| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150 | /*  planner.c - buffers movement commands and manages the acceleration profile plan Part of Grbl  Copyright (c) 2009-2011 Simen Svale Skogsrud  Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.  Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details.  You should have received a copy of the GNU General Public License along with Grbl.  If not, see <http://www.gnu.org/licenses/>. *//* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. *//*   Reasoning behind the mathematics in this module (in the key of 'Mathematica'):  s == speed, a == acceleration, t == time, d == distance  Basic definitions:  Speed[s_, a_, t_] := s + (a*t)  Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]  Distance to reach a specific speed with a constant acceleration:  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()  Speed after a given distance of travel with constant acceleration:  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] m -> Sqrt[2 a d + s^2]      DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]  When to start braking (di) to reach a specified destionation speed (s2) after accelerating from initial speed s1 without ever stopping at a plateau:  Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()  IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) */#include "Marlin.h"#include "planner.h"#include "stepper.h"#include "temperature.h"#include "ultralcd.h"#include "language.h"#ifdef MESH_BED_LEVELING#include "mesh_bed_leveling.h"#include "mesh_bed_calibration.h"#endif//===========================================================================//=============================public variables ============================//===========================================================================unsigned long minsegmenttime;float max_feedrate[NUM_AXIS]; // set the max speedsfloat axis_steps_per_unit[NUM_AXIS];unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by softwarefloat minimumfeedrate;float acceleration;         // Normal acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXXfloat retract_acceleration; //  mm/s^2   filament pull-pack and push-forward  while standing still in the other axis M204 TXXXXfloat max_xy_jerk; //speed than can be stopped at once, if i understand correctly.float max_z_jerk;float max_e_jerk;float mintravelfeedrate;unsigned long axis_steps_per_sqr_second[NUM_AXIS];#ifdef ENABLE_AUTO_BED_LEVELING// this holds the required transform to compensate for bed levelmatrix_3x3 plan_bed_level_matrix = {	1.0, 0.0, 0.0,	0.0, 1.0, 0.0,	0.0, 0.0, 1.0,};#endif // #ifdef ENABLE_AUTO_BED_LEVELING// The current position of the tool in absolute stepslong position[NUM_AXIS];   //rescaled from extern when axis_steps_per_unit are changed by gcodestatic float previous_speed[NUM_AXIS]; // Speed of previous path line segmentstatic float previous_nominal_speed; // Nominal speed of previous path line segment#ifdef AUTOTEMPfloat autotemp_max=250;float autotemp_min=210;float autotemp_factor=0.1;bool autotemp_enabled=false;#endifunsigned char g_uc_extruder_last_move[3] = {0,0,0};//===========================================================================//=================semi-private variables, used in inline  functions    =====//===========================================================================block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructionsvolatile unsigned char block_buffer_head;           // Index of the next block to be pushedvolatile unsigned char block_buffer_tail;           // Index of the block to process now//===========================================================================//=============================private variables ============================//===========================================================================#ifdef PREVENT_DANGEROUS_EXTRUDEfloat extrude_min_temp=EXTRUDE_MINTEMP;#endif#ifdef XY_FREQUENCY_LIMIT#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)// Used for the frequency limitstatic unsigned char old_direction_bits = 0;               // Old direction bits. Used for speed calculationsstatic long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0};     // Segment times (in us). Used for speed calculationsstatic long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};#endif#ifdef FILAMENT_SENSOR static char meas_sample; //temporary variable to hold filament measurement sample#endif// Returns the index of the next block in the ring buffer// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.static int8_t next_block_index(int8_t block_index) {  block_index++;  if (block_index == BLOCK_BUFFER_SIZE) {     block_index = 0;   }  return(block_index);}// Returns the index of the previous block in the ring bufferstatic int8_t prev_block_index(int8_t block_index) {  if (block_index == 0) {     block_index = BLOCK_BUFFER_SIZE;   }  block_index--;  return(block_index);}//===========================================================================//=============================functions         ============================//===========================================================================// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration:FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration){  if (acceleration!=0) {    return((target_rate*target_rate-initial_rate*initial_rate)/      (2.0*acceleration));  }  else {    return 0.0;  // acceleration was 0, set acceleration distance to 0  }}// This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after// a total travel of distance. This can be used to compute the intersection point between acceleration and// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {  if (acceleration!=0) {    return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/      (4.0*acceleration) );  }  else {    return 0.0;  // acceleration was 0, set intersection distance to 0  }}// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {  unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)  unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)  // Limit minimal step rate (Otherwise the timer will overflow.)  if(initial_rate <120) {    initial_rate=120;   }  if(final_rate < 120) {    final_rate=120;    }  long acceleration = block->acceleration_st;  int32_t accelerate_steps =    ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));  int32_t decelerate_steps =    floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));  // Calculate the size of Plateau of Nominal Rate.  int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will  // have to use intersection_distance() to calculate when to abort acceleration and start braking  // in order to reach the final_rate exactly at the end of this block.  if (plateau_steps < 0) {    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));    accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off    accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)    plateau_steps = 0;  }#ifdef ADVANCE  volatile long initial_advance = block->advance*entry_factor*entry_factor;   volatile long final_advance = block->advance*exit_factor*exit_factor;#endif // ADVANCE  // block->accelerate_until = accelerate_steps;  // block->decelerate_after = accelerate_steps+plateau_steps;  CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section  if(block->busy == false) { // Don't update variables if block is busy.    block->accelerate_until = accelerate_steps;    block->decelerate_after = accelerate_steps+plateau_steps;    block->initial_rate = initial_rate;    block->final_rate = final_rate;#ifdef ADVANCE    block->initial_advance = initial_advance;    block->final_advance = final_advance;#endif //ADVANCE  }  CRITICAL_SECTION_END;}                    // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance.FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {  return  sqrt(target_velocity*target_velocity-2*acceleration*distance);}// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.// This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks.//inline float junction_jerk(block_t *before, block_t *after) {//  return sqrt(//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));//}// The kernel called by planner_recalculate() when scanning the plan from last to first entry.void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {  if(!current) {     return;   }  if (next) {    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and    // check for maximum allowable speed reductions to ensure maximum possible planned speed.    if (current->entry_speed != current->max_entry_speed) {      // If nominal length true, max junction speed is guaranteed to be reached. Only compute      // for max allowable speed if block is decelerating and nominal length is false.      if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {        current->entry_speed = min( current->max_entry_speed,        max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));      }       else {        current->entry_speed = current->max_entry_speed;      }      current->recalculate_flag = true;    }  } // Skip last block. Already initialized and set for recalculation.}// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the reverse pass.void planner_reverse_pass() {  uint8_t block_index = block_buffer_head;    //Make a local copy of block_buffer_tail, because the interrupt can alter it  CRITICAL_SECTION_START;  unsigned char tail = block_buffer_tail;  CRITICAL_SECTION_END    if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {    block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);    block_t *block[3] = {       NULL, NULL, NULL         };    while(block_index != tail) {       block_index = prev_block_index(block_index);       block[2]= block[1];      block[1]= block[0];      block[0] = &block_buffer[block_index];      planner_reverse_pass_kernel(block[0], block[1], block[2]);    }  }}// The kernel called by planner_recalculate() when scanning the plan from first to last entry.void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {  if(!previous) {     return;   }  // If the previous block is an acceleration block, but it is not long enough to complete the  // full speed change within the block, we need to adjust the entry speed accordingly. Entry  // speeds have already been reset, maximized, and reverse planned by reverse planner.  // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.  if (!previous->nominal_length_flag) {    if (previous->entry_speed < current->entry_speed) {      double entry_speed = min( current->entry_speed,      max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );      // Check for junction speed change      if (current->entry_speed != entry_speed) {        current->entry_speed = entry_speed;        current->recalculate_flag = true;      }    }  }}// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the forward pass.void planner_forward_pass() {  uint8_t block_index = block_buffer_tail;  block_t *block[3] = {     NULL, NULL, NULL   };  while(block_index != block_buffer_head) {    block[0] = block[1];    block[1] = block[2];    block[2] = &block_buffer[block_index];    planner_forward_pass_kernel(block[0],block[1],block[2]);    block_index = next_block_index(block_index);  }  planner_forward_pass_kernel(block[1], block[2], NULL);}// Recalculates the trapezoid speed profiles for all blocks in the plan according to the // entry_factor for each junction. Must be called by planner_recalculate() after // updating the blocks.void planner_recalculate_trapezoids() {  int8_t block_index = block_buffer_tail;  block_t *current;  block_t *next = NULL;  while(block_index != block_buffer_head) {    current = next;    next = &block_buffer[block_index];    if (current) {      // Recalculate if current block entry or exit junction speed has changed.      if (current->recalculate_flag || next->recalculate_flag) {        // NOTE: Entry and exit factors always > 0 by all previous logic operations.        calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,        next->entry_speed/current->nominal_speed);        current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed      }    }    block_index = next_block_index( block_index );  }  // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.  if(next != NULL) {    calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,    MINIMUM_PLANNER_SPEED/next->nominal_speed);    next->recalculate_flag = false;  }}// Recalculates the motion plan according to the following algorithm:////   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) //      so that://     a. The junction jerk is within the set limit//     b. No speed reduction within one block requires faster deceleration than the one, true constant //        acceleration.//   2. Go over every block in chronological order and dial down junction speed reduction values if //     a. The speed increase within one block would require faster accelleration than the one, true //        constant acceleration.//// When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will:////   3. Recalculate trapezoids for all blocks.void planner_recalculate() {     planner_reverse_pass();  planner_forward_pass();  planner_recalculate_trapezoids();}void plan_init() {  block_buffer_head = 0;  block_buffer_tail = 0;  memset(position, 0, sizeof(position)); // clear position  previous_speed[0] = 0.0;  previous_speed[1] = 0.0;  previous_speed[2] = 0.0;  previous_speed[3] = 0.0;  previous_nominal_speed = 0.0;}#ifdef AUTOTEMPvoid getHighESpeed(){  static float oldt=0;  if(!autotemp_enabled){    return;  }  if(degTargetHotend0()+2<autotemp_min) {  //probably temperature set to zero.    return; //do nothing  }  float high=0.0;  uint8_t block_index = block_buffer_tail;  while(block_index != block_buffer_head) {    if((block_buffer[block_index].steps_x != 0) ||      (block_buffer[block_index].steps_y != 0) ||      (block_buffer[block_index].steps_z != 0)) {      float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;      //se; mm/sec;      if(se>high)      {        high=se;      }    }    block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);  }  float g=autotemp_min+high*autotemp_factor;  float t=g;  if(t<autotemp_min)    t=autotemp_min;  if(t>autotemp_max)    t=autotemp_max;  if(oldt>t)  {    t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;  }  oldt=t;  setTargetHotend0(t);}#endifvoid check_axes_activity(){  unsigned char x_active = 0;  unsigned char y_active = 0;    unsigned char z_active = 0;  unsigned char e_active = 0;  unsigned char tail_fan_speed = fanSpeed;  block_t *block;  if(block_buffer_tail != block_buffer_head)  {    uint8_t block_index = block_buffer_tail;    tail_fan_speed = block_buffer[block_index].fan_speed;    while(block_index != block_buffer_head)    {      block = &block_buffer[block_index];      if(block->steps_x != 0) x_active++;      if(block->steps_y != 0) y_active++;      if(block->steps_z != 0) z_active++;      if(block->steps_e != 0) e_active++;      block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);    }  }  if((DISABLE_X) && (x_active == 0)) disable_x();  if((DISABLE_Y) && (y_active == 0)) disable_y();  if((DISABLE_Z) && (z_active == 0)) disable_z();  if((DISABLE_E) && (e_active == 0))  {    disable_e0();    disable_e1();    disable_e2();   }#if defined(FAN_PIN) && FAN_PIN > -1  #ifdef FAN_KICKSTART_TIME    static unsigned long fan_kick_end;    if (tail_fan_speed) {      if (fan_kick_end == 0) {        // Just starting up fan - run at full power.        fan_kick_end = millis() + FAN_KICKSTART_TIME;        tail_fan_speed = 255;      } else if (fan_kick_end > millis())        // Fan still spinning up.        tail_fan_speed = 255;    } else {      fan_kick_end = 0;    }  #endif//FAN_KICKSTART_TIME  #ifdef FAN_SOFT_PWM  fanSpeedSoftPwm = tail_fan_speed;  #else  analogWrite(FAN_PIN,tail_fan_speed);  #endif//!FAN_SOFT_PWM#endif//FAN_PIN > -1#ifdef AUTOTEMP  getHighESpeed();#endif}float junction_deviation = 0.1;// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration// calculation the caller must also provide the physical length of the line in millimeters.void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder){    // Calculate the buffer head after we push this byte  int next_buffer_head = next_block_index(block_buffer_head);  // If the buffer is full: good! That means we are well ahead of the robot.   // Rest here until there is room in the buffer.  while(block_buffer_tail == next_buffer_head)  {    manage_heater();     // Vojtech: Don't disable motors inside the planner!    manage_inactivity(false);     lcd_update();  }#ifdef ENABLE_AUTO_BED_LEVELING  apply_rotation_xyz(plan_bed_level_matrix, x, y, z);#endif // ENABLE_AUTO_BED_LEVELING    // Apply the machine correction matrix.    {      #if 0        SERIAL_ECHOPGM("Planner, current position - servos: ");        MYSERIAL.print(st_get_position_mm(X_AXIS), 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, target position, initial: ");        MYSERIAL.print(x, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(y, 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, world2machine: ");        MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);        SERIAL_ECHOLNPGM("");        SERIAL_ECHOPGM("Planner, offset: ");        MYSERIAL.print(world2machine_shift[0], 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(world2machine_shift[1], 5);        SERIAL_ECHOLNPGM("");      #endif        world2machine(x, y);      #if 0        SERIAL_ECHOPGM("Planner, target position, corrected: ");        MYSERIAL.print(x, 5);        SERIAL_ECHOPGM(", ");        MYSERIAL.print(y, 5);        SERIAL_ECHOLNPGM("");      #endif    }  // The target position of the tool in absolute steps  // Calculate target position in absolute steps  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow  long target[4];  target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);  target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);#ifdef MESH_BED_LEVELING    if (mbl.active){        target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);    }else{        target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);    }#else    target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);#endif // ENABLE_MESH_BED_LEVELING  target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  #ifdef PREVENT_DANGEROUS_EXTRUDE  if(target[E_AXIS]!=position[E_AXIS])  {    if(degHotend(active_extruder)<extrude_min_temp)    {      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part      SERIAL_ECHO_START;      SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);    }        #ifdef PREVENT_LENGTHY_EXTRUDE    if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)    {      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part      SERIAL_ECHO_START;      SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);    }    #endif  }  #endif  // Prepare to set up new block  block_t *block = &block_buffer[block_buffer_head];  // Mark block as not busy (Not executed by the stepper interrupt)  block->busy = false;  // Number of steps for each axis#ifndef COREXY// default non-h-bot planningblock->steps_x = labs(target[X_AXIS]-position[X_AXIS]);block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);#else// corexy planning// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.htmlblock->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));#endif  block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);  block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);  block->steps_e *= volumetric_multiplier[active_extruder];  block->steps_e *= extrudemultiply;  block->steps_e /= 100;  block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));  // Bail if this is a zero-length block  if (block->step_event_count <= dropsegments)  {     return;   }  block->fan_speed = fanSpeed;  // Compute direction bits for this block   block->direction_bits = 0;#ifndef COREXY  if (target[X_AXIS] < position[X_AXIS])  {    block->direction_bits |= (1<<X_AXIS);   }  if (target[Y_AXIS] < position[Y_AXIS])  {    block->direction_bits |= (1<<Y_AXIS);   }#else  if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)  {    block->direction_bits |= (1<<X_AXIS);   }  if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)  {    block->direction_bits |= (1<<Y_AXIS);   }#endif  if (target[Z_AXIS] < position[Z_AXIS])  {    block->direction_bits |= (1<<Z_AXIS);   }  if (target[E_AXIS] < position[E_AXIS])  {    block->direction_bits |= (1<<E_AXIS);   }  block->active_extruder = extruder;  //enable active axes  #ifdef COREXY  if((block->steps_x != 0) || (block->steps_y != 0))  {    enable_x();    enable_y();  }  #else  if(block->steps_x != 0) enable_x();  if(block->steps_y != 0) enable_y();  #endif#ifndef Z_LATE_ENABLE  if(block->steps_z != 0) enable_z();#endif  // Enable extruder(s)  if(block->steps_e != 0)  {    if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder    {      if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;      if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;      if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;            switch(extruder)      {        case 0:           enable_e0();           g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[1] == 0) disable_e1();           if(g_uc_extruder_last_move[2] == 0) disable_e2();         break;        case 1:          enable_e1();           g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[0] == 0) disable_e0();           if(g_uc_extruder_last_move[2] == 0) disable_e2();         break;        case 2:          enable_e2();           g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;                    if(g_uc_extruder_last_move[0] == 0) disable_e0();           if(g_uc_extruder_last_move[1] == 0) disable_e1();         break;              }    }    else //enable all    {      enable_e0();      enable_e1();      enable_e2();     }  }  if (block->steps_e == 0)  {    if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;  }  else  {    if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;  } /* This part of the code calculates the total length of the movement. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXISand B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.*/   #ifndef COREXY    float delta_mm[4];    delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];    delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];  #else    float delta_mm[6];    delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];    delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];    delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];    delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];  #endif  delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];  delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )  {    block->millimeters = fabs(delta_mm[E_AXIS]);  }   else  {    #ifndef COREXY      block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));	#else	  block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));    #endif	  }  float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides     // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.  float inverse_second = feed_rate * inverse_millimeters;  int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);  // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill#ifdef OLD_SLOWDOWN  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)    feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); #endif#ifdef SLOWDOWN  //  segment time im micro seconds  unsigned long segment_time = lround(1000000.0/inverse_second);  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))  {    if (segment_time < minsegmenttime)    { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.      inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));      #ifdef XY_FREQUENCY_LIMIT         segment_time = lround(1000000.0/inverse_second);      #endif    }  }#endif  //  END OF SLOW DOWN SECTION      block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0#ifdef FILAMENT_SENSOR  //FMM update ring buffer used for delay with filament measurements        if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1))  //only for extruder with filament sensor and if ring buffer is initialized  	  {    delay_dist = delay_dist + delta_mm[E_AXIS];  //increment counter with next move in e axis      while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1)))  //check if counter is over max buffer size in mm      	  delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1);  //loop around the buffer    while (delay_dist<0)    	  delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer          delay_index1=delay_dist/10.0;  //calculate index        //ensure the number is within range of the array after converting from floating point    if(delay_index1<0)    	delay_index1=0;    else if (delay_index1>MAX_MEASUREMENT_DELAY)    	delay_index1=MAX_MEASUREMENT_DELAY;    	    if(delay_index1 != delay_index2)  //moved index  	  {    	meas_sample=widthFil_to_size_ratio()-100;  //subtract off 100 to reduce magnitude - to store in a signed char  	  }    while( delay_index1 != delay_index2)  	  {  	  delay_index2 = delay_index2 + 1;  	if(delay_index2>MAX_MEASUREMENT_DELAY)  			  delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1);  //loop around buffer when incrementing  	  if(delay_index2<0)  		delay_index2=0;  	  else if (delay_index2>MAX_MEASUREMENT_DELAY)  		delay_index2=MAX_MEASUREMENT_DELAY;    	    	  measurement_delay[delay_index2]=meas_sample;  	  }    	      	  }#endif  // Calculate and limit speed in mm/sec for each axis  float current_speed[4];  float speed_factor = 1.0; //factor <=1 do decrease speed  for(int i=0; i < 4; i++)  {    current_speed[i] = delta_mm[i] * inverse_second;    if(fabs(current_speed[i]) > max_feedrate[i])      speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));  }  // Max segement time in us.#ifdef XY_FREQUENCY_LIMIT#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)  // Check and limit the xy direction change frequency  unsigned char direction_change = block->direction_bits ^ old_direction_bits;  old_direction_bits = block->direction_bits;  segment_time = lround((float)segment_time / speed_factor);    if((direction_change & (1<<X_AXIS)) == 0)  {    x_segment_time[0] += segment_time;  }  else  {    x_segment_time[2] = x_segment_time[1];    x_segment_time[1] = x_segment_time[0];    x_segment_time[0] = segment_time;  }  if((direction_change & (1<<Y_AXIS)) == 0)  {    y_segment_time[0] += segment_time;  }  else  {    y_segment_time[2] = y_segment_time[1];    y_segment_time[1] = y_segment_time[0];    y_segment_time[0] = segment_time;  }  long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));  long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));  long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);  if(min_xy_segment_time < MAX_FREQ_TIME)    speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);#endif  // Correct the speed    if( speed_factor < 1.0)  {    for(unsigned char i=0; i < 4; i++)    {      current_speed[i] *= speed_factor;    }    block->nominal_speed *= speed_factor;    block->nominal_rate *= speed_factor;  }  // Compute and limit the acceleration rate for the trapezoid generator.    float steps_per_mm = block->step_event_count/block->millimeters;  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)  {    block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2  }  else  {    block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2    // Limit acceleration per axis    if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])      block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];    if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])      block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];    if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])      block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];    if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])      block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];  }  block->acceleration = block->acceleration_st / steps_per_mm;  block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));#if 0  // Use old jerk for now  // Compute path unit vector  double unit_vec[3];  unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;  unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;  unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;  // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.  // Let a circle be tangent to both previous and current path line segments, where the junction  // deviation is defined as the distance from the junction to the closest edge of the circle,  // colinear with the circle center. The circular segment joining the two paths represents the  // path of centripetal acceleration. Solve for max velocity based on max acceleration about the  // radius of the circle, defined indirectly by junction deviation. This may be also viewed as  // path width or max_jerk in the previous grbl version. This approach does not actually deviate  // from path, but used as a robust way to compute cornering speeds, as it takes into account the  // nonlinearities of both the junction angle and junction velocity.  double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed  // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.  if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {    // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)    // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.    double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]      - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]      - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;    // Skip and use default max junction speed for 0 degree acute junction.    if (cos_theta < 0.95) {      vmax_junction = min(previous_nominal_speed,block->nominal_speed);      // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.      if (cos_theta > -0.95) {        // Compute maximum junction velocity based on maximum acceleration and junction deviation        double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.        vmax_junction = min(vmax_junction,        sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );      }    }  }#endif  // Start with a safe speed  float vmax_junction = max_xy_jerk/2;   float vmax_junction_factor = 1.0;   if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)     vmax_junction = min(vmax_junction, max_z_jerk/2);  if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)     vmax_junction = min(vmax_junction, max_e_jerk/2);  vmax_junction = min(vmax_junction, block->nominal_speed);  float safe_speed = vmax_junction;  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {    float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));    //    if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {    vmax_junction = block->nominal_speed;    //    }    if (jerk > max_xy_jerk) {      vmax_junction_factor = (max_xy_jerk/jerk);    }     if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {      vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));    }     if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {      vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));    }     vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed  }  block->max_entry_speed = vmax_junction;  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.  double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);  block->entry_speed = min(vmax_junction, v_allowable);  // Initialize planner efficiency flags  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then  // the current block and next block junction speeds are guaranteed to always be at their maximum  // junction speeds in deceleration and acceleration, respectively. This is due to how the current  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both  // the reverse and forward planners, the corresponding block junction speed will always be at the  // the maximum junction speed and may always be ignored for any speed reduction checks.  if (block->nominal_speed <= v_allowable) {     block->nominal_length_flag = true;   }  else {     block->nominal_length_flag = false;   }  block->recalculate_flag = true; // Always calculate trapezoid for new block  // Update previous path unit_vector and nominal speed  memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]  previous_nominal_speed = block->nominal_speed;#ifdef ADVANCE  // Calculate advance rate  if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {    block->advance_rate = 0;    block->advance = 0;  }  else {    long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);    float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *       (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;    block->advance = advance;    if(acc_dist == 0) {      block->advance_rate = 0;    }     else {      block->advance_rate = advance / (float)acc_dist;    }  }  /*    SERIAL_ECHO_START;   SERIAL_ECHOPGM("advance :");   SERIAL_ECHO(block->advance/256.0);   SERIAL_ECHOPGM("advance rate :");   SERIAL_ECHOLN(block->advance_rate/256.0);   */#endif // ADVANCE  calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,  safe_speed/block->nominal_speed);  // Move buffer head  block_buffer_head = next_buffer_head;  // Update position  memcpy(position, target, sizeof(target)); // position[] = target[]  planner_recalculate();  st_wake_up();}#ifdef ENABLE_AUTO_BED_LEVELINGvector_3 plan_get_position() {	vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));	//position.debug("in plan_get position");	//plan_bed_level_matrix.debug("in plan_get bed_level");	matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);	//inverse.debug("in plan_get inverse");	position.apply_rotation(inverse);	//position.debug("after rotation");	return position;}#endif // ENABLE_AUTO_BED_LEVELINGvoid plan_set_position(float x, float y, float z, const float &e){#ifdef ENABLE_AUTO_BED_LEVELING    apply_rotation_xyz(plan_bed_level_matrix, x, y, z);#endif // ENABLE_AUTO_BED_LEVELING    // Apply the machine correction matrix.    {        float tmpx = x;        float tmpy = y;        x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];        y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];    }  position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);  position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);#ifdef MESH_BED_LEVELING    if (mbl.active){      position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);    }else{        position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);    }#else  position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);#endif // ENABLE_MESH_BED_LEVELING  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);    st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);  previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.  previous_speed[0] = 0.0;  previous_speed[1] = 0.0;  previous_speed[2] = 0.0;  previous_speed[3] = 0.0;}// Only useful in the bed leveling routine, when the mesh bed leveling is off.void plan_set_z_position(const float &z){    position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);    st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);}void plan_set_e_position(const float &e){  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);    st_set_e_position(position[E_AXIS]);}uint8_t movesplanned(){  return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);}#ifdef PREVENT_DANGEROUS_EXTRUDEvoid set_extrude_min_temp(float temp){  extrude_min_temp=temp;}#endif// Calculate the steps/s^2 acceleration rates, based on the mm/s^svoid reset_acceleration_rates(){	for(int8_t i=0; i < NUM_AXIS; i++)        {        axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];        }}
 |