Marlin_main.cpp 173 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. // Number of baby steps applied
  199. int babystepLoadZ = 0;
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. void cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. }
  466. }
  467. // How long a string could be pushed to the front of the command queue?
  468. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  469. // len_asked does not contain the zero terminator size.
  470. bool cmdqueue_could_enqueue_front(int len_asked)
  471. {
  472. // MAX_CMD_SIZE has to accommodate the zero terminator.
  473. if (len_asked >= MAX_CMD_SIZE)
  474. return false;
  475. // Remove the currently processed command from the queue.
  476. if (! cmdbuffer_front_already_processed) {
  477. cmdqueue_pop_front();
  478. cmdbuffer_front_already_processed = true;
  479. }
  480. if (bufindr == bufindw && buflen > 0)
  481. // Full buffer.
  482. return false;
  483. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  484. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  485. if (bufindw < bufindr) {
  486. int bufindr_new = bufindr - len_asked - 2;
  487. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  488. if (endw <= bufindr_new) {
  489. bufindr = bufindr_new;
  490. return true;
  491. }
  492. } else {
  493. // Otherwise the free space is split between the start and end.
  494. if (len_asked + 2 <= bufindr) {
  495. // Could fit at the start.
  496. bufindr -= len_asked + 2;
  497. return true;
  498. }
  499. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  500. if (endw <= bufindr_new) {
  501. memset(cmdbuffer, 0, bufindr);
  502. bufindr = bufindr_new;
  503. return true;
  504. }
  505. }
  506. return false;
  507. }
  508. // Could one enqueue a command of lenthg len_asked into the buffer,
  509. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  510. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  511. // len_asked does not contain the zero terminator size.
  512. bool cmdqueue_could_enqueue_back(int len_asked)
  513. {
  514. // MAX_CMD_SIZE has to accommodate the zero terminator.
  515. if (len_asked >= MAX_CMD_SIZE)
  516. return false;
  517. if (bufindr == bufindw && buflen > 0)
  518. // Full buffer.
  519. return false;
  520. if (serial_count > 0) {
  521. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  522. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  523. // serial data.
  524. // How much memory to reserve for the commands pushed to the front?
  525. // End of the queue, when pushing to the end.
  526. int endw = bufindw + len_asked + 2;
  527. if (bufindw < bufindr)
  528. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  529. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  530. // Otherwise the free space is split between the start and end.
  531. if (// Could one fit to the end, including the reserve?
  532. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  533. // Could one fit to the end, and the reserve to the start?
  534. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  535. return true;
  536. // Could one fit both to the start?
  537. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  538. // Mark the rest of the buffer as used.
  539. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  540. // and point to the start.
  541. bufindw = 0;
  542. return true;
  543. }
  544. } else {
  545. // How much memory to reserve for the commands pushed to the front?
  546. // End of the queue, when pushing to the end.
  547. int endw = bufindw + len_asked + 2;
  548. if (bufindw < bufindr)
  549. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  550. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  551. // Otherwise the free space is split between the start and end.
  552. if (// Could one fit to the end, including the reserve?
  553. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  554. // Could one fit to the end, and the reserve to the start?
  555. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  556. return true;
  557. // Could one fit both to the start?
  558. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  559. // Mark the rest of the buffer as used.
  560. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  561. // and point to the start.
  562. bufindw = 0;
  563. return true;
  564. }
  565. }
  566. return false;
  567. }
  568. #ifdef CMDBUFFER_DEBUG
  569. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  570. {
  571. SERIAL_ECHOPGM("Entry nr: ");
  572. SERIAL_ECHO(nr);
  573. SERIAL_ECHOPGM(", type: ");
  574. SERIAL_ECHO(int(*p));
  575. SERIAL_ECHOPGM(", cmd: ");
  576. SERIAL_ECHO(p+1);
  577. SERIAL_ECHOLNPGM("");
  578. }
  579. static void cmdqueue_dump_to_serial()
  580. {
  581. if (buflen == 0) {
  582. SERIAL_ECHOLNPGM("The command buffer is empty.");
  583. } else {
  584. SERIAL_ECHOPGM("Content of the buffer: entries ");
  585. SERIAL_ECHO(buflen);
  586. SERIAL_ECHOPGM(", indr ");
  587. SERIAL_ECHO(bufindr);
  588. SERIAL_ECHOPGM(", indw ");
  589. SERIAL_ECHO(bufindw);
  590. SERIAL_ECHOLNPGM("");
  591. int nr = 0;
  592. if (bufindr < bufindw) {
  593. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  594. cmdqueue_dump_to_serial_single_line(nr, p);
  595. // Skip the command.
  596. for (++p; *p != 0; ++ p);
  597. // Skip the gaps.
  598. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  599. }
  600. } else {
  601. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  602. cmdqueue_dump_to_serial_single_line(nr, p);
  603. // Skip the command.
  604. for (++p; *p != 0; ++ p);
  605. // Skip the gaps.
  606. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  607. }
  608. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  614. }
  615. }
  616. SERIAL_ECHOLNPGM("End of the buffer.");
  617. }
  618. }
  619. #endif /* CMDBUFFER_DEBUG */
  620. //adds an command to the main command buffer
  621. //thats really done in a non-safe way.
  622. //needs overworking someday
  623. // Currently the maximum length of a command piped through this function is around 20 characters
  624. void enquecommand(const char *cmd, bool from_progmem)
  625. {
  626. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  627. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  628. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  629. if (cmdqueue_could_enqueue_back(len)) {
  630. // This is dangerous if a mixing of serial and this happens
  631. // This may easily be tested: If serial_count > 0, we have a problem.
  632. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  633. if (from_progmem)
  634. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  635. else
  636. strcpy(cmdbuffer + bufindw + 1, cmd);
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHORPGM(MSG_Enqueing);
  639. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  640. SERIAL_ECHOLNPGM("\"");
  641. bufindw += len + 2;
  642. if (bufindw == sizeof(cmdbuffer))
  643. bufindw = 0;
  644. ++ buflen;
  645. #ifdef CMDBUFFER_DEBUG
  646. cmdqueue_dump_to_serial();
  647. #endif /* CMDBUFFER_DEBUG */
  648. } else {
  649. SERIAL_ERROR_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. if (from_progmem)
  652. SERIAL_PROTOCOLRPGM(cmd);
  653. else
  654. SERIAL_ECHO(cmd);
  655. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  656. #ifdef CMDBUFFER_DEBUG
  657. cmdqueue_dump_to_serial();
  658. #endif /* CMDBUFFER_DEBUG */
  659. }
  660. }
  661. void enquecommand_front(const char *cmd, bool from_progmem)
  662. {
  663. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  664. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  665. if (cmdqueue_could_enqueue_front(len)) {
  666. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  667. if (from_progmem)
  668. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  669. else
  670. strcpy(cmdbuffer + bufindr + 1, cmd);
  671. ++ buflen;
  672. SERIAL_ECHO_START;
  673. SERIAL_ECHOPGM("Enqueing to the front: \"");
  674. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  675. SERIAL_ECHOLNPGM("\"");
  676. #ifdef CMDBUFFER_DEBUG
  677. cmdqueue_dump_to_serial();
  678. #endif /* CMDBUFFER_DEBUG */
  679. } else {
  680. SERIAL_ERROR_START;
  681. SERIAL_ECHOPGM("Enqueing to the front: \"");
  682. if (from_progmem)
  683. SERIAL_PROTOCOLRPGM(cmd);
  684. else
  685. SERIAL_ECHO(cmd);
  686. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  687. #ifdef CMDBUFFER_DEBUG
  688. cmdqueue_dump_to_serial();
  689. #endif /* CMDBUFFER_DEBUG */
  690. }
  691. }
  692. // Mark the command at the top of the command queue as new.
  693. // Therefore it will not be removed from the queue.
  694. void repeatcommand_front()
  695. {
  696. cmdbuffer_front_already_processed = true;
  697. }
  698. void setup_killpin()
  699. {
  700. #if defined(KILL_PIN) && KILL_PIN > -1
  701. SET_INPUT(KILL_PIN);
  702. WRITE(KILL_PIN,HIGH);
  703. #endif
  704. }
  705. // Set home pin
  706. void setup_homepin(void)
  707. {
  708. #if defined(HOME_PIN) && HOME_PIN > -1
  709. SET_INPUT(HOME_PIN);
  710. WRITE(HOME_PIN,HIGH);
  711. #endif
  712. }
  713. void setup_photpin()
  714. {
  715. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  716. SET_OUTPUT(PHOTOGRAPH_PIN);
  717. WRITE(PHOTOGRAPH_PIN, LOW);
  718. #endif
  719. }
  720. void setup_powerhold()
  721. {
  722. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  723. SET_OUTPUT(SUICIDE_PIN);
  724. WRITE(SUICIDE_PIN, HIGH);
  725. #endif
  726. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  727. SET_OUTPUT(PS_ON_PIN);
  728. #if defined(PS_DEFAULT_OFF)
  729. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  730. #else
  731. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  732. #endif
  733. #endif
  734. }
  735. void suicide()
  736. {
  737. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  738. SET_OUTPUT(SUICIDE_PIN);
  739. WRITE(SUICIDE_PIN, LOW);
  740. #endif
  741. }
  742. void servo_init()
  743. {
  744. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  745. servos[0].attach(SERVO0_PIN);
  746. #endif
  747. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  748. servos[1].attach(SERVO1_PIN);
  749. #endif
  750. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  751. servos[2].attach(SERVO2_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  754. servos[3].attach(SERVO3_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 5)
  757. #error "TODO: enter initalisation code for more servos"
  758. #endif
  759. }
  760. static void lcd_language_menu();
  761. #ifdef MESH_BED_LEVELING
  762. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  763. #endif
  764. // "Setup" function is called by the Arduino framework on startup.
  765. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  766. // are initialized by the main() routine provided by the Arduino framework.
  767. void setup()
  768. {
  769. setup_killpin();
  770. setup_powerhold();
  771. MYSERIAL.begin(BAUDRATE);
  772. SERIAL_PROTOCOLLNPGM("start");
  773. SERIAL_ECHO_START;
  774. #if 0
  775. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  776. for (int i = 0; i < 4096; ++ i) {
  777. int b = eeprom_read_byte((unsigned char*)i);
  778. if (b != 255) {
  779. SERIAL_ECHO(i);
  780. SERIAL_ECHO(":");
  781. SERIAL_ECHO(b);
  782. SERIAL_ECHOLN("");
  783. }
  784. }
  785. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  786. #endif
  787. // Check startup - does nothing if bootloader sets MCUSR to 0
  788. byte mcu = MCUSR;
  789. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  790. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  791. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  792. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  793. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  794. MCUSR=0;
  795. //SERIAL_ECHORPGM(MSG_MARLIN);
  796. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  797. #ifdef STRING_VERSION_CONFIG_H
  798. #ifdef STRING_CONFIG_H_AUTHOR
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  801. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  802. SERIAL_ECHORPGM(MSG_AUTHOR);
  803. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  804. SERIAL_ECHOPGM("Compiled: ");
  805. SERIAL_ECHOLNPGM(__DATE__);
  806. #endif
  807. #endif
  808. SERIAL_ECHO_START;
  809. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  810. SERIAL_ECHO(freeMemory());
  811. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  812. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  813. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  814. Config_RetrieveSettings();
  815. tp_init(); // Initialize temperature loop
  816. plan_init(); // Initialize planner;
  817. watchdog_init();
  818. st_init(); // Initialize stepper, this enables interrupts!
  819. setup_photpin();
  820. servo_init();
  821. // Reset the machine correction matrix.
  822. // It does not make sense to load the correction matrix until the machine is homed.
  823. world2machine_reset();
  824. lcd_init();
  825. if (!READ(BTN_ENC))
  826. {
  827. _delay_ms(1000);
  828. if (!READ(BTN_ENC))
  829. {
  830. SET_OUTPUT(BEEPER);
  831. WRITE(BEEPER, HIGH);
  832. lcd_force_language_selection();
  833. farm_no = 0;
  834. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  835. farm_mode = false;
  836. while (!READ(BTN_ENC));
  837. WRITE(BEEPER, LOW);
  838. #ifdef MESH_BED_LEVELING
  839. _delay_ms(2000);
  840. if (!READ(BTN_ENC))
  841. {
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. _delay_ms(200);
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. int _z = 0;
  850. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  851. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  852. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  853. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  854. }
  855. else
  856. {
  857. WRITE(BEEPER, HIGH);
  858. _delay_ms(100);
  859. WRITE(BEEPER, LOW);
  860. }
  861. #endif // mesh
  862. }
  863. }
  864. else
  865. {
  866. _delay_ms(1000); // wait 1sec to display the splash screen
  867. }
  868. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  869. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  870. #endif
  871. #ifdef DIGIPOT_I2C
  872. digipot_i2c_init();
  873. #endif
  874. setup_homepin();
  875. #if defined(Z_AXIS_ALWAYS_ON)
  876. enable_z();
  877. #endif
  878. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  879. if (farm_no > 0)
  880. {
  881. farm_mode = true;
  882. farm_no = farm_no;
  883. prusa_statistics(8);
  884. }
  885. else
  886. {
  887. farm_mode = false;
  888. farm_no = 0;
  889. }
  890. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  891. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  892. // is being written into the EEPROM, so the update procedure will be triggered only once.
  893. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  894. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  895. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  896. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  897. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  898. // Get the selected laugnage index before display update.
  899. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  900. if (lang_selected >= LANG_NUM)
  901. lang_selected = 1;
  902. // Show the message.
  903. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  904. lcd_update_enable(true);
  905. lcd_implementation_clear();
  906. }
  907. // Store the currently running firmware into an eeprom,
  908. // so the next time the firmware gets updated, it will know from which version it has been updated.
  909. update_current_firmware_version_to_eeprom();
  910. }
  911. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  912. // Before loop(), the setup() function is called by the main() routine.
  913. void loop()
  914. {
  915. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  916. {
  917. is_usb_printing = true;
  918. usb_printing_counter--;
  919. _usb_timer = millis();
  920. }
  921. if (usb_printing_counter == 0)
  922. {
  923. is_usb_printing = false;
  924. }
  925. get_command();
  926. #ifdef SDSUPPORT
  927. card.checkautostart(false);
  928. #endif
  929. if(buflen)
  930. {
  931. #ifdef SDSUPPORT
  932. if(card.saving)
  933. {
  934. // Saving a G-code file onto an SD-card is in progress.
  935. // Saving starts with M28, saving until M29 is seen.
  936. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  937. card.write_command(CMDBUFFER_CURRENT_STRING);
  938. if(card.logging)
  939. process_commands();
  940. else
  941. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  942. } else {
  943. card.closefile();
  944. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  945. }
  946. } else {
  947. process_commands();
  948. }
  949. #else
  950. process_commands();
  951. #endif //SDSUPPORT
  952. if (! cmdbuffer_front_already_processed)
  953. cmdqueue_pop_front();
  954. cmdbuffer_front_already_processed = false;
  955. }
  956. //check heater every n milliseconds
  957. manage_heater();
  958. manage_inactivity();
  959. checkHitEndstops();
  960. lcd_update();
  961. }
  962. void get_command()
  963. {
  964. // Test and reserve space for the new command string.
  965. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  966. return;
  967. while (MYSERIAL.available() > 0) {
  968. char serial_char = MYSERIAL.read();
  969. if (serial_char < 0)
  970. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  971. // and Marlin does not support such file names anyway.
  972. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  973. // to a hang-up of the print process from an SD card.
  974. continue;
  975. if(serial_char == '\n' ||
  976. serial_char == '\r' ||
  977. (serial_char == ':' && comment_mode == false) ||
  978. serial_count >= (MAX_CMD_SIZE - 1) )
  979. {
  980. if(!serial_count) { //if empty line
  981. comment_mode = false; //for new command
  982. return;
  983. }
  984. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  985. if(!comment_mode){
  986. comment_mode = false; //for new command
  987. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  988. {
  989. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  990. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  991. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  992. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  993. // M110 - set current line number.
  994. // Line numbers not sent in succession.
  995. SERIAL_ERROR_START;
  996. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  997. SERIAL_ERRORLN(gcode_LastN);
  998. //Serial.println(gcode_N);
  999. FlushSerialRequestResend();
  1000. serial_count = 0;
  1001. return;
  1002. }
  1003. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1004. {
  1005. byte checksum = 0;
  1006. char *p = cmdbuffer+bufindw+1;
  1007. while (p != strchr_pointer)
  1008. checksum = checksum^(*p++);
  1009. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1010. SERIAL_ERROR_START;
  1011. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1012. SERIAL_ERRORLN(gcode_LastN);
  1013. FlushSerialRequestResend();
  1014. serial_count = 0;
  1015. return;
  1016. }
  1017. // If no errors, remove the checksum and continue parsing.
  1018. *strchr_pointer = 0;
  1019. }
  1020. else
  1021. {
  1022. SERIAL_ERROR_START;
  1023. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1024. SERIAL_ERRORLN(gcode_LastN);
  1025. FlushSerialRequestResend();
  1026. serial_count = 0;
  1027. return;
  1028. }
  1029. gcode_LastN = gcode_N;
  1030. //if no errors, continue parsing
  1031. } // end of 'N' command
  1032. else // if we don't receive 'N' but still see '*'
  1033. {
  1034. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1035. {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1038. SERIAL_ERRORLN(gcode_LastN);
  1039. serial_count = 0;
  1040. return;
  1041. }
  1042. } // end of '*' command
  1043. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1044. if (! IS_SD_PRINTING) {
  1045. usb_printing_counter = 10;
  1046. is_usb_printing = true;
  1047. }
  1048. if (Stopped == true) {
  1049. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1050. if (gcode >= 0 && gcode <= 3) {
  1051. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1052. LCD_MESSAGERPGM(MSG_STOPPED);
  1053. }
  1054. }
  1055. } // end of 'G' command
  1056. //If command was e-stop process now
  1057. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1058. kill();
  1059. // Store the current line into buffer, move to the next line.
  1060. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1061. #ifdef CMDBUFFER_DEBUG
  1062. SERIAL_ECHO_START;
  1063. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1064. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1065. SERIAL_ECHOLNPGM("");
  1066. #endif /* CMDBUFFER_DEBUG */
  1067. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1068. if (bufindw == sizeof(cmdbuffer))
  1069. bufindw = 0;
  1070. ++ buflen;
  1071. #ifdef CMDBUFFER_DEBUG
  1072. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1073. SERIAL_ECHO(buflen);
  1074. SERIAL_ECHOLNPGM("");
  1075. #endif /* CMDBUFFER_DEBUG */
  1076. } // end of 'not comment mode'
  1077. serial_count = 0; //clear buffer
  1078. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1079. // in the queue, as this function will reserve the memory.
  1080. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1081. return;
  1082. } // end of "end of line" processing
  1083. else {
  1084. // Not an "end of line" symbol. Store the new character into a buffer.
  1085. if(serial_char == ';') comment_mode = true;
  1086. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1087. }
  1088. } // end of serial line processing loop
  1089. #ifdef SDSUPPORT
  1090. if(!card.sdprinting || serial_count!=0){
  1091. // If there is a half filled buffer from serial line, wait until return before
  1092. // continuing with the serial line.
  1093. return;
  1094. }
  1095. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1096. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1097. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1098. static bool stop_buffering=false;
  1099. if(buflen==0) stop_buffering=false;
  1100. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1101. while( !card.eof() && !stop_buffering) {
  1102. int16_t n=card.get();
  1103. char serial_char = (char)n;
  1104. if(serial_char == '\n' ||
  1105. serial_char == '\r' ||
  1106. (serial_char == '#' && comment_mode == false) ||
  1107. (serial_char == ':' && comment_mode == false) ||
  1108. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1109. {
  1110. if(card.eof()){
  1111. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1112. stoptime=millis();
  1113. char time[30];
  1114. unsigned long t=(stoptime-starttime)/1000;
  1115. int hours, minutes;
  1116. minutes=(t/60)%60;
  1117. hours=t/60/60;
  1118. save_statistics(total_filament_used, t);
  1119. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLN(time);
  1122. lcd_setstatus(time);
  1123. card.printingHasFinished();
  1124. card.checkautostart(true);
  1125. if (farm_mode)
  1126. {
  1127. prusa_statistics(6);
  1128. lcd_commands_type = 4;
  1129. }
  1130. }
  1131. if(serial_char=='#')
  1132. stop_buffering=true;
  1133. if(!serial_count)
  1134. {
  1135. comment_mode = false; //for new command
  1136. return; //if empty line
  1137. }
  1138. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1139. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1140. ++ buflen;
  1141. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1142. if (bufindw == sizeof(cmdbuffer))
  1143. bufindw = 0;
  1144. comment_mode = false; //for new command
  1145. serial_count = 0; //clear buffer
  1146. // The following line will reserve buffer space if available.
  1147. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1148. return;
  1149. }
  1150. else
  1151. {
  1152. if(serial_char == ';') comment_mode = true;
  1153. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1154. }
  1155. }
  1156. #endif //SDSUPPORT
  1157. }
  1158. // Return True if a character was found
  1159. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1160. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1161. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1162. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1163. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1164. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1165. #define DEFINE_PGM_READ_ANY(type, reader) \
  1166. static inline type pgm_read_any(const type *p) \
  1167. { return pgm_read_##reader##_near(p); }
  1168. DEFINE_PGM_READ_ANY(float, float);
  1169. DEFINE_PGM_READ_ANY(signed char, byte);
  1170. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1171. static const PROGMEM type array##_P[3] = \
  1172. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1173. static inline type array(int axis) \
  1174. { return pgm_read_any(&array##_P[axis]); } \
  1175. type array##_ext(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); }
  1177. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1178. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1181. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1182. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1183. static void axis_is_at_home(int axis) {
  1184. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1185. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1186. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1187. }
  1188. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1189. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1190. static void setup_for_endstop_move() {
  1191. saved_feedrate = feedrate;
  1192. saved_feedmultiply = feedmultiply;
  1193. feedmultiply = 100;
  1194. previous_millis_cmd = millis();
  1195. enable_endstops(true);
  1196. }
  1197. static void clean_up_after_endstop_move() {
  1198. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1199. enable_endstops(false);
  1200. #endif
  1201. feedrate = saved_feedrate;
  1202. feedmultiply = saved_feedmultiply;
  1203. previous_millis_cmd = millis();
  1204. }
  1205. #ifdef ENABLE_AUTO_BED_LEVELING
  1206. #ifdef AUTO_BED_LEVELING_GRID
  1207. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1208. {
  1209. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1210. planeNormal.debug("planeNormal");
  1211. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1212. //bedLevel.debug("bedLevel");
  1213. //plan_bed_level_matrix.debug("bed level before");
  1214. //vector_3 uncorrected_position = plan_get_position_mm();
  1215. //uncorrected_position.debug("position before");
  1216. vector_3 corrected_position = plan_get_position();
  1217. // corrected_position.debug("position after");
  1218. current_position[X_AXIS] = corrected_position.x;
  1219. current_position[Y_AXIS] = corrected_position.y;
  1220. current_position[Z_AXIS] = corrected_position.z;
  1221. // put the bed at 0 so we don't go below it.
  1222. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1224. }
  1225. #else // not AUTO_BED_LEVELING_GRID
  1226. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1227. plan_bed_level_matrix.set_to_identity();
  1228. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1229. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1230. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1231. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1232. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1233. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1234. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1235. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1236. vector_3 corrected_position = plan_get_position();
  1237. current_position[X_AXIS] = corrected_position.x;
  1238. current_position[Y_AXIS] = corrected_position.y;
  1239. current_position[Z_AXIS] = corrected_position.z;
  1240. // put the bed at 0 so we don't go below it.
  1241. current_position[Z_AXIS] = zprobe_zoffset;
  1242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1243. }
  1244. #endif // AUTO_BED_LEVELING_GRID
  1245. static void run_z_probe() {
  1246. plan_bed_level_matrix.set_to_identity();
  1247. feedrate = homing_feedrate[Z_AXIS];
  1248. // move down until you find the bed
  1249. float zPosition = -10;
  1250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1251. st_synchronize();
  1252. // we have to let the planner know where we are right now as it is not where we said to go.
  1253. zPosition = st_get_position_mm(Z_AXIS);
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1255. // move up the retract distance
  1256. zPosition += home_retract_mm(Z_AXIS);
  1257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1258. st_synchronize();
  1259. // move back down slowly to find bed
  1260. feedrate = homing_feedrate[Z_AXIS]/4;
  1261. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1263. st_synchronize();
  1264. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1265. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. }
  1268. static void do_blocking_move_to(float x, float y, float z) {
  1269. float oldFeedRate = feedrate;
  1270. feedrate = homing_feedrate[Z_AXIS];
  1271. current_position[Z_AXIS] = z;
  1272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. feedrate = XY_TRAVEL_SPEED;
  1275. current_position[X_AXIS] = x;
  1276. current_position[Y_AXIS] = y;
  1277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. feedrate = oldFeedRate;
  1280. }
  1281. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1282. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1283. }
  1284. /// Probe bed height at position (x,y), returns the measured z value
  1285. static float probe_pt(float x, float y, float z_before) {
  1286. // move to right place
  1287. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1288. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1289. run_z_probe();
  1290. float measured_z = current_position[Z_AXIS];
  1291. SERIAL_PROTOCOLRPGM(MSG_BED);
  1292. SERIAL_PROTOCOLPGM(" x: ");
  1293. SERIAL_PROTOCOL(x);
  1294. SERIAL_PROTOCOLPGM(" y: ");
  1295. SERIAL_PROTOCOL(y);
  1296. SERIAL_PROTOCOLPGM(" z: ");
  1297. SERIAL_PROTOCOL(measured_z);
  1298. SERIAL_PROTOCOLPGM("\n");
  1299. return measured_z;
  1300. }
  1301. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1302. void homeaxis(int axis) {
  1303. #define HOMEAXIS_DO(LETTER) \
  1304. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1305. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1306. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1307. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1308. 0) {
  1309. int axis_home_dir = home_dir(axis);
  1310. current_position[axis] = 0;
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1313. feedrate = homing_feedrate[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. current_position[axis] = 0;
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1320. st_synchronize();
  1321. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1322. feedrate = homing_feedrate[axis]/2 ;
  1323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1324. st_synchronize();
  1325. axis_is_at_home(axis);
  1326. destination[axis] = current_position[axis];
  1327. feedrate = 0.0;
  1328. endstops_hit_on_purpose();
  1329. axis_known_position[axis] = true;
  1330. }
  1331. }
  1332. void home_xy()
  1333. {
  1334. set_destination_to_current();
  1335. homeaxis(X_AXIS);
  1336. homeaxis(Y_AXIS);
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. endstops_hit_on_purpose();
  1339. }
  1340. void refresh_cmd_timeout(void)
  1341. {
  1342. previous_millis_cmd = millis();
  1343. }
  1344. #ifdef FWRETRACT
  1345. void retract(bool retracting, bool swapretract = false) {
  1346. if(retracting && !retracted[active_extruder]) {
  1347. destination[X_AXIS]=current_position[X_AXIS];
  1348. destination[Y_AXIS]=current_position[Y_AXIS];
  1349. destination[Z_AXIS]=current_position[Z_AXIS];
  1350. destination[E_AXIS]=current_position[E_AXIS];
  1351. if (swapretract) {
  1352. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1353. } else {
  1354. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1355. }
  1356. plan_set_e_position(current_position[E_AXIS]);
  1357. float oldFeedrate = feedrate;
  1358. feedrate=retract_feedrate*60;
  1359. retracted[active_extruder]=true;
  1360. prepare_move();
  1361. current_position[Z_AXIS]-=retract_zlift;
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1363. prepare_move();
  1364. feedrate = oldFeedrate;
  1365. } else if(!retracting && retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. current_position[Z_AXIS]+=retract_zlift;
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. //prepare_move();
  1373. if (swapretract) {
  1374. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1375. } else {
  1376. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1377. }
  1378. plan_set_e_position(current_position[E_AXIS]);
  1379. float oldFeedrate = feedrate;
  1380. feedrate=retract_recover_feedrate*60;
  1381. retracted[active_extruder]=false;
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. }
  1385. } //retract
  1386. #endif //FWRETRACT
  1387. void process_commands()
  1388. {
  1389. #ifdef FILAMENT_RUNOUT_SUPPORT
  1390. SET_INPUT(FR_SENS);
  1391. #endif
  1392. #ifdef CMDBUFFER_DEBUG
  1393. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1394. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1395. SERIAL_ECHOLNPGM("");
  1396. SERIAL_ECHOPGM("In cmdqueue: ");
  1397. SERIAL_ECHO(buflen);
  1398. SERIAL_ECHOLNPGM("");
  1399. #endif /* CMDBUFFER_DEBUG */
  1400. unsigned long codenum; //throw away variable
  1401. char *starpos = NULL;
  1402. #ifdef ENABLE_AUTO_BED_LEVELING
  1403. float x_tmp, y_tmp, z_tmp, real_z;
  1404. #endif
  1405. // PRUSA GCODES
  1406. if(code_seen("PRUSA")){
  1407. if(code_seen("Fir")){
  1408. SERIAL_PROTOCOLLN(FW_version);
  1409. } else if(code_seen("Rev")){
  1410. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1411. } else if(code_seen("Lang")) {
  1412. lcd_force_language_selection();
  1413. } else if(code_seen("Lz")) {
  1414. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1415. }
  1416. //else if (code_seen('Cal')) {
  1417. // lcd_calibration();
  1418. // }
  1419. }
  1420. else
  1421. if(code_seen('G'))
  1422. {
  1423. switch((int)code_value())
  1424. {
  1425. case 0: // G0 -> G1
  1426. case 1: // G1
  1427. if(Stopped == false) {
  1428. #ifdef FILAMENT_RUNOUT_SUPPORT
  1429. if(READ(FR_SENS)){
  1430. feedmultiplyBckp=feedmultiply;
  1431. float target[4];
  1432. float lastpos[4];
  1433. target[X_AXIS]=current_position[X_AXIS];
  1434. target[Y_AXIS]=current_position[Y_AXIS];
  1435. target[Z_AXIS]=current_position[Z_AXIS];
  1436. target[E_AXIS]=current_position[E_AXIS];
  1437. lastpos[X_AXIS]=current_position[X_AXIS];
  1438. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1439. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1440. lastpos[E_AXIS]=current_position[E_AXIS];
  1441. //retract by E
  1442. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1444. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1446. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1447. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1449. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1451. //finish moves
  1452. st_synchronize();
  1453. //disable extruder steppers so filament can be removed
  1454. disable_e0();
  1455. disable_e1();
  1456. disable_e2();
  1457. delay(100);
  1458. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1459. uint8_t cnt=0;
  1460. int counterBeep = 0;
  1461. lcd_wait_interact();
  1462. while(!lcd_clicked()){
  1463. cnt++;
  1464. manage_heater();
  1465. manage_inactivity(true);
  1466. //lcd_update();
  1467. if(cnt==0)
  1468. {
  1469. #if BEEPER > 0
  1470. if (counterBeep== 500){
  1471. counterBeep = 0;
  1472. }
  1473. SET_OUTPUT(BEEPER);
  1474. if (counterBeep== 0){
  1475. WRITE(BEEPER,HIGH);
  1476. }
  1477. if (counterBeep== 20){
  1478. WRITE(BEEPER,LOW);
  1479. }
  1480. counterBeep++;
  1481. #else
  1482. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1483. lcd_buzz(1000/6,100);
  1484. #else
  1485. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1486. #endif
  1487. #endif
  1488. }
  1489. }
  1490. WRITE(BEEPER,LOW);
  1491. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1493. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1495. lcd_change_fil_state = 0;
  1496. lcd_loading_filament();
  1497. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1498. lcd_change_fil_state = 0;
  1499. lcd_alright();
  1500. switch(lcd_change_fil_state){
  1501. case 2:
  1502. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1504. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1506. lcd_loading_filament();
  1507. break;
  1508. case 3:
  1509. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1511. lcd_loading_color();
  1512. break;
  1513. default:
  1514. lcd_change_success();
  1515. break;
  1516. }
  1517. }
  1518. target[E_AXIS]+= 5;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1520. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1522. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1523. //plan_set_e_position(current_position[E_AXIS]);
  1524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1525. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1526. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1527. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1528. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1529. plan_set_e_position(lastpos[E_AXIS]);
  1530. feedmultiply=feedmultiplyBckp;
  1531. char cmd[9];
  1532. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1533. enquecommand(cmd);
  1534. }
  1535. #endif
  1536. get_coordinates(); // For X Y Z E F
  1537. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1538. #ifdef FWRETRACT
  1539. if(autoretract_enabled)
  1540. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1541. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1542. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1543. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1544. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1545. retract(!retracted);
  1546. return;
  1547. }
  1548. }
  1549. #endif //FWRETRACT
  1550. prepare_move();
  1551. //ClearToSend();
  1552. }
  1553. break;
  1554. case 2: // G2 - CW ARC
  1555. if(Stopped == false) {
  1556. get_arc_coordinates();
  1557. prepare_arc_move(true);
  1558. }
  1559. break;
  1560. case 3: // G3 - CCW ARC
  1561. if(Stopped == false) {
  1562. get_arc_coordinates();
  1563. prepare_arc_move(false);
  1564. }
  1565. break;
  1566. case 4: // G4 dwell
  1567. LCD_MESSAGERPGM(MSG_DWELL);
  1568. codenum = 0;
  1569. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1570. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1571. st_synchronize();
  1572. codenum += millis(); // keep track of when we started waiting
  1573. previous_millis_cmd = millis();
  1574. while(millis() < codenum) {
  1575. manage_heater();
  1576. manage_inactivity();
  1577. lcd_update();
  1578. }
  1579. break;
  1580. #ifdef FWRETRACT
  1581. case 10: // G10 retract
  1582. #if EXTRUDERS > 1
  1583. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1584. retract(true,retracted_swap[active_extruder]);
  1585. #else
  1586. retract(true);
  1587. #endif
  1588. break;
  1589. case 11: // G11 retract_recover
  1590. #if EXTRUDERS > 1
  1591. retract(false,retracted_swap[active_extruder]);
  1592. #else
  1593. retract(false);
  1594. #endif
  1595. break;
  1596. #endif //FWRETRACT
  1597. case 28: //G28 Home all Axis one at a time
  1598. #ifdef ENABLE_AUTO_BED_LEVELING
  1599. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1600. #endif //ENABLE_AUTO_BED_LEVELING
  1601. // For mesh bed leveling deactivate the matrix temporarily
  1602. #ifdef MESH_BED_LEVELING
  1603. mbl.active = 0;
  1604. #endif
  1605. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1606. // the planner will not perform any adjustments in the XY plane.
  1607. // Wait for the motors to stop and update the current position with the absolute values.
  1608. world2machine_revert_to_uncorrected();
  1609. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1610. // consumed during the first movements following this statement.
  1611. babystepsTodoZsubtract(babystepLoadZ);
  1612. babystepLoadZ = 0;
  1613. saved_feedrate = feedrate;
  1614. saved_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = millis();
  1617. enable_endstops(true);
  1618. for(int8_t i=0; i < NUM_AXIS; i++)
  1619. destination[i] = current_position[i];
  1620. feedrate = 0.0;
  1621. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1622. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1623. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1624. homeaxis(Z_AXIS);
  1625. }
  1626. #endif
  1627. #ifdef QUICK_HOME
  1628. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1629. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1630. {
  1631. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1632. int x_axis_home_dir = home_dir(X_AXIS);
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1634. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1635. feedrate = homing_feedrate[X_AXIS];
  1636. if(homing_feedrate[Y_AXIS]<feedrate)
  1637. feedrate = homing_feedrate[Y_AXIS];
  1638. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1639. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1640. } else {
  1641. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1642. }
  1643. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1644. st_synchronize();
  1645. axis_is_at_home(X_AXIS);
  1646. axis_is_at_home(Y_AXIS);
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. destination[X_AXIS] = current_position[X_AXIS];
  1649. destination[Y_AXIS] = current_position[Y_AXIS];
  1650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1651. feedrate = 0.0;
  1652. st_synchronize();
  1653. endstops_hit_on_purpose();
  1654. current_position[X_AXIS] = destination[X_AXIS];
  1655. current_position[Y_AXIS] = destination[Y_AXIS];
  1656. current_position[Z_AXIS] = destination[Z_AXIS];
  1657. }
  1658. #endif /* QUICK_HOME */
  1659. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1660. homeaxis(X_AXIS);
  1661. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1662. homeaxis(Y_AXIS);
  1663. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1664. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1665. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1666. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1667. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1668. #ifndef Z_SAFE_HOMING
  1669. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1670. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1671. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1672. feedrate = max_feedrate[Z_AXIS];
  1673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1674. st_synchronize();
  1675. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1676. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1677. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1678. {
  1679. homeaxis(X_AXIS);
  1680. homeaxis(Y_AXIS);
  1681. }
  1682. // 1st mesh bed leveling measurement point, corrected.
  1683. world2machine_initialize();
  1684. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1685. world2machine_reset();
  1686. if (destination[Y_AXIS] < Y_MIN_POS)
  1687. destination[Y_AXIS] = Y_MIN_POS;
  1688. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1689. feedrate = homing_feedrate[Z_AXIS]/10;
  1690. current_position[Z_AXIS] = 0;
  1691. enable_endstops(false);
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1694. st_synchronize();
  1695. current_position[X_AXIS] = destination[X_AXIS];
  1696. current_position[Y_AXIS] = destination[Y_AXIS];
  1697. enable_endstops(true);
  1698. endstops_hit_on_purpose();
  1699. homeaxis(Z_AXIS);
  1700. #else // MESH_BED_LEVELING
  1701. homeaxis(Z_AXIS);
  1702. #endif // MESH_BED_LEVELING
  1703. }
  1704. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1705. if(home_all_axis) {
  1706. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1707. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1708. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1709. feedrate = XY_TRAVEL_SPEED/60;
  1710. current_position[Z_AXIS] = 0;
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1713. st_synchronize();
  1714. current_position[X_AXIS] = destination[X_AXIS];
  1715. current_position[Y_AXIS] = destination[Y_AXIS];
  1716. homeaxis(Z_AXIS);
  1717. }
  1718. // Let's see if X and Y are homed and probe is inside bed area.
  1719. if(code_seen(axis_codes[Z_AXIS])) {
  1720. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1721. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1722. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1723. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1724. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1725. current_position[Z_AXIS] = 0;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1728. feedrate = max_feedrate[Z_AXIS];
  1729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1730. st_synchronize();
  1731. homeaxis(Z_AXIS);
  1732. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1733. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1736. } else {
  1737. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1738. SERIAL_ECHO_START;
  1739. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1740. }
  1741. }
  1742. #endif // Z_SAFE_HOMING
  1743. #endif // Z_HOME_DIR < 0
  1744. if(code_seen(axis_codes[Z_AXIS])) {
  1745. if(code_value_long() != 0) {
  1746. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1747. }
  1748. }
  1749. #ifdef ENABLE_AUTO_BED_LEVELING
  1750. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1751. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1752. }
  1753. #endif
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1756. enable_endstops(false);
  1757. #endif
  1758. feedrate = saved_feedrate;
  1759. feedmultiply = saved_feedmultiply;
  1760. previous_millis_cmd = millis();
  1761. endstops_hit_on_purpose();
  1762. #ifndef MESH_BED_LEVELING
  1763. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1764. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1765. if(card.sdprinting) {
  1766. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1767. if(babystepLoadZ != 0)
  1768. lcd_adjust_z();
  1769. }
  1770. #endif
  1771. // Load the machine correction matrix
  1772. world2machine_initialize();
  1773. // and correct the current_position to match the transformed coordinate system.
  1774. world2machine_update_current();
  1775. #ifdef MESH_BED_LEVELING
  1776. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1777. {
  1778. }
  1779. else
  1780. {
  1781. st_synchronize();
  1782. // Push the commands to the front of the message queue in the reverse order!
  1783. // There shall be always enough space reserved for these commands.
  1784. // enquecommand_front_P((PSTR("G80")));
  1785. goto case_G80;
  1786. }
  1787. #endif
  1788. if (farm_mode) { prusa_statistics(20); };
  1789. break;
  1790. #ifdef ENABLE_AUTO_BED_LEVELING
  1791. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1792. {
  1793. #if Z_MIN_PIN == -1
  1794. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1795. #endif
  1796. // Prevent user from running a G29 without first homing in X and Y
  1797. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1798. {
  1799. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1800. SERIAL_ECHO_START;
  1801. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1802. break; // abort G29, since we don't know where we are
  1803. }
  1804. st_synchronize();
  1805. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1806. //vector_3 corrected_position = plan_get_position_mm();
  1807. //corrected_position.debug("position before G29");
  1808. plan_bed_level_matrix.set_to_identity();
  1809. vector_3 uncorrected_position = plan_get_position();
  1810. //uncorrected_position.debug("position durring G29");
  1811. current_position[X_AXIS] = uncorrected_position.x;
  1812. current_position[Y_AXIS] = uncorrected_position.y;
  1813. current_position[Z_AXIS] = uncorrected_position.z;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. setup_for_endstop_move();
  1816. feedrate = homing_feedrate[Z_AXIS];
  1817. #ifdef AUTO_BED_LEVELING_GRID
  1818. // probe at the points of a lattice grid
  1819. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1820. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1821. // solve the plane equation ax + by + d = z
  1822. // A is the matrix with rows [x y 1] for all the probed points
  1823. // B is the vector of the Z positions
  1824. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1825. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1826. // "A" matrix of the linear system of equations
  1827. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1828. // "B" vector of Z points
  1829. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1830. int probePointCounter = 0;
  1831. bool zig = true;
  1832. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1833. {
  1834. int xProbe, xInc;
  1835. if (zig)
  1836. {
  1837. xProbe = LEFT_PROBE_BED_POSITION;
  1838. //xEnd = RIGHT_PROBE_BED_POSITION;
  1839. xInc = xGridSpacing;
  1840. zig = false;
  1841. } else // zag
  1842. {
  1843. xProbe = RIGHT_PROBE_BED_POSITION;
  1844. //xEnd = LEFT_PROBE_BED_POSITION;
  1845. xInc = -xGridSpacing;
  1846. zig = true;
  1847. }
  1848. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1849. {
  1850. float z_before;
  1851. if (probePointCounter == 0)
  1852. {
  1853. // raise before probing
  1854. z_before = Z_RAISE_BEFORE_PROBING;
  1855. } else
  1856. {
  1857. // raise extruder
  1858. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1859. }
  1860. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1861. eqnBVector[probePointCounter] = measured_z;
  1862. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1863. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1864. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1865. probePointCounter++;
  1866. xProbe += xInc;
  1867. }
  1868. }
  1869. clean_up_after_endstop_move();
  1870. // solve lsq problem
  1871. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1872. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1873. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1874. SERIAL_PROTOCOLPGM(" b: ");
  1875. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1876. SERIAL_PROTOCOLPGM(" d: ");
  1877. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1878. set_bed_level_equation_lsq(plane_equation_coefficients);
  1879. free(plane_equation_coefficients);
  1880. #else // AUTO_BED_LEVELING_GRID not defined
  1881. // Probe at 3 arbitrary points
  1882. // probe 1
  1883. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1884. // probe 2
  1885. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1886. // probe 3
  1887. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1888. clean_up_after_endstop_move();
  1889. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1890. #endif // AUTO_BED_LEVELING_GRID
  1891. st_synchronize();
  1892. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1893. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1894. // When the bed is uneven, this height must be corrected.
  1895. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1896. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1897. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1898. z_tmp = current_position[Z_AXIS];
  1899. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1900. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. }
  1903. break;
  1904. #ifndef Z_PROBE_SLED
  1905. case 30: // G30 Single Z Probe
  1906. {
  1907. st_synchronize();
  1908. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1909. setup_for_endstop_move();
  1910. feedrate = homing_feedrate[Z_AXIS];
  1911. run_z_probe();
  1912. SERIAL_PROTOCOLPGM(MSG_BED);
  1913. SERIAL_PROTOCOLPGM(" X: ");
  1914. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1915. SERIAL_PROTOCOLPGM(" Y: ");
  1916. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1917. SERIAL_PROTOCOLPGM(" Z: ");
  1918. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1919. SERIAL_PROTOCOLPGM("\n");
  1920. clean_up_after_endstop_move();
  1921. }
  1922. break;
  1923. #else
  1924. case 31: // dock the sled
  1925. dock_sled(true);
  1926. break;
  1927. case 32: // undock the sled
  1928. dock_sled(false);
  1929. break;
  1930. #endif // Z_PROBE_SLED
  1931. #endif // ENABLE_AUTO_BED_LEVELING
  1932. #ifdef MESH_BED_LEVELING
  1933. /**
  1934. * G80: Mesh-based Z probe, probes a grid and produces a
  1935. * mesh to compensate for variable bed height
  1936. *
  1937. * The S0 report the points as below
  1938. *
  1939. * +----> X-axis
  1940. * |
  1941. * |
  1942. * v Y-axis
  1943. *
  1944. */
  1945. case 80:
  1946. case_G80:
  1947. {
  1948. if (!IS_SD_PRINTING)
  1949. {
  1950. custom_message = true;
  1951. custom_message_type = 1;
  1952. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1953. }
  1954. // Firstly check if we know where we are
  1955. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1956. // We don't know where we are! HOME!
  1957. // Push the commands to the front of the message queue in the reverse order!
  1958. // There shall be always enough space reserved for these commands.
  1959. repeatcommand_front(); // repeat G80 with all its parameters
  1960. enquecommand_front_P((PSTR("G28 W0")));
  1961. break;
  1962. }
  1963. mbl.reset();
  1964. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1965. // consumed during the first movements following this statement.
  1966. babystepsTodoZsubtract(babystepLoadZ);
  1967. babystepLoadZ = 0;
  1968. // Cycle through all points and probe them
  1969. // First move up. During this first movement, the babystepping will be reverted.
  1970. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1972. // The move to the first calibration point.
  1973. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1974. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1975. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1976. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  1977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1978. // Wait until the move is finished.
  1979. st_synchronize();
  1980. int mesh_point = 0;
  1981. int ix = 0;
  1982. int iy = 0;
  1983. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1984. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1985. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1986. bool has_z = is_bed_z_jitter_data_valid();
  1987. setup_for_endstop_move();
  1988. const char *kill_message = NULL;
  1989. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  1990. // Get coords of a measuring point.
  1991. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1992. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1993. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1994. float z0 = 0.f;
  1995. if (has_z && mesh_point > 0) {
  1996. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  1997. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1998. #if 0
  1999. SERIAL_ECHOPGM("Bed leveling, point: ");
  2000. MYSERIAL.print(mesh_point);
  2001. SERIAL_ECHOPGM(", calibration z: ");
  2002. MYSERIAL.print(z0, 5);
  2003. SERIAL_ECHOLNPGM("");
  2004. #endif
  2005. }
  2006. // Move Z to proper distance
  2007. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2009. st_synchronize();
  2010. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2011. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2012. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2013. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2014. enable_endstops(false);
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2016. st_synchronize();
  2017. // Go down until endstop is hit
  2018. const float Z_CALIBRATION_THRESHOLD = 0.5f;
  2019. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2020. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2021. break;
  2022. }
  2023. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2024. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2025. break;
  2026. }
  2027. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2028. if (!IS_SD_PRINTING)
  2029. {
  2030. custom_message_state--;
  2031. }
  2032. mesh_point++;
  2033. }
  2034. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2036. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2037. st_synchronize();
  2038. kill(kill_message);
  2039. }
  2040. clean_up_after_endstop_move();
  2041. mbl.upsample_3x3();
  2042. mbl.active = 1;
  2043. current_position[X_AXIS] = X_MIN_POS+0.2;
  2044. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2045. current_position[Z_AXIS] = Z_MIN_POS;
  2046. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2047. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2048. st_synchronize();
  2049. if(card.sdprinting || is_usb_printing )
  2050. {
  2051. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2052. {
  2053. // End of G80: Apply the baby stepping value.
  2054. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  2055. babystepsTodoZadd(babystepLoadZ);
  2056. }
  2057. }
  2058. }
  2059. break;
  2060. /**
  2061. * G81: Print mesh bed leveling status and bed profile if activated
  2062. */
  2063. case 81:
  2064. if (mbl.active) {
  2065. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2066. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2067. SERIAL_PROTOCOLPGM(",");
  2068. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2069. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2070. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2071. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2072. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2073. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2074. SERIAL_PROTOCOLPGM(" ");
  2075. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2076. }
  2077. SERIAL_PROTOCOLPGM("\n");
  2078. }
  2079. }
  2080. else
  2081. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2082. break;
  2083. /**
  2084. * G82: Single Z probe at current location
  2085. *
  2086. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2087. *
  2088. */
  2089. case 82:
  2090. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2091. setup_for_endstop_move();
  2092. find_bed_induction_sensor_point_z();
  2093. clean_up_after_endstop_move();
  2094. SERIAL_PROTOCOLPGM("Bed found at: ");
  2095. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2096. SERIAL_PROTOCOLPGM("\n");
  2097. break;
  2098. /**
  2099. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2100. */
  2101. case 83:
  2102. {
  2103. int babystepz = code_seen('S') ? code_value() : 0;
  2104. int BabyPosition = code_seen('P') ? code_value() : 0;
  2105. if (babystepz != 0) {
  2106. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2107. // Is the axis indexed starting with zero or one?
  2108. if (BabyPosition > 4) {
  2109. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2110. }else{
  2111. // Save it to the eeprom
  2112. babystepLoadZ = babystepz;
  2113. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2114. // adjust the Z
  2115. babystepsTodoZadd(babystepLoadZ);
  2116. }
  2117. }
  2118. }
  2119. break;
  2120. /**
  2121. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2122. */
  2123. case 84:
  2124. babystepsTodoZsubtract(babystepLoadZ);
  2125. // babystepLoadZ = 0;
  2126. break;
  2127. /**
  2128. * G85: Prusa3D specific: Pick best babystep
  2129. */
  2130. case 85:
  2131. lcd_pick_babystep();
  2132. break;
  2133. /**
  2134. * G86: Prusa3D specific: Disable babystep correction after home.
  2135. * This G-code will be performed at the start of a calibration script.
  2136. */
  2137. case 86:
  2138. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2139. break;
  2140. /**
  2141. * G87: Prusa3D specific: Enable babystep correction after home
  2142. * This G-code will be performed at the end of a calibration script.
  2143. */
  2144. case 87:
  2145. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2146. break;
  2147. case 88:
  2148. break;
  2149. #endif // ENABLE_MESH_BED_LEVELING
  2150. case 90: // G90
  2151. relative_mode = false;
  2152. break;
  2153. case 91: // G91
  2154. relative_mode = true;
  2155. break;
  2156. case 92: // G92
  2157. if(!code_seen(axis_codes[E_AXIS]))
  2158. st_synchronize();
  2159. for(int8_t i=0; i < NUM_AXIS; i++) {
  2160. if(code_seen(axis_codes[i])) {
  2161. if(i == E_AXIS) {
  2162. current_position[i] = code_value();
  2163. plan_set_e_position(current_position[E_AXIS]);
  2164. }
  2165. else {
  2166. current_position[i] = code_value()+add_homing[i];
  2167. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2168. }
  2169. }
  2170. }
  2171. break;
  2172. case 98:
  2173. farm_no = 21;
  2174. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2175. farm_mode = true;
  2176. break;
  2177. case 99:
  2178. farm_no = 0;
  2179. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2180. farm_mode = false;
  2181. break;
  2182. }
  2183. } // end if(code_seen('G'))
  2184. else if(code_seen('M'))
  2185. {
  2186. switch( (int)code_value() )
  2187. {
  2188. #ifdef ULTIPANEL
  2189. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2190. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2191. {
  2192. char *src = strchr_pointer + 2;
  2193. codenum = 0;
  2194. bool hasP = false, hasS = false;
  2195. if (code_seen('P')) {
  2196. codenum = code_value(); // milliseconds to wait
  2197. hasP = codenum > 0;
  2198. }
  2199. if (code_seen('S')) {
  2200. codenum = code_value() * 1000; // seconds to wait
  2201. hasS = codenum > 0;
  2202. }
  2203. starpos = strchr(src, '*');
  2204. if (starpos != NULL) *(starpos) = '\0';
  2205. while (*src == ' ') ++src;
  2206. if (!hasP && !hasS && *src != '\0') {
  2207. lcd_setstatus(src);
  2208. } else {
  2209. LCD_MESSAGERPGM(MSG_USERWAIT);
  2210. }
  2211. lcd_ignore_click();
  2212. st_synchronize();
  2213. previous_millis_cmd = millis();
  2214. if (codenum > 0){
  2215. codenum += millis(); // keep track of when we started waiting
  2216. while(millis() < codenum && !lcd_clicked()){
  2217. manage_heater();
  2218. manage_inactivity();
  2219. lcd_update();
  2220. }
  2221. lcd_ignore_click(false);
  2222. }else{
  2223. if (!lcd_detected())
  2224. break;
  2225. while(!lcd_clicked()){
  2226. manage_heater();
  2227. manage_inactivity();
  2228. lcd_update();
  2229. }
  2230. }
  2231. if (IS_SD_PRINTING)
  2232. LCD_MESSAGERPGM(MSG_RESUMING);
  2233. else
  2234. LCD_MESSAGERPGM(WELCOME_MSG);
  2235. }
  2236. break;
  2237. #endif
  2238. case 17:
  2239. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2240. enable_x();
  2241. enable_y();
  2242. enable_z();
  2243. enable_e0();
  2244. enable_e1();
  2245. enable_e2();
  2246. break;
  2247. #ifdef SDSUPPORT
  2248. case 20: // M20 - list SD card
  2249. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2250. card.ls();
  2251. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2252. break;
  2253. case 21: // M21 - init SD card
  2254. card.initsd();
  2255. break;
  2256. case 22: //M22 - release SD card
  2257. card.release();
  2258. break;
  2259. case 23: //M23 - Select file
  2260. starpos = (strchr(strchr_pointer + 4,'*'));
  2261. if(starpos!=NULL)
  2262. *(starpos)='\0';
  2263. card.openFile(strchr_pointer + 4,true);
  2264. break;
  2265. case 24: //M24 - Start SD print
  2266. card.startFileprint();
  2267. starttime=millis();
  2268. break;
  2269. case 25: //M25 - Pause SD print
  2270. card.pauseSDPrint();
  2271. break;
  2272. case 26: //M26 - Set SD index
  2273. if(card.cardOK && code_seen('S')) {
  2274. card.setIndex(code_value_long());
  2275. }
  2276. break;
  2277. case 27: //M27 - Get SD status
  2278. card.getStatus();
  2279. break;
  2280. case 28: //M28 - Start SD write
  2281. starpos = (strchr(strchr_pointer + 4,'*'));
  2282. if(starpos != NULL){
  2283. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2284. strchr_pointer = strchr(npos,' ') + 1;
  2285. *(starpos) = '\0';
  2286. }
  2287. card.openFile(strchr_pointer+4,false);
  2288. break;
  2289. case 29: //M29 - Stop SD write
  2290. //processed in write to file routine above
  2291. //card,saving = false;
  2292. break;
  2293. case 30: //M30 <filename> Delete File
  2294. if (card.cardOK){
  2295. card.closefile();
  2296. starpos = (strchr(strchr_pointer + 4,'*'));
  2297. if(starpos != NULL){
  2298. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2299. strchr_pointer = strchr(npos,' ') + 1;
  2300. *(starpos) = '\0';
  2301. }
  2302. card.removeFile(strchr_pointer + 4);
  2303. }
  2304. break;
  2305. case 32: //M32 - Select file and start SD print
  2306. {
  2307. if(card.sdprinting) {
  2308. st_synchronize();
  2309. }
  2310. starpos = (strchr(strchr_pointer + 4,'*'));
  2311. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2312. if(namestartpos==NULL)
  2313. {
  2314. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2315. }
  2316. else
  2317. namestartpos++; //to skip the '!'
  2318. if(starpos!=NULL)
  2319. *(starpos)='\0';
  2320. bool call_procedure=(code_seen('P'));
  2321. if(strchr_pointer>namestartpos)
  2322. call_procedure=false; //false alert, 'P' found within filename
  2323. if( card.cardOK )
  2324. {
  2325. card.openFile(namestartpos,true,!call_procedure);
  2326. if(code_seen('S'))
  2327. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2328. card.setIndex(code_value_long());
  2329. card.startFileprint();
  2330. if(!call_procedure)
  2331. starttime=millis(); //procedure calls count as normal print time.
  2332. }
  2333. } break;
  2334. case 928: //M928 - Start SD write
  2335. starpos = (strchr(strchr_pointer + 5,'*'));
  2336. if(starpos != NULL){
  2337. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2338. strchr_pointer = strchr(npos,' ') + 1;
  2339. *(starpos) = '\0';
  2340. }
  2341. card.openLogFile(strchr_pointer+5);
  2342. break;
  2343. #endif //SDSUPPORT
  2344. case 31: //M31 take time since the start of the SD print or an M109 command
  2345. {
  2346. stoptime=millis();
  2347. char time[30];
  2348. unsigned long t=(stoptime-starttime)/1000;
  2349. int sec,min;
  2350. min=t/60;
  2351. sec=t%60;
  2352. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2353. SERIAL_ECHO_START;
  2354. SERIAL_ECHOLN(time);
  2355. lcd_setstatus(time);
  2356. autotempShutdown();
  2357. }
  2358. break;
  2359. case 42: //M42 -Change pin status via gcode
  2360. if (code_seen('S'))
  2361. {
  2362. int pin_status = code_value();
  2363. int pin_number = LED_PIN;
  2364. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2365. pin_number = code_value();
  2366. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2367. {
  2368. if (sensitive_pins[i] == pin_number)
  2369. {
  2370. pin_number = -1;
  2371. break;
  2372. }
  2373. }
  2374. #if defined(FAN_PIN) && FAN_PIN > -1
  2375. if (pin_number == FAN_PIN)
  2376. fanSpeed = pin_status;
  2377. #endif
  2378. if (pin_number > -1)
  2379. {
  2380. pinMode(pin_number, OUTPUT);
  2381. digitalWrite(pin_number, pin_status);
  2382. analogWrite(pin_number, pin_status);
  2383. }
  2384. }
  2385. break;
  2386. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2387. // Reset the skew and offset in both RAM and EEPROM.
  2388. reset_bed_offset_and_skew();
  2389. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2390. // the planner will not perform any adjustments in the XY plane.
  2391. // Wait for the motors to stop and update the current position with the absolute values.
  2392. world2machine_revert_to_uncorrected();
  2393. break;
  2394. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2395. {
  2396. // Disable the default update procedure of the display. We will do a modal dialog.
  2397. lcd_update_enable(false);
  2398. // Let the planner use the uncorrected coordinates.
  2399. mbl.reset();
  2400. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2401. // the planner will not perform any adjustments in the XY plane.
  2402. // Wait for the motors to stop and update the current position with the absolute values.
  2403. world2machine_revert_to_uncorrected();
  2404. // Let the user move the Z axes up to the end stoppers.
  2405. if (lcd_calibrate_z_end_stop_manual()) {
  2406. refresh_cmd_timeout();
  2407. // Move the print head close to the bed.
  2408. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2410. st_synchronize();
  2411. // Home in the XY plane.
  2412. set_destination_to_current();
  2413. setup_for_endstop_move();
  2414. home_xy();
  2415. int8_t verbosity_level = 0;
  2416. if (code_seen('V')) {
  2417. // Just 'V' without a number counts as V1.
  2418. char c = strchr_pointer[1];
  2419. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2420. }
  2421. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2422. uint8_t point_too_far_mask = 0;
  2423. clean_up_after_endstop_move();
  2424. // Print head up.
  2425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2427. st_synchronize();
  2428. if (result >= 0) {
  2429. // Second half: The fine adjustment.
  2430. // Let the planner use the uncorrected coordinates.
  2431. mbl.reset();
  2432. world2machine_reset();
  2433. // Home in the XY plane.
  2434. setup_for_endstop_move();
  2435. home_xy();
  2436. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2437. clean_up_after_endstop_move();
  2438. // Print head up.
  2439. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2441. st_synchronize();
  2442. }
  2443. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2444. } else {
  2445. // Timeouted.
  2446. }
  2447. lcd_update_enable(true);
  2448. lcd_implementation_clear();
  2449. // lcd_return_to_status();
  2450. lcd_update();
  2451. break;
  2452. }
  2453. case 46:
  2454. {
  2455. // M46: Prusa3D: Show the assigned IP address.
  2456. uint8_t ip[4];
  2457. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2458. if (hasIP) {
  2459. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2460. SERIAL_ECHO(int(ip[0]));
  2461. SERIAL_ECHOPGM(".");
  2462. SERIAL_ECHO(int(ip[1]));
  2463. SERIAL_ECHOPGM(".");
  2464. SERIAL_ECHO(int(ip[2]));
  2465. SERIAL_ECHOPGM(".");
  2466. SERIAL_ECHO(int(ip[3]));
  2467. SERIAL_ECHOLNPGM("");
  2468. } else {
  2469. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2470. }
  2471. break;
  2472. }
  2473. case 47:
  2474. // M47: Prusa3D: Show end stops dialog on the display.
  2475. lcd_diag_show_end_stops();
  2476. break;
  2477. #if 0
  2478. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2479. {
  2480. // Disable the default update procedure of the display. We will do a modal dialog.
  2481. lcd_update_enable(false);
  2482. // Let the planner use the uncorrected coordinates.
  2483. mbl.reset();
  2484. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2485. // the planner will not perform any adjustments in the XY plane.
  2486. // Wait for the motors to stop and update the current position with the absolute values.
  2487. world2machine_revert_to_uncorrected();
  2488. // Move the print head close to the bed.
  2489. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2491. st_synchronize();
  2492. // Home in the XY plane.
  2493. set_destination_to_current();
  2494. setup_for_endstop_move();
  2495. home_xy();
  2496. int8_t verbosity_level = 0;
  2497. if (code_seen('V')) {
  2498. // Just 'V' without a number counts as V1.
  2499. char c = strchr_pointer[1];
  2500. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2501. }
  2502. bool success = scan_bed_induction_points(verbosity_level);
  2503. clean_up_after_endstop_move();
  2504. // Print head up.
  2505. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2507. st_synchronize();
  2508. lcd_update_enable(true);
  2509. lcd_implementation_clear();
  2510. // lcd_return_to_status();
  2511. lcd_update();
  2512. break;
  2513. }
  2514. #endif
  2515. // M48 Z-Probe repeatability measurement function.
  2516. //
  2517. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2518. //
  2519. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2520. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2521. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2522. // regenerated.
  2523. //
  2524. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2525. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2526. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2527. //
  2528. #ifdef ENABLE_AUTO_BED_LEVELING
  2529. #ifdef Z_PROBE_REPEATABILITY_TEST
  2530. case 48: // M48 Z-Probe repeatability
  2531. {
  2532. #if Z_MIN_PIN == -1
  2533. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2534. #endif
  2535. double sum=0.0;
  2536. double mean=0.0;
  2537. double sigma=0.0;
  2538. double sample_set[50];
  2539. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2540. double X_current, Y_current, Z_current;
  2541. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2542. if (code_seen('V') || code_seen('v')) {
  2543. verbose_level = code_value();
  2544. if (verbose_level<0 || verbose_level>4 ) {
  2545. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2546. goto Sigma_Exit;
  2547. }
  2548. }
  2549. if (verbose_level > 0) {
  2550. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2551. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2552. }
  2553. if (code_seen('n')) {
  2554. n_samples = code_value();
  2555. if (n_samples<4 || n_samples>50 ) {
  2556. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2557. goto Sigma_Exit;
  2558. }
  2559. }
  2560. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2561. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2562. Z_current = st_get_position_mm(Z_AXIS);
  2563. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2564. ext_position = st_get_position_mm(E_AXIS);
  2565. if (code_seen('X') || code_seen('x') ) {
  2566. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2567. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2568. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2569. goto Sigma_Exit;
  2570. }
  2571. }
  2572. if (code_seen('Y') || code_seen('y') ) {
  2573. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2574. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2575. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2576. goto Sigma_Exit;
  2577. }
  2578. }
  2579. if (code_seen('L') || code_seen('l') ) {
  2580. n_legs = code_value();
  2581. if ( n_legs==1 )
  2582. n_legs = 2;
  2583. if ( n_legs<0 || n_legs>15 ) {
  2584. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2585. goto Sigma_Exit;
  2586. }
  2587. }
  2588. //
  2589. // Do all the preliminary setup work. First raise the probe.
  2590. //
  2591. st_synchronize();
  2592. plan_bed_level_matrix.set_to_identity();
  2593. plan_buffer_line( X_current, Y_current, Z_start_location,
  2594. ext_position,
  2595. homing_feedrate[Z_AXIS]/60,
  2596. active_extruder);
  2597. st_synchronize();
  2598. //
  2599. // Now get everything to the specified probe point So we can safely do a probe to
  2600. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2601. // use that as a starting point for each probe.
  2602. //
  2603. if (verbose_level > 2)
  2604. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2605. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2606. ext_position,
  2607. homing_feedrate[X_AXIS]/60,
  2608. active_extruder);
  2609. st_synchronize();
  2610. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2611. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2612. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2613. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2614. //
  2615. // OK, do the inital probe to get us close to the bed.
  2616. // Then retrace the right amount and use that in subsequent probes
  2617. //
  2618. setup_for_endstop_move();
  2619. run_z_probe();
  2620. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2621. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2622. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2623. ext_position,
  2624. homing_feedrate[X_AXIS]/60,
  2625. active_extruder);
  2626. st_synchronize();
  2627. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2628. for( n=0; n<n_samples; n++) {
  2629. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2630. if ( n_legs) {
  2631. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2632. int rotational_direction, l;
  2633. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2634. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2635. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2636. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2637. //SERIAL_ECHOPAIR(" theta: ",theta);
  2638. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2639. //SERIAL_PROTOCOLLNPGM("");
  2640. for( l=0; l<n_legs-1; l++) {
  2641. if (rotational_direction==1)
  2642. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2643. else
  2644. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2645. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2646. if ( radius<0.0 )
  2647. radius = -radius;
  2648. X_current = X_probe_location + cos(theta) * radius;
  2649. Y_current = Y_probe_location + sin(theta) * radius;
  2650. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2651. X_current = X_MIN_POS;
  2652. if ( X_current>X_MAX_POS)
  2653. X_current = X_MAX_POS;
  2654. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2655. Y_current = Y_MIN_POS;
  2656. if ( Y_current>Y_MAX_POS)
  2657. Y_current = Y_MAX_POS;
  2658. if (verbose_level>3 ) {
  2659. SERIAL_ECHOPAIR("x: ", X_current);
  2660. SERIAL_ECHOPAIR("y: ", Y_current);
  2661. SERIAL_PROTOCOLLNPGM("");
  2662. }
  2663. do_blocking_move_to( X_current, Y_current, Z_current );
  2664. }
  2665. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2666. }
  2667. setup_for_endstop_move();
  2668. run_z_probe();
  2669. sample_set[n] = current_position[Z_AXIS];
  2670. //
  2671. // Get the current mean for the data points we have so far
  2672. //
  2673. sum=0.0;
  2674. for( j=0; j<=n; j++) {
  2675. sum = sum + sample_set[j];
  2676. }
  2677. mean = sum / (double (n+1));
  2678. //
  2679. // Now, use that mean to calculate the standard deviation for the
  2680. // data points we have so far
  2681. //
  2682. sum=0.0;
  2683. for( j=0; j<=n; j++) {
  2684. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2685. }
  2686. sigma = sqrt( sum / (double (n+1)) );
  2687. if (verbose_level > 1) {
  2688. SERIAL_PROTOCOL(n+1);
  2689. SERIAL_PROTOCOL(" of ");
  2690. SERIAL_PROTOCOL(n_samples);
  2691. SERIAL_PROTOCOLPGM(" z: ");
  2692. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2693. }
  2694. if (verbose_level > 2) {
  2695. SERIAL_PROTOCOL(" mean: ");
  2696. SERIAL_PROTOCOL_F(mean,6);
  2697. SERIAL_PROTOCOL(" sigma: ");
  2698. SERIAL_PROTOCOL_F(sigma,6);
  2699. }
  2700. if (verbose_level > 0)
  2701. SERIAL_PROTOCOLPGM("\n");
  2702. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2703. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2704. st_synchronize();
  2705. }
  2706. delay(1000);
  2707. clean_up_after_endstop_move();
  2708. // enable_endstops(true);
  2709. if (verbose_level > 0) {
  2710. SERIAL_PROTOCOLPGM("Mean: ");
  2711. SERIAL_PROTOCOL_F(mean, 6);
  2712. SERIAL_PROTOCOLPGM("\n");
  2713. }
  2714. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2715. SERIAL_PROTOCOL_F(sigma, 6);
  2716. SERIAL_PROTOCOLPGM("\n\n");
  2717. Sigma_Exit:
  2718. break;
  2719. }
  2720. #endif // Z_PROBE_REPEATABILITY_TEST
  2721. #endif // ENABLE_AUTO_BED_LEVELING
  2722. case 104: // M104
  2723. if(setTargetedHotend(104)){
  2724. break;
  2725. }
  2726. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2727. setWatch();
  2728. break;
  2729. case 112: // M112 -Emergency Stop
  2730. kill();
  2731. break;
  2732. case 140: // M140 set bed temp
  2733. if (code_seen('S')) setTargetBed(code_value());
  2734. break;
  2735. case 105 : // M105
  2736. if(setTargetedHotend(105)){
  2737. break;
  2738. }
  2739. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2740. SERIAL_PROTOCOLPGM("ok T:");
  2741. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2742. SERIAL_PROTOCOLPGM(" /");
  2743. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2744. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2745. SERIAL_PROTOCOLPGM(" B:");
  2746. SERIAL_PROTOCOL_F(degBed(),1);
  2747. SERIAL_PROTOCOLPGM(" /");
  2748. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2749. #endif //TEMP_BED_PIN
  2750. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2751. SERIAL_PROTOCOLPGM(" T");
  2752. SERIAL_PROTOCOL(cur_extruder);
  2753. SERIAL_PROTOCOLPGM(":");
  2754. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2755. SERIAL_PROTOCOLPGM(" /");
  2756. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2757. }
  2758. #else
  2759. SERIAL_ERROR_START;
  2760. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2761. #endif
  2762. SERIAL_PROTOCOLPGM(" @:");
  2763. #ifdef EXTRUDER_WATTS
  2764. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2765. SERIAL_PROTOCOLPGM("W");
  2766. #else
  2767. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2768. #endif
  2769. SERIAL_PROTOCOLPGM(" B@:");
  2770. #ifdef BED_WATTS
  2771. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2772. SERIAL_PROTOCOLPGM("W");
  2773. #else
  2774. SERIAL_PROTOCOL(getHeaterPower(-1));
  2775. #endif
  2776. #ifdef SHOW_TEMP_ADC_VALUES
  2777. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2778. SERIAL_PROTOCOLPGM(" ADC B:");
  2779. SERIAL_PROTOCOL_F(degBed(),1);
  2780. SERIAL_PROTOCOLPGM("C->");
  2781. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2782. #endif
  2783. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2784. SERIAL_PROTOCOLPGM(" T");
  2785. SERIAL_PROTOCOL(cur_extruder);
  2786. SERIAL_PROTOCOLPGM(":");
  2787. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2788. SERIAL_PROTOCOLPGM("C->");
  2789. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2790. }
  2791. #endif
  2792. SERIAL_PROTOCOLLN("");
  2793. return;
  2794. break;
  2795. case 109:
  2796. {// M109 - Wait for extruder heater to reach target.
  2797. if(setTargetedHotend(109)){
  2798. break;
  2799. }
  2800. LCD_MESSAGERPGM(MSG_HEATING);
  2801. heating_status = 1;
  2802. if (farm_mode) { prusa_statistics(1); };
  2803. #ifdef AUTOTEMP
  2804. autotemp_enabled=false;
  2805. #endif
  2806. if (code_seen('S')) {
  2807. setTargetHotend(code_value(), tmp_extruder);
  2808. CooldownNoWait = true;
  2809. } else if (code_seen('R')) {
  2810. setTargetHotend(code_value(), tmp_extruder);
  2811. CooldownNoWait = false;
  2812. }
  2813. #ifdef AUTOTEMP
  2814. if (code_seen('S')) autotemp_min=code_value();
  2815. if (code_seen('B')) autotemp_max=code_value();
  2816. if (code_seen('F'))
  2817. {
  2818. autotemp_factor=code_value();
  2819. autotemp_enabled=true;
  2820. }
  2821. #endif
  2822. setWatch();
  2823. codenum = millis();
  2824. /* See if we are heating up or cooling down */
  2825. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2826. cancel_heatup = false;
  2827. #ifdef TEMP_RESIDENCY_TIME
  2828. long residencyStart;
  2829. residencyStart = -1;
  2830. /* continue to loop until we have reached the target temp
  2831. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2832. while((!cancel_heatup)&&((residencyStart == -1) ||
  2833. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2834. #else
  2835. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2836. #endif //TEMP_RESIDENCY_TIME
  2837. if( (millis() - codenum) > 1000UL )
  2838. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2839. SERIAL_PROTOCOLPGM("T:");
  2840. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2841. SERIAL_PROTOCOLPGM(" E:");
  2842. SERIAL_PROTOCOL((int)tmp_extruder);
  2843. #ifdef TEMP_RESIDENCY_TIME
  2844. SERIAL_PROTOCOLPGM(" W:");
  2845. if(residencyStart > -1)
  2846. {
  2847. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2848. SERIAL_PROTOCOLLN( codenum );
  2849. }
  2850. else
  2851. {
  2852. SERIAL_PROTOCOLLN( "?" );
  2853. }
  2854. #else
  2855. SERIAL_PROTOCOLLN("");
  2856. #endif
  2857. codenum = millis();
  2858. }
  2859. manage_heater();
  2860. manage_inactivity();
  2861. lcd_update();
  2862. #ifdef TEMP_RESIDENCY_TIME
  2863. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2864. or when current temp falls outside the hysteresis after target temp was reached */
  2865. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2866. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2867. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2868. {
  2869. residencyStart = millis();
  2870. }
  2871. #endif //TEMP_RESIDENCY_TIME
  2872. }
  2873. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2874. heating_status = 2;
  2875. if (farm_mode) { prusa_statistics(2); };
  2876. starttime=millis();
  2877. previous_millis_cmd = millis();
  2878. }
  2879. break;
  2880. case 190: // M190 - Wait for bed heater to reach target.
  2881. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2882. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2883. heating_status = 3;
  2884. if (farm_mode) { prusa_statistics(1); };
  2885. if (code_seen('S'))
  2886. {
  2887. setTargetBed(code_value());
  2888. CooldownNoWait = true;
  2889. }
  2890. else if (code_seen('R'))
  2891. {
  2892. setTargetBed(code_value());
  2893. CooldownNoWait = false;
  2894. }
  2895. codenum = millis();
  2896. cancel_heatup = false;
  2897. target_direction = isHeatingBed(); // true if heating, false if cooling
  2898. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2899. {
  2900. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2901. {
  2902. float tt=degHotend(active_extruder);
  2903. SERIAL_PROTOCOLPGM("T:");
  2904. SERIAL_PROTOCOL(tt);
  2905. SERIAL_PROTOCOLPGM(" E:");
  2906. SERIAL_PROTOCOL((int)active_extruder);
  2907. SERIAL_PROTOCOLPGM(" B:");
  2908. SERIAL_PROTOCOL_F(degBed(),1);
  2909. SERIAL_PROTOCOLLN("");
  2910. codenum = millis();
  2911. }
  2912. manage_heater();
  2913. manage_inactivity();
  2914. lcd_update();
  2915. }
  2916. LCD_MESSAGERPGM(MSG_BED_DONE);
  2917. heating_status = 4;
  2918. previous_millis_cmd = millis();
  2919. #endif
  2920. break;
  2921. #if defined(FAN_PIN) && FAN_PIN > -1
  2922. case 106: //M106 Fan On
  2923. if (code_seen('S')){
  2924. fanSpeed=constrain(code_value(),0,255);
  2925. }
  2926. else {
  2927. fanSpeed=255;
  2928. }
  2929. break;
  2930. case 107: //M107 Fan Off
  2931. fanSpeed = 0;
  2932. break;
  2933. #endif //FAN_PIN
  2934. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2935. case 80: // M80 - Turn on Power Supply
  2936. SET_OUTPUT(PS_ON_PIN); //GND
  2937. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2938. // If you have a switch on suicide pin, this is useful
  2939. // if you want to start another print with suicide feature after
  2940. // a print without suicide...
  2941. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2942. SET_OUTPUT(SUICIDE_PIN);
  2943. WRITE(SUICIDE_PIN, HIGH);
  2944. #endif
  2945. #ifdef ULTIPANEL
  2946. powersupply = true;
  2947. LCD_MESSAGERPGM(WELCOME_MSG);
  2948. lcd_update();
  2949. #endif
  2950. break;
  2951. #endif
  2952. case 81: // M81 - Turn off Power Supply
  2953. disable_heater();
  2954. st_synchronize();
  2955. disable_e0();
  2956. disable_e1();
  2957. disable_e2();
  2958. finishAndDisableSteppers();
  2959. fanSpeed = 0;
  2960. delay(1000); // Wait a little before to switch off
  2961. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2962. st_synchronize();
  2963. suicide();
  2964. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2965. SET_OUTPUT(PS_ON_PIN);
  2966. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2967. #endif
  2968. #ifdef ULTIPANEL
  2969. powersupply = false;
  2970. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2971. /*
  2972. MACHNAME = "Prusa i3"
  2973. MSGOFF = "Vypnuto"
  2974. "Prusai3"" ""vypnuto""."
  2975. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2976. */
  2977. lcd_update();
  2978. #endif
  2979. break;
  2980. case 82:
  2981. axis_relative_modes[3] = false;
  2982. break;
  2983. case 83:
  2984. axis_relative_modes[3] = true;
  2985. break;
  2986. case 18: //compatibility
  2987. case 84: // M84
  2988. if(code_seen('S')){
  2989. stepper_inactive_time = code_value() * 1000;
  2990. }
  2991. else
  2992. {
  2993. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2994. if(all_axis)
  2995. {
  2996. st_synchronize();
  2997. disable_e0();
  2998. disable_e1();
  2999. disable_e2();
  3000. finishAndDisableSteppers();
  3001. }
  3002. else
  3003. {
  3004. st_synchronize();
  3005. if(code_seen('X')) disable_x();
  3006. if(code_seen('Y')) disable_y();
  3007. if(code_seen('Z')) disable_z();
  3008. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3009. if(code_seen('E')) {
  3010. disable_e0();
  3011. disable_e1();
  3012. disable_e2();
  3013. }
  3014. #endif
  3015. }
  3016. }
  3017. break;
  3018. case 85: // M85
  3019. if(code_seen('S')) {
  3020. max_inactive_time = code_value() * 1000;
  3021. }
  3022. break;
  3023. case 92: // M92
  3024. for(int8_t i=0; i < NUM_AXIS; i++)
  3025. {
  3026. if(code_seen(axis_codes[i]))
  3027. {
  3028. if(i == 3) { // E
  3029. float value = code_value();
  3030. if(value < 20.0) {
  3031. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3032. max_e_jerk *= factor;
  3033. max_feedrate[i] *= factor;
  3034. axis_steps_per_sqr_second[i] *= factor;
  3035. }
  3036. axis_steps_per_unit[i] = value;
  3037. }
  3038. else {
  3039. axis_steps_per_unit[i] = code_value();
  3040. }
  3041. }
  3042. }
  3043. break;
  3044. case 115: // M115
  3045. if (code_seen('V')) {
  3046. // Report the Prusa version number.
  3047. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3048. } else if (code_seen('U')) {
  3049. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3050. // pause the print and ask the user to upgrade the firmware.
  3051. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3052. } else {
  3053. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3054. }
  3055. break;
  3056. case 117: // M117 display message
  3057. starpos = (strchr(strchr_pointer + 5,'*'));
  3058. if(starpos!=NULL)
  3059. *(starpos)='\0';
  3060. lcd_setstatus(strchr_pointer + 5);
  3061. break;
  3062. case 114: // M114
  3063. SERIAL_PROTOCOLPGM("X:");
  3064. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3065. SERIAL_PROTOCOLPGM(" Y:");
  3066. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" Z:");
  3068. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3069. SERIAL_PROTOCOLPGM(" E:");
  3070. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3071. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3072. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3073. SERIAL_PROTOCOLPGM(" Y:");
  3074. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3075. SERIAL_PROTOCOLPGM(" Z:");
  3076. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3077. SERIAL_PROTOCOLLN("");
  3078. break;
  3079. case 120: // M120
  3080. enable_endstops(false) ;
  3081. break;
  3082. case 121: // M121
  3083. enable_endstops(true) ;
  3084. break;
  3085. case 119: // M119
  3086. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3087. SERIAL_PROTOCOLLN("");
  3088. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3089. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3090. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3091. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3092. }else{
  3093. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3094. }
  3095. SERIAL_PROTOCOLLN("");
  3096. #endif
  3097. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3098. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3099. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3100. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3101. }else{
  3102. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3103. }
  3104. SERIAL_PROTOCOLLN("");
  3105. #endif
  3106. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3107. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3108. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3109. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3110. }else{
  3111. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3112. }
  3113. SERIAL_PROTOCOLLN("");
  3114. #endif
  3115. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3116. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3117. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3118. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3119. }else{
  3120. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3121. }
  3122. SERIAL_PROTOCOLLN("");
  3123. #endif
  3124. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3125. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3126. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3127. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3128. }else{
  3129. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3130. }
  3131. SERIAL_PROTOCOLLN("");
  3132. #endif
  3133. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3134. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3135. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3136. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3137. }else{
  3138. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3139. }
  3140. SERIAL_PROTOCOLLN("");
  3141. #endif
  3142. break;
  3143. //TODO: update for all axis, use for loop
  3144. #ifdef BLINKM
  3145. case 150: // M150
  3146. {
  3147. byte red;
  3148. byte grn;
  3149. byte blu;
  3150. if(code_seen('R')) red = code_value();
  3151. if(code_seen('U')) grn = code_value();
  3152. if(code_seen('B')) blu = code_value();
  3153. SendColors(red,grn,blu);
  3154. }
  3155. break;
  3156. #endif //BLINKM
  3157. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3158. {
  3159. tmp_extruder = active_extruder;
  3160. if(code_seen('T')) {
  3161. tmp_extruder = code_value();
  3162. if(tmp_extruder >= EXTRUDERS) {
  3163. SERIAL_ECHO_START;
  3164. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3165. break;
  3166. }
  3167. }
  3168. float area = .0;
  3169. if(code_seen('D')) {
  3170. float diameter = (float)code_value();
  3171. if (diameter == 0.0) {
  3172. // setting any extruder filament size disables volumetric on the assumption that
  3173. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3174. // for all extruders
  3175. volumetric_enabled = false;
  3176. } else {
  3177. filament_size[tmp_extruder] = (float)code_value();
  3178. // make sure all extruders have some sane value for the filament size
  3179. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3180. #if EXTRUDERS > 1
  3181. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3182. #if EXTRUDERS > 2
  3183. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3184. #endif
  3185. #endif
  3186. volumetric_enabled = true;
  3187. }
  3188. } else {
  3189. //reserved for setting filament diameter via UFID or filament measuring device
  3190. break;
  3191. }
  3192. calculate_volumetric_multipliers();
  3193. }
  3194. break;
  3195. case 201: // M201
  3196. for(int8_t i=0; i < NUM_AXIS; i++)
  3197. {
  3198. if(code_seen(axis_codes[i]))
  3199. {
  3200. max_acceleration_units_per_sq_second[i] = code_value();
  3201. }
  3202. }
  3203. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3204. reset_acceleration_rates();
  3205. break;
  3206. #if 0 // Not used for Sprinter/grbl gen6
  3207. case 202: // M202
  3208. for(int8_t i=0; i < NUM_AXIS; i++) {
  3209. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3210. }
  3211. break;
  3212. #endif
  3213. case 203: // M203 max feedrate mm/sec
  3214. for(int8_t i=0; i < NUM_AXIS; i++) {
  3215. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3216. }
  3217. break;
  3218. case 204: // M204 acclereration S normal moves T filmanent only moves
  3219. {
  3220. if(code_seen('S')) acceleration = code_value() ;
  3221. if(code_seen('T')) retract_acceleration = code_value() ;
  3222. }
  3223. break;
  3224. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3225. {
  3226. if(code_seen('S')) minimumfeedrate = code_value();
  3227. if(code_seen('T')) mintravelfeedrate = code_value();
  3228. if(code_seen('B')) minsegmenttime = code_value() ;
  3229. if(code_seen('X')) max_xy_jerk = code_value() ;
  3230. if(code_seen('Z')) max_z_jerk = code_value() ;
  3231. if(code_seen('E')) max_e_jerk = code_value() ;
  3232. }
  3233. break;
  3234. case 206: // M206 additional homing offset
  3235. for(int8_t i=0; i < 3; i++)
  3236. {
  3237. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3238. }
  3239. break;
  3240. #ifdef FWRETRACT
  3241. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3242. {
  3243. if(code_seen('S'))
  3244. {
  3245. retract_length = code_value() ;
  3246. }
  3247. if(code_seen('F'))
  3248. {
  3249. retract_feedrate = code_value()/60 ;
  3250. }
  3251. if(code_seen('Z'))
  3252. {
  3253. retract_zlift = code_value() ;
  3254. }
  3255. }break;
  3256. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3257. {
  3258. if(code_seen('S'))
  3259. {
  3260. retract_recover_length = code_value() ;
  3261. }
  3262. if(code_seen('F'))
  3263. {
  3264. retract_recover_feedrate = code_value()/60 ;
  3265. }
  3266. }break;
  3267. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3268. {
  3269. if(code_seen('S'))
  3270. {
  3271. int t= code_value() ;
  3272. switch(t)
  3273. {
  3274. case 0:
  3275. {
  3276. autoretract_enabled=false;
  3277. retracted[0]=false;
  3278. #if EXTRUDERS > 1
  3279. retracted[1]=false;
  3280. #endif
  3281. #if EXTRUDERS > 2
  3282. retracted[2]=false;
  3283. #endif
  3284. }break;
  3285. case 1:
  3286. {
  3287. autoretract_enabled=true;
  3288. retracted[0]=false;
  3289. #if EXTRUDERS > 1
  3290. retracted[1]=false;
  3291. #endif
  3292. #if EXTRUDERS > 2
  3293. retracted[2]=false;
  3294. #endif
  3295. }break;
  3296. default:
  3297. SERIAL_ECHO_START;
  3298. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3299. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3300. SERIAL_ECHOLNPGM("\"");
  3301. }
  3302. }
  3303. }break;
  3304. #endif // FWRETRACT
  3305. #if EXTRUDERS > 1
  3306. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3307. {
  3308. if(setTargetedHotend(218)){
  3309. break;
  3310. }
  3311. if(code_seen('X'))
  3312. {
  3313. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3314. }
  3315. if(code_seen('Y'))
  3316. {
  3317. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3318. }
  3319. SERIAL_ECHO_START;
  3320. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3321. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3322. {
  3323. SERIAL_ECHO(" ");
  3324. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3325. SERIAL_ECHO(",");
  3326. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3327. }
  3328. SERIAL_ECHOLN("");
  3329. }break;
  3330. #endif
  3331. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3332. {
  3333. if(code_seen('S'))
  3334. {
  3335. feedmultiply = code_value() ;
  3336. }
  3337. }
  3338. break;
  3339. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3340. {
  3341. if(code_seen('S'))
  3342. {
  3343. int tmp_code = code_value();
  3344. if (code_seen('T'))
  3345. {
  3346. if(setTargetedHotend(221)){
  3347. break;
  3348. }
  3349. extruder_multiply[tmp_extruder] = tmp_code;
  3350. }
  3351. else
  3352. {
  3353. extrudemultiply = tmp_code ;
  3354. }
  3355. }
  3356. }
  3357. break;
  3358. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3359. {
  3360. if(code_seen('P')){
  3361. int pin_number = code_value(); // pin number
  3362. int pin_state = -1; // required pin state - default is inverted
  3363. if(code_seen('S')) pin_state = code_value(); // required pin state
  3364. if(pin_state >= -1 && pin_state <= 1){
  3365. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3366. {
  3367. if (sensitive_pins[i] == pin_number)
  3368. {
  3369. pin_number = -1;
  3370. break;
  3371. }
  3372. }
  3373. if (pin_number > -1)
  3374. {
  3375. int target = LOW;
  3376. st_synchronize();
  3377. pinMode(pin_number, INPUT);
  3378. switch(pin_state){
  3379. case 1:
  3380. target = HIGH;
  3381. break;
  3382. case 0:
  3383. target = LOW;
  3384. break;
  3385. case -1:
  3386. target = !digitalRead(pin_number);
  3387. break;
  3388. }
  3389. while(digitalRead(pin_number) != target){
  3390. manage_heater();
  3391. manage_inactivity();
  3392. lcd_update();
  3393. }
  3394. }
  3395. }
  3396. }
  3397. }
  3398. break;
  3399. #if NUM_SERVOS > 0
  3400. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3401. {
  3402. int servo_index = -1;
  3403. int servo_position = 0;
  3404. if (code_seen('P'))
  3405. servo_index = code_value();
  3406. if (code_seen('S')) {
  3407. servo_position = code_value();
  3408. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3409. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3410. servos[servo_index].attach(0);
  3411. #endif
  3412. servos[servo_index].write(servo_position);
  3413. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3414. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3415. servos[servo_index].detach();
  3416. #endif
  3417. }
  3418. else {
  3419. SERIAL_ECHO_START;
  3420. SERIAL_ECHO("Servo ");
  3421. SERIAL_ECHO(servo_index);
  3422. SERIAL_ECHOLN(" out of range");
  3423. }
  3424. }
  3425. else if (servo_index >= 0) {
  3426. SERIAL_PROTOCOL(MSG_OK);
  3427. SERIAL_PROTOCOL(" Servo ");
  3428. SERIAL_PROTOCOL(servo_index);
  3429. SERIAL_PROTOCOL(": ");
  3430. SERIAL_PROTOCOL(servos[servo_index].read());
  3431. SERIAL_PROTOCOLLN("");
  3432. }
  3433. }
  3434. break;
  3435. #endif // NUM_SERVOS > 0
  3436. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3437. case 300: // M300
  3438. {
  3439. int beepS = code_seen('S') ? code_value() : 110;
  3440. int beepP = code_seen('P') ? code_value() : 1000;
  3441. if (beepS > 0)
  3442. {
  3443. #if BEEPER > 0
  3444. tone(BEEPER, beepS);
  3445. delay(beepP);
  3446. noTone(BEEPER);
  3447. #elif defined(ULTRALCD)
  3448. lcd_buzz(beepS, beepP);
  3449. #elif defined(LCD_USE_I2C_BUZZER)
  3450. lcd_buzz(beepP, beepS);
  3451. #endif
  3452. }
  3453. else
  3454. {
  3455. delay(beepP);
  3456. }
  3457. }
  3458. break;
  3459. #endif // M300
  3460. #ifdef PIDTEMP
  3461. case 301: // M301
  3462. {
  3463. if(code_seen('P')) Kp = code_value();
  3464. if(code_seen('I')) Ki = scalePID_i(code_value());
  3465. if(code_seen('D')) Kd = scalePID_d(code_value());
  3466. #ifdef PID_ADD_EXTRUSION_RATE
  3467. if(code_seen('C')) Kc = code_value();
  3468. #endif
  3469. updatePID();
  3470. SERIAL_PROTOCOL(MSG_OK);
  3471. SERIAL_PROTOCOL(" p:");
  3472. SERIAL_PROTOCOL(Kp);
  3473. SERIAL_PROTOCOL(" i:");
  3474. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3475. SERIAL_PROTOCOL(" d:");
  3476. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3477. #ifdef PID_ADD_EXTRUSION_RATE
  3478. SERIAL_PROTOCOL(" c:");
  3479. //Kc does not have scaling applied above, or in resetting defaults
  3480. SERIAL_PROTOCOL(Kc);
  3481. #endif
  3482. SERIAL_PROTOCOLLN("");
  3483. }
  3484. break;
  3485. #endif //PIDTEMP
  3486. #ifdef PIDTEMPBED
  3487. case 304: // M304
  3488. {
  3489. if(code_seen('P')) bedKp = code_value();
  3490. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3491. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3492. updatePID();
  3493. SERIAL_PROTOCOL(MSG_OK);
  3494. SERIAL_PROTOCOL(" p:");
  3495. SERIAL_PROTOCOL(bedKp);
  3496. SERIAL_PROTOCOL(" i:");
  3497. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3498. SERIAL_PROTOCOL(" d:");
  3499. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3500. SERIAL_PROTOCOLLN("");
  3501. }
  3502. break;
  3503. #endif //PIDTEMP
  3504. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3505. {
  3506. #ifdef CHDK
  3507. SET_OUTPUT(CHDK);
  3508. WRITE(CHDK, HIGH);
  3509. chdkHigh = millis();
  3510. chdkActive = true;
  3511. #else
  3512. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3513. const uint8_t NUM_PULSES=16;
  3514. const float PULSE_LENGTH=0.01524;
  3515. for(int i=0; i < NUM_PULSES; i++) {
  3516. WRITE(PHOTOGRAPH_PIN, HIGH);
  3517. _delay_ms(PULSE_LENGTH);
  3518. WRITE(PHOTOGRAPH_PIN, LOW);
  3519. _delay_ms(PULSE_LENGTH);
  3520. }
  3521. delay(7.33);
  3522. for(int i=0; i < NUM_PULSES; i++) {
  3523. WRITE(PHOTOGRAPH_PIN, HIGH);
  3524. _delay_ms(PULSE_LENGTH);
  3525. WRITE(PHOTOGRAPH_PIN, LOW);
  3526. _delay_ms(PULSE_LENGTH);
  3527. }
  3528. #endif
  3529. #endif //chdk end if
  3530. }
  3531. break;
  3532. #ifdef DOGLCD
  3533. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3534. {
  3535. if (code_seen('C')) {
  3536. lcd_setcontrast( ((int)code_value())&63 );
  3537. }
  3538. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3539. SERIAL_PROTOCOL(lcd_contrast);
  3540. SERIAL_PROTOCOLLN("");
  3541. }
  3542. break;
  3543. #endif
  3544. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3545. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3546. {
  3547. float temp = .0;
  3548. if (code_seen('S')) temp=code_value();
  3549. set_extrude_min_temp(temp);
  3550. }
  3551. break;
  3552. #endif
  3553. case 303: // M303 PID autotune
  3554. {
  3555. float temp = 150.0;
  3556. int e=0;
  3557. int c=5;
  3558. if (code_seen('E')) e=code_value();
  3559. if (e<0)
  3560. temp=70;
  3561. if (code_seen('S')) temp=code_value();
  3562. if (code_seen('C')) c=code_value();
  3563. PID_autotune(temp, e, c);
  3564. }
  3565. break;
  3566. case 400: // M400 finish all moves
  3567. {
  3568. st_synchronize();
  3569. }
  3570. break;
  3571. #ifdef FILAMENT_SENSOR
  3572. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3573. {
  3574. #if (FILWIDTH_PIN > -1)
  3575. if(code_seen('N')) filament_width_nominal=code_value();
  3576. else{
  3577. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3578. SERIAL_PROTOCOLLN(filament_width_nominal);
  3579. }
  3580. #endif
  3581. }
  3582. break;
  3583. case 405: //M405 Turn on filament sensor for control
  3584. {
  3585. if(code_seen('D')) meas_delay_cm=code_value();
  3586. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3587. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3588. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3589. {
  3590. int temp_ratio = widthFil_to_size_ratio();
  3591. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3592. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3593. }
  3594. delay_index1=0;
  3595. delay_index2=0;
  3596. }
  3597. filament_sensor = true ;
  3598. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3599. //SERIAL_PROTOCOL(filament_width_meas);
  3600. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3601. //SERIAL_PROTOCOL(extrudemultiply);
  3602. }
  3603. break;
  3604. case 406: //M406 Turn off filament sensor for control
  3605. {
  3606. filament_sensor = false ;
  3607. }
  3608. break;
  3609. case 407: //M407 Display measured filament diameter
  3610. {
  3611. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3612. SERIAL_PROTOCOLLN(filament_width_meas);
  3613. }
  3614. break;
  3615. #endif
  3616. case 500: // M500 Store settings in EEPROM
  3617. {
  3618. Config_StoreSettings();
  3619. }
  3620. break;
  3621. case 501: // M501 Read settings from EEPROM
  3622. {
  3623. Config_RetrieveSettings();
  3624. }
  3625. break;
  3626. case 502: // M502 Revert to default settings
  3627. {
  3628. Config_ResetDefault();
  3629. }
  3630. break;
  3631. case 503: // M503 print settings currently in memory
  3632. {
  3633. Config_PrintSettings();
  3634. }
  3635. break;
  3636. case 509: //M509 Force language selection
  3637. {
  3638. lcd_force_language_selection();
  3639. SERIAL_ECHO_START;
  3640. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3641. }
  3642. break;
  3643. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3644. case 540:
  3645. {
  3646. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3647. }
  3648. break;
  3649. #endif
  3650. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3651. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3652. {
  3653. float value;
  3654. if (code_seen('Z'))
  3655. {
  3656. value = code_value();
  3657. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3658. {
  3659. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3660. SERIAL_ECHO_START;
  3661. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3662. SERIAL_PROTOCOLLN("");
  3663. }
  3664. else
  3665. {
  3666. SERIAL_ECHO_START;
  3667. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3668. SERIAL_ECHORPGM(MSG_Z_MIN);
  3669. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3670. SERIAL_ECHORPGM(MSG_Z_MAX);
  3671. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3672. SERIAL_PROTOCOLLN("");
  3673. }
  3674. }
  3675. else
  3676. {
  3677. SERIAL_ECHO_START;
  3678. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3679. SERIAL_ECHO(-zprobe_zoffset);
  3680. SERIAL_PROTOCOLLN("");
  3681. }
  3682. break;
  3683. }
  3684. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3685. #ifdef FILAMENTCHANGEENABLE
  3686. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3687. {
  3688. st_synchronize();
  3689. feedmultiplyBckp=feedmultiply;
  3690. int8_t TooLowZ = 0;
  3691. float target[4];
  3692. float lastpos[4];
  3693. target[X_AXIS]=current_position[X_AXIS];
  3694. target[Y_AXIS]=current_position[Y_AXIS];
  3695. target[Z_AXIS]=current_position[Z_AXIS];
  3696. target[E_AXIS]=current_position[E_AXIS];
  3697. lastpos[X_AXIS]=current_position[X_AXIS];
  3698. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3699. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3700. lastpos[E_AXIS]=current_position[E_AXIS];
  3701. //Restract extruder
  3702. if(code_seen('E'))
  3703. {
  3704. target[E_AXIS]+= code_value();
  3705. }
  3706. else
  3707. {
  3708. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3709. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3710. #endif
  3711. }
  3712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3713. //Lift Z
  3714. if(code_seen('Z'))
  3715. {
  3716. target[Z_AXIS]+= code_value();
  3717. }
  3718. else
  3719. {
  3720. #ifdef FILAMENTCHANGE_ZADD
  3721. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3722. if(target[Z_AXIS] < 10){
  3723. target[Z_AXIS]+= 10 ;
  3724. TooLowZ = 1;
  3725. }else{
  3726. TooLowZ = 0;
  3727. }
  3728. #endif
  3729. }
  3730. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3731. //Move XY to side
  3732. if(code_seen('X'))
  3733. {
  3734. target[X_AXIS]+= code_value();
  3735. }
  3736. else
  3737. {
  3738. #ifdef FILAMENTCHANGE_XPOS
  3739. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3740. #endif
  3741. }
  3742. if(code_seen('Y'))
  3743. {
  3744. target[Y_AXIS]= code_value();
  3745. }
  3746. else
  3747. {
  3748. #ifdef FILAMENTCHANGE_YPOS
  3749. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3750. #endif
  3751. }
  3752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3753. // Unload filament
  3754. if(code_seen('L'))
  3755. {
  3756. target[E_AXIS]+= code_value();
  3757. }
  3758. else
  3759. {
  3760. #ifdef FILAMENTCHANGE_FINALRETRACT
  3761. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3762. #endif
  3763. }
  3764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3765. //finish moves
  3766. st_synchronize();
  3767. //disable extruder steppers so filament can be removed
  3768. disable_e0();
  3769. disable_e1();
  3770. disable_e2();
  3771. delay(100);
  3772. //Wait for user to insert filament
  3773. uint8_t cnt=0;
  3774. int counterBeep = 0;
  3775. lcd_wait_interact();
  3776. while(!lcd_clicked()){
  3777. cnt++;
  3778. manage_heater();
  3779. manage_inactivity(true);
  3780. if(cnt==0)
  3781. {
  3782. #if BEEPER > 0
  3783. if (counterBeep== 500){
  3784. counterBeep = 0;
  3785. }
  3786. SET_OUTPUT(BEEPER);
  3787. if (counterBeep== 0){
  3788. WRITE(BEEPER,HIGH);
  3789. }
  3790. if (counterBeep== 20){
  3791. WRITE(BEEPER,LOW);
  3792. }
  3793. counterBeep++;
  3794. #else
  3795. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3796. lcd_buzz(1000/6,100);
  3797. #else
  3798. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3799. #endif
  3800. #endif
  3801. }
  3802. }
  3803. //Filament inserted
  3804. WRITE(BEEPER,LOW);
  3805. //Feed the filament to the end of nozzle quickly
  3806. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3807. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3808. //Extrude some filament
  3809. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3810. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3811. //Wait for user to check the state
  3812. lcd_change_fil_state = 0;
  3813. lcd_loading_filament();
  3814. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3815. lcd_change_fil_state = 0;
  3816. lcd_alright();
  3817. switch(lcd_change_fil_state){
  3818. // Filament failed to load so load it again
  3819. case 2:
  3820. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3822. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3824. lcd_loading_filament();
  3825. break;
  3826. // Filament loaded properly but color is not clear
  3827. case 3:
  3828. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3830. lcd_loading_color();
  3831. break;
  3832. // Everything good
  3833. default:
  3834. lcd_change_success();
  3835. break;
  3836. }
  3837. }
  3838. //Not let's go back to print
  3839. //Feed a little of filament to stabilize pressure
  3840. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3841. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3842. //Retract
  3843. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3844. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3845. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3846. //Move XY back
  3847. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3848. //Move Z back
  3849. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3850. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3851. //Unretract
  3852. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3853. //Set E position to original
  3854. plan_set_e_position(lastpos[E_AXIS]);
  3855. //Recover feed rate
  3856. feedmultiply=feedmultiplyBckp;
  3857. char cmd[9];
  3858. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3859. enquecommand(cmd);
  3860. }
  3861. break;
  3862. #endif //FILAMENTCHANGEENABLE
  3863. case 907: // M907 Set digital trimpot motor current using axis codes.
  3864. {
  3865. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3866. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3867. if(code_seen('B')) digipot_current(4,code_value());
  3868. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3869. #endif
  3870. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3871. if(code_seen('X')) digipot_current(0, code_value());
  3872. #endif
  3873. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3874. if(code_seen('Z')) digipot_current(1, code_value());
  3875. #endif
  3876. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3877. if(code_seen('E')) digipot_current(2, code_value());
  3878. #endif
  3879. #ifdef DIGIPOT_I2C
  3880. // this one uses actual amps in floating point
  3881. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3882. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3883. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3884. #endif
  3885. }
  3886. break;
  3887. case 908: // M908 Control digital trimpot directly.
  3888. {
  3889. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3890. uint8_t channel,current;
  3891. if(code_seen('P')) channel=code_value();
  3892. if(code_seen('S')) current=code_value();
  3893. digitalPotWrite(channel, current);
  3894. #endif
  3895. }
  3896. break;
  3897. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3898. {
  3899. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3900. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3902. if(code_seen('B')) microstep_mode(4,code_value());
  3903. microstep_readings();
  3904. #endif
  3905. }
  3906. break;
  3907. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3908. {
  3909. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3910. if(code_seen('S')) switch((int)code_value())
  3911. {
  3912. case 1:
  3913. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3914. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3915. break;
  3916. case 2:
  3917. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3918. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3919. break;
  3920. }
  3921. microstep_readings();
  3922. #endif
  3923. }
  3924. break;
  3925. case 999: // M999: Restart after being stopped
  3926. Stopped = false;
  3927. lcd_reset_alert_level();
  3928. gcode_LastN = Stopped_gcode_LastN;
  3929. FlushSerialRequestResend();
  3930. break;
  3931. }
  3932. } // end if(code_seen('M')) (end of M codes)
  3933. else if(code_seen('T'))
  3934. {
  3935. tmp_extruder = code_value();
  3936. if(tmp_extruder >= EXTRUDERS) {
  3937. SERIAL_ECHO_START;
  3938. SERIAL_ECHO("T");
  3939. SERIAL_ECHO(tmp_extruder);
  3940. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3941. }
  3942. else {
  3943. boolean make_move = false;
  3944. if(code_seen('F')) {
  3945. make_move = true;
  3946. next_feedrate = code_value();
  3947. if(next_feedrate > 0.0) {
  3948. feedrate = next_feedrate;
  3949. }
  3950. }
  3951. #if EXTRUDERS > 1
  3952. if(tmp_extruder != active_extruder) {
  3953. // Save current position to return to after applying extruder offset
  3954. memcpy(destination, current_position, sizeof(destination));
  3955. // Offset extruder (only by XY)
  3956. int i;
  3957. for(i = 0; i < 2; i++) {
  3958. current_position[i] = current_position[i] -
  3959. extruder_offset[i][active_extruder] +
  3960. extruder_offset[i][tmp_extruder];
  3961. }
  3962. // Set the new active extruder and position
  3963. active_extruder = tmp_extruder;
  3964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3965. // Move to the old position if 'F' was in the parameters
  3966. if(make_move && Stopped == false) {
  3967. prepare_move();
  3968. }
  3969. }
  3970. #endif
  3971. SERIAL_ECHO_START;
  3972. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3973. SERIAL_PROTOCOLLN((int)active_extruder);
  3974. }
  3975. } // end if(code_seen('T')) (end of T codes)
  3976. else
  3977. {
  3978. SERIAL_ECHO_START;
  3979. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3980. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3981. SERIAL_ECHOLNPGM("\"");
  3982. }
  3983. ClearToSend();
  3984. }
  3985. void FlushSerialRequestResend()
  3986. {
  3987. //char cmdbuffer[bufindr][100]="Resend:";
  3988. MYSERIAL.flush();
  3989. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3990. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3991. ClearToSend();
  3992. }
  3993. // Confirm the execution of a command, if sent from a serial line.
  3994. // Execution of a command from a SD card will not be confirmed.
  3995. void ClearToSend()
  3996. {
  3997. previous_millis_cmd = millis();
  3998. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  3999. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4000. }
  4001. void get_coordinates()
  4002. {
  4003. bool seen[4]={false,false,false,false};
  4004. for(int8_t i=0; i < NUM_AXIS; i++) {
  4005. if(code_seen(axis_codes[i]))
  4006. {
  4007. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4008. seen[i]=true;
  4009. }
  4010. else destination[i] = current_position[i]; //Are these else lines really needed?
  4011. }
  4012. if(code_seen('F')) {
  4013. next_feedrate = code_value();
  4014. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4015. }
  4016. }
  4017. void get_arc_coordinates()
  4018. {
  4019. #ifdef SF_ARC_FIX
  4020. bool relative_mode_backup = relative_mode;
  4021. relative_mode = true;
  4022. #endif
  4023. get_coordinates();
  4024. #ifdef SF_ARC_FIX
  4025. relative_mode=relative_mode_backup;
  4026. #endif
  4027. if(code_seen('I')) {
  4028. offset[0] = code_value();
  4029. }
  4030. else {
  4031. offset[0] = 0.0;
  4032. }
  4033. if(code_seen('J')) {
  4034. offset[1] = code_value();
  4035. }
  4036. else {
  4037. offset[1] = 0.0;
  4038. }
  4039. }
  4040. void clamp_to_software_endstops(float target[3])
  4041. {
  4042. world2machine_clamp(target[0], target[1]);
  4043. // Clamp the Z coordinate.
  4044. if (min_software_endstops) {
  4045. float negative_z_offset = 0;
  4046. #ifdef ENABLE_AUTO_BED_LEVELING
  4047. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4048. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4049. #endif
  4050. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4051. }
  4052. if (max_software_endstops) {
  4053. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4054. }
  4055. }
  4056. #ifdef MESH_BED_LEVELING
  4057. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4058. float dx = x - current_position[X_AXIS];
  4059. float dy = y - current_position[Y_AXIS];
  4060. float dz = z - current_position[Z_AXIS];
  4061. int n_segments = 0;
  4062. if (mbl.active) {
  4063. float len = abs(dx) + abs(dy) + abs(dz);
  4064. if (len > 0)
  4065. n_segments = int(floor(len / 30.f));
  4066. }
  4067. if (n_segments > 1) {
  4068. float de = e - current_position[E_AXIS];
  4069. for (int i = 1; i < n_segments; ++ i) {
  4070. float t = float(i) / float(n_segments);
  4071. plan_buffer_line(
  4072. current_position[X_AXIS] + t * dx,
  4073. current_position[Y_AXIS] + t * dy,
  4074. current_position[Z_AXIS] + t * dz,
  4075. current_position[E_AXIS] + t * de,
  4076. feed_rate, extruder);
  4077. }
  4078. }
  4079. // The rest of the path.
  4080. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4081. set_current_to_destination();
  4082. }
  4083. #endif // MESH_BED_LEVELING
  4084. void prepare_move()
  4085. {
  4086. clamp_to_software_endstops(destination);
  4087. previous_millis_cmd = millis();
  4088. // Do not use feedmultiply for E or Z only moves
  4089. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4090. #ifdef MESH_BED_LEVELING
  4091. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4092. #else
  4093. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4094. #endif
  4095. }
  4096. else {
  4097. #ifdef MESH_BED_LEVELING
  4098. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4099. #else
  4100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4101. #endif
  4102. }
  4103. for(int8_t i=0; i < NUM_AXIS; i++) {
  4104. current_position[i] = destination[i];
  4105. }
  4106. }
  4107. void prepare_arc_move(char isclockwise) {
  4108. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4109. // Trace the arc
  4110. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4111. // As far as the parser is concerned, the position is now == target. In reality the
  4112. // motion control system might still be processing the action and the real tool position
  4113. // in any intermediate location.
  4114. for(int8_t i=0; i < NUM_AXIS; i++) {
  4115. current_position[i] = destination[i];
  4116. }
  4117. previous_millis_cmd = millis();
  4118. }
  4119. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4120. #if defined(FAN_PIN)
  4121. #if CONTROLLERFAN_PIN == FAN_PIN
  4122. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4123. #endif
  4124. #endif
  4125. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4126. unsigned long lastMotorCheck = 0;
  4127. void controllerFan()
  4128. {
  4129. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4130. {
  4131. lastMotorCheck = millis();
  4132. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4133. #if EXTRUDERS > 2
  4134. || !READ(E2_ENABLE_PIN)
  4135. #endif
  4136. #if EXTRUDER > 1
  4137. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4138. || !READ(X2_ENABLE_PIN)
  4139. #endif
  4140. || !READ(E1_ENABLE_PIN)
  4141. #endif
  4142. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4143. {
  4144. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4145. }
  4146. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4147. {
  4148. digitalWrite(CONTROLLERFAN_PIN, 0);
  4149. analogWrite(CONTROLLERFAN_PIN, 0);
  4150. }
  4151. else
  4152. {
  4153. // allows digital or PWM fan output to be used (see M42 handling)
  4154. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4155. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4156. }
  4157. }
  4158. }
  4159. #endif
  4160. #ifdef TEMP_STAT_LEDS
  4161. static bool blue_led = false;
  4162. static bool red_led = false;
  4163. static uint32_t stat_update = 0;
  4164. void handle_status_leds(void) {
  4165. float max_temp = 0.0;
  4166. if(millis() > stat_update) {
  4167. stat_update += 500; // Update every 0.5s
  4168. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4169. max_temp = max(max_temp, degHotend(cur_extruder));
  4170. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4171. }
  4172. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4173. max_temp = max(max_temp, degTargetBed());
  4174. max_temp = max(max_temp, degBed());
  4175. #endif
  4176. if((max_temp > 55.0) && (red_led == false)) {
  4177. digitalWrite(STAT_LED_RED, 1);
  4178. digitalWrite(STAT_LED_BLUE, 0);
  4179. red_led = true;
  4180. blue_led = false;
  4181. }
  4182. if((max_temp < 54.0) && (blue_led == false)) {
  4183. digitalWrite(STAT_LED_RED, 0);
  4184. digitalWrite(STAT_LED_BLUE, 1);
  4185. red_led = false;
  4186. blue_led = true;
  4187. }
  4188. }
  4189. }
  4190. #endif
  4191. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4192. {
  4193. #if defined(KILL_PIN) && KILL_PIN > -1
  4194. static int killCount = 0; // make the inactivity button a bit less responsive
  4195. const int KILL_DELAY = 10000;
  4196. #endif
  4197. if(buflen < (BUFSIZE-1))
  4198. get_command();
  4199. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4200. if(max_inactive_time)
  4201. kill();
  4202. if(stepper_inactive_time) {
  4203. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4204. {
  4205. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4206. disable_x();
  4207. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4208. disable_y();
  4209. disable_z();
  4210. disable_e0();
  4211. disable_e1();
  4212. disable_e2();
  4213. }
  4214. }
  4215. }
  4216. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4217. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4218. {
  4219. chdkActive = false;
  4220. WRITE(CHDK, LOW);
  4221. }
  4222. #endif
  4223. #if defined(KILL_PIN) && KILL_PIN > -1
  4224. // Check if the kill button was pressed and wait just in case it was an accidental
  4225. // key kill key press
  4226. // -------------------------------------------------------------------------------
  4227. if( 0 == READ(KILL_PIN) )
  4228. {
  4229. killCount++;
  4230. }
  4231. else if (killCount > 0)
  4232. {
  4233. killCount--;
  4234. }
  4235. // Exceeded threshold and we can confirm that it was not accidental
  4236. // KILL the machine
  4237. // ----------------------------------------------------------------
  4238. if ( killCount >= KILL_DELAY)
  4239. {
  4240. kill();
  4241. }
  4242. #endif
  4243. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4244. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4245. #endif
  4246. #ifdef EXTRUDER_RUNOUT_PREVENT
  4247. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4248. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4249. {
  4250. bool oldstatus=READ(E0_ENABLE_PIN);
  4251. enable_e0();
  4252. float oldepos=current_position[E_AXIS];
  4253. float oldedes=destination[E_AXIS];
  4254. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4255. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4256. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4257. current_position[E_AXIS]=oldepos;
  4258. destination[E_AXIS]=oldedes;
  4259. plan_set_e_position(oldepos);
  4260. previous_millis_cmd=millis();
  4261. st_synchronize();
  4262. WRITE(E0_ENABLE_PIN,oldstatus);
  4263. }
  4264. #endif
  4265. #ifdef TEMP_STAT_LEDS
  4266. handle_status_leds();
  4267. #endif
  4268. check_axes_activity();
  4269. }
  4270. void kill(const char *full_screen_message)
  4271. {
  4272. cli(); // Stop interrupts
  4273. disable_heater();
  4274. disable_x();
  4275. // SERIAL_ECHOLNPGM("kill - disable Y");
  4276. disable_y();
  4277. disable_z();
  4278. disable_e0();
  4279. disable_e1();
  4280. disable_e2();
  4281. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4282. pinMode(PS_ON_PIN,INPUT);
  4283. #endif
  4284. SERIAL_ERROR_START;
  4285. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4286. if (full_screen_message != NULL) {
  4287. SERIAL_ERRORLNRPGM(full_screen_message);
  4288. lcd_display_message_fullscreen_P(full_screen_message);
  4289. } else {
  4290. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4291. }
  4292. // FMC small patch to update the LCD before ending
  4293. sei(); // enable interrupts
  4294. for ( int i=5; i--; lcd_update())
  4295. {
  4296. delay(200);
  4297. }
  4298. cli(); // disable interrupts
  4299. suicide();
  4300. while(1) { /* Intentionally left empty */ } // Wait for reset
  4301. }
  4302. void Stop()
  4303. {
  4304. disable_heater();
  4305. if(Stopped == false) {
  4306. Stopped = true;
  4307. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4308. SERIAL_ERROR_START;
  4309. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4310. LCD_MESSAGERPGM(MSG_STOPPED);
  4311. }
  4312. }
  4313. bool IsStopped() { return Stopped; };
  4314. #ifdef FAST_PWM_FAN
  4315. void setPwmFrequency(uint8_t pin, int val)
  4316. {
  4317. val &= 0x07;
  4318. switch(digitalPinToTimer(pin))
  4319. {
  4320. #if defined(TCCR0A)
  4321. case TIMER0A:
  4322. case TIMER0B:
  4323. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4324. // TCCR0B |= val;
  4325. break;
  4326. #endif
  4327. #if defined(TCCR1A)
  4328. case TIMER1A:
  4329. case TIMER1B:
  4330. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4331. // TCCR1B |= val;
  4332. break;
  4333. #endif
  4334. #if defined(TCCR2)
  4335. case TIMER2:
  4336. case TIMER2:
  4337. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4338. TCCR2 |= val;
  4339. break;
  4340. #endif
  4341. #if defined(TCCR2A)
  4342. case TIMER2A:
  4343. case TIMER2B:
  4344. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4345. TCCR2B |= val;
  4346. break;
  4347. #endif
  4348. #if defined(TCCR3A)
  4349. case TIMER3A:
  4350. case TIMER3B:
  4351. case TIMER3C:
  4352. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4353. TCCR3B |= val;
  4354. break;
  4355. #endif
  4356. #if defined(TCCR4A)
  4357. case TIMER4A:
  4358. case TIMER4B:
  4359. case TIMER4C:
  4360. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4361. TCCR4B |= val;
  4362. break;
  4363. #endif
  4364. #if defined(TCCR5A)
  4365. case TIMER5A:
  4366. case TIMER5B:
  4367. case TIMER5C:
  4368. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4369. TCCR5B |= val;
  4370. break;
  4371. #endif
  4372. }
  4373. }
  4374. #endif //FAST_PWM_FAN
  4375. bool setTargetedHotend(int code){
  4376. tmp_extruder = active_extruder;
  4377. if(code_seen('T')) {
  4378. tmp_extruder = code_value();
  4379. if(tmp_extruder >= EXTRUDERS) {
  4380. SERIAL_ECHO_START;
  4381. switch(code){
  4382. case 104:
  4383. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4384. break;
  4385. case 105:
  4386. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4387. break;
  4388. case 109:
  4389. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4390. break;
  4391. case 218:
  4392. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4393. break;
  4394. case 221:
  4395. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4396. break;
  4397. }
  4398. SERIAL_ECHOLN(tmp_extruder);
  4399. return true;
  4400. }
  4401. }
  4402. return false;
  4403. }
  4404. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4405. {
  4406. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4407. {
  4408. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4409. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4410. }
  4411. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4412. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4413. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4414. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4415. total_filament_used = 0;
  4416. }
  4417. float calculate_volumetric_multiplier(float diameter) {
  4418. float area = .0;
  4419. float radius = .0;
  4420. radius = diameter * .5;
  4421. if (! volumetric_enabled || radius == 0) {
  4422. area = 1;
  4423. }
  4424. else {
  4425. area = M_PI * pow(radius, 2);
  4426. }
  4427. return 1.0 / area;
  4428. }
  4429. void calculate_volumetric_multipliers() {
  4430. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4431. #if EXTRUDERS > 1
  4432. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4433. #if EXTRUDERS > 2
  4434. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4435. #endif
  4436. #endif
  4437. }
  4438. void delay_keep_alive(int ms)
  4439. {
  4440. for (;;) {
  4441. manage_heater();
  4442. // Manage inactivity, but don't disable steppers on timeout.
  4443. manage_inactivity(true);
  4444. lcd_update();
  4445. if (ms == 0)
  4446. break;
  4447. else if (ms >= 50) {
  4448. delay(50);
  4449. ms -= 50;
  4450. } else {
  4451. delay(ms);
  4452. ms = 0;
  4453. }
  4454. }
  4455. }