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  770. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  771. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  772. break;
  773. case 1:
  774. enable_e1();
  775. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  776. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  777. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  778. break;
  779. case 2:
  780. enable_e2();
  781. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  782. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  783. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  784. break;
  785. }
  786. }
  787. else //enable all
  788. {
  789. enable_e0();
  790. enable_e1();
  791. enable_e2();
  792. }
  793. }
  794. if (block->steps_e.wide == 0)
  795. {
  796. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  797. }
  798. else
  799. {
  800. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  801. }
  802. /* This part of the code calculates the total length of the movement.
  803. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  804. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  805. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  806. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  807. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  808. */
  809. #ifndef COREXY
  810. float delta_mm[4];
  811. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  812. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  813. #else
  814. float delta_mm[6];
  815. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  816. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  817. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  818. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  819. #endif
  820. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  821. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  822. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  823. {
  824. block->millimeters = fabs(delta_mm[E_AXIS]);
  825. }
  826. else
  827. {
  828. #ifndef COREXY
  829. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  830. #else
  831. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  832. #endif
  833. }
  834. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  835. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  836. float inverse_second = feed_rate * inverse_millimeters;
  837. int moves_queued = moves_planned();
  838. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  839. #ifdef SLOWDOWN
  840. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  841. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  842. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  843. // segment time in micro seconds
  844. unsigned long segment_time = lround(1000000.0/inverse_second);
  845. if (segment_time < minsegmenttime)
  846. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  847. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  848. }
  849. #endif // SLOWDOWN
  850. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  851. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  852. #ifdef FILAMENT_SENSOR
  853. //FMM update ring buffer used for delay with filament measurements
  854. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  855. {
  856. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  857. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  858. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  859. while (delay_dist<0)
  860. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  861. delay_index1=delay_dist/10.0; //calculate index
  862. //ensure the number is within range of the array after converting from floating point
  863. if(delay_index1<0)
  864. delay_index1=0;
  865. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  866. delay_index1=MAX_MEASUREMENT_DELAY;
  867. if(delay_index1 != delay_index2) //moved index
  868. {
  869. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  870. }
  871. while( delay_index1 != delay_index2)
  872. {
  873. delay_index2 = delay_index2 + 1;
  874. if(delay_index2>MAX_MEASUREMENT_DELAY)
  875. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  876. if(delay_index2<0)
  877. delay_index2=0;
  878. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  879. delay_index2=MAX_MEASUREMENT_DELAY;
  880. measurement_delay[delay_index2]=meas_sample;
  881. }
  882. }
  883. #endif
  884. // Calculate and limit speed in mm/sec for each axis
  885. float current_speed[4];
  886. float speed_factor = 1.0; //factor <=1 do decrease speed
  887. for(int i=0; i < 4; i++)
  888. {
  889. current_speed[i] = delta_mm[i] * inverse_second;
  890. #ifdef TMC2130
  891. float max_fr = max_feedrate[i];
  892. if (i < 2) // X, Y
  893. {
  894. if (tmc2130_mode == TMC2130_MODE_SILENT)
  895. {
  896. if (max_fr > SILENT_MAX_FEEDRATE)
  897. max_fr = SILENT_MAX_FEEDRATE;
  898. }
  899. else
  900. {
  901. if (max_fr > NORMAL_MAX_FEEDRATE)
  902. max_fr = NORMAL_MAX_FEEDRATE;
  903. }
  904. }
  905. if(fabs(current_speed[i]) > max_fr)
  906. speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
  907. #else //TMC2130
  908. if(fabs(current_speed[i]) > max_feedrate[i])
  909. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  910. #endif //TMC2130
  911. }
  912. // Correct the speed
  913. if( speed_factor < 1.0)
  914. {
  915. for(unsigned char i=0; i < 4; i++)
  916. {
  917. current_speed[i] *= speed_factor;
  918. }
  919. block->nominal_speed *= speed_factor;
  920. block->nominal_rate *= speed_factor;
  921. }
  922. // Compute and limit the acceleration rate for the trapezoid generator.
  923. // block->step_event_count ... event count of the fastest axis
  924. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  925. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  926. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  927. {
  928. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  929. }
  930. else
  931. {
  932. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  933. #ifdef TMC2130
  934. #ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
  935. if (tmc2130_mode == TMC2130_MODE_SILENT)
  936. {
  937. if (block->steps_x.wide || block->steps_y.wide)
  938. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  939. }
  940. else
  941. {
  942. if (block->steps_x.wide || block->steps_y.wide)
  943. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  944. }
  945. if (block->steps_x.wide && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  946. if (block->steps_y.wide && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  947. if (block->steps_z.wide && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  948. if (block->steps_e.wide && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  949. #else // SIMPLE_ACCEL_LIMIT
  950. if (tmc2130_mode == TMC2130_MODE_SILENT)
  951. {
  952. if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
  953. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  954. }
  955. else
  956. {
  957. if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
  958. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  959. }
  960. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  961. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  962. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  963. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  964. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Z_AXIS])
  965. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  966. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  967. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  968. #endif // SIMPLE_ACCEL_LIMIT
  969. #else //TMC2130
  970. // Limit acceleration per axis
  971. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  972. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  973. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  974. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  975. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  976. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  977. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  978. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  979. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  980. #endif //TMC2130
  981. }
  982. // Acceleration of the segment, in mm/sec^2
  983. block->acceleration = block->acceleration_st / steps_per_mm;
  984. #if 0
  985. // Oversample diagonal movements by a power of 2 up to 8x
  986. // to achieve more accurate diagonal movements.
  987. uint8_t bresenham_oversample = 1;
  988. for (uint8_t i = 0; i < 3; ++ i) {
  989. if (block->nominal_rate >= 5000) // 5kHz
  990. break;
  991. block->nominal_rate << 1;
  992. bresenham_oversample << 1;
  993. block->step_event_count << 1;
  994. }
  995. if (bresenham_oversample > 1)
  996. // Lower the acceleration steps/sec^2 to account for the oversampling.
  997. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  998. #endif
  999. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1000. // Start with a safe speed.
  1001. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1002. float safe_speed = block->nominal_speed;
  1003. bool limited = false;
  1004. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1005. float jerk = fabs(current_speed[axis]);
  1006. if (jerk > max_jerk[axis]) {
  1007. // The actual jerk is lower, if it has been limited by the XY jerk.
  1008. if (limited) {
  1009. // Spare one division by a following gymnastics:
  1010. // Instead of jerk *= safe_speed / block->nominal_speed,
  1011. // multiply max_jerk[axis] by the divisor.
  1012. jerk *= safe_speed;
  1013. float mjerk = max_jerk[axis] * block->nominal_speed;
  1014. if (jerk > mjerk) {
  1015. safe_speed *= mjerk / jerk;
  1016. limited = true;
  1017. }
  1018. } else {
  1019. safe_speed = max_jerk[axis];
  1020. limited = true;
  1021. }
  1022. }
  1023. }
  1024. // Reset the block flag.
  1025. block->flag = 0;
  1026. // Initial limit on the segment entry velocity.
  1027. float vmax_junction;
  1028. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1029. // Is it because we don't want to tinker with the first buffer line, which
  1030. // is likely to be executed by the stepper interrupt routine soon?
  1031. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1032. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1033. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1034. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1035. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1036. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1037. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1038. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1039. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1040. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1041. float v_factor = 1.f;
  1042. limited = false;
  1043. // Now limit the jerk in all axes.
  1044. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1045. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1046. float v_exit = previous_speed[axis];
  1047. float v_entry = current_speed [axis];
  1048. if (prev_speed_larger)
  1049. v_exit *= smaller_speed_factor;
  1050. if (limited) {
  1051. v_exit *= v_factor;
  1052. v_entry *= v_factor;
  1053. }
  1054. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1055. float jerk =
  1056. (v_exit > v_entry) ?
  1057. ((v_entry > 0.f || v_exit < 0.f) ?
  1058. // coasting
  1059. (v_exit - v_entry) :
  1060. // axis reversal
  1061. max(v_exit, - v_entry)) :
  1062. // v_exit <= v_entry
  1063. ((v_entry < 0.f || v_exit > 0.f) ?
  1064. // coasting
  1065. (v_entry - v_exit) :
  1066. // axis reversal
  1067. max(- v_exit, v_entry));
  1068. if (jerk > max_jerk[axis]) {
  1069. v_factor *= max_jerk[axis] / jerk;
  1070. limited = true;
  1071. }
  1072. }
  1073. if (limited)
  1074. vmax_junction *= v_factor;
  1075. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1076. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1077. float vmax_junction_threshold = vmax_junction * 0.99f;
  1078. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1079. // Not coasting. The machine will stop and start the movements anyway,
  1080. // better to start the segment from start.
  1081. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1082. vmax_junction = safe_speed;
  1083. }
  1084. } else {
  1085. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1086. vmax_junction = safe_speed;
  1087. }
  1088. // Max entry speed of this block equals the max exit speed of the previous block.
  1089. block->max_entry_speed = vmax_junction;
  1090. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1091. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1092. block->entry_speed = min(vmax_junction, v_allowable);
  1093. // Initialize planner efficiency flags
  1094. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1095. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1096. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1097. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1098. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1099. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1100. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1101. // Always calculate trapezoid for new block
  1102. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1103. // Update previous path unit_vector and nominal speed
  1104. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1105. previous_nominal_speed = block->nominal_speed;
  1106. previous_safe_speed = safe_speed;
  1107. #ifdef LIN_ADVANCE
  1108. //
  1109. // Use LIN_ADVANCE for blocks if all these are true:
  1110. //
  1111. // esteps : We have E steps todo (a printing move)
  1112. //
  1113. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1114. //
  1115. // extruder_advance_k : There is an advance factor set.
  1116. //
  1117. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1118. // In that case, the retract and move will be executed together.
  1119. // This leads to too many advance steps due to a huge e_acceleration.
  1120. // The math is good, but we must avoid retract moves with advance!
  1121. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1122. //
  1123. block->use_advance_lead = block->steps_e.wide
  1124. && (block->steps_x.wide || block->steps_y.wide)
  1125. && extruder_advance_k
  1126. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1127. && de_float > 0.0;
  1128. if (block->use_advance_lead)
  1129. block->abs_adv_steps_multiplier8 = lround(
  1130. extruder_advance_k
  1131. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1132. * (block->nominal_speed / (float)block->nominal_rate)
  1133. * axis_steps_per_unit[E_AXIS] * 256.0
  1134. );
  1135. #endif
  1136. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1137. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1138. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1139. if (block->step_event_count.wide <= 32767)
  1140. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1141. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1142. block_buffer_head = next_buffer_head;
  1143. // Update position
  1144. memcpy(position, target, sizeof(target)); // position[] = target[]
  1145. #ifdef LIN_ADVANCE
  1146. position_float[X_AXIS] = x;
  1147. position_float[Y_AXIS] = y;
  1148. position_float[Z_AXIS] = z;
  1149. position_float[E_AXIS] = e;
  1150. #endif
  1151. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1152. // the machine limits (maximum acceleration and maximum jerk).
  1153. // This runs asynchronously with the stepper interrupt controller, which may
  1154. // interfere with the process.
  1155. planner_recalculate(safe_speed);
  1156. // SERIAL_ECHOPGM("Q");
  1157. // SERIAL_ECHO(int(moves_planned()));
  1158. // SERIAL_ECHOLNPGM("");
  1159. #ifdef PLANNER_DIAGNOSTICS
  1160. planner_update_queue_min_counter();
  1161. #endif /* PLANNER_DIAGNOSTIC */
  1162. // The stepper timer interrupt will run continuously from now on.
  1163. // If there are no planner blocks to be executed by the stepper routine,
  1164. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1165. // from the planner queue if available.
  1166. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1167. }
  1168. #ifdef ENABLE_AUTO_BED_LEVELING
  1169. vector_3 plan_get_position() {
  1170. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1171. //position.debug("in plan_get position");
  1172. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1173. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1174. //inverse.debug("in plan_get inverse");
  1175. position.apply_rotation(inverse);
  1176. //position.debug("after rotation");
  1177. return position;
  1178. }
  1179. #endif // ENABLE_AUTO_BED_LEVELING
  1180. void plan_set_position(float x, float y, float z, const float &e)
  1181. {
  1182. #ifdef ENABLE_AUTO_BED_LEVELING
  1183. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1184. #endif // ENABLE_AUTO_BED_LEVELING
  1185. // Apply the machine correction matrix.
  1186. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1187. {
  1188. float tmpx = x;
  1189. float tmpy = y;
  1190. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1191. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1192. }
  1193. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1194. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1195. #ifdef MESH_BED_LEVELING
  1196. position[Z_AXIS] = mbl.active ?
  1197. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1198. lround(z*axis_steps_per_unit[Z_AXIS]);
  1199. #else
  1200. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1201. #endif // ENABLE_MESH_BED_LEVELING
  1202. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1203. #ifdef LIN_ADVANCE
  1204. position_float[X_AXIS] = x;
  1205. position_float[Y_AXIS] = y;
  1206. position_float[Z_AXIS] = z;
  1207. position_float[E_AXIS] = e;
  1208. #endif
  1209. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1210. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1211. previous_speed[0] = 0.0;
  1212. previous_speed[1] = 0.0;
  1213. previous_speed[2] = 0.0;
  1214. previous_speed[3] = 0.0;
  1215. }
  1216. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1217. void plan_set_z_position(const float &z)
  1218. {
  1219. #ifdef LIN_ADVANCE
  1220. position_float[Z_AXIS] = z;
  1221. #endif
  1222. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1223. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1224. }
  1225. void plan_set_e_position(const float &e)
  1226. {
  1227. #ifdef LIN_ADVANCE
  1228. position_float[E_AXIS] = e;
  1229. #endif
  1230. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1231. st_set_e_position(position[E_AXIS]);
  1232. }
  1233. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1234. void set_extrude_min_temp(float temp)
  1235. {
  1236. extrude_min_temp=temp;
  1237. }
  1238. #endif
  1239. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1240. void reset_acceleration_rates()
  1241. {
  1242. for(int8_t i=0; i < NUM_AXIS; i++)
  1243. {
  1244. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1245. }
  1246. }
  1247. unsigned char number_of_blocks() {
  1248. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1249. }
  1250. #ifdef PLANNER_DIAGNOSTICS
  1251. uint8_t planner_queue_min()
  1252. {
  1253. return g_cntr_planner_queue_min;
  1254. }
  1255. void planner_queue_min_reset()
  1256. {
  1257. g_cntr_planner_queue_min = moves_planned();
  1258. }
  1259. #endif /* PLANNER_DIAGNOSTICS */
  1260. void planner_add_sd_length(uint16_t sdlen)
  1261. {
  1262. if (block_buffer_head != block_buffer_tail) {
  1263. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1264. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1265. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1266. } else {
  1267. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1268. // at a power panic, so the length of this command may be forgotten.
  1269. }
  1270. }
  1271. uint16_t planner_calc_sd_length()
  1272. {
  1273. unsigned char _block_buffer_head = block_buffer_head;
  1274. unsigned char _block_buffer_tail = block_buffer_tail;
  1275. uint16_t sdlen = 0;
  1276. while (_block_buffer_head != _block_buffer_tail)
  1277. {
  1278. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1279. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1280. }
  1281. return sdlen;
  1282. }