Marlin_main.cpp 228 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. unsigned long PingTime = millis();
  198. unsigned long NcTime;
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef FILAMENT_SENSOR
  319. //Variables for Filament Sensor input
  320. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  321. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  322. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  323. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  324. int delay_index1=0; //index into ring buffer
  325. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  326. float delay_dist=0; //delay distance counter
  327. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  328. #endif
  329. const char errormagic[] PROGMEM = "Error:";
  330. const char echomagic[] PROGMEM = "echo:";
  331. bool no_response = false;
  332. uint8_t important_status;
  333. uint8_t saved_filament_type;
  334. //===========================================================================
  335. //=============================Private Variables=============================
  336. //===========================================================================
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  339. static float delta[3] = {0.0, 0.0, 0.0};
  340. // For tracing an arc
  341. static float offset[3] = {0.0, 0.0, 0.0};
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. // Determines Absolute or Relative Coordinates.
  346. // Also there is bool axis_relative_modes[] per axis flag.
  347. static bool relative_mode = false;
  348. // String circular buffer. Commands may be pushed to the buffer from both sides:
  349. // Chained commands will be pushed to the front, interactive (from LCD menu)
  350. // and printing commands (from serial line or from SD card) are pushed to the tail.
  351. // First character of each entry indicates the type of the entry:
  352. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  353. // Command in cmdbuffer was sent over USB.
  354. #define CMDBUFFER_CURRENT_TYPE_USB 1
  355. // Command in cmdbuffer was read from SDCARD.
  356. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  357. // Command in cmdbuffer was generated by the UI.
  358. #define CMDBUFFER_CURRENT_TYPE_UI 3
  359. // Command in cmdbuffer was generated by another G-code.
  360. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  361. // How much space to reserve for the chained commands
  362. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  363. // which are pushed to the front of the queue?
  364. // Maximum 5 commands of max length 20 + null terminator.
  365. #define CMDBUFFER_RESERVE_FRONT (5*21)
  366. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  367. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  368. // Head of the circular buffer, where to read.
  369. static int bufindr = 0;
  370. // Tail of the buffer, where to write.
  371. static int bufindw = 0;
  372. // Number of lines in cmdbuffer.
  373. static int buflen = 0;
  374. // Flag for processing the current command inside the main Arduino loop().
  375. // If a new command was pushed to the front of a command buffer while
  376. // processing another command, this replaces the command on the top.
  377. // Therefore don't remove the command from the queue in the loop() function.
  378. static bool cmdbuffer_front_already_processed = false;
  379. // Type of a command, which is to be executed right now.
  380. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  381. // String of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  383. // Enable debugging of the command buffer.
  384. // Debugging information will be sent to serial line.
  385. // #define CMDBUFFER_DEBUG
  386. static int serial_count = 0; //index of character read from serial line
  387. static boolean comment_mode = false;
  388. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  389. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  390. //static float tt = 0;
  391. //static float bt = 0;
  392. //Inactivity shutdown variables
  393. static unsigned long previous_millis_cmd = 0;
  394. unsigned long max_inactive_time = 0;
  395. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  396. unsigned long starttime=0;
  397. unsigned long stoptime=0;
  398. unsigned long _usb_timer = 0;
  399. static uint8_t tmp_extruder;
  400. bool Stopped=false;
  401. #if NUM_SERVOS > 0
  402. Servo servos[NUM_SERVOS];
  403. #endif
  404. bool CooldownNoWait = true;
  405. bool target_direction;
  406. //Insert variables if CHDK is defined
  407. #ifdef CHDK
  408. unsigned long chdkHigh = 0;
  409. boolean chdkActive = false;
  410. #endif
  411. //===========================================================================
  412. //=============================Routines======================================
  413. //===========================================================================
  414. void get_arc_coordinates();
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char *s_P, float v)
  417. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char *s_P, double v)
  419. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char *s_P, unsigned long v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. #ifdef SDSUPPORT
  423. #include "SdFatUtil.h"
  424. int freeMemory() { return SdFatUtil::FreeRam(); }
  425. #else
  426. extern "C" {
  427. extern unsigned int __bss_end;
  428. extern unsigned int __heap_start;
  429. extern void *__brkval;
  430. int freeMemory() {
  431. int free_memory;
  432. if ((int)__brkval == 0)
  433. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  434. else
  435. free_memory = ((int)&free_memory) - ((int)__brkval);
  436. return free_memory;
  437. }
  438. }
  439. #endif //!SDSUPPORT
  440. // Pop the currently processed command from the queue.
  441. // It is expected, that there is at least one command in the queue.
  442. bool cmdqueue_pop_front()
  443. {
  444. if (buflen > 0) {
  445. #ifdef CMDBUFFER_DEBUG
  446. SERIAL_ECHOPGM("Dequeing ");
  447. SERIAL_ECHO(cmdbuffer+bufindr+1);
  448. SERIAL_ECHOLNPGM("");
  449. SERIAL_ECHOPGM("Old indices: buflen ");
  450. SERIAL_ECHO(buflen);
  451. SERIAL_ECHOPGM(", bufindr ");
  452. SERIAL_ECHO(bufindr);
  453. SERIAL_ECHOPGM(", bufindw ");
  454. SERIAL_ECHO(bufindw);
  455. SERIAL_ECHOPGM(", serial_count ");
  456. SERIAL_ECHO(serial_count);
  457. SERIAL_ECHOPGM(", bufsize ");
  458. SERIAL_ECHO(sizeof(cmdbuffer));
  459. SERIAL_ECHOLNPGM("");
  460. #endif /* CMDBUFFER_DEBUG */
  461. if (-- buflen == 0) {
  462. // Empty buffer.
  463. if (serial_count == 0)
  464. // No serial communication is pending. Reset both pointers to zero.
  465. bufindw = 0;
  466. bufindr = bufindw;
  467. } else {
  468. // There is at least one ready line in the buffer.
  469. // First skip the current command ID and iterate up to the end of the string.
  470. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  471. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  472. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  473. // If the end of the buffer was empty,
  474. if (bufindr == sizeof(cmdbuffer)) {
  475. // skip to the start and find the nonzero command.
  476. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  477. }
  478. #ifdef CMDBUFFER_DEBUG
  479. SERIAL_ECHOPGM("New indices: buflen ");
  480. SERIAL_ECHO(buflen);
  481. SERIAL_ECHOPGM(", bufindr ");
  482. SERIAL_ECHO(bufindr);
  483. SERIAL_ECHOPGM(", bufindw ");
  484. SERIAL_ECHO(bufindw);
  485. SERIAL_ECHOPGM(", serial_count ");
  486. SERIAL_ECHO(serial_count);
  487. SERIAL_ECHOPGM(" new command on the top: ");
  488. SERIAL_ECHO(cmdbuffer+bufindr+1);
  489. SERIAL_ECHOLNPGM("");
  490. #endif /* CMDBUFFER_DEBUG */
  491. }
  492. return true;
  493. }
  494. return false;
  495. }
  496. void cmdqueue_reset()
  497. {
  498. while (cmdqueue_pop_front()) ;
  499. }
  500. // How long a string could be pushed to the front of the command queue?
  501. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  502. // len_asked does not contain the zero terminator size.
  503. bool cmdqueue_could_enqueue_front(int len_asked)
  504. {
  505. // MAX_CMD_SIZE has to accommodate the zero terminator.
  506. if (len_asked >= MAX_CMD_SIZE)
  507. return false;
  508. // Remove the currently processed command from the queue.
  509. if (! cmdbuffer_front_already_processed) {
  510. cmdqueue_pop_front();
  511. cmdbuffer_front_already_processed = true;
  512. }
  513. if (bufindr == bufindw && buflen > 0)
  514. // Full buffer.
  515. return false;
  516. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  517. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  518. if (bufindw < bufindr) {
  519. int bufindr_new = bufindr - len_asked - 2;
  520. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  521. if (endw <= bufindr_new) {
  522. bufindr = bufindr_new;
  523. return true;
  524. }
  525. } else {
  526. // Otherwise the free space is split between the start and end.
  527. if (len_asked + 2 <= bufindr) {
  528. // Could fit at the start.
  529. bufindr -= len_asked + 2;
  530. return true;
  531. }
  532. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  533. if (endw <= bufindr_new) {
  534. memset(cmdbuffer, 0, bufindr);
  535. bufindr = bufindr_new;
  536. return true;
  537. }
  538. }
  539. return false;
  540. }
  541. // Could one enqueue a command of lenthg len_asked into the buffer,
  542. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  543. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  544. // len_asked does not contain the zero terminator size.
  545. bool cmdqueue_could_enqueue_back(int len_asked)
  546. {
  547. // MAX_CMD_SIZE has to accommodate the zero terminator.
  548. if (len_asked >= MAX_CMD_SIZE)
  549. return false;
  550. if (bufindr == bufindw && buflen > 0)
  551. // Full buffer.
  552. return false;
  553. if (serial_count > 0) {
  554. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  555. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  556. // serial data.
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. } else {
  578. // How much memory to reserve for the commands pushed to the front?
  579. // End of the queue, when pushing to the end.
  580. int endw = bufindw + len_asked + 2;
  581. if (bufindw < bufindr)
  582. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  583. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  584. // Otherwise the free space is split between the start and end.
  585. if (// Could one fit to the end, including the reserve?
  586. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  587. // Could one fit to the end, and the reserve to the start?
  588. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  589. return true;
  590. // Could one fit both to the start?
  591. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  592. // Mark the rest of the buffer as used.
  593. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  594. // and point to the start.
  595. bufindw = 0;
  596. return true;
  597. }
  598. }
  599. return false;
  600. }
  601. #ifdef CMDBUFFER_DEBUG
  602. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  603. {
  604. SERIAL_ECHOPGM("Entry nr: ");
  605. SERIAL_ECHO(nr);
  606. SERIAL_ECHOPGM(", type: ");
  607. SERIAL_ECHO(int(*p));
  608. SERIAL_ECHOPGM(", cmd: ");
  609. SERIAL_ECHO(p+1);
  610. SERIAL_ECHOLNPGM("");
  611. }
  612. static void cmdqueue_dump_to_serial()
  613. {
  614. if (buflen == 0) {
  615. SERIAL_ECHOLNPGM("The command buffer is empty.");
  616. } else {
  617. SERIAL_ECHOPGM("Content of the buffer: entries ");
  618. SERIAL_ECHO(buflen);
  619. SERIAL_ECHOPGM(", indr ");
  620. SERIAL_ECHO(bufindr);
  621. SERIAL_ECHOPGM(", indw ");
  622. SERIAL_ECHO(bufindw);
  623. SERIAL_ECHOLNPGM("");
  624. int nr = 0;
  625. if (bufindr < bufindw) {
  626. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  627. cmdqueue_dump_to_serial_single_line(nr, p);
  628. // Skip the command.
  629. for (++p; *p != 0; ++ p);
  630. // Skip the gaps.
  631. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  632. }
  633. } else {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  640. }
  641. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. }
  649. SERIAL_ECHOLNPGM("End of the buffer.");
  650. }
  651. }
  652. #endif /* CMDBUFFER_DEBUG */
  653. //adds an command to the main command buffer
  654. //thats really done in a non-safe way.
  655. //needs overworking someday
  656. // Currently the maximum length of a command piped through this function is around 20 characters
  657. void enquecommand(const char *cmd, bool from_progmem)
  658. {
  659. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  660. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  661. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  662. if (cmdqueue_could_enqueue_back(len)) {
  663. // This is dangerous if a mixing of serial and this happens
  664. // This may easily be tested: If serial_count > 0, we have a problem.
  665. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  666. if (from_progmem)
  667. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  668. else
  669. strcpy(cmdbuffer + bufindw + 1, cmd);
  670. if (!farm_mode) {
  671. SERIAL_ECHO_START;
  672. SERIAL_ECHORPGM(MSG_Enqueing);
  673. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  674. SERIAL_ECHOLNPGM("\"");
  675. }
  676. bufindw += len + 2;
  677. if (bufindw == sizeof(cmdbuffer))
  678. bufindw = 0;
  679. ++ buflen;
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ERROR_START;
  685. SERIAL_ECHORPGM(MSG_Enqueing);
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. void enquecommand_front(const char *cmd, bool from_progmem)
  697. {
  698. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  699. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  700. if (cmdqueue_could_enqueue_front(len)) {
  701. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  702. if (from_progmem)
  703. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  704. else
  705. strcpy(cmdbuffer + bufindr + 1, cmd);
  706. ++ buflen;
  707. if (!farm_mode) {
  708. SERIAL_ECHO_START;
  709. SERIAL_ECHOPGM("Enqueing to the front: \"");
  710. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  711. SERIAL_ECHOLNPGM("\"");
  712. }
  713. #ifdef CMDBUFFER_DEBUG
  714. cmdqueue_dump_to_serial();
  715. #endif /* CMDBUFFER_DEBUG */
  716. } else {
  717. SERIAL_ERROR_START;
  718. SERIAL_ECHOPGM("Enqueing to the front: \"");
  719. if (from_progmem)
  720. SERIAL_PROTOCOLRPGM(cmd);
  721. else
  722. SERIAL_ECHO(cmd);
  723. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  724. #ifdef CMDBUFFER_DEBUG
  725. cmdqueue_dump_to_serial();
  726. #endif /* CMDBUFFER_DEBUG */
  727. }
  728. }
  729. // Mark the command at the top of the command queue as new.
  730. // Therefore it will not be removed from the queue.
  731. void repeatcommand_front()
  732. {
  733. cmdbuffer_front_already_processed = true;
  734. }
  735. bool is_buffer_empty()
  736. {
  737. if (buflen == 0) return true;
  738. else return false;
  739. }
  740. void setup_killpin()
  741. {
  742. #if defined(KILL_PIN) && KILL_PIN > -1
  743. SET_INPUT(KILL_PIN);
  744. WRITE(KILL_PIN,HIGH);
  745. #endif
  746. }
  747. // Set home pin
  748. void setup_homepin(void)
  749. {
  750. #if defined(HOME_PIN) && HOME_PIN > -1
  751. SET_INPUT(HOME_PIN);
  752. WRITE(HOME_PIN,HIGH);
  753. #endif
  754. }
  755. void setup_photpin()
  756. {
  757. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  758. SET_OUTPUT(PHOTOGRAPH_PIN);
  759. WRITE(PHOTOGRAPH_PIN, LOW);
  760. #endif
  761. }
  762. void setup_powerhold()
  763. {
  764. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  765. SET_OUTPUT(SUICIDE_PIN);
  766. WRITE(SUICIDE_PIN, HIGH);
  767. #endif
  768. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  769. SET_OUTPUT(PS_ON_PIN);
  770. #if defined(PS_DEFAULT_OFF)
  771. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  772. #else
  773. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  774. #endif
  775. #endif
  776. }
  777. void suicide()
  778. {
  779. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  780. SET_OUTPUT(SUICIDE_PIN);
  781. WRITE(SUICIDE_PIN, LOW);
  782. #endif
  783. }
  784. void servo_init()
  785. {
  786. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  787. servos[0].attach(SERVO0_PIN);
  788. #endif
  789. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  790. servos[1].attach(SERVO1_PIN);
  791. #endif
  792. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  793. servos[2].attach(SERVO2_PIN);
  794. #endif
  795. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  796. servos[3].attach(SERVO3_PIN);
  797. #endif
  798. #if (NUM_SERVOS >= 5)
  799. #error "TODO: enter initalisation code for more servos"
  800. #endif
  801. }
  802. static void lcd_language_menu();
  803. #ifdef MESH_BED_LEVELING
  804. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  805. #endif
  806. // Factory reset function
  807. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  808. // Level input parameter sets depth of reset
  809. // Quiet parameter masks all waitings for user interact.
  810. int er_progress = 0;
  811. void factory_reset(char level, bool quiet)
  812. {
  813. lcd_implementation_clear();
  814. int cursor_pos = 0;
  815. switch (level) {
  816. // Level 0: Language reset
  817. case 0:
  818. WRITE(BEEPER, HIGH);
  819. _delay_ms(100);
  820. WRITE(BEEPER, LOW);
  821. lcd_force_language_selection();
  822. break;
  823. //Level 1: Reset statistics
  824. case 1:
  825. WRITE(BEEPER, HIGH);
  826. _delay_ms(100);
  827. WRITE(BEEPER, LOW);
  828. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  829. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  830. lcd_menu_statistics();
  831. break;
  832. // Level 2: Prepare for shipping
  833. case 2:
  834. //lcd_printPGM(PSTR("Factory RESET"));
  835. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  836. // Force language selection at the next boot up.
  837. lcd_force_language_selection();
  838. // Force the "Follow calibration flow" message at the next boot up.
  839. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  840. farm_no = 0;
  841. farm_mode == false;
  842. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  843. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  844. WRITE(BEEPER, HIGH);
  845. _delay_ms(100);
  846. WRITE(BEEPER, LOW);
  847. //_delay_ms(2000);
  848. break;
  849. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  850. case 3:
  851. lcd_printPGM(PSTR("Factory RESET"));
  852. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  853. WRITE(BEEPER, HIGH);
  854. _delay_ms(100);
  855. WRITE(BEEPER, LOW);
  856. er_progress = 0;
  857. lcd_print_at_PGM(3, 3, PSTR(" "));
  858. lcd_implementation_print_at(3, 3, er_progress);
  859. // Erase EEPROM
  860. for (int i = 0; i < 4096; i++) {
  861. eeprom_write_byte((uint8_t*)i, 0xFF);
  862. if (i % 41 == 0) {
  863. er_progress++;
  864. lcd_print_at_PGM(3, 3, PSTR(" "));
  865. lcd_implementation_print_at(3, 3, er_progress);
  866. lcd_printPGM(PSTR("%"));
  867. }
  868. }
  869. break;
  870. case 4:
  871. bowden_menu();
  872. break;
  873. default:
  874. break;
  875. }
  876. }
  877. // "Setup" function is called by the Arduino framework on startup.
  878. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  879. // are initialized by the main() routine provided by the Arduino framework.
  880. void setup()
  881. {
  882. lcd_init();
  883. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  884. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  885. setup_killpin();
  886. setup_powerhold();
  887. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  888. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  889. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  890. if (farm_no == 0xFFFF) farm_no = 0;
  891. if (farm_mode)
  892. {
  893. prusa_statistics(8);
  894. no_response = true; //we need confirmation by recieving PRUSA thx
  895. important_status = 8;
  896. selectedSerialPort = 1;
  897. } else {
  898. selectedSerialPort = 0;
  899. }
  900. MYSERIAL.begin(BAUDRATE);
  901. SERIAL_PROTOCOLLNPGM("start");
  902. SERIAL_ECHO_START;
  903. #if 0
  904. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  905. for (int i = 0; i < 4096; ++i) {
  906. int b = eeprom_read_byte((unsigned char*)i);
  907. if (b != 255) {
  908. SERIAL_ECHO(i);
  909. SERIAL_ECHO(":");
  910. SERIAL_ECHO(b);
  911. SERIAL_ECHOLN("");
  912. }
  913. }
  914. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  915. #endif
  916. // Check startup - does nothing if bootloader sets MCUSR to 0
  917. byte mcu = MCUSR;
  918. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  919. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  920. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  921. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  922. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  923. MCUSR = 0;
  924. //SERIAL_ECHORPGM(MSG_MARLIN);
  925. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  926. #ifdef STRING_VERSION_CONFIG_H
  927. #ifdef STRING_CONFIG_H_AUTHOR
  928. SERIAL_ECHO_START;
  929. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  930. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  931. SERIAL_ECHORPGM(MSG_AUTHOR);
  932. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  933. SERIAL_ECHOPGM("Compiled: ");
  934. SERIAL_ECHOLNPGM(__DATE__);
  935. #endif
  936. #endif
  937. SERIAL_ECHO_START;
  938. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  939. SERIAL_ECHO(freeMemory());
  940. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  941. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  942. lcd_update_enable(false);
  943. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  944. bool previous_settings_retrieved = Config_RetrieveSettings();
  945. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  946. tp_init(); // Initialize temperature loop
  947. plan_init(); // Initialize planner;
  948. watchdog_init();
  949. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  950. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  951. st_init(); // Initialize stepper, this enables interrupts!
  952. setup_photpin();
  953. servo_init();
  954. // Reset the machine correction matrix.
  955. // It does not make sense to load the correction matrix until the machine is homed.
  956. world2machine_reset();
  957. lcd_init();
  958. if (!READ(BTN_ENC))
  959. {
  960. _delay_ms(1000);
  961. if (!READ(BTN_ENC))
  962. {
  963. lcd_implementation_clear();
  964. lcd_printPGM(PSTR("Factory RESET"));
  965. SET_OUTPUT(BEEPER);
  966. WRITE(BEEPER, HIGH);
  967. while (!READ(BTN_ENC));
  968. WRITE(BEEPER, LOW);
  969. _delay_ms(2000);
  970. char level = reset_menu();
  971. factory_reset(level, false);
  972. switch (level) {
  973. case 0: _delay_ms(0); break;
  974. case 1: _delay_ms(0); break;
  975. case 2: _delay_ms(0); break;
  976. case 3: _delay_ms(0); break;
  977. }
  978. // _delay_ms(100);
  979. /*
  980. #ifdef MESH_BED_LEVELING
  981. _delay_ms(2000);
  982. if (!READ(BTN_ENC))
  983. {
  984. WRITE(BEEPER, HIGH);
  985. _delay_ms(100);
  986. WRITE(BEEPER, LOW);
  987. _delay_ms(200);
  988. WRITE(BEEPER, HIGH);
  989. _delay_ms(100);
  990. WRITE(BEEPER, LOW);
  991. int _z = 0;
  992. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  993. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  994. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  995. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  996. }
  997. else
  998. {
  999. WRITE(BEEPER, HIGH);
  1000. _delay_ms(100);
  1001. WRITE(BEEPER, LOW);
  1002. }
  1003. #endif // mesh */
  1004. }
  1005. }
  1006. else
  1007. {
  1008. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1009. }
  1010. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1011. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1012. #endif
  1013. #ifdef DIGIPOT_I2C
  1014. digipot_i2c_init();
  1015. #endif
  1016. setup_homepin();
  1017. #if defined(Z_AXIS_ALWAYS_ON)
  1018. enable_z();
  1019. #endif
  1020. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1021. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1022. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1023. if (farm_no == 0xFFFF) farm_no = 0;
  1024. if (farm_mode)
  1025. {
  1026. prusa_statistics(8);
  1027. no_response = true; //we need confirmation by recieving PRUSA thx
  1028. important_status = 8;
  1029. }
  1030. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1031. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1032. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1033. // but this times out if a blocking dialog is shown in setup().
  1034. card.initsd();
  1035. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1036. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1037. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1038. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1039. // where all the EEPROM entries are set to 0x0ff.
  1040. // Once a firmware boots up, it forces at least a language selection, which changes
  1041. // EEPROM_LANG to number lower than 0x0ff.
  1042. // 1) Set a high power mode.
  1043. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1044. }
  1045. #ifdef SNMM
  1046. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1047. int _z = BOWDEN_LENGTH;
  1048. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1049. }
  1050. #endif
  1051. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1052. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1053. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1054. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1055. if (lang_selected >= LANG_NUM){
  1056. lcd_mylang();
  1057. }
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1060. temp_cal_active = false;
  1061. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1062. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1063. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1064. }
  1065. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1066. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1067. }
  1068. #ifndef DEBUG_DISABLE_STARTMSGS
  1069. check_babystep(); //checking if Z babystep is in allowed range
  1070. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1071. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1072. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1073. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1074. // Show the message.
  1075. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1076. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1077. // Show the message.
  1078. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1079. lcd_update_enable(true);
  1080. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1082. lcd_update_enable(true);
  1083. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1084. // Show the message.
  1085. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1086. }
  1087. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1088. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1089. if (!previous_settings_retrieved) {
  1090. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1091. }
  1092. #endif //DEBUG_DISABLE_STARTMSGS
  1093. lcd_update_enable(true);
  1094. // Store the currently running firmware into an eeprom,
  1095. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1096. update_current_firmware_version_to_eeprom();
  1097. }
  1098. void trace();
  1099. #define CHUNK_SIZE 64 // bytes
  1100. #define SAFETY_MARGIN 1
  1101. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1102. int chunkHead = 0;
  1103. int serial_read_stream() {
  1104. setTargetHotend(0, 0);
  1105. setTargetBed(0);
  1106. lcd_implementation_clear();
  1107. lcd_printPGM(PSTR(" Upload in progress"));
  1108. // first wait for how many bytes we will receive
  1109. uint32_t bytesToReceive;
  1110. // receive the four bytes
  1111. char bytesToReceiveBuffer[4];
  1112. for (int i=0; i<4; i++) {
  1113. int data;
  1114. while ((data = MYSERIAL.read()) == -1) {};
  1115. bytesToReceiveBuffer[i] = data;
  1116. }
  1117. // make it a uint32
  1118. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1119. // we're ready, notify the sender
  1120. MYSERIAL.write('+');
  1121. // lock in the routine
  1122. uint32_t receivedBytes = 0;
  1123. while (prusa_sd_card_upload) {
  1124. int i;
  1125. for (i=0; i<CHUNK_SIZE; i++) {
  1126. int data;
  1127. // check if we're not done
  1128. if (receivedBytes == bytesToReceive) {
  1129. break;
  1130. }
  1131. // read the next byte
  1132. while ((data = MYSERIAL.read()) == -1) {};
  1133. receivedBytes++;
  1134. // save it to the chunk
  1135. chunk[i] = data;
  1136. }
  1137. // write the chunk to SD
  1138. card.write_command_no_newline(&chunk[0]);
  1139. // notify the sender we're ready for more data
  1140. MYSERIAL.write('+');
  1141. // for safety
  1142. manage_heater();
  1143. // check if we're done
  1144. if(receivedBytes == bytesToReceive) {
  1145. trace(); // beep
  1146. card.closefile();
  1147. prusa_sd_card_upload = false;
  1148. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1149. return 0;
  1150. }
  1151. }
  1152. }
  1153. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1154. // Before loop(), the setup() function is called by the main() routine.
  1155. void loop()
  1156. {
  1157. bool stack_integrity = true;
  1158. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1159. {
  1160. is_usb_printing = true;
  1161. usb_printing_counter--;
  1162. _usb_timer = millis();
  1163. }
  1164. if (usb_printing_counter == 0)
  1165. {
  1166. is_usb_printing = false;
  1167. }
  1168. if (prusa_sd_card_upload)
  1169. {
  1170. //we read byte-by byte
  1171. serial_read_stream();
  1172. } else
  1173. {
  1174. get_command();
  1175. #ifdef SDSUPPORT
  1176. card.checkautostart(false);
  1177. #endif
  1178. if(buflen)
  1179. {
  1180. #ifdef SDSUPPORT
  1181. if(card.saving)
  1182. {
  1183. // Saving a G-code file onto an SD-card is in progress.
  1184. // Saving starts with M28, saving until M29 is seen.
  1185. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1186. card.write_command(CMDBUFFER_CURRENT_STRING);
  1187. if(card.logging)
  1188. process_commands();
  1189. else
  1190. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1191. } else {
  1192. card.closefile();
  1193. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1194. }
  1195. } else {
  1196. process_commands();
  1197. }
  1198. #else
  1199. process_commands();
  1200. #endif //SDSUPPORT
  1201. if (! cmdbuffer_front_already_processed)
  1202. cmdqueue_pop_front();
  1203. cmdbuffer_front_already_processed = false;
  1204. }
  1205. }
  1206. //check heater every n milliseconds
  1207. manage_heater();
  1208. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1209. checkHitEndstops();
  1210. lcd_update();
  1211. }
  1212. void proc_commands() {
  1213. if (buflen)
  1214. {
  1215. process_commands();
  1216. if (!cmdbuffer_front_already_processed)
  1217. cmdqueue_pop_front();
  1218. cmdbuffer_front_already_processed = false;
  1219. }
  1220. }
  1221. void get_command()
  1222. {
  1223. // Test and reserve space for the new command string.
  1224. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1225. return;
  1226. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1227. while (MYSERIAL.available() > 0) {
  1228. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1229. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1230. rx_buffer_full = true; //sets flag that buffer was full
  1231. }
  1232. char serial_char = MYSERIAL.read();
  1233. if (selectedSerialPort == 1) {
  1234. selectedSerialPort = 0;
  1235. MYSERIAL.write(serial_char);
  1236. selectedSerialPort = 1;
  1237. }
  1238. TimeSent = millis();
  1239. TimeNow = millis();
  1240. if (serial_char < 0)
  1241. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1242. // and Marlin does not support such file names anyway.
  1243. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1244. // to a hang-up of the print process from an SD card.
  1245. continue;
  1246. if(serial_char == '\n' ||
  1247. serial_char == '\r' ||
  1248. (serial_char == ':' && comment_mode == false) ||
  1249. serial_count >= (MAX_CMD_SIZE - 1) )
  1250. {
  1251. if(!serial_count) { //if empty line
  1252. comment_mode = false; //for new command
  1253. return;
  1254. }
  1255. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1256. if(!comment_mode){
  1257. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1258. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1259. {
  1260. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1261. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1262. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1263. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1264. // M110 - set current line number.
  1265. // Line numbers not sent in succession.
  1266. SERIAL_ERROR_START;
  1267. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1268. SERIAL_ERRORLN(gcode_LastN);
  1269. //Serial.println(gcode_N);
  1270. FlushSerialRequestResend();
  1271. serial_count = 0;
  1272. return;
  1273. }
  1274. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1275. {
  1276. byte checksum = 0;
  1277. char *p = cmdbuffer+bufindw+1;
  1278. while (p != strchr_pointer)
  1279. checksum = checksum^(*p++);
  1280. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1281. SERIAL_ERROR_START;
  1282. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1283. SERIAL_ERRORLN(gcode_LastN);
  1284. FlushSerialRequestResend();
  1285. serial_count = 0;
  1286. return;
  1287. }
  1288. // If no errors, remove the checksum and continue parsing.
  1289. *strchr_pointer = 0;
  1290. }
  1291. else
  1292. {
  1293. SERIAL_ERROR_START;
  1294. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1295. SERIAL_ERRORLN(gcode_LastN);
  1296. FlushSerialRequestResend();
  1297. serial_count = 0;
  1298. return;
  1299. }
  1300. gcode_LastN = gcode_N;
  1301. //if no errors, continue parsing
  1302. } // end of 'N' command
  1303. }
  1304. else // if we don't receive 'N' but still see '*'
  1305. {
  1306. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1307. {
  1308. SERIAL_ERROR_START;
  1309. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1310. SERIAL_ERRORLN(gcode_LastN);
  1311. serial_count = 0;
  1312. return;
  1313. }
  1314. } // end of '*' command
  1315. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1316. if (! IS_SD_PRINTING) {
  1317. usb_printing_counter = 10;
  1318. is_usb_printing = true;
  1319. }
  1320. if (Stopped == true) {
  1321. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1322. if (gcode >= 0 && gcode <= 3) {
  1323. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1324. LCD_MESSAGERPGM(MSG_STOPPED);
  1325. }
  1326. }
  1327. } // end of 'G' command
  1328. //If command was e-stop process now
  1329. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1330. kill();
  1331. // Store the current line into buffer, move to the next line.
  1332. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1333. #ifdef CMDBUFFER_DEBUG
  1334. SERIAL_ECHO_START;
  1335. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1336. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1337. SERIAL_ECHOLNPGM("");
  1338. #endif /* CMDBUFFER_DEBUG */
  1339. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1340. if (bufindw == sizeof(cmdbuffer))
  1341. bufindw = 0;
  1342. ++ buflen;
  1343. #ifdef CMDBUFFER_DEBUG
  1344. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1345. SERIAL_ECHO(buflen);
  1346. SERIAL_ECHOLNPGM("");
  1347. #endif /* CMDBUFFER_DEBUG */
  1348. } // end of 'not comment mode'
  1349. serial_count = 0; //clear buffer
  1350. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1351. // in the queue, as this function will reserve the memory.
  1352. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1353. return;
  1354. } // end of "end of line" processing
  1355. else {
  1356. // Not an "end of line" symbol. Store the new character into a buffer.
  1357. if(serial_char == ';') comment_mode = true;
  1358. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1359. }
  1360. } // end of serial line processing loop
  1361. if(farm_mode){
  1362. TimeNow = millis();
  1363. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1364. cmdbuffer[bufindw+serial_count+1] = 0;
  1365. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1366. if (bufindw == sizeof(cmdbuffer))
  1367. bufindw = 0;
  1368. ++ buflen;
  1369. serial_count = 0;
  1370. SERIAL_ECHOPGM("TIMEOUT:");
  1371. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1372. return;
  1373. }
  1374. }
  1375. //add comment
  1376. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1377. rx_buffer_full = false;
  1378. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1379. serial_count = 0;
  1380. }
  1381. #ifdef SDSUPPORT
  1382. if(!card.sdprinting || serial_count!=0){
  1383. // If there is a half filled buffer from serial line, wait until return before
  1384. // continuing with the serial line.
  1385. return;
  1386. }
  1387. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1388. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1389. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1390. static bool stop_buffering=false;
  1391. if(buflen==0) stop_buffering=false;
  1392. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1393. while( !card.eof() && !stop_buffering) {
  1394. int16_t n=card.get();
  1395. char serial_char = (char)n;
  1396. if(serial_char == '\n' ||
  1397. serial_char == '\r' ||
  1398. (serial_char == '#' && comment_mode == false) ||
  1399. (serial_char == ':' && comment_mode == false) ||
  1400. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1401. {
  1402. if(card.eof()){
  1403. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1404. stoptime=millis();
  1405. char time[30];
  1406. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1407. pause_time = 0;
  1408. int hours, minutes;
  1409. minutes=(t/60)%60;
  1410. hours=t/60/60;
  1411. save_statistics(total_filament_used, t);
  1412. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1413. SERIAL_ECHO_START;
  1414. SERIAL_ECHOLN(time);
  1415. lcd_setstatus(time);
  1416. card.printingHasFinished();
  1417. card.checkautostart(true);
  1418. if (farm_mode)
  1419. {
  1420. prusa_statistics(6);
  1421. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1422. }
  1423. }
  1424. if(serial_char=='#')
  1425. stop_buffering=true;
  1426. if(!serial_count)
  1427. {
  1428. comment_mode = false; //for new command
  1429. return; //if empty line
  1430. }
  1431. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1432. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1433. ++ buflen;
  1434. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1435. if (bufindw == sizeof(cmdbuffer))
  1436. bufindw = 0;
  1437. comment_mode = false; //for new command
  1438. serial_count = 0; //clear buffer
  1439. // The following line will reserve buffer space if available.
  1440. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1441. return;
  1442. }
  1443. else
  1444. {
  1445. if(serial_char == ';') comment_mode = true;
  1446. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1447. }
  1448. }
  1449. #endif //SDSUPPORT
  1450. }
  1451. // Return True if a character was found
  1452. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1453. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1454. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1455. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1456. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1457. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1458. static inline float code_value_float() {
  1459. char* e = strchr(strchr_pointer, 'E');
  1460. if (!e) return strtod(strchr_pointer + 1, NULL);
  1461. *e = 0;
  1462. float ret = strtod(strchr_pointer + 1, NULL);
  1463. *e = 'E';
  1464. return ret;
  1465. }
  1466. #define DEFINE_PGM_READ_ANY(type, reader) \
  1467. static inline type pgm_read_any(const type *p) \
  1468. { return pgm_read_##reader##_near(p); }
  1469. DEFINE_PGM_READ_ANY(float, float);
  1470. DEFINE_PGM_READ_ANY(signed char, byte);
  1471. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1472. static const PROGMEM type array##_P[3] = \
  1473. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1474. static inline type array(int axis) \
  1475. { return pgm_read_any(&array##_P[axis]); } \
  1476. type array##_ext(int axis) \
  1477. { return pgm_read_any(&array##_P[axis]); }
  1478. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1479. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1480. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1481. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1482. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1483. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1484. static void axis_is_at_home(int axis) {
  1485. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1486. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1487. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1488. }
  1489. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1490. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1491. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1492. saved_feedrate = feedrate;
  1493. saved_feedmultiply = feedmultiply;
  1494. feedmultiply = 100;
  1495. previous_millis_cmd = millis();
  1496. enable_endstops(enable_endstops_now);
  1497. }
  1498. static void clean_up_after_endstop_move() {
  1499. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1500. enable_endstops(false);
  1501. #endif
  1502. feedrate = saved_feedrate;
  1503. feedmultiply = saved_feedmultiply;
  1504. previous_millis_cmd = millis();
  1505. }
  1506. #ifdef ENABLE_AUTO_BED_LEVELING
  1507. #ifdef AUTO_BED_LEVELING_GRID
  1508. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1509. {
  1510. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1511. planeNormal.debug("planeNormal");
  1512. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1513. //bedLevel.debug("bedLevel");
  1514. //plan_bed_level_matrix.debug("bed level before");
  1515. //vector_3 uncorrected_position = plan_get_position_mm();
  1516. //uncorrected_position.debug("position before");
  1517. vector_3 corrected_position = plan_get_position();
  1518. // corrected_position.debug("position after");
  1519. current_position[X_AXIS] = corrected_position.x;
  1520. current_position[Y_AXIS] = corrected_position.y;
  1521. current_position[Z_AXIS] = corrected_position.z;
  1522. // put the bed at 0 so we don't go below it.
  1523. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1524. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. }
  1526. #else // not AUTO_BED_LEVELING_GRID
  1527. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1528. plan_bed_level_matrix.set_to_identity();
  1529. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1530. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1531. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1532. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1533. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1534. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1535. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1536. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1537. vector_3 corrected_position = plan_get_position();
  1538. current_position[X_AXIS] = corrected_position.x;
  1539. current_position[Y_AXIS] = corrected_position.y;
  1540. current_position[Z_AXIS] = corrected_position.z;
  1541. // put the bed at 0 so we don't go below it.
  1542. current_position[Z_AXIS] = zprobe_zoffset;
  1543. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1544. }
  1545. #endif // AUTO_BED_LEVELING_GRID
  1546. static void run_z_probe() {
  1547. plan_bed_level_matrix.set_to_identity();
  1548. feedrate = homing_feedrate[Z_AXIS];
  1549. // move down until you find the bed
  1550. float zPosition = -10;
  1551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1552. st_synchronize();
  1553. // we have to let the planner know where we are right now as it is not where we said to go.
  1554. zPosition = st_get_position_mm(Z_AXIS);
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1556. // move up the retract distance
  1557. zPosition += home_retract_mm(Z_AXIS);
  1558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1559. st_synchronize();
  1560. // move back down slowly to find bed
  1561. feedrate = homing_feedrate[Z_AXIS]/4;
  1562. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1564. st_synchronize();
  1565. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1566. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1567. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1568. }
  1569. static void do_blocking_move_to(float x, float y, float z) {
  1570. float oldFeedRate = feedrate;
  1571. feedrate = homing_feedrate[Z_AXIS];
  1572. current_position[Z_AXIS] = z;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1574. st_synchronize();
  1575. feedrate = XY_TRAVEL_SPEED;
  1576. current_position[X_AXIS] = x;
  1577. current_position[Y_AXIS] = y;
  1578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1579. st_synchronize();
  1580. feedrate = oldFeedRate;
  1581. }
  1582. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1583. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1584. }
  1585. /// Probe bed height at position (x,y), returns the measured z value
  1586. static float probe_pt(float x, float y, float z_before) {
  1587. // move to right place
  1588. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1589. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1590. run_z_probe();
  1591. float measured_z = current_position[Z_AXIS];
  1592. SERIAL_PROTOCOLRPGM(MSG_BED);
  1593. SERIAL_PROTOCOLPGM(" x: ");
  1594. SERIAL_PROTOCOL(x);
  1595. SERIAL_PROTOCOLPGM(" y: ");
  1596. SERIAL_PROTOCOL(y);
  1597. SERIAL_PROTOCOLPGM(" z: ");
  1598. SERIAL_PROTOCOL(measured_z);
  1599. SERIAL_PROTOCOLPGM("\n");
  1600. return measured_z;
  1601. }
  1602. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1603. #ifdef LIN_ADVANCE
  1604. /**
  1605. * M900: Set and/or Get advance K factor and WH/D ratio
  1606. *
  1607. * K<factor> Set advance K factor
  1608. * R<ratio> Set ratio directly (overrides WH/D)
  1609. * W<width> H<height> D<diam> Set ratio from WH/D
  1610. */
  1611. inline void gcode_M900() {
  1612. st_synchronize();
  1613. const float newK = code_seen('K') ? code_value_float() : -1;
  1614. if (newK >= 0) extruder_advance_k = newK;
  1615. float newR = code_seen('R') ? code_value_float() : -1;
  1616. if (newR < 0) {
  1617. const float newD = code_seen('D') ? code_value_float() : -1,
  1618. newW = code_seen('W') ? code_value_float() : -1,
  1619. newH = code_seen('H') ? code_value_float() : -1;
  1620. if (newD >= 0 && newW >= 0 && newH >= 0)
  1621. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1622. }
  1623. if (newR >= 0) advance_ed_ratio = newR;
  1624. SERIAL_ECHO_START;
  1625. SERIAL_ECHOPGM("Advance K=");
  1626. SERIAL_ECHOLN(extruder_advance_k);
  1627. SERIAL_ECHOPGM(" E/D=");
  1628. const float ratio = advance_ed_ratio;
  1629. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1630. }
  1631. #endif // LIN_ADVANCE
  1632. void homeaxis(int axis) {
  1633. #define HOMEAXIS_DO(LETTER) \
  1634. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1635. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1636. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1637. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1638. 0) {
  1639. int axis_home_dir = home_dir(axis);
  1640. current_position[axis] = 0;
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1643. feedrate = homing_feedrate[axis];
  1644. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1645. st_synchronize();
  1646. current_position[axis] = 0;
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1652. feedrate = homing_feedrate[axis]/2 ;
  1653. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1654. st_synchronize();
  1655. axis_is_at_home(axis);
  1656. destination[axis] = current_position[axis];
  1657. feedrate = 0.0;
  1658. endstops_hit_on_purpose();
  1659. axis_known_position[axis] = true;
  1660. }
  1661. }
  1662. void home_xy()
  1663. {
  1664. set_destination_to_current();
  1665. homeaxis(X_AXIS);
  1666. homeaxis(Y_AXIS);
  1667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1668. endstops_hit_on_purpose();
  1669. }
  1670. void refresh_cmd_timeout(void)
  1671. {
  1672. previous_millis_cmd = millis();
  1673. }
  1674. #ifdef FWRETRACT
  1675. void retract(bool retracting, bool swapretract = false) {
  1676. if(retracting && !retracted[active_extruder]) {
  1677. destination[X_AXIS]=current_position[X_AXIS];
  1678. destination[Y_AXIS]=current_position[Y_AXIS];
  1679. destination[Z_AXIS]=current_position[Z_AXIS];
  1680. destination[E_AXIS]=current_position[E_AXIS];
  1681. if (swapretract) {
  1682. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1683. } else {
  1684. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1685. }
  1686. plan_set_e_position(current_position[E_AXIS]);
  1687. float oldFeedrate = feedrate;
  1688. feedrate=retract_feedrate*60;
  1689. retracted[active_extruder]=true;
  1690. prepare_move();
  1691. current_position[Z_AXIS]-=retract_zlift;
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. prepare_move();
  1694. feedrate = oldFeedrate;
  1695. } else if(!retracting && retracted[active_extruder]) {
  1696. destination[X_AXIS]=current_position[X_AXIS];
  1697. destination[Y_AXIS]=current_position[Y_AXIS];
  1698. destination[Z_AXIS]=current_position[Z_AXIS];
  1699. destination[E_AXIS]=current_position[E_AXIS];
  1700. current_position[Z_AXIS]+=retract_zlift;
  1701. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1702. //prepare_move();
  1703. if (swapretract) {
  1704. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1705. } else {
  1706. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1707. }
  1708. plan_set_e_position(current_position[E_AXIS]);
  1709. float oldFeedrate = feedrate;
  1710. feedrate=retract_recover_feedrate*60;
  1711. retracted[active_extruder]=false;
  1712. prepare_move();
  1713. feedrate = oldFeedrate;
  1714. }
  1715. } //retract
  1716. #endif //FWRETRACT
  1717. void trace() {
  1718. tone(BEEPER, 440);
  1719. delay(25);
  1720. noTone(BEEPER);
  1721. delay(20);
  1722. }
  1723. /*
  1724. void ramming() {
  1725. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1726. if (current_temperature[0] < 230) {
  1727. //PLA
  1728. max_feedrate[E_AXIS] = 50;
  1729. //current_position[E_AXIS] -= 8;
  1730. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1731. //current_position[E_AXIS] += 8;
  1732. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1733. current_position[E_AXIS] += 5.4;
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1735. current_position[E_AXIS] += 3.2;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1737. current_position[E_AXIS] += 3;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1739. st_synchronize();
  1740. max_feedrate[E_AXIS] = 80;
  1741. current_position[E_AXIS] -= 82;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1743. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1744. current_position[E_AXIS] -= 20;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1746. current_position[E_AXIS] += 5;
  1747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1748. current_position[E_AXIS] += 5;
  1749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1750. current_position[E_AXIS] -= 10;
  1751. st_synchronize();
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1753. current_position[E_AXIS] += 10;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1755. current_position[E_AXIS] -= 10;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1757. current_position[E_AXIS] += 10;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1759. current_position[E_AXIS] -= 10;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1761. st_synchronize();
  1762. }
  1763. else {
  1764. //ABS
  1765. max_feedrate[E_AXIS] = 50;
  1766. //current_position[E_AXIS] -= 8;
  1767. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1768. //current_position[E_AXIS] += 8;
  1769. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1770. current_position[E_AXIS] += 3.1;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1772. current_position[E_AXIS] += 3.1;
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1774. current_position[E_AXIS] += 4;
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1776. st_synchronize();
  1777. //current_position[X_AXIS] += 23; //delay
  1778. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1779. //current_position[X_AXIS] -= 23; //delay
  1780. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1781. delay(4700);
  1782. max_feedrate[E_AXIS] = 80;
  1783. current_position[E_AXIS] -= 92;
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1785. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1786. current_position[E_AXIS] -= 5;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1788. current_position[E_AXIS] += 5;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1790. current_position[E_AXIS] -= 5;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1792. st_synchronize();
  1793. current_position[E_AXIS] += 5;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1795. current_position[E_AXIS] -= 5;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1797. current_position[E_AXIS] += 5;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1799. current_position[E_AXIS] -= 5;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1801. st_synchronize();
  1802. }
  1803. }
  1804. */
  1805. void process_commands()
  1806. {
  1807. #ifdef FILAMENT_RUNOUT_SUPPORT
  1808. SET_INPUT(FR_SENS);
  1809. #endif
  1810. #ifdef CMDBUFFER_DEBUG
  1811. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1812. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1813. SERIAL_ECHOLNPGM("");
  1814. SERIAL_ECHOPGM("In cmdqueue: ");
  1815. SERIAL_ECHO(buflen);
  1816. SERIAL_ECHOLNPGM("");
  1817. #endif /* CMDBUFFER_DEBUG */
  1818. unsigned long codenum; //throw away variable
  1819. char *starpos = NULL;
  1820. #ifdef ENABLE_AUTO_BED_LEVELING
  1821. float x_tmp, y_tmp, z_tmp, real_z;
  1822. #endif
  1823. // PRUSA GCODES
  1824. #ifdef SNMM
  1825. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1826. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1827. int8_t SilentMode;
  1828. #endif
  1829. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1830. starpos = (strchr(strchr_pointer + 5, '*'));
  1831. if (starpos != NULL)
  1832. *(starpos) = '\0';
  1833. lcd_setstatus(strchr_pointer + 5);
  1834. }
  1835. else if(code_seen("PRUSA")){
  1836. if (code_seen("Ping")) { //PRUSA Ping
  1837. if (farm_mode) {
  1838. PingTime = millis();
  1839. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1840. }
  1841. } else if (code_seen("PRN")) {
  1842. MYSERIAL.println(status_number);
  1843. } else if (code_seen("RESET")) {
  1844. // careful!
  1845. if (farm_mode) {
  1846. asm volatile(" jmp 0x3E000");
  1847. }
  1848. else {
  1849. MYSERIAL.println("Not in farm mode.");
  1850. }
  1851. } else if (code_seen("fn")) {
  1852. if (farm_mode) {
  1853. MYSERIAL.println(farm_no);
  1854. }
  1855. else {
  1856. MYSERIAL.println("Not in farm mode.");
  1857. }
  1858. }
  1859. else if (code_seen("thx")) {
  1860. no_response = false;
  1861. }else if (code_seen("fv")) {
  1862. // get file version
  1863. #ifdef SDSUPPORT
  1864. card.openFile(strchr_pointer + 3,true);
  1865. while (true) {
  1866. uint16_t readByte = card.get();
  1867. MYSERIAL.write(readByte);
  1868. if (readByte=='\n') {
  1869. break;
  1870. }
  1871. }
  1872. card.closefile();
  1873. #endif // SDSUPPORT
  1874. } else if (code_seen("M28")) {
  1875. trace();
  1876. prusa_sd_card_upload = true;
  1877. card.openFile(strchr_pointer+4,false);
  1878. } else if (code_seen("SN")) {
  1879. if (farm_mode) {
  1880. selectedSerialPort = 0;
  1881. MSerial.write(";S");
  1882. // S/N is:CZPX0917X003XC13518
  1883. int numbersRead = 0;
  1884. while (numbersRead < 19) {
  1885. while (MSerial.available() > 0) {
  1886. uint8_t serial_char = MSerial.read();
  1887. selectedSerialPort = 1;
  1888. MSerial.write(serial_char);
  1889. numbersRead++;
  1890. selectedSerialPort = 0;
  1891. }
  1892. }
  1893. selectedSerialPort = 1;
  1894. MSerial.write('\n');
  1895. /*for (int b = 0; b < 3; b++) {
  1896. tone(BEEPER, 110);
  1897. delay(50);
  1898. noTone(BEEPER);
  1899. delay(50);
  1900. }*/
  1901. } else {
  1902. MYSERIAL.println("Not in farm mode.");
  1903. }
  1904. } else if(code_seen("Fir")){
  1905. SERIAL_PROTOCOLLN(FW_version);
  1906. } else if(code_seen("Rev")){
  1907. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1908. } else if(code_seen("Lang")) {
  1909. lcd_force_language_selection();
  1910. } else if(code_seen("Lz")) {
  1911. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1912. } else if (code_seen("SERIAL LOW")) {
  1913. MYSERIAL.println("SERIAL LOW");
  1914. MYSERIAL.begin(BAUDRATE);
  1915. return;
  1916. } else if (code_seen("SERIAL HIGH")) {
  1917. MYSERIAL.println("SERIAL HIGH");
  1918. MYSERIAL.begin(1152000);
  1919. return;
  1920. } else if(code_seen("Beat")) {
  1921. // Kick farm link timer
  1922. kicktime = millis();
  1923. } else if(code_seen("FR")) {
  1924. // Factory full reset
  1925. factory_reset(0,true);
  1926. }
  1927. //else if (code_seen('Cal')) {
  1928. // lcd_calibration();
  1929. // }
  1930. }
  1931. else if (code_seen('^')) {
  1932. // nothing, this is a version line
  1933. } else if(code_seen('G'))
  1934. {
  1935. switch((int)code_value())
  1936. {
  1937. case 0: // G0 -> G1
  1938. case 1: // G1
  1939. if(Stopped == false) {
  1940. #ifdef FILAMENT_RUNOUT_SUPPORT
  1941. if(READ(FR_SENS)){
  1942. feedmultiplyBckp=feedmultiply;
  1943. float target[4];
  1944. float lastpos[4];
  1945. target[X_AXIS]=current_position[X_AXIS];
  1946. target[Y_AXIS]=current_position[Y_AXIS];
  1947. target[Z_AXIS]=current_position[Z_AXIS];
  1948. target[E_AXIS]=current_position[E_AXIS];
  1949. lastpos[X_AXIS]=current_position[X_AXIS];
  1950. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1951. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1952. lastpos[E_AXIS]=current_position[E_AXIS];
  1953. //retract by E
  1954. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1955. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1956. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1957. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1958. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1959. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1961. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1963. //finish moves
  1964. st_synchronize();
  1965. //disable extruder steppers so filament can be removed
  1966. disable_e0();
  1967. disable_e1();
  1968. disable_e2();
  1969. delay(100);
  1970. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1971. uint8_t cnt=0;
  1972. int counterBeep = 0;
  1973. lcd_wait_interact();
  1974. while(!lcd_clicked()){
  1975. cnt++;
  1976. manage_heater();
  1977. manage_inactivity(true);
  1978. //lcd_update();
  1979. if(cnt==0)
  1980. {
  1981. #if BEEPER > 0
  1982. if (counterBeep== 500){
  1983. counterBeep = 0;
  1984. }
  1985. SET_OUTPUT(BEEPER);
  1986. if (counterBeep== 0){
  1987. WRITE(BEEPER,HIGH);
  1988. }
  1989. if (counterBeep== 20){
  1990. WRITE(BEEPER,LOW);
  1991. }
  1992. counterBeep++;
  1993. #else
  1994. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1995. lcd_buzz(1000/6,100);
  1996. #else
  1997. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1998. #endif
  1999. #endif
  2000. }
  2001. }
  2002. WRITE(BEEPER,LOW);
  2003. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2005. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2007. lcd_change_fil_state = 0;
  2008. lcd_loading_filament();
  2009. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2010. lcd_change_fil_state = 0;
  2011. lcd_alright();
  2012. switch(lcd_change_fil_state){
  2013. case 2:
  2014. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2015. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2016. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2017. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2018. lcd_loading_filament();
  2019. break;
  2020. case 3:
  2021. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2022. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2023. lcd_loading_color();
  2024. break;
  2025. default:
  2026. lcd_change_success();
  2027. break;
  2028. }
  2029. }
  2030. target[E_AXIS]+= 5;
  2031. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2032. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2033. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2034. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2035. //plan_set_e_position(current_position[E_AXIS]);
  2036. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2037. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2038. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2039. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2040. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2041. plan_set_e_position(lastpos[E_AXIS]);
  2042. feedmultiply=feedmultiplyBckp;
  2043. char cmd[9];
  2044. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2045. enquecommand(cmd);
  2046. }
  2047. #endif
  2048. get_coordinates(); // For X Y Z E F
  2049. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2050. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2051. }
  2052. #ifdef FWRETRACT
  2053. if(autoretract_enabled)
  2054. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2055. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2056. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2057. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2058. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2059. retract(!retracted);
  2060. return;
  2061. }
  2062. }
  2063. #endif //FWRETRACT
  2064. prepare_move();
  2065. //ClearToSend();
  2066. }
  2067. break;
  2068. case 2: // G2 - CW ARC
  2069. if(Stopped == false) {
  2070. get_arc_coordinates();
  2071. prepare_arc_move(true);
  2072. }
  2073. break;
  2074. case 3: // G3 - CCW ARC
  2075. if(Stopped == false) {
  2076. get_arc_coordinates();
  2077. prepare_arc_move(false);
  2078. }
  2079. break;
  2080. case 4: // G4 dwell
  2081. codenum = 0;
  2082. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2083. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2084. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2085. st_synchronize();
  2086. codenum += millis(); // keep track of when we started waiting
  2087. previous_millis_cmd = millis();
  2088. while(millis() < codenum) {
  2089. manage_heater();
  2090. manage_inactivity();
  2091. lcd_update();
  2092. }
  2093. break;
  2094. #ifdef FWRETRACT
  2095. case 10: // G10 retract
  2096. #if EXTRUDERS > 1
  2097. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2098. retract(true,retracted_swap[active_extruder]);
  2099. #else
  2100. retract(true);
  2101. #endif
  2102. break;
  2103. case 11: // G11 retract_recover
  2104. #if EXTRUDERS > 1
  2105. retract(false,retracted_swap[active_extruder]);
  2106. #else
  2107. retract(false);
  2108. #endif
  2109. break;
  2110. #endif //FWRETRACT
  2111. case 28: //G28 Home all Axis one at a time
  2112. homing_flag = true;
  2113. #ifdef ENABLE_AUTO_BED_LEVELING
  2114. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2115. #endif //ENABLE_AUTO_BED_LEVELING
  2116. // For mesh bed leveling deactivate the matrix temporarily
  2117. #ifdef MESH_BED_LEVELING
  2118. mbl.active = 0;
  2119. #endif
  2120. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2121. // the planner will not perform any adjustments in the XY plane.
  2122. // Wait for the motors to stop and update the current position with the absolute values.
  2123. world2machine_revert_to_uncorrected();
  2124. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2125. // consumed during the first movements following this statement.
  2126. babystep_undo();
  2127. saved_feedrate = feedrate;
  2128. saved_feedmultiply = feedmultiply;
  2129. feedmultiply = 100;
  2130. previous_millis_cmd = millis();
  2131. enable_endstops(true);
  2132. for(int8_t i=0; i < NUM_AXIS; i++)
  2133. destination[i] = current_position[i];
  2134. feedrate = 0.0;
  2135. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2136. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2137. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2138. homeaxis(Z_AXIS);
  2139. }
  2140. #endif
  2141. #ifdef QUICK_HOME
  2142. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2143. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2144. {
  2145. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2146. int x_axis_home_dir = home_dir(X_AXIS);
  2147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2148. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2149. feedrate = homing_feedrate[X_AXIS];
  2150. if(homing_feedrate[Y_AXIS]<feedrate)
  2151. feedrate = homing_feedrate[Y_AXIS];
  2152. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2153. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2154. } else {
  2155. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2156. }
  2157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2158. st_synchronize();
  2159. axis_is_at_home(X_AXIS);
  2160. axis_is_at_home(Y_AXIS);
  2161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2162. destination[X_AXIS] = current_position[X_AXIS];
  2163. destination[Y_AXIS] = current_position[Y_AXIS];
  2164. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2165. feedrate = 0.0;
  2166. st_synchronize();
  2167. endstops_hit_on_purpose();
  2168. current_position[X_AXIS] = destination[X_AXIS];
  2169. current_position[Y_AXIS] = destination[Y_AXIS];
  2170. current_position[Z_AXIS] = destination[Z_AXIS];
  2171. }
  2172. #endif /* QUICK_HOME */
  2173. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2174. homeaxis(X_AXIS);
  2175. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2176. homeaxis(Y_AXIS);
  2177. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2178. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2179. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2180. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2181. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2182. #ifndef Z_SAFE_HOMING
  2183. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2184. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2185. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2186. feedrate = max_feedrate[Z_AXIS];
  2187. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2188. st_synchronize();
  2189. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2190. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2191. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2192. {
  2193. homeaxis(X_AXIS);
  2194. homeaxis(Y_AXIS);
  2195. }
  2196. // 1st mesh bed leveling measurement point, corrected.
  2197. world2machine_initialize();
  2198. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2199. world2machine_reset();
  2200. if (destination[Y_AXIS] < Y_MIN_POS)
  2201. destination[Y_AXIS] = Y_MIN_POS;
  2202. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2203. feedrate = homing_feedrate[Z_AXIS]/10;
  2204. current_position[Z_AXIS] = 0;
  2205. enable_endstops(false);
  2206. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2208. st_synchronize();
  2209. current_position[X_AXIS] = destination[X_AXIS];
  2210. current_position[Y_AXIS] = destination[Y_AXIS];
  2211. enable_endstops(true);
  2212. endstops_hit_on_purpose();
  2213. homeaxis(Z_AXIS);
  2214. #else // MESH_BED_LEVELING
  2215. homeaxis(Z_AXIS);
  2216. #endif // MESH_BED_LEVELING
  2217. }
  2218. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2219. if(home_all_axis) {
  2220. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2221. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2222. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2223. feedrate = XY_TRAVEL_SPEED/60;
  2224. current_position[Z_AXIS] = 0;
  2225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2227. st_synchronize();
  2228. current_position[X_AXIS] = destination[X_AXIS];
  2229. current_position[Y_AXIS] = destination[Y_AXIS];
  2230. homeaxis(Z_AXIS);
  2231. }
  2232. // Let's see if X and Y are homed and probe is inside bed area.
  2233. if(code_seen(axis_codes[Z_AXIS])) {
  2234. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2235. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2236. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2237. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2238. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2239. current_position[Z_AXIS] = 0;
  2240. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2241. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2242. feedrate = max_feedrate[Z_AXIS];
  2243. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2244. st_synchronize();
  2245. homeaxis(Z_AXIS);
  2246. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2247. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2248. SERIAL_ECHO_START;
  2249. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2250. } else {
  2251. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2252. SERIAL_ECHO_START;
  2253. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2254. }
  2255. }
  2256. #endif // Z_SAFE_HOMING
  2257. #endif // Z_HOME_DIR < 0
  2258. if(code_seen(axis_codes[Z_AXIS])) {
  2259. if(code_value_long() != 0) {
  2260. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2261. }
  2262. }
  2263. #ifdef ENABLE_AUTO_BED_LEVELING
  2264. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2265. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2266. }
  2267. #endif
  2268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2269. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2270. enable_endstops(false);
  2271. #endif
  2272. feedrate = saved_feedrate;
  2273. feedmultiply = saved_feedmultiply;
  2274. previous_millis_cmd = millis();
  2275. endstops_hit_on_purpose();
  2276. #ifndef MESH_BED_LEVELING
  2277. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2278. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2279. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2280. lcd_adjust_z();
  2281. #endif
  2282. // Load the machine correction matrix
  2283. world2machine_initialize();
  2284. // and correct the current_position to match the transformed coordinate system.
  2285. world2machine_update_current();
  2286. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2287. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2288. {
  2289. }
  2290. else
  2291. {
  2292. st_synchronize();
  2293. homing_flag = false;
  2294. // Push the commands to the front of the message queue in the reverse order!
  2295. // There shall be always enough space reserved for these commands.
  2296. // enquecommand_front_P((PSTR("G80")));
  2297. goto case_G80;
  2298. }
  2299. #endif
  2300. if (farm_mode) { prusa_statistics(20); };
  2301. homing_flag = false;
  2302. break;
  2303. #ifdef ENABLE_AUTO_BED_LEVELING
  2304. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2305. {
  2306. #if Z_MIN_PIN == -1
  2307. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2308. #endif
  2309. // Prevent user from running a G29 without first homing in X and Y
  2310. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2311. {
  2312. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2313. SERIAL_ECHO_START;
  2314. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2315. break; // abort G29, since we don't know where we are
  2316. }
  2317. st_synchronize();
  2318. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2319. //vector_3 corrected_position = plan_get_position_mm();
  2320. //corrected_position.debug("position before G29");
  2321. plan_bed_level_matrix.set_to_identity();
  2322. vector_3 uncorrected_position = plan_get_position();
  2323. //uncorrected_position.debug("position durring G29");
  2324. current_position[X_AXIS] = uncorrected_position.x;
  2325. current_position[Y_AXIS] = uncorrected_position.y;
  2326. current_position[Z_AXIS] = uncorrected_position.z;
  2327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2328. setup_for_endstop_move();
  2329. feedrate = homing_feedrate[Z_AXIS];
  2330. #ifdef AUTO_BED_LEVELING_GRID
  2331. // probe at the points of a lattice grid
  2332. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2333. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2334. // solve the plane equation ax + by + d = z
  2335. // A is the matrix with rows [x y 1] for all the probed points
  2336. // B is the vector of the Z positions
  2337. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2338. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2339. // "A" matrix of the linear system of equations
  2340. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2341. // "B" vector of Z points
  2342. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2343. int probePointCounter = 0;
  2344. bool zig = true;
  2345. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2346. {
  2347. int xProbe, xInc;
  2348. if (zig)
  2349. {
  2350. xProbe = LEFT_PROBE_BED_POSITION;
  2351. //xEnd = RIGHT_PROBE_BED_POSITION;
  2352. xInc = xGridSpacing;
  2353. zig = false;
  2354. } else // zag
  2355. {
  2356. xProbe = RIGHT_PROBE_BED_POSITION;
  2357. //xEnd = LEFT_PROBE_BED_POSITION;
  2358. xInc = -xGridSpacing;
  2359. zig = true;
  2360. }
  2361. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2362. {
  2363. float z_before;
  2364. if (probePointCounter == 0)
  2365. {
  2366. // raise before probing
  2367. z_before = Z_RAISE_BEFORE_PROBING;
  2368. } else
  2369. {
  2370. // raise extruder
  2371. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2372. }
  2373. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2374. eqnBVector[probePointCounter] = measured_z;
  2375. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2376. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2377. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2378. probePointCounter++;
  2379. xProbe += xInc;
  2380. }
  2381. }
  2382. clean_up_after_endstop_move();
  2383. // solve lsq problem
  2384. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2385. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2386. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2387. SERIAL_PROTOCOLPGM(" b: ");
  2388. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2389. SERIAL_PROTOCOLPGM(" d: ");
  2390. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2391. set_bed_level_equation_lsq(plane_equation_coefficients);
  2392. free(plane_equation_coefficients);
  2393. #else // AUTO_BED_LEVELING_GRID not defined
  2394. // Probe at 3 arbitrary points
  2395. // probe 1
  2396. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2397. // probe 2
  2398. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2399. // probe 3
  2400. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2401. clean_up_after_endstop_move();
  2402. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2403. #endif // AUTO_BED_LEVELING_GRID
  2404. st_synchronize();
  2405. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2406. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2407. // When the bed is uneven, this height must be corrected.
  2408. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2409. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2410. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2411. z_tmp = current_position[Z_AXIS];
  2412. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2413. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2415. }
  2416. break;
  2417. #ifndef Z_PROBE_SLED
  2418. case 30: // G30 Single Z Probe
  2419. {
  2420. st_synchronize();
  2421. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2422. setup_for_endstop_move();
  2423. feedrate = homing_feedrate[Z_AXIS];
  2424. run_z_probe();
  2425. SERIAL_PROTOCOLPGM(MSG_BED);
  2426. SERIAL_PROTOCOLPGM(" X: ");
  2427. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2428. SERIAL_PROTOCOLPGM(" Y: ");
  2429. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2430. SERIAL_PROTOCOLPGM(" Z: ");
  2431. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2432. SERIAL_PROTOCOLPGM("\n");
  2433. clean_up_after_endstop_move();
  2434. }
  2435. break;
  2436. #else
  2437. case 31: // dock the sled
  2438. dock_sled(true);
  2439. break;
  2440. case 32: // undock the sled
  2441. dock_sled(false);
  2442. break;
  2443. #endif // Z_PROBE_SLED
  2444. #endif // ENABLE_AUTO_BED_LEVELING
  2445. #ifdef MESH_BED_LEVELING
  2446. case 30: // G30 Single Z Probe
  2447. {
  2448. st_synchronize();
  2449. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2450. setup_for_endstop_move();
  2451. feedrate = homing_feedrate[Z_AXIS];
  2452. find_bed_induction_sensor_point_z(-10.f, 3);
  2453. SERIAL_PROTOCOLRPGM(MSG_BED);
  2454. SERIAL_PROTOCOLPGM(" X: ");
  2455. MYSERIAL.print(current_position[X_AXIS], 5);
  2456. SERIAL_PROTOCOLPGM(" Y: ");
  2457. MYSERIAL.print(current_position[Y_AXIS], 5);
  2458. SERIAL_PROTOCOLPGM(" Z: ");
  2459. MYSERIAL.print(current_position[Z_AXIS], 5);
  2460. SERIAL_PROTOCOLPGM("\n");
  2461. clean_up_after_endstop_move();
  2462. }
  2463. break;
  2464. case 75:
  2465. {
  2466. for (int i = 40; i <= 110; i++) {
  2467. MYSERIAL.print(i);
  2468. MYSERIAL.print(" ");
  2469. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2470. }
  2471. }
  2472. break;
  2473. case 76: //PINDA probe temperature calibration
  2474. {
  2475. setTargetBed(PINDA_MIN_T);
  2476. float zero_z;
  2477. int z_shift = 0; //unit: steps
  2478. int t_c; // temperature
  2479. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2480. // We don't know where we are! HOME!
  2481. // Push the commands to the front of the message queue in the reverse order!
  2482. // There shall be always enough space reserved for these commands.
  2483. repeatcommand_front(); // repeat G76 with all its parameters
  2484. enquecommand_front_P((PSTR("G28 W0")));
  2485. break;
  2486. }
  2487. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2488. custom_message = true;
  2489. custom_message_type = 4;
  2490. custom_message_state = 1;
  2491. custom_message = MSG_TEMP_CALIBRATION;
  2492. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2493. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2494. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2496. st_synchronize();
  2497. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2498. delay_keep_alive(1000);
  2499. serialecho_temperatures();
  2500. }
  2501. //enquecommand_P(PSTR("M190 S50"));
  2502. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2503. delay_keep_alive(1000);
  2504. serialecho_temperatures();
  2505. }
  2506. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2507. current_position[Z_AXIS] = 5;
  2508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2509. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2510. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2512. st_synchronize();
  2513. find_bed_induction_sensor_point_z(-1.f);
  2514. zero_z = current_position[Z_AXIS];
  2515. //current_position[Z_AXIS]
  2516. SERIAL_ECHOLNPGM("");
  2517. SERIAL_ECHOPGM("ZERO: ");
  2518. MYSERIAL.print(current_position[Z_AXIS]);
  2519. SERIAL_ECHOLNPGM("");
  2520. for (int i = 0; i<5; i++) {
  2521. SERIAL_ECHOPGM("Step: ");
  2522. MYSERIAL.print(i+2);
  2523. SERIAL_ECHOLNPGM("/6");
  2524. custom_message_state = i + 2;
  2525. t_c = 60 + i * 10;
  2526. setTargetBed(t_c);
  2527. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2528. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2529. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2531. st_synchronize();
  2532. while (degBed() < t_c) {
  2533. delay_keep_alive(1000);
  2534. serialecho_temperatures();
  2535. }
  2536. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2537. delay_keep_alive(1000);
  2538. serialecho_temperatures();
  2539. }
  2540. current_position[Z_AXIS] = 5;
  2541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2542. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2543. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2545. st_synchronize();
  2546. find_bed_induction_sensor_point_z(-1.f);
  2547. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2548. SERIAL_ECHOLNPGM("");
  2549. SERIAL_ECHOPGM("Temperature: ");
  2550. MYSERIAL.print(t_c);
  2551. SERIAL_ECHOPGM(" Z shift (mm):");
  2552. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2553. SERIAL_ECHOLNPGM("");
  2554. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2555. }
  2556. custom_message_type = 0;
  2557. custom_message = false;
  2558. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2559. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2560. disable_x();
  2561. disable_y();
  2562. disable_z();
  2563. disable_e0();
  2564. disable_e1();
  2565. disable_e2();
  2566. setTargetBed(0); //set bed target temperature back to 0
  2567. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2568. lcd_update_enable(true);
  2569. lcd_update(2);
  2570. }
  2571. break;
  2572. #ifdef DIS
  2573. case 77:
  2574. {
  2575. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2576. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2577. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2578. float dimension_x = 40;
  2579. float dimension_y = 40;
  2580. int points_x = 40;
  2581. int points_y = 40;
  2582. float offset_x = 74;
  2583. float offset_y = 33;
  2584. if (code_seen('X')) dimension_x = code_value();
  2585. if (code_seen('Y')) dimension_y = code_value();
  2586. if (code_seen('XP')) points_x = code_value();
  2587. if (code_seen('YP')) points_y = code_value();
  2588. if (code_seen('XO')) offset_x = code_value();
  2589. if (code_seen('YO')) offset_y = code_value();
  2590. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2591. } break;
  2592. #endif
  2593. /**
  2594. * G80: Mesh-based Z probe, probes a grid and produces a
  2595. * mesh to compensate for variable bed height
  2596. *
  2597. * The S0 report the points as below
  2598. *
  2599. * +----> X-axis
  2600. * |
  2601. * |
  2602. * v Y-axis
  2603. *
  2604. */
  2605. case 80:
  2606. #ifdef MK1BP
  2607. break;
  2608. #endif //MK1BP
  2609. case_G80:
  2610. {
  2611. mesh_bed_leveling_flag = true;
  2612. int8_t verbosity_level = 0;
  2613. static bool run = false;
  2614. if (code_seen('V')) {
  2615. // Just 'V' without a number counts as V1.
  2616. char c = strchr_pointer[1];
  2617. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2618. }
  2619. // Firstly check if we know where we are
  2620. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2621. // We don't know where we are! HOME!
  2622. // Push the commands to the front of the message queue in the reverse order!
  2623. // There shall be always enough space reserved for these commands.
  2624. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2625. repeatcommand_front(); // repeat G80 with all its parameters
  2626. enquecommand_front_P((PSTR("G28 W0")));
  2627. }
  2628. else {
  2629. mesh_bed_leveling_flag = false;
  2630. }
  2631. break;
  2632. }
  2633. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2634. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2635. temp_compensation_start();
  2636. run = true;
  2637. repeatcommand_front(); // repeat G80 with all its parameters
  2638. enquecommand_front_P((PSTR("G28 W0")));
  2639. }
  2640. else {
  2641. mesh_bed_leveling_flag = false;
  2642. }
  2643. break;
  2644. }
  2645. run = false;
  2646. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2647. mesh_bed_leveling_flag = false;
  2648. break;
  2649. }
  2650. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2651. bool custom_message_old = custom_message;
  2652. unsigned int custom_message_type_old = custom_message_type;
  2653. unsigned int custom_message_state_old = custom_message_state;
  2654. custom_message = true;
  2655. custom_message_type = 1;
  2656. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2657. lcd_update(1);
  2658. mbl.reset(); //reset mesh bed leveling
  2659. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2660. // consumed during the first movements following this statement.
  2661. babystep_undo();
  2662. // Cycle through all points and probe them
  2663. // First move up. During this first movement, the babystepping will be reverted.
  2664. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2666. // The move to the first calibration point.
  2667. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2668. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2669. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2670. if (verbosity_level >= 1) {
  2671. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2672. }
  2673. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2675. // Wait until the move is finished.
  2676. st_synchronize();
  2677. int mesh_point = 0; //index number of calibration point
  2678. int ix = 0;
  2679. int iy = 0;
  2680. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2681. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2682. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2683. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2684. if (verbosity_level >= 1) {
  2685. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2686. }
  2687. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2688. const char *kill_message = NULL;
  2689. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2690. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2691. // Get coords of a measuring point.
  2692. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2693. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2694. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2695. float z0 = 0.f;
  2696. if (has_z && mesh_point > 0) {
  2697. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2698. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2699. //#if 0
  2700. if (verbosity_level >= 1) {
  2701. SERIAL_ECHOPGM("Bed leveling, point: ");
  2702. MYSERIAL.print(mesh_point);
  2703. SERIAL_ECHOPGM(", calibration z: ");
  2704. MYSERIAL.print(z0, 5);
  2705. SERIAL_ECHOLNPGM("");
  2706. }
  2707. //#endif
  2708. }
  2709. // Move Z up to MESH_HOME_Z_SEARCH.
  2710. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2712. st_synchronize();
  2713. // Move to XY position of the sensor point.
  2714. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2715. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2716. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2717. if (verbosity_level >= 1) {
  2718. SERIAL_PROTOCOL(mesh_point);
  2719. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2720. }
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2722. st_synchronize();
  2723. // Go down until endstop is hit
  2724. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2725. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2726. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2727. break;
  2728. }
  2729. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2730. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2731. break;
  2732. }
  2733. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2734. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2735. break;
  2736. }
  2737. if (verbosity_level >= 10) {
  2738. SERIAL_ECHOPGM("X: ");
  2739. MYSERIAL.print(current_position[X_AXIS], 5);
  2740. SERIAL_ECHOLNPGM("");
  2741. SERIAL_ECHOPGM("Y: ");
  2742. MYSERIAL.print(current_position[Y_AXIS], 5);
  2743. SERIAL_PROTOCOLPGM("\n");
  2744. }
  2745. if (verbosity_level >= 1) {
  2746. SERIAL_ECHOPGM("mesh bed leveling: ");
  2747. MYSERIAL.print(current_position[Z_AXIS], 5);
  2748. SERIAL_ECHOLNPGM("");
  2749. }
  2750. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2751. custom_message_state--;
  2752. mesh_point++;
  2753. lcd_update(1);
  2754. }
  2755. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2756. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2757. if (verbosity_level >= 20) {
  2758. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2759. MYSERIAL.print(current_position[Z_AXIS], 5);
  2760. }
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2762. st_synchronize();
  2763. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2764. kill(kill_message);
  2765. SERIAL_ECHOLNPGM("killed");
  2766. }
  2767. clean_up_after_endstop_move();
  2768. SERIAL_ECHOLNPGM("clean up finished ");
  2769. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2770. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2771. SERIAL_ECHOLNPGM("babystep applied");
  2772. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2773. if (verbosity_level >= 1) {
  2774. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2775. }
  2776. for (uint8_t i = 0; i < 4; ++i) {
  2777. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2778. long correction = 0;
  2779. if (code_seen(codes[i]))
  2780. correction = code_value_long();
  2781. else if (eeprom_bed_correction_valid) {
  2782. unsigned char *addr = (i < 2) ?
  2783. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2784. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2785. correction = eeprom_read_int8(addr);
  2786. }
  2787. if (correction == 0)
  2788. continue;
  2789. float offset = float(correction) * 0.001f;
  2790. if (fabs(offset) > 0.101f) {
  2791. SERIAL_ERROR_START;
  2792. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2793. SERIAL_ECHO(offset);
  2794. SERIAL_ECHOLNPGM(" microns");
  2795. }
  2796. else {
  2797. switch (i) {
  2798. case 0:
  2799. for (uint8_t row = 0; row < 3; ++row) {
  2800. mbl.z_values[row][1] += 0.5f * offset;
  2801. mbl.z_values[row][0] += offset;
  2802. }
  2803. break;
  2804. case 1:
  2805. for (uint8_t row = 0; row < 3; ++row) {
  2806. mbl.z_values[row][1] += 0.5f * offset;
  2807. mbl.z_values[row][2] += offset;
  2808. }
  2809. break;
  2810. case 2:
  2811. for (uint8_t col = 0; col < 3; ++col) {
  2812. mbl.z_values[1][col] += 0.5f * offset;
  2813. mbl.z_values[0][col] += offset;
  2814. }
  2815. break;
  2816. case 3:
  2817. for (uint8_t col = 0; col < 3; ++col) {
  2818. mbl.z_values[1][col] += 0.5f * offset;
  2819. mbl.z_values[2][col] += offset;
  2820. }
  2821. break;
  2822. }
  2823. }
  2824. }
  2825. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2826. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2827. SERIAL_ECHOLNPGM("Upsample finished");
  2828. mbl.active = 1; //activate mesh bed leveling
  2829. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2830. go_home_with_z_lift();
  2831. SERIAL_ECHOLNPGM("Go home finished");
  2832. //unretract (after PINDA preheat retraction)
  2833. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2834. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2836. }
  2837. // Restore custom message state
  2838. custom_message = custom_message_old;
  2839. custom_message_type = custom_message_type_old;
  2840. custom_message_state = custom_message_state_old;
  2841. mesh_bed_leveling_flag = false;
  2842. mesh_bed_run_from_menu = false;
  2843. lcd_update(2);
  2844. }
  2845. break;
  2846. /**
  2847. * G81: Print mesh bed leveling status and bed profile if activated
  2848. */
  2849. case 81:
  2850. if (mbl.active) {
  2851. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2852. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2853. SERIAL_PROTOCOLPGM(",");
  2854. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2855. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2856. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2857. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2858. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2859. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2860. SERIAL_PROTOCOLPGM(" ");
  2861. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2862. }
  2863. SERIAL_PROTOCOLPGM("\n");
  2864. }
  2865. }
  2866. else
  2867. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2868. break;
  2869. #if 0
  2870. /**
  2871. * G82: Single Z probe at current location
  2872. *
  2873. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2874. *
  2875. */
  2876. case 82:
  2877. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2878. setup_for_endstop_move();
  2879. find_bed_induction_sensor_point_z();
  2880. clean_up_after_endstop_move();
  2881. SERIAL_PROTOCOLPGM("Bed found at: ");
  2882. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2883. SERIAL_PROTOCOLPGM("\n");
  2884. break;
  2885. /**
  2886. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2887. */
  2888. case 83:
  2889. {
  2890. int babystepz = code_seen('S') ? code_value() : 0;
  2891. int BabyPosition = code_seen('P') ? code_value() : 0;
  2892. if (babystepz != 0) {
  2893. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2894. // Is the axis indexed starting with zero or one?
  2895. if (BabyPosition > 4) {
  2896. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2897. }else{
  2898. // Save it to the eeprom
  2899. babystepLoadZ = babystepz;
  2900. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2901. // adjust the Z
  2902. babystepsTodoZadd(babystepLoadZ);
  2903. }
  2904. }
  2905. }
  2906. break;
  2907. /**
  2908. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2909. */
  2910. case 84:
  2911. babystepsTodoZsubtract(babystepLoadZ);
  2912. // babystepLoadZ = 0;
  2913. break;
  2914. /**
  2915. * G85: Prusa3D specific: Pick best babystep
  2916. */
  2917. case 85:
  2918. lcd_pick_babystep();
  2919. break;
  2920. #endif
  2921. /**
  2922. * G86: Prusa3D specific: Disable babystep correction after home.
  2923. * This G-code will be performed at the start of a calibration script.
  2924. */
  2925. case 86:
  2926. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2927. break;
  2928. /**
  2929. * G87: Prusa3D specific: Enable babystep correction after home
  2930. * This G-code will be performed at the end of a calibration script.
  2931. */
  2932. case 87:
  2933. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2934. break;
  2935. /**
  2936. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2937. */
  2938. case 88:
  2939. break;
  2940. #endif // ENABLE_MESH_BED_LEVELING
  2941. case 90: // G90
  2942. relative_mode = false;
  2943. break;
  2944. case 91: // G91
  2945. relative_mode = true;
  2946. break;
  2947. case 92: // G92
  2948. if(!code_seen(axis_codes[E_AXIS]))
  2949. st_synchronize();
  2950. for(int8_t i=0; i < NUM_AXIS; i++) {
  2951. if(code_seen(axis_codes[i])) {
  2952. if(i == E_AXIS) {
  2953. current_position[i] = code_value();
  2954. plan_set_e_position(current_position[E_AXIS]);
  2955. }
  2956. else {
  2957. current_position[i] = code_value()+add_homing[i];
  2958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2959. }
  2960. }
  2961. }
  2962. break;
  2963. case 98: //activate farm mode
  2964. farm_mode = 1;
  2965. PingTime = millis();
  2966. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2967. break;
  2968. case 99: //deactivate farm mode
  2969. farm_mode = 0;
  2970. lcd_printer_connected();
  2971. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2972. lcd_update(2);
  2973. break;
  2974. }
  2975. } // end if(code_seen('G'))
  2976. else if(code_seen('M'))
  2977. {
  2978. int index;
  2979. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2980. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2981. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2982. SERIAL_ECHOLNPGM("Invalid M code");
  2983. } else
  2984. switch((int)code_value())
  2985. {
  2986. #ifdef ULTIPANEL
  2987. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2988. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2989. {
  2990. char *src = strchr_pointer + 2;
  2991. codenum = 0;
  2992. bool hasP = false, hasS = false;
  2993. if (code_seen('P')) {
  2994. codenum = code_value(); // milliseconds to wait
  2995. hasP = codenum > 0;
  2996. }
  2997. if (code_seen('S')) {
  2998. codenum = code_value() * 1000; // seconds to wait
  2999. hasS = codenum > 0;
  3000. }
  3001. starpos = strchr(src, '*');
  3002. if (starpos != NULL) *(starpos) = '\0';
  3003. while (*src == ' ') ++src;
  3004. if (!hasP && !hasS && *src != '\0') {
  3005. lcd_setstatus(src);
  3006. } else {
  3007. LCD_MESSAGERPGM(MSG_USERWAIT);
  3008. }
  3009. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3010. st_synchronize();
  3011. previous_millis_cmd = millis();
  3012. if (codenum > 0){
  3013. codenum += millis(); // keep track of when we started waiting
  3014. while(millis() < codenum && !lcd_clicked()){
  3015. manage_heater();
  3016. manage_inactivity(true);
  3017. lcd_update();
  3018. }
  3019. lcd_ignore_click(false);
  3020. }else{
  3021. if (!lcd_detected())
  3022. break;
  3023. while(!lcd_clicked()){
  3024. manage_heater();
  3025. manage_inactivity(true);
  3026. lcd_update();
  3027. }
  3028. }
  3029. if (IS_SD_PRINTING)
  3030. LCD_MESSAGERPGM(MSG_RESUMING);
  3031. else
  3032. LCD_MESSAGERPGM(WELCOME_MSG);
  3033. }
  3034. break;
  3035. #endif
  3036. case 17:
  3037. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3038. enable_x();
  3039. enable_y();
  3040. enable_z();
  3041. enable_e0();
  3042. enable_e1();
  3043. enable_e2();
  3044. break;
  3045. #ifdef SDSUPPORT
  3046. case 20: // M20 - list SD card
  3047. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3048. card.ls();
  3049. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3050. break;
  3051. case 21: // M21 - init SD card
  3052. card.initsd();
  3053. break;
  3054. case 22: //M22 - release SD card
  3055. card.release();
  3056. break;
  3057. case 23: //M23 - Select file
  3058. starpos = (strchr(strchr_pointer + 4,'*'));
  3059. if(starpos!=NULL)
  3060. *(starpos)='\0';
  3061. card.openFile(strchr_pointer + 4,true);
  3062. break;
  3063. case 24: //M24 - Start SD print
  3064. card.startFileprint();
  3065. starttime=millis();
  3066. break;
  3067. case 25: //M25 - Pause SD print
  3068. card.pauseSDPrint();
  3069. break;
  3070. case 26: //M26 - Set SD index
  3071. if(card.cardOK && code_seen('S')) {
  3072. card.setIndex(code_value_long());
  3073. }
  3074. break;
  3075. case 27: //M27 - Get SD status
  3076. card.getStatus();
  3077. break;
  3078. case 28: //M28 - Start SD write
  3079. starpos = (strchr(strchr_pointer + 4,'*'));
  3080. if(starpos != NULL){
  3081. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3082. strchr_pointer = strchr(npos,' ') + 1;
  3083. *(starpos) = '\0';
  3084. }
  3085. card.openFile(strchr_pointer+4,false);
  3086. break;
  3087. case 29: //M29 - Stop SD write
  3088. //processed in write to file routine above
  3089. //card,saving = false;
  3090. break;
  3091. case 30: //M30 <filename> Delete File
  3092. if (card.cardOK){
  3093. card.closefile();
  3094. starpos = (strchr(strchr_pointer + 4,'*'));
  3095. if(starpos != NULL){
  3096. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3097. strchr_pointer = strchr(npos,' ') + 1;
  3098. *(starpos) = '\0';
  3099. }
  3100. card.removeFile(strchr_pointer + 4);
  3101. }
  3102. break;
  3103. case 32: //M32 - Select file and start SD print
  3104. {
  3105. if(card.sdprinting) {
  3106. st_synchronize();
  3107. }
  3108. starpos = (strchr(strchr_pointer + 4,'*'));
  3109. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3110. if(namestartpos==NULL)
  3111. {
  3112. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3113. }
  3114. else
  3115. namestartpos++; //to skip the '!'
  3116. if(starpos!=NULL)
  3117. *(starpos)='\0';
  3118. bool call_procedure=(code_seen('P'));
  3119. if(strchr_pointer>namestartpos)
  3120. call_procedure=false; //false alert, 'P' found within filename
  3121. if( card.cardOK )
  3122. {
  3123. card.openFile(namestartpos,true,!call_procedure);
  3124. if(code_seen('S'))
  3125. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3126. card.setIndex(code_value_long());
  3127. card.startFileprint();
  3128. if(!call_procedure)
  3129. starttime=millis(); //procedure calls count as normal print time.
  3130. }
  3131. } break;
  3132. case 928: //M928 - Start SD write
  3133. starpos = (strchr(strchr_pointer + 5,'*'));
  3134. if(starpos != NULL){
  3135. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3136. strchr_pointer = strchr(npos,' ') + 1;
  3137. *(starpos) = '\0';
  3138. }
  3139. card.openLogFile(strchr_pointer+5);
  3140. break;
  3141. #endif //SDSUPPORT
  3142. case 31: //M31 take time since the start of the SD print or an M109 command
  3143. {
  3144. stoptime=millis();
  3145. char time[30];
  3146. unsigned long t=(stoptime-starttime)/1000;
  3147. int sec,min;
  3148. min=t/60;
  3149. sec=t%60;
  3150. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3151. SERIAL_ECHO_START;
  3152. SERIAL_ECHOLN(time);
  3153. lcd_setstatus(time);
  3154. autotempShutdown();
  3155. }
  3156. break;
  3157. case 42: //M42 -Change pin status via gcode
  3158. if (code_seen('S'))
  3159. {
  3160. int pin_status = code_value();
  3161. int pin_number = LED_PIN;
  3162. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3163. pin_number = code_value();
  3164. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3165. {
  3166. if (sensitive_pins[i] == pin_number)
  3167. {
  3168. pin_number = -1;
  3169. break;
  3170. }
  3171. }
  3172. #if defined(FAN_PIN) && FAN_PIN > -1
  3173. if (pin_number == FAN_PIN)
  3174. fanSpeed = pin_status;
  3175. #endif
  3176. if (pin_number > -1)
  3177. {
  3178. pinMode(pin_number, OUTPUT);
  3179. digitalWrite(pin_number, pin_status);
  3180. analogWrite(pin_number, pin_status);
  3181. }
  3182. }
  3183. break;
  3184. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3185. // Reset the baby step value and the baby step applied flag.
  3186. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3187. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3188. // Reset the skew and offset in both RAM and EEPROM.
  3189. reset_bed_offset_and_skew();
  3190. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3191. // the planner will not perform any adjustments in the XY plane.
  3192. // Wait for the motors to stop and update the current position with the absolute values.
  3193. world2machine_revert_to_uncorrected();
  3194. break;
  3195. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3196. {
  3197. // Only Z calibration?
  3198. bool onlyZ = code_seen('Z');
  3199. if (!onlyZ) {
  3200. setTargetBed(0);
  3201. setTargetHotend(0, 0);
  3202. setTargetHotend(0, 1);
  3203. setTargetHotend(0, 2);
  3204. adjust_bed_reset(); //reset bed level correction
  3205. }
  3206. // Disable the default update procedure of the display. We will do a modal dialog.
  3207. lcd_update_enable(false);
  3208. // Let the planner use the uncorrected coordinates.
  3209. mbl.reset();
  3210. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3211. // the planner will not perform any adjustments in the XY plane.
  3212. // Wait for the motors to stop and update the current position with the absolute values.
  3213. world2machine_revert_to_uncorrected();
  3214. // Reset the baby step value applied without moving the axes.
  3215. babystep_reset();
  3216. // Mark all axes as in a need for homing.
  3217. memset(axis_known_position, 0, sizeof(axis_known_position));
  3218. // Let the user move the Z axes up to the end stoppers.
  3219. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3220. refresh_cmd_timeout();
  3221. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3222. lcd_wait_for_cool_down();
  3223. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3224. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3225. lcd_implementation_print_at(0, 2, 1);
  3226. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3227. }
  3228. // Move the print head close to the bed.
  3229. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3231. st_synchronize();
  3232. // Home in the XY plane.
  3233. set_destination_to_current();
  3234. setup_for_endstop_move();
  3235. home_xy();
  3236. int8_t verbosity_level = 0;
  3237. if (code_seen('V')) {
  3238. // Just 'V' without a number counts as V1.
  3239. char c = strchr_pointer[1];
  3240. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3241. }
  3242. if (onlyZ) {
  3243. clean_up_after_endstop_move();
  3244. // Z only calibration.
  3245. // Load the machine correction matrix
  3246. world2machine_initialize();
  3247. // and correct the current_position to match the transformed coordinate system.
  3248. world2machine_update_current();
  3249. //FIXME
  3250. bool result = sample_mesh_and_store_reference();
  3251. if (result) {
  3252. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3253. // Shipped, the nozzle height has been set already. The user can start printing now.
  3254. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3255. // babystep_apply();
  3256. }
  3257. } else {
  3258. // Reset the baby step value and the baby step applied flag.
  3259. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3260. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3261. // Complete XYZ calibration.
  3262. uint8_t point_too_far_mask = 0;
  3263. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3264. clean_up_after_endstop_move();
  3265. // Print head up.
  3266. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3268. st_synchronize();
  3269. if (result >= 0) {
  3270. point_too_far_mask = 0;
  3271. // Second half: The fine adjustment.
  3272. // Let the planner use the uncorrected coordinates.
  3273. mbl.reset();
  3274. world2machine_reset();
  3275. // Home in the XY plane.
  3276. setup_for_endstop_move();
  3277. home_xy();
  3278. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3279. clean_up_after_endstop_move();
  3280. // Print head up.
  3281. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3283. st_synchronize();
  3284. // if (result >= 0) babystep_apply();
  3285. }
  3286. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3287. if (result >= 0) {
  3288. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3289. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3290. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3291. }
  3292. }
  3293. } else {
  3294. // Timeouted.
  3295. }
  3296. lcd_update_enable(true);
  3297. break;
  3298. }
  3299. /*
  3300. case 46:
  3301. {
  3302. // M46: Prusa3D: Show the assigned IP address.
  3303. uint8_t ip[4];
  3304. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3305. if (hasIP) {
  3306. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3307. SERIAL_ECHO(int(ip[0]));
  3308. SERIAL_ECHOPGM(".");
  3309. SERIAL_ECHO(int(ip[1]));
  3310. SERIAL_ECHOPGM(".");
  3311. SERIAL_ECHO(int(ip[2]));
  3312. SERIAL_ECHOPGM(".");
  3313. SERIAL_ECHO(int(ip[3]));
  3314. SERIAL_ECHOLNPGM("");
  3315. } else {
  3316. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3317. }
  3318. break;
  3319. }
  3320. */
  3321. case 47:
  3322. // M47: Prusa3D: Show end stops dialog on the display.
  3323. lcd_diag_show_end_stops();
  3324. break;
  3325. #if 0
  3326. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3327. {
  3328. // Disable the default update procedure of the display. We will do a modal dialog.
  3329. lcd_update_enable(false);
  3330. // Let the planner use the uncorrected coordinates.
  3331. mbl.reset();
  3332. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3333. // the planner will not perform any adjustments in the XY plane.
  3334. // Wait for the motors to stop and update the current position with the absolute values.
  3335. world2machine_revert_to_uncorrected();
  3336. // Move the print head close to the bed.
  3337. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3339. st_synchronize();
  3340. // Home in the XY plane.
  3341. set_destination_to_current();
  3342. setup_for_endstop_move();
  3343. home_xy();
  3344. int8_t verbosity_level = 0;
  3345. if (code_seen('V')) {
  3346. // Just 'V' without a number counts as V1.
  3347. char c = strchr_pointer[1];
  3348. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3349. }
  3350. bool success = scan_bed_induction_points(verbosity_level);
  3351. clean_up_after_endstop_move();
  3352. // Print head up.
  3353. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3354. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3355. st_synchronize();
  3356. lcd_update_enable(true);
  3357. break;
  3358. }
  3359. #endif
  3360. // M48 Z-Probe repeatability measurement function.
  3361. //
  3362. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3363. //
  3364. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3365. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3366. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3367. // regenerated.
  3368. //
  3369. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3370. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3371. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3372. //
  3373. #ifdef ENABLE_AUTO_BED_LEVELING
  3374. #ifdef Z_PROBE_REPEATABILITY_TEST
  3375. case 48: // M48 Z-Probe repeatability
  3376. {
  3377. #if Z_MIN_PIN == -1
  3378. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3379. #endif
  3380. double sum=0.0;
  3381. double mean=0.0;
  3382. double sigma=0.0;
  3383. double sample_set[50];
  3384. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3385. double X_current, Y_current, Z_current;
  3386. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3387. if (code_seen('V') || code_seen('v')) {
  3388. verbose_level = code_value();
  3389. if (verbose_level<0 || verbose_level>4 ) {
  3390. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3391. goto Sigma_Exit;
  3392. }
  3393. }
  3394. if (verbose_level > 0) {
  3395. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3396. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3397. }
  3398. if (code_seen('n')) {
  3399. n_samples = code_value();
  3400. if (n_samples<4 || n_samples>50 ) {
  3401. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3402. goto Sigma_Exit;
  3403. }
  3404. }
  3405. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3406. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3407. Z_current = st_get_position_mm(Z_AXIS);
  3408. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3409. ext_position = st_get_position_mm(E_AXIS);
  3410. if (code_seen('X') || code_seen('x') ) {
  3411. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3412. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3413. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3414. goto Sigma_Exit;
  3415. }
  3416. }
  3417. if (code_seen('Y') || code_seen('y') ) {
  3418. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3419. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3420. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3421. goto Sigma_Exit;
  3422. }
  3423. }
  3424. if (code_seen('L') || code_seen('l') ) {
  3425. n_legs = code_value();
  3426. if ( n_legs==1 )
  3427. n_legs = 2;
  3428. if ( n_legs<0 || n_legs>15 ) {
  3429. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3430. goto Sigma_Exit;
  3431. }
  3432. }
  3433. //
  3434. // Do all the preliminary setup work. First raise the probe.
  3435. //
  3436. st_synchronize();
  3437. plan_bed_level_matrix.set_to_identity();
  3438. plan_buffer_line( X_current, Y_current, Z_start_location,
  3439. ext_position,
  3440. homing_feedrate[Z_AXIS]/60,
  3441. active_extruder);
  3442. st_synchronize();
  3443. //
  3444. // Now get everything to the specified probe point So we can safely do a probe to
  3445. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3446. // use that as a starting point for each probe.
  3447. //
  3448. if (verbose_level > 2)
  3449. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3450. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3451. ext_position,
  3452. homing_feedrate[X_AXIS]/60,
  3453. active_extruder);
  3454. st_synchronize();
  3455. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3456. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3457. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3458. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3459. //
  3460. // OK, do the inital probe to get us close to the bed.
  3461. // Then retrace the right amount and use that in subsequent probes
  3462. //
  3463. setup_for_endstop_move();
  3464. run_z_probe();
  3465. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3466. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3467. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3468. ext_position,
  3469. homing_feedrate[X_AXIS]/60,
  3470. active_extruder);
  3471. st_synchronize();
  3472. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3473. for( n=0; n<n_samples; n++) {
  3474. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3475. if ( n_legs) {
  3476. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3477. int rotational_direction, l;
  3478. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3479. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3480. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3481. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3482. //SERIAL_ECHOPAIR(" theta: ",theta);
  3483. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3484. //SERIAL_PROTOCOLLNPGM("");
  3485. for( l=0; l<n_legs-1; l++) {
  3486. if (rotational_direction==1)
  3487. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3488. else
  3489. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3490. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3491. if ( radius<0.0 )
  3492. radius = -radius;
  3493. X_current = X_probe_location + cos(theta) * radius;
  3494. Y_current = Y_probe_location + sin(theta) * radius;
  3495. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3496. X_current = X_MIN_POS;
  3497. if ( X_current>X_MAX_POS)
  3498. X_current = X_MAX_POS;
  3499. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3500. Y_current = Y_MIN_POS;
  3501. if ( Y_current>Y_MAX_POS)
  3502. Y_current = Y_MAX_POS;
  3503. if (verbose_level>3 ) {
  3504. SERIAL_ECHOPAIR("x: ", X_current);
  3505. SERIAL_ECHOPAIR("y: ", Y_current);
  3506. SERIAL_PROTOCOLLNPGM("");
  3507. }
  3508. do_blocking_move_to( X_current, Y_current, Z_current );
  3509. }
  3510. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3511. }
  3512. setup_for_endstop_move();
  3513. run_z_probe();
  3514. sample_set[n] = current_position[Z_AXIS];
  3515. //
  3516. // Get the current mean for the data points we have so far
  3517. //
  3518. sum=0.0;
  3519. for( j=0; j<=n; j++) {
  3520. sum = sum + sample_set[j];
  3521. }
  3522. mean = sum / (double (n+1));
  3523. //
  3524. // Now, use that mean to calculate the standard deviation for the
  3525. // data points we have so far
  3526. //
  3527. sum=0.0;
  3528. for( j=0; j<=n; j++) {
  3529. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3530. }
  3531. sigma = sqrt( sum / (double (n+1)) );
  3532. if (verbose_level > 1) {
  3533. SERIAL_PROTOCOL(n+1);
  3534. SERIAL_PROTOCOL(" of ");
  3535. SERIAL_PROTOCOL(n_samples);
  3536. SERIAL_PROTOCOLPGM(" z: ");
  3537. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3538. }
  3539. if (verbose_level > 2) {
  3540. SERIAL_PROTOCOL(" mean: ");
  3541. SERIAL_PROTOCOL_F(mean,6);
  3542. SERIAL_PROTOCOL(" sigma: ");
  3543. SERIAL_PROTOCOL_F(sigma,6);
  3544. }
  3545. if (verbose_level > 0)
  3546. SERIAL_PROTOCOLPGM("\n");
  3547. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3548. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3549. st_synchronize();
  3550. }
  3551. delay(1000);
  3552. clean_up_after_endstop_move();
  3553. // enable_endstops(true);
  3554. if (verbose_level > 0) {
  3555. SERIAL_PROTOCOLPGM("Mean: ");
  3556. SERIAL_PROTOCOL_F(mean, 6);
  3557. SERIAL_PROTOCOLPGM("\n");
  3558. }
  3559. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3560. SERIAL_PROTOCOL_F(sigma, 6);
  3561. SERIAL_PROTOCOLPGM("\n\n");
  3562. Sigma_Exit:
  3563. break;
  3564. }
  3565. #endif // Z_PROBE_REPEATABILITY_TEST
  3566. #endif // ENABLE_AUTO_BED_LEVELING
  3567. case 104: // M104
  3568. if(setTargetedHotend(104)){
  3569. break;
  3570. }
  3571. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3572. setWatch();
  3573. break;
  3574. case 112: // M112 -Emergency Stop
  3575. kill();
  3576. break;
  3577. case 140: // M140 set bed temp
  3578. if (code_seen('S')) setTargetBed(code_value());
  3579. break;
  3580. case 105 : // M105
  3581. if(setTargetedHotend(105)){
  3582. break;
  3583. }
  3584. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3585. SERIAL_PROTOCOLPGM("ok T:");
  3586. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3587. SERIAL_PROTOCOLPGM(" /");
  3588. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3589. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3590. SERIAL_PROTOCOLPGM(" B:");
  3591. SERIAL_PROTOCOL_F(degBed(),1);
  3592. SERIAL_PROTOCOLPGM(" /");
  3593. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3594. #endif //TEMP_BED_PIN
  3595. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3596. SERIAL_PROTOCOLPGM(" T");
  3597. SERIAL_PROTOCOL(cur_extruder);
  3598. SERIAL_PROTOCOLPGM(":");
  3599. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3600. SERIAL_PROTOCOLPGM(" /");
  3601. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3602. }
  3603. #else
  3604. SERIAL_ERROR_START;
  3605. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3606. #endif
  3607. SERIAL_PROTOCOLPGM(" @:");
  3608. #ifdef EXTRUDER_WATTS
  3609. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3610. SERIAL_PROTOCOLPGM("W");
  3611. #else
  3612. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3613. #endif
  3614. SERIAL_PROTOCOLPGM(" B@:");
  3615. #ifdef BED_WATTS
  3616. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3617. SERIAL_PROTOCOLPGM("W");
  3618. #else
  3619. SERIAL_PROTOCOL(getHeaterPower(-1));
  3620. #endif
  3621. #ifdef SHOW_TEMP_ADC_VALUES
  3622. {float raw = 0.0;
  3623. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3624. SERIAL_PROTOCOLPGM(" ADC B:");
  3625. SERIAL_PROTOCOL_F(degBed(),1);
  3626. SERIAL_PROTOCOLPGM("C->");
  3627. raw = rawBedTemp();
  3628. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3629. SERIAL_PROTOCOLPGM(" Rb->");
  3630. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3631. SERIAL_PROTOCOLPGM(" Rxb->");
  3632. SERIAL_PROTOCOL_F(raw, 5);
  3633. #endif
  3634. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3635. SERIAL_PROTOCOLPGM(" T");
  3636. SERIAL_PROTOCOL(cur_extruder);
  3637. SERIAL_PROTOCOLPGM(":");
  3638. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3639. SERIAL_PROTOCOLPGM("C->");
  3640. raw = rawHotendTemp(cur_extruder);
  3641. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3642. SERIAL_PROTOCOLPGM(" Rt");
  3643. SERIAL_PROTOCOL(cur_extruder);
  3644. SERIAL_PROTOCOLPGM("->");
  3645. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3646. SERIAL_PROTOCOLPGM(" Rx");
  3647. SERIAL_PROTOCOL(cur_extruder);
  3648. SERIAL_PROTOCOLPGM("->");
  3649. SERIAL_PROTOCOL_F(raw, 5);
  3650. }}
  3651. #endif
  3652. SERIAL_PROTOCOLLN("");
  3653. return;
  3654. break;
  3655. case 109:
  3656. {// M109 - Wait for extruder heater to reach target.
  3657. if(setTargetedHotend(109)){
  3658. break;
  3659. }
  3660. LCD_MESSAGERPGM(MSG_HEATING);
  3661. heating_status = 1;
  3662. if (farm_mode) { prusa_statistics(1); };
  3663. #ifdef AUTOTEMP
  3664. autotemp_enabled=false;
  3665. #endif
  3666. if (code_seen('S')) {
  3667. setTargetHotend(code_value(), tmp_extruder);
  3668. CooldownNoWait = true;
  3669. } else if (code_seen('R')) {
  3670. setTargetHotend(code_value(), tmp_extruder);
  3671. CooldownNoWait = false;
  3672. }
  3673. #ifdef AUTOTEMP
  3674. if (code_seen('S')) autotemp_min=code_value();
  3675. if (code_seen('B')) autotemp_max=code_value();
  3676. if (code_seen('F'))
  3677. {
  3678. autotemp_factor=code_value();
  3679. autotemp_enabled=true;
  3680. }
  3681. #endif
  3682. setWatch();
  3683. codenum = millis();
  3684. /* See if we are heating up or cooling down */
  3685. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3686. cancel_heatup = false;
  3687. wait_for_heater(codenum); //loops until target temperature is reached
  3688. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3689. heating_status = 2;
  3690. if (farm_mode) { prusa_statistics(2); };
  3691. //starttime=millis();
  3692. previous_millis_cmd = millis();
  3693. }
  3694. break;
  3695. case 190: // M190 - Wait for bed heater to reach target.
  3696. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3697. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3698. heating_status = 3;
  3699. if (farm_mode) { prusa_statistics(1); };
  3700. if (code_seen('S'))
  3701. {
  3702. setTargetBed(code_value());
  3703. CooldownNoWait = true;
  3704. }
  3705. else if (code_seen('R'))
  3706. {
  3707. setTargetBed(code_value());
  3708. CooldownNoWait = false;
  3709. }
  3710. codenum = millis();
  3711. cancel_heatup = false;
  3712. target_direction = isHeatingBed(); // true if heating, false if cooling
  3713. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3714. {
  3715. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3716. {
  3717. if (!farm_mode) {
  3718. float tt = degHotend(active_extruder);
  3719. SERIAL_PROTOCOLPGM("T:");
  3720. SERIAL_PROTOCOL(tt);
  3721. SERIAL_PROTOCOLPGM(" E:");
  3722. SERIAL_PROTOCOL((int)active_extruder);
  3723. SERIAL_PROTOCOLPGM(" B:");
  3724. SERIAL_PROTOCOL_F(degBed(), 1);
  3725. SERIAL_PROTOCOLLN("");
  3726. }
  3727. codenum = millis();
  3728. }
  3729. manage_heater();
  3730. manage_inactivity();
  3731. lcd_update();
  3732. }
  3733. LCD_MESSAGERPGM(MSG_BED_DONE);
  3734. heating_status = 4;
  3735. previous_millis_cmd = millis();
  3736. #endif
  3737. break;
  3738. #if defined(FAN_PIN) && FAN_PIN > -1
  3739. case 106: //M106 Fan On
  3740. if (code_seen('S')){
  3741. fanSpeed=constrain(code_value(),0,255);
  3742. }
  3743. else {
  3744. fanSpeed=255;
  3745. }
  3746. break;
  3747. case 107: //M107 Fan Off
  3748. fanSpeed = 0;
  3749. break;
  3750. #endif //FAN_PIN
  3751. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3752. case 80: // M80 - Turn on Power Supply
  3753. SET_OUTPUT(PS_ON_PIN); //GND
  3754. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3755. // If you have a switch on suicide pin, this is useful
  3756. // if you want to start another print with suicide feature after
  3757. // a print without suicide...
  3758. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3759. SET_OUTPUT(SUICIDE_PIN);
  3760. WRITE(SUICIDE_PIN, HIGH);
  3761. #endif
  3762. #ifdef ULTIPANEL
  3763. powersupply = true;
  3764. LCD_MESSAGERPGM(WELCOME_MSG);
  3765. lcd_update();
  3766. #endif
  3767. break;
  3768. #endif
  3769. case 81: // M81 - Turn off Power Supply
  3770. disable_heater();
  3771. st_synchronize();
  3772. disable_e0();
  3773. disable_e1();
  3774. disable_e2();
  3775. finishAndDisableSteppers();
  3776. fanSpeed = 0;
  3777. delay(1000); // Wait a little before to switch off
  3778. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3779. st_synchronize();
  3780. suicide();
  3781. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3782. SET_OUTPUT(PS_ON_PIN);
  3783. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3784. #endif
  3785. #ifdef ULTIPANEL
  3786. powersupply = false;
  3787. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3788. /*
  3789. MACHNAME = "Prusa i3"
  3790. MSGOFF = "Vypnuto"
  3791. "Prusai3"" ""vypnuto""."
  3792. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3793. */
  3794. lcd_update();
  3795. #endif
  3796. break;
  3797. case 82:
  3798. axis_relative_modes[3] = false;
  3799. break;
  3800. case 83:
  3801. axis_relative_modes[3] = true;
  3802. break;
  3803. case 18: //compatibility
  3804. case 84: // M84
  3805. if(code_seen('S')){
  3806. stepper_inactive_time = code_value() * 1000;
  3807. }
  3808. else
  3809. {
  3810. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3811. if(all_axis)
  3812. {
  3813. st_synchronize();
  3814. disable_e0();
  3815. disable_e1();
  3816. disable_e2();
  3817. finishAndDisableSteppers();
  3818. }
  3819. else
  3820. {
  3821. st_synchronize();
  3822. if (code_seen('X')) disable_x();
  3823. if (code_seen('Y')) disable_y();
  3824. if (code_seen('Z')) disable_z();
  3825. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3826. if (code_seen('E')) {
  3827. disable_e0();
  3828. disable_e1();
  3829. disable_e2();
  3830. }
  3831. #endif
  3832. }
  3833. }
  3834. snmm_filaments_used = 0;
  3835. break;
  3836. case 85: // M85
  3837. if(code_seen('S')) {
  3838. max_inactive_time = code_value() * 1000;
  3839. }
  3840. break;
  3841. case 92: // M92
  3842. for(int8_t i=0; i < NUM_AXIS; i++)
  3843. {
  3844. if(code_seen(axis_codes[i]))
  3845. {
  3846. if(i == 3) { // E
  3847. float value = code_value();
  3848. if(value < 20.0) {
  3849. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3850. max_jerk[E_AXIS] *= factor;
  3851. max_feedrate[i] *= factor;
  3852. axis_steps_per_sqr_second[i] *= factor;
  3853. }
  3854. axis_steps_per_unit[i] = value;
  3855. }
  3856. else {
  3857. axis_steps_per_unit[i] = code_value();
  3858. }
  3859. }
  3860. }
  3861. break;
  3862. case 110: // M110 - reset line pos
  3863. if (code_seen('N'))
  3864. gcode_LastN = code_value_long();
  3865. else
  3866. gcode_LastN = 0;
  3867. break;
  3868. case 115: // M115
  3869. if (code_seen('V')) {
  3870. // Report the Prusa version number.
  3871. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3872. } else if (code_seen('U')) {
  3873. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3874. // pause the print and ask the user to upgrade the firmware.
  3875. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3876. } else {
  3877. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3878. }
  3879. break;
  3880. /* case 117: // M117 display message
  3881. starpos = (strchr(strchr_pointer + 5,'*'));
  3882. if(starpos!=NULL)
  3883. *(starpos)='\0';
  3884. lcd_setstatus(strchr_pointer + 5);
  3885. break;*/
  3886. case 114: // M114
  3887. SERIAL_PROTOCOLPGM("X:");
  3888. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3889. SERIAL_PROTOCOLPGM(" Y:");
  3890. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3891. SERIAL_PROTOCOLPGM(" Z:");
  3892. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3893. SERIAL_PROTOCOLPGM(" E:");
  3894. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3895. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3896. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3897. SERIAL_PROTOCOLPGM(" Y:");
  3898. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3899. SERIAL_PROTOCOLPGM(" Z:");
  3900. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3901. SERIAL_PROTOCOLLN("");
  3902. break;
  3903. case 120: // M120
  3904. enable_endstops(false) ;
  3905. break;
  3906. case 121: // M121
  3907. enable_endstops(true) ;
  3908. break;
  3909. case 119: // M119
  3910. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3911. SERIAL_PROTOCOLLN("");
  3912. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3913. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3914. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3915. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3916. }else{
  3917. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3918. }
  3919. SERIAL_PROTOCOLLN("");
  3920. #endif
  3921. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3922. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3923. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3924. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3925. }else{
  3926. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3927. }
  3928. SERIAL_PROTOCOLLN("");
  3929. #endif
  3930. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3931. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3932. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3933. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3934. }else{
  3935. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3936. }
  3937. SERIAL_PROTOCOLLN("");
  3938. #endif
  3939. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3940. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3941. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3942. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3943. }else{
  3944. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3945. }
  3946. SERIAL_PROTOCOLLN("");
  3947. #endif
  3948. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3949. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3950. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3951. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3952. }else{
  3953. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3954. }
  3955. SERIAL_PROTOCOLLN("");
  3956. #endif
  3957. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3958. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3959. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3960. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3961. }else{
  3962. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3963. }
  3964. SERIAL_PROTOCOLLN("");
  3965. #endif
  3966. break;
  3967. //TODO: update for all axis, use for loop
  3968. #ifdef BLINKM
  3969. case 150: // M150
  3970. {
  3971. byte red;
  3972. byte grn;
  3973. byte blu;
  3974. if(code_seen('R')) red = code_value();
  3975. if(code_seen('U')) grn = code_value();
  3976. if(code_seen('B')) blu = code_value();
  3977. SendColors(red,grn,blu);
  3978. }
  3979. break;
  3980. #endif //BLINKM
  3981. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3982. {
  3983. tmp_extruder = active_extruder;
  3984. if(code_seen('T')) {
  3985. tmp_extruder = code_value();
  3986. if(tmp_extruder >= EXTRUDERS) {
  3987. SERIAL_ECHO_START;
  3988. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3989. break;
  3990. }
  3991. }
  3992. float area = .0;
  3993. if(code_seen('D')) {
  3994. float diameter = (float)code_value();
  3995. if (diameter == 0.0) {
  3996. // setting any extruder filament size disables volumetric on the assumption that
  3997. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3998. // for all extruders
  3999. volumetric_enabled = false;
  4000. } else {
  4001. filament_size[tmp_extruder] = (float)code_value();
  4002. // make sure all extruders have some sane value for the filament size
  4003. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4004. #if EXTRUDERS > 1
  4005. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4006. #if EXTRUDERS > 2
  4007. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4008. #endif
  4009. #endif
  4010. volumetric_enabled = true;
  4011. }
  4012. } else {
  4013. //reserved for setting filament diameter via UFID or filament measuring device
  4014. break;
  4015. }
  4016. calculate_volumetric_multipliers();
  4017. }
  4018. break;
  4019. case 201: // M201
  4020. for(int8_t i=0; i < NUM_AXIS; i++)
  4021. {
  4022. if(code_seen(axis_codes[i]))
  4023. {
  4024. max_acceleration_units_per_sq_second[i] = code_value();
  4025. }
  4026. }
  4027. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4028. reset_acceleration_rates();
  4029. break;
  4030. #if 0 // Not used for Sprinter/grbl gen6
  4031. case 202: // M202
  4032. for(int8_t i=0; i < NUM_AXIS; i++) {
  4033. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4034. }
  4035. break;
  4036. #endif
  4037. case 203: // M203 max feedrate mm/sec
  4038. for(int8_t i=0; i < NUM_AXIS; i++) {
  4039. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4040. }
  4041. break;
  4042. case 204: // M204 acclereration S normal moves T filmanent only moves
  4043. {
  4044. if(code_seen('S')) acceleration = code_value() ;
  4045. if(code_seen('T')) retract_acceleration = code_value() ;
  4046. }
  4047. break;
  4048. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4049. {
  4050. if(code_seen('S')) minimumfeedrate = code_value();
  4051. if(code_seen('T')) mintravelfeedrate = code_value();
  4052. if(code_seen('B')) minsegmenttime = code_value() ;
  4053. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4054. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4055. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4056. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4057. }
  4058. break;
  4059. case 206: // M206 additional homing offset
  4060. for(int8_t i=0; i < 3; i++)
  4061. {
  4062. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4063. }
  4064. break;
  4065. #ifdef FWRETRACT
  4066. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4067. {
  4068. if(code_seen('S'))
  4069. {
  4070. retract_length = code_value() ;
  4071. }
  4072. if(code_seen('F'))
  4073. {
  4074. retract_feedrate = code_value()/60 ;
  4075. }
  4076. if(code_seen('Z'))
  4077. {
  4078. retract_zlift = code_value() ;
  4079. }
  4080. }break;
  4081. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4082. {
  4083. if(code_seen('S'))
  4084. {
  4085. retract_recover_length = code_value() ;
  4086. }
  4087. if(code_seen('F'))
  4088. {
  4089. retract_recover_feedrate = code_value()/60 ;
  4090. }
  4091. }break;
  4092. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4093. {
  4094. if(code_seen('S'))
  4095. {
  4096. int t= code_value() ;
  4097. switch(t)
  4098. {
  4099. case 0:
  4100. {
  4101. autoretract_enabled=false;
  4102. retracted[0]=false;
  4103. #if EXTRUDERS > 1
  4104. retracted[1]=false;
  4105. #endif
  4106. #if EXTRUDERS > 2
  4107. retracted[2]=false;
  4108. #endif
  4109. }break;
  4110. case 1:
  4111. {
  4112. autoretract_enabled=true;
  4113. retracted[0]=false;
  4114. #if EXTRUDERS > 1
  4115. retracted[1]=false;
  4116. #endif
  4117. #if EXTRUDERS > 2
  4118. retracted[2]=false;
  4119. #endif
  4120. }break;
  4121. default:
  4122. SERIAL_ECHO_START;
  4123. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4124. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4125. SERIAL_ECHOLNPGM("\"");
  4126. }
  4127. }
  4128. }break;
  4129. #endif // FWRETRACT
  4130. #if EXTRUDERS > 1
  4131. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4132. {
  4133. if(setTargetedHotend(218)){
  4134. break;
  4135. }
  4136. if(code_seen('X'))
  4137. {
  4138. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4139. }
  4140. if(code_seen('Y'))
  4141. {
  4142. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4143. }
  4144. SERIAL_ECHO_START;
  4145. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4146. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4147. {
  4148. SERIAL_ECHO(" ");
  4149. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4150. SERIAL_ECHO(",");
  4151. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4152. }
  4153. SERIAL_ECHOLN("");
  4154. }break;
  4155. #endif
  4156. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4157. {
  4158. if(code_seen('S'))
  4159. {
  4160. feedmultiply = code_value() ;
  4161. }
  4162. }
  4163. break;
  4164. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4165. {
  4166. if(code_seen('S'))
  4167. {
  4168. int tmp_code = code_value();
  4169. if (code_seen('T'))
  4170. {
  4171. if(setTargetedHotend(221)){
  4172. break;
  4173. }
  4174. extruder_multiply[tmp_extruder] = tmp_code;
  4175. }
  4176. else
  4177. {
  4178. extrudemultiply = tmp_code ;
  4179. }
  4180. }
  4181. }
  4182. break;
  4183. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4184. {
  4185. if(code_seen('P')){
  4186. int pin_number = code_value(); // pin number
  4187. int pin_state = -1; // required pin state - default is inverted
  4188. if(code_seen('S')) pin_state = code_value(); // required pin state
  4189. if(pin_state >= -1 && pin_state <= 1){
  4190. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4191. {
  4192. if (sensitive_pins[i] == pin_number)
  4193. {
  4194. pin_number = -1;
  4195. break;
  4196. }
  4197. }
  4198. if (pin_number > -1)
  4199. {
  4200. int target = LOW;
  4201. st_synchronize();
  4202. pinMode(pin_number, INPUT);
  4203. switch(pin_state){
  4204. case 1:
  4205. target = HIGH;
  4206. break;
  4207. case 0:
  4208. target = LOW;
  4209. break;
  4210. case -1:
  4211. target = !digitalRead(pin_number);
  4212. break;
  4213. }
  4214. while(digitalRead(pin_number) != target){
  4215. manage_heater();
  4216. manage_inactivity();
  4217. lcd_update();
  4218. }
  4219. }
  4220. }
  4221. }
  4222. }
  4223. break;
  4224. #if NUM_SERVOS > 0
  4225. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4226. {
  4227. int servo_index = -1;
  4228. int servo_position = 0;
  4229. if (code_seen('P'))
  4230. servo_index = code_value();
  4231. if (code_seen('S')) {
  4232. servo_position = code_value();
  4233. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4234. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4235. servos[servo_index].attach(0);
  4236. #endif
  4237. servos[servo_index].write(servo_position);
  4238. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4239. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4240. servos[servo_index].detach();
  4241. #endif
  4242. }
  4243. else {
  4244. SERIAL_ECHO_START;
  4245. SERIAL_ECHO("Servo ");
  4246. SERIAL_ECHO(servo_index);
  4247. SERIAL_ECHOLN(" out of range");
  4248. }
  4249. }
  4250. else if (servo_index >= 0) {
  4251. SERIAL_PROTOCOL(MSG_OK);
  4252. SERIAL_PROTOCOL(" Servo ");
  4253. SERIAL_PROTOCOL(servo_index);
  4254. SERIAL_PROTOCOL(": ");
  4255. SERIAL_PROTOCOL(servos[servo_index].read());
  4256. SERIAL_PROTOCOLLN("");
  4257. }
  4258. }
  4259. break;
  4260. #endif // NUM_SERVOS > 0
  4261. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4262. case 300: // M300
  4263. {
  4264. int beepS = code_seen('S') ? code_value() : 110;
  4265. int beepP = code_seen('P') ? code_value() : 1000;
  4266. if (beepS > 0)
  4267. {
  4268. #if BEEPER > 0
  4269. tone(BEEPER, beepS);
  4270. delay(beepP);
  4271. noTone(BEEPER);
  4272. #elif defined(ULTRALCD)
  4273. lcd_buzz(beepS, beepP);
  4274. #elif defined(LCD_USE_I2C_BUZZER)
  4275. lcd_buzz(beepP, beepS);
  4276. #endif
  4277. }
  4278. else
  4279. {
  4280. delay(beepP);
  4281. }
  4282. }
  4283. break;
  4284. #endif // M300
  4285. #ifdef PIDTEMP
  4286. case 301: // M301
  4287. {
  4288. if(code_seen('P')) Kp = code_value();
  4289. if(code_seen('I')) Ki = scalePID_i(code_value());
  4290. if(code_seen('D')) Kd = scalePID_d(code_value());
  4291. #ifdef PID_ADD_EXTRUSION_RATE
  4292. if(code_seen('C')) Kc = code_value();
  4293. #endif
  4294. updatePID();
  4295. SERIAL_PROTOCOLRPGM(MSG_OK);
  4296. SERIAL_PROTOCOL(" p:");
  4297. SERIAL_PROTOCOL(Kp);
  4298. SERIAL_PROTOCOL(" i:");
  4299. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4300. SERIAL_PROTOCOL(" d:");
  4301. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4302. #ifdef PID_ADD_EXTRUSION_RATE
  4303. SERIAL_PROTOCOL(" c:");
  4304. //Kc does not have scaling applied above, or in resetting defaults
  4305. SERIAL_PROTOCOL(Kc);
  4306. #endif
  4307. SERIAL_PROTOCOLLN("");
  4308. }
  4309. break;
  4310. #endif //PIDTEMP
  4311. #ifdef PIDTEMPBED
  4312. case 304: // M304
  4313. {
  4314. if(code_seen('P')) bedKp = code_value();
  4315. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4316. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4317. updatePID();
  4318. SERIAL_PROTOCOLRPGM(MSG_OK);
  4319. SERIAL_PROTOCOL(" p:");
  4320. SERIAL_PROTOCOL(bedKp);
  4321. SERIAL_PROTOCOL(" i:");
  4322. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4323. SERIAL_PROTOCOL(" d:");
  4324. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4325. SERIAL_PROTOCOLLN("");
  4326. }
  4327. break;
  4328. #endif //PIDTEMP
  4329. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4330. {
  4331. #ifdef CHDK
  4332. SET_OUTPUT(CHDK);
  4333. WRITE(CHDK, HIGH);
  4334. chdkHigh = millis();
  4335. chdkActive = true;
  4336. #else
  4337. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4338. const uint8_t NUM_PULSES=16;
  4339. const float PULSE_LENGTH=0.01524;
  4340. for(int i=0; i < NUM_PULSES; i++) {
  4341. WRITE(PHOTOGRAPH_PIN, HIGH);
  4342. _delay_ms(PULSE_LENGTH);
  4343. WRITE(PHOTOGRAPH_PIN, LOW);
  4344. _delay_ms(PULSE_LENGTH);
  4345. }
  4346. delay(7.33);
  4347. for(int i=0; i < NUM_PULSES; i++) {
  4348. WRITE(PHOTOGRAPH_PIN, HIGH);
  4349. _delay_ms(PULSE_LENGTH);
  4350. WRITE(PHOTOGRAPH_PIN, LOW);
  4351. _delay_ms(PULSE_LENGTH);
  4352. }
  4353. #endif
  4354. #endif //chdk end if
  4355. }
  4356. break;
  4357. #ifdef DOGLCD
  4358. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4359. {
  4360. if (code_seen('C')) {
  4361. lcd_setcontrast( ((int)code_value())&63 );
  4362. }
  4363. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4364. SERIAL_PROTOCOL(lcd_contrast);
  4365. SERIAL_PROTOCOLLN("");
  4366. }
  4367. break;
  4368. #endif
  4369. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4370. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4371. {
  4372. float temp = .0;
  4373. if (code_seen('S')) temp=code_value();
  4374. set_extrude_min_temp(temp);
  4375. }
  4376. break;
  4377. #endif
  4378. case 303: // M303 PID autotune
  4379. {
  4380. float temp = 150.0;
  4381. int e=0;
  4382. int c=5;
  4383. if (code_seen('E')) e=code_value();
  4384. if (e<0)
  4385. temp=70;
  4386. if (code_seen('S')) temp=code_value();
  4387. if (code_seen('C')) c=code_value();
  4388. PID_autotune(temp, e, c);
  4389. }
  4390. break;
  4391. case 400: // M400 finish all moves
  4392. {
  4393. st_synchronize();
  4394. }
  4395. break;
  4396. #ifdef FILAMENT_SENSOR
  4397. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4398. {
  4399. #if (FILWIDTH_PIN > -1)
  4400. if(code_seen('N')) filament_width_nominal=code_value();
  4401. else{
  4402. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4403. SERIAL_PROTOCOLLN(filament_width_nominal);
  4404. }
  4405. #endif
  4406. }
  4407. break;
  4408. case 405: //M405 Turn on filament sensor for control
  4409. {
  4410. if(code_seen('D')) meas_delay_cm=code_value();
  4411. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4412. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4413. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4414. {
  4415. int temp_ratio = widthFil_to_size_ratio();
  4416. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4417. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4418. }
  4419. delay_index1=0;
  4420. delay_index2=0;
  4421. }
  4422. filament_sensor = true ;
  4423. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4424. //SERIAL_PROTOCOL(filament_width_meas);
  4425. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4426. //SERIAL_PROTOCOL(extrudemultiply);
  4427. }
  4428. break;
  4429. case 406: //M406 Turn off filament sensor for control
  4430. {
  4431. filament_sensor = false ;
  4432. }
  4433. break;
  4434. case 407: //M407 Display measured filament diameter
  4435. {
  4436. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4437. SERIAL_PROTOCOLLN(filament_width_meas);
  4438. }
  4439. break;
  4440. #endif
  4441. case 500: // M500 Store settings in EEPROM
  4442. {
  4443. Config_StoreSettings();
  4444. }
  4445. break;
  4446. case 501: // M501 Read settings from EEPROM
  4447. {
  4448. Config_RetrieveSettings();
  4449. }
  4450. break;
  4451. case 502: // M502 Revert to default settings
  4452. {
  4453. Config_ResetDefault();
  4454. }
  4455. break;
  4456. case 503: // M503 print settings currently in memory
  4457. {
  4458. Config_PrintSettings();
  4459. }
  4460. break;
  4461. case 509: //M509 Force language selection
  4462. {
  4463. lcd_force_language_selection();
  4464. SERIAL_ECHO_START;
  4465. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4466. }
  4467. break;
  4468. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4469. case 540:
  4470. {
  4471. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4472. }
  4473. break;
  4474. #endif
  4475. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4476. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4477. {
  4478. float value;
  4479. if (code_seen('Z'))
  4480. {
  4481. value = code_value();
  4482. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4483. {
  4484. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4485. SERIAL_ECHO_START;
  4486. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4487. SERIAL_PROTOCOLLN("");
  4488. }
  4489. else
  4490. {
  4491. SERIAL_ECHO_START;
  4492. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4493. SERIAL_ECHORPGM(MSG_Z_MIN);
  4494. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4495. SERIAL_ECHORPGM(MSG_Z_MAX);
  4496. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4497. SERIAL_PROTOCOLLN("");
  4498. }
  4499. }
  4500. else
  4501. {
  4502. SERIAL_ECHO_START;
  4503. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4504. SERIAL_ECHO(-zprobe_zoffset);
  4505. SERIAL_PROTOCOLLN("");
  4506. }
  4507. break;
  4508. }
  4509. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4510. #ifdef FILAMENTCHANGEENABLE
  4511. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4512. {
  4513. st_synchronize();
  4514. float target[4];
  4515. float lastpos[4];
  4516. if (farm_mode)
  4517. {
  4518. prusa_statistics(22);
  4519. }
  4520. feedmultiplyBckp=feedmultiply;
  4521. int8_t TooLowZ = 0;
  4522. target[X_AXIS]=current_position[X_AXIS];
  4523. target[Y_AXIS]=current_position[Y_AXIS];
  4524. target[Z_AXIS]=current_position[Z_AXIS];
  4525. target[E_AXIS]=current_position[E_AXIS];
  4526. lastpos[X_AXIS]=current_position[X_AXIS];
  4527. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4528. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4529. lastpos[E_AXIS]=current_position[E_AXIS];
  4530. //Retract extruder
  4531. if(code_seen('E'))
  4532. {
  4533. target[E_AXIS]+= code_value();
  4534. }
  4535. else
  4536. {
  4537. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4538. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4539. #endif
  4540. }
  4541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4542. //Lift Z
  4543. if(code_seen('Z'))
  4544. {
  4545. target[Z_AXIS]+= code_value();
  4546. }
  4547. else
  4548. {
  4549. #ifdef FILAMENTCHANGE_ZADD
  4550. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4551. if(target[Z_AXIS] < 10){
  4552. target[Z_AXIS]+= 10 ;
  4553. TooLowZ = 1;
  4554. }else{
  4555. TooLowZ = 0;
  4556. }
  4557. #endif
  4558. }
  4559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4560. //Move XY to side
  4561. if(code_seen('X'))
  4562. {
  4563. target[X_AXIS]+= code_value();
  4564. }
  4565. else
  4566. {
  4567. #ifdef FILAMENTCHANGE_XPOS
  4568. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4569. #endif
  4570. }
  4571. if(code_seen('Y'))
  4572. {
  4573. target[Y_AXIS]= code_value();
  4574. }
  4575. else
  4576. {
  4577. #ifdef FILAMENTCHANGE_YPOS
  4578. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4579. #endif
  4580. }
  4581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4582. st_synchronize();
  4583. custom_message = true;
  4584. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4585. // Unload filament
  4586. if(code_seen('L'))
  4587. {
  4588. target[E_AXIS]+= code_value();
  4589. }
  4590. else
  4591. {
  4592. #ifdef SNMM
  4593. #else
  4594. #ifdef FILAMENTCHANGE_FINALRETRACT
  4595. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4596. #endif
  4597. #endif // SNMM
  4598. }
  4599. #ifdef SNMM
  4600. target[E_AXIS] += 12;
  4601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4602. target[E_AXIS] += 6;
  4603. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4604. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4606. st_synchronize();
  4607. target[E_AXIS] += (FIL_COOLING);
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4609. target[E_AXIS] += (FIL_COOLING*-1);
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4611. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4613. st_synchronize();
  4614. #else
  4615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4616. #endif // SNMM
  4617. //finish moves
  4618. st_synchronize();
  4619. //disable extruder steppers so filament can be removed
  4620. disable_e0();
  4621. disable_e1();
  4622. disable_e2();
  4623. delay(100);
  4624. //Wait for user to insert filament
  4625. uint8_t cnt=0;
  4626. int counterBeep = 0;
  4627. lcd_wait_interact();
  4628. load_filament_time = millis();
  4629. while(!lcd_clicked()){
  4630. cnt++;
  4631. manage_heater();
  4632. manage_inactivity(true);
  4633. /*#ifdef SNMM
  4634. target[E_AXIS] += 0.002;
  4635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4636. #endif // SNMM*/
  4637. if(cnt==0)
  4638. {
  4639. #if BEEPER > 0
  4640. if (counterBeep== 500){
  4641. counterBeep = 0;
  4642. }
  4643. SET_OUTPUT(BEEPER);
  4644. if (counterBeep== 0){
  4645. WRITE(BEEPER,HIGH);
  4646. }
  4647. if (counterBeep== 20){
  4648. WRITE(BEEPER,LOW);
  4649. }
  4650. counterBeep++;
  4651. #else
  4652. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4653. lcd_buzz(1000/6,100);
  4654. #else
  4655. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4656. #endif
  4657. #endif
  4658. }
  4659. }
  4660. WRITE(BEEPER, LOW);
  4661. #ifdef SNMM
  4662. display_loading();
  4663. do {
  4664. target[E_AXIS] += 0.002;
  4665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4666. delay_keep_alive(2);
  4667. } while (!lcd_clicked());
  4668. /*if (millis() - load_filament_time > 2) {
  4669. load_filament_time = millis();
  4670. target[E_AXIS] += 0.001;
  4671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4672. }*/
  4673. #endif
  4674. //Filament inserted
  4675. //Feed the filament to the end of nozzle quickly
  4676. #ifdef SNMM
  4677. st_synchronize();
  4678. target[E_AXIS] += bowden_length[snmm_extruder];
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4680. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4682. target[E_AXIS] += 40;
  4683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4684. target[E_AXIS] += 10;
  4685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4686. #else
  4687. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4689. #endif // SNMM
  4690. //Extrude some filament
  4691. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4693. //Wait for user to check the state
  4694. lcd_change_fil_state = 0;
  4695. lcd_loading_filament();
  4696. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4697. lcd_change_fil_state = 0;
  4698. lcd_alright();
  4699. switch(lcd_change_fil_state){
  4700. // Filament failed to load so load it again
  4701. case 2:
  4702. #ifdef SNMM
  4703. display_loading();
  4704. do {
  4705. target[E_AXIS] += 0.002;
  4706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4707. delay_keep_alive(2);
  4708. } while (!lcd_clicked());
  4709. st_synchronize();
  4710. target[E_AXIS] += bowden_length[snmm_extruder];
  4711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4712. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4713. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4714. target[E_AXIS] += 40;
  4715. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4716. target[E_AXIS] += 10;
  4717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4718. #else
  4719. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4720. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4721. #endif
  4722. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4723. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4724. lcd_loading_filament();
  4725. break;
  4726. // Filament loaded properly but color is not clear
  4727. case 3:
  4728. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4730. lcd_loading_color();
  4731. break;
  4732. // Everything good
  4733. default:
  4734. lcd_change_success();
  4735. lcd_update_enable(true);
  4736. break;
  4737. }
  4738. }
  4739. //Not let's go back to print
  4740. //Feed a little of filament to stabilize pressure
  4741. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4743. //Retract
  4744. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4745. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4746. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4747. //Move XY back
  4748. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4749. //Move Z back
  4750. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4751. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4752. //Unretract
  4753. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4754. //Set E position to original
  4755. plan_set_e_position(lastpos[E_AXIS]);
  4756. //Recover feed rate
  4757. feedmultiply=feedmultiplyBckp;
  4758. char cmd[9];
  4759. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4760. enquecommand(cmd);
  4761. lcd_setstatuspgm(WELCOME_MSG);
  4762. custom_message = false;
  4763. custom_message_type = 0;
  4764. }
  4765. break;
  4766. #endif //FILAMENTCHANGEENABLE
  4767. case 601: {
  4768. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4769. }
  4770. break;
  4771. case 602: {
  4772. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4773. }
  4774. break;
  4775. #ifdef LIN_ADVANCE
  4776. case 900: // M900: Set LIN_ADVANCE options.
  4777. gcode_M900();
  4778. break;
  4779. #endif
  4780. case 907: // M907 Set digital trimpot motor current using axis codes.
  4781. {
  4782. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4783. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4784. if(code_seen('B')) digipot_current(4,code_value());
  4785. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4786. #endif
  4787. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4788. if(code_seen('X')) digipot_current(0, code_value());
  4789. #endif
  4790. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4791. if(code_seen('Z')) digipot_current(1, code_value());
  4792. #endif
  4793. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4794. if(code_seen('E')) digipot_current(2, code_value());
  4795. #endif
  4796. #ifdef DIGIPOT_I2C
  4797. // this one uses actual amps in floating point
  4798. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4799. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4800. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4801. #endif
  4802. }
  4803. break;
  4804. case 908: // M908 Control digital trimpot directly.
  4805. {
  4806. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4807. uint8_t channel,current;
  4808. if(code_seen('P')) channel=code_value();
  4809. if(code_seen('S')) current=code_value();
  4810. digitalPotWrite(channel, current);
  4811. #endif
  4812. }
  4813. break;
  4814. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4815. {
  4816. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4817. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4818. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4819. if(code_seen('B')) microstep_mode(4,code_value());
  4820. microstep_readings();
  4821. #endif
  4822. }
  4823. break;
  4824. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4825. {
  4826. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4827. if(code_seen('S')) switch((int)code_value())
  4828. {
  4829. case 1:
  4830. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4831. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4832. break;
  4833. case 2:
  4834. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4835. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4836. break;
  4837. }
  4838. microstep_readings();
  4839. #endif
  4840. }
  4841. break;
  4842. case 701: //M701: load filament
  4843. {
  4844. enable_z();
  4845. custom_message = true;
  4846. custom_message_type = 2;
  4847. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4848. current_position[E_AXIS] += 70;
  4849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4850. current_position[E_AXIS] += 25;
  4851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4852. st_synchronize();
  4853. if (!farm_mode && loading_flag) {
  4854. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4855. while (!clean) {
  4856. lcd_update_enable(true);
  4857. lcd_update(2);
  4858. current_position[E_AXIS] += 25;
  4859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4860. st_synchronize();
  4861. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4862. }
  4863. }
  4864. lcd_update_enable(true);
  4865. lcd_update(2);
  4866. lcd_setstatuspgm(WELCOME_MSG);
  4867. disable_z();
  4868. loading_flag = false;
  4869. custom_message = false;
  4870. custom_message_type = 0;
  4871. }
  4872. break;
  4873. case 702:
  4874. {
  4875. #ifdef SNMM
  4876. if (code_seen('U')) {
  4877. extr_unload_used(); //unload all filaments which were used in current print
  4878. }
  4879. else if (code_seen('C')) {
  4880. extr_unload(); //unload just current filament
  4881. }
  4882. else {
  4883. extr_unload_all(); //unload all filaments
  4884. }
  4885. #else
  4886. custom_message = true;
  4887. custom_message_type = 2;
  4888. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4889. current_position[E_AXIS] -= 80;
  4890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4891. st_synchronize();
  4892. lcd_setstatuspgm(WELCOME_MSG);
  4893. custom_message = false;
  4894. custom_message_type = 0;
  4895. #endif
  4896. }
  4897. break;
  4898. case 999: // M999: Restart after being stopped
  4899. Stopped = false;
  4900. lcd_reset_alert_level();
  4901. gcode_LastN = Stopped_gcode_LastN;
  4902. FlushSerialRequestResend();
  4903. break;
  4904. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4905. }
  4906. } // end if(code_seen('M')) (end of M codes)
  4907. else if(code_seen('T'))
  4908. {
  4909. int index;
  4910. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4911. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4912. SERIAL_ECHOLNPGM("Invalid T code.");
  4913. }
  4914. else {
  4915. if (*(strchr_pointer + index) == '?') {
  4916. tmp_extruder = choose_extruder_menu();
  4917. }
  4918. else {
  4919. tmp_extruder = code_value();
  4920. }
  4921. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4922. #ifdef SNMM
  4923. #ifdef LIN_ADVANCE
  4924. if (snmm_extruder != tmp_extruder)
  4925. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4926. #endif
  4927. snmm_extruder = tmp_extruder;
  4928. st_synchronize();
  4929. delay(100);
  4930. disable_e0();
  4931. disable_e1();
  4932. disable_e2();
  4933. pinMode(E_MUX0_PIN, OUTPUT);
  4934. pinMode(E_MUX1_PIN, OUTPUT);
  4935. delay(100);
  4936. SERIAL_ECHO_START;
  4937. SERIAL_ECHO("T:");
  4938. SERIAL_ECHOLN((int)tmp_extruder);
  4939. switch (tmp_extruder) {
  4940. case 1:
  4941. WRITE(E_MUX0_PIN, HIGH);
  4942. WRITE(E_MUX1_PIN, LOW);
  4943. break;
  4944. case 2:
  4945. WRITE(E_MUX0_PIN, LOW);
  4946. WRITE(E_MUX1_PIN, HIGH);
  4947. break;
  4948. case 3:
  4949. WRITE(E_MUX0_PIN, HIGH);
  4950. WRITE(E_MUX1_PIN, HIGH);
  4951. break;
  4952. default:
  4953. WRITE(E_MUX0_PIN, LOW);
  4954. WRITE(E_MUX1_PIN, LOW);
  4955. break;
  4956. }
  4957. delay(100);
  4958. #else
  4959. if (tmp_extruder >= EXTRUDERS) {
  4960. SERIAL_ECHO_START;
  4961. SERIAL_ECHOPGM("T");
  4962. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4963. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4964. }
  4965. else {
  4966. boolean make_move = false;
  4967. if (code_seen('F')) {
  4968. make_move = true;
  4969. next_feedrate = code_value();
  4970. if (next_feedrate > 0.0) {
  4971. feedrate = next_feedrate;
  4972. }
  4973. }
  4974. #if EXTRUDERS > 1
  4975. if (tmp_extruder != active_extruder) {
  4976. // Save current position to return to after applying extruder offset
  4977. memcpy(destination, current_position, sizeof(destination));
  4978. // Offset extruder (only by XY)
  4979. int i;
  4980. for (i = 0; i < 2; i++) {
  4981. current_position[i] = current_position[i] -
  4982. extruder_offset[i][active_extruder] +
  4983. extruder_offset[i][tmp_extruder];
  4984. }
  4985. // Set the new active extruder and position
  4986. active_extruder = tmp_extruder;
  4987. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4988. // Move to the old position if 'F' was in the parameters
  4989. if (make_move && Stopped == false) {
  4990. prepare_move();
  4991. }
  4992. }
  4993. #endif
  4994. SERIAL_ECHO_START;
  4995. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4996. SERIAL_PROTOCOLLN((int)active_extruder);
  4997. }
  4998. #endif
  4999. }
  5000. } // end if(code_seen('T')) (end of T codes)
  5001. #ifdef DEBUG_DCODES
  5002. else if (code_seen('D')) // D codes (debug)
  5003. {
  5004. switch((int)code_value_uint8())
  5005. {
  5006. case 0: // D0 - Reset
  5007. if (*(strchr_pointer + 1) == 0) break;
  5008. MYSERIAL.println("D0 - Reset");
  5009. asm volatile("jmp 0x00000");
  5010. break;
  5011. case 1: // D1 - Clear EEPROM
  5012. {
  5013. MYSERIAL.println("D1 - Clear EEPROM");
  5014. cli();
  5015. for (int i = 0; i < 4096; i++)
  5016. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5017. sei();
  5018. }
  5019. break;
  5020. case 2: // D2 - Read/Write PIN
  5021. {
  5022. if (code_seen('P')) // Pin (0-255)
  5023. {
  5024. int pin = (int)code_value();
  5025. if ((pin >= 0) && (pin <= 255))
  5026. {
  5027. if (code_seen('F')) // Function in/out (0/1)
  5028. {
  5029. int fnc = (int)code_value();
  5030. if (fnc == 0) pinMode(pin, INPUT);
  5031. else if (fnc == 1) pinMode(pin, OUTPUT);
  5032. }
  5033. if (code_seen('V')) // Value (0/1)
  5034. {
  5035. int val = (int)code_value();
  5036. if (val == 0) digitalWrite(pin, LOW);
  5037. else if (val == 1) digitalWrite(pin, HIGH);
  5038. }
  5039. else
  5040. {
  5041. int val = (digitalRead(pin) != LOW)?1:0;
  5042. MYSERIAL.print("PIN");
  5043. MYSERIAL.print(pin);
  5044. MYSERIAL.print("=");
  5045. MYSERIAL.println(val);
  5046. }
  5047. }
  5048. }
  5049. }
  5050. break;
  5051. }
  5052. }
  5053. #endif //DEBUG_DCODES
  5054. else
  5055. {
  5056. SERIAL_ECHO_START;
  5057. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5058. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5059. SERIAL_ECHOLNPGM("\"");
  5060. }
  5061. ClearToSend();
  5062. }
  5063. void FlushSerialRequestResend()
  5064. {
  5065. //char cmdbuffer[bufindr][100]="Resend:";
  5066. MYSERIAL.flush();
  5067. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5068. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5069. ClearToSend();
  5070. }
  5071. // Confirm the execution of a command, if sent from a serial line.
  5072. // Execution of a command from a SD card will not be confirmed.
  5073. void ClearToSend()
  5074. {
  5075. previous_millis_cmd = millis();
  5076. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5077. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5078. }
  5079. void get_coordinates()
  5080. {
  5081. bool seen[4]={false,false,false,false};
  5082. for(int8_t i=0; i < NUM_AXIS; i++) {
  5083. if(code_seen(axis_codes[i]))
  5084. {
  5085. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5086. seen[i]=true;
  5087. }
  5088. else destination[i] = current_position[i]; //Are these else lines really needed?
  5089. }
  5090. if(code_seen('F')) {
  5091. next_feedrate = code_value();
  5092. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5093. }
  5094. }
  5095. void get_arc_coordinates()
  5096. {
  5097. #ifdef SF_ARC_FIX
  5098. bool relative_mode_backup = relative_mode;
  5099. relative_mode = true;
  5100. #endif
  5101. get_coordinates();
  5102. #ifdef SF_ARC_FIX
  5103. relative_mode=relative_mode_backup;
  5104. #endif
  5105. if(code_seen('I')) {
  5106. offset[0] = code_value();
  5107. }
  5108. else {
  5109. offset[0] = 0.0;
  5110. }
  5111. if(code_seen('J')) {
  5112. offset[1] = code_value();
  5113. }
  5114. else {
  5115. offset[1] = 0.0;
  5116. }
  5117. }
  5118. void clamp_to_software_endstops(float target[3])
  5119. {
  5120. #ifdef DEBUG_DISABLE_SWLIMITS
  5121. return;
  5122. #endif //DEBUG_DISABLE_SWLIMITS
  5123. world2machine_clamp(target[0], target[1]);
  5124. // Clamp the Z coordinate.
  5125. if (min_software_endstops) {
  5126. float negative_z_offset = 0;
  5127. #ifdef ENABLE_AUTO_BED_LEVELING
  5128. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5129. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5130. #endif
  5131. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5132. }
  5133. if (max_software_endstops) {
  5134. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5135. }
  5136. }
  5137. #ifdef MESH_BED_LEVELING
  5138. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5139. float dx = x - current_position[X_AXIS];
  5140. float dy = y - current_position[Y_AXIS];
  5141. float dz = z - current_position[Z_AXIS];
  5142. int n_segments = 0;
  5143. if (mbl.active) {
  5144. float len = abs(dx) + abs(dy);
  5145. if (len > 0)
  5146. // Split to 3cm segments or shorter.
  5147. n_segments = int(ceil(len / 30.f));
  5148. }
  5149. if (n_segments > 1) {
  5150. float de = e - current_position[E_AXIS];
  5151. for (int i = 1; i < n_segments; ++ i) {
  5152. float t = float(i) / float(n_segments);
  5153. plan_buffer_line(
  5154. current_position[X_AXIS] + t * dx,
  5155. current_position[Y_AXIS] + t * dy,
  5156. current_position[Z_AXIS] + t * dz,
  5157. current_position[E_AXIS] + t * de,
  5158. feed_rate, extruder);
  5159. }
  5160. }
  5161. // The rest of the path.
  5162. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5163. current_position[X_AXIS] = x;
  5164. current_position[Y_AXIS] = y;
  5165. current_position[Z_AXIS] = z;
  5166. current_position[E_AXIS] = e;
  5167. }
  5168. #endif // MESH_BED_LEVELING
  5169. void prepare_move()
  5170. {
  5171. clamp_to_software_endstops(destination);
  5172. previous_millis_cmd = millis();
  5173. // Do not use feedmultiply for E or Z only moves
  5174. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5176. }
  5177. else {
  5178. #ifdef MESH_BED_LEVELING
  5179. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5180. #else
  5181. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5182. #endif
  5183. }
  5184. for(int8_t i=0; i < NUM_AXIS; i++) {
  5185. current_position[i] = destination[i];
  5186. }
  5187. }
  5188. void prepare_arc_move(char isclockwise) {
  5189. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5190. // Trace the arc
  5191. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5192. // As far as the parser is concerned, the position is now == target. In reality the
  5193. // motion control system might still be processing the action and the real tool position
  5194. // in any intermediate location.
  5195. for(int8_t i=0; i < NUM_AXIS; i++) {
  5196. current_position[i] = destination[i];
  5197. }
  5198. previous_millis_cmd = millis();
  5199. }
  5200. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5201. #if defined(FAN_PIN)
  5202. #if CONTROLLERFAN_PIN == FAN_PIN
  5203. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5204. #endif
  5205. #endif
  5206. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5207. unsigned long lastMotorCheck = 0;
  5208. void controllerFan()
  5209. {
  5210. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5211. {
  5212. lastMotorCheck = millis();
  5213. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5214. #if EXTRUDERS > 2
  5215. || !READ(E2_ENABLE_PIN)
  5216. #endif
  5217. #if EXTRUDER > 1
  5218. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5219. || !READ(X2_ENABLE_PIN)
  5220. #endif
  5221. || !READ(E1_ENABLE_PIN)
  5222. #endif
  5223. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5224. {
  5225. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5226. }
  5227. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5228. {
  5229. digitalWrite(CONTROLLERFAN_PIN, 0);
  5230. analogWrite(CONTROLLERFAN_PIN, 0);
  5231. }
  5232. else
  5233. {
  5234. // allows digital or PWM fan output to be used (see M42 handling)
  5235. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5236. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5237. }
  5238. }
  5239. }
  5240. #endif
  5241. #ifdef TEMP_STAT_LEDS
  5242. static bool blue_led = false;
  5243. static bool red_led = false;
  5244. static uint32_t stat_update = 0;
  5245. void handle_status_leds(void) {
  5246. float max_temp = 0.0;
  5247. if(millis() > stat_update) {
  5248. stat_update += 500; // Update every 0.5s
  5249. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5250. max_temp = max(max_temp, degHotend(cur_extruder));
  5251. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5252. }
  5253. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5254. max_temp = max(max_temp, degTargetBed());
  5255. max_temp = max(max_temp, degBed());
  5256. #endif
  5257. if((max_temp > 55.0) && (red_led == false)) {
  5258. digitalWrite(STAT_LED_RED, 1);
  5259. digitalWrite(STAT_LED_BLUE, 0);
  5260. red_led = true;
  5261. blue_led = false;
  5262. }
  5263. if((max_temp < 54.0) && (blue_led == false)) {
  5264. digitalWrite(STAT_LED_RED, 0);
  5265. digitalWrite(STAT_LED_BLUE, 1);
  5266. red_led = false;
  5267. blue_led = true;
  5268. }
  5269. }
  5270. }
  5271. #endif
  5272. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5273. {
  5274. #if defined(KILL_PIN) && KILL_PIN > -1
  5275. static int killCount = 0; // make the inactivity button a bit less responsive
  5276. const int KILL_DELAY = 10000;
  5277. #endif
  5278. if(buflen < (BUFSIZE-1)){
  5279. get_command();
  5280. }
  5281. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5282. if(max_inactive_time)
  5283. kill();
  5284. if(stepper_inactive_time) {
  5285. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5286. {
  5287. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5288. disable_x();
  5289. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5290. disable_y();
  5291. disable_z();
  5292. disable_e0();
  5293. disable_e1();
  5294. disable_e2();
  5295. }
  5296. }
  5297. }
  5298. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5299. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5300. {
  5301. chdkActive = false;
  5302. WRITE(CHDK, LOW);
  5303. }
  5304. #endif
  5305. #if defined(KILL_PIN) && KILL_PIN > -1
  5306. // Check if the kill button was pressed and wait just in case it was an accidental
  5307. // key kill key press
  5308. // -------------------------------------------------------------------------------
  5309. if( 0 == READ(KILL_PIN) )
  5310. {
  5311. killCount++;
  5312. }
  5313. else if (killCount > 0)
  5314. {
  5315. killCount--;
  5316. }
  5317. // Exceeded threshold and we can confirm that it was not accidental
  5318. // KILL the machine
  5319. // ----------------------------------------------------------------
  5320. if ( killCount >= KILL_DELAY)
  5321. {
  5322. kill();
  5323. }
  5324. #endif
  5325. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5326. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5327. #endif
  5328. #ifdef EXTRUDER_RUNOUT_PREVENT
  5329. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5330. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5331. {
  5332. bool oldstatus=READ(E0_ENABLE_PIN);
  5333. enable_e0();
  5334. float oldepos=current_position[E_AXIS];
  5335. float oldedes=destination[E_AXIS];
  5336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5337. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5338. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5339. current_position[E_AXIS]=oldepos;
  5340. destination[E_AXIS]=oldedes;
  5341. plan_set_e_position(oldepos);
  5342. previous_millis_cmd=millis();
  5343. st_synchronize();
  5344. WRITE(E0_ENABLE_PIN,oldstatus);
  5345. }
  5346. #endif
  5347. #ifdef TEMP_STAT_LEDS
  5348. handle_status_leds();
  5349. #endif
  5350. check_axes_activity();
  5351. }
  5352. void kill(const char *full_screen_message)
  5353. {
  5354. cli(); // Stop interrupts
  5355. disable_heater();
  5356. disable_x();
  5357. // SERIAL_ECHOLNPGM("kill - disable Y");
  5358. disable_y();
  5359. disable_z();
  5360. disable_e0();
  5361. disable_e1();
  5362. disable_e2();
  5363. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5364. pinMode(PS_ON_PIN,INPUT);
  5365. #endif
  5366. SERIAL_ERROR_START;
  5367. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5368. if (full_screen_message != NULL) {
  5369. SERIAL_ERRORLNRPGM(full_screen_message);
  5370. lcd_display_message_fullscreen_P(full_screen_message);
  5371. } else {
  5372. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5373. }
  5374. // FMC small patch to update the LCD before ending
  5375. sei(); // enable interrupts
  5376. for ( int i=5; i--; lcd_update())
  5377. {
  5378. delay(200);
  5379. }
  5380. cli(); // disable interrupts
  5381. suicide();
  5382. while(1) { /* Intentionally left empty */ } // Wait for reset
  5383. }
  5384. void Stop()
  5385. {
  5386. disable_heater();
  5387. if(Stopped == false) {
  5388. Stopped = true;
  5389. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5390. SERIAL_ERROR_START;
  5391. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5392. LCD_MESSAGERPGM(MSG_STOPPED);
  5393. }
  5394. }
  5395. bool IsStopped() { return Stopped; };
  5396. #ifdef FAST_PWM_FAN
  5397. void setPwmFrequency(uint8_t pin, int val)
  5398. {
  5399. val &= 0x07;
  5400. switch(digitalPinToTimer(pin))
  5401. {
  5402. #if defined(TCCR0A)
  5403. case TIMER0A:
  5404. case TIMER0B:
  5405. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5406. // TCCR0B |= val;
  5407. break;
  5408. #endif
  5409. #if defined(TCCR1A)
  5410. case TIMER1A:
  5411. case TIMER1B:
  5412. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5413. // TCCR1B |= val;
  5414. break;
  5415. #endif
  5416. #if defined(TCCR2)
  5417. case TIMER2:
  5418. case TIMER2:
  5419. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5420. TCCR2 |= val;
  5421. break;
  5422. #endif
  5423. #if defined(TCCR2A)
  5424. case TIMER2A:
  5425. case TIMER2B:
  5426. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5427. TCCR2B |= val;
  5428. break;
  5429. #endif
  5430. #if defined(TCCR3A)
  5431. case TIMER3A:
  5432. case TIMER3B:
  5433. case TIMER3C:
  5434. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5435. TCCR3B |= val;
  5436. break;
  5437. #endif
  5438. #if defined(TCCR4A)
  5439. case TIMER4A:
  5440. case TIMER4B:
  5441. case TIMER4C:
  5442. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5443. TCCR4B |= val;
  5444. break;
  5445. #endif
  5446. #if defined(TCCR5A)
  5447. case TIMER5A:
  5448. case TIMER5B:
  5449. case TIMER5C:
  5450. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5451. TCCR5B |= val;
  5452. break;
  5453. #endif
  5454. }
  5455. }
  5456. #endif //FAST_PWM_FAN
  5457. bool setTargetedHotend(int code){
  5458. tmp_extruder = active_extruder;
  5459. if(code_seen('T')) {
  5460. tmp_extruder = code_value();
  5461. if(tmp_extruder >= EXTRUDERS) {
  5462. SERIAL_ECHO_START;
  5463. switch(code){
  5464. case 104:
  5465. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5466. break;
  5467. case 105:
  5468. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5469. break;
  5470. case 109:
  5471. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5472. break;
  5473. case 218:
  5474. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5475. break;
  5476. case 221:
  5477. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5478. break;
  5479. }
  5480. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5481. return true;
  5482. }
  5483. }
  5484. return false;
  5485. }
  5486. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5487. {
  5488. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5489. {
  5490. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5491. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5492. }
  5493. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5494. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5495. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5496. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5497. total_filament_used = 0;
  5498. }
  5499. float calculate_volumetric_multiplier(float diameter) {
  5500. float area = .0;
  5501. float radius = .0;
  5502. radius = diameter * .5;
  5503. if (! volumetric_enabled || radius == 0) {
  5504. area = 1;
  5505. }
  5506. else {
  5507. area = M_PI * pow(radius, 2);
  5508. }
  5509. return 1.0 / area;
  5510. }
  5511. void calculate_volumetric_multipliers() {
  5512. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5513. #if EXTRUDERS > 1
  5514. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5515. #if EXTRUDERS > 2
  5516. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5517. #endif
  5518. #endif
  5519. }
  5520. void delay_keep_alive(unsigned int ms)
  5521. {
  5522. for (;;) {
  5523. manage_heater();
  5524. // Manage inactivity, but don't disable steppers on timeout.
  5525. manage_inactivity(true);
  5526. lcd_update();
  5527. if (ms == 0)
  5528. break;
  5529. else if (ms >= 50) {
  5530. delay(50);
  5531. ms -= 50;
  5532. } else {
  5533. delay(ms);
  5534. ms = 0;
  5535. }
  5536. }
  5537. }
  5538. void wait_for_heater(long codenum) {
  5539. #ifdef TEMP_RESIDENCY_TIME
  5540. long residencyStart;
  5541. residencyStart = -1;
  5542. /* continue to loop until we have reached the target temp
  5543. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5544. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5545. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5546. #else
  5547. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5548. #endif //TEMP_RESIDENCY_TIME
  5549. if ((millis() - codenum) > 1000UL)
  5550. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5551. if (!farm_mode) {
  5552. SERIAL_PROTOCOLPGM("T:");
  5553. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5554. SERIAL_PROTOCOLPGM(" E:");
  5555. SERIAL_PROTOCOL((int)tmp_extruder);
  5556. #ifdef TEMP_RESIDENCY_TIME
  5557. SERIAL_PROTOCOLPGM(" W:");
  5558. if (residencyStart > -1)
  5559. {
  5560. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5561. SERIAL_PROTOCOLLN(codenum);
  5562. }
  5563. else
  5564. {
  5565. SERIAL_PROTOCOLLN("?");
  5566. }
  5567. }
  5568. #else
  5569. SERIAL_PROTOCOLLN("");
  5570. #endif
  5571. codenum = millis();
  5572. }
  5573. manage_heater();
  5574. manage_inactivity();
  5575. lcd_update();
  5576. #ifdef TEMP_RESIDENCY_TIME
  5577. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5578. or when current temp falls outside the hysteresis after target temp was reached */
  5579. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5580. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5581. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5582. {
  5583. residencyStart = millis();
  5584. }
  5585. #endif //TEMP_RESIDENCY_TIME
  5586. }
  5587. }
  5588. void check_babystep() {
  5589. int babystep_z;
  5590. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5591. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5592. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5593. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5594. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5595. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5596. lcd_update_enable(true);
  5597. }
  5598. }
  5599. #ifdef DIS
  5600. void d_setup()
  5601. {
  5602. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5603. pinMode(D_DATA, INPUT_PULLUP);
  5604. pinMode(D_REQUIRE, OUTPUT);
  5605. digitalWrite(D_REQUIRE, HIGH);
  5606. }
  5607. float d_ReadData()
  5608. {
  5609. int digit[13];
  5610. String mergeOutput;
  5611. float output;
  5612. digitalWrite(D_REQUIRE, HIGH);
  5613. for (int i = 0; i<13; i++)
  5614. {
  5615. for (int j = 0; j < 4; j++)
  5616. {
  5617. while (digitalRead(D_DATACLOCK) == LOW) {}
  5618. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5619. bitWrite(digit[i], j, digitalRead(D_DATA));
  5620. }
  5621. }
  5622. digitalWrite(D_REQUIRE, LOW);
  5623. mergeOutput = "";
  5624. output = 0;
  5625. for (int r = 5; r <= 10; r++) //Merge digits
  5626. {
  5627. mergeOutput += digit[r];
  5628. }
  5629. output = mergeOutput.toFloat();
  5630. if (digit[4] == 8) //Handle sign
  5631. {
  5632. output *= -1;
  5633. }
  5634. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5635. {
  5636. output /= 10;
  5637. }
  5638. return output;
  5639. }
  5640. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5641. int t1 = 0;
  5642. int t_delay = 0;
  5643. int digit[13];
  5644. int m;
  5645. char str[3];
  5646. //String mergeOutput;
  5647. char mergeOutput[15];
  5648. float output;
  5649. int mesh_point = 0; //index number of calibration point
  5650. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5651. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5652. float mesh_home_z_search = 4;
  5653. float row[x_points_num];
  5654. int ix = 0;
  5655. int iy = 0;
  5656. char* filename_wldsd = "wldsd.txt";
  5657. char data_wldsd[70];
  5658. char numb_wldsd[10];
  5659. d_setup();
  5660. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5661. // We don't know where we are! HOME!
  5662. // Push the commands to the front of the message queue in the reverse order!
  5663. // There shall be always enough space reserved for these commands.
  5664. repeatcommand_front(); // repeat G80 with all its parameters
  5665. enquecommand_front_P((PSTR("G28 W0")));
  5666. enquecommand_front_P((PSTR("G1 Z5")));
  5667. return;
  5668. }
  5669. bool custom_message_old = custom_message;
  5670. unsigned int custom_message_type_old = custom_message_type;
  5671. unsigned int custom_message_state_old = custom_message_state;
  5672. custom_message = true;
  5673. custom_message_type = 1;
  5674. custom_message_state = (x_points_num * y_points_num) + 10;
  5675. lcd_update(1);
  5676. mbl.reset();
  5677. babystep_undo();
  5678. card.openFile(filename_wldsd, false);
  5679. current_position[Z_AXIS] = mesh_home_z_search;
  5680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5681. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5682. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5683. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5684. setup_for_endstop_move(false);
  5685. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5686. SERIAL_PROTOCOL(x_points_num);
  5687. SERIAL_PROTOCOLPGM(",");
  5688. SERIAL_PROTOCOL(y_points_num);
  5689. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5690. SERIAL_PROTOCOL(mesh_home_z_search);
  5691. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5692. SERIAL_PROTOCOL(x_dimension);
  5693. SERIAL_PROTOCOLPGM(",");
  5694. SERIAL_PROTOCOL(y_dimension);
  5695. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5696. while (mesh_point != x_points_num * y_points_num) {
  5697. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5698. iy = mesh_point / x_points_num;
  5699. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5700. float z0 = 0.f;
  5701. current_position[Z_AXIS] = mesh_home_z_search;
  5702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5703. st_synchronize();
  5704. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5705. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5707. st_synchronize();
  5708. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5709. break;
  5710. card.closefile();
  5711. }
  5712. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5713. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5714. //strcat(data_wldsd, numb_wldsd);
  5715. //MYSERIAL.println(data_wldsd);
  5716. //delay(1000);
  5717. //delay(3000);
  5718. //t1 = millis();
  5719. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5720. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5721. memset(digit, 0, sizeof(digit));
  5722. //cli();
  5723. digitalWrite(D_REQUIRE, LOW);
  5724. for (int i = 0; i<13; i++)
  5725. {
  5726. //t1 = millis();
  5727. for (int j = 0; j < 4; j++)
  5728. {
  5729. while (digitalRead(D_DATACLOCK) == LOW) {}
  5730. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5731. bitWrite(digit[i], j, digitalRead(D_DATA));
  5732. }
  5733. //t_delay = (millis() - t1);
  5734. //SERIAL_PROTOCOLPGM(" ");
  5735. //SERIAL_PROTOCOL_F(t_delay, 5);
  5736. //SERIAL_PROTOCOLPGM(" ");
  5737. }
  5738. //sei();
  5739. digitalWrite(D_REQUIRE, HIGH);
  5740. mergeOutput[0] = '\0';
  5741. output = 0;
  5742. for (int r = 5; r <= 10; r++) //Merge digits
  5743. {
  5744. sprintf(str, "%d", digit[r]);
  5745. strcat(mergeOutput, str);
  5746. }
  5747. output = atof(mergeOutput);
  5748. if (digit[4] == 8) //Handle sign
  5749. {
  5750. output *= -1;
  5751. }
  5752. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5753. {
  5754. output *= 0.1;
  5755. }
  5756. //output = d_ReadData();
  5757. //row[ix] = current_position[Z_AXIS];
  5758. memset(data_wldsd, 0, sizeof(data_wldsd));
  5759. for (int i = 0; i <3; i++) {
  5760. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5761. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5762. strcat(data_wldsd, numb_wldsd);
  5763. strcat(data_wldsd, ";");
  5764. }
  5765. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5766. dtostrf(output, 8, 5, numb_wldsd);
  5767. strcat(data_wldsd, numb_wldsd);
  5768. //strcat(data_wldsd, ";");
  5769. card.write_command(data_wldsd);
  5770. //row[ix] = d_ReadData();
  5771. row[ix] = output; // current_position[Z_AXIS];
  5772. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5773. for (int i = 0; i < x_points_num; i++) {
  5774. SERIAL_PROTOCOLPGM(" ");
  5775. SERIAL_PROTOCOL_F(row[i], 5);
  5776. }
  5777. SERIAL_PROTOCOLPGM("\n");
  5778. }
  5779. custom_message_state--;
  5780. mesh_point++;
  5781. lcd_update(1);
  5782. }
  5783. card.closefile();
  5784. }
  5785. #endif
  5786. void temp_compensation_start() {
  5787. custom_message = true;
  5788. custom_message_type = 5;
  5789. custom_message_state = PINDA_HEAT_T + 1;
  5790. lcd_update(2);
  5791. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5792. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5793. }
  5794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5795. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5796. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5797. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5799. st_synchronize();
  5800. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5801. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5802. delay_keep_alive(1000);
  5803. custom_message_state = PINDA_HEAT_T - i;
  5804. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5805. else lcd_update(1);
  5806. }
  5807. custom_message_type = 0;
  5808. custom_message_state = 0;
  5809. custom_message = false;
  5810. }
  5811. void temp_compensation_apply() {
  5812. int i_add;
  5813. int compensation_value;
  5814. int z_shift = 0;
  5815. float z_shift_mm;
  5816. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5817. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5818. i_add = (target_temperature_bed - 60) / 10;
  5819. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5820. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5821. }else {
  5822. //interpolation
  5823. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5824. }
  5825. SERIAL_PROTOCOLPGM("\n");
  5826. SERIAL_PROTOCOLPGM("Z shift applied:");
  5827. MYSERIAL.print(z_shift_mm);
  5828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5829. st_synchronize();
  5830. plan_set_z_position(current_position[Z_AXIS]);
  5831. }
  5832. else {
  5833. //we have no temp compensation data
  5834. }
  5835. }
  5836. float temp_comp_interpolation(float inp_temperature) {
  5837. //cubic spline interpolation
  5838. int n, i, j, k;
  5839. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5840. int shift[10];
  5841. int temp_C[10];
  5842. n = 6; //number of measured points
  5843. shift[0] = 0;
  5844. for (i = 0; i < n; i++) {
  5845. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5846. temp_C[i] = 50 + i * 10; //temperature in C
  5847. x[i] = (float)temp_C[i];
  5848. f[i] = (float)shift[i];
  5849. }
  5850. if (inp_temperature < x[0]) return 0;
  5851. for (i = n - 1; i>0; i--) {
  5852. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5853. h[i - 1] = x[i] - x[i - 1];
  5854. }
  5855. //*********** formation of h, s , f matrix **************
  5856. for (i = 1; i<n - 1; i++) {
  5857. m[i][i] = 2 * (h[i - 1] + h[i]);
  5858. if (i != 1) {
  5859. m[i][i - 1] = h[i - 1];
  5860. m[i - 1][i] = h[i - 1];
  5861. }
  5862. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5863. }
  5864. //*********** forward elimination **************
  5865. for (i = 1; i<n - 2; i++) {
  5866. temp = (m[i + 1][i] / m[i][i]);
  5867. for (j = 1; j <= n - 1; j++)
  5868. m[i + 1][j] -= temp*m[i][j];
  5869. }
  5870. //*********** backward substitution *********
  5871. for (i = n - 2; i>0; i--) {
  5872. sum = 0;
  5873. for (j = i; j <= n - 2; j++)
  5874. sum += m[i][j] * s[j];
  5875. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5876. }
  5877. for (i = 0; i<n - 1; i++)
  5878. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5879. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5880. b = s[i] / 2;
  5881. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5882. d = f[i];
  5883. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5884. }
  5885. return sum;
  5886. }
  5887. void long_pause() //long pause print
  5888. {
  5889. st_synchronize();
  5890. //save currently set parameters to global variables
  5891. saved_feedmultiply = feedmultiply;
  5892. HotendTempBckp = degTargetHotend(active_extruder);
  5893. fanSpeedBckp = fanSpeed;
  5894. start_pause_print = millis();
  5895. //save position
  5896. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5897. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5898. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5899. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5900. //retract
  5901. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5903. //lift z
  5904. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5905. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5907. //set nozzle target temperature to 0
  5908. setTargetHotend(0, 0);
  5909. setTargetHotend(0, 1);
  5910. setTargetHotend(0, 2);
  5911. //Move XY to side
  5912. current_position[X_AXIS] = X_PAUSE_POS;
  5913. current_position[Y_AXIS] = Y_PAUSE_POS;
  5914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5915. // Turn off the print fan
  5916. fanSpeed = 0;
  5917. st_synchronize();
  5918. }
  5919. void serialecho_temperatures() {
  5920. float tt = degHotend(active_extruder);
  5921. SERIAL_PROTOCOLPGM("T:");
  5922. SERIAL_PROTOCOL(tt);
  5923. SERIAL_PROTOCOLPGM(" E:");
  5924. SERIAL_PROTOCOL((int)active_extruder);
  5925. SERIAL_PROTOCOLPGM(" B:");
  5926. SERIAL_PROTOCOL_F(degBed(), 1);
  5927. SERIAL_PROTOCOLLN("");
  5928. }