stepper.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  66. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  67. #endif
  68. static bool old_x_min_endstop=false;
  69. static bool old_x_max_endstop=false;
  70. static bool old_y_min_endstop=false;
  71. static bool old_y_max_endstop=false;
  72. static bool old_z_min_endstop=false;
  73. static bool old_z_max_endstop=false;
  74. static bool check_endstops = true;
  75. static bool check_z_endstop = false;
  76. int8_t SilentMode;
  77. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  78. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  79. //===========================================================================
  80. //=============================functions ============================
  81. //===========================================================================
  82. #define CHECK_ENDSTOPS if(check_endstops)
  83. // intRes = intIn1 * intIn2 >> 16
  84. // uses:
  85. // r26 to store 0
  86. // r27 to store the byte 1 of the 24 bit result
  87. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  88. asm volatile ( \
  89. "clr r26 \n\t" \
  90. "mul %A1, %B2 \n\t" \
  91. "movw %A0, r0 \n\t" \
  92. "mul %A1, %A2 \n\t" \
  93. "add %A0, r1 \n\t" \
  94. "adc %B0, r26 \n\t" \
  95. "lsr r0 \n\t" \
  96. "adc %A0, r26 \n\t" \
  97. "adc %B0, r26 \n\t" \
  98. "clr r1 \n\t" \
  99. : \
  100. "=&r" (intRes) \
  101. : \
  102. "d" (charIn1), \
  103. "d" (intIn2) \
  104. : \
  105. "r26" \
  106. )
  107. // intRes = longIn1 * longIn2 >> 24
  108. // uses:
  109. // r26 to store 0
  110. // r27 to store the byte 1 of the 48bit result
  111. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  112. asm volatile ( \
  113. "clr r26 \n\t" \
  114. "mul %A1, %B2 \n\t" \
  115. "mov r27, r1 \n\t" \
  116. "mul %B1, %C2 \n\t" \
  117. "movw %A0, r0 \n\t" \
  118. "mul %C1, %C2 \n\t" \
  119. "add %B0, r0 \n\t" \
  120. "mul %C1, %B2 \n\t" \
  121. "add %A0, r0 \n\t" \
  122. "adc %B0, r1 \n\t" \
  123. "mul %A1, %C2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %B1, %B2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %C1, %A2 \n\t" \
  132. "add r27, r0 \n\t" \
  133. "adc %A0, r1 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "mul %B1, %A2 \n\t" \
  136. "add r27, r1 \n\t" \
  137. "adc %A0, r26 \n\t" \
  138. "adc %B0, r26 \n\t" \
  139. "lsr r27 \n\t" \
  140. "adc %A0, r26 \n\t" \
  141. "adc %B0, r26 \n\t" \
  142. "clr r1 \n\t" \
  143. : \
  144. "=&r" (intRes) \
  145. : \
  146. "d" (longIn1), \
  147. "d" (longIn2) \
  148. : \
  149. "r26" , "r27" \
  150. )
  151. // Some useful constants
  152. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  153. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  154. void checkHitEndstops()
  155. {
  156. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  157. SERIAL_ECHO_START;
  158. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  159. if(endstop_x_hit) {
  160. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  161. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  162. }
  163. if(endstop_y_hit) {
  164. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  165. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  166. }
  167. if(endstop_z_hit) {
  168. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  169. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  170. }
  171. SERIAL_ECHOLN("");
  172. endstop_x_hit=false;
  173. endstop_y_hit=false;
  174. endstop_z_hit=false;
  175. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  176. if (abort_on_endstop_hit)
  177. {
  178. card.sdprinting = false;
  179. card.closefile();
  180. quickStop();
  181. setTargetHotend0(0);
  182. setTargetHotend1(0);
  183. setTargetHotend2(0);
  184. }
  185. #endif
  186. }
  187. }
  188. bool endstops_hit_on_purpose()
  189. {
  190. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  191. endstop_x_hit=false;
  192. endstop_y_hit=false;
  193. endstop_z_hit=false;
  194. return hit;
  195. }
  196. bool endstop_z_hit_on_purpose()
  197. {
  198. bool hit = endstop_z_hit;
  199. endstop_z_hit=false;
  200. return hit;
  201. }
  202. bool enable_endstops(bool check)
  203. {
  204. bool old = check_endstops;
  205. check_endstops = check;
  206. return old;
  207. }
  208. bool enable_z_endstop(bool check)
  209. {
  210. bool old = check_z_endstop;
  211. check_z_endstop = check;
  212. endstop_z_hit=false;
  213. return old;
  214. }
  215. // __________________________
  216. // /| |\ _________________ ^
  217. // / | | \ /| |\ |
  218. // / | | \ / | | \ s
  219. // / | | | | | \ p
  220. // / | | | | | \ e
  221. // +-----+------------------------+---+--+---------------+----+ e
  222. // | BLOCK 1 | BLOCK 2 | d
  223. //
  224. // time ----->
  225. //
  226. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  227. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  228. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  229. // The slope of acceleration is calculated with the leib ramp alghorithm.
  230. void st_wake_up() {
  231. // TCNT1 = 0;
  232. ENABLE_STEPPER_DRIVER_INTERRUPT();
  233. }
  234. void step_wait(){
  235. for(int8_t i=0; i < 6; i++){
  236. }
  237. }
  238. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  239. unsigned short timer;
  240. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  241. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  242. step_rate = (step_rate >> 2)&0x3fff;
  243. step_loops = 4;
  244. }
  245. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  246. step_rate = (step_rate >> 1)&0x7fff;
  247. step_loops = 2;
  248. }
  249. else {
  250. step_loops = 1;
  251. }
  252. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  253. step_rate -= (F_CPU/500000); // Correct for minimal speed
  254. if(step_rate >= (8*256)){ // higher step rate
  255. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  256. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  257. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  258. MultiU16X8toH16(timer, tmp_step_rate, gain);
  259. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  260. }
  261. else { // lower step rates
  262. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  263. table_address += ((step_rate)>>1) & 0xfffc;
  264. timer = (unsigned short)pgm_read_word_near(table_address);
  265. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  266. }
  267. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  268. return timer;
  269. }
  270. // Initializes the trapezoid generator from the current block. Called whenever a new
  271. // block begins.
  272. FORCE_INLINE void trapezoid_generator_reset() {
  273. #ifdef ADVANCE
  274. advance = current_block->initial_advance;
  275. final_advance = current_block->final_advance;
  276. // Do E steps + advance steps
  277. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  278. old_advance = advance >>8;
  279. #endif
  280. deceleration_time = 0;
  281. // step_rate to timer interval
  282. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  283. // make a note of the number of step loops required at nominal speed
  284. step_loops_nominal = step_loops;
  285. acc_step_rate = current_block->initial_rate;
  286. acceleration_time = calc_timer(acc_step_rate);
  287. OCR1A = acceleration_time;
  288. // SERIAL_ECHO_START;
  289. // SERIAL_ECHOPGM("advance :");
  290. // SERIAL_ECHO(current_block->advance/256.0);
  291. // SERIAL_ECHOPGM("advance rate :");
  292. // SERIAL_ECHO(current_block->advance_rate/256.0);
  293. // SERIAL_ECHOPGM("initial advance :");
  294. // SERIAL_ECHO(current_block->initial_advance/256.0);
  295. // SERIAL_ECHOPGM("final advance :");
  296. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  297. }
  298. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  299. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  300. ISR(TIMER1_COMPA_vect)
  301. {
  302. // If there is no current block, attempt to pop one from the buffer
  303. if (current_block == NULL) {
  304. // Anything in the buffer?
  305. current_block = plan_get_current_block();
  306. if (current_block != NULL) {
  307. current_block->busy = true;
  308. trapezoid_generator_reset();
  309. counter_x = -(current_block->step_event_count >> 1);
  310. counter_y = counter_x;
  311. counter_z = counter_x;
  312. counter_e = counter_x;
  313. step_events_completed = 0;
  314. #ifdef Z_LATE_ENABLE
  315. if(current_block->steps_z > 0) {
  316. enable_z();
  317. OCR1A = 2000; //1ms wait
  318. return;
  319. }
  320. #endif
  321. // #ifdef ADVANCE
  322. // e_steps[current_block->active_extruder] = 0;
  323. // #endif
  324. }
  325. else {
  326. OCR1A=2000; // 1kHz.
  327. }
  328. }
  329. if (current_block != NULL) {
  330. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  331. out_bits = current_block->direction_bits;
  332. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  333. if((out_bits & (1<<X_AXIS))!=0){
  334. WRITE(X_DIR_PIN, INVERT_X_DIR);
  335. count_direction[X_AXIS]=-1;
  336. }
  337. else{
  338. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  339. count_direction[X_AXIS]=1;
  340. }
  341. if((out_bits & (1<<Y_AXIS))!=0){
  342. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  343. #ifdef Y_DUAL_STEPPER_DRIVERS
  344. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  345. #endif
  346. count_direction[Y_AXIS]=-1;
  347. }
  348. else{
  349. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  350. #ifdef Y_DUAL_STEPPER_DRIVERS
  351. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  352. #endif
  353. count_direction[Y_AXIS]=1;
  354. }
  355. // Set direction en check limit switches
  356. #ifndef COREXY
  357. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  358. #else
  359. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  360. #endif
  361. CHECK_ENDSTOPS
  362. {
  363. {
  364. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  365. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  366. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  367. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  368. endstop_x_hit=true;
  369. step_events_completed = current_block->step_event_count;
  370. }
  371. old_x_min_endstop = x_min_endstop;
  372. #endif
  373. }
  374. }
  375. }
  376. else { // +direction
  377. CHECK_ENDSTOPS
  378. {
  379. {
  380. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  381. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  382. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  383. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  384. endstop_x_hit=true;
  385. step_events_completed = current_block->step_event_count;
  386. }
  387. old_x_max_endstop = x_max_endstop;
  388. #endif
  389. }
  390. }
  391. }
  392. #ifndef COREXY
  393. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  394. #else
  395. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  396. #endif
  397. CHECK_ENDSTOPS
  398. {
  399. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  400. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  401. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  402. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  403. endstop_y_hit=true;
  404. step_events_completed = current_block->step_event_count;
  405. }
  406. old_y_min_endstop = y_min_endstop;
  407. #endif
  408. }
  409. }
  410. else { // +direction
  411. CHECK_ENDSTOPS
  412. {
  413. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  414. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  415. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  416. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  417. endstop_y_hit=true;
  418. step_events_completed = current_block->step_event_count;
  419. }
  420. old_y_max_endstop = y_max_endstop;
  421. #endif
  422. }
  423. }
  424. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  425. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  426. #ifdef Z_DUAL_STEPPER_DRIVERS
  427. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  428. #endif
  429. count_direction[Z_AXIS]=-1;
  430. if(check_endstops && ! check_z_endstop)
  431. {
  432. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  433. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  434. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  435. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  436. endstop_z_hit=true;
  437. step_events_completed = current_block->step_event_count;
  438. }
  439. old_z_min_endstop = z_min_endstop;
  440. #endif
  441. }
  442. }
  443. else { // +direction
  444. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  445. #ifdef Z_DUAL_STEPPER_DRIVERS
  446. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  447. #endif
  448. count_direction[Z_AXIS]=1;
  449. CHECK_ENDSTOPS
  450. {
  451. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  452. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  453. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  454. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  455. endstop_z_hit=true;
  456. step_events_completed = current_block->step_event_count;
  457. }
  458. old_z_max_endstop = z_max_endstop;
  459. #endif
  460. }
  461. }
  462. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  463. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  464. if(check_z_endstop) {
  465. // Check the Z min end-stop no matter what.
  466. // Good for searching for the center of an induction target.
  467. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  468. if(z_min_endstop && old_z_min_endstop) {
  469. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  470. endstop_z_hit=true;
  471. step_events_completed = current_block->step_event_count;
  472. }
  473. old_z_min_endstop = z_min_endstop;
  474. }
  475. #endif
  476. #ifndef ADVANCE
  477. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  478. REV_E_DIR();
  479. count_direction[E_AXIS]=-1;
  480. }
  481. else { // +direction
  482. NORM_E_DIR();
  483. count_direction[E_AXIS]=1;
  484. }
  485. #endif //!ADVANCE
  486. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  487. #ifndef AT90USB
  488. MSerial.checkRx(); // Check for serial chars.
  489. #endif
  490. #ifdef ADVANCE
  491. counter_e += current_block->steps_e;
  492. if (counter_e > 0) {
  493. counter_e -= current_block->step_event_count;
  494. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  495. e_steps[current_block->active_extruder]--;
  496. }
  497. else {
  498. e_steps[current_block->active_extruder]++;
  499. }
  500. }
  501. #endif //ADVANCE
  502. counter_x += current_block->steps_x;
  503. if (counter_x > 0) {
  504. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  505. counter_x -= current_block->step_event_count;
  506. count_position[X_AXIS]+=count_direction[X_AXIS];
  507. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  508. }
  509. counter_y += current_block->steps_y;
  510. if (counter_y > 0) {
  511. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  512. #ifdef Y_DUAL_STEPPER_DRIVERS
  513. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  514. #endif
  515. counter_y -= current_block->step_event_count;
  516. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  517. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  518. #ifdef Y_DUAL_STEPPER_DRIVERS
  519. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  520. #endif
  521. }
  522. counter_z += current_block->steps_z;
  523. if (counter_z > 0) {
  524. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  525. #ifdef Z_DUAL_STEPPER_DRIVERS
  526. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  527. #endif
  528. counter_z -= current_block->step_event_count;
  529. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  530. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  531. #ifdef Z_DUAL_STEPPER_DRIVERS
  532. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  533. #endif
  534. }
  535. #ifndef ADVANCE
  536. counter_e += current_block->steps_e;
  537. if (counter_e > 0) {
  538. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  539. counter_e -= current_block->step_event_count;
  540. count_position[E_AXIS]+=count_direction[E_AXIS];
  541. WRITE_E_STEP(INVERT_E_STEP_PIN);
  542. }
  543. #endif //!ADVANCE
  544. step_events_completed += 1;
  545. if(step_events_completed >= current_block->step_event_count) break;
  546. }
  547. // Calculare new timer value
  548. unsigned short timer;
  549. unsigned short step_rate;
  550. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  551. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  552. acc_step_rate += current_block->initial_rate;
  553. // upper limit
  554. if(acc_step_rate > current_block->nominal_rate)
  555. acc_step_rate = current_block->nominal_rate;
  556. // step_rate to timer interval
  557. timer = calc_timer(acc_step_rate);
  558. OCR1A = timer;
  559. acceleration_time += timer;
  560. #ifdef ADVANCE
  561. for(int8_t i=0; i < step_loops; i++) {
  562. advance += advance_rate;
  563. }
  564. //if(advance > current_block->advance) advance = current_block->advance;
  565. // Do E steps + advance steps
  566. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  567. old_advance = advance >>8;
  568. #endif // ADVANCE
  569. }
  570. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  571. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  572. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  573. step_rate = current_block->final_rate;
  574. }
  575. else {
  576. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  577. }
  578. // lower limit
  579. if(step_rate < current_block->final_rate)
  580. step_rate = current_block->final_rate;
  581. // step_rate to timer interval
  582. timer = calc_timer(step_rate);
  583. OCR1A = timer;
  584. deceleration_time += timer;
  585. #ifdef ADVANCE
  586. for(int8_t i=0; i < step_loops; i++) {
  587. advance -= advance_rate;
  588. }
  589. if(advance < final_advance) advance = final_advance;
  590. // Do E steps + advance steps
  591. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  592. old_advance = advance >>8;
  593. #endif //ADVANCE
  594. }
  595. else {
  596. OCR1A = OCR1A_nominal;
  597. // ensure we're running at the correct step rate, even if we just came off an acceleration
  598. step_loops = step_loops_nominal;
  599. }
  600. // If current block is finished, reset pointer
  601. if (step_events_completed >= current_block->step_event_count) {
  602. current_block = NULL;
  603. plan_discard_current_block();
  604. }
  605. }
  606. }
  607. #ifdef ADVANCE
  608. unsigned char old_OCR0A;
  609. // Timer interrupt for E. e_steps is set in the main routine;
  610. // Timer 0 is shared with millies
  611. ISR(TIMER0_COMPA_vect)
  612. {
  613. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  614. OCR0A = old_OCR0A;
  615. // Set E direction (Depends on E direction + advance)
  616. for(unsigned char i=0; i<4;i++) {
  617. if (e_steps[0] != 0) {
  618. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  619. if (e_steps[0] < 0) {
  620. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  621. e_steps[0]++;
  622. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  623. }
  624. else if (e_steps[0] > 0) {
  625. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  626. e_steps[0]--;
  627. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  628. }
  629. }
  630. #if EXTRUDERS > 1
  631. if (e_steps[1] != 0) {
  632. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  633. if (e_steps[1] < 0) {
  634. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  635. e_steps[1]++;
  636. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  637. }
  638. else if (e_steps[1] > 0) {
  639. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  640. e_steps[1]--;
  641. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  642. }
  643. }
  644. #endif
  645. #if EXTRUDERS > 2
  646. if (e_steps[2] != 0) {
  647. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  648. if (e_steps[2] < 0) {
  649. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  650. e_steps[2]++;
  651. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  652. }
  653. else if (e_steps[2] > 0) {
  654. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  655. e_steps[2]--;
  656. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  657. }
  658. }
  659. #endif
  660. }
  661. }
  662. #endif // ADVANCE
  663. void st_init()
  664. {
  665. digipot_init(); //Initialize Digipot Motor Current
  666. microstep_init(); //Initialize Microstepping Pins
  667. //Initialize Dir Pins
  668. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  669. SET_OUTPUT(X_DIR_PIN);
  670. #endif
  671. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  672. SET_OUTPUT(X2_DIR_PIN);
  673. #endif
  674. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  675. SET_OUTPUT(Y_DIR_PIN);
  676. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  677. SET_OUTPUT(Y2_DIR_PIN);
  678. #endif
  679. #endif
  680. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  681. SET_OUTPUT(Z_DIR_PIN);
  682. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  683. SET_OUTPUT(Z2_DIR_PIN);
  684. #endif
  685. #endif
  686. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  687. SET_OUTPUT(E0_DIR_PIN);
  688. #endif
  689. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  690. SET_OUTPUT(E1_DIR_PIN);
  691. #endif
  692. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  693. SET_OUTPUT(E2_DIR_PIN);
  694. #endif
  695. //Initialize Enable Pins - steppers default to disabled.
  696. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  697. SET_OUTPUT(X_ENABLE_PIN);
  698. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  699. #endif
  700. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  701. SET_OUTPUT(X2_ENABLE_PIN);
  702. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  703. #endif
  704. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  705. SET_OUTPUT(Y_ENABLE_PIN);
  706. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  707. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  708. SET_OUTPUT(Y2_ENABLE_PIN);
  709. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  710. #endif
  711. #endif
  712. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  713. SET_OUTPUT(Z_ENABLE_PIN);
  714. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  715. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  716. SET_OUTPUT(Z2_ENABLE_PIN);
  717. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  718. #endif
  719. #endif
  720. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  721. SET_OUTPUT(E0_ENABLE_PIN);
  722. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  723. #endif
  724. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  725. SET_OUTPUT(E1_ENABLE_PIN);
  726. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  727. #endif
  728. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  729. SET_OUTPUT(E2_ENABLE_PIN);
  730. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  731. #endif
  732. //endstops and pullups
  733. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  734. SET_INPUT(X_MIN_PIN);
  735. #ifdef ENDSTOPPULLUP_XMIN
  736. WRITE(X_MIN_PIN,HIGH);
  737. #endif
  738. #endif
  739. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  740. SET_INPUT(Y_MIN_PIN);
  741. #ifdef ENDSTOPPULLUP_YMIN
  742. WRITE(Y_MIN_PIN,HIGH);
  743. #endif
  744. #endif
  745. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  746. SET_INPUT(Z_MIN_PIN);
  747. #ifdef ENDSTOPPULLUP_ZMIN
  748. WRITE(Z_MIN_PIN,HIGH);
  749. #endif
  750. #endif
  751. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  752. SET_INPUT(X_MAX_PIN);
  753. #ifdef ENDSTOPPULLUP_XMAX
  754. WRITE(X_MAX_PIN,HIGH);
  755. #endif
  756. #endif
  757. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  758. SET_INPUT(Y_MAX_PIN);
  759. #ifdef ENDSTOPPULLUP_YMAX
  760. WRITE(Y_MAX_PIN,HIGH);
  761. #endif
  762. #endif
  763. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  764. SET_INPUT(Z_MAX_PIN);
  765. #ifdef ENDSTOPPULLUP_ZMAX
  766. WRITE(Z_MAX_PIN,HIGH);
  767. #endif
  768. #endif
  769. //Initialize Step Pins
  770. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  771. SET_OUTPUT(X_STEP_PIN);
  772. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  773. disable_x();
  774. #endif
  775. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  776. SET_OUTPUT(X2_STEP_PIN);
  777. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  778. disable_x();
  779. #endif
  780. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  781. SET_OUTPUT(Y_STEP_PIN);
  782. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  783. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  784. SET_OUTPUT(Y2_STEP_PIN);
  785. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  786. #endif
  787. disable_y();
  788. #endif
  789. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  790. SET_OUTPUT(Z_STEP_PIN);
  791. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  792. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  793. SET_OUTPUT(Z2_STEP_PIN);
  794. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  795. #endif
  796. disable_z();
  797. #endif
  798. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  799. SET_OUTPUT(E0_STEP_PIN);
  800. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  801. disable_e0();
  802. #endif
  803. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  804. SET_OUTPUT(E1_STEP_PIN);
  805. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  806. disable_e1();
  807. #endif
  808. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  809. SET_OUTPUT(E2_STEP_PIN);
  810. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  811. disable_e2();
  812. #endif
  813. // waveform generation = 0100 = CTC
  814. TCCR1B &= ~(1<<WGM13);
  815. TCCR1B |= (1<<WGM12);
  816. TCCR1A &= ~(1<<WGM11);
  817. TCCR1A &= ~(1<<WGM10);
  818. // output mode = 00 (disconnected)
  819. TCCR1A &= ~(3<<COM1A0);
  820. TCCR1A &= ~(3<<COM1B0);
  821. // Set the timer pre-scaler
  822. // Generally we use a divider of 8, resulting in a 2MHz timer
  823. // frequency on a 16MHz MCU. If you are going to change this, be
  824. // sure to regenerate speed_lookuptable.h with
  825. // create_speed_lookuptable.py
  826. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  827. OCR1A = 0x4000;
  828. TCNT1 = 0;
  829. ENABLE_STEPPER_DRIVER_INTERRUPT();
  830. #ifdef ADVANCE
  831. #if defined(TCCR0A) && defined(WGM01)
  832. TCCR0A &= ~(1<<WGM01);
  833. TCCR0A &= ~(1<<WGM00);
  834. #endif
  835. e_steps[0] = 0;
  836. e_steps[1] = 0;
  837. e_steps[2] = 0;
  838. TIMSK0 |= (1<<OCIE0A);
  839. #endif //ADVANCE
  840. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  841. sei();
  842. }
  843. // Block until all buffered steps are executed
  844. void st_synchronize()
  845. {
  846. while( blocks_queued()) {
  847. manage_heater();
  848. // Vojtech: Don't disable motors inside the planner!
  849. manage_inactivity(true);
  850. lcd_update();
  851. }
  852. }
  853. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  854. {
  855. CRITICAL_SECTION_START;
  856. count_position[X_AXIS] = x;
  857. count_position[Y_AXIS] = y;
  858. count_position[Z_AXIS] = z;
  859. count_position[E_AXIS] = e;
  860. CRITICAL_SECTION_END;
  861. }
  862. void st_set_e_position(const long &e)
  863. {
  864. CRITICAL_SECTION_START;
  865. count_position[E_AXIS] = e;
  866. CRITICAL_SECTION_END;
  867. }
  868. long st_get_position(uint8_t axis)
  869. {
  870. long count_pos;
  871. CRITICAL_SECTION_START;
  872. count_pos = count_position[axis];
  873. CRITICAL_SECTION_END;
  874. return count_pos;
  875. }
  876. float st_get_position_mm(uint8_t axis)
  877. {
  878. float steper_position_in_steps = st_get_position(axis);
  879. return steper_position_in_steps / axis_steps_per_unit[axis];
  880. }
  881. void finishAndDisableSteppers()
  882. {
  883. st_synchronize();
  884. disable_x();
  885. disable_y();
  886. disable_z();
  887. disable_e0();
  888. disable_e1();
  889. disable_e2();
  890. }
  891. void quickStop()
  892. {
  893. DISABLE_STEPPER_DRIVER_INTERRUPT();
  894. while (blocks_queued()) plan_discard_current_block();
  895. current_block = NULL;
  896. ENABLE_STEPPER_DRIVER_INTERRUPT();
  897. }
  898. #ifdef BABYSTEPPING
  899. void babystep(const uint8_t axis,const bool direction)
  900. {
  901. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  902. //store initial pin states
  903. switch(axis)
  904. {
  905. case X_AXIS:
  906. {
  907. enable_x();
  908. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  909. //setup new step
  910. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  911. //perform step
  912. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  913. {
  914. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  915. }
  916. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  917. //get old pin state back.
  918. WRITE(X_DIR_PIN,old_x_dir_pin);
  919. }
  920. break;
  921. case Y_AXIS:
  922. {
  923. enable_y();
  924. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  925. //setup new step
  926. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  927. //perform step
  928. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  929. {
  930. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  931. }
  932. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  933. //get old pin state back.
  934. WRITE(Y_DIR_PIN,old_y_dir_pin);
  935. }
  936. break;
  937. case Z_AXIS:
  938. {
  939. enable_z();
  940. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  941. //setup new step
  942. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  943. #ifdef Z_DUAL_STEPPER_DRIVERS
  944. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  945. #endif
  946. //perform step
  947. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  948. #ifdef Z_DUAL_STEPPER_DRIVERS
  949. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  950. #endif
  951. //wait a tiny bit
  952. {
  953. float x=1./float(axis+1); //absolutely useless
  954. }
  955. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  956. #ifdef Z_DUAL_STEPPER_DRIVERS
  957. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  958. #endif
  959. //get old pin state back.
  960. WRITE(Z_DIR_PIN,old_z_dir_pin);
  961. #ifdef Z_DUAL_STEPPER_DRIVERS
  962. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  963. #endif
  964. }
  965. break;
  966. default: break;
  967. }
  968. }
  969. #endif //BABYSTEPPING
  970. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  971. {
  972. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  973. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  974. SPI.transfer(address); // send in the address and value via SPI:
  975. SPI.transfer(value);
  976. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  977. //delay(10);
  978. #endif
  979. }
  980. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  981. {
  982. do
  983. {
  984. *value = eeprom_read_byte((unsigned char*)pos);
  985. pos++;
  986. value++;
  987. }while(--size);
  988. }
  989. void digipot_init() //Initialize Digipot Motor Current
  990. {
  991. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  992. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  993. if(SilentMode == 0){
  994. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  995. }else{
  996. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  997. }
  998. SPI.begin();
  999. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1000. for(int i=0;i<=4;i++)
  1001. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1002. digipot_current(i,digipot_motor_current[i]);
  1003. #endif
  1004. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1005. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1006. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1007. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1008. if(SilentMode == 0){
  1009. motor_current_setting[0] = motor_current_setting_loud[0];
  1010. motor_current_setting[1] = motor_current_setting_loud[1];
  1011. motor_current_setting[2] = motor_current_setting_loud[2];
  1012. }else{
  1013. motor_current_setting[0] = motor_current_setting_silent[0];
  1014. motor_current_setting[1] = motor_current_setting_silent[1];
  1015. motor_current_setting[2] = motor_current_setting_silent[2];
  1016. }
  1017. digipot_current(0, motor_current_setting[0]);
  1018. digipot_current(1, motor_current_setting[1]);
  1019. digipot_current(2, motor_current_setting[2]);
  1020. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1021. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1022. #endif
  1023. }
  1024. void digipot_current(uint8_t driver, int current)
  1025. {
  1026. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1027. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1028. digitalPotWrite(digipot_ch[driver], current);
  1029. #endif
  1030. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1031. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1032. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1033. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1034. #endif
  1035. }
  1036. void microstep_init()
  1037. {
  1038. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1039. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1040. pinMode(E1_MS1_PIN,OUTPUT);
  1041. pinMode(E1_MS2_PIN,OUTPUT);
  1042. #endif
  1043. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1044. pinMode(X_MS1_PIN,OUTPUT);
  1045. pinMode(X_MS2_PIN,OUTPUT);
  1046. pinMode(Y_MS1_PIN,OUTPUT);
  1047. pinMode(Y_MS2_PIN,OUTPUT);
  1048. pinMode(Z_MS1_PIN,OUTPUT);
  1049. pinMode(Z_MS2_PIN,OUTPUT);
  1050. pinMode(E0_MS1_PIN,OUTPUT);
  1051. pinMode(E0_MS2_PIN,OUTPUT);
  1052. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1053. #endif
  1054. }
  1055. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1056. {
  1057. if(ms1 > -1) switch(driver)
  1058. {
  1059. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1060. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1061. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1062. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1063. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1064. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1065. #endif
  1066. }
  1067. if(ms2 > -1) switch(driver)
  1068. {
  1069. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1070. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1071. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1072. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1073. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1074. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1075. #endif
  1076. }
  1077. }
  1078. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1079. {
  1080. switch(stepping_mode)
  1081. {
  1082. case 1: microstep_ms(driver,MICROSTEP1); break;
  1083. case 2: microstep_ms(driver,MICROSTEP2); break;
  1084. case 4: microstep_ms(driver,MICROSTEP4); break;
  1085. case 8: microstep_ms(driver,MICROSTEP8); break;
  1086. case 16: microstep_ms(driver,MICROSTEP16); break;
  1087. }
  1088. }
  1089. void microstep_readings()
  1090. {
  1091. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1092. SERIAL_PROTOCOLPGM("X: ");
  1093. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1094. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1095. SERIAL_PROTOCOLPGM("Y: ");
  1096. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1097. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1098. SERIAL_PROTOCOLPGM("Z: ");
  1099. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1100. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1101. SERIAL_PROTOCOLPGM("E0: ");
  1102. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1103. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1104. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1105. SERIAL_PROTOCOLPGM("E1: ");
  1106. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1107. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1108. #endif
  1109. }