Marlin_main.cpp 186 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned long kicktime = millis()+100000;
  217. unsigned int usb_printing_counter;
  218. int lcd_change_fil_state = 0;
  219. int feedmultiplyBckp = 100;
  220. unsigned char lang_selected = 0;
  221. bool prusa_sd_card_upload = false;
  222. unsigned long total_filament_used;
  223. unsigned int heating_status;
  224. unsigned int heating_status_counter;
  225. bool custom_message;
  226. unsigned int custom_message_type;
  227. unsigned int custom_message_state;
  228. bool volumetric_enabled = false;
  229. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 1
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #if EXTRUDERS > 2
  233. , DEFAULT_NOMINAL_FILAMENT_DIA
  234. #endif
  235. #endif
  236. };
  237. float volumetric_multiplier[EXTRUDERS] = {1.0
  238. #if EXTRUDERS > 1
  239. , 1.0
  240. #if EXTRUDERS > 2
  241. , 1.0
  242. #endif
  243. #endif
  244. };
  245. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  246. float add_homing[3]={0,0,0};
  247. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  248. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  249. bool axis_known_position[3] = {false, false, false};
  250. float zprobe_zoffset;
  251. // Extruder offset
  252. #if EXTRUDERS > 1
  253. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  254. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  255. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  256. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  257. #endif
  258. };
  259. #endif
  260. uint8_t active_extruder = 0;
  261. int fanSpeed=0;
  262. #ifdef FWRETRACT
  263. bool autoretract_enabled=false;
  264. bool retracted[EXTRUDERS]={false
  265. #if EXTRUDERS > 1
  266. , false
  267. #if EXTRUDERS > 2
  268. , false
  269. #endif
  270. #endif
  271. };
  272. bool retracted_swap[EXTRUDERS]={false
  273. #if EXTRUDERS > 1
  274. , false
  275. #if EXTRUDERS > 2
  276. , false
  277. #endif
  278. #endif
  279. };
  280. float retract_length = RETRACT_LENGTH;
  281. float retract_length_swap = RETRACT_LENGTH_SWAP;
  282. float retract_feedrate = RETRACT_FEEDRATE;
  283. float retract_zlift = RETRACT_ZLIFT;
  284. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  285. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  286. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  287. #endif
  288. #ifdef ULTIPANEL
  289. #ifdef PS_DEFAULT_OFF
  290. bool powersupply = false;
  291. #else
  292. bool powersupply = true;
  293. #endif
  294. #endif
  295. bool cancel_heatup = false ;
  296. #ifdef FILAMENT_SENSOR
  297. //Variables for Filament Sensor input
  298. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  299. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  300. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  301. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  302. int delay_index1=0; //index into ring buffer
  303. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  304. float delay_dist=0; //delay distance counter
  305. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  306. #endif
  307. const char errormagic[] PROGMEM = "Error:";
  308. const char echomagic[] PROGMEM = "echo:";
  309. //===========================================================================
  310. //=============================Private Variables=============================
  311. //===========================================================================
  312. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  313. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  314. static float delta[3] = {0.0, 0.0, 0.0};
  315. // For tracing an arc
  316. static float offset[3] = {0.0, 0.0, 0.0};
  317. static bool home_all_axis = true;
  318. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  319. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  320. // Determines Absolute or Relative Coordinates.
  321. // Also there is bool axis_relative_modes[] per axis flag.
  322. static bool relative_mode = false;
  323. // String circular buffer. Commands may be pushed to the buffer from both sides:
  324. // Chained commands will be pushed to the front, interactive (from LCD menu)
  325. // and printing commands (from serial line or from SD card) are pushed to the tail.
  326. // First character of each entry indicates the type of the entry:
  327. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  328. // Command in cmdbuffer was sent over USB.
  329. #define CMDBUFFER_CURRENT_TYPE_USB 1
  330. // Command in cmdbuffer was read from SDCARD.
  331. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  332. // Command in cmdbuffer was generated by the UI.
  333. #define CMDBUFFER_CURRENT_TYPE_UI 3
  334. // Command in cmdbuffer was generated by another G-code.
  335. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  336. // How much space to reserve for the chained commands
  337. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  338. // which are pushed to the front of the queue?
  339. // Maximum 5 commands of max length 20 + null terminator.
  340. #define CMDBUFFER_RESERVE_FRONT (5*21)
  341. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  342. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  343. // Head of the circular buffer, where to read.
  344. static int bufindr = 0;
  345. // Tail of the buffer, where to write.
  346. static int bufindw = 0;
  347. // Number of lines in cmdbuffer.
  348. static int buflen = 0;
  349. // Flag for processing the current command inside the main Arduino loop().
  350. // If a new command was pushed to the front of a command buffer while
  351. // processing another command, this replaces the command on the top.
  352. // Therefore don't remove the command from the queue in the loop() function.
  353. static bool cmdbuffer_front_already_processed = false;
  354. // Type of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  356. // String of a command, which is to be executed right now.
  357. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  358. // Enable debugging of the command buffer.
  359. // Debugging information will be sent to serial line.
  360. // #define CMDBUFFER_DEBUG
  361. static int serial_count = 0;
  362. static boolean comment_mode = false;
  363. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  364. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  365. //static float tt = 0;
  366. //static float bt = 0;
  367. //Inactivity shutdown variables
  368. static unsigned long previous_millis_cmd = 0;
  369. unsigned long max_inactive_time = 0;
  370. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  371. unsigned long starttime=0;
  372. unsigned long stoptime=0;
  373. unsigned long _usb_timer = 0;
  374. static uint8_t tmp_extruder;
  375. bool Stopped=false;
  376. #if NUM_SERVOS > 0
  377. Servo servos[NUM_SERVOS];
  378. #endif
  379. bool CooldownNoWait = true;
  380. bool target_direction;
  381. //Insert variables if CHDK is defined
  382. #ifdef CHDK
  383. unsigned long chdkHigh = 0;
  384. boolean chdkActive = false;
  385. #endif
  386. //===========================================================================
  387. //=============================Routines======================================
  388. //===========================================================================
  389. void get_arc_coordinates();
  390. bool setTargetedHotend(int code);
  391. void serial_echopair_P(const char *s_P, float v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, double v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, unsigned long v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. #ifdef SDSUPPORT
  398. #include "SdFatUtil.h"
  399. int freeMemory() { return SdFatUtil::FreeRam(); }
  400. #else
  401. extern "C" {
  402. extern unsigned int __bss_end;
  403. extern unsigned int __heap_start;
  404. extern void *__brkval;
  405. int freeMemory() {
  406. int free_memory;
  407. if ((int)__brkval == 0)
  408. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  409. else
  410. free_memory = ((int)&free_memory) - ((int)__brkval);
  411. return free_memory;
  412. }
  413. }
  414. #endif //!SDSUPPORT
  415. // Pop the currently processed command from the queue.
  416. // It is expected, that there is at least one command in the queue.
  417. bool cmdqueue_pop_front()
  418. {
  419. if (buflen > 0) {
  420. #ifdef CMDBUFFER_DEBUG
  421. SERIAL_ECHOPGM("Dequeing ");
  422. SERIAL_ECHO(cmdbuffer+bufindr+1);
  423. SERIAL_ECHOLNPGM("");
  424. SERIAL_ECHOPGM("Old indices: buflen ");
  425. SERIAL_ECHO(buflen);
  426. SERIAL_ECHOPGM(", bufindr ");
  427. SERIAL_ECHO(bufindr);
  428. SERIAL_ECHOPGM(", bufindw ");
  429. SERIAL_ECHO(bufindw);
  430. SERIAL_ECHOPGM(", serial_count ");
  431. SERIAL_ECHO(serial_count);
  432. SERIAL_ECHOPGM(", bufsize ");
  433. SERIAL_ECHO(sizeof(cmdbuffer));
  434. SERIAL_ECHOLNPGM("");
  435. #endif /* CMDBUFFER_DEBUG */
  436. if (-- buflen == 0) {
  437. // Empty buffer.
  438. if (serial_count == 0)
  439. // No serial communication is pending. Reset both pointers to zero.
  440. bufindw = 0;
  441. bufindr = bufindw;
  442. } else {
  443. // There is at least one ready line in the buffer.
  444. // First skip the current command ID and iterate up to the end of the string.
  445. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  446. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  447. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  448. // If the end of the buffer was empty,
  449. if (bufindr == sizeof(cmdbuffer)) {
  450. // skip to the start and find the nonzero command.
  451. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  452. }
  453. #ifdef CMDBUFFER_DEBUG
  454. SERIAL_ECHOPGM("New indices: buflen ");
  455. SERIAL_ECHO(buflen);
  456. SERIAL_ECHOPGM(", bufindr ");
  457. SERIAL_ECHO(bufindr);
  458. SERIAL_ECHOPGM(", bufindw ");
  459. SERIAL_ECHO(bufindw);
  460. SERIAL_ECHOPGM(", serial_count ");
  461. SERIAL_ECHO(serial_count);
  462. SERIAL_ECHOPGM(" new command on the top: ");
  463. SERIAL_ECHO(cmdbuffer+bufindr+1);
  464. SERIAL_ECHOLNPGM("");
  465. #endif /* CMDBUFFER_DEBUG */
  466. }
  467. return true;
  468. }
  469. return false;
  470. }
  471. void cmdqueue_reset()
  472. {
  473. while (cmdqueue_pop_front()) ;
  474. }
  475. // How long a string could be pushed to the front of the command queue?
  476. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  477. // len_asked does not contain the zero terminator size.
  478. bool cmdqueue_could_enqueue_front(int len_asked)
  479. {
  480. // MAX_CMD_SIZE has to accommodate the zero terminator.
  481. if (len_asked >= MAX_CMD_SIZE)
  482. return false;
  483. // Remove the currently processed command from the queue.
  484. if (! cmdbuffer_front_already_processed) {
  485. cmdqueue_pop_front();
  486. cmdbuffer_front_already_processed = true;
  487. }
  488. if (bufindr == bufindw && buflen > 0)
  489. // Full buffer.
  490. return false;
  491. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  492. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  493. if (bufindw < bufindr) {
  494. int bufindr_new = bufindr - len_asked - 2;
  495. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  496. if (endw <= bufindr_new) {
  497. bufindr = bufindr_new;
  498. return true;
  499. }
  500. } else {
  501. // Otherwise the free space is split between the start and end.
  502. if (len_asked + 2 <= bufindr) {
  503. // Could fit at the start.
  504. bufindr -= len_asked + 2;
  505. return true;
  506. }
  507. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  508. if (endw <= bufindr_new) {
  509. memset(cmdbuffer, 0, bufindr);
  510. bufindr = bufindr_new;
  511. return true;
  512. }
  513. }
  514. return false;
  515. }
  516. // Could one enqueue a command of lenthg len_asked into the buffer,
  517. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  518. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  519. // len_asked does not contain the zero terminator size.
  520. bool cmdqueue_could_enqueue_back(int len_asked)
  521. {
  522. // MAX_CMD_SIZE has to accommodate the zero terminator.
  523. if (len_asked >= MAX_CMD_SIZE)
  524. return false;
  525. if (bufindr == bufindw && buflen > 0)
  526. // Full buffer.
  527. return false;
  528. if (serial_count > 0) {
  529. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  530. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  531. // serial data.
  532. // How much memory to reserve for the commands pushed to the front?
  533. // End of the queue, when pushing to the end.
  534. int endw = bufindw + len_asked + 2;
  535. if (bufindw < bufindr)
  536. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  537. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  538. // Otherwise the free space is split between the start and end.
  539. if (// Could one fit to the end, including the reserve?
  540. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  541. // Could one fit to the end, and the reserve to the start?
  542. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  543. return true;
  544. // Could one fit both to the start?
  545. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  546. // Mark the rest of the buffer as used.
  547. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  548. // and point to the start.
  549. bufindw = 0;
  550. return true;
  551. }
  552. } else {
  553. // How much memory to reserve for the commands pushed to the front?
  554. // End of the queue, when pushing to the end.
  555. int endw = bufindw + len_asked + 2;
  556. if (bufindw < bufindr)
  557. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  558. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  559. // Otherwise the free space is split between the start and end.
  560. if (// Could one fit to the end, including the reserve?
  561. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  562. // Could one fit to the end, and the reserve to the start?
  563. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  564. return true;
  565. // Could one fit both to the start?
  566. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  567. // Mark the rest of the buffer as used.
  568. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  569. // and point to the start.
  570. bufindw = 0;
  571. return true;
  572. }
  573. }
  574. return false;
  575. }
  576. #ifdef CMDBUFFER_DEBUG
  577. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  578. {
  579. SERIAL_ECHOPGM("Entry nr: ");
  580. SERIAL_ECHO(nr);
  581. SERIAL_ECHOPGM(", type: ");
  582. SERIAL_ECHO(int(*p));
  583. SERIAL_ECHOPGM(", cmd: ");
  584. SERIAL_ECHO(p+1);
  585. SERIAL_ECHOLNPGM("");
  586. }
  587. static void cmdqueue_dump_to_serial()
  588. {
  589. if (buflen == 0) {
  590. SERIAL_ECHOLNPGM("The command buffer is empty.");
  591. } else {
  592. SERIAL_ECHOPGM("Content of the buffer: entries ");
  593. SERIAL_ECHO(buflen);
  594. SERIAL_ECHOPGM(", indr ");
  595. SERIAL_ECHO(bufindr);
  596. SERIAL_ECHOPGM(", indw ");
  597. SERIAL_ECHO(bufindw);
  598. SERIAL_ECHOLNPGM("");
  599. int nr = 0;
  600. if (bufindr < bufindw) {
  601. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  602. cmdqueue_dump_to_serial_single_line(nr, p);
  603. // Skip the command.
  604. for (++p; *p != 0; ++ p);
  605. // Skip the gaps.
  606. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  607. }
  608. } else {
  609. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  610. cmdqueue_dump_to_serial_single_line(nr, p);
  611. // Skip the command.
  612. for (++p; *p != 0; ++ p);
  613. // Skip the gaps.
  614. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  615. }
  616. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  617. cmdqueue_dump_to_serial_single_line(nr, p);
  618. // Skip the command.
  619. for (++p; *p != 0; ++ p);
  620. // Skip the gaps.
  621. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  622. }
  623. }
  624. SERIAL_ECHOLNPGM("End of the buffer.");
  625. }
  626. }
  627. #endif /* CMDBUFFER_DEBUG */
  628. //adds an command to the main command buffer
  629. //thats really done in a non-safe way.
  630. //needs overworking someday
  631. // Currently the maximum length of a command piped through this function is around 20 characters
  632. void enquecommand(const char *cmd, bool from_progmem)
  633. {
  634. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  635. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  636. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  637. if (cmdqueue_could_enqueue_back(len)) {
  638. // This is dangerous if a mixing of serial and this happens
  639. // This may easily be tested: If serial_count > 0, we have a problem.
  640. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  641. if (from_progmem)
  642. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  643. else
  644. strcpy(cmdbuffer + bufindw + 1, cmd);
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHORPGM(MSG_Enqueing);
  647. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  648. SERIAL_ECHOLNPGM("\"");
  649. bufindw += len + 2;
  650. if (bufindw == sizeof(cmdbuffer))
  651. bufindw = 0;
  652. ++ buflen;
  653. #ifdef CMDBUFFER_DEBUG
  654. cmdqueue_dump_to_serial();
  655. #endif /* CMDBUFFER_DEBUG */
  656. } else {
  657. SERIAL_ERROR_START;
  658. SERIAL_ECHORPGM(MSG_Enqueing);
  659. if (from_progmem)
  660. SERIAL_PROTOCOLRPGM(cmd);
  661. else
  662. SERIAL_ECHO(cmd);
  663. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  664. #ifdef CMDBUFFER_DEBUG
  665. cmdqueue_dump_to_serial();
  666. #endif /* CMDBUFFER_DEBUG */
  667. }
  668. }
  669. void enquecommand_front(const char *cmd, bool from_progmem)
  670. {
  671. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  672. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  673. if (cmdqueue_could_enqueue_front(len)) {
  674. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  675. if (from_progmem)
  676. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  677. else
  678. strcpy(cmdbuffer + bufindr + 1, cmd);
  679. ++ buflen;
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHOPGM("Enqueing to the front: \"");
  682. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  683. SERIAL_ECHOLNPGM("\"");
  684. #ifdef CMDBUFFER_DEBUG
  685. cmdqueue_dump_to_serial();
  686. #endif /* CMDBUFFER_DEBUG */
  687. } else {
  688. SERIAL_ERROR_START;
  689. SERIAL_ECHOPGM("Enqueing to the front: \"");
  690. if (from_progmem)
  691. SERIAL_PROTOCOLRPGM(cmd);
  692. else
  693. SERIAL_ECHO(cmd);
  694. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  695. #ifdef CMDBUFFER_DEBUG
  696. cmdqueue_dump_to_serial();
  697. #endif /* CMDBUFFER_DEBUG */
  698. }
  699. }
  700. // Mark the command at the top of the command queue as new.
  701. // Therefore it will not be removed from the queue.
  702. void repeatcommand_front()
  703. {
  704. cmdbuffer_front_already_processed = true;
  705. }
  706. void setup_killpin()
  707. {
  708. #if defined(KILL_PIN) && KILL_PIN > -1
  709. SET_INPUT(KILL_PIN);
  710. WRITE(KILL_PIN,HIGH);
  711. #endif
  712. }
  713. // Set home pin
  714. void setup_homepin(void)
  715. {
  716. #if defined(HOME_PIN) && HOME_PIN > -1
  717. SET_INPUT(HOME_PIN);
  718. WRITE(HOME_PIN,HIGH);
  719. #endif
  720. }
  721. void setup_photpin()
  722. {
  723. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  724. SET_OUTPUT(PHOTOGRAPH_PIN);
  725. WRITE(PHOTOGRAPH_PIN, LOW);
  726. #endif
  727. }
  728. void setup_powerhold()
  729. {
  730. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  731. SET_OUTPUT(SUICIDE_PIN);
  732. WRITE(SUICIDE_PIN, HIGH);
  733. #endif
  734. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  735. SET_OUTPUT(PS_ON_PIN);
  736. #if defined(PS_DEFAULT_OFF)
  737. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  738. #else
  739. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  740. #endif
  741. #endif
  742. }
  743. void suicide()
  744. {
  745. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  746. SET_OUTPUT(SUICIDE_PIN);
  747. WRITE(SUICIDE_PIN, LOW);
  748. #endif
  749. }
  750. void servo_init()
  751. {
  752. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  753. servos[0].attach(SERVO0_PIN);
  754. #endif
  755. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  756. servos[1].attach(SERVO1_PIN);
  757. #endif
  758. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  759. servos[2].attach(SERVO2_PIN);
  760. #endif
  761. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  762. servos[3].attach(SERVO3_PIN);
  763. #endif
  764. #if (NUM_SERVOS >= 5)
  765. #error "TODO: enter initalisation code for more servos"
  766. #endif
  767. }
  768. static void lcd_language_menu();
  769. #ifdef MESH_BED_LEVELING
  770. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  771. #endif
  772. // Factory reset function
  773. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  774. // Level input parameter sets depth of reset
  775. // Quiet parameter masks all waitings for user interact.
  776. int er_progress = 0;
  777. void factory_reset(char level, bool quiet)
  778. {
  779. switch (level) {
  780. // Level 0: erase everything, whole EEPROM will be set to 0xFF
  781. case 0:
  782. lcd_print_at_PGM(1,2,PSTR("ERASING all data"));
  783. WRITE(BEEPER, HIGH);
  784. _delay_ms(100);
  785. WRITE(BEEPER, LOW);
  786. _delay_ms(100);
  787. WRITE(BEEPER, HIGH);
  788. _delay_ms(100);
  789. WRITE(BEEPER, LOW);
  790. _delay_ms(200);
  791. er_progress = 0;
  792. lcd_print_at_PGM(3,3,PSTR(" "));
  793. lcd_implementation_print_at(3,3, er_progress);
  794. // Erase EEPROM
  795. for (int i = 0; i < 4096; i++) {
  796. eeprom_write_byte((uint8_t*)i, 0xFF);
  797. if (i % 41 == 0) {
  798. er_progress++;
  799. lcd_print_at_PGM(3,3,PSTR(" "));
  800. lcd_implementation_print_at(3,3, er_progress);
  801. lcd_printPGM(PSTR("%"));
  802. }
  803. }
  804. break;
  805. // Level 1: Language reset
  806. case 1:
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. lcd_force_language_selection();
  811. break;
  812. // Level 2: Prepare for shipping
  813. case 2:
  814. lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  815. // Force language selection at the next boot up.
  816. lcd_force_language_selection();
  817. // Force the "Follow calibration flow" message at the next boot up.
  818. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  819. farm_no = 0;
  820. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  821. farm_mode = false;
  822. WRITE(BEEPER, HIGH);
  823. _delay_ms(100);
  824. WRITE(BEEPER, LOW);
  825. break;
  826. default:
  827. break;
  828. }
  829. }
  830. // "Setup" function is called by the Arduino framework on startup.
  831. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  832. // are initialized by the main() routine provided by the Arduino framework.
  833. void setup()
  834. {
  835. setup_killpin();
  836. setup_powerhold();
  837. MYSERIAL.begin(BAUDRATE);
  838. SERIAL_PROTOCOLLNPGM("start");
  839. SERIAL_ECHO_START;
  840. #if 0
  841. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  842. for (int i = 0; i < 4096; ++ i) {
  843. int b = eeprom_read_byte((unsigned char*)i);
  844. if (b != 255) {
  845. SERIAL_ECHO(i);
  846. SERIAL_ECHO(":");
  847. SERIAL_ECHO(b);
  848. SERIAL_ECHOLN("");
  849. }
  850. }
  851. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  852. #endif
  853. // Check startup - does nothing if bootloader sets MCUSR to 0
  854. byte mcu = MCUSR;
  855. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  856. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  857. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  858. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  859. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  860. MCUSR=0;
  861. //SERIAL_ECHORPGM(MSG_MARLIN);
  862. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  863. #ifdef STRING_VERSION_CONFIG_H
  864. #ifdef STRING_CONFIG_H_AUTHOR
  865. SERIAL_ECHO_START;
  866. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  867. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  868. SERIAL_ECHORPGM(MSG_AUTHOR);
  869. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  870. SERIAL_ECHOPGM("Compiled: ");
  871. SERIAL_ECHOLNPGM(__DATE__);
  872. #endif
  873. #endif
  874. SERIAL_ECHO_START;
  875. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  876. SERIAL_ECHO(freeMemory());
  877. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  878. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  879. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  880. Config_RetrieveSettings();
  881. tp_init(); // Initialize temperature loop
  882. plan_init(); // Initialize planner;
  883. watchdog_init();
  884. st_init(); // Initialize stepper, this enables interrupts!
  885. setup_photpin();
  886. servo_init();
  887. // Reset the machine correction matrix.
  888. // It does not make sense to load the correction matrix until the machine is homed.
  889. world2machine_reset();
  890. lcd_init();
  891. if (!READ(BTN_ENC))
  892. {
  893. _delay_ms(1000);
  894. if (!READ(BTN_ENC))
  895. {
  896. lcd_implementation_clear();
  897. lcd_printPGM(PSTR("Factory RESET"));
  898. SET_OUTPUT(BEEPER);
  899. WRITE(BEEPER, HIGH);
  900. while (!READ(BTN_ENC));
  901. WRITE(BEEPER, LOW);
  902. _delay_ms(2000);
  903. if (!READ(BTN_ENC))
  904. {
  905. factory_reset(0,false);
  906. }
  907. else
  908. {
  909. factory_reset(2,false);
  910. }
  911. _delay_ms(2000);
  912. /*
  913. #ifdef MESH_BED_LEVELING
  914. _delay_ms(2000);
  915. if (!READ(BTN_ENC))
  916. {
  917. WRITE(BEEPER, HIGH);
  918. _delay_ms(100);
  919. WRITE(BEEPER, LOW);
  920. _delay_ms(200);
  921. WRITE(BEEPER, HIGH);
  922. _delay_ms(100);
  923. WRITE(BEEPER, LOW);
  924. int _z = 0;
  925. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  926. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  927. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  928. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  929. }
  930. else
  931. {
  932. WRITE(BEEPER, HIGH);
  933. _delay_ms(100);
  934. WRITE(BEEPER, LOW);
  935. }
  936. #endif // mesh */
  937. }
  938. }
  939. else
  940. {
  941. _delay_ms(1000); // wait 1sec to display the splash screen
  942. }
  943. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  944. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  945. #endif
  946. #ifdef DIGIPOT_I2C
  947. digipot_i2c_init();
  948. #endif
  949. setup_homepin();
  950. #if defined(Z_AXIS_ALWAYS_ON)
  951. enable_z();
  952. #endif
  953. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  954. if (farm_no > 0)
  955. {
  956. farm_mode = true;
  957. farm_no = farm_no;
  958. prusa_statistics(8);
  959. }
  960. else
  961. {
  962. farm_mode = false;
  963. farm_no = 0;
  964. }
  965. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  966. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  967. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  968. // but this times out if a blocking dialog is shown in setup().
  969. card.initsd();
  970. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  971. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  972. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  973. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  974. // where all the EEPROM entries are set to 0x0ff.
  975. // Once a firmware boots up, it forces at least a language selection, which changes
  976. // EEPROM_LANG to number lower than 0x0ff.
  977. // 1) Set a high power mode.
  978. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  979. }
  980. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  981. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  982. // is being written into the EEPROM, so the update procedure will be triggered only once.
  983. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  984. if (lang_selected >= LANG_NUM){
  985. lcd_mylang();
  986. }
  987. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  988. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  989. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  990. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  991. // Show the message.
  992. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  993. lcd_update_enable(true);
  994. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  995. // Show the message.
  996. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  997. lcd_update_enable(true);
  998. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  999. // Show the message.
  1000. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1001. lcd_update_enable(true);
  1002. }
  1003. // Store the currently running firmware into an eeprom,
  1004. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1005. update_current_firmware_version_to_eeprom();
  1006. }
  1007. void trace();
  1008. #define CHUNK_SIZE 64 // bytes
  1009. #define SAFETY_MARGIN 1
  1010. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1011. int chunkHead = 0;
  1012. int serial_read_stream() {
  1013. setTargetHotend(0, 0);
  1014. setTargetBed(0);
  1015. lcd_implementation_clear();
  1016. lcd_printPGM(PSTR(" Upload in progress"));
  1017. // first wait for how many bytes we will receive
  1018. uint32_t bytesToReceive;
  1019. // receive the four bytes
  1020. char bytesToReceiveBuffer[4];
  1021. for (int i=0; i<4; i++) {
  1022. int data;
  1023. while ((data = MYSERIAL.read()) == -1) {};
  1024. bytesToReceiveBuffer[i] = data;
  1025. }
  1026. // make it a uint32
  1027. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1028. // we're ready, notify the sender
  1029. MYSERIAL.write('+');
  1030. // lock in the routine
  1031. uint32_t receivedBytes = 0;
  1032. while (prusa_sd_card_upload) {
  1033. int i;
  1034. for (i=0; i<CHUNK_SIZE; i++) {
  1035. int data;
  1036. // check if we're not done
  1037. if (receivedBytes == bytesToReceive) {
  1038. break;
  1039. }
  1040. // read the next byte
  1041. while ((data = MYSERIAL.read()) == -1) {};
  1042. receivedBytes++;
  1043. // save it to the chunk
  1044. chunk[i] = data;
  1045. }
  1046. // write the chunk to SD
  1047. card.write_command_no_newline(&chunk[0]);
  1048. // notify the sender we're ready for more data
  1049. MYSERIAL.write('+');
  1050. // for safety
  1051. manage_heater();
  1052. // check if we're done
  1053. if(receivedBytes == bytesToReceive) {
  1054. trace(); // beep
  1055. card.closefile();
  1056. prusa_sd_card_upload = false;
  1057. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1058. return 0;
  1059. }
  1060. }
  1061. }
  1062. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1063. // Before loop(), the setup() function is called by the main() routine.
  1064. void loop()
  1065. {
  1066. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1067. {
  1068. is_usb_printing = true;
  1069. usb_printing_counter--;
  1070. _usb_timer = millis();
  1071. }
  1072. if (usb_printing_counter == 0)
  1073. {
  1074. is_usb_printing = false;
  1075. }
  1076. if (prusa_sd_card_upload)
  1077. {
  1078. //we read byte-by byte
  1079. serial_read_stream();
  1080. } else
  1081. {
  1082. get_command();
  1083. #ifdef SDSUPPORT
  1084. card.checkautostart(false);
  1085. #endif
  1086. if(buflen)
  1087. {
  1088. #ifdef SDSUPPORT
  1089. if(card.saving)
  1090. {
  1091. // Saving a G-code file onto an SD-card is in progress.
  1092. // Saving starts with M28, saving until M29 is seen.
  1093. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1094. card.write_command(CMDBUFFER_CURRENT_STRING);
  1095. if(card.logging)
  1096. process_commands();
  1097. else
  1098. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1099. } else {
  1100. card.closefile();
  1101. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1102. }
  1103. } else {
  1104. process_commands();
  1105. }
  1106. #else
  1107. process_commands();
  1108. #endif //SDSUPPORT
  1109. if (! cmdbuffer_front_already_processed)
  1110. cmdqueue_pop_front();
  1111. cmdbuffer_front_already_processed = false;
  1112. }
  1113. }
  1114. //check heater every n milliseconds
  1115. manage_heater();
  1116. manage_inactivity();
  1117. checkHitEndstops();
  1118. lcd_update();
  1119. }
  1120. void get_command()
  1121. {
  1122. // Test and reserve space for the new command string.
  1123. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1124. return;
  1125. while (MYSERIAL.available() > 0) {
  1126. char serial_char = MYSERIAL.read();
  1127. TimeSent = millis();
  1128. TimeNow = millis();
  1129. if (serial_char < 0)
  1130. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1131. // and Marlin does not support such file names anyway.
  1132. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1133. // to a hang-up of the print process from an SD card.
  1134. continue;
  1135. if(serial_char == '\n' ||
  1136. serial_char == '\r' ||
  1137. (serial_char == ':' && comment_mode == false) ||
  1138. serial_count >= (MAX_CMD_SIZE - 1) )
  1139. {
  1140. if(!serial_count) { //if empty line
  1141. comment_mode = false; //for new command
  1142. return;
  1143. }
  1144. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1145. if(!comment_mode){
  1146. comment_mode = false; //for new command
  1147. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1148. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1149. {
  1150. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1151. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1152. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1153. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1154. // M110 - set current line number.
  1155. // Line numbers not sent in succession.
  1156. SERIAL_ERROR_START;
  1157. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1158. SERIAL_ERRORLN(gcode_LastN);
  1159. //Serial.println(gcode_N);
  1160. FlushSerialRequestResend();
  1161. serial_count = 0;
  1162. return;
  1163. }
  1164. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1165. {
  1166. byte checksum = 0;
  1167. char *p = cmdbuffer+bufindw+1;
  1168. while (p != strchr_pointer)
  1169. checksum = checksum^(*p++);
  1170. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1171. SERIAL_ERROR_START;
  1172. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1173. SERIAL_ERRORLN(gcode_LastN);
  1174. FlushSerialRequestResend();
  1175. serial_count = 0;
  1176. return;
  1177. }
  1178. // If no errors, remove the checksum and continue parsing.
  1179. *strchr_pointer = 0;
  1180. }
  1181. else
  1182. {
  1183. SERIAL_ERROR_START;
  1184. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1185. SERIAL_ERRORLN(gcode_LastN);
  1186. FlushSerialRequestResend();
  1187. serial_count = 0;
  1188. return;
  1189. }
  1190. gcode_LastN = gcode_N;
  1191. //if no errors, continue parsing
  1192. } // end of 'N' command
  1193. }
  1194. else // if we don't receive 'N' but still see '*'
  1195. {
  1196. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1197. {
  1198. SERIAL_ERROR_START;
  1199. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1200. SERIAL_ERRORLN(gcode_LastN);
  1201. serial_count = 0;
  1202. return;
  1203. }
  1204. } // end of '*' command
  1205. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1206. if (! IS_SD_PRINTING) {
  1207. usb_printing_counter = 10;
  1208. is_usb_printing = true;
  1209. }
  1210. if (Stopped == true) {
  1211. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1212. if (gcode >= 0 && gcode <= 3) {
  1213. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1214. LCD_MESSAGERPGM(MSG_STOPPED);
  1215. }
  1216. }
  1217. } // end of 'G' command
  1218. //If command was e-stop process now
  1219. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1220. kill();
  1221. // Store the current line into buffer, move to the next line.
  1222. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1223. #ifdef CMDBUFFER_DEBUG
  1224. SERIAL_ECHO_START;
  1225. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1226. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1227. SERIAL_ECHOLNPGM("");
  1228. #endif /* CMDBUFFER_DEBUG */
  1229. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1230. if (bufindw == sizeof(cmdbuffer))
  1231. bufindw = 0;
  1232. ++ buflen;
  1233. #ifdef CMDBUFFER_DEBUG
  1234. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1235. SERIAL_ECHO(buflen);
  1236. SERIAL_ECHOLNPGM("");
  1237. #endif /* CMDBUFFER_DEBUG */
  1238. } // end of 'not comment mode'
  1239. serial_count = 0; //clear buffer
  1240. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1241. // in the queue, as this function will reserve the memory.
  1242. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1243. return;
  1244. } // end of "end of line" processing
  1245. else {
  1246. // Not an "end of line" symbol. Store the new character into a buffer.
  1247. if(serial_char == ';') comment_mode = true;
  1248. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1249. }
  1250. } // end of serial line processing loop
  1251. if(farm_mode){
  1252. TimeNow = millis();
  1253. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1254. cmdbuffer[bufindw+serial_count+1] = 0;
  1255. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1256. if (bufindw == sizeof(cmdbuffer))
  1257. bufindw = 0;
  1258. ++ buflen;
  1259. serial_count = 0;
  1260. SERIAL_ECHOPGM("TIMEOUT:");
  1261. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1262. return;
  1263. }
  1264. }
  1265. #ifdef SDSUPPORT
  1266. if(!card.sdprinting || serial_count!=0){
  1267. // If there is a half filled buffer from serial line, wait until return before
  1268. // continuing with the serial line.
  1269. return;
  1270. }
  1271. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1272. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1273. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1274. static bool stop_buffering=false;
  1275. if(buflen==0) stop_buffering=false;
  1276. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1277. while( !card.eof() && !stop_buffering) {
  1278. int16_t n=card.get();
  1279. char serial_char = (char)n;
  1280. if(serial_char == '\n' ||
  1281. serial_char == '\r' ||
  1282. (serial_char == '#' && comment_mode == false) ||
  1283. (serial_char == ':' && comment_mode == false) ||
  1284. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1285. {
  1286. if(card.eof()){
  1287. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1288. stoptime=millis();
  1289. char time[30];
  1290. unsigned long t=(stoptime-starttime)/1000;
  1291. int hours, minutes;
  1292. minutes=(t/60)%60;
  1293. hours=t/60/60;
  1294. save_statistics(total_filament_used, t);
  1295. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1296. SERIAL_ECHO_START;
  1297. SERIAL_ECHOLN(time);
  1298. lcd_setstatus(time);
  1299. card.printingHasFinished();
  1300. card.checkautostart(true);
  1301. if (farm_mode)
  1302. {
  1303. prusa_statistics(6);
  1304. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1305. }
  1306. }
  1307. if(serial_char=='#')
  1308. stop_buffering=true;
  1309. if(!serial_count)
  1310. {
  1311. comment_mode = false; //for new command
  1312. return; //if empty line
  1313. }
  1314. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1315. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1316. ++ buflen;
  1317. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1318. if (bufindw == sizeof(cmdbuffer))
  1319. bufindw = 0;
  1320. comment_mode = false; //for new command
  1321. serial_count = 0; //clear buffer
  1322. // The following line will reserve buffer space if available.
  1323. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1324. return;
  1325. }
  1326. else
  1327. {
  1328. if(serial_char == ';') comment_mode = true;
  1329. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1330. }
  1331. }
  1332. #endif //SDSUPPORT
  1333. }
  1334. // Return True if a character was found
  1335. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1336. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1337. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1338. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1339. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1340. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1341. #define DEFINE_PGM_READ_ANY(type, reader) \
  1342. static inline type pgm_read_any(const type *p) \
  1343. { return pgm_read_##reader##_near(p); }
  1344. DEFINE_PGM_READ_ANY(float, float);
  1345. DEFINE_PGM_READ_ANY(signed char, byte);
  1346. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1347. static const PROGMEM type array##_P[3] = \
  1348. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1349. static inline type array(int axis) \
  1350. { return pgm_read_any(&array##_P[axis]); } \
  1351. type array##_ext(int axis) \
  1352. { return pgm_read_any(&array##_P[axis]); }
  1353. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1354. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1355. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1356. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1357. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1358. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1359. static void axis_is_at_home(int axis) {
  1360. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1361. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1362. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1363. }
  1364. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1365. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1366. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1367. saved_feedrate = feedrate;
  1368. saved_feedmultiply = feedmultiply;
  1369. feedmultiply = 100;
  1370. previous_millis_cmd = millis();
  1371. enable_endstops(enable_endstops_now);
  1372. }
  1373. static void clean_up_after_endstop_move() {
  1374. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1375. enable_endstops(false);
  1376. #endif
  1377. feedrate = saved_feedrate;
  1378. feedmultiply = saved_feedmultiply;
  1379. previous_millis_cmd = millis();
  1380. }
  1381. #ifdef ENABLE_AUTO_BED_LEVELING
  1382. #ifdef AUTO_BED_LEVELING_GRID
  1383. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1384. {
  1385. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1386. planeNormal.debug("planeNormal");
  1387. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1388. //bedLevel.debug("bedLevel");
  1389. //plan_bed_level_matrix.debug("bed level before");
  1390. //vector_3 uncorrected_position = plan_get_position_mm();
  1391. //uncorrected_position.debug("position before");
  1392. vector_3 corrected_position = plan_get_position();
  1393. // corrected_position.debug("position after");
  1394. current_position[X_AXIS] = corrected_position.x;
  1395. current_position[Y_AXIS] = corrected_position.y;
  1396. current_position[Z_AXIS] = corrected_position.z;
  1397. // put the bed at 0 so we don't go below it.
  1398. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1399. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1400. }
  1401. #else // not AUTO_BED_LEVELING_GRID
  1402. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1403. plan_bed_level_matrix.set_to_identity();
  1404. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1405. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1406. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1407. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1408. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1409. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1410. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1411. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1412. vector_3 corrected_position = plan_get_position();
  1413. current_position[X_AXIS] = corrected_position.x;
  1414. current_position[Y_AXIS] = corrected_position.y;
  1415. current_position[Z_AXIS] = corrected_position.z;
  1416. // put the bed at 0 so we don't go below it.
  1417. current_position[Z_AXIS] = zprobe_zoffset;
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. }
  1420. #endif // AUTO_BED_LEVELING_GRID
  1421. static void run_z_probe() {
  1422. plan_bed_level_matrix.set_to_identity();
  1423. feedrate = homing_feedrate[Z_AXIS];
  1424. // move down until you find the bed
  1425. float zPosition = -10;
  1426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1427. st_synchronize();
  1428. // we have to let the planner know where we are right now as it is not where we said to go.
  1429. zPosition = st_get_position_mm(Z_AXIS);
  1430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1431. // move up the retract distance
  1432. zPosition += home_retract_mm(Z_AXIS);
  1433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1434. st_synchronize();
  1435. // move back down slowly to find bed
  1436. feedrate = homing_feedrate[Z_AXIS]/4;
  1437. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1439. st_synchronize();
  1440. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1441. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1443. }
  1444. static void do_blocking_move_to(float x, float y, float z) {
  1445. float oldFeedRate = feedrate;
  1446. feedrate = homing_feedrate[Z_AXIS];
  1447. current_position[Z_AXIS] = z;
  1448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1449. st_synchronize();
  1450. feedrate = XY_TRAVEL_SPEED;
  1451. current_position[X_AXIS] = x;
  1452. current_position[Y_AXIS] = y;
  1453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1454. st_synchronize();
  1455. feedrate = oldFeedRate;
  1456. }
  1457. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1458. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1459. }
  1460. /// Probe bed height at position (x,y), returns the measured z value
  1461. static float probe_pt(float x, float y, float z_before) {
  1462. // move to right place
  1463. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1464. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1465. run_z_probe();
  1466. float measured_z = current_position[Z_AXIS];
  1467. SERIAL_PROTOCOLRPGM(MSG_BED);
  1468. SERIAL_PROTOCOLPGM(" x: ");
  1469. SERIAL_PROTOCOL(x);
  1470. SERIAL_PROTOCOLPGM(" y: ");
  1471. SERIAL_PROTOCOL(y);
  1472. SERIAL_PROTOCOLPGM(" z: ");
  1473. SERIAL_PROTOCOL(measured_z);
  1474. SERIAL_PROTOCOLPGM("\n");
  1475. return measured_z;
  1476. }
  1477. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1478. void homeaxis(int axis) {
  1479. #define HOMEAXIS_DO(LETTER) \
  1480. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1481. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1482. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1483. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1484. 0) {
  1485. int axis_home_dir = home_dir(axis);
  1486. current_position[axis] = 0;
  1487. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1488. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1489. feedrate = homing_feedrate[axis];
  1490. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. current_position[axis] = 0;
  1493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1495. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1496. st_synchronize();
  1497. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1498. feedrate = homing_feedrate[axis]/2 ;
  1499. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. axis_is_at_home(axis);
  1502. destination[axis] = current_position[axis];
  1503. feedrate = 0.0;
  1504. endstops_hit_on_purpose();
  1505. axis_known_position[axis] = true;
  1506. }
  1507. }
  1508. void home_xy()
  1509. {
  1510. set_destination_to_current();
  1511. homeaxis(X_AXIS);
  1512. homeaxis(Y_AXIS);
  1513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1514. endstops_hit_on_purpose();
  1515. }
  1516. void refresh_cmd_timeout(void)
  1517. {
  1518. previous_millis_cmd = millis();
  1519. }
  1520. #ifdef FWRETRACT
  1521. void retract(bool retracting, bool swapretract = false) {
  1522. if(retracting && !retracted[active_extruder]) {
  1523. destination[X_AXIS]=current_position[X_AXIS];
  1524. destination[Y_AXIS]=current_position[Y_AXIS];
  1525. destination[Z_AXIS]=current_position[Z_AXIS];
  1526. destination[E_AXIS]=current_position[E_AXIS];
  1527. if (swapretract) {
  1528. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1529. } else {
  1530. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1531. }
  1532. plan_set_e_position(current_position[E_AXIS]);
  1533. float oldFeedrate = feedrate;
  1534. feedrate=retract_feedrate*60;
  1535. retracted[active_extruder]=true;
  1536. prepare_move();
  1537. current_position[Z_AXIS]-=retract_zlift;
  1538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1539. prepare_move();
  1540. feedrate = oldFeedrate;
  1541. } else if(!retracting && retracted[active_extruder]) {
  1542. destination[X_AXIS]=current_position[X_AXIS];
  1543. destination[Y_AXIS]=current_position[Y_AXIS];
  1544. destination[Z_AXIS]=current_position[Z_AXIS];
  1545. destination[E_AXIS]=current_position[E_AXIS];
  1546. current_position[Z_AXIS]+=retract_zlift;
  1547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1548. //prepare_move();
  1549. if (swapretract) {
  1550. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1551. } else {
  1552. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1553. }
  1554. plan_set_e_position(current_position[E_AXIS]);
  1555. float oldFeedrate = feedrate;
  1556. feedrate=retract_recover_feedrate*60;
  1557. retracted[active_extruder]=false;
  1558. prepare_move();
  1559. feedrate = oldFeedrate;
  1560. }
  1561. } //retract
  1562. #endif //FWRETRACT
  1563. void trace() {
  1564. tone(BEEPER, 440);
  1565. delay(25);
  1566. noTone(BEEPER);
  1567. delay(20);
  1568. }
  1569. void process_commands()
  1570. {
  1571. #ifdef FILAMENT_RUNOUT_SUPPORT
  1572. SET_INPUT(FR_SENS);
  1573. #endif
  1574. #ifdef CMDBUFFER_DEBUG
  1575. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1576. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1577. SERIAL_ECHOLNPGM("");
  1578. SERIAL_ECHOPGM("In cmdqueue: ");
  1579. SERIAL_ECHO(buflen);
  1580. SERIAL_ECHOLNPGM("");
  1581. #endif /* CMDBUFFER_DEBUG */
  1582. unsigned long codenum; //throw away variable
  1583. char *starpos = NULL;
  1584. #ifdef ENABLE_AUTO_BED_LEVELING
  1585. float x_tmp, y_tmp, z_tmp, real_z;
  1586. #endif
  1587. // PRUSA GCODES
  1588. if(code_seen("PRUSA")){
  1589. if (code_seen("fv")) {
  1590. // get file version
  1591. #ifdef SDSUPPORT
  1592. card.openFile(strchr_pointer + 3,true);
  1593. while (true) {
  1594. uint16_t readByte = card.get();
  1595. MYSERIAL.write(readByte);
  1596. if (readByte=='\n') {
  1597. break;
  1598. }
  1599. }
  1600. card.closefile();
  1601. #endif // SDSUPPORT
  1602. } else if (code_seen("M28")) {
  1603. trace();
  1604. prusa_sd_card_upload = true;
  1605. card.openFile(strchr_pointer+4,false);
  1606. } else if(code_seen("Fir")){
  1607. SERIAL_PROTOCOLLN(FW_version);
  1608. } else if(code_seen("Rev")){
  1609. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1610. } else if(code_seen("Lang")) {
  1611. lcd_force_language_selection();
  1612. } else if(code_seen("Lz")) {
  1613. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1614. } else if (code_seen("SERIAL LOW")) {
  1615. MYSERIAL.println("SERIAL LOW");
  1616. MYSERIAL.begin(BAUDRATE);
  1617. return;
  1618. } else if (code_seen("SERIAL HIGH")) {
  1619. MYSERIAL.println("SERIAL HIGH");
  1620. MYSERIAL.begin(1152000);
  1621. return;
  1622. } else if(code_seen("Beat")) {
  1623. // Kick farm link timer
  1624. kicktime = millis();
  1625. } else if(code_seen("FR")) {
  1626. // Factory full reset
  1627. factory_reset(0,true);
  1628. }
  1629. //else if (code_seen('Cal')) {
  1630. // lcd_calibration();
  1631. // }
  1632. }
  1633. else if (code_seen('^')) {
  1634. // nothing, this is a version line
  1635. } else if(code_seen('G'))
  1636. {
  1637. switch((int)code_value())
  1638. {
  1639. case 0: // G0 -> G1
  1640. case 1: // G1
  1641. if(Stopped == false) {
  1642. #ifdef FILAMENT_RUNOUT_SUPPORT
  1643. if(READ(FR_SENS)){
  1644. feedmultiplyBckp=feedmultiply;
  1645. float target[4];
  1646. float lastpos[4];
  1647. target[X_AXIS]=current_position[X_AXIS];
  1648. target[Y_AXIS]=current_position[Y_AXIS];
  1649. target[Z_AXIS]=current_position[Z_AXIS];
  1650. target[E_AXIS]=current_position[E_AXIS];
  1651. lastpos[X_AXIS]=current_position[X_AXIS];
  1652. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1653. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1654. lastpos[E_AXIS]=current_position[E_AXIS];
  1655. //retract by E
  1656. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1658. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1660. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1661. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1662. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1663. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1665. //finish moves
  1666. st_synchronize();
  1667. //disable extruder steppers so filament can be removed
  1668. disable_e0();
  1669. disable_e1();
  1670. disable_e2();
  1671. delay(100);
  1672. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1673. uint8_t cnt=0;
  1674. int counterBeep = 0;
  1675. lcd_wait_interact();
  1676. while(!lcd_clicked()){
  1677. cnt++;
  1678. manage_heater();
  1679. manage_inactivity(true);
  1680. //lcd_update();
  1681. if(cnt==0)
  1682. {
  1683. #if BEEPER > 0
  1684. if (counterBeep== 500){
  1685. counterBeep = 0;
  1686. }
  1687. SET_OUTPUT(BEEPER);
  1688. if (counterBeep== 0){
  1689. WRITE(BEEPER,HIGH);
  1690. }
  1691. if (counterBeep== 20){
  1692. WRITE(BEEPER,LOW);
  1693. }
  1694. counterBeep++;
  1695. #else
  1696. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1697. lcd_buzz(1000/6,100);
  1698. #else
  1699. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1700. #endif
  1701. #endif
  1702. }
  1703. }
  1704. WRITE(BEEPER,LOW);
  1705. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1707. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1709. lcd_change_fil_state = 0;
  1710. lcd_loading_filament();
  1711. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1712. lcd_change_fil_state = 0;
  1713. lcd_alright();
  1714. switch(lcd_change_fil_state){
  1715. case 2:
  1716. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1718. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1720. lcd_loading_filament();
  1721. break;
  1722. case 3:
  1723. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1725. lcd_loading_color();
  1726. break;
  1727. default:
  1728. lcd_change_success();
  1729. break;
  1730. }
  1731. }
  1732. target[E_AXIS]+= 5;
  1733. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1734. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1735. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1736. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1737. //plan_set_e_position(current_position[E_AXIS]);
  1738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1739. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1740. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1741. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1742. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1743. plan_set_e_position(lastpos[E_AXIS]);
  1744. feedmultiply=feedmultiplyBckp;
  1745. char cmd[9];
  1746. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1747. enquecommand(cmd);
  1748. }
  1749. #endif
  1750. get_coordinates(); // For X Y Z E F
  1751. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1752. #ifdef FWRETRACT
  1753. if(autoretract_enabled)
  1754. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1755. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1756. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1757. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1758. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1759. retract(!retracted);
  1760. return;
  1761. }
  1762. }
  1763. #endif //FWRETRACT
  1764. prepare_move();
  1765. //ClearToSend();
  1766. }
  1767. break;
  1768. case 2: // G2 - CW ARC
  1769. if(Stopped == false) {
  1770. get_arc_coordinates();
  1771. prepare_arc_move(true);
  1772. }
  1773. break;
  1774. case 3: // G3 - CCW ARC
  1775. if(Stopped == false) {
  1776. get_arc_coordinates();
  1777. prepare_arc_move(false);
  1778. }
  1779. break;
  1780. case 4: // G4 dwell
  1781. LCD_MESSAGERPGM(MSG_DWELL);
  1782. codenum = 0;
  1783. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1784. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1785. st_synchronize();
  1786. codenum += millis(); // keep track of when we started waiting
  1787. previous_millis_cmd = millis();
  1788. while(millis() < codenum) {
  1789. manage_heater();
  1790. manage_inactivity();
  1791. lcd_update();
  1792. }
  1793. break;
  1794. #ifdef FWRETRACT
  1795. case 10: // G10 retract
  1796. #if EXTRUDERS > 1
  1797. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1798. retract(true,retracted_swap[active_extruder]);
  1799. #else
  1800. retract(true);
  1801. #endif
  1802. break;
  1803. case 11: // G11 retract_recover
  1804. #if EXTRUDERS > 1
  1805. retract(false,retracted_swap[active_extruder]);
  1806. #else
  1807. retract(false);
  1808. #endif
  1809. break;
  1810. #endif //FWRETRACT
  1811. case 28: //G28 Home all Axis one at a time
  1812. #ifdef ENABLE_AUTO_BED_LEVELING
  1813. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1814. #endif //ENABLE_AUTO_BED_LEVELING
  1815. // For mesh bed leveling deactivate the matrix temporarily
  1816. #ifdef MESH_BED_LEVELING
  1817. mbl.active = 0;
  1818. #endif
  1819. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1820. // the planner will not perform any adjustments in the XY plane.
  1821. // Wait for the motors to stop and update the current position with the absolute values.
  1822. world2machine_revert_to_uncorrected();
  1823. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1824. // consumed during the first movements following this statement.
  1825. babystep_undo();
  1826. saved_feedrate = feedrate;
  1827. saved_feedmultiply = feedmultiply;
  1828. feedmultiply = 100;
  1829. previous_millis_cmd = millis();
  1830. enable_endstops(true);
  1831. for(int8_t i=0; i < NUM_AXIS; i++)
  1832. destination[i] = current_position[i];
  1833. feedrate = 0.0;
  1834. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1835. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1836. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1837. homeaxis(Z_AXIS);
  1838. }
  1839. #endif
  1840. #ifdef QUICK_HOME
  1841. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1842. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1843. {
  1844. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1845. int x_axis_home_dir = home_dir(X_AXIS);
  1846. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1847. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1848. feedrate = homing_feedrate[X_AXIS];
  1849. if(homing_feedrate[Y_AXIS]<feedrate)
  1850. feedrate = homing_feedrate[Y_AXIS];
  1851. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1852. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1853. } else {
  1854. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1855. }
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1857. st_synchronize();
  1858. axis_is_at_home(X_AXIS);
  1859. axis_is_at_home(Y_AXIS);
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. destination[X_AXIS] = current_position[X_AXIS];
  1862. destination[Y_AXIS] = current_position[Y_AXIS];
  1863. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1864. feedrate = 0.0;
  1865. st_synchronize();
  1866. endstops_hit_on_purpose();
  1867. current_position[X_AXIS] = destination[X_AXIS];
  1868. current_position[Y_AXIS] = destination[Y_AXIS];
  1869. current_position[Z_AXIS] = destination[Z_AXIS];
  1870. }
  1871. #endif /* QUICK_HOME */
  1872. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1873. homeaxis(X_AXIS);
  1874. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1875. homeaxis(Y_AXIS);
  1876. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1877. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1878. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1879. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1880. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1881. #ifndef Z_SAFE_HOMING
  1882. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1883. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1884. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1885. feedrate = max_feedrate[Z_AXIS];
  1886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1887. st_synchronize();
  1888. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1889. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1890. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1891. {
  1892. homeaxis(X_AXIS);
  1893. homeaxis(Y_AXIS);
  1894. }
  1895. // 1st mesh bed leveling measurement point, corrected.
  1896. world2machine_initialize();
  1897. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1898. world2machine_reset();
  1899. if (destination[Y_AXIS] < Y_MIN_POS)
  1900. destination[Y_AXIS] = Y_MIN_POS;
  1901. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1902. feedrate = homing_feedrate[Z_AXIS]/10;
  1903. current_position[Z_AXIS] = 0;
  1904. enable_endstops(false);
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1907. st_synchronize();
  1908. current_position[X_AXIS] = destination[X_AXIS];
  1909. current_position[Y_AXIS] = destination[Y_AXIS];
  1910. enable_endstops(true);
  1911. endstops_hit_on_purpose();
  1912. homeaxis(Z_AXIS);
  1913. #else // MESH_BED_LEVELING
  1914. homeaxis(Z_AXIS);
  1915. #endif // MESH_BED_LEVELING
  1916. }
  1917. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1918. if(home_all_axis) {
  1919. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1920. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1921. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1922. feedrate = XY_TRAVEL_SPEED/60;
  1923. current_position[Z_AXIS] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1926. st_synchronize();
  1927. current_position[X_AXIS] = destination[X_AXIS];
  1928. current_position[Y_AXIS] = destination[Y_AXIS];
  1929. homeaxis(Z_AXIS);
  1930. }
  1931. // Let's see if X and Y are homed and probe is inside bed area.
  1932. if(code_seen(axis_codes[Z_AXIS])) {
  1933. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1934. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1935. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1936. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1937. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1938. current_position[Z_AXIS] = 0;
  1939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1940. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1941. feedrate = max_feedrate[Z_AXIS];
  1942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1943. st_synchronize();
  1944. homeaxis(Z_AXIS);
  1945. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1946. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1947. SERIAL_ECHO_START;
  1948. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1949. } else {
  1950. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1951. SERIAL_ECHO_START;
  1952. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1953. }
  1954. }
  1955. #endif // Z_SAFE_HOMING
  1956. #endif // Z_HOME_DIR < 0
  1957. if(code_seen(axis_codes[Z_AXIS])) {
  1958. if(code_value_long() != 0) {
  1959. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1960. }
  1961. }
  1962. #ifdef ENABLE_AUTO_BED_LEVELING
  1963. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1964. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1965. }
  1966. #endif
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1969. enable_endstops(false);
  1970. #endif
  1971. feedrate = saved_feedrate;
  1972. feedmultiply = saved_feedmultiply;
  1973. previous_millis_cmd = millis();
  1974. endstops_hit_on_purpose();
  1975. #ifndef MESH_BED_LEVELING
  1976. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1977. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1978. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1979. lcd_adjust_z();
  1980. #endif
  1981. // Load the machine correction matrix
  1982. world2machine_initialize();
  1983. // and correct the current_position to match the transformed coordinate system.
  1984. world2machine_update_current();
  1985. #ifdef MESH_BED_LEVELING
  1986. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1987. {
  1988. }
  1989. else
  1990. {
  1991. st_synchronize();
  1992. // Push the commands to the front of the message queue in the reverse order!
  1993. // There shall be always enough space reserved for these commands.
  1994. // enquecommand_front_P((PSTR("G80")));
  1995. goto case_G80;
  1996. }
  1997. #endif
  1998. if (farm_mode) { prusa_statistics(20); };
  1999. break;
  2000. #ifdef ENABLE_AUTO_BED_LEVELING
  2001. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2002. {
  2003. #if Z_MIN_PIN == -1
  2004. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2005. #endif
  2006. // Prevent user from running a G29 without first homing in X and Y
  2007. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2008. {
  2009. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2010. SERIAL_ECHO_START;
  2011. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2012. break; // abort G29, since we don't know where we are
  2013. }
  2014. st_synchronize();
  2015. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2016. //vector_3 corrected_position = plan_get_position_mm();
  2017. //corrected_position.debug("position before G29");
  2018. plan_bed_level_matrix.set_to_identity();
  2019. vector_3 uncorrected_position = plan_get_position();
  2020. //uncorrected_position.debug("position durring G29");
  2021. current_position[X_AXIS] = uncorrected_position.x;
  2022. current_position[Y_AXIS] = uncorrected_position.y;
  2023. current_position[Z_AXIS] = uncorrected_position.z;
  2024. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2025. setup_for_endstop_move();
  2026. feedrate = homing_feedrate[Z_AXIS];
  2027. #ifdef AUTO_BED_LEVELING_GRID
  2028. // probe at the points of a lattice grid
  2029. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2030. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2031. // solve the plane equation ax + by + d = z
  2032. // A is the matrix with rows [x y 1] for all the probed points
  2033. // B is the vector of the Z positions
  2034. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2035. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2036. // "A" matrix of the linear system of equations
  2037. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2038. // "B" vector of Z points
  2039. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2040. int probePointCounter = 0;
  2041. bool zig = true;
  2042. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2043. {
  2044. int xProbe, xInc;
  2045. if (zig)
  2046. {
  2047. xProbe = LEFT_PROBE_BED_POSITION;
  2048. //xEnd = RIGHT_PROBE_BED_POSITION;
  2049. xInc = xGridSpacing;
  2050. zig = false;
  2051. } else // zag
  2052. {
  2053. xProbe = RIGHT_PROBE_BED_POSITION;
  2054. //xEnd = LEFT_PROBE_BED_POSITION;
  2055. xInc = -xGridSpacing;
  2056. zig = true;
  2057. }
  2058. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2059. {
  2060. float z_before;
  2061. if (probePointCounter == 0)
  2062. {
  2063. // raise before probing
  2064. z_before = Z_RAISE_BEFORE_PROBING;
  2065. } else
  2066. {
  2067. // raise extruder
  2068. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2069. }
  2070. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2071. eqnBVector[probePointCounter] = measured_z;
  2072. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2073. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2074. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2075. probePointCounter++;
  2076. xProbe += xInc;
  2077. }
  2078. }
  2079. clean_up_after_endstop_move();
  2080. // solve lsq problem
  2081. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2082. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2083. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2084. SERIAL_PROTOCOLPGM(" b: ");
  2085. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2086. SERIAL_PROTOCOLPGM(" d: ");
  2087. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2088. set_bed_level_equation_lsq(plane_equation_coefficients);
  2089. free(plane_equation_coefficients);
  2090. #else // AUTO_BED_LEVELING_GRID not defined
  2091. // Probe at 3 arbitrary points
  2092. // probe 1
  2093. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2094. // probe 2
  2095. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2096. // probe 3
  2097. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2098. clean_up_after_endstop_move();
  2099. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2100. #endif // AUTO_BED_LEVELING_GRID
  2101. st_synchronize();
  2102. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2103. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2104. // When the bed is uneven, this height must be corrected.
  2105. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2106. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2107. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2108. z_tmp = current_position[Z_AXIS];
  2109. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2110. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2112. }
  2113. break;
  2114. #ifndef Z_PROBE_SLED
  2115. case 30: // G30 Single Z Probe
  2116. {
  2117. st_synchronize();
  2118. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2119. setup_for_endstop_move();
  2120. feedrate = homing_feedrate[Z_AXIS];
  2121. run_z_probe();
  2122. SERIAL_PROTOCOLPGM(MSG_BED);
  2123. SERIAL_PROTOCOLPGM(" X: ");
  2124. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2125. SERIAL_PROTOCOLPGM(" Y: ");
  2126. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2127. SERIAL_PROTOCOLPGM(" Z: ");
  2128. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2129. SERIAL_PROTOCOLPGM("\n");
  2130. clean_up_after_endstop_move();
  2131. }
  2132. break;
  2133. #else
  2134. case 31: // dock the sled
  2135. dock_sled(true);
  2136. break;
  2137. case 32: // undock the sled
  2138. dock_sled(false);
  2139. break;
  2140. #endif // Z_PROBE_SLED
  2141. #endif // ENABLE_AUTO_BED_LEVELING
  2142. #ifdef MESH_BED_LEVELING
  2143. case 30: // G30 Single Z Probe
  2144. {
  2145. st_synchronize();
  2146. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2147. setup_for_endstop_move();
  2148. feedrate = homing_feedrate[Z_AXIS];
  2149. find_bed_induction_sensor_point_z(-10.f, 3);
  2150. SERIAL_PROTOCOLRPGM(MSG_BED);
  2151. SERIAL_PROTOCOLPGM(" X: ");
  2152. MYSERIAL.print(current_position[X_AXIS], 5);
  2153. SERIAL_PROTOCOLPGM(" Y: ");
  2154. MYSERIAL.print(current_position[Y_AXIS], 5);
  2155. SERIAL_PROTOCOLPGM(" Z: ");
  2156. MYSERIAL.print(current_position[Z_AXIS], 5);
  2157. SERIAL_PROTOCOLPGM("\n");
  2158. clean_up_after_endstop_move();
  2159. }
  2160. break;
  2161. /**
  2162. * G80: Mesh-based Z probe, probes a grid and produces a
  2163. * mesh to compensate for variable bed height
  2164. *
  2165. * The S0 report the points as below
  2166. *
  2167. * +----> X-axis
  2168. * |
  2169. * |
  2170. * v Y-axis
  2171. *
  2172. */
  2173. case 80:
  2174. case_G80:
  2175. {
  2176. // Firstly check if we know where we are
  2177. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2178. // We don't know where we are! HOME!
  2179. // Push the commands to the front of the message queue in the reverse order!
  2180. // There shall be always enough space reserved for these commands.
  2181. repeatcommand_front(); // repeat G80 with all its parameters
  2182. enquecommand_front_P((PSTR("G28 W0")));
  2183. break;
  2184. }
  2185. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2186. bool custom_message_old = custom_message;
  2187. unsigned int custom_message_type_old = custom_message_type;
  2188. unsigned int custom_message_state_old = custom_message_state;
  2189. custom_message = true;
  2190. custom_message_type = 1;
  2191. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2192. lcd_update(1);
  2193. mbl.reset();
  2194. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2195. // consumed during the first movements following this statement.
  2196. babystep_undo();
  2197. // Cycle through all points and probe them
  2198. // First move up. During this first movement, the babystepping will be reverted.
  2199. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2201. // The move to the first calibration point.
  2202. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2203. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2204. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2205. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2207. // Wait until the move is finished.
  2208. st_synchronize();
  2209. int mesh_point = 0;
  2210. int ix = 0;
  2211. int iy = 0;
  2212. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2213. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2214. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2215. bool has_z = is_bed_z_jitter_data_valid();
  2216. setup_for_endstop_move(false);
  2217. const char *kill_message = NULL;
  2218. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2219. // Get coords of a measuring point.
  2220. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2221. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2222. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2223. float z0 = 0.f;
  2224. if (has_z && mesh_point > 0) {
  2225. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2226. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2227. #if 0
  2228. SERIAL_ECHOPGM("Bed leveling, point: ");
  2229. MYSERIAL.print(mesh_point);
  2230. SERIAL_ECHOPGM(", calibration z: ");
  2231. MYSERIAL.print(z0, 5);
  2232. SERIAL_ECHOLNPGM("");
  2233. #endif
  2234. }
  2235. // Move Z up to MESH_HOME_Z_SEARCH.
  2236. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2238. st_synchronize();
  2239. // Move to XY position of the sensor point.
  2240. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2241. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2242. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2243. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2244. st_synchronize();
  2245. // Go down until endstop is hit
  2246. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2247. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2248. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2249. break;
  2250. }
  2251. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2252. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2253. break;
  2254. }
  2255. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2256. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2257. break;
  2258. }
  2259. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2260. custom_message_state--;
  2261. mesh_point++;
  2262. lcd_update(1);
  2263. }
  2264. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2266. st_synchronize();
  2267. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2268. kill(kill_message);
  2269. }
  2270. clean_up_after_endstop_move();
  2271. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2272. babystep_apply();
  2273. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2274. for (uint8_t i = 0; i < 4; ++ i) {
  2275. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2276. long correction = 0;
  2277. if (code_seen(codes[i]))
  2278. correction = code_value_long();
  2279. else if (eeprom_bed_correction_valid) {
  2280. unsigned char *addr = (i < 2) ?
  2281. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2282. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2283. correction = eeprom_read_int8(addr);
  2284. }
  2285. if (correction == 0)
  2286. continue;
  2287. float offset = float(correction) * 0.001f;
  2288. if (fabs(offset) > 0.101f) {
  2289. SERIAL_ERROR_START;
  2290. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2291. SERIAL_ECHO(offset);
  2292. SERIAL_ECHOLNPGM(" microns");
  2293. } else {
  2294. switch (i) {
  2295. case 0:
  2296. for (uint8_t row = 0; row < 3; ++ row) {
  2297. mbl.z_values[row][1] += 0.5f * offset;
  2298. mbl.z_values[row][0] += offset;
  2299. }
  2300. break;
  2301. case 1:
  2302. for (uint8_t row = 0; row < 3; ++ row) {
  2303. mbl.z_values[row][1] += 0.5f * offset;
  2304. mbl.z_values[row][2] += offset;
  2305. }
  2306. break;
  2307. case 2:
  2308. for (uint8_t col = 0; col < 3; ++ col) {
  2309. mbl.z_values[1][col] += 0.5f * offset;
  2310. mbl.z_values[0][col] += offset;
  2311. }
  2312. break;
  2313. case 3:
  2314. for (uint8_t col = 0; col < 3; ++ col) {
  2315. mbl.z_values[1][col] += 0.5f * offset;
  2316. mbl.z_values[2][col] += offset;
  2317. }
  2318. break;
  2319. }
  2320. }
  2321. }
  2322. mbl.upsample_3x3();
  2323. mbl.active = 1;
  2324. go_home_with_z_lift();
  2325. // Restore custom message state
  2326. custom_message = custom_message_old;
  2327. custom_message_type = custom_message_type_old;
  2328. custom_message_state = custom_message_state_old;
  2329. lcd_update(1);
  2330. }
  2331. break;
  2332. /**
  2333. * G81: Print mesh bed leveling status and bed profile if activated
  2334. */
  2335. case 81:
  2336. if (mbl.active) {
  2337. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2338. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2339. SERIAL_PROTOCOLPGM(",");
  2340. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2341. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2342. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2343. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2344. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2345. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2346. SERIAL_PROTOCOLPGM(" ");
  2347. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2348. }
  2349. SERIAL_PROTOCOLPGM("\n");
  2350. }
  2351. }
  2352. else
  2353. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2354. break;
  2355. #if 0
  2356. /**
  2357. * G82: Single Z probe at current location
  2358. *
  2359. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2360. *
  2361. */
  2362. case 82:
  2363. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2364. setup_for_endstop_move();
  2365. find_bed_induction_sensor_point_z();
  2366. clean_up_after_endstop_move();
  2367. SERIAL_PROTOCOLPGM("Bed found at: ");
  2368. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2369. SERIAL_PROTOCOLPGM("\n");
  2370. break;
  2371. /**
  2372. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2373. */
  2374. case 83:
  2375. {
  2376. int babystepz = code_seen('S') ? code_value() : 0;
  2377. int BabyPosition = code_seen('P') ? code_value() : 0;
  2378. if (babystepz != 0) {
  2379. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2380. // Is the axis indexed starting with zero or one?
  2381. if (BabyPosition > 4) {
  2382. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2383. }else{
  2384. // Save it to the eeprom
  2385. babystepLoadZ = babystepz;
  2386. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2387. // adjust the Z
  2388. babystepsTodoZadd(babystepLoadZ);
  2389. }
  2390. }
  2391. }
  2392. break;
  2393. /**
  2394. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2395. */
  2396. case 84:
  2397. babystepsTodoZsubtract(babystepLoadZ);
  2398. // babystepLoadZ = 0;
  2399. break;
  2400. /**
  2401. * G85: Prusa3D specific: Pick best babystep
  2402. */
  2403. case 85:
  2404. lcd_pick_babystep();
  2405. break;
  2406. #endif
  2407. /**
  2408. * G86: Prusa3D specific: Disable babystep correction after home.
  2409. * This G-code will be performed at the start of a calibration script.
  2410. */
  2411. case 86:
  2412. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2413. break;
  2414. /**
  2415. * G87: Prusa3D specific: Enable babystep correction after home
  2416. * This G-code will be performed at the end of a calibration script.
  2417. */
  2418. case 87:
  2419. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2420. break;
  2421. /**
  2422. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2423. */
  2424. case 88:
  2425. break;
  2426. #endif // ENABLE_MESH_BED_LEVELING
  2427. case 90: // G90
  2428. relative_mode = false;
  2429. break;
  2430. case 91: // G91
  2431. relative_mode = true;
  2432. break;
  2433. case 92: // G92
  2434. if(!code_seen(axis_codes[E_AXIS]))
  2435. st_synchronize();
  2436. for(int8_t i=0; i < NUM_AXIS; i++) {
  2437. if(code_seen(axis_codes[i])) {
  2438. if(i == E_AXIS) {
  2439. current_position[i] = code_value();
  2440. plan_set_e_position(current_position[E_AXIS]);
  2441. }
  2442. else {
  2443. current_position[i] = code_value()+add_homing[i];
  2444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2445. }
  2446. }
  2447. }
  2448. break;
  2449. case 98:
  2450. farm_no = 21;
  2451. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2452. farm_mode = true;
  2453. break;
  2454. case 99:
  2455. farm_no = 0;
  2456. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2457. farm_mode = false;
  2458. break;
  2459. }
  2460. } // end if(code_seen('G'))
  2461. else if(code_seen('M'))
  2462. {
  2463. switch( (int)code_value() )
  2464. {
  2465. #ifdef ULTIPANEL
  2466. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2467. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2468. {
  2469. char *src = strchr_pointer + 2;
  2470. codenum = 0;
  2471. bool hasP = false, hasS = false;
  2472. if (code_seen('P')) {
  2473. codenum = code_value(); // milliseconds to wait
  2474. hasP = codenum > 0;
  2475. }
  2476. if (code_seen('S')) {
  2477. codenum = code_value() * 1000; // seconds to wait
  2478. hasS = codenum > 0;
  2479. }
  2480. starpos = strchr(src, '*');
  2481. if (starpos != NULL) *(starpos) = '\0';
  2482. while (*src == ' ') ++src;
  2483. if (!hasP && !hasS && *src != '\0') {
  2484. lcd_setstatus(src);
  2485. } else {
  2486. LCD_MESSAGERPGM(MSG_USERWAIT);
  2487. }
  2488. lcd_ignore_click();
  2489. st_synchronize();
  2490. previous_millis_cmd = millis();
  2491. if (codenum > 0){
  2492. codenum += millis(); // keep track of when we started waiting
  2493. while(millis() < codenum && !lcd_clicked()){
  2494. manage_heater();
  2495. manage_inactivity();
  2496. lcd_update();
  2497. }
  2498. lcd_ignore_click(false);
  2499. }else{
  2500. if (!lcd_detected())
  2501. break;
  2502. while(!lcd_clicked()){
  2503. manage_heater();
  2504. manage_inactivity();
  2505. lcd_update();
  2506. }
  2507. }
  2508. if (IS_SD_PRINTING)
  2509. LCD_MESSAGERPGM(MSG_RESUMING);
  2510. else
  2511. LCD_MESSAGERPGM(WELCOME_MSG);
  2512. }
  2513. break;
  2514. #endif
  2515. case 17:
  2516. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2517. enable_x();
  2518. enable_y();
  2519. enable_z();
  2520. enable_e0();
  2521. enable_e1();
  2522. enable_e2();
  2523. break;
  2524. #ifdef SDSUPPORT
  2525. case 20: // M20 - list SD card
  2526. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2527. card.ls();
  2528. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2529. break;
  2530. case 21: // M21 - init SD card
  2531. card.initsd();
  2532. break;
  2533. case 22: //M22 - release SD card
  2534. card.release();
  2535. break;
  2536. case 23: //M23 - Select file
  2537. starpos = (strchr(strchr_pointer + 4,'*'));
  2538. if(starpos!=NULL)
  2539. *(starpos)='\0';
  2540. card.openFile(strchr_pointer + 4,true);
  2541. break;
  2542. case 24: //M24 - Start SD print
  2543. card.startFileprint();
  2544. starttime=millis();
  2545. break;
  2546. case 25: //M25 - Pause SD print
  2547. card.pauseSDPrint();
  2548. break;
  2549. case 26: //M26 - Set SD index
  2550. if(card.cardOK && code_seen('S')) {
  2551. card.setIndex(code_value_long());
  2552. }
  2553. break;
  2554. case 27: //M27 - Get SD status
  2555. card.getStatus();
  2556. break;
  2557. case 28: //M28 - Start SD write
  2558. starpos = (strchr(strchr_pointer + 4,'*'));
  2559. if(starpos != NULL){
  2560. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2561. strchr_pointer = strchr(npos,' ') + 1;
  2562. *(starpos) = '\0';
  2563. }
  2564. card.openFile(strchr_pointer+4,false);
  2565. break;
  2566. case 29: //M29 - Stop SD write
  2567. //processed in write to file routine above
  2568. //card,saving = false;
  2569. break;
  2570. case 30: //M30 <filename> Delete File
  2571. if (card.cardOK){
  2572. card.closefile();
  2573. starpos = (strchr(strchr_pointer + 4,'*'));
  2574. if(starpos != NULL){
  2575. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2576. strchr_pointer = strchr(npos,' ') + 1;
  2577. *(starpos) = '\0';
  2578. }
  2579. card.removeFile(strchr_pointer + 4);
  2580. }
  2581. break;
  2582. case 32: //M32 - Select file and start SD print
  2583. {
  2584. if(card.sdprinting) {
  2585. st_synchronize();
  2586. }
  2587. starpos = (strchr(strchr_pointer + 4,'*'));
  2588. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2589. if(namestartpos==NULL)
  2590. {
  2591. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2592. }
  2593. else
  2594. namestartpos++; //to skip the '!'
  2595. if(starpos!=NULL)
  2596. *(starpos)='\0';
  2597. bool call_procedure=(code_seen('P'));
  2598. if(strchr_pointer>namestartpos)
  2599. call_procedure=false; //false alert, 'P' found within filename
  2600. if( card.cardOK )
  2601. {
  2602. card.openFile(namestartpos,true,!call_procedure);
  2603. if(code_seen('S'))
  2604. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2605. card.setIndex(code_value_long());
  2606. card.startFileprint();
  2607. if(!call_procedure)
  2608. starttime=millis(); //procedure calls count as normal print time.
  2609. }
  2610. } break;
  2611. case 928: //M928 - Start SD write
  2612. starpos = (strchr(strchr_pointer + 5,'*'));
  2613. if(starpos != NULL){
  2614. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2615. strchr_pointer = strchr(npos,' ') + 1;
  2616. *(starpos) = '\0';
  2617. }
  2618. card.openLogFile(strchr_pointer+5);
  2619. break;
  2620. #endif //SDSUPPORT
  2621. case 31: //M31 take time since the start of the SD print or an M109 command
  2622. {
  2623. stoptime=millis();
  2624. char time[30];
  2625. unsigned long t=(stoptime-starttime)/1000;
  2626. int sec,min;
  2627. min=t/60;
  2628. sec=t%60;
  2629. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2630. SERIAL_ECHO_START;
  2631. SERIAL_ECHOLN(time);
  2632. lcd_setstatus(time);
  2633. autotempShutdown();
  2634. }
  2635. break;
  2636. case 42: //M42 -Change pin status via gcode
  2637. if (code_seen('S'))
  2638. {
  2639. int pin_status = code_value();
  2640. int pin_number = LED_PIN;
  2641. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2642. pin_number = code_value();
  2643. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2644. {
  2645. if (sensitive_pins[i] == pin_number)
  2646. {
  2647. pin_number = -1;
  2648. break;
  2649. }
  2650. }
  2651. #if defined(FAN_PIN) && FAN_PIN > -1
  2652. if (pin_number == FAN_PIN)
  2653. fanSpeed = pin_status;
  2654. #endif
  2655. if (pin_number > -1)
  2656. {
  2657. pinMode(pin_number, OUTPUT);
  2658. digitalWrite(pin_number, pin_status);
  2659. analogWrite(pin_number, pin_status);
  2660. }
  2661. }
  2662. break;
  2663. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2664. // Reset the skew and offset in both RAM and EEPROM.
  2665. reset_bed_offset_and_skew();
  2666. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2667. // the planner will not perform any adjustments in the XY plane.
  2668. // Wait for the motors to stop and update the current position with the absolute values.
  2669. world2machine_revert_to_uncorrected();
  2670. break;
  2671. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2672. {
  2673. // Disable the default update procedure of the display. We will do a modal dialog.
  2674. lcd_update_enable(false);
  2675. // Let the planner use the uncorrected coordinates.
  2676. mbl.reset();
  2677. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2678. // the planner will not perform any adjustments in the XY plane.
  2679. // Wait for the motors to stop and update the current position with the absolute values.
  2680. world2machine_revert_to_uncorrected();
  2681. // Reset the baby step value applied without moving the axes.
  2682. babystep_reset();
  2683. // Mark all axes as in a need for homing.
  2684. memset(axis_known_position, 0, sizeof(axis_known_position));
  2685. // Only Z calibration?
  2686. bool onlyZ = code_seen('Z');
  2687. // Let the user move the Z axes up to the end stoppers.
  2688. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2689. refresh_cmd_timeout();
  2690. // Move the print head close to the bed.
  2691. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2693. st_synchronize();
  2694. // Home in the XY plane.
  2695. set_destination_to_current();
  2696. setup_for_endstop_move();
  2697. home_xy();
  2698. int8_t verbosity_level = 0;
  2699. if (code_seen('V')) {
  2700. // Just 'V' without a number counts as V1.
  2701. char c = strchr_pointer[1];
  2702. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2703. }
  2704. if (onlyZ) {
  2705. clean_up_after_endstop_move();
  2706. // Z only calibration.
  2707. // Load the machine correction matrix
  2708. world2machine_initialize();
  2709. // and correct the current_position to match the transformed coordinate system.
  2710. world2machine_update_current();
  2711. //FIXME
  2712. bool result = sample_mesh_and_store_reference();
  2713. if (result) {
  2714. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2715. // Shipped, the nozzle height has been set already. The user can start printing now.
  2716. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2717. // babystep_apply();
  2718. }
  2719. } else {
  2720. // Reset the baby step value and the baby step applied flag.
  2721. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2722. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2723. // Complete XYZ calibration.
  2724. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2725. uint8_t point_too_far_mask = 0;
  2726. clean_up_after_endstop_move();
  2727. // Print head up.
  2728. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2730. st_synchronize();
  2731. if (result >= 0) {
  2732. // Second half: The fine adjustment.
  2733. // Let the planner use the uncorrected coordinates.
  2734. mbl.reset();
  2735. world2machine_reset();
  2736. // Home in the XY plane.
  2737. setup_for_endstop_move();
  2738. home_xy();
  2739. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2740. clean_up_after_endstop_move();
  2741. // Print head up.
  2742. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2744. st_synchronize();
  2745. // if (result >= 0) babystep_apply();
  2746. }
  2747. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2748. if (result >= 0) {
  2749. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2750. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2751. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2752. }
  2753. }
  2754. } else {
  2755. // Timeouted.
  2756. }
  2757. lcd_update_enable(true);
  2758. break;
  2759. }
  2760. /*
  2761. case 46:
  2762. {
  2763. // M46: Prusa3D: Show the assigned IP address.
  2764. uint8_t ip[4];
  2765. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2766. if (hasIP) {
  2767. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2768. SERIAL_ECHO(int(ip[0]));
  2769. SERIAL_ECHOPGM(".");
  2770. SERIAL_ECHO(int(ip[1]));
  2771. SERIAL_ECHOPGM(".");
  2772. SERIAL_ECHO(int(ip[2]));
  2773. SERIAL_ECHOPGM(".");
  2774. SERIAL_ECHO(int(ip[3]));
  2775. SERIAL_ECHOLNPGM("");
  2776. } else {
  2777. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2778. }
  2779. break;
  2780. }
  2781. */
  2782. case 47:
  2783. // M47: Prusa3D: Show end stops dialog on the display.
  2784. lcd_diag_show_end_stops();
  2785. break;
  2786. #if 0
  2787. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2788. {
  2789. // Disable the default update procedure of the display. We will do a modal dialog.
  2790. lcd_update_enable(false);
  2791. // Let the planner use the uncorrected coordinates.
  2792. mbl.reset();
  2793. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2794. // the planner will not perform any adjustments in the XY plane.
  2795. // Wait for the motors to stop and update the current position with the absolute values.
  2796. world2machine_revert_to_uncorrected();
  2797. // Move the print head close to the bed.
  2798. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2800. st_synchronize();
  2801. // Home in the XY plane.
  2802. set_destination_to_current();
  2803. setup_for_endstop_move();
  2804. home_xy();
  2805. int8_t verbosity_level = 0;
  2806. if (code_seen('V')) {
  2807. // Just 'V' without a number counts as V1.
  2808. char c = strchr_pointer[1];
  2809. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2810. }
  2811. bool success = scan_bed_induction_points(verbosity_level);
  2812. clean_up_after_endstop_move();
  2813. // Print head up.
  2814. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2816. st_synchronize();
  2817. lcd_update_enable(true);
  2818. break;
  2819. }
  2820. #endif
  2821. // M48 Z-Probe repeatability measurement function.
  2822. //
  2823. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2824. //
  2825. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2826. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2827. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2828. // regenerated.
  2829. //
  2830. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2831. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2832. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2833. //
  2834. #ifdef ENABLE_AUTO_BED_LEVELING
  2835. #ifdef Z_PROBE_REPEATABILITY_TEST
  2836. case 48: // M48 Z-Probe repeatability
  2837. {
  2838. #if Z_MIN_PIN == -1
  2839. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2840. #endif
  2841. double sum=0.0;
  2842. double mean=0.0;
  2843. double sigma=0.0;
  2844. double sample_set[50];
  2845. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2846. double X_current, Y_current, Z_current;
  2847. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2848. if (code_seen('V') || code_seen('v')) {
  2849. verbose_level = code_value();
  2850. if (verbose_level<0 || verbose_level>4 ) {
  2851. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2852. goto Sigma_Exit;
  2853. }
  2854. }
  2855. if (verbose_level > 0) {
  2856. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2857. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2858. }
  2859. if (code_seen('n')) {
  2860. n_samples = code_value();
  2861. if (n_samples<4 || n_samples>50 ) {
  2862. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2863. goto Sigma_Exit;
  2864. }
  2865. }
  2866. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2867. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2868. Z_current = st_get_position_mm(Z_AXIS);
  2869. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2870. ext_position = st_get_position_mm(E_AXIS);
  2871. if (code_seen('X') || code_seen('x') ) {
  2872. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2873. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2874. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2875. goto Sigma_Exit;
  2876. }
  2877. }
  2878. if (code_seen('Y') || code_seen('y') ) {
  2879. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2880. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2881. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2882. goto Sigma_Exit;
  2883. }
  2884. }
  2885. if (code_seen('L') || code_seen('l') ) {
  2886. n_legs = code_value();
  2887. if ( n_legs==1 )
  2888. n_legs = 2;
  2889. if ( n_legs<0 || n_legs>15 ) {
  2890. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2891. goto Sigma_Exit;
  2892. }
  2893. }
  2894. //
  2895. // Do all the preliminary setup work. First raise the probe.
  2896. //
  2897. st_synchronize();
  2898. plan_bed_level_matrix.set_to_identity();
  2899. plan_buffer_line( X_current, Y_current, Z_start_location,
  2900. ext_position,
  2901. homing_feedrate[Z_AXIS]/60,
  2902. active_extruder);
  2903. st_synchronize();
  2904. //
  2905. // Now get everything to the specified probe point So we can safely do a probe to
  2906. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2907. // use that as a starting point for each probe.
  2908. //
  2909. if (verbose_level > 2)
  2910. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2911. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2912. ext_position,
  2913. homing_feedrate[X_AXIS]/60,
  2914. active_extruder);
  2915. st_synchronize();
  2916. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2917. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2918. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2919. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2920. //
  2921. // OK, do the inital probe to get us close to the bed.
  2922. // Then retrace the right amount and use that in subsequent probes
  2923. //
  2924. setup_for_endstop_move();
  2925. run_z_probe();
  2926. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2927. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2928. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2929. ext_position,
  2930. homing_feedrate[X_AXIS]/60,
  2931. active_extruder);
  2932. st_synchronize();
  2933. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2934. for( n=0; n<n_samples; n++) {
  2935. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2936. if ( n_legs) {
  2937. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2938. int rotational_direction, l;
  2939. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2940. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2941. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2942. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2943. //SERIAL_ECHOPAIR(" theta: ",theta);
  2944. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2945. //SERIAL_PROTOCOLLNPGM("");
  2946. for( l=0; l<n_legs-1; l++) {
  2947. if (rotational_direction==1)
  2948. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2949. else
  2950. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2951. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2952. if ( radius<0.0 )
  2953. radius = -radius;
  2954. X_current = X_probe_location + cos(theta) * radius;
  2955. Y_current = Y_probe_location + sin(theta) * radius;
  2956. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2957. X_current = X_MIN_POS;
  2958. if ( X_current>X_MAX_POS)
  2959. X_current = X_MAX_POS;
  2960. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2961. Y_current = Y_MIN_POS;
  2962. if ( Y_current>Y_MAX_POS)
  2963. Y_current = Y_MAX_POS;
  2964. if (verbose_level>3 ) {
  2965. SERIAL_ECHOPAIR("x: ", X_current);
  2966. SERIAL_ECHOPAIR("y: ", Y_current);
  2967. SERIAL_PROTOCOLLNPGM("");
  2968. }
  2969. do_blocking_move_to( X_current, Y_current, Z_current );
  2970. }
  2971. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2972. }
  2973. setup_for_endstop_move();
  2974. run_z_probe();
  2975. sample_set[n] = current_position[Z_AXIS];
  2976. //
  2977. // Get the current mean for the data points we have so far
  2978. //
  2979. sum=0.0;
  2980. for( j=0; j<=n; j++) {
  2981. sum = sum + sample_set[j];
  2982. }
  2983. mean = sum / (double (n+1));
  2984. //
  2985. // Now, use that mean to calculate the standard deviation for the
  2986. // data points we have so far
  2987. //
  2988. sum=0.0;
  2989. for( j=0; j<=n; j++) {
  2990. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2991. }
  2992. sigma = sqrt( sum / (double (n+1)) );
  2993. if (verbose_level > 1) {
  2994. SERIAL_PROTOCOL(n+1);
  2995. SERIAL_PROTOCOL(" of ");
  2996. SERIAL_PROTOCOL(n_samples);
  2997. SERIAL_PROTOCOLPGM(" z: ");
  2998. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2999. }
  3000. if (verbose_level > 2) {
  3001. SERIAL_PROTOCOL(" mean: ");
  3002. SERIAL_PROTOCOL_F(mean,6);
  3003. SERIAL_PROTOCOL(" sigma: ");
  3004. SERIAL_PROTOCOL_F(sigma,6);
  3005. }
  3006. if (verbose_level > 0)
  3007. SERIAL_PROTOCOLPGM("\n");
  3008. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3009. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3010. st_synchronize();
  3011. }
  3012. delay(1000);
  3013. clean_up_after_endstop_move();
  3014. // enable_endstops(true);
  3015. if (verbose_level > 0) {
  3016. SERIAL_PROTOCOLPGM("Mean: ");
  3017. SERIAL_PROTOCOL_F(mean, 6);
  3018. SERIAL_PROTOCOLPGM("\n");
  3019. }
  3020. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3021. SERIAL_PROTOCOL_F(sigma, 6);
  3022. SERIAL_PROTOCOLPGM("\n\n");
  3023. Sigma_Exit:
  3024. break;
  3025. }
  3026. #endif // Z_PROBE_REPEATABILITY_TEST
  3027. #endif // ENABLE_AUTO_BED_LEVELING
  3028. case 104: // M104
  3029. if(setTargetedHotend(104)){
  3030. break;
  3031. }
  3032. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3033. setWatch();
  3034. break;
  3035. case 112: // M112 -Emergency Stop
  3036. kill();
  3037. break;
  3038. case 140: // M140 set bed temp
  3039. if (code_seen('S')) setTargetBed(code_value());
  3040. break;
  3041. case 105 : // M105
  3042. if(setTargetedHotend(105)){
  3043. break;
  3044. }
  3045. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3046. SERIAL_PROTOCOLPGM("ok T:");
  3047. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3048. SERIAL_PROTOCOLPGM(" /");
  3049. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3050. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3051. SERIAL_PROTOCOLPGM(" B:");
  3052. SERIAL_PROTOCOL_F(degBed(),1);
  3053. SERIAL_PROTOCOLPGM(" /");
  3054. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3055. #endif //TEMP_BED_PIN
  3056. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3057. SERIAL_PROTOCOLPGM(" T");
  3058. SERIAL_PROTOCOL(cur_extruder);
  3059. SERIAL_PROTOCOLPGM(":");
  3060. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3061. SERIAL_PROTOCOLPGM(" /");
  3062. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3063. }
  3064. #else
  3065. SERIAL_ERROR_START;
  3066. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3067. #endif
  3068. SERIAL_PROTOCOLPGM(" @:");
  3069. #ifdef EXTRUDER_WATTS
  3070. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3071. SERIAL_PROTOCOLPGM("W");
  3072. #else
  3073. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3074. #endif
  3075. SERIAL_PROTOCOLPGM(" B@:");
  3076. #ifdef BED_WATTS
  3077. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3078. SERIAL_PROTOCOLPGM("W");
  3079. #else
  3080. SERIAL_PROTOCOL(getHeaterPower(-1));
  3081. #endif
  3082. #ifdef SHOW_TEMP_ADC_VALUES
  3083. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3084. SERIAL_PROTOCOLPGM(" ADC B:");
  3085. SERIAL_PROTOCOL_F(degBed(),1);
  3086. SERIAL_PROTOCOLPGM("C->");
  3087. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3088. #endif
  3089. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3090. SERIAL_PROTOCOLPGM(" T");
  3091. SERIAL_PROTOCOL(cur_extruder);
  3092. SERIAL_PROTOCOLPGM(":");
  3093. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3094. SERIAL_PROTOCOLPGM("C->");
  3095. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3096. }
  3097. #endif
  3098. SERIAL_PROTOCOLLN("");
  3099. return;
  3100. break;
  3101. case 109:
  3102. {// M109 - Wait for extruder heater to reach target.
  3103. if(setTargetedHotend(109)){
  3104. break;
  3105. }
  3106. LCD_MESSAGERPGM(MSG_HEATING);
  3107. heating_status = 1;
  3108. if (farm_mode) { prusa_statistics(1); };
  3109. #ifdef AUTOTEMP
  3110. autotemp_enabled=false;
  3111. #endif
  3112. if (code_seen('S')) {
  3113. setTargetHotend(code_value(), tmp_extruder);
  3114. CooldownNoWait = true;
  3115. } else if (code_seen('R')) {
  3116. setTargetHotend(code_value(), tmp_extruder);
  3117. CooldownNoWait = false;
  3118. }
  3119. #ifdef AUTOTEMP
  3120. if (code_seen('S')) autotemp_min=code_value();
  3121. if (code_seen('B')) autotemp_max=code_value();
  3122. if (code_seen('F'))
  3123. {
  3124. autotemp_factor=code_value();
  3125. autotemp_enabled=true;
  3126. }
  3127. #endif
  3128. setWatch();
  3129. codenum = millis();
  3130. /* See if we are heating up or cooling down */
  3131. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3132. cancel_heatup = false;
  3133. #ifdef TEMP_RESIDENCY_TIME
  3134. long residencyStart;
  3135. residencyStart = -1;
  3136. /* continue to loop until we have reached the target temp
  3137. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3138. while((!cancel_heatup)&&((residencyStart == -1) ||
  3139. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3140. #else
  3141. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3142. #endif //TEMP_RESIDENCY_TIME
  3143. if( (millis() - codenum) > 1000UL )
  3144. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3145. SERIAL_PROTOCOLPGM("T:");
  3146. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3147. SERIAL_PROTOCOLPGM(" E:");
  3148. SERIAL_PROTOCOL((int)tmp_extruder);
  3149. #ifdef TEMP_RESIDENCY_TIME
  3150. SERIAL_PROTOCOLPGM(" W:");
  3151. if(residencyStart > -1)
  3152. {
  3153. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3154. SERIAL_PROTOCOLLN( codenum );
  3155. }
  3156. else
  3157. {
  3158. SERIAL_PROTOCOLLN( "?" );
  3159. }
  3160. #else
  3161. SERIAL_PROTOCOLLN("");
  3162. #endif
  3163. codenum = millis();
  3164. }
  3165. manage_heater();
  3166. manage_inactivity();
  3167. lcd_update();
  3168. #ifdef TEMP_RESIDENCY_TIME
  3169. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3170. or when current temp falls outside the hysteresis after target temp was reached */
  3171. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3172. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3173. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3174. {
  3175. residencyStart = millis();
  3176. }
  3177. #endif //TEMP_RESIDENCY_TIME
  3178. }
  3179. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3180. heating_status = 2;
  3181. if (farm_mode) { prusa_statistics(2); };
  3182. starttime=millis();
  3183. previous_millis_cmd = millis();
  3184. }
  3185. break;
  3186. case 190: // M190 - Wait for bed heater to reach target.
  3187. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3188. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3189. heating_status = 3;
  3190. if (farm_mode) { prusa_statistics(1); };
  3191. if (code_seen('S'))
  3192. {
  3193. setTargetBed(code_value());
  3194. CooldownNoWait = true;
  3195. }
  3196. else if (code_seen('R'))
  3197. {
  3198. setTargetBed(code_value());
  3199. CooldownNoWait = false;
  3200. }
  3201. codenum = millis();
  3202. cancel_heatup = false;
  3203. target_direction = isHeatingBed(); // true if heating, false if cooling
  3204. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3205. {
  3206. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3207. {
  3208. float tt=degHotend(active_extruder);
  3209. SERIAL_PROTOCOLPGM("T:");
  3210. SERIAL_PROTOCOL(tt);
  3211. SERIAL_PROTOCOLPGM(" E:");
  3212. SERIAL_PROTOCOL((int)active_extruder);
  3213. SERIAL_PROTOCOLPGM(" B:");
  3214. SERIAL_PROTOCOL_F(degBed(),1);
  3215. SERIAL_PROTOCOLLN("");
  3216. codenum = millis();
  3217. }
  3218. manage_heater();
  3219. manage_inactivity();
  3220. lcd_update();
  3221. }
  3222. LCD_MESSAGERPGM(MSG_BED_DONE);
  3223. heating_status = 4;
  3224. previous_millis_cmd = millis();
  3225. #endif
  3226. break;
  3227. #if defined(FAN_PIN) && FAN_PIN > -1
  3228. case 106: //M106 Fan On
  3229. if (code_seen('S')){
  3230. fanSpeed=constrain(code_value(),0,255);
  3231. }
  3232. else {
  3233. fanSpeed=255;
  3234. }
  3235. break;
  3236. case 107: //M107 Fan Off
  3237. fanSpeed = 0;
  3238. break;
  3239. #endif //FAN_PIN
  3240. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3241. case 80: // M80 - Turn on Power Supply
  3242. SET_OUTPUT(PS_ON_PIN); //GND
  3243. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3244. // If you have a switch on suicide pin, this is useful
  3245. // if you want to start another print with suicide feature after
  3246. // a print without suicide...
  3247. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3248. SET_OUTPUT(SUICIDE_PIN);
  3249. WRITE(SUICIDE_PIN, HIGH);
  3250. #endif
  3251. #ifdef ULTIPANEL
  3252. powersupply = true;
  3253. LCD_MESSAGERPGM(WELCOME_MSG);
  3254. lcd_update();
  3255. #endif
  3256. break;
  3257. #endif
  3258. case 81: // M81 - Turn off Power Supply
  3259. disable_heater();
  3260. st_synchronize();
  3261. disable_e0();
  3262. disable_e1();
  3263. disable_e2();
  3264. finishAndDisableSteppers();
  3265. fanSpeed = 0;
  3266. delay(1000); // Wait a little before to switch off
  3267. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3268. st_synchronize();
  3269. suicide();
  3270. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3271. SET_OUTPUT(PS_ON_PIN);
  3272. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3273. #endif
  3274. #ifdef ULTIPANEL
  3275. powersupply = false;
  3276. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3277. /*
  3278. MACHNAME = "Prusa i3"
  3279. MSGOFF = "Vypnuto"
  3280. "Prusai3"" ""vypnuto""."
  3281. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3282. */
  3283. lcd_update();
  3284. #endif
  3285. break;
  3286. case 82:
  3287. axis_relative_modes[3] = false;
  3288. break;
  3289. case 83:
  3290. axis_relative_modes[3] = true;
  3291. break;
  3292. case 18: //compatibility
  3293. case 84: // M84
  3294. if(code_seen('S')){
  3295. stepper_inactive_time = code_value() * 1000;
  3296. }
  3297. else
  3298. {
  3299. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3300. if(all_axis)
  3301. {
  3302. st_synchronize();
  3303. disable_e0();
  3304. disable_e1();
  3305. disable_e2();
  3306. finishAndDisableSteppers();
  3307. }
  3308. else
  3309. {
  3310. st_synchronize();
  3311. if(code_seen('X')) disable_x();
  3312. if(code_seen('Y')) disable_y();
  3313. if(code_seen('Z')) disable_z();
  3314. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3315. if(code_seen('E')) {
  3316. disable_e0();
  3317. disable_e1();
  3318. disable_e2();
  3319. }
  3320. #endif
  3321. }
  3322. }
  3323. break;
  3324. case 85: // M85
  3325. if(code_seen('S')) {
  3326. max_inactive_time = code_value() * 1000;
  3327. }
  3328. break;
  3329. case 92: // M92
  3330. for(int8_t i=0; i < NUM_AXIS; i++)
  3331. {
  3332. if(code_seen(axis_codes[i]))
  3333. {
  3334. if(i == 3) { // E
  3335. float value = code_value();
  3336. if(value < 20.0) {
  3337. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3338. max_jerk[E_AXIS] *= factor;
  3339. max_feedrate[i] *= factor;
  3340. axis_steps_per_sqr_second[i] *= factor;
  3341. }
  3342. axis_steps_per_unit[i] = value;
  3343. }
  3344. else {
  3345. axis_steps_per_unit[i] = code_value();
  3346. }
  3347. }
  3348. }
  3349. break;
  3350. case 115: // M115
  3351. if (code_seen('V')) {
  3352. // Report the Prusa version number.
  3353. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3354. } else if (code_seen('U')) {
  3355. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3356. // pause the print and ask the user to upgrade the firmware.
  3357. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3358. } else {
  3359. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3360. }
  3361. break;
  3362. case 117: // M117 display message
  3363. starpos = (strchr(strchr_pointer + 5,'*'));
  3364. if(starpos!=NULL)
  3365. *(starpos)='\0';
  3366. lcd_setstatus(strchr_pointer + 5);
  3367. break;
  3368. case 114: // M114
  3369. SERIAL_PROTOCOLPGM("X:");
  3370. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3371. SERIAL_PROTOCOLPGM(" Y:");
  3372. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3373. SERIAL_PROTOCOLPGM(" Z:");
  3374. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3375. SERIAL_PROTOCOLPGM(" E:");
  3376. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3377. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3378. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3379. SERIAL_PROTOCOLPGM(" Y:");
  3380. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3381. SERIAL_PROTOCOLPGM(" Z:");
  3382. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3383. SERIAL_PROTOCOLLN("");
  3384. break;
  3385. case 120: // M120
  3386. enable_endstops(false) ;
  3387. break;
  3388. case 121: // M121
  3389. enable_endstops(true) ;
  3390. break;
  3391. case 119: // M119
  3392. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3393. SERIAL_PROTOCOLLN("");
  3394. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3395. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3396. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3397. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3398. }else{
  3399. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3400. }
  3401. SERIAL_PROTOCOLLN("");
  3402. #endif
  3403. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3404. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3405. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3406. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3407. }else{
  3408. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3409. }
  3410. SERIAL_PROTOCOLLN("");
  3411. #endif
  3412. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3413. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3414. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3415. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3416. }else{
  3417. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3418. }
  3419. SERIAL_PROTOCOLLN("");
  3420. #endif
  3421. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3422. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3423. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3424. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3425. }else{
  3426. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3427. }
  3428. SERIAL_PROTOCOLLN("");
  3429. #endif
  3430. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3431. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3432. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3433. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3434. }else{
  3435. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3436. }
  3437. SERIAL_PROTOCOLLN("");
  3438. #endif
  3439. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3440. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3441. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3442. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3443. }else{
  3444. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3445. }
  3446. SERIAL_PROTOCOLLN("");
  3447. #endif
  3448. break;
  3449. //TODO: update for all axis, use for loop
  3450. #ifdef BLINKM
  3451. case 150: // M150
  3452. {
  3453. byte red;
  3454. byte grn;
  3455. byte blu;
  3456. if(code_seen('R')) red = code_value();
  3457. if(code_seen('U')) grn = code_value();
  3458. if(code_seen('B')) blu = code_value();
  3459. SendColors(red,grn,blu);
  3460. }
  3461. break;
  3462. #endif //BLINKM
  3463. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3464. {
  3465. tmp_extruder = active_extruder;
  3466. if(code_seen('T')) {
  3467. tmp_extruder = code_value();
  3468. if(tmp_extruder >= EXTRUDERS) {
  3469. SERIAL_ECHO_START;
  3470. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3471. break;
  3472. }
  3473. }
  3474. float area = .0;
  3475. if(code_seen('D')) {
  3476. float diameter = (float)code_value();
  3477. if (diameter == 0.0) {
  3478. // setting any extruder filament size disables volumetric on the assumption that
  3479. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3480. // for all extruders
  3481. volumetric_enabled = false;
  3482. } else {
  3483. filament_size[tmp_extruder] = (float)code_value();
  3484. // make sure all extruders have some sane value for the filament size
  3485. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3486. #if EXTRUDERS > 1
  3487. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3488. #if EXTRUDERS > 2
  3489. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3490. #endif
  3491. #endif
  3492. volumetric_enabled = true;
  3493. }
  3494. } else {
  3495. //reserved for setting filament diameter via UFID or filament measuring device
  3496. break;
  3497. }
  3498. calculate_volumetric_multipliers();
  3499. }
  3500. break;
  3501. case 201: // M201
  3502. for(int8_t i=0; i < NUM_AXIS; i++)
  3503. {
  3504. if(code_seen(axis_codes[i]))
  3505. {
  3506. max_acceleration_units_per_sq_second[i] = code_value();
  3507. }
  3508. }
  3509. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3510. reset_acceleration_rates();
  3511. break;
  3512. #if 0 // Not used for Sprinter/grbl gen6
  3513. case 202: // M202
  3514. for(int8_t i=0; i < NUM_AXIS; i++) {
  3515. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3516. }
  3517. break;
  3518. #endif
  3519. case 203: // M203 max feedrate mm/sec
  3520. for(int8_t i=0; i < NUM_AXIS; i++) {
  3521. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3522. }
  3523. break;
  3524. case 204: // M204 acclereration S normal moves T filmanent only moves
  3525. {
  3526. if(code_seen('S')) acceleration = code_value() ;
  3527. if(code_seen('T')) retract_acceleration = code_value() ;
  3528. }
  3529. break;
  3530. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3531. {
  3532. if(code_seen('S')) minimumfeedrate = code_value();
  3533. if(code_seen('T')) mintravelfeedrate = code_value();
  3534. if(code_seen('B')) minsegmenttime = code_value() ;
  3535. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3536. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3537. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3538. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3539. }
  3540. break;
  3541. case 206: // M206 additional homing offset
  3542. for(int8_t i=0; i < 3; i++)
  3543. {
  3544. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3545. }
  3546. break;
  3547. #ifdef FWRETRACT
  3548. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3549. {
  3550. if(code_seen('S'))
  3551. {
  3552. retract_length = code_value() ;
  3553. }
  3554. if(code_seen('F'))
  3555. {
  3556. retract_feedrate = code_value()/60 ;
  3557. }
  3558. if(code_seen('Z'))
  3559. {
  3560. retract_zlift = code_value() ;
  3561. }
  3562. }break;
  3563. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3564. {
  3565. if(code_seen('S'))
  3566. {
  3567. retract_recover_length = code_value() ;
  3568. }
  3569. if(code_seen('F'))
  3570. {
  3571. retract_recover_feedrate = code_value()/60 ;
  3572. }
  3573. }break;
  3574. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3575. {
  3576. if(code_seen('S'))
  3577. {
  3578. int t= code_value() ;
  3579. switch(t)
  3580. {
  3581. case 0:
  3582. {
  3583. autoretract_enabled=false;
  3584. retracted[0]=false;
  3585. #if EXTRUDERS > 1
  3586. retracted[1]=false;
  3587. #endif
  3588. #if EXTRUDERS > 2
  3589. retracted[2]=false;
  3590. #endif
  3591. }break;
  3592. case 1:
  3593. {
  3594. autoretract_enabled=true;
  3595. retracted[0]=false;
  3596. #if EXTRUDERS > 1
  3597. retracted[1]=false;
  3598. #endif
  3599. #if EXTRUDERS > 2
  3600. retracted[2]=false;
  3601. #endif
  3602. }break;
  3603. default:
  3604. SERIAL_ECHO_START;
  3605. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3606. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3607. SERIAL_ECHOLNPGM("\"");
  3608. }
  3609. }
  3610. }break;
  3611. #endif // FWRETRACT
  3612. #if EXTRUDERS > 1
  3613. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3614. {
  3615. if(setTargetedHotend(218)){
  3616. break;
  3617. }
  3618. if(code_seen('X'))
  3619. {
  3620. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3621. }
  3622. if(code_seen('Y'))
  3623. {
  3624. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3625. }
  3626. SERIAL_ECHO_START;
  3627. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3628. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3629. {
  3630. SERIAL_ECHO(" ");
  3631. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3632. SERIAL_ECHO(",");
  3633. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3634. }
  3635. SERIAL_ECHOLN("");
  3636. }break;
  3637. #endif
  3638. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3639. {
  3640. if(code_seen('S'))
  3641. {
  3642. feedmultiply = code_value() ;
  3643. }
  3644. }
  3645. break;
  3646. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3647. {
  3648. if(code_seen('S'))
  3649. {
  3650. int tmp_code = code_value();
  3651. if (code_seen('T'))
  3652. {
  3653. if(setTargetedHotend(221)){
  3654. break;
  3655. }
  3656. extruder_multiply[tmp_extruder] = tmp_code;
  3657. }
  3658. else
  3659. {
  3660. extrudemultiply = tmp_code ;
  3661. }
  3662. }
  3663. }
  3664. break;
  3665. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3666. {
  3667. if(code_seen('P')){
  3668. int pin_number = code_value(); // pin number
  3669. int pin_state = -1; // required pin state - default is inverted
  3670. if(code_seen('S')) pin_state = code_value(); // required pin state
  3671. if(pin_state >= -1 && pin_state <= 1){
  3672. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3673. {
  3674. if (sensitive_pins[i] == pin_number)
  3675. {
  3676. pin_number = -1;
  3677. break;
  3678. }
  3679. }
  3680. if (pin_number > -1)
  3681. {
  3682. int target = LOW;
  3683. st_synchronize();
  3684. pinMode(pin_number, INPUT);
  3685. switch(pin_state){
  3686. case 1:
  3687. target = HIGH;
  3688. break;
  3689. case 0:
  3690. target = LOW;
  3691. break;
  3692. case -1:
  3693. target = !digitalRead(pin_number);
  3694. break;
  3695. }
  3696. while(digitalRead(pin_number) != target){
  3697. manage_heater();
  3698. manage_inactivity();
  3699. lcd_update();
  3700. }
  3701. }
  3702. }
  3703. }
  3704. }
  3705. break;
  3706. #if NUM_SERVOS > 0
  3707. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3708. {
  3709. int servo_index = -1;
  3710. int servo_position = 0;
  3711. if (code_seen('P'))
  3712. servo_index = code_value();
  3713. if (code_seen('S')) {
  3714. servo_position = code_value();
  3715. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3716. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3717. servos[servo_index].attach(0);
  3718. #endif
  3719. servos[servo_index].write(servo_position);
  3720. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3721. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3722. servos[servo_index].detach();
  3723. #endif
  3724. }
  3725. else {
  3726. SERIAL_ECHO_START;
  3727. SERIAL_ECHO("Servo ");
  3728. SERIAL_ECHO(servo_index);
  3729. SERIAL_ECHOLN(" out of range");
  3730. }
  3731. }
  3732. else if (servo_index >= 0) {
  3733. SERIAL_PROTOCOL(MSG_OK);
  3734. SERIAL_PROTOCOL(" Servo ");
  3735. SERIAL_PROTOCOL(servo_index);
  3736. SERIAL_PROTOCOL(": ");
  3737. SERIAL_PROTOCOL(servos[servo_index].read());
  3738. SERIAL_PROTOCOLLN("");
  3739. }
  3740. }
  3741. break;
  3742. #endif // NUM_SERVOS > 0
  3743. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3744. case 300: // M300
  3745. {
  3746. int beepS = code_seen('S') ? code_value() : 110;
  3747. int beepP = code_seen('P') ? code_value() : 1000;
  3748. if (beepS > 0)
  3749. {
  3750. #if BEEPER > 0
  3751. tone(BEEPER, beepS);
  3752. delay(beepP);
  3753. noTone(BEEPER);
  3754. #elif defined(ULTRALCD)
  3755. lcd_buzz(beepS, beepP);
  3756. #elif defined(LCD_USE_I2C_BUZZER)
  3757. lcd_buzz(beepP, beepS);
  3758. #endif
  3759. }
  3760. else
  3761. {
  3762. delay(beepP);
  3763. }
  3764. }
  3765. break;
  3766. #endif // M300
  3767. #ifdef PIDTEMP
  3768. case 301: // M301
  3769. {
  3770. if(code_seen('P')) Kp = code_value();
  3771. if(code_seen('I')) Ki = scalePID_i(code_value());
  3772. if(code_seen('D')) Kd = scalePID_d(code_value());
  3773. #ifdef PID_ADD_EXTRUSION_RATE
  3774. if(code_seen('C')) Kc = code_value();
  3775. #endif
  3776. updatePID();
  3777. SERIAL_PROTOCOL(MSG_OK);
  3778. SERIAL_PROTOCOL(" p:");
  3779. SERIAL_PROTOCOL(Kp);
  3780. SERIAL_PROTOCOL(" i:");
  3781. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3782. SERIAL_PROTOCOL(" d:");
  3783. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3784. #ifdef PID_ADD_EXTRUSION_RATE
  3785. SERIAL_PROTOCOL(" c:");
  3786. //Kc does not have scaling applied above, or in resetting defaults
  3787. SERIAL_PROTOCOL(Kc);
  3788. #endif
  3789. SERIAL_PROTOCOLLN("");
  3790. }
  3791. break;
  3792. #endif //PIDTEMP
  3793. #ifdef PIDTEMPBED
  3794. case 304: // M304
  3795. {
  3796. if(code_seen('P')) bedKp = code_value();
  3797. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3798. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3799. updatePID();
  3800. SERIAL_PROTOCOL(MSG_OK);
  3801. SERIAL_PROTOCOL(" p:");
  3802. SERIAL_PROTOCOL(bedKp);
  3803. SERIAL_PROTOCOL(" i:");
  3804. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3805. SERIAL_PROTOCOL(" d:");
  3806. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3807. SERIAL_PROTOCOLLN("");
  3808. }
  3809. break;
  3810. #endif //PIDTEMP
  3811. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3812. {
  3813. #ifdef CHDK
  3814. SET_OUTPUT(CHDK);
  3815. WRITE(CHDK, HIGH);
  3816. chdkHigh = millis();
  3817. chdkActive = true;
  3818. #else
  3819. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3820. const uint8_t NUM_PULSES=16;
  3821. const float PULSE_LENGTH=0.01524;
  3822. for(int i=0; i < NUM_PULSES; i++) {
  3823. WRITE(PHOTOGRAPH_PIN, HIGH);
  3824. _delay_ms(PULSE_LENGTH);
  3825. WRITE(PHOTOGRAPH_PIN, LOW);
  3826. _delay_ms(PULSE_LENGTH);
  3827. }
  3828. delay(7.33);
  3829. for(int i=0; i < NUM_PULSES; i++) {
  3830. WRITE(PHOTOGRAPH_PIN, HIGH);
  3831. _delay_ms(PULSE_LENGTH);
  3832. WRITE(PHOTOGRAPH_PIN, LOW);
  3833. _delay_ms(PULSE_LENGTH);
  3834. }
  3835. #endif
  3836. #endif //chdk end if
  3837. }
  3838. break;
  3839. #ifdef DOGLCD
  3840. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3841. {
  3842. if (code_seen('C')) {
  3843. lcd_setcontrast( ((int)code_value())&63 );
  3844. }
  3845. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3846. SERIAL_PROTOCOL(lcd_contrast);
  3847. SERIAL_PROTOCOLLN("");
  3848. }
  3849. break;
  3850. #endif
  3851. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3852. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3853. {
  3854. float temp = .0;
  3855. if (code_seen('S')) temp=code_value();
  3856. set_extrude_min_temp(temp);
  3857. }
  3858. break;
  3859. #endif
  3860. case 303: // M303 PID autotune
  3861. {
  3862. float temp = 150.0;
  3863. int e=0;
  3864. int c=5;
  3865. if (code_seen('E')) e=code_value();
  3866. if (e<0)
  3867. temp=70;
  3868. if (code_seen('S')) temp=code_value();
  3869. if (code_seen('C')) c=code_value();
  3870. PID_autotune(temp, e, c);
  3871. }
  3872. break;
  3873. case 400: // M400 finish all moves
  3874. {
  3875. st_synchronize();
  3876. }
  3877. break;
  3878. #ifdef FILAMENT_SENSOR
  3879. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3880. {
  3881. #if (FILWIDTH_PIN > -1)
  3882. if(code_seen('N')) filament_width_nominal=code_value();
  3883. else{
  3884. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3885. SERIAL_PROTOCOLLN(filament_width_nominal);
  3886. }
  3887. #endif
  3888. }
  3889. break;
  3890. case 405: //M405 Turn on filament sensor for control
  3891. {
  3892. if(code_seen('D')) meas_delay_cm=code_value();
  3893. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3894. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3895. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3896. {
  3897. int temp_ratio = widthFil_to_size_ratio();
  3898. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3899. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3900. }
  3901. delay_index1=0;
  3902. delay_index2=0;
  3903. }
  3904. filament_sensor = true ;
  3905. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3906. //SERIAL_PROTOCOL(filament_width_meas);
  3907. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3908. //SERIAL_PROTOCOL(extrudemultiply);
  3909. }
  3910. break;
  3911. case 406: //M406 Turn off filament sensor for control
  3912. {
  3913. filament_sensor = false ;
  3914. }
  3915. break;
  3916. case 407: //M407 Display measured filament diameter
  3917. {
  3918. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3919. SERIAL_PROTOCOLLN(filament_width_meas);
  3920. }
  3921. break;
  3922. #endif
  3923. case 500: // M500 Store settings in EEPROM
  3924. {
  3925. Config_StoreSettings();
  3926. }
  3927. break;
  3928. case 501: // M501 Read settings from EEPROM
  3929. {
  3930. Config_RetrieveSettings();
  3931. }
  3932. break;
  3933. case 502: // M502 Revert to default settings
  3934. {
  3935. Config_ResetDefault();
  3936. }
  3937. break;
  3938. case 503: // M503 print settings currently in memory
  3939. {
  3940. Config_PrintSettings();
  3941. }
  3942. break;
  3943. case 509: //M509 Force language selection
  3944. {
  3945. lcd_force_language_selection();
  3946. SERIAL_ECHO_START;
  3947. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3948. }
  3949. break;
  3950. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3951. case 540:
  3952. {
  3953. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3954. }
  3955. break;
  3956. #endif
  3957. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3958. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3959. {
  3960. float value;
  3961. if (code_seen('Z'))
  3962. {
  3963. value = code_value();
  3964. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3965. {
  3966. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3967. SERIAL_ECHO_START;
  3968. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3969. SERIAL_PROTOCOLLN("");
  3970. }
  3971. else
  3972. {
  3973. SERIAL_ECHO_START;
  3974. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3975. SERIAL_ECHORPGM(MSG_Z_MIN);
  3976. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3977. SERIAL_ECHORPGM(MSG_Z_MAX);
  3978. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3979. SERIAL_PROTOCOLLN("");
  3980. }
  3981. }
  3982. else
  3983. {
  3984. SERIAL_ECHO_START;
  3985. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3986. SERIAL_ECHO(-zprobe_zoffset);
  3987. SERIAL_PROTOCOLLN("");
  3988. }
  3989. break;
  3990. }
  3991. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3992. #ifdef FILAMENTCHANGEENABLE
  3993. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3994. {
  3995. st_synchronize();
  3996. if (farm_mode)
  3997. {
  3998. prusa_statistics(22);
  3999. }
  4000. feedmultiplyBckp=feedmultiply;
  4001. int8_t TooLowZ = 0;
  4002. float target[4];
  4003. float lastpos[4];
  4004. target[X_AXIS]=current_position[X_AXIS];
  4005. target[Y_AXIS]=current_position[Y_AXIS];
  4006. target[Z_AXIS]=current_position[Z_AXIS];
  4007. target[E_AXIS]=current_position[E_AXIS];
  4008. lastpos[X_AXIS]=current_position[X_AXIS];
  4009. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4010. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4011. lastpos[E_AXIS]=current_position[E_AXIS];
  4012. //Restract extruder
  4013. if(code_seen('E'))
  4014. {
  4015. target[E_AXIS]+= code_value();
  4016. }
  4017. else
  4018. {
  4019. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4020. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4021. #endif
  4022. }
  4023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4024. //Lift Z
  4025. if(code_seen('Z'))
  4026. {
  4027. target[Z_AXIS]+= code_value();
  4028. }
  4029. else
  4030. {
  4031. #ifdef FILAMENTCHANGE_ZADD
  4032. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4033. if(target[Z_AXIS] < 10){
  4034. target[Z_AXIS]+= 10 ;
  4035. TooLowZ = 1;
  4036. }else{
  4037. TooLowZ = 0;
  4038. }
  4039. #endif
  4040. }
  4041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4042. //Move XY to side
  4043. if(code_seen('X'))
  4044. {
  4045. target[X_AXIS]+= code_value();
  4046. }
  4047. else
  4048. {
  4049. #ifdef FILAMENTCHANGE_XPOS
  4050. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4051. #endif
  4052. }
  4053. if(code_seen('Y'))
  4054. {
  4055. target[Y_AXIS]= code_value();
  4056. }
  4057. else
  4058. {
  4059. #ifdef FILAMENTCHANGE_YPOS
  4060. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4061. #endif
  4062. }
  4063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4064. // Unload filament
  4065. if(code_seen('L'))
  4066. {
  4067. target[E_AXIS]+= code_value();
  4068. }
  4069. else
  4070. {
  4071. #ifdef FILAMENTCHANGE_FINALRETRACT
  4072. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4073. #endif
  4074. }
  4075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4076. //finish moves
  4077. st_synchronize();
  4078. //disable extruder steppers so filament can be removed
  4079. disable_e0();
  4080. disable_e1();
  4081. disable_e2();
  4082. delay(100);
  4083. //Wait for user to insert filament
  4084. uint8_t cnt=0;
  4085. int counterBeep = 0;
  4086. lcd_wait_interact();
  4087. while(!lcd_clicked()){
  4088. cnt++;
  4089. manage_heater();
  4090. manage_inactivity(true);
  4091. if(cnt==0)
  4092. {
  4093. #if BEEPER > 0
  4094. if (counterBeep== 500){
  4095. counterBeep = 0;
  4096. }
  4097. SET_OUTPUT(BEEPER);
  4098. if (counterBeep== 0){
  4099. WRITE(BEEPER,HIGH);
  4100. }
  4101. if (counterBeep== 20){
  4102. WRITE(BEEPER,LOW);
  4103. }
  4104. counterBeep++;
  4105. #else
  4106. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4107. lcd_buzz(1000/6,100);
  4108. #else
  4109. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4110. #endif
  4111. #endif
  4112. }
  4113. }
  4114. //Filament inserted
  4115. WRITE(BEEPER,LOW);
  4116. //Feed the filament to the end of nozzle quickly
  4117. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4119. //Extrude some filament
  4120. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4121. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4122. //Wait for user to check the state
  4123. lcd_change_fil_state = 0;
  4124. lcd_loading_filament();
  4125. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4126. lcd_change_fil_state = 0;
  4127. lcd_alright();
  4128. switch(lcd_change_fil_state){
  4129. // Filament failed to load so load it again
  4130. case 2:
  4131. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4133. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4135. lcd_loading_filament();
  4136. break;
  4137. // Filament loaded properly but color is not clear
  4138. case 3:
  4139. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4140. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4141. lcd_loading_color();
  4142. break;
  4143. // Everything good
  4144. default:
  4145. lcd_change_success();
  4146. break;
  4147. }
  4148. }
  4149. //Not let's go back to print
  4150. //Feed a little of filament to stabilize pressure
  4151. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4153. //Retract
  4154. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4156. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4157. //Move XY back
  4158. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4159. //Move Z back
  4160. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4161. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4162. //Unretract
  4163. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4164. //Set E position to original
  4165. plan_set_e_position(lastpos[E_AXIS]);
  4166. //Recover feed rate
  4167. feedmultiply=feedmultiplyBckp;
  4168. char cmd[9];
  4169. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4170. enquecommand(cmd);
  4171. }
  4172. break;
  4173. #endif //FILAMENTCHANGEENABLE
  4174. case 907: // M907 Set digital trimpot motor current using axis codes.
  4175. {
  4176. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4177. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4178. if(code_seen('B')) digipot_current(4,code_value());
  4179. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4180. #endif
  4181. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4182. if(code_seen('X')) digipot_current(0, code_value());
  4183. #endif
  4184. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4185. if(code_seen('Z')) digipot_current(1, code_value());
  4186. #endif
  4187. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4188. if(code_seen('E')) digipot_current(2, code_value());
  4189. #endif
  4190. #ifdef DIGIPOT_I2C
  4191. // this one uses actual amps in floating point
  4192. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4193. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4194. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4195. #endif
  4196. }
  4197. break;
  4198. case 908: // M908 Control digital trimpot directly.
  4199. {
  4200. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4201. uint8_t channel,current;
  4202. if(code_seen('P')) channel=code_value();
  4203. if(code_seen('S')) current=code_value();
  4204. digitalPotWrite(channel, current);
  4205. #endif
  4206. }
  4207. break;
  4208. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4209. {
  4210. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4211. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4212. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4213. if(code_seen('B')) microstep_mode(4,code_value());
  4214. microstep_readings();
  4215. #endif
  4216. }
  4217. break;
  4218. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4219. {
  4220. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4221. if(code_seen('S')) switch((int)code_value())
  4222. {
  4223. case 1:
  4224. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4225. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4226. break;
  4227. case 2:
  4228. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4229. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4230. break;
  4231. }
  4232. microstep_readings();
  4233. #endif
  4234. }
  4235. break;
  4236. case 999: // M999: Restart after being stopped
  4237. Stopped = false;
  4238. lcd_reset_alert_level();
  4239. gcode_LastN = Stopped_gcode_LastN;
  4240. FlushSerialRequestResend();
  4241. break;
  4242. }
  4243. } // end if(code_seen('M')) (end of M codes)
  4244. else if(code_seen('T'))
  4245. {
  4246. tmp_extruder = code_value();
  4247. if(tmp_extruder >= EXTRUDERS) {
  4248. SERIAL_ECHO_START;
  4249. SERIAL_ECHO("T");
  4250. SERIAL_ECHO(tmp_extruder);
  4251. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4252. }
  4253. else {
  4254. boolean make_move = false;
  4255. if(code_seen('F')) {
  4256. make_move = true;
  4257. next_feedrate = code_value();
  4258. if(next_feedrate > 0.0) {
  4259. feedrate = next_feedrate;
  4260. }
  4261. }
  4262. #if EXTRUDERS > 1
  4263. if(tmp_extruder != active_extruder) {
  4264. // Save current position to return to after applying extruder offset
  4265. memcpy(destination, current_position, sizeof(destination));
  4266. // Offset extruder (only by XY)
  4267. int i;
  4268. for(i = 0; i < 2; i++) {
  4269. current_position[i] = current_position[i] -
  4270. extruder_offset[i][active_extruder] +
  4271. extruder_offset[i][tmp_extruder];
  4272. }
  4273. // Set the new active extruder and position
  4274. active_extruder = tmp_extruder;
  4275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4276. // Move to the old position if 'F' was in the parameters
  4277. if(make_move && Stopped == false) {
  4278. prepare_move();
  4279. }
  4280. }
  4281. #endif
  4282. SERIAL_ECHO_START;
  4283. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4284. SERIAL_PROTOCOLLN((int)active_extruder);
  4285. }
  4286. } // end if(code_seen('T')) (end of T codes)
  4287. else
  4288. {
  4289. SERIAL_ECHO_START;
  4290. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4291. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4292. SERIAL_ECHOLNPGM("\"");
  4293. }
  4294. ClearToSend();
  4295. }
  4296. void FlushSerialRequestResend()
  4297. {
  4298. //char cmdbuffer[bufindr][100]="Resend:";
  4299. MYSERIAL.flush();
  4300. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4301. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4302. ClearToSend();
  4303. }
  4304. // Confirm the execution of a command, if sent from a serial line.
  4305. // Execution of a command from a SD card will not be confirmed.
  4306. void ClearToSend()
  4307. {
  4308. previous_millis_cmd = millis();
  4309. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4310. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4311. }
  4312. void get_coordinates()
  4313. {
  4314. bool seen[4]={false,false,false,false};
  4315. for(int8_t i=0; i < NUM_AXIS; i++) {
  4316. if(code_seen(axis_codes[i]))
  4317. {
  4318. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4319. seen[i]=true;
  4320. }
  4321. else destination[i] = current_position[i]; //Are these else lines really needed?
  4322. }
  4323. if(code_seen('F')) {
  4324. next_feedrate = code_value();
  4325. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4326. }
  4327. }
  4328. void get_arc_coordinates()
  4329. {
  4330. #ifdef SF_ARC_FIX
  4331. bool relative_mode_backup = relative_mode;
  4332. relative_mode = true;
  4333. #endif
  4334. get_coordinates();
  4335. #ifdef SF_ARC_FIX
  4336. relative_mode=relative_mode_backup;
  4337. #endif
  4338. if(code_seen('I')) {
  4339. offset[0] = code_value();
  4340. }
  4341. else {
  4342. offset[0] = 0.0;
  4343. }
  4344. if(code_seen('J')) {
  4345. offset[1] = code_value();
  4346. }
  4347. else {
  4348. offset[1] = 0.0;
  4349. }
  4350. }
  4351. void clamp_to_software_endstops(float target[3])
  4352. {
  4353. world2machine_clamp(target[0], target[1]);
  4354. // Clamp the Z coordinate.
  4355. if (min_software_endstops) {
  4356. float negative_z_offset = 0;
  4357. #ifdef ENABLE_AUTO_BED_LEVELING
  4358. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4359. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4360. #endif
  4361. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4362. }
  4363. if (max_software_endstops) {
  4364. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4365. }
  4366. }
  4367. #ifdef MESH_BED_LEVELING
  4368. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4369. float dx = x - current_position[X_AXIS];
  4370. float dy = y - current_position[Y_AXIS];
  4371. float dz = z - current_position[Z_AXIS];
  4372. int n_segments = 0;
  4373. if (mbl.active) {
  4374. float len = abs(dx) + abs(dy);
  4375. if (len > 0)
  4376. // Split to 3cm segments or shorter.
  4377. n_segments = int(ceil(len / 30.f));
  4378. }
  4379. if (n_segments > 1) {
  4380. float de = e - current_position[E_AXIS];
  4381. for (int i = 1; i < n_segments; ++ i) {
  4382. float t = float(i) / float(n_segments);
  4383. plan_buffer_line(
  4384. current_position[X_AXIS] + t * dx,
  4385. current_position[Y_AXIS] + t * dy,
  4386. current_position[Z_AXIS] + t * dz,
  4387. current_position[E_AXIS] + t * de,
  4388. feed_rate, extruder);
  4389. }
  4390. }
  4391. // The rest of the path.
  4392. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4393. current_position[X_AXIS] = x;
  4394. current_position[Y_AXIS] = y;
  4395. current_position[Z_AXIS] = z;
  4396. current_position[E_AXIS] = e;
  4397. }
  4398. #endif // MESH_BED_LEVELING
  4399. void prepare_move()
  4400. {
  4401. clamp_to_software_endstops(destination);
  4402. previous_millis_cmd = millis();
  4403. // Do not use feedmultiply for E or Z only moves
  4404. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4405. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4406. }
  4407. else {
  4408. #ifdef MESH_BED_LEVELING
  4409. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4410. #else
  4411. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4412. #endif
  4413. }
  4414. for(int8_t i=0; i < NUM_AXIS; i++) {
  4415. current_position[i] = destination[i];
  4416. }
  4417. }
  4418. void prepare_arc_move(char isclockwise) {
  4419. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4420. // Trace the arc
  4421. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4422. // As far as the parser is concerned, the position is now == target. In reality the
  4423. // motion control system might still be processing the action and the real tool position
  4424. // in any intermediate location.
  4425. for(int8_t i=0; i < NUM_AXIS; i++) {
  4426. current_position[i] = destination[i];
  4427. }
  4428. previous_millis_cmd = millis();
  4429. }
  4430. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4431. #if defined(FAN_PIN)
  4432. #if CONTROLLERFAN_PIN == FAN_PIN
  4433. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4434. #endif
  4435. #endif
  4436. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4437. unsigned long lastMotorCheck = 0;
  4438. void controllerFan()
  4439. {
  4440. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4441. {
  4442. lastMotorCheck = millis();
  4443. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4444. #if EXTRUDERS > 2
  4445. || !READ(E2_ENABLE_PIN)
  4446. #endif
  4447. #if EXTRUDER > 1
  4448. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4449. || !READ(X2_ENABLE_PIN)
  4450. #endif
  4451. || !READ(E1_ENABLE_PIN)
  4452. #endif
  4453. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4454. {
  4455. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4456. }
  4457. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4458. {
  4459. digitalWrite(CONTROLLERFAN_PIN, 0);
  4460. analogWrite(CONTROLLERFAN_PIN, 0);
  4461. }
  4462. else
  4463. {
  4464. // allows digital or PWM fan output to be used (see M42 handling)
  4465. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4466. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4467. }
  4468. }
  4469. }
  4470. #endif
  4471. #ifdef TEMP_STAT_LEDS
  4472. static bool blue_led = false;
  4473. static bool red_led = false;
  4474. static uint32_t stat_update = 0;
  4475. void handle_status_leds(void) {
  4476. float max_temp = 0.0;
  4477. if(millis() > stat_update) {
  4478. stat_update += 500; // Update every 0.5s
  4479. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4480. max_temp = max(max_temp, degHotend(cur_extruder));
  4481. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4482. }
  4483. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4484. max_temp = max(max_temp, degTargetBed());
  4485. max_temp = max(max_temp, degBed());
  4486. #endif
  4487. if((max_temp > 55.0) && (red_led == false)) {
  4488. digitalWrite(STAT_LED_RED, 1);
  4489. digitalWrite(STAT_LED_BLUE, 0);
  4490. red_led = true;
  4491. blue_led = false;
  4492. }
  4493. if((max_temp < 54.0) && (blue_led == false)) {
  4494. digitalWrite(STAT_LED_RED, 0);
  4495. digitalWrite(STAT_LED_BLUE, 1);
  4496. red_led = false;
  4497. blue_led = true;
  4498. }
  4499. }
  4500. }
  4501. #endif
  4502. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4503. {
  4504. #if defined(KILL_PIN) && KILL_PIN > -1
  4505. static int killCount = 0; // make the inactivity button a bit less responsive
  4506. const int KILL_DELAY = 10000;
  4507. #endif
  4508. if(buflen < (BUFSIZE-1)){
  4509. get_command();
  4510. }
  4511. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4512. if(max_inactive_time)
  4513. kill();
  4514. if(stepper_inactive_time) {
  4515. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4516. {
  4517. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4518. disable_x();
  4519. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4520. disable_y();
  4521. disable_z();
  4522. disable_e0();
  4523. disable_e1();
  4524. disable_e2();
  4525. }
  4526. }
  4527. }
  4528. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4529. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4530. {
  4531. chdkActive = false;
  4532. WRITE(CHDK, LOW);
  4533. }
  4534. #endif
  4535. #if defined(KILL_PIN) && KILL_PIN > -1
  4536. // Check if the kill button was pressed and wait just in case it was an accidental
  4537. // key kill key press
  4538. // -------------------------------------------------------------------------------
  4539. if( 0 == READ(KILL_PIN) )
  4540. {
  4541. killCount++;
  4542. }
  4543. else if (killCount > 0)
  4544. {
  4545. killCount--;
  4546. }
  4547. // Exceeded threshold and we can confirm that it was not accidental
  4548. // KILL the machine
  4549. // ----------------------------------------------------------------
  4550. if ( killCount >= KILL_DELAY)
  4551. {
  4552. kill();
  4553. }
  4554. #endif
  4555. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4556. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4557. #endif
  4558. #ifdef EXTRUDER_RUNOUT_PREVENT
  4559. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4560. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4561. {
  4562. bool oldstatus=READ(E0_ENABLE_PIN);
  4563. enable_e0();
  4564. float oldepos=current_position[E_AXIS];
  4565. float oldedes=destination[E_AXIS];
  4566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4567. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4568. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4569. current_position[E_AXIS]=oldepos;
  4570. destination[E_AXIS]=oldedes;
  4571. plan_set_e_position(oldepos);
  4572. previous_millis_cmd=millis();
  4573. st_synchronize();
  4574. WRITE(E0_ENABLE_PIN,oldstatus);
  4575. }
  4576. #endif
  4577. #ifdef TEMP_STAT_LEDS
  4578. handle_status_leds();
  4579. #endif
  4580. check_axes_activity();
  4581. }
  4582. void kill(const char *full_screen_message)
  4583. {
  4584. cli(); // Stop interrupts
  4585. disable_heater();
  4586. disable_x();
  4587. // SERIAL_ECHOLNPGM("kill - disable Y");
  4588. disable_y();
  4589. disable_z();
  4590. disable_e0();
  4591. disable_e1();
  4592. disable_e2();
  4593. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4594. pinMode(PS_ON_PIN,INPUT);
  4595. #endif
  4596. SERIAL_ERROR_START;
  4597. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4598. if (full_screen_message != NULL) {
  4599. SERIAL_ERRORLNRPGM(full_screen_message);
  4600. lcd_display_message_fullscreen_P(full_screen_message);
  4601. } else {
  4602. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4603. }
  4604. // FMC small patch to update the LCD before ending
  4605. sei(); // enable interrupts
  4606. for ( int i=5; i--; lcd_update())
  4607. {
  4608. delay(200);
  4609. }
  4610. cli(); // disable interrupts
  4611. suicide();
  4612. while(1) { /* Intentionally left empty */ } // Wait for reset
  4613. }
  4614. void Stop()
  4615. {
  4616. disable_heater();
  4617. if(Stopped == false) {
  4618. Stopped = true;
  4619. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4620. SERIAL_ERROR_START;
  4621. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4622. LCD_MESSAGERPGM(MSG_STOPPED);
  4623. }
  4624. }
  4625. bool IsStopped() { return Stopped; };
  4626. #ifdef FAST_PWM_FAN
  4627. void setPwmFrequency(uint8_t pin, int val)
  4628. {
  4629. val &= 0x07;
  4630. switch(digitalPinToTimer(pin))
  4631. {
  4632. #if defined(TCCR0A)
  4633. case TIMER0A:
  4634. case TIMER0B:
  4635. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4636. // TCCR0B |= val;
  4637. break;
  4638. #endif
  4639. #if defined(TCCR1A)
  4640. case TIMER1A:
  4641. case TIMER1B:
  4642. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4643. // TCCR1B |= val;
  4644. break;
  4645. #endif
  4646. #if defined(TCCR2)
  4647. case TIMER2:
  4648. case TIMER2:
  4649. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4650. TCCR2 |= val;
  4651. break;
  4652. #endif
  4653. #if defined(TCCR2A)
  4654. case TIMER2A:
  4655. case TIMER2B:
  4656. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4657. TCCR2B |= val;
  4658. break;
  4659. #endif
  4660. #if defined(TCCR3A)
  4661. case TIMER3A:
  4662. case TIMER3B:
  4663. case TIMER3C:
  4664. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4665. TCCR3B |= val;
  4666. break;
  4667. #endif
  4668. #if defined(TCCR4A)
  4669. case TIMER4A:
  4670. case TIMER4B:
  4671. case TIMER4C:
  4672. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4673. TCCR4B |= val;
  4674. break;
  4675. #endif
  4676. #if defined(TCCR5A)
  4677. case TIMER5A:
  4678. case TIMER5B:
  4679. case TIMER5C:
  4680. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4681. TCCR5B |= val;
  4682. break;
  4683. #endif
  4684. }
  4685. }
  4686. #endif //FAST_PWM_FAN
  4687. bool setTargetedHotend(int code){
  4688. tmp_extruder = active_extruder;
  4689. if(code_seen('T')) {
  4690. tmp_extruder = code_value();
  4691. if(tmp_extruder >= EXTRUDERS) {
  4692. SERIAL_ECHO_START;
  4693. switch(code){
  4694. case 104:
  4695. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4696. break;
  4697. case 105:
  4698. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4699. break;
  4700. case 109:
  4701. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4702. break;
  4703. case 218:
  4704. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4705. break;
  4706. case 221:
  4707. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4708. break;
  4709. }
  4710. SERIAL_ECHOLN(tmp_extruder);
  4711. return true;
  4712. }
  4713. }
  4714. return false;
  4715. }
  4716. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4717. {
  4718. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4719. {
  4720. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4721. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4722. }
  4723. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4724. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4725. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4726. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4727. total_filament_used = 0;
  4728. }
  4729. float calculate_volumetric_multiplier(float diameter) {
  4730. float area = .0;
  4731. float radius = .0;
  4732. radius = diameter * .5;
  4733. if (! volumetric_enabled || radius == 0) {
  4734. area = 1;
  4735. }
  4736. else {
  4737. area = M_PI * pow(radius, 2);
  4738. }
  4739. return 1.0 / area;
  4740. }
  4741. void calculate_volumetric_multipliers() {
  4742. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4743. #if EXTRUDERS > 1
  4744. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4745. #if EXTRUDERS > 2
  4746. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4747. #endif
  4748. #endif
  4749. }
  4750. void delay_keep_alive(int ms)
  4751. {
  4752. for (;;) {
  4753. manage_heater();
  4754. // Manage inactivity, but don't disable steppers on timeout.
  4755. manage_inactivity(true);
  4756. lcd_update();
  4757. if (ms == 0)
  4758. break;
  4759. else if (ms >= 50) {
  4760. delay(50);
  4761. ms -= 50;
  4762. } else {
  4763. delay(ms);
  4764. ms = 0;
  4765. }
  4766. }
  4767. }