Marlin_main.cpp 301 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M92 - Set axis_steps_per_unit - same syntax as G92
  168. // M104 - Set extruder target temp
  169. // M105 - Read current temp
  170. // M106 - Fan on
  171. // M107 - Fan off
  172. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  173. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  174. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  175. // M112 - Emergency stop
  176. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  177. // M114 - Output current position to serial port
  178. // M115 - Capabilities string
  179. // M117 - display message
  180. // M119 - Output Endstop status to serial port
  181. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  182. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  183. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  184. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M140 - Set bed target temp
  186. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  187. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  188. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  189. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  190. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  191. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  192. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  193. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  194. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  195. // M206 - set additional homing offset
  196. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  197. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  198. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  199. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  200. // M220 S<factor in percent>- set speed factor override percentage
  201. // M221 S<factor in percent>- set extrude factor override percentage
  202. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  203. // M240 - Trigger a camera to take a photograph
  204. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  205. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  206. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  207. // M301 - Set PID parameters P I and D
  208. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  209. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  210. // M304 - Set bed PID parameters P I and D
  211. // M400 - Finish all moves
  212. // M401 - Lower z-probe if present
  213. // M402 - Raise z-probe if present
  214. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  215. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  216. // M406 - Turn off Filament Sensor extrusion control
  217. // M407 - Displays measured filament diameter
  218. // M500 - stores parameters in EEPROM
  219. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. // M503 - print the current settings (from memory not from EEPROM)
  222. // M509 - force language selection on next restart
  223. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. // M860 - Wait for PINDA thermistor to reach target temperature.
  227. // M861 - Set / Read PINDA temperature compensation offsets
  228. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  229. // M907 - Set digital trimpot motor current using axis codes.
  230. // M908 - Control digital trimpot directly.
  231. // M350 - Set microstepping mode.
  232. // M351 - Toggle MS1 MS2 pins directly.
  233. // M928 - Start SD logging (M928 filename.g) - ended by M29
  234. // M999 - Restart after being stopped by error
  235. //Stepper Movement Variables
  236. //===========================================================================
  237. //=============================imported variables============================
  238. //===========================================================================
  239. //===========================================================================
  240. //=============================public variables=============================
  241. //===========================================================================
  242. #ifdef SDSUPPORT
  243. CardReader card;
  244. #endif
  245. unsigned long PingTime = millis();
  246. unsigned long NcTime;
  247. union Data
  248. {
  249. byte b[2];
  250. int value;
  251. };
  252. float homing_feedrate[] = HOMING_FEEDRATE;
  253. // Currently only the extruder axis may be switched to a relative mode.
  254. // Other axes are always absolute or relative based on the common relative_mode flag.
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedmultiply=100; //100->1 200->2
  257. int saved_feedmultiply;
  258. int extrudemultiply=100; //100->1 200->2
  259. int extruder_multiply[EXTRUDERS] = {100
  260. #if EXTRUDERS > 1
  261. , 100
  262. #if EXTRUDERS > 2
  263. , 100
  264. #endif
  265. #endif
  266. };
  267. int bowden_length[4] = {385, 385, 385, 385};
  268. bool is_usb_printing = false;
  269. bool homing_flag = false;
  270. bool temp_cal_active = false;
  271. unsigned long kicktime = millis()+100000;
  272. unsigned int usb_printing_counter;
  273. int lcd_change_fil_state = 0;
  274. int feedmultiplyBckp = 100;
  275. float HotendTempBckp = 0;
  276. int fanSpeedBckp = 0;
  277. float pause_lastpos[4];
  278. unsigned long pause_time = 0;
  279. unsigned long start_pause_print = millis();
  280. unsigned long t_fan_rising_edge = millis();
  281. static LongTimer safetyTimer;
  282. static LongTimer crashDetTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. float add_homing[3]={0,0,0};
  321. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  322. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  323. bool axis_known_position[3] = {false, false, false};
  324. float zprobe_zoffset;
  325. // Extruder offset
  326. #if EXTRUDERS > 1
  327. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  328. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  329. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  330. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  331. #endif
  332. };
  333. #endif
  334. uint8_t active_extruder = 0;
  335. int fanSpeed=0;
  336. #ifdef FWRETRACT
  337. bool autoretract_enabled=false;
  338. bool retracted[EXTRUDERS]={false
  339. #if EXTRUDERS > 1
  340. , false
  341. #if EXTRUDERS > 2
  342. , false
  343. #endif
  344. #endif
  345. };
  346. bool retracted_swap[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. float retract_length = RETRACT_LENGTH;
  355. float retract_length_swap = RETRACT_LENGTH_SWAP;
  356. float retract_feedrate = RETRACT_FEEDRATE;
  357. float retract_zlift = RETRACT_ZLIFT;
  358. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  359. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  360. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  361. #endif
  362. #ifdef ULTIPANEL
  363. #ifdef PS_DEFAULT_OFF
  364. bool powersupply = false;
  365. #else
  366. bool powersupply = true;
  367. #endif
  368. #endif
  369. bool cancel_heatup = false ;
  370. #ifdef HOST_KEEPALIVE_FEATURE
  371. int busy_state = NOT_BUSY;
  372. static long prev_busy_signal_ms = -1;
  373. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  374. #else
  375. #define host_keepalive();
  376. #define KEEPALIVE_STATE(n);
  377. #endif
  378. const char errormagic[] PROGMEM = "Error:";
  379. const char echomagic[] PROGMEM = "echo:";
  380. bool no_response = false;
  381. uint8_t important_status;
  382. uint8_t saved_filament_type;
  383. // save/restore printing
  384. bool saved_printing = false;
  385. // storing estimated time to end of print counted by slicer
  386. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  387. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  388. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  389. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  390. //===========================================================================
  391. //=============================Private Variables=============================
  392. //===========================================================================
  393. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  394. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  395. static float delta[3] = {0.0, 0.0, 0.0};
  396. // For tracing an arc
  397. static float offset[3] = {0.0, 0.0, 0.0};
  398. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  399. // Determines Absolute or Relative Coordinates.
  400. // Also there is bool axis_relative_modes[] per axis flag.
  401. static bool relative_mode = false;
  402. #ifndef _DISABLE_M42_M226
  403. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  404. #endif //_DISABLE_M42_M226
  405. //static float tt = 0;
  406. //static float bt = 0;
  407. //Inactivity shutdown variables
  408. static unsigned long previous_millis_cmd = 0;
  409. unsigned long max_inactive_time = 0;
  410. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  411. unsigned long starttime=0;
  412. unsigned long stoptime=0;
  413. unsigned long _usb_timer = 0;
  414. static uint8_t tmp_extruder;
  415. bool extruder_under_pressure = true;
  416. bool Stopped=false;
  417. #if NUM_SERVOS > 0
  418. Servo servos[NUM_SERVOS];
  419. #endif
  420. bool CooldownNoWait = true;
  421. bool target_direction;
  422. //Insert variables if CHDK is defined
  423. #ifdef CHDK
  424. unsigned long chdkHigh = 0;
  425. boolean chdkActive = false;
  426. #endif
  427. // save/restore printing
  428. static uint32_t saved_sdpos = 0;
  429. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  430. static float saved_pos[4] = { 0, 0, 0, 0 };
  431. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  432. static float saved_feedrate2 = 0;
  433. static uint8_t saved_active_extruder = 0;
  434. static bool saved_extruder_under_pressure = false;
  435. //===========================================================================
  436. //=============================Routines======================================
  437. //===========================================================================
  438. void get_arc_coordinates();
  439. bool setTargetedHotend(int code);
  440. void serial_echopair_P(const char *s_P, float v)
  441. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  442. void serial_echopair_P(const char *s_P, double v)
  443. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  444. void serial_echopair_P(const char *s_P, unsigned long v)
  445. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  446. #ifdef SDSUPPORT
  447. #include "SdFatUtil.h"
  448. int freeMemory() { return SdFatUtil::FreeRam(); }
  449. #else
  450. extern "C" {
  451. extern unsigned int __bss_end;
  452. extern unsigned int __heap_start;
  453. extern void *__brkval;
  454. int freeMemory() {
  455. int free_memory;
  456. if ((int)__brkval == 0)
  457. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  458. else
  459. free_memory = ((int)&free_memory) - ((int)__brkval);
  460. return free_memory;
  461. }
  462. }
  463. #endif //!SDSUPPORT
  464. void setup_killpin()
  465. {
  466. #if defined(KILL_PIN) && KILL_PIN > -1
  467. SET_INPUT(KILL_PIN);
  468. WRITE(KILL_PIN,HIGH);
  469. #endif
  470. }
  471. // Set home pin
  472. void setup_homepin(void)
  473. {
  474. #if defined(HOME_PIN) && HOME_PIN > -1
  475. SET_INPUT(HOME_PIN);
  476. WRITE(HOME_PIN,HIGH);
  477. #endif
  478. }
  479. void setup_photpin()
  480. {
  481. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  482. SET_OUTPUT(PHOTOGRAPH_PIN);
  483. WRITE(PHOTOGRAPH_PIN, LOW);
  484. #endif
  485. }
  486. void setup_powerhold()
  487. {
  488. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  489. SET_OUTPUT(SUICIDE_PIN);
  490. WRITE(SUICIDE_PIN, HIGH);
  491. #endif
  492. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  493. SET_OUTPUT(PS_ON_PIN);
  494. #if defined(PS_DEFAULT_OFF)
  495. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  496. #else
  497. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  498. #endif
  499. #endif
  500. }
  501. void suicide()
  502. {
  503. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  504. SET_OUTPUT(SUICIDE_PIN);
  505. WRITE(SUICIDE_PIN, LOW);
  506. #endif
  507. }
  508. void servo_init()
  509. {
  510. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  511. servos[0].attach(SERVO0_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  514. servos[1].attach(SERVO1_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  517. servos[2].attach(SERVO2_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  520. servos[3].attach(SERVO3_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 5)
  523. #error "TODO: enter initalisation code for more servos"
  524. #endif
  525. }
  526. void stop_and_save_print_to_ram(float z_move, float e_move);
  527. void restore_print_from_ram_and_continue(float e_move);
  528. bool fans_check_enabled = true;
  529. bool filament_autoload_enabled = true;
  530. #ifdef TMC2130
  531. extern int8_t CrashDetectMenu;
  532. void crashdet_enable()
  533. {
  534. // MYSERIAL.println("crashdet_enable");
  535. tmc2130_sg_stop_on_crash = true;
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  537. CrashDetectMenu = 1;
  538. }
  539. void crashdet_disable()
  540. {
  541. // MYSERIAL.println("crashdet_disable");
  542. tmc2130_sg_stop_on_crash = false;
  543. tmc2130_sg_crash = 0;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  545. CrashDetectMenu = 0;
  546. }
  547. void crashdet_stop_and_save_print()
  548. {
  549. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  550. }
  551. void crashdet_restore_print_and_continue()
  552. {
  553. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  554. // babystep_apply();
  555. }
  556. void crashdet_stop_and_save_print2()
  557. {
  558. cli();
  559. planner_abort_hard(); //abort printing
  560. cmdqueue_reset(); //empty cmdqueue
  561. card.sdprinting = false;
  562. card.closefile();
  563. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  564. st_reset_timer();
  565. sei();
  566. }
  567. void crashdet_detected(uint8_t mask)
  568. {
  569. // printf("CRASH_DETECTED");
  570. /* while (!is_buffer_empty())
  571. {
  572. process_commands();
  573. cmdqueue_pop_front();
  574. }*/
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. if (crashDet_counter++ == 0) {
  579. crashDetTimer.start();
  580. }
  581. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  582. crashDetTimer.stop();
  583. crashDet_counter = 0;
  584. }
  585. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  586. automatic_recovery_after_crash = false;
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else {
  591. crashDetTimer.start();
  592. }
  593. lcd_update_enable(true);
  594. lcd_implementation_clear();
  595. lcd_update(2);
  596. if (mask & X_AXIS_MASK)
  597. {
  598. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  599. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  600. }
  601. if (mask & Y_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  605. }
  606. lcd_update_enable(true);
  607. lcd_update(2);
  608. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  609. gcode_G28(true, true, false, false); //home X and Y
  610. st_synchronize();
  611. if (automatic_recovery_after_crash) {
  612. enquecommand_P(PSTR("CRASH_RECOVER"));
  613. }else{
  614. HotendTempBckp = degTargetHotend(active_extruder);
  615. setTargetHotend(0, active_extruder);
  616. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  617. lcd_update_enable(true);
  618. if (yesno)
  619. {
  620. char cmd1[10];
  621. strcpy(cmd1, "M109 S");
  622. strcat(cmd1, ftostr3(HotendTempBckp));
  623. enquecommand(cmd1);
  624. enquecommand_P(PSTR("CRASH_RECOVER"));
  625. }
  626. else
  627. {
  628. enquecommand_P(PSTR("CRASH_CANCEL"));
  629. }
  630. }
  631. }
  632. void crashdet_recover()
  633. {
  634. crashdet_restore_print_and_continue();
  635. tmc2130_sg_stop_on_crash = true;
  636. }
  637. void crashdet_cancel()
  638. {
  639. tmc2130_sg_stop_on_crash = true;
  640. if (saved_printing_type == PRINTING_TYPE_SD) {
  641. lcd_print_stop();
  642. }else if(saved_printing_type == PRINTING_TYPE_USB){
  643. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  644. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  645. }
  646. }
  647. #endif //TMC2130
  648. void failstats_reset_print()
  649. {
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  654. }
  655. #ifdef MESH_BED_LEVELING
  656. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  657. #endif
  658. // Factory reset function
  659. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  660. // Level input parameter sets depth of reset
  661. // Quiet parameter masks all waitings for user interact.
  662. int er_progress = 0;
  663. void factory_reset(char level, bool quiet)
  664. {
  665. lcd_implementation_clear();
  666. int cursor_pos = 0;
  667. switch (level) {
  668. // Level 0: Language reset
  669. case 0:
  670. WRITE(BEEPER, HIGH);
  671. _delay_ms(100);
  672. WRITE(BEEPER, LOW);
  673. lang_reset();
  674. break;
  675. //Level 1: Reset statistics
  676. case 1:
  677. WRITE(BEEPER, HIGH);
  678. _delay_ms(100);
  679. WRITE(BEEPER, LOW);
  680. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  681. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  690. lcd_menu_statistics();
  691. break;
  692. // Level 2: Prepare for shipping
  693. case 2:
  694. //lcd_printPGM(PSTR("Factory RESET"));
  695. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  696. // Force language selection at the next boot up.
  697. lang_reset();
  698. // Force the "Follow calibration flow" message at the next boot up.
  699. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  700. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  701. farm_no = 0;
  702. farm_mode = false;
  703. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  704. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  705. WRITE(BEEPER, HIGH);
  706. _delay_ms(100);
  707. WRITE(BEEPER, LOW);
  708. //_delay_ms(2000);
  709. break;
  710. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  711. case 3:
  712. lcd_printPGM(PSTR("Factory RESET"));
  713. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. er_progress = 0;
  718. lcd_print_at_PGM(3, 3, PSTR(" "));
  719. lcd_implementation_print_at(3, 3, er_progress);
  720. // Erase EEPROM
  721. for (int i = 0; i < 4096; i++) {
  722. eeprom_write_byte((uint8_t*)i, 0xFF);
  723. if (i % 41 == 0) {
  724. er_progress++;
  725. lcd_print_at_PGM(3, 3, PSTR(" "));
  726. lcd_implementation_print_at(3, 3, er_progress);
  727. lcd_printPGM(PSTR("%"));
  728. }
  729. }
  730. break;
  731. case 4:
  732. bowden_menu();
  733. break;
  734. default:
  735. break;
  736. }
  737. }
  738. #include "LiquidCrystal_Prusa.h"
  739. extern LiquidCrystal_Prusa lcd;
  740. FILE _lcdout = {0};
  741. int lcd_putchar(char c, FILE *stream)
  742. {
  743. lcd.write(c);
  744. return 0;
  745. }
  746. FILE _uartout = {0};
  747. int uart_putchar(char c, FILE *stream)
  748. {
  749. MYSERIAL.write(c);
  750. return 0;
  751. }
  752. void lcd_splash()
  753. {
  754. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  755. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  756. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  757. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  758. }
  759. void factory_reset()
  760. {
  761. KEEPALIVE_STATE(PAUSED_FOR_USER);
  762. if (!READ(BTN_ENC))
  763. {
  764. _delay_ms(1000);
  765. if (!READ(BTN_ENC))
  766. {
  767. lcd_implementation_clear();
  768. lcd_printPGM(PSTR("Factory RESET"));
  769. SET_OUTPUT(BEEPER);
  770. WRITE(BEEPER, HIGH);
  771. while (!READ(BTN_ENC));
  772. WRITE(BEEPER, LOW);
  773. _delay_ms(2000);
  774. char level = reset_menu();
  775. factory_reset(level, false);
  776. switch (level) {
  777. case 0: _delay_ms(0); break;
  778. case 1: _delay_ms(0); break;
  779. case 2: _delay_ms(0); break;
  780. case 3: _delay_ms(0); break;
  781. }
  782. // _delay_ms(100);
  783. /*
  784. #ifdef MESH_BED_LEVELING
  785. _delay_ms(2000);
  786. if (!READ(BTN_ENC))
  787. {
  788. WRITE(BEEPER, HIGH);
  789. _delay_ms(100);
  790. WRITE(BEEPER, LOW);
  791. _delay_ms(200);
  792. WRITE(BEEPER, HIGH);
  793. _delay_ms(100);
  794. WRITE(BEEPER, LOW);
  795. int _z = 0;
  796. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  797. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  798. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  799. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  800. }
  801. else
  802. {
  803. WRITE(BEEPER, HIGH);
  804. _delay_ms(100);
  805. WRITE(BEEPER, LOW);
  806. }
  807. #endif // mesh */
  808. }
  809. }
  810. else
  811. {
  812. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  813. }
  814. KEEPALIVE_STATE(IN_HANDLER);
  815. }
  816. void show_fw_version_warnings() {
  817. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  818. switch (FW_DEV_VERSION) {
  819. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  820. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  821. case(FW_VERSION_DEVEL):
  822. case(FW_VERSION_DEBUG):
  823. lcd_update_enable(false);
  824. lcd_implementation_clear();
  825. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  826. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  827. #else
  828. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  829. #endif
  830. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  831. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  832. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  833. lcd_wait_for_click();
  834. break;
  835. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  836. }
  837. lcd_update_enable(true);
  838. }
  839. uint8_t check_printer_version()
  840. {
  841. uint8_t version_changed = 0;
  842. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  843. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  844. if (printer_type != PRINTER_TYPE) {
  845. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  846. else version_changed |= 0b10;
  847. }
  848. if (motherboard != MOTHERBOARD) {
  849. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  850. else version_changed |= 0b01;
  851. }
  852. return version_changed;
  853. }
  854. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  855. {
  856. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  857. }
  858. #if (LANG_MODE != 0) //secondary language support
  859. #ifdef W25X20CL
  860. #include "bootapp.h" //bootloader support
  861. // language update from external flash
  862. #define LANGBOOT_BLOCKSIZE 0x1000
  863. #define LANGBOOT_RAMBUFFER 0x0800
  864. void update_sec_lang_from_external_flash()
  865. {
  866. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  867. {
  868. uint8_t lang = boot_reserved >> 4;
  869. uint8_t state = boot_reserved & 0xf;
  870. lang_table_header_t header;
  871. uint32_t src_addr;
  872. if (lang_get_header(lang, &header, &src_addr))
  873. {
  874. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  875. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  876. delay(100);
  877. boot_reserved = (state + 1) | (lang << 4);
  878. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  879. {
  880. cli();
  881. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  882. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  883. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  884. if (state == 0)
  885. {
  886. //TODO - check header integrity
  887. }
  888. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  889. }
  890. else
  891. {
  892. //TODO - check sec lang data integrity
  893. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  894. }
  895. }
  896. }
  897. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  898. }
  899. #ifdef DEBUG_W25X20CL
  900. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  901. {
  902. lang_table_header_t header;
  903. uint8_t count = 0;
  904. uint32_t addr = 0x00000;
  905. while (1)
  906. {
  907. printf_P(_n("LANGTABLE%d:"), count);
  908. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  909. if (header.magic != LANG_MAGIC)
  910. {
  911. printf_P(_n("NG!\n"));
  912. break;
  913. }
  914. printf_P(_n("OK\n"));
  915. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  916. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  917. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  918. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  919. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  920. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  921. addr += header.size;
  922. codes[count] = header.code;
  923. count ++;
  924. }
  925. return count;
  926. }
  927. void list_sec_lang_from_external_flash()
  928. {
  929. uint16_t codes[8];
  930. uint8_t count = lang_xflash_enum_codes(codes);
  931. printf_P(_n("XFlash lang count = %hhd\n"), count);
  932. }
  933. #endif //DEBUG_W25X20CL
  934. #endif //W25X20CL
  935. #endif //(LANG_MODE != 0)
  936. // "Setup" function is called by the Arduino framework on startup.
  937. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  938. // are initialized by the main() routine provided by the Arduino framework.
  939. void setup()
  940. {
  941. lcd_init();
  942. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  943. spi_init();
  944. lcd_splash();
  945. #if (LANG_MODE != 0) //secondary language support
  946. #ifdef W25X20CL
  947. if (w25x20cl_init())
  948. update_sec_lang_from_external_flash();
  949. else
  950. kill(_i("External SPI flash W25X20CL not responding."));
  951. #endif //W25X20CL
  952. #endif //(LANG_MODE != 0)
  953. setup_killpin();
  954. setup_powerhold();
  955. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  956. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  957. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  958. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  959. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  960. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  961. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  962. if (farm_mode)
  963. {
  964. no_response = true; //we need confirmation by recieving PRUSA thx
  965. important_status = 8;
  966. prusa_statistics(8);
  967. selectedSerialPort = 1;
  968. }
  969. MYSERIAL.begin(BAUDRATE);
  970. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  971. stdout = uartout;
  972. SERIAL_PROTOCOLLNPGM("start");
  973. SERIAL_ECHO_START;
  974. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  975. #ifdef DEBUG_SEC_LANG
  976. lang_table_header_t header;
  977. uint32_t src_addr = 0x00000;
  978. if (lang_get_header(3, &header, &src_addr))
  979. {
  980. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  981. #define LT_PRINT_TEST 2
  982. // flash usage
  983. // total p.test
  984. //0 252718 t+c text code
  985. //1 253142 424 170 254
  986. //2 253040 322 164 158
  987. //3 253248 530 135 395
  988. #if (LT_PRINT_TEST==1) //not optimized printf
  989. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  990. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  991. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  992. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  993. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  994. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  995. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  996. #elif (LT_PRINT_TEST==2) //optimized printf
  997. printf_P(
  998. _n(
  999. " _src_addr = 0x%08lx\n"
  1000. " _lt_magic = 0x%08lx %S\n"
  1001. " _lt_size = 0x%04x (%d)\n"
  1002. " _lt_count = 0x%04x (%d)\n"
  1003. " _lt_chsum = 0x%04x\n"
  1004. " _lt_code = 0x%04x (%c%c)\n"
  1005. " _lt_resv1 = 0x%08lx\n"
  1006. ),
  1007. src_addr,
  1008. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1009. header.size, header.size,
  1010. header.count, header.count,
  1011. header.checksum,
  1012. header.code, header.code >> 8, header.code & 0xff,
  1013. header.reserved1
  1014. );
  1015. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1016. MYSERIAL.print(" _src_addr = 0x");
  1017. MYSERIAL.println(src_addr, 16);
  1018. MYSERIAL.print(" _lt_magic = 0x");
  1019. MYSERIAL.print(header.magic, 16);
  1020. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1021. MYSERIAL.print(" _lt_size = 0x");
  1022. MYSERIAL.print(header.size, 16);
  1023. MYSERIAL.print(" (");
  1024. MYSERIAL.print(header.size, 10);
  1025. MYSERIAL.println(")");
  1026. MYSERIAL.print(" _lt_count = 0x");
  1027. MYSERIAL.print(header.count, 16);
  1028. MYSERIAL.print(" (");
  1029. MYSERIAL.print(header.count, 10);
  1030. MYSERIAL.println(")");
  1031. MYSERIAL.print(" _lt_chsum = 0x");
  1032. MYSERIAL.println(header.checksum, 16);
  1033. MYSERIAL.print(" _lt_code = 0x");
  1034. MYSERIAL.print(header.code, 16);
  1035. MYSERIAL.print(" (");
  1036. MYSERIAL.print((char)(header.code >> 8), 0);
  1037. MYSERIAL.print((char)(header.code & 0xff), 0);
  1038. MYSERIAL.println(")");
  1039. MYSERIAL.print(" _lt_resv1 = 0x");
  1040. MYSERIAL.println(header.reserved1, 16);
  1041. #endif //(LT_PRINT_TEST==)
  1042. #undef LT_PRINT_TEST
  1043. #if 0
  1044. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1045. for (uint16_t i = 0; i < 1024; i++)
  1046. {
  1047. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1048. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1049. if ((i % 16) == 15) putchar('\n');
  1050. }
  1051. #endif
  1052. #if 1
  1053. for (uint16_t i = 0; i < 1024*10; i++)
  1054. {
  1055. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1056. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1057. if ((i % 16) == 15) putchar('\n');
  1058. }
  1059. #endif
  1060. }
  1061. else
  1062. printf_P(_n("lang_get_header failed!\n"));
  1063. #if 0
  1064. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1065. for (int i = 0; i < 4096; ++i) {
  1066. int b = eeprom_read_byte((unsigned char*)i);
  1067. if (b != 255) {
  1068. SERIAL_ECHO(i);
  1069. SERIAL_ECHO(":");
  1070. SERIAL_ECHO(b);
  1071. SERIAL_ECHOLN("");
  1072. }
  1073. }
  1074. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1075. #endif
  1076. #endif //DEBUG_SEC_LANG
  1077. // Check startup - does nothing if bootloader sets MCUSR to 0
  1078. byte mcu = MCUSR;
  1079. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1080. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1081. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1082. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1083. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1084. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1085. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1086. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1087. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1088. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1089. MCUSR = 0;
  1090. //SERIAL_ECHORPGM(MSG_MARLIN);
  1091. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1092. #ifdef STRING_VERSION_CONFIG_H
  1093. #ifdef STRING_CONFIG_H_AUTHOR
  1094. SERIAL_ECHO_START;
  1095. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1096. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1097. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1098. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1099. SERIAL_ECHOPGM("Compiled: ");
  1100. SERIAL_ECHOLNPGM(__DATE__);
  1101. #endif
  1102. #endif
  1103. SERIAL_ECHO_START;
  1104. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1105. SERIAL_ECHO(freeMemory());
  1106. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1107. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1108. //lcd_update_enable(false); // why do we need this?? - andre
  1109. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1110. bool previous_settings_retrieved = false;
  1111. uint8_t hw_changed = check_printer_version();
  1112. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1113. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1114. }
  1115. else { //printer version was changed so use default settings
  1116. Config_ResetDefault();
  1117. }
  1118. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1119. tp_init(); // Initialize temperature loop
  1120. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1121. plan_init(); // Initialize planner;
  1122. factory_reset();
  1123. #ifdef TMC2130
  1124. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1125. if (silentMode == 0xff) silentMode = 0;
  1126. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1127. tmc2130_mode = TMC2130_MODE_NORMAL;
  1128. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1129. if (crashdet && !farm_mode)
  1130. {
  1131. crashdet_enable();
  1132. MYSERIAL.println("CrashDetect ENABLED!");
  1133. }
  1134. else
  1135. {
  1136. crashdet_disable();
  1137. MYSERIAL.println("CrashDetect DISABLED");
  1138. }
  1139. #ifdef TMC2130_LINEARITY_CORRECTION
  1140. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1141. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1142. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1143. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1144. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1145. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1146. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1147. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1148. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1149. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1150. #endif //TMC2130_LINEARITY_CORRECTION
  1151. #ifdef TMC2130_VARIABLE_RESOLUTION
  1152. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1153. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1154. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1155. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1156. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1157. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1158. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1159. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1160. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1161. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1162. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1163. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1164. #else //TMC2130_VARIABLE_RESOLUTION
  1165. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1167. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1168. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1169. #endif //TMC2130_VARIABLE_RESOLUTION
  1170. #endif //TMC2130
  1171. st_init(); // Initialize stepper, this enables interrupts!
  1172. #ifdef TMC2130
  1173. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1174. tmc2130_init();
  1175. #endif //TMC2130
  1176. setup_photpin();
  1177. servo_init();
  1178. // Reset the machine correction matrix.
  1179. // It does not make sense to load the correction matrix until the machine is homed.
  1180. world2machine_reset();
  1181. #ifdef PAT9125
  1182. fsensor_init();
  1183. #endif //PAT9125
  1184. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1185. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1186. #endif
  1187. setup_homepin();
  1188. #ifdef TMC2130
  1189. if (1) {
  1190. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1191. // try to run to zero phase before powering the Z motor.
  1192. // Move in negative direction
  1193. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1194. // Round the current micro-micro steps to micro steps.
  1195. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1196. // Until the phase counter is reset to zero.
  1197. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1198. delay(2);
  1199. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1200. delay(2);
  1201. }
  1202. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1203. }
  1204. #endif //TMC2130
  1205. #if defined(Z_AXIS_ALWAYS_ON)
  1206. enable_z();
  1207. #endif
  1208. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1209. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1210. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1211. if (farm_no == 0xFFFF) farm_no = 0;
  1212. if (farm_mode)
  1213. {
  1214. prusa_statistics(8);
  1215. }
  1216. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1217. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1218. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1219. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1220. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1221. // where all the EEPROM entries are set to 0x0ff.
  1222. // Once a firmware boots up, it forces at least a language selection, which changes
  1223. // EEPROM_LANG to number lower than 0x0ff.
  1224. // 1) Set a high power mode.
  1225. #ifdef TMC2130
  1226. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1227. tmc2130_mode = TMC2130_MODE_NORMAL;
  1228. #endif //TMC2130
  1229. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1230. }
  1231. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1232. // but this times out if a blocking dialog is shown in setup().
  1233. card.initsd();
  1234. #ifdef DEBUG_SD_SPEED_TEST
  1235. if (card.cardOK)
  1236. {
  1237. uint8_t* buff = (uint8_t*)block_buffer;
  1238. uint32_t block = 0;
  1239. uint32_t sumr = 0;
  1240. uint32_t sumw = 0;
  1241. for (int i = 0; i < 1024; i++)
  1242. {
  1243. uint32_t u = micros();
  1244. bool res = card.card.readBlock(i, buff);
  1245. u = micros() - u;
  1246. if (res)
  1247. {
  1248. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1249. sumr += u;
  1250. u = micros();
  1251. res = card.card.writeBlock(i, buff);
  1252. u = micros() - u;
  1253. if (res)
  1254. {
  1255. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1256. sumw += u;
  1257. }
  1258. else
  1259. {
  1260. printf_P(PSTR("writeBlock %4d error\n"), i);
  1261. break;
  1262. }
  1263. }
  1264. else
  1265. {
  1266. printf_P(PSTR("readBlock %4d error\n"), i);
  1267. break;
  1268. }
  1269. }
  1270. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1271. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1272. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1273. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1274. }
  1275. else
  1276. printf_P(PSTR("Card NG!\n"));
  1277. #endif //DEBUG_SD_SPEED_TEST
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1281. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1282. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1283. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1284. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1285. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1286. #ifdef SNMM
  1287. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1288. int _z = BOWDEN_LENGTH;
  1289. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1290. }
  1291. #endif
  1292. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1293. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1294. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1295. #if (LANG_MODE != 0) //secondary language support
  1296. #ifdef DEBUG_W25X20CL
  1297. W25X20CL_SPI_ENTER();
  1298. uint8_t uid[8]; // 64bit unique id
  1299. w25x20cl_rd_uid(uid);
  1300. puts_P(_n("W25X20CL UID="));
  1301. for (uint8_t i = 0; i < 8; i ++)
  1302. printf_P(PSTR("%02hhx"), uid[i]);
  1303. putchar('\n');
  1304. list_sec_lang_from_external_flash();
  1305. #endif //DEBUG_W25X20CL
  1306. // lang_reset();
  1307. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1308. lcd_language();
  1309. #ifdef DEBUG_SEC_LANG
  1310. uint16_t sec_lang_code = lang_get_code(1);
  1311. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1312. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1313. // lang_print_sec_lang(uartout);
  1314. #endif //DEBUG_SEC_LANG
  1315. #endif //(LANG_MODE != 0)
  1316. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1317. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1318. temp_cal_active = false;
  1319. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1321. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1322. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1323. int16_t z_shift = 0;
  1324. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1325. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1326. temp_cal_active = false;
  1327. }
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1329. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1330. }
  1331. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1332. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1333. }
  1334. check_babystep(); //checking if Z babystep is in allowed range
  1335. #ifdef UVLO_SUPPORT
  1336. setup_uvlo_interrupt();
  1337. #endif //UVLO_SUPPORT
  1338. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1339. setup_fan_interrupt();
  1340. #endif //DEBUG_DISABLE_FANCHECK
  1341. #ifdef PAT9125
  1342. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1343. fsensor_setup_interrupt();
  1344. #endif //DEBUG_DISABLE_FSENSORCHECK
  1345. #endif //PAT9125
  1346. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1347. #ifndef DEBUG_DISABLE_STARTMSGS
  1348. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1349. show_fw_version_warnings();
  1350. switch (hw_changed) {
  1351. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1352. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1353. case(0b01):
  1354. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1355. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1356. break;
  1357. case(0b10):
  1358. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1359. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1360. break;
  1361. case(0b11):
  1362. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1363. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1364. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1365. break;
  1366. default: break; //no change, show no message
  1367. }
  1368. if (!previous_settings_retrieved) {
  1369. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1370. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1371. }
  1372. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1373. lcd_wizard(0);
  1374. }
  1375. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1376. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1377. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1378. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1379. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1380. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1381. // Show the message.
  1382. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1383. }
  1384. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1385. // Show the message.
  1386. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1387. lcd_update_enable(true);
  1388. }
  1389. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1390. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1391. lcd_update_enable(true);
  1392. }
  1393. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1394. // Show the message.
  1395. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1396. }
  1397. }
  1398. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1399. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1401. update_current_firmware_version_to_eeprom();
  1402. lcd_selftest();
  1403. }
  1404. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1405. KEEPALIVE_STATE(IN_PROCESS);
  1406. #endif //DEBUG_DISABLE_STARTMSGS
  1407. lcd_update_enable(true);
  1408. lcd_implementation_clear();
  1409. lcd_update(2);
  1410. // Store the currently running firmware into an eeprom,
  1411. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1412. update_current_firmware_version_to_eeprom();
  1413. #ifdef TMC2130
  1414. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1415. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1416. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1417. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1418. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1419. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1420. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1421. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1422. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1423. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1424. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1425. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1426. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1427. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1428. #endif //TMC2130
  1429. #ifdef UVLO_SUPPORT
  1430. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1431. /*
  1432. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1433. else {
  1434. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1435. lcd_update_enable(true);
  1436. lcd_update(2);
  1437. lcd_setstatuspgm(_T(WELCOME_MSG));
  1438. }
  1439. */
  1440. manage_heater(); // Update temperatures
  1441. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1442. MYSERIAL.println("Power panic detected!");
  1443. MYSERIAL.print("Current bed temp:");
  1444. MYSERIAL.println(degBed());
  1445. MYSERIAL.print("Saved bed temp:");
  1446. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1447. #endif
  1448. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1449. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1450. MYSERIAL.println("Automatic recovery!");
  1451. #endif
  1452. recover_print(1);
  1453. }
  1454. else{
  1455. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1456. MYSERIAL.println("Normal recovery!");
  1457. #endif
  1458. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1459. else {
  1460. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1461. lcd_update_enable(true);
  1462. lcd_update(2);
  1463. lcd_setstatuspgm(_T(WELCOME_MSG));
  1464. }
  1465. }
  1466. }
  1467. #endif //UVLO_SUPPORT
  1468. KEEPALIVE_STATE(NOT_BUSY);
  1469. #ifdef WATCHDOG
  1470. wdt_enable(WDTO_4S);
  1471. #endif //WATCHDOG
  1472. }
  1473. #ifdef PAT9125
  1474. void fsensor_init() {
  1475. int pat9125 = pat9125_init();
  1476. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1477. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1478. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1479. if (!pat9125)
  1480. {
  1481. fsensor = 0; //disable sensor
  1482. fsensor_not_responding = true;
  1483. }
  1484. else {
  1485. fsensor_not_responding = false;
  1486. }
  1487. puts_P(PSTR("FSensor "));
  1488. if (fsensor)
  1489. {
  1490. puts_P(PSTR("ENABLED\n"));
  1491. fsensor_enable();
  1492. }
  1493. else
  1494. {
  1495. puts_P(PSTR("DISABLED\n"));
  1496. fsensor_disable();
  1497. }
  1498. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1499. filament_autoload_enabled = false;
  1500. fsensor_disable();
  1501. #endif //DEBUG_DISABLE_FSENSORCHECK
  1502. }
  1503. #endif //PAT9125
  1504. void trace();
  1505. #define CHUNK_SIZE 64 // bytes
  1506. #define SAFETY_MARGIN 1
  1507. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1508. int chunkHead = 0;
  1509. int serial_read_stream() {
  1510. setTargetHotend(0, 0);
  1511. setTargetBed(0);
  1512. lcd_implementation_clear();
  1513. lcd_printPGM(PSTR(" Upload in progress"));
  1514. // first wait for how many bytes we will receive
  1515. uint32_t bytesToReceive;
  1516. // receive the four bytes
  1517. char bytesToReceiveBuffer[4];
  1518. for (int i=0; i<4; i++) {
  1519. int data;
  1520. while ((data = MYSERIAL.read()) == -1) {};
  1521. bytesToReceiveBuffer[i] = data;
  1522. }
  1523. // make it a uint32
  1524. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1525. // we're ready, notify the sender
  1526. MYSERIAL.write('+');
  1527. // lock in the routine
  1528. uint32_t receivedBytes = 0;
  1529. while (prusa_sd_card_upload) {
  1530. int i;
  1531. for (i=0; i<CHUNK_SIZE; i++) {
  1532. int data;
  1533. // check if we're not done
  1534. if (receivedBytes == bytesToReceive) {
  1535. break;
  1536. }
  1537. // read the next byte
  1538. while ((data = MYSERIAL.read()) == -1) {};
  1539. receivedBytes++;
  1540. // save it to the chunk
  1541. chunk[i] = data;
  1542. }
  1543. // write the chunk to SD
  1544. card.write_command_no_newline(&chunk[0]);
  1545. // notify the sender we're ready for more data
  1546. MYSERIAL.write('+');
  1547. // for safety
  1548. manage_heater();
  1549. // check if we're done
  1550. if(receivedBytes == bytesToReceive) {
  1551. trace(); // beep
  1552. card.closefile();
  1553. prusa_sd_card_upload = false;
  1554. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1555. return 0;
  1556. }
  1557. }
  1558. }
  1559. #ifdef HOST_KEEPALIVE_FEATURE
  1560. /**
  1561. * Output a "busy" message at regular intervals
  1562. * while the machine is not accepting commands.
  1563. */
  1564. void host_keepalive() {
  1565. if (farm_mode) return;
  1566. long ms = millis();
  1567. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1568. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1569. switch (busy_state) {
  1570. case IN_HANDLER:
  1571. case IN_PROCESS:
  1572. SERIAL_ECHO_START;
  1573. SERIAL_ECHOLNPGM("busy: processing");
  1574. break;
  1575. case PAUSED_FOR_USER:
  1576. SERIAL_ECHO_START;
  1577. SERIAL_ECHOLNPGM("busy: paused for user");
  1578. break;
  1579. case PAUSED_FOR_INPUT:
  1580. SERIAL_ECHO_START;
  1581. SERIAL_ECHOLNPGM("busy: paused for input");
  1582. break;
  1583. default:
  1584. break;
  1585. }
  1586. }
  1587. prev_busy_signal_ms = ms;
  1588. }
  1589. #endif
  1590. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1591. // Before loop(), the setup() function is called by the main() routine.
  1592. void loop()
  1593. {
  1594. KEEPALIVE_STATE(NOT_BUSY);
  1595. bool stack_integrity = true;
  1596. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1597. {
  1598. is_usb_printing = true;
  1599. usb_printing_counter--;
  1600. _usb_timer = millis();
  1601. }
  1602. if (usb_printing_counter == 0)
  1603. {
  1604. is_usb_printing = false;
  1605. }
  1606. if (prusa_sd_card_upload)
  1607. {
  1608. //we read byte-by byte
  1609. serial_read_stream();
  1610. } else
  1611. {
  1612. get_command();
  1613. #ifdef SDSUPPORT
  1614. card.checkautostart(false);
  1615. #endif
  1616. if(buflen)
  1617. {
  1618. cmdbuffer_front_already_processed = false;
  1619. #ifdef SDSUPPORT
  1620. if(card.saving)
  1621. {
  1622. // Saving a G-code file onto an SD-card is in progress.
  1623. // Saving starts with M28, saving until M29 is seen.
  1624. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1625. card.write_command(CMDBUFFER_CURRENT_STRING);
  1626. if(card.logging)
  1627. process_commands();
  1628. else
  1629. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1630. } else {
  1631. card.closefile();
  1632. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1633. }
  1634. } else {
  1635. process_commands();
  1636. }
  1637. #else
  1638. process_commands();
  1639. #endif //SDSUPPORT
  1640. if (! cmdbuffer_front_already_processed && buflen)
  1641. {
  1642. // ptr points to the start of the block currently being processed.
  1643. // The first character in the block is the block type.
  1644. char *ptr = cmdbuffer + bufindr;
  1645. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1646. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1647. union {
  1648. struct {
  1649. char lo;
  1650. char hi;
  1651. } lohi;
  1652. uint16_t value;
  1653. } sdlen;
  1654. sdlen.value = 0;
  1655. {
  1656. // This block locks the interrupts globally for 3.25 us,
  1657. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1658. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1659. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1660. cli();
  1661. // Reset the command to something, which will be ignored by the power panic routine,
  1662. // so this buffer length will not be counted twice.
  1663. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1664. // Extract the current buffer length.
  1665. sdlen.lohi.lo = *ptr ++;
  1666. sdlen.lohi.hi = *ptr;
  1667. // and pass it to the planner queue.
  1668. planner_add_sd_length(sdlen.value);
  1669. sei();
  1670. }
  1671. }
  1672. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1673. cli();
  1674. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1675. // and one for each command to previous block in the planner queue.
  1676. planner_add_sd_length(1);
  1677. sei();
  1678. }
  1679. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1680. // this block's SD card length will not be counted twice as its command type has been replaced
  1681. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1682. cmdqueue_pop_front();
  1683. }
  1684. host_keepalive();
  1685. }
  1686. }
  1687. //check heater every n milliseconds
  1688. manage_heater();
  1689. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1690. checkHitEndstops();
  1691. lcd_update();
  1692. #ifdef PAT9125
  1693. fsensor_update();
  1694. #endif //PAT9125
  1695. #ifdef TMC2130
  1696. tmc2130_check_overtemp();
  1697. if (tmc2130_sg_crash)
  1698. {
  1699. uint8_t crash = tmc2130_sg_crash;
  1700. tmc2130_sg_crash = 0;
  1701. // crashdet_stop_and_save_print();
  1702. switch (crash)
  1703. {
  1704. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1705. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1706. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1707. }
  1708. }
  1709. #endif //TMC2130
  1710. }
  1711. #define DEFINE_PGM_READ_ANY(type, reader) \
  1712. static inline type pgm_read_any(const type *p) \
  1713. { return pgm_read_##reader##_near(p); }
  1714. DEFINE_PGM_READ_ANY(float, float);
  1715. DEFINE_PGM_READ_ANY(signed char, byte);
  1716. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1717. static const PROGMEM type array##_P[3] = \
  1718. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1719. static inline type array(int axis) \
  1720. { return pgm_read_any(&array##_P[axis]); } \
  1721. type array##_ext(int axis) \
  1722. { return pgm_read_any(&array##_P[axis]); }
  1723. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1724. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1725. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1726. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1727. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1728. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1729. static void axis_is_at_home(int axis) {
  1730. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1731. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1732. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1733. }
  1734. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1735. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1736. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1737. saved_feedrate = feedrate;
  1738. saved_feedmultiply = feedmultiply;
  1739. feedmultiply = 100;
  1740. previous_millis_cmd = millis();
  1741. enable_endstops(enable_endstops_now);
  1742. }
  1743. static void clean_up_after_endstop_move() {
  1744. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1745. enable_endstops(false);
  1746. #endif
  1747. feedrate = saved_feedrate;
  1748. feedmultiply = saved_feedmultiply;
  1749. previous_millis_cmd = millis();
  1750. }
  1751. #ifdef ENABLE_AUTO_BED_LEVELING
  1752. #ifdef AUTO_BED_LEVELING_GRID
  1753. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1754. {
  1755. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1756. planeNormal.debug("planeNormal");
  1757. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1758. //bedLevel.debug("bedLevel");
  1759. //plan_bed_level_matrix.debug("bed level before");
  1760. //vector_3 uncorrected_position = plan_get_position_mm();
  1761. //uncorrected_position.debug("position before");
  1762. vector_3 corrected_position = plan_get_position();
  1763. // corrected_position.debug("position after");
  1764. current_position[X_AXIS] = corrected_position.x;
  1765. current_position[Y_AXIS] = corrected_position.y;
  1766. current_position[Z_AXIS] = corrected_position.z;
  1767. // put the bed at 0 so we don't go below it.
  1768. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. }
  1771. #else // not AUTO_BED_LEVELING_GRID
  1772. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1773. plan_bed_level_matrix.set_to_identity();
  1774. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1775. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1776. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1777. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1778. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1779. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1780. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1781. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1782. vector_3 corrected_position = plan_get_position();
  1783. current_position[X_AXIS] = corrected_position.x;
  1784. current_position[Y_AXIS] = corrected_position.y;
  1785. current_position[Z_AXIS] = corrected_position.z;
  1786. // put the bed at 0 so we don't go below it.
  1787. current_position[Z_AXIS] = zprobe_zoffset;
  1788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1789. }
  1790. #endif // AUTO_BED_LEVELING_GRID
  1791. static void run_z_probe() {
  1792. plan_bed_level_matrix.set_to_identity();
  1793. feedrate = homing_feedrate[Z_AXIS];
  1794. // move down until you find the bed
  1795. float zPosition = -10;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1797. st_synchronize();
  1798. // we have to let the planner know where we are right now as it is not where we said to go.
  1799. zPosition = st_get_position_mm(Z_AXIS);
  1800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1801. // move up the retract distance
  1802. zPosition += home_retract_mm(Z_AXIS);
  1803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1804. st_synchronize();
  1805. // move back down slowly to find bed
  1806. feedrate = homing_feedrate[Z_AXIS]/4;
  1807. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1809. st_synchronize();
  1810. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1811. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. }
  1814. static void do_blocking_move_to(float x, float y, float z) {
  1815. float oldFeedRate = feedrate;
  1816. feedrate = homing_feedrate[Z_AXIS];
  1817. current_position[Z_AXIS] = z;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1819. st_synchronize();
  1820. feedrate = XY_TRAVEL_SPEED;
  1821. current_position[X_AXIS] = x;
  1822. current_position[Y_AXIS] = y;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. feedrate = oldFeedRate;
  1826. }
  1827. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1828. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1829. }
  1830. /// Probe bed height at position (x,y), returns the measured z value
  1831. static float probe_pt(float x, float y, float z_before) {
  1832. // move to right place
  1833. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1834. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1835. run_z_probe();
  1836. float measured_z = current_position[Z_AXIS];
  1837. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1838. SERIAL_PROTOCOLPGM(" x: ");
  1839. SERIAL_PROTOCOL(x);
  1840. SERIAL_PROTOCOLPGM(" y: ");
  1841. SERIAL_PROTOCOL(y);
  1842. SERIAL_PROTOCOLPGM(" z: ");
  1843. SERIAL_PROTOCOL(measured_z);
  1844. SERIAL_PROTOCOLPGM("\n");
  1845. return measured_z;
  1846. }
  1847. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1848. #ifdef LIN_ADVANCE
  1849. /**
  1850. * M900: Set and/or Get advance K factor and WH/D ratio
  1851. *
  1852. * K<factor> Set advance K factor
  1853. * R<ratio> Set ratio directly (overrides WH/D)
  1854. * W<width> H<height> D<diam> Set ratio from WH/D
  1855. */
  1856. inline void gcode_M900() {
  1857. st_synchronize();
  1858. const float newK = code_seen('K') ? code_value_float() : -1;
  1859. if (newK >= 0) extruder_advance_k = newK;
  1860. float newR = code_seen('R') ? code_value_float() : -1;
  1861. if (newR < 0) {
  1862. const float newD = code_seen('D') ? code_value_float() : -1,
  1863. newW = code_seen('W') ? code_value_float() : -1,
  1864. newH = code_seen('H') ? code_value_float() : -1;
  1865. if (newD >= 0 && newW >= 0 && newH >= 0)
  1866. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1867. }
  1868. if (newR >= 0) advance_ed_ratio = newR;
  1869. SERIAL_ECHO_START;
  1870. SERIAL_ECHOPGM("Advance K=");
  1871. SERIAL_ECHOLN(extruder_advance_k);
  1872. SERIAL_ECHOPGM(" E/D=");
  1873. const float ratio = advance_ed_ratio;
  1874. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1875. }
  1876. #endif // LIN_ADVANCE
  1877. bool check_commands() {
  1878. bool end_command_found = false;
  1879. while (buflen)
  1880. {
  1881. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1882. if (!cmdbuffer_front_already_processed)
  1883. cmdqueue_pop_front();
  1884. cmdbuffer_front_already_processed = false;
  1885. }
  1886. return end_command_found;
  1887. }
  1888. #ifdef TMC2130
  1889. bool calibrate_z_auto()
  1890. {
  1891. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1892. lcd_implementation_clear();
  1893. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1894. bool endstops_enabled = enable_endstops(true);
  1895. int axis_up_dir = -home_dir(Z_AXIS);
  1896. tmc2130_home_enter(Z_AXIS_MASK);
  1897. current_position[Z_AXIS] = 0;
  1898. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1899. set_destination_to_current();
  1900. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1901. feedrate = homing_feedrate[Z_AXIS];
  1902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1903. st_synchronize();
  1904. // current_position[axis] = 0;
  1905. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. tmc2130_home_exit();
  1907. enable_endstops(false);
  1908. current_position[Z_AXIS] = 0;
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. set_destination_to_current();
  1911. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1912. feedrate = homing_feedrate[Z_AXIS] / 2;
  1913. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1914. st_synchronize();
  1915. enable_endstops(endstops_enabled);
  1916. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. return true;
  1919. }
  1920. #endif //TMC2130
  1921. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1922. {
  1923. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1924. #define HOMEAXIS_DO(LETTER) \
  1925. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1926. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1927. {
  1928. int axis_home_dir = home_dir(axis);
  1929. feedrate = homing_feedrate[axis];
  1930. #ifdef TMC2130
  1931. tmc2130_home_enter(X_AXIS_MASK << axis);
  1932. #endif //TMC2130
  1933. // Move right a bit, so that the print head does not touch the left end position,
  1934. // and the following left movement has a chance to achieve the required velocity
  1935. // for the stall guard to work.
  1936. current_position[axis] = 0;
  1937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1938. set_destination_to_current();
  1939. // destination[axis] = 11.f;
  1940. destination[axis] = 3.f;
  1941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1942. st_synchronize();
  1943. // Move left away from the possible collision with the collision detection disabled.
  1944. endstops_hit_on_purpose();
  1945. enable_endstops(false);
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = - 1.;
  1949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1950. st_synchronize();
  1951. // Now continue to move up to the left end stop with the collision detection enabled.
  1952. enable_endstops(true);
  1953. destination[axis] = - 1.1 * max_length(axis);
  1954. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1955. st_synchronize();
  1956. for (uint8_t i = 0; i < cnt; i++)
  1957. {
  1958. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1959. endstops_hit_on_purpose();
  1960. enable_endstops(false);
  1961. current_position[axis] = 0;
  1962. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1963. destination[axis] = 10.f;
  1964. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1965. st_synchronize();
  1966. endstops_hit_on_purpose();
  1967. // Now move left up to the collision, this time with a repeatable velocity.
  1968. enable_endstops(true);
  1969. destination[axis] = - 11.f;
  1970. #ifdef TMC2130
  1971. feedrate = homing_feedrate[axis];
  1972. #else //TMC2130
  1973. feedrate = homing_feedrate[axis] / 2;
  1974. #endif //TMC2130
  1975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1976. st_synchronize();
  1977. #ifdef TMC2130
  1978. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1979. if (pstep) pstep[i] = mscnt >> 4;
  1980. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1981. #endif //TMC2130
  1982. }
  1983. endstops_hit_on_purpose();
  1984. enable_endstops(false);
  1985. #ifdef TMC2130
  1986. uint8_t orig = tmc2130_home_origin[axis];
  1987. uint8_t back = tmc2130_home_bsteps[axis];
  1988. if (tmc2130_home_enabled && (orig <= 63))
  1989. {
  1990. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1991. if (back > 0)
  1992. tmc2130_do_steps(axis, back, 1, 1000);
  1993. }
  1994. else
  1995. tmc2130_do_steps(axis, 8, 2, 1000);
  1996. tmc2130_home_exit();
  1997. #endif //TMC2130
  1998. axis_is_at_home(axis);
  1999. axis_known_position[axis] = true;
  2000. // Move from minimum
  2001. #ifdef TMC2130
  2002. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2003. #else //TMC2130
  2004. float dist = 0.01f * 64;
  2005. #endif //TMC2130
  2006. current_position[axis] -= dist;
  2007. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2008. current_position[axis] += dist;
  2009. destination[axis] = current_position[axis];
  2010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2011. st_synchronize();
  2012. feedrate = 0.0;
  2013. }
  2014. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2015. {
  2016. #ifdef TMC2130
  2017. FORCE_HIGH_POWER_START;
  2018. #endif
  2019. int axis_home_dir = home_dir(axis);
  2020. current_position[axis] = 0;
  2021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2022. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2023. feedrate = homing_feedrate[axis];
  2024. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2025. st_synchronize();
  2026. #ifdef TMC2130
  2027. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2028. FORCE_HIGH_POWER_END;
  2029. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2030. return;
  2031. }
  2032. #endif //TMC2130
  2033. current_position[axis] = 0;
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2036. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2037. st_synchronize();
  2038. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2039. feedrate = homing_feedrate[axis]/2 ;
  2040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2041. st_synchronize();
  2042. #ifdef TMC2130
  2043. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2044. FORCE_HIGH_POWER_END;
  2045. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2046. return;
  2047. }
  2048. #endif //TMC2130
  2049. axis_is_at_home(axis);
  2050. destination[axis] = current_position[axis];
  2051. feedrate = 0.0;
  2052. endstops_hit_on_purpose();
  2053. axis_known_position[axis] = true;
  2054. #ifdef TMC2130
  2055. FORCE_HIGH_POWER_END;
  2056. #endif
  2057. }
  2058. enable_endstops(endstops_enabled);
  2059. }
  2060. /**/
  2061. void home_xy()
  2062. {
  2063. set_destination_to_current();
  2064. homeaxis(X_AXIS);
  2065. homeaxis(Y_AXIS);
  2066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2067. endstops_hit_on_purpose();
  2068. }
  2069. void refresh_cmd_timeout(void)
  2070. {
  2071. previous_millis_cmd = millis();
  2072. }
  2073. #ifdef FWRETRACT
  2074. void retract(bool retracting, bool swapretract = false) {
  2075. if(retracting && !retracted[active_extruder]) {
  2076. destination[X_AXIS]=current_position[X_AXIS];
  2077. destination[Y_AXIS]=current_position[Y_AXIS];
  2078. destination[Z_AXIS]=current_position[Z_AXIS];
  2079. destination[E_AXIS]=current_position[E_AXIS];
  2080. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2081. plan_set_e_position(current_position[E_AXIS]);
  2082. float oldFeedrate = feedrate;
  2083. feedrate=retract_feedrate*60;
  2084. retracted[active_extruder]=true;
  2085. prepare_move();
  2086. current_position[Z_AXIS]-=retract_zlift;
  2087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2088. prepare_move();
  2089. feedrate = oldFeedrate;
  2090. } else if(!retracting && retracted[active_extruder]) {
  2091. destination[X_AXIS]=current_position[X_AXIS];
  2092. destination[Y_AXIS]=current_position[Y_AXIS];
  2093. destination[Z_AXIS]=current_position[Z_AXIS];
  2094. destination[E_AXIS]=current_position[E_AXIS];
  2095. current_position[Z_AXIS]+=retract_zlift;
  2096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2097. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2098. plan_set_e_position(current_position[E_AXIS]);
  2099. float oldFeedrate = feedrate;
  2100. feedrate=retract_recover_feedrate*60;
  2101. retracted[active_extruder]=false;
  2102. prepare_move();
  2103. feedrate = oldFeedrate;
  2104. }
  2105. } //retract
  2106. #endif //FWRETRACT
  2107. void trace() {
  2108. tone(BEEPER, 440);
  2109. delay(25);
  2110. noTone(BEEPER);
  2111. delay(20);
  2112. }
  2113. /*
  2114. void ramming() {
  2115. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2116. if (current_temperature[0] < 230) {
  2117. //PLA
  2118. max_feedrate[E_AXIS] = 50;
  2119. //current_position[E_AXIS] -= 8;
  2120. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2121. //current_position[E_AXIS] += 8;
  2122. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2123. current_position[E_AXIS] += 5.4;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2125. current_position[E_AXIS] += 3.2;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2127. current_position[E_AXIS] += 3;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2129. st_synchronize();
  2130. max_feedrate[E_AXIS] = 80;
  2131. current_position[E_AXIS] -= 82;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2133. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2134. current_position[E_AXIS] -= 20;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2136. current_position[E_AXIS] += 5;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2138. current_position[E_AXIS] += 5;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2140. current_position[E_AXIS] -= 10;
  2141. st_synchronize();
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2143. current_position[E_AXIS] += 10;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2145. current_position[E_AXIS] -= 10;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2147. current_position[E_AXIS] += 10;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2149. current_position[E_AXIS] -= 10;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2151. st_synchronize();
  2152. }
  2153. else {
  2154. //ABS
  2155. max_feedrate[E_AXIS] = 50;
  2156. //current_position[E_AXIS] -= 8;
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2158. //current_position[E_AXIS] += 8;
  2159. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2160. current_position[E_AXIS] += 3.1;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2162. current_position[E_AXIS] += 3.1;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2164. current_position[E_AXIS] += 4;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2166. st_synchronize();
  2167. //current_position[X_AXIS] += 23; //delay
  2168. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2169. //current_position[X_AXIS] -= 23; //delay
  2170. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2171. delay(4700);
  2172. max_feedrate[E_AXIS] = 80;
  2173. current_position[E_AXIS] -= 92;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2175. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2176. current_position[E_AXIS] -= 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2178. current_position[E_AXIS] += 5;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2180. current_position[E_AXIS] -= 5;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2182. st_synchronize();
  2183. current_position[E_AXIS] += 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. current_position[E_AXIS] -= 5;
  2186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2187. current_position[E_AXIS] += 5;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2189. current_position[E_AXIS] -= 5;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2191. st_synchronize();
  2192. }
  2193. }
  2194. */
  2195. #ifdef TMC2130
  2196. void force_high_power_mode(bool start_high_power_section) {
  2197. uint8_t silent;
  2198. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2199. if (silent == 1) {
  2200. //we are in silent mode, set to normal mode to enable crash detection
  2201. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2202. st_synchronize();
  2203. cli();
  2204. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2205. tmc2130_init();
  2206. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2207. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2208. st_reset_timer();
  2209. sei();
  2210. }
  2211. }
  2212. #endif //TMC2130
  2213. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2214. st_synchronize();
  2215. #if 0
  2216. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2217. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2218. #endif
  2219. // Flag for the display update routine and to disable the print cancelation during homing.
  2220. homing_flag = true;
  2221. // Either all X,Y,Z codes are present, or none of them.
  2222. bool home_all_axes = home_x == home_y && home_x == home_z;
  2223. if (home_all_axes)
  2224. // No X/Y/Z code provided means to home all axes.
  2225. home_x = home_y = home_z = true;
  2226. #ifdef ENABLE_AUTO_BED_LEVELING
  2227. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2228. #endif //ENABLE_AUTO_BED_LEVELING
  2229. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2230. // the planner will not perform any adjustments in the XY plane.
  2231. // Wait for the motors to stop and update the current position with the absolute values.
  2232. world2machine_revert_to_uncorrected();
  2233. // For mesh bed leveling deactivate the matrix temporarily.
  2234. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2235. // in a single axis only.
  2236. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2237. #ifdef MESH_BED_LEVELING
  2238. uint8_t mbl_was_active = mbl.active;
  2239. mbl.active = 0;
  2240. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2241. #endif
  2242. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2243. // consumed during the first movements following this statement.
  2244. if (home_z)
  2245. babystep_undo();
  2246. saved_feedrate = feedrate;
  2247. saved_feedmultiply = feedmultiply;
  2248. feedmultiply = 100;
  2249. previous_millis_cmd = millis();
  2250. enable_endstops(true);
  2251. memcpy(destination, current_position, sizeof(destination));
  2252. feedrate = 0.0;
  2253. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2254. if(home_z)
  2255. homeaxis(Z_AXIS);
  2256. #endif
  2257. #ifdef QUICK_HOME
  2258. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2259. if(home_x && home_y) //first diagonal move
  2260. {
  2261. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2262. int x_axis_home_dir = home_dir(X_AXIS);
  2263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2264. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2265. feedrate = homing_feedrate[X_AXIS];
  2266. if(homing_feedrate[Y_AXIS]<feedrate)
  2267. feedrate = homing_feedrate[Y_AXIS];
  2268. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2269. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2270. } else {
  2271. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2272. }
  2273. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2274. st_synchronize();
  2275. axis_is_at_home(X_AXIS);
  2276. axis_is_at_home(Y_AXIS);
  2277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2278. destination[X_AXIS] = current_position[X_AXIS];
  2279. destination[Y_AXIS] = current_position[Y_AXIS];
  2280. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2281. feedrate = 0.0;
  2282. st_synchronize();
  2283. endstops_hit_on_purpose();
  2284. current_position[X_AXIS] = destination[X_AXIS];
  2285. current_position[Y_AXIS] = destination[Y_AXIS];
  2286. current_position[Z_AXIS] = destination[Z_AXIS];
  2287. }
  2288. #endif /* QUICK_HOME */
  2289. #ifdef TMC2130
  2290. if(home_x)
  2291. {
  2292. if (!calib)
  2293. homeaxis(X_AXIS);
  2294. else
  2295. tmc2130_home_calibrate(X_AXIS);
  2296. }
  2297. if(home_y)
  2298. {
  2299. if (!calib)
  2300. homeaxis(Y_AXIS);
  2301. else
  2302. tmc2130_home_calibrate(Y_AXIS);
  2303. }
  2304. #endif //TMC2130
  2305. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2306. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2307. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2308. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2309. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2310. #ifndef Z_SAFE_HOMING
  2311. if(home_z) {
  2312. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2313. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2314. feedrate = max_feedrate[Z_AXIS];
  2315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2316. st_synchronize();
  2317. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2318. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2319. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2320. {
  2321. homeaxis(X_AXIS);
  2322. homeaxis(Y_AXIS);
  2323. }
  2324. // 1st mesh bed leveling measurement point, corrected.
  2325. world2machine_initialize();
  2326. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2327. world2machine_reset();
  2328. if (destination[Y_AXIS] < Y_MIN_POS)
  2329. destination[Y_AXIS] = Y_MIN_POS;
  2330. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2331. feedrate = homing_feedrate[Z_AXIS]/10;
  2332. current_position[Z_AXIS] = 0;
  2333. enable_endstops(false);
  2334. #ifdef DEBUG_BUILD
  2335. SERIAL_ECHOLNPGM("plan_set_position()");
  2336. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2337. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2338. #endif
  2339. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2340. #ifdef DEBUG_BUILD
  2341. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2342. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2343. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2344. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2345. #endif
  2346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2347. st_synchronize();
  2348. current_position[X_AXIS] = destination[X_AXIS];
  2349. current_position[Y_AXIS] = destination[Y_AXIS];
  2350. enable_endstops(true);
  2351. endstops_hit_on_purpose();
  2352. homeaxis(Z_AXIS);
  2353. #else // MESH_BED_LEVELING
  2354. homeaxis(Z_AXIS);
  2355. #endif // MESH_BED_LEVELING
  2356. }
  2357. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2358. if(home_all_axes) {
  2359. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2360. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2361. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2362. feedrate = XY_TRAVEL_SPEED/60;
  2363. current_position[Z_AXIS] = 0;
  2364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2366. st_synchronize();
  2367. current_position[X_AXIS] = destination[X_AXIS];
  2368. current_position[Y_AXIS] = destination[Y_AXIS];
  2369. homeaxis(Z_AXIS);
  2370. }
  2371. // Let's see if X and Y are homed and probe is inside bed area.
  2372. if(home_z) {
  2373. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2374. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2375. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2376. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2377. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2378. current_position[Z_AXIS] = 0;
  2379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2380. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2381. feedrate = max_feedrate[Z_AXIS];
  2382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2383. st_synchronize();
  2384. homeaxis(Z_AXIS);
  2385. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2386. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2387. SERIAL_ECHO_START;
  2388. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2389. } else {
  2390. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2391. SERIAL_ECHO_START;
  2392. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2393. }
  2394. }
  2395. #endif // Z_SAFE_HOMING
  2396. #endif // Z_HOME_DIR < 0
  2397. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2398. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2399. #ifdef ENABLE_AUTO_BED_LEVELING
  2400. if(home_z)
  2401. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2402. #endif
  2403. // Set the planner and stepper routine positions.
  2404. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2405. // contains the machine coordinates.
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2408. enable_endstops(false);
  2409. #endif
  2410. feedrate = saved_feedrate;
  2411. feedmultiply = saved_feedmultiply;
  2412. previous_millis_cmd = millis();
  2413. endstops_hit_on_purpose();
  2414. #ifndef MESH_BED_LEVELING
  2415. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2416. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2417. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2418. lcd_adjust_z();
  2419. #endif
  2420. // Load the machine correction matrix
  2421. world2machine_initialize();
  2422. // and correct the current_position XY axes to match the transformed coordinate system.
  2423. world2machine_update_current();
  2424. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2425. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2426. {
  2427. if (! home_z && mbl_was_active) {
  2428. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2429. mbl.active = true;
  2430. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2431. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2432. }
  2433. }
  2434. else
  2435. {
  2436. st_synchronize();
  2437. homing_flag = false;
  2438. // Push the commands to the front of the message queue in the reverse order!
  2439. // There shall be always enough space reserved for these commands.
  2440. enquecommand_front_P((PSTR("G80")));
  2441. //goto case_G80;
  2442. }
  2443. #endif
  2444. if (farm_mode) { prusa_statistics(20); };
  2445. homing_flag = false;
  2446. #if 0
  2447. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2448. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2449. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2450. #endif
  2451. }
  2452. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2453. {
  2454. bool final_result = false;
  2455. #ifdef TMC2130
  2456. FORCE_HIGH_POWER_START;
  2457. #endif // TMC2130
  2458. // Only Z calibration?
  2459. if (!onlyZ)
  2460. {
  2461. setTargetBed(0);
  2462. setTargetHotend(0, 0);
  2463. setTargetHotend(0, 1);
  2464. setTargetHotend(0, 2);
  2465. adjust_bed_reset(); //reset bed level correction
  2466. }
  2467. // Disable the default update procedure of the display. We will do a modal dialog.
  2468. lcd_update_enable(false);
  2469. // Let the planner use the uncorrected coordinates.
  2470. mbl.reset();
  2471. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2472. // the planner will not perform any adjustments in the XY plane.
  2473. // Wait for the motors to stop and update the current position with the absolute values.
  2474. world2machine_revert_to_uncorrected();
  2475. // Reset the baby step value applied without moving the axes.
  2476. babystep_reset();
  2477. // Mark all axes as in a need for homing.
  2478. memset(axis_known_position, 0, sizeof(axis_known_position));
  2479. // Home in the XY plane.
  2480. //set_destination_to_current();
  2481. setup_for_endstop_move();
  2482. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2483. home_xy();
  2484. enable_endstops(false);
  2485. current_position[X_AXIS] += 5;
  2486. current_position[Y_AXIS] += 5;
  2487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2488. st_synchronize();
  2489. // Let the user move the Z axes up to the end stoppers.
  2490. #ifdef TMC2130
  2491. if (calibrate_z_auto())
  2492. {
  2493. #else //TMC2130
  2494. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2495. {
  2496. #endif //TMC2130
  2497. refresh_cmd_timeout();
  2498. #ifndef STEEL_SHEET
  2499. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2500. {
  2501. lcd_wait_for_cool_down();
  2502. }
  2503. #endif //STEEL_SHEET
  2504. if(!onlyZ)
  2505. {
  2506. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2507. #ifdef STEEL_SHEET
  2508. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2509. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2510. #endif //STEEL_SHEET
  2511. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2512. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2513. KEEPALIVE_STATE(IN_HANDLER);
  2514. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2515. lcd_implementation_print_at(0, 2, 1);
  2516. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2517. }
  2518. // Move the print head close to the bed.
  2519. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2520. bool endstops_enabled = enable_endstops(true);
  2521. #ifdef TMC2130
  2522. tmc2130_home_enter(Z_AXIS_MASK);
  2523. #endif //TMC2130
  2524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2525. st_synchronize();
  2526. #ifdef TMC2130
  2527. tmc2130_home_exit();
  2528. #endif //TMC2130
  2529. enable_endstops(endstops_enabled);
  2530. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2531. {
  2532. int8_t verbosity_level = 0;
  2533. if (code_seen('V'))
  2534. {
  2535. // Just 'V' without a number counts as V1.
  2536. char c = strchr_pointer[1];
  2537. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2538. }
  2539. if (onlyZ)
  2540. {
  2541. clean_up_after_endstop_move();
  2542. // Z only calibration.
  2543. // Load the machine correction matrix
  2544. world2machine_initialize();
  2545. // and correct the current_position to match the transformed coordinate system.
  2546. world2machine_update_current();
  2547. //FIXME
  2548. bool result = sample_mesh_and_store_reference();
  2549. if (result)
  2550. {
  2551. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2552. // Shipped, the nozzle height has been set already. The user can start printing now.
  2553. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2554. final_result = true;
  2555. // babystep_apply();
  2556. }
  2557. }
  2558. else
  2559. {
  2560. // Reset the baby step value and the baby step applied flag.
  2561. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2562. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2563. // Complete XYZ calibration.
  2564. uint8_t point_too_far_mask = 0;
  2565. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2566. clean_up_after_endstop_move();
  2567. // Print head up.
  2568. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2570. st_synchronize();
  2571. //#ifndef NEW_XYZCAL
  2572. if (result >= 0)
  2573. {
  2574. #ifdef HEATBED_V2
  2575. sample_z();
  2576. #else //HEATBED_V2
  2577. point_too_far_mask = 0;
  2578. // Second half: The fine adjustment.
  2579. // Let the planner use the uncorrected coordinates.
  2580. mbl.reset();
  2581. world2machine_reset();
  2582. // Home in the XY plane.
  2583. setup_for_endstop_move();
  2584. home_xy();
  2585. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2586. clean_up_after_endstop_move();
  2587. // Print head up.
  2588. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2590. st_synchronize();
  2591. // if (result >= 0) babystep_apply();
  2592. #endif //HEATBED_V2
  2593. }
  2594. //#endif //NEW_XYZCAL
  2595. lcd_update_enable(true);
  2596. lcd_update(2);
  2597. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2598. if (result >= 0)
  2599. {
  2600. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2601. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2602. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2603. final_result = true;
  2604. }
  2605. }
  2606. #ifdef TMC2130
  2607. tmc2130_home_exit();
  2608. #endif
  2609. }
  2610. else
  2611. {
  2612. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2613. final_result = false;
  2614. }
  2615. }
  2616. else
  2617. {
  2618. // Timeouted.
  2619. }
  2620. lcd_update_enable(true);
  2621. #ifdef TMC2130
  2622. FORCE_HIGH_POWER_END;
  2623. #endif // TMC2130
  2624. return final_result;
  2625. }
  2626. void gcode_M114()
  2627. {
  2628. SERIAL_PROTOCOLPGM("X:");
  2629. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" Y:");
  2631. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2632. SERIAL_PROTOCOLPGM(" Z:");
  2633. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2634. SERIAL_PROTOCOLPGM(" E:");
  2635. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2636. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2637. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Y:");
  2639. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Z:");
  2641. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" E:");
  2643. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2644. SERIAL_PROTOCOLLN("");
  2645. }
  2646. void gcode_M701()
  2647. {
  2648. #ifdef SNMM
  2649. extr_adj(snmm_extruder);//loads current extruder
  2650. #else
  2651. enable_z();
  2652. custom_message = true;
  2653. custom_message_type = 2;
  2654. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2655. current_position[E_AXIS] += 70;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2657. current_position[E_AXIS] += 25;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2659. st_synchronize();
  2660. tone(BEEPER, 500);
  2661. delay_keep_alive(50);
  2662. noTone(BEEPER);
  2663. if (!farm_mode && loading_flag) {
  2664. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2665. while (!clean) {
  2666. lcd_update_enable(true);
  2667. lcd_update(2);
  2668. current_position[E_AXIS] += 25;
  2669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2670. st_synchronize();
  2671. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2672. }
  2673. }
  2674. lcd_update_enable(true);
  2675. lcd_update(2);
  2676. lcd_setstatuspgm(_T(WELCOME_MSG));
  2677. disable_z();
  2678. loading_flag = false;
  2679. custom_message = false;
  2680. custom_message_type = 0;
  2681. #endif
  2682. }
  2683. /**
  2684. * @brief Get serial number from 32U2 processor
  2685. *
  2686. * Typical format of S/N is:CZPX0917X003XC13518
  2687. *
  2688. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2689. *
  2690. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2691. * reply is transmitted to serial port 1 character by character.
  2692. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2693. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2694. * in any case.
  2695. */
  2696. static void gcode_PRUSA_SN()
  2697. {
  2698. if (farm_mode) {
  2699. selectedSerialPort = 0;
  2700. MSerial.write(";S");
  2701. int numbersRead = 0;
  2702. ShortTimer timeout;
  2703. timeout.start();
  2704. while (numbersRead < 19) {
  2705. while (MSerial.available() > 0) {
  2706. uint8_t serial_char = MSerial.read();
  2707. selectedSerialPort = 1;
  2708. MSerial.write(serial_char);
  2709. numbersRead++;
  2710. selectedSerialPort = 0;
  2711. }
  2712. if (timeout.expired(100u)) break;
  2713. }
  2714. selectedSerialPort = 1;
  2715. MSerial.write('\n');
  2716. #if 0
  2717. for (int b = 0; b < 3; b++) {
  2718. tone(BEEPER, 110);
  2719. delay(50);
  2720. noTone(BEEPER);
  2721. delay(50);
  2722. }
  2723. #endif
  2724. } else {
  2725. MYSERIAL.println("Not in farm mode.");
  2726. }
  2727. }
  2728. void process_commands()
  2729. {
  2730. if (!buflen) return; //empty command
  2731. #ifdef FILAMENT_RUNOUT_SUPPORT
  2732. SET_INPUT(FR_SENS);
  2733. #endif
  2734. #ifdef CMDBUFFER_DEBUG
  2735. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2736. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2737. SERIAL_ECHOLNPGM("");
  2738. SERIAL_ECHOPGM("In cmdqueue: ");
  2739. SERIAL_ECHO(buflen);
  2740. SERIAL_ECHOLNPGM("");
  2741. #endif /* CMDBUFFER_DEBUG */
  2742. unsigned long codenum; //throw away variable
  2743. char *starpos = NULL;
  2744. #ifdef ENABLE_AUTO_BED_LEVELING
  2745. float x_tmp, y_tmp, z_tmp, real_z;
  2746. #endif
  2747. // PRUSA GCODES
  2748. KEEPALIVE_STATE(IN_HANDLER);
  2749. #ifdef SNMM
  2750. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2751. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2752. int8_t SilentMode;
  2753. #endif
  2754. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2755. starpos = (strchr(strchr_pointer + 5, '*'));
  2756. if (starpos != NULL)
  2757. *(starpos) = '\0';
  2758. lcd_setstatus(strchr_pointer + 5);
  2759. }
  2760. #ifdef TMC2130
  2761. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2762. {
  2763. if(code_seen("CRASH_DETECTED"))
  2764. {
  2765. uint8_t mask = 0;
  2766. if (code_seen("X")) mask |= X_AXIS_MASK;
  2767. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2768. crashdet_detected(mask);
  2769. }
  2770. else if(code_seen("CRASH_RECOVER"))
  2771. crashdet_recover();
  2772. else if(code_seen("CRASH_CANCEL"))
  2773. crashdet_cancel();
  2774. }
  2775. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2776. {
  2777. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2778. {
  2779. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2780. tmc2130_set_wave(E_AXIS, 247, fac);
  2781. }
  2782. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2783. {
  2784. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2785. uint16_t res = tmc2130_get_res(E_AXIS);
  2786. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2787. }
  2788. }
  2789. #endif //TMC2130
  2790. else if(code_seen("PRUSA")){
  2791. if (code_seen("Ping")) { //PRUSA Ping
  2792. if (farm_mode) {
  2793. PingTime = millis();
  2794. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2795. }
  2796. }
  2797. else if (code_seen("PRN")) {
  2798. MYSERIAL.println(status_number);
  2799. }else if (code_seen("FAN")) {
  2800. MYSERIAL.print("E0:");
  2801. MYSERIAL.print(60*fan_speed[0]);
  2802. MYSERIAL.println(" RPM");
  2803. MYSERIAL.print("PRN0:");
  2804. MYSERIAL.print(60*fan_speed[1]);
  2805. MYSERIAL.println(" RPM");
  2806. }else if (code_seen("fn")) {
  2807. if (farm_mode) {
  2808. MYSERIAL.println(farm_no);
  2809. }
  2810. else {
  2811. MYSERIAL.println("Not in farm mode.");
  2812. }
  2813. }
  2814. else if (code_seen("thx")) {
  2815. no_response = false;
  2816. }else if (code_seen("fv")) {
  2817. // get file version
  2818. #ifdef SDSUPPORT
  2819. card.openFile(strchr_pointer + 3,true);
  2820. while (true) {
  2821. uint16_t readByte = card.get();
  2822. MYSERIAL.write(readByte);
  2823. if (readByte=='\n') {
  2824. break;
  2825. }
  2826. }
  2827. card.closefile();
  2828. #endif // SDSUPPORT
  2829. } else if (code_seen("M28")) {
  2830. trace();
  2831. prusa_sd_card_upload = true;
  2832. card.openFile(strchr_pointer+4,false);
  2833. } else if (code_seen("SN")) {
  2834. gcode_PRUSA_SN();
  2835. } else if(code_seen("Fir")){
  2836. SERIAL_PROTOCOLLN(FW_VERSION);
  2837. } else if(code_seen("Rev")){
  2838. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2839. } else if(code_seen("Lang")) {
  2840. lang_reset();
  2841. } else if(code_seen("Lz")) {
  2842. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2843. } else if(code_seen("Beat")) {
  2844. // Kick farm link timer
  2845. kicktime = millis();
  2846. } else if(code_seen("FR")) {
  2847. // Factory full reset
  2848. factory_reset(0,true);
  2849. }
  2850. //else if (code_seen('Cal')) {
  2851. // lcd_calibration();
  2852. // }
  2853. }
  2854. else if (code_seen('^')) {
  2855. // nothing, this is a version line
  2856. } else if(code_seen('G'))
  2857. {
  2858. switch((int)code_value())
  2859. {
  2860. case 0: // G0 -> G1
  2861. case 1: // G1
  2862. if(Stopped == false) {
  2863. #ifdef FILAMENT_RUNOUT_SUPPORT
  2864. if(READ(FR_SENS)){
  2865. feedmultiplyBckp=feedmultiply;
  2866. float target[4];
  2867. float lastpos[4];
  2868. target[X_AXIS]=current_position[X_AXIS];
  2869. target[Y_AXIS]=current_position[Y_AXIS];
  2870. target[Z_AXIS]=current_position[Z_AXIS];
  2871. target[E_AXIS]=current_position[E_AXIS];
  2872. lastpos[X_AXIS]=current_position[X_AXIS];
  2873. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2874. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2875. lastpos[E_AXIS]=current_position[E_AXIS];
  2876. //retract by E
  2877. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2879. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2881. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2882. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2884. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2886. //finish moves
  2887. st_synchronize();
  2888. //disable extruder steppers so filament can be removed
  2889. disable_e0();
  2890. disable_e1();
  2891. disable_e2();
  2892. delay(100);
  2893. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2894. uint8_t cnt=0;
  2895. int counterBeep = 0;
  2896. lcd_wait_interact();
  2897. while(!lcd_clicked()){
  2898. cnt++;
  2899. manage_heater();
  2900. manage_inactivity(true);
  2901. //lcd_update();
  2902. if(cnt==0)
  2903. {
  2904. #if BEEPER > 0
  2905. if (counterBeep== 500){
  2906. counterBeep = 0;
  2907. }
  2908. SET_OUTPUT(BEEPER);
  2909. if (counterBeep== 0){
  2910. WRITE(BEEPER,HIGH);
  2911. }
  2912. if (counterBeep== 20){
  2913. WRITE(BEEPER,LOW);
  2914. }
  2915. counterBeep++;
  2916. #else
  2917. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2918. lcd_buzz(1000/6,100);
  2919. #else
  2920. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2921. #endif
  2922. #endif
  2923. }
  2924. }
  2925. WRITE(BEEPER,LOW);
  2926. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2928. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2930. lcd_change_fil_state = 0;
  2931. lcd_loading_filament();
  2932. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2933. lcd_change_fil_state = 0;
  2934. lcd_alright();
  2935. switch(lcd_change_fil_state){
  2936. case 2:
  2937. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2938. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2939. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2940. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2941. lcd_loading_filament();
  2942. break;
  2943. case 3:
  2944. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2946. lcd_loading_color();
  2947. break;
  2948. default:
  2949. lcd_change_success();
  2950. break;
  2951. }
  2952. }
  2953. target[E_AXIS]+= 5;
  2954. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2955. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2956. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2957. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2958. //plan_set_e_position(current_position[E_AXIS]);
  2959. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2960. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2961. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2962. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2963. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2964. plan_set_e_position(lastpos[E_AXIS]);
  2965. feedmultiply=feedmultiplyBckp;
  2966. char cmd[9];
  2967. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2968. enquecommand(cmd);
  2969. }
  2970. #endif
  2971. get_coordinates(); // For X Y Z E F
  2972. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2973. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2974. }
  2975. #ifdef FWRETRACT
  2976. if(autoretract_enabled)
  2977. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2978. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2979. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2980. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2981. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2982. retract(!retracted[active_extruder]);
  2983. return;
  2984. }
  2985. }
  2986. #endif //FWRETRACT
  2987. prepare_move();
  2988. //ClearToSend();
  2989. }
  2990. break;
  2991. case 2: // G2 - CW ARC
  2992. if(Stopped == false) {
  2993. get_arc_coordinates();
  2994. prepare_arc_move(true);
  2995. }
  2996. break;
  2997. case 3: // G3 - CCW ARC
  2998. if(Stopped == false) {
  2999. get_arc_coordinates();
  3000. prepare_arc_move(false);
  3001. }
  3002. break;
  3003. case 4: // G4 dwell
  3004. codenum = 0;
  3005. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3006. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3007. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3008. st_synchronize();
  3009. codenum += millis(); // keep track of when we started waiting
  3010. previous_millis_cmd = millis();
  3011. while(millis() < codenum) {
  3012. manage_heater();
  3013. manage_inactivity();
  3014. lcd_update();
  3015. }
  3016. break;
  3017. #ifdef FWRETRACT
  3018. case 10: // G10 retract
  3019. #if EXTRUDERS > 1
  3020. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3021. retract(true,retracted_swap[active_extruder]);
  3022. #else
  3023. retract(true);
  3024. #endif
  3025. break;
  3026. case 11: // G11 retract_recover
  3027. #if EXTRUDERS > 1
  3028. retract(false,retracted_swap[active_extruder]);
  3029. #else
  3030. retract(false);
  3031. #endif
  3032. break;
  3033. #endif //FWRETRACT
  3034. case 28: //G28 Home all Axis one at a time
  3035. {
  3036. // Which axes should be homed?
  3037. bool home_x = code_seen(axis_codes[X_AXIS]);
  3038. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3039. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3040. // calibrate?
  3041. bool calib = code_seen('C');
  3042. gcode_G28(home_x, home_y, home_z, calib);
  3043. break;
  3044. }
  3045. #ifdef ENABLE_AUTO_BED_LEVELING
  3046. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3047. {
  3048. #if Z_MIN_PIN == -1
  3049. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3050. #endif
  3051. // Prevent user from running a G29 without first homing in X and Y
  3052. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3053. {
  3054. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3055. SERIAL_ECHO_START;
  3056. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3057. break; // abort G29, since we don't know where we are
  3058. }
  3059. st_synchronize();
  3060. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3061. //vector_3 corrected_position = plan_get_position_mm();
  3062. //corrected_position.debug("position before G29");
  3063. plan_bed_level_matrix.set_to_identity();
  3064. vector_3 uncorrected_position = plan_get_position();
  3065. //uncorrected_position.debug("position durring G29");
  3066. current_position[X_AXIS] = uncorrected_position.x;
  3067. current_position[Y_AXIS] = uncorrected_position.y;
  3068. current_position[Z_AXIS] = uncorrected_position.z;
  3069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3070. setup_for_endstop_move();
  3071. feedrate = homing_feedrate[Z_AXIS];
  3072. #ifdef AUTO_BED_LEVELING_GRID
  3073. // probe at the points of a lattice grid
  3074. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3075. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3076. // solve the plane equation ax + by + d = z
  3077. // A is the matrix with rows [x y 1] for all the probed points
  3078. // B is the vector of the Z positions
  3079. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3080. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3081. // "A" matrix of the linear system of equations
  3082. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3083. // "B" vector of Z points
  3084. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3085. int probePointCounter = 0;
  3086. bool zig = true;
  3087. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3088. {
  3089. int xProbe, xInc;
  3090. if (zig)
  3091. {
  3092. xProbe = LEFT_PROBE_BED_POSITION;
  3093. //xEnd = RIGHT_PROBE_BED_POSITION;
  3094. xInc = xGridSpacing;
  3095. zig = false;
  3096. } else // zag
  3097. {
  3098. xProbe = RIGHT_PROBE_BED_POSITION;
  3099. //xEnd = LEFT_PROBE_BED_POSITION;
  3100. xInc = -xGridSpacing;
  3101. zig = true;
  3102. }
  3103. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3104. {
  3105. float z_before;
  3106. if (probePointCounter == 0)
  3107. {
  3108. // raise before probing
  3109. z_before = Z_RAISE_BEFORE_PROBING;
  3110. } else
  3111. {
  3112. // raise extruder
  3113. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3114. }
  3115. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3116. eqnBVector[probePointCounter] = measured_z;
  3117. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3118. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3119. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3120. probePointCounter++;
  3121. xProbe += xInc;
  3122. }
  3123. }
  3124. clean_up_after_endstop_move();
  3125. // solve lsq problem
  3126. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3127. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3128. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3129. SERIAL_PROTOCOLPGM(" b: ");
  3130. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3131. SERIAL_PROTOCOLPGM(" d: ");
  3132. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3133. set_bed_level_equation_lsq(plane_equation_coefficients);
  3134. free(plane_equation_coefficients);
  3135. #else // AUTO_BED_LEVELING_GRID not defined
  3136. // Probe at 3 arbitrary points
  3137. // probe 1
  3138. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3139. // probe 2
  3140. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3141. // probe 3
  3142. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3143. clean_up_after_endstop_move();
  3144. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3145. #endif // AUTO_BED_LEVELING_GRID
  3146. st_synchronize();
  3147. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3148. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3149. // When the bed is uneven, this height must be corrected.
  3150. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3151. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3152. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3153. z_tmp = current_position[Z_AXIS];
  3154. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3155. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3157. }
  3158. break;
  3159. #ifndef Z_PROBE_SLED
  3160. case 30: // G30 Single Z Probe
  3161. {
  3162. st_synchronize();
  3163. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3164. setup_for_endstop_move();
  3165. feedrate = homing_feedrate[Z_AXIS];
  3166. run_z_probe();
  3167. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3168. SERIAL_PROTOCOLPGM(" X: ");
  3169. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3170. SERIAL_PROTOCOLPGM(" Y: ");
  3171. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3172. SERIAL_PROTOCOLPGM(" Z: ");
  3173. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3174. SERIAL_PROTOCOLPGM("\n");
  3175. clean_up_after_endstop_move();
  3176. }
  3177. break;
  3178. #else
  3179. case 31: // dock the sled
  3180. dock_sled(true);
  3181. break;
  3182. case 32: // undock the sled
  3183. dock_sled(false);
  3184. break;
  3185. #endif // Z_PROBE_SLED
  3186. #endif // ENABLE_AUTO_BED_LEVELING
  3187. #ifdef MESH_BED_LEVELING
  3188. case 30: // G30 Single Z Probe
  3189. {
  3190. st_synchronize();
  3191. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3192. setup_for_endstop_move();
  3193. feedrate = homing_feedrate[Z_AXIS];
  3194. find_bed_induction_sensor_point_z(-10.f, 3);
  3195. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3196. SERIAL_PROTOCOLPGM(" X: ");
  3197. MYSERIAL.print(current_position[X_AXIS], 5);
  3198. SERIAL_PROTOCOLPGM(" Y: ");
  3199. MYSERIAL.print(current_position[Y_AXIS], 5);
  3200. SERIAL_PROTOCOLPGM(" Z: ");
  3201. MYSERIAL.print(current_position[Z_AXIS], 5);
  3202. SERIAL_PROTOCOLPGM("\n");
  3203. clean_up_after_endstop_move();
  3204. }
  3205. break;
  3206. case 75:
  3207. {
  3208. for (int i = 40; i <= 110; i++) {
  3209. MYSERIAL.print(i);
  3210. MYSERIAL.print(" ");
  3211. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3212. }
  3213. }
  3214. break;
  3215. case 76: //PINDA probe temperature calibration
  3216. {
  3217. #ifdef PINDA_THERMISTOR
  3218. if (true)
  3219. {
  3220. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3221. //we need to know accurate position of first calibration point
  3222. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3223. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3224. break;
  3225. }
  3226. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3227. {
  3228. // We don't know where we are! HOME!
  3229. // Push the commands to the front of the message queue in the reverse order!
  3230. // There shall be always enough space reserved for these commands.
  3231. repeatcommand_front(); // repeat G76 with all its parameters
  3232. enquecommand_front_P((PSTR("G28 W0")));
  3233. break;
  3234. }
  3235. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3236. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3237. if (result)
  3238. {
  3239. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3241. current_position[Z_AXIS] = 50;
  3242. current_position[Y_AXIS] = 180;
  3243. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3244. st_synchronize();
  3245. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3246. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3247. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3248. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3249. st_synchronize();
  3250. gcode_G28(false, false, true, false);
  3251. }
  3252. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3253. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3254. current_position[Z_AXIS] = 100;
  3255. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3256. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3257. lcd_temp_cal_show_result(false);
  3258. break;
  3259. }
  3260. }
  3261. lcd_update_enable(true);
  3262. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3263. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3264. float zero_z;
  3265. int z_shift = 0; //unit: steps
  3266. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3267. if (start_temp < 35) start_temp = 35;
  3268. if (start_temp < current_temperature_pinda) start_temp += 5;
  3269. SERIAL_ECHOPGM("start temperature: ");
  3270. MYSERIAL.println(start_temp);
  3271. // setTargetHotend(200, 0);
  3272. setTargetBed(70 + (start_temp - 30));
  3273. custom_message = true;
  3274. custom_message_type = 4;
  3275. custom_message_state = 1;
  3276. custom_message = _T(MSG_TEMP_CALIBRATION);
  3277. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3279. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3280. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3282. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3283. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3284. st_synchronize();
  3285. while (current_temperature_pinda < start_temp)
  3286. {
  3287. delay_keep_alive(1000);
  3288. serialecho_temperatures();
  3289. }
  3290. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3291. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3293. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3294. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3296. st_synchronize();
  3297. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3298. if (find_z_result == false) {
  3299. lcd_temp_cal_show_result(find_z_result);
  3300. break;
  3301. }
  3302. zero_z = current_position[Z_AXIS];
  3303. //current_position[Z_AXIS]
  3304. SERIAL_ECHOLNPGM("");
  3305. SERIAL_ECHOPGM("ZERO: ");
  3306. MYSERIAL.print(current_position[Z_AXIS]);
  3307. SERIAL_ECHOLNPGM("");
  3308. int i = -1; for (; i < 5; i++)
  3309. {
  3310. float temp = (40 + i * 5);
  3311. SERIAL_ECHOPGM("Step: ");
  3312. MYSERIAL.print(i + 2);
  3313. SERIAL_ECHOLNPGM("/6 (skipped)");
  3314. SERIAL_ECHOPGM("PINDA temperature: ");
  3315. MYSERIAL.print((40 + i*5));
  3316. SERIAL_ECHOPGM(" Z shift (mm):");
  3317. MYSERIAL.print(0);
  3318. SERIAL_ECHOLNPGM("");
  3319. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3320. if (start_temp <= temp) break;
  3321. }
  3322. for (i++; i < 5; i++)
  3323. {
  3324. float temp = (40 + i * 5);
  3325. SERIAL_ECHOPGM("Step: ");
  3326. MYSERIAL.print(i + 2);
  3327. SERIAL_ECHOLNPGM("/6");
  3328. custom_message_state = i + 2;
  3329. setTargetBed(50 + 10 * (temp - 30) / 5);
  3330. // setTargetHotend(255, 0);
  3331. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3333. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3334. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3336. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3338. st_synchronize();
  3339. while (current_temperature_pinda < temp)
  3340. {
  3341. delay_keep_alive(1000);
  3342. serialecho_temperatures();
  3343. }
  3344. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3346. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3347. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3349. st_synchronize();
  3350. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3351. if (find_z_result == false) {
  3352. lcd_temp_cal_show_result(find_z_result);
  3353. break;
  3354. }
  3355. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3356. SERIAL_ECHOLNPGM("");
  3357. SERIAL_ECHOPGM("PINDA temperature: ");
  3358. MYSERIAL.print(current_temperature_pinda);
  3359. SERIAL_ECHOPGM(" Z shift (mm):");
  3360. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3361. SERIAL_ECHOLNPGM("");
  3362. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3363. }
  3364. lcd_temp_cal_show_result(true);
  3365. break;
  3366. }
  3367. #endif //PINDA_THERMISTOR
  3368. setTargetBed(PINDA_MIN_T);
  3369. float zero_z;
  3370. int z_shift = 0; //unit: steps
  3371. int t_c; // temperature
  3372. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3373. // We don't know where we are! HOME!
  3374. // Push the commands to the front of the message queue in the reverse order!
  3375. // There shall be always enough space reserved for these commands.
  3376. repeatcommand_front(); // repeat G76 with all its parameters
  3377. enquecommand_front_P((PSTR("G28 W0")));
  3378. break;
  3379. }
  3380. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3381. custom_message = true;
  3382. custom_message_type = 4;
  3383. custom_message_state = 1;
  3384. custom_message = _T(MSG_TEMP_CALIBRATION);
  3385. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3386. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3387. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3389. st_synchronize();
  3390. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3391. delay_keep_alive(1000);
  3392. serialecho_temperatures();
  3393. }
  3394. //enquecommand_P(PSTR("M190 S50"));
  3395. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3396. delay_keep_alive(1000);
  3397. serialecho_temperatures();
  3398. }
  3399. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3400. current_position[Z_AXIS] = 5;
  3401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3402. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3403. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3405. st_synchronize();
  3406. find_bed_induction_sensor_point_z(-1.f);
  3407. zero_z = current_position[Z_AXIS];
  3408. //current_position[Z_AXIS]
  3409. SERIAL_ECHOLNPGM("");
  3410. SERIAL_ECHOPGM("ZERO: ");
  3411. MYSERIAL.print(current_position[Z_AXIS]);
  3412. SERIAL_ECHOLNPGM("");
  3413. for (int i = 0; i<5; i++) {
  3414. SERIAL_ECHOPGM("Step: ");
  3415. MYSERIAL.print(i+2);
  3416. SERIAL_ECHOLNPGM("/6");
  3417. custom_message_state = i + 2;
  3418. t_c = 60 + i * 10;
  3419. setTargetBed(t_c);
  3420. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3421. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3422. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3424. st_synchronize();
  3425. while (degBed() < t_c) {
  3426. delay_keep_alive(1000);
  3427. serialecho_temperatures();
  3428. }
  3429. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3430. delay_keep_alive(1000);
  3431. serialecho_temperatures();
  3432. }
  3433. current_position[Z_AXIS] = 5;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3436. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3438. st_synchronize();
  3439. find_bed_induction_sensor_point_z(-1.f);
  3440. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3441. SERIAL_ECHOLNPGM("");
  3442. SERIAL_ECHOPGM("Temperature: ");
  3443. MYSERIAL.print(t_c);
  3444. SERIAL_ECHOPGM(" Z shift (mm):");
  3445. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3446. SERIAL_ECHOLNPGM("");
  3447. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3448. }
  3449. custom_message_type = 0;
  3450. custom_message = false;
  3451. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3452. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3453. disable_x();
  3454. disable_y();
  3455. disable_z();
  3456. disable_e0();
  3457. disable_e1();
  3458. disable_e2();
  3459. setTargetBed(0); //set bed target temperature back to 0
  3460. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3461. temp_cal_active = true;
  3462. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3463. lcd_update_enable(true);
  3464. lcd_update(2);
  3465. }
  3466. break;
  3467. #ifdef DIS
  3468. case 77:
  3469. {
  3470. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3471. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3472. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3473. float dimension_x = 40;
  3474. float dimension_y = 40;
  3475. int points_x = 40;
  3476. int points_y = 40;
  3477. float offset_x = 74;
  3478. float offset_y = 33;
  3479. if (code_seen('X')) dimension_x = code_value();
  3480. if (code_seen('Y')) dimension_y = code_value();
  3481. if (code_seen('XP')) points_x = code_value();
  3482. if (code_seen('YP')) points_y = code_value();
  3483. if (code_seen('XO')) offset_x = code_value();
  3484. if (code_seen('YO')) offset_y = code_value();
  3485. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3486. } break;
  3487. #endif
  3488. case 79: {
  3489. for (int i = 255; i > 0; i = i - 5) {
  3490. fanSpeed = i;
  3491. //delay_keep_alive(2000);
  3492. for (int j = 0; j < 100; j++) {
  3493. delay_keep_alive(100);
  3494. }
  3495. fan_speed[1];
  3496. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3497. }
  3498. }break;
  3499. /**
  3500. * G80: Mesh-based Z probe, probes a grid and produces a
  3501. * mesh to compensate for variable bed height
  3502. *
  3503. * The S0 report the points as below
  3504. *
  3505. * +----> X-axis
  3506. * |
  3507. * |
  3508. * v Y-axis
  3509. *
  3510. */
  3511. case 80:
  3512. #ifdef MK1BP
  3513. break;
  3514. #endif //MK1BP
  3515. case_G80:
  3516. {
  3517. mesh_bed_leveling_flag = true;
  3518. int8_t verbosity_level = 0;
  3519. static bool run = false;
  3520. if (code_seen('V')) {
  3521. // Just 'V' without a number counts as V1.
  3522. char c = strchr_pointer[1];
  3523. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3524. }
  3525. // Firstly check if we know where we are
  3526. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3527. // We don't know where we are! HOME!
  3528. // Push the commands to the front of the message queue in the reverse order!
  3529. // There shall be always enough space reserved for these commands.
  3530. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3531. repeatcommand_front(); // repeat G80 with all its parameters
  3532. enquecommand_front_P((PSTR("G28 W0")));
  3533. }
  3534. else {
  3535. mesh_bed_leveling_flag = false;
  3536. }
  3537. break;
  3538. }
  3539. bool temp_comp_start = true;
  3540. #ifdef PINDA_THERMISTOR
  3541. temp_comp_start = false;
  3542. #endif //PINDA_THERMISTOR
  3543. if (temp_comp_start)
  3544. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3545. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3546. temp_compensation_start();
  3547. run = true;
  3548. repeatcommand_front(); // repeat G80 with all its parameters
  3549. enquecommand_front_P((PSTR("G28 W0")));
  3550. }
  3551. else {
  3552. mesh_bed_leveling_flag = false;
  3553. }
  3554. break;
  3555. }
  3556. run = false;
  3557. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3558. mesh_bed_leveling_flag = false;
  3559. break;
  3560. }
  3561. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3562. bool custom_message_old = custom_message;
  3563. unsigned int custom_message_type_old = custom_message_type;
  3564. unsigned int custom_message_state_old = custom_message_state;
  3565. custom_message = true;
  3566. custom_message_type = 1;
  3567. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3568. lcd_update(1);
  3569. mbl.reset(); //reset mesh bed leveling
  3570. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3571. // consumed during the first movements following this statement.
  3572. babystep_undo();
  3573. // Cycle through all points and probe them
  3574. // First move up. During this first movement, the babystepping will be reverted.
  3575. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3577. // The move to the first calibration point.
  3578. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3579. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3580. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3581. #ifdef SUPPORT_VERBOSITY
  3582. if (verbosity_level >= 1) {
  3583. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3584. }
  3585. #endif //SUPPORT_VERBOSITY
  3586. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3588. // Wait until the move is finished.
  3589. st_synchronize();
  3590. int mesh_point = 0; //index number of calibration point
  3591. int ix = 0;
  3592. int iy = 0;
  3593. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3594. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3595. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3596. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3597. #ifdef SUPPORT_VERBOSITY
  3598. if (verbosity_level >= 1) {
  3599. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3600. }
  3601. #endif // SUPPORT_VERBOSITY
  3602. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3603. const char *kill_message = NULL;
  3604. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3605. // Get coords of a measuring point.
  3606. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3607. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3608. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3609. float z0 = 0.f;
  3610. if (has_z && mesh_point > 0) {
  3611. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3612. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3613. //#if 0
  3614. #ifdef SUPPORT_VERBOSITY
  3615. if (verbosity_level >= 1) {
  3616. SERIAL_ECHOLNPGM("");
  3617. SERIAL_ECHOPGM("Bed leveling, point: ");
  3618. MYSERIAL.print(mesh_point);
  3619. SERIAL_ECHOPGM(", calibration z: ");
  3620. MYSERIAL.print(z0, 5);
  3621. SERIAL_ECHOLNPGM("");
  3622. }
  3623. #endif // SUPPORT_VERBOSITY
  3624. //#endif
  3625. }
  3626. // Move Z up to MESH_HOME_Z_SEARCH.
  3627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3629. st_synchronize();
  3630. // Move to XY position of the sensor point.
  3631. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3632. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3633. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3634. #ifdef SUPPORT_VERBOSITY
  3635. if (verbosity_level >= 1) {
  3636. SERIAL_PROTOCOL(mesh_point);
  3637. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3638. }
  3639. #endif // SUPPORT_VERBOSITY
  3640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3641. st_synchronize();
  3642. // Go down until endstop is hit
  3643. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3644. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3645. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3646. break;
  3647. }
  3648. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3649. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3650. break;
  3651. }
  3652. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3653. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3654. break;
  3655. }
  3656. #ifdef SUPPORT_VERBOSITY
  3657. if (verbosity_level >= 10) {
  3658. SERIAL_ECHOPGM("X: ");
  3659. MYSERIAL.print(current_position[X_AXIS], 5);
  3660. SERIAL_ECHOLNPGM("");
  3661. SERIAL_ECHOPGM("Y: ");
  3662. MYSERIAL.print(current_position[Y_AXIS], 5);
  3663. SERIAL_PROTOCOLPGM("\n");
  3664. }
  3665. #endif // SUPPORT_VERBOSITY
  3666. float offset_z = 0;
  3667. #ifdef PINDA_THERMISTOR
  3668. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3669. #endif //PINDA_THERMISTOR
  3670. // #ifdef SUPPORT_VERBOSITY
  3671. /* if (verbosity_level >= 1)
  3672. {
  3673. SERIAL_ECHOPGM("mesh bed leveling: ");
  3674. MYSERIAL.print(current_position[Z_AXIS], 5);
  3675. SERIAL_ECHOPGM(" offset: ");
  3676. MYSERIAL.print(offset_z, 5);
  3677. SERIAL_ECHOLNPGM("");
  3678. }*/
  3679. // #endif // SUPPORT_VERBOSITY
  3680. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3681. custom_message_state--;
  3682. mesh_point++;
  3683. lcd_update(1);
  3684. }
  3685. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3686. #ifdef SUPPORT_VERBOSITY
  3687. if (verbosity_level >= 20) {
  3688. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3689. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3690. MYSERIAL.print(current_position[Z_AXIS], 5);
  3691. }
  3692. #endif // SUPPORT_VERBOSITY
  3693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3694. st_synchronize();
  3695. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3696. kill(kill_message);
  3697. SERIAL_ECHOLNPGM("killed");
  3698. }
  3699. clean_up_after_endstop_move();
  3700. // SERIAL_ECHOLNPGM("clean up finished ");
  3701. bool apply_temp_comp = true;
  3702. #ifdef PINDA_THERMISTOR
  3703. apply_temp_comp = false;
  3704. #endif
  3705. if (apply_temp_comp)
  3706. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3707. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3708. // SERIAL_ECHOLNPGM("babystep applied");
  3709. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3710. #ifdef SUPPORT_VERBOSITY
  3711. if (verbosity_level >= 1) {
  3712. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3713. }
  3714. #endif // SUPPORT_VERBOSITY
  3715. for (uint8_t i = 0; i < 4; ++i) {
  3716. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3717. long correction = 0;
  3718. if (code_seen(codes[i]))
  3719. correction = code_value_long();
  3720. else if (eeprom_bed_correction_valid) {
  3721. unsigned char *addr = (i < 2) ?
  3722. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3723. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3724. correction = eeprom_read_int8(addr);
  3725. }
  3726. if (correction == 0)
  3727. continue;
  3728. float offset = float(correction) * 0.001f;
  3729. if (fabs(offset) > 0.101f) {
  3730. SERIAL_ERROR_START;
  3731. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3732. SERIAL_ECHO(offset);
  3733. SERIAL_ECHOLNPGM(" microns");
  3734. }
  3735. else {
  3736. switch (i) {
  3737. case 0:
  3738. for (uint8_t row = 0; row < 3; ++row) {
  3739. mbl.z_values[row][1] += 0.5f * offset;
  3740. mbl.z_values[row][0] += offset;
  3741. }
  3742. break;
  3743. case 1:
  3744. for (uint8_t row = 0; row < 3; ++row) {
  3745. mbl.z_values[row][1] += 0.5f * offset;
  3746. mbl.z_values[row][2] += offset;
  3747. }
  3748. break;
  3749. case 2:
  3750. for (uint8_t col = 0; col < 3; ++col) {
  3751. mbl.z_values[1][col] += 0.5f * offset;
  3752. mbl.z_values[0][col] += offset;
  3753. }
  3754. break;
  3755. case 3:
  3756. for (uint8_t col = 0; col < 3; ++col) {
  3757. mbl.z_values[1][col] += 0.5f * offset;
  3758. mbl.z_values[2][col] += offset;
  3759. }
  3760. break;
  3761. }
  3762. }
  3763. }
  3764. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3765. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3766. // SERIAL_ECHOLNPGM("Upsample finished");
  3767. mbl.active = 1; //activate mesh bed leveling
  3768. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3769. go_home_with_z_lift();
  3770. // SERIAL_ECHOLNPGM("Go home finished");
  3771. //unretract (after PINDA preheat retraction)
  3772. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3773. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3775. }
  3776. KEEPALIVE_STATE(NOT_BUSY);
  3777. // Restore custom message state
  3778. custom_message = custom_message_old;
  3779. custom_message_type = custom_message_type_old;
  3780. custom_message_state = custom_message_state_old;
  3781. mesh_bed_leveling_flag = false;
  3782. mesh_bed_run_from_menu = false;
  3783. lcd_update(2);
  3784. }
  3785. break;
  3786. /**
  3787. * G81: Print mesh bed leveling status and bed profile if activated
  3788. */
  3789. case 81:
  3790. if (mbl.active) {
  3791. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3792. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3793. SERIAL_PROTOCOLPGM(",");
  3794. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3795. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3796. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3797. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3798. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3799. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3800. SERIAL_PROTOCOLPGM(" ");
  3801. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3802. }
  3803. SERIAL_PROTOCOLPGM("\n");
  3804. }
  3805. }
  3806. else
  3807. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3808. break;
  3809. #if 0
  3810. /**
  3811. * G82: Single Z probe at current location
  3812. *
  3813. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3814. *
  3815. */
  3816. case 82:
  3817. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3818. setup_for_endstop_move();
  3819. find_bed_induction_sensor_point_z();
  3820. clean_up_after_endstop_move();
  3821. SERIAL_PROTOCOLPGM("Bed found at: ");
  3822. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3823. SERIAL_PROTOCOLPGM("\n");
  3824. break;
  3825. /**
  3826. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3827. */
  3828. case 83:
  3829. {
  3830. int babystepz = code_seen('S') ? code_value() : 0;
  3831. int BabyPosition = code_seen('P') ? code_value() : 0;
  3832. if (babystepz != 0) {
  3833. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3834. // Is the axis indexed starting with zero or one?
  3835. if (BabyPosition > 4) {
  3836. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3837. }else{
  3838. // Save it to the eeprom
  3839. babystepLoadZ = babystepz;
  3840. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3841. // adjust the Z
  3842. babystepsTodoZadd(babystepLoadZ);
  3843. }
  3844. }
  3845. }
  3846. break;
  3847. /**
  3848. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3849. */
  3850. case 84:
  3851. babystepsTodoZsubtract(babystepLoadZ);
  3852. // babystepLoadZ = 0;
  3853. break;
  3854. /**
  3855. * G85: Prusa3D specific: Pick best babystep
  3856. */
  3857. case 85:
  3858. lcd_pick_babystep();
  3859. break;
  3860. #endif
  3861. /**
  3862. * G86: Prusa3D specific: Disable babystep correction after home.
  3863. * This G-code will be performed at the start of a calibration script.
  3864. */
  3865. case 86:
  3866. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3867. break;
  3868. /**
  3869. * G87: Prusa3D specific: Enable babystep correction after home
  3870. * This G-code will be performed at the end of a calibration script.
  3871. */
  3872. case 87:
  3873. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3874. break;
  3875. /**
  3876. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3877. */
  3878. case 88:
  3879. break;
  3880. #endif // ENABLE_MESH_BED_LEVELING
  3881. case 90: // G90
  3882. relative_mode = false;
  3883. break;
  3884. case 91: // G91
  3885. relative_mode = true;
  3886. break;
  3887. case 92: // G92
  3888. if(!code_seen(axis_codes[E_AXIS]))
  3889. st_synchronize();
  3890. for(int8_t i=0; i < NUM_AXIS; i++) {
  3891. if(code_seen(axis_codes[i])) {
  3892. if(i == E_AXIS) {
  3893. current_position[i] = code_value();
  3894. plan_set_e_position(current_position[E_AXIS]);
  3895. }
  3896. else {
  3897. current_position[i] = code_value()+add_homing[i];
  3898. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3899. }
  3900. }
  3901. }
  3902. break;
  3903. case 98: // G98 (activate farm mode)
  3904. farm_mode = 1;
  3905. PingTime = millis();
  3906. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3907. SilentModeMenu = SILENT_MODE_OFF;
  3908. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3909. break;
  3910. case 99: // G99 (deactivate farm mode)
  3911. farm_mode = 0;
  3912. lcd_printer_connected();
  3913. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3914. lcd_update(2);
  3915. break;
  3916. default:
  3917. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3918. }
  3919. } // end if(code_seen('G'))
  3920. else if(code_seen('M'))
  3921. {
  3922. int index;
  3923. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3924. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3925. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3926. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3927. } else
  3928. switch((int)code_value())
  3929. {
  3930. #ifdef ULTIPANEL
  3931. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3932. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3933. {
  3934. char *src = strchr_pointer + 2;
  3935. codenum = 0;
  3936. bool hasP = false, hasS = false;
  3937. if (code_seen('P')) {
  3938. codenum = code_value(); // milliseconds to wait
  3939. hasP = codenum > 0;
  3940. }
  3941. if (code_seen('S')) {
  3942. codenum = code_value() * 1000; // seconds to wait
  3943. hasS = codenum > 0;
  3944. }
  3945. starpos = strchr(src, '*');
  3946. if (starpos != NULL) *(starpos) = '\0';
  3947. while (*src == ' ') ++src;
  3948. if (!hasP && !hasS && *src != '\0') {
  3949. lcd_setstatus(src);
  3950. } else {
  3951. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3952. }
  3953. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3954. st_synchronize();
  3955. previous_millis_cmd = millis();
  3956. if (codenum > 0){
  3957. codenum += millis(); // keep track of when we started waiting
  3958. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3959. while(millis() < codenum && !lcd_clicked()){
  3960. manage_heater();
  3961. manage_inactivity(true);
  3962. lcd_update();
  3963. }
  3964. KEEPALIVE_STATE(IN_HANDLER);
  3965. lcd_ignore_click(false);
  3966. }else{
  3967. if (!lcd_detected())
  3968. break;
  3969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3970. while(!lcd_clicked()){
  3971. manage_heater();
  3972. manage_inactivity(true);
  3973. lcd_update();
  3974. }
  3975. KEEPALIVE_STATE(IN_HANDLER);
  3976. }
  3977. if (IS_SD_PRINTING)
  3978. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3979. else
  3980. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3981. }
  3982. break;
  3983. #endif
  3984. case 17:
  3985. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3986. enable_x();
  3987. enable_y();
  3988. enable_z();
  3989. enable_e0();
  3990. enable_e1();
  3991. enable_e2();
  3992. break;
  3993. #ifdef SDSUPPORT
  3994. case 20: // M20 - list SD card
  3995. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3996. card.ls();
  3997. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3998. break;
  3999. case 21: // M21 - init SD card
  4000. card.initsd();
  4001. break;
  4002. case 22: //M22 - release SD card
  4003. card.release();
  4004. break;
  4005. case 23: //M23 - Select file
  4006. starpos = (strchr(strchr_pointer + 4,'*'));
  4007. if(starpos!=NULL)
  4008. *(starpos)='\0';
  4009. card.openFile(strchr_pointer + 4,true);
  4010. break;
  4011. case 24: //M24 - Start SD print
  4012. if (!card.paused)
  4013. failstats_reset_print();
  4014. card.startFileprint();
  4015. starttime=millis();
  4016. break;
  4017. case 25: //M25 - Pause SD print
  4018. card.pauseSDPrint();
  4019. break;
  4020. case 26: //M26 - Set SD index
  4021. if(card.cardOK && code_seen('S')) {
  4022. card.setIndex(code_value_long());
  4023. }
  4024. break;
  4025. case 27: //M27 - Get SD status
  4026. card.getStatus();
  4027. break;
  4028. case 28: //M28 - Start SD write
  4029. starpos = (strchr(strchr_pointer + 4,'*'));
  4030. if(starpos != NULL){
  4031. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4032. strchr_pointer = strchr(npos,' ') + 1;
  4033. *(starpos) = '\0';
  4034. }
  4035. card.openFile(strchr_pointer+4,false);
  4036. break;
  4037. case 29: //M29 - Stop SD write
  4038. //processed in write to file routine above
  4039. //card,saving = false;
  4040. break;
  4041. case 30: //M30 <filename> Delete File
  4042. if (card.cardOK){
  4043. card.closefile();
  4044. starpos = (strchr(strchr_pointer + 4,'*'));
  4045. if(starpos != NULL){
  4046. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4047. strchr_pointer = strchr(npos,' ') + 1;
  4048. *(starpos) = '\0';
  4049. }
  4050. card.removeFile(strchr_pointer + 4);
  4051. }
  4052. break;
  4053. case 32: //M32 - Select file and start SD print
  4054. {
  4055. if(card.sdprinting) {
  4056. st_synchronize();
  4057. }
  4058. starpos = (strchr(strchr_pointer + 4,'*'));
  4059. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4060. if(namestartpos==NULL)
  4061. {
  4062. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4063. }
  4064. else
  4065. namestartpos++; //to skip the '!'
  4066. if(starpos!=NULL)
  4067. *(starpos)='\0';
  4068. bool call_procedure=(code_seen('P'));
  4069. if(strchr_pointer>namestartpos)
  4070. call_procedure=false; //false alert, 'P' found within filename
  4071. if( card.cardOK )
  4072. {
  4073. card.openFile(namestartpos,true,!call_procedure);
  4074. if(code_seen('S'))
  4075. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4076. card.setIndex(code_value_long());
  4077. card.startFileprint();
  4078. if(!call_procedure)
  4079. starttime=millis(); //procedure calls count as normal print time.
  4080. }
  4081. } break;
  4082. case 928: //M928 - Start SD write
  4083. starpos = (strchr(strchr_pointer + 5,'*'));
  4084. if(starpos != NULL){
  4085. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4086. strchr_pointer = strchr(npos,' ') + 1;
  4087. *(starpos) = '\0';
  4088. }
  4089. card.openLogFile(strchr_pointer+5);
  4090. break;
  4091. #endif //SDSUPPORT
  4092. case 31: //M31 take time since the start of the SD print or an M109 command
  4093. {
  4094. stoptime=millis();
  4095. char time[30];
  4096. unsigned long t=(stoptime-starttime)/1000;
  4097. int sec,min;
  4098. min=t/60;
  4099. sec=t%60;
  4100. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4101. SERIAL_ECHO_START;
  4102. SERIAL_ECHOLN(time);
  4103. lcd_setstatus(time);
  4104. autotempShutdown();
  4105. }
  4106. break;
  4107. #ifndef _DISABLE_M42_M226
  4108. case 42: //M42 -Change pin status via gcode
  4109. if (code_seen('S'))
  4110. {
  4111. int pin_status = code_value();
  4112. int pin_number = LED_PIN;
  4113. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4114. pin_number = code_value();
  4115. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4116. {
  4117. if (sensitive_pins[i] == pin_number)
  4118. {
  4119. pin_number = -1;
  4120. break;
  4121. }
  4122. }
  4123. #if defined(FAN_PIN) && FAN_PIN > -1
  4124. if (pin_number == FAN_PIN)
  4125. fanSpeed = pin_status;
  4126. #endif
  4127. if (pin_number > -1)
  4128. {
  4129. pinMode(pin_number, OUTPUT);
  4130. digitalWrite(pin_number, pin_status);
  4131. analogWrite(pin_number, pin_status);
  4132. }
  4133. }
  4134. break;
  4135. #endif //_DISABLE_M42_M226
  4136. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4137. // Reset the baby step value and the baby step applied flag.
  4138. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4139. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4140. // Reset the skew and offset in both RAM and EEPROM.
  4141. reset_bed_offset_and_skew();
  4142. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4143. // the planner will not perform any adjustments in the XY plane.
  4144. // Wait for the motors to stop and update the current position with the absolute values.
  4145. world2machine_revert_to_uncorrected();
  4146. break;
  4147. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4148. {
  4149. int8_t verbosity_level = 0;
  4150. bool only_Z = code_seen('Z');
  4151. #ifdef SUPPORT_VERBOSITY
  4152. if (code_seen('V'))
  4153. {
  4154. // Just 'V' without a number counts as V1.
  4155. char c = strchr_pointer[1];
  4156. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4157. }
  4158. #endif //SUPPORT_VERBOSITY
  4159. gcode_M45(only_Z, verbosity_level);
  4160. }
  4161. break;
  4162. /*
  4163. case 46:
  4164. {
  4165. // M46: Prusa3D: Show the assigned IP address.
  4166. uint8_t ip[4];
  4167. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4168. if (hasIP) {
  4169. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4170. SERIAL_ECHO(int(ip[0]));
  4171. SERIAL_ECHOPGM(".");
  4172. SERIAL_ECHO(int(ip[1]));
  4173. SERIAL_ECHOPGM(".");
  4174. SERIAL_ECHO(int(ip[2]));
  4175. SERIAL_ECHOPGM(".");
  4176. SERIAL_ECHO(int(ip[3]));
  4177. SERIAL_ECHOLNPGM("");
  4178. } else {
  4179. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4180. }
  4181. break;
  4182. }
  4183. */
  4184. case 47:
  4185. // M47: Prusa3D: Show end stops dialog on the display.
  4186. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4187. lcd_diag_show_end_stops();
  4188. KEEPALIVE_STATE(IN_HANDLER);
  4189. break;
  4190. #if 0
  4191. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4192. {
  4193. // Disable the default update procedure of the display. We will do a modal dialog.
  4194. lcd_update_enable(false);
  4195. // Let the planner use the uncorrected coordinates.
  4196. mbl.reset();
  4197. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4198. // the planner will not perform any adjustments in the XY plane.
  4199. // Wait for the motors to stop and update the current position with the absolute values.
  4200. world2machine_revert_to_uncorrected();
  4201. // Move the print head close to the bed.
  4202. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4204. st_synchronize();
  4205. // Home in the XY plane.
  4206. set_destination_to_current();
  4207. setup_for_endstop_move();
  4208. home_xy();
  4209. int8_t verbosity_level = 0;
  4210. if (code_seen('V')) {
  4211. // Just 'V' without a number counts as V1.
  4212. char c = strchr_pointer[1];
  4213. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4214. }
  4215. bool success = scan_bed_induction_points(verbosity_level);
  4216. clean_up_after_endstop_move();
  4217. // Print head up.
  4218. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4220. st_synchronize();
  4221. lcd_update_enable(true);
  4222. break;
  4223. }
  4224. #endif
  4225. // M48 Z-Probe repeatability measurement function.
  4226. //
  4227. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4228. //
  4229. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4230. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4231. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4232. // regenerated.
  4233. //
  4234. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4235. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4236. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4237. //
  4238. #ifdef ENABLE_AUTO_BED_LEVELING
  4239. #ifdef Z_PROBE_REPEATABILITY_TEST
  4240. case 48: // M48 Z-Probe repeatability
  4241. {
  4242. #if Z_MIN_PIN == -1
  4243. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4244. #endif
  4245. double sum=0.0;
  4246. double mean=0.0;
  4247. double sigma=0.0;
  4248. double sample_set[50];
  4249. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4250. double X_current, Y_current, Z_current;
  4251. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4252. if (code_seen('V') || code_seen('v')) {
  4253. verbose_level = code_value();
  4254. if (verbose_level<0 || verbose_level>4 ) {
  4255. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4256. goto Sigma_Exit;
  4257. }
  4258. }
  4259. if (verbose_level > 0) {
  4260. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4261. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4262. }
  4263. if (code_seen('n')) {
  4264. n_samples = code_value();
  4265. if (n_samples<4 || n_samples>50 ) {
  4266. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4267. goto Sigma_Exit;
  4268. }
  4269. }
  4270. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4271. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4272. Z_current = st_get_position_mm(Z_AXIS);
  4273. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4274. ext_position = st_get_position_mm(E_AXIS);
  4275. if (code_seen('X') || code_seen('x') ) {
  4276. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4277. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4278. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4279. goto Sigma_Exit;
  4280. }
  4281. }
  4282. if (code_seen('Y') || code_seen('y') ) {
  4283. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4284. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4285. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4286. goto Sigma_Exit;
  4287. }
  4288. }
  4289. if (code_seen('L') || code_seen('l') ) {
  4290. n_legs = code_value();
  4291. if ( n_legs==1 )
  4292. n_legs = 2;
  4293. if ( n_legs<0 || n_legs>15 ) {
  4294. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4295. goto Sigma_Exit;
  4296. }
  4297. }
  4298. //
  4299. // Do all the preliminary setup work. First raise the probe.
  4300. //
  4301. st_synchronize();
  4302. plan_bed_level_matrix.set_to_identity();
  4303. plan_buffer_line( X_current, Y_current, Z_start_location,
  4304. ext_position,
  4305. homing_feedrate[Z_AXIS]/60,
  4306. active_extruder);
  4307. st_synchronize();
  4308. //
  4309. // Now get everything to the specified probe point So we can safely do a probe to
  4310. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4311. // use that as a starting point for each probe.
  4312. //
  4313. if (verbose_level > 2)
  4314. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4315. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4316. ext_position,
  4317. homing_feedrate[X_AXIS]/60,
  4318. active_extruder);
  4319. st_synchronize();
  4320. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4321. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4322. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4323. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4324. //
  4325. // OK, do the inital probe to get us close to the bed.
  4326. // Then retrace the right amount and use that in subsequent probes
  4327. //
  4328. setup_for_endstop_move();
  4329. run_z_probe();
  4330. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4331. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4332. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4333. ext_position,
  4334. homing_feedrate[X_AXIS]/60,
  4335. active_extruder);
  4336. st_synchronize();
  4337. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4338. for( n=0; n<n_samples; n++) {
  4339. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4340. if ( n_legs) {
  4341. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4342. int rotational_direction, l;
  4343. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4344. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4345. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4346. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4347. //SERIAL_ECHOPAIR(" theta: ",theta);
  4348. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4349. //SERIAL_PROTOCOLLNPGM("");
  4350. for( l=0; l<n_legs-1; l++) {
  4351. if (rotational_direction==1)
  4352. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4353. else
  4354. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4355. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4356. if ( radius<0.0 )
  4357. radius = -radius;
  4358. X_current = X_probe_location + cos(theta) * radius;
  4359. Y_current = Y_probe_location + sin(theta) * radius;
  4360. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4361. X_current = X_MIN_POS;
  4362. if ( X_current>X_MAX_POS)
  4363. X_current = X_MAX_POS;
  4364. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4365. Y_current = Y_MIN_POS;
  4366. if ( Y_current>Y_MAX_POS)
  4367. Y_current = Y_MAX_POS;
  4368. if (verbose_level>3 ) {
  4369. SERIAL_ECHOPAIR("x: ", X_current);
  4370. SERIAL_ECHOPAIR("y: ", Y_current);
  4371. SERIAL_PROTOCOLLNPGM("");
  4372. }
  4373. do_blocking_move_to( X_current, Y_current, Z_current );
  4374. }
  4375. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4376. }
  4377. setup_for_endstop_move();
  4378. run_z_probe();
  4379. sample_set[n] = current_position[Z_AXIS];
  4380. //
  4381. // Get the current mean for the data points we have so far
  4382. //
  4383. sum=0.0;
  4384. for( j=0; j<=n; j++) {
  4385. sum = sum + sample_set[j];
  4386. }
  4387. mean = sum / (double (n+1));
  4388. //
  4389. // Now, use that mean to calculate the standard deviation for the
  4390. // data points we have so far
  4391. //
  4392. sum=0.0;
  4393. for( j=0; j<=n; j++) {
  4394. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4395. }
  4396. sigma = sqrt( sum / (double (n+1)) );
  4397. if (verbose_level > 1) {
  4398. SERIAL_PROTOCOL(n+1);
  4399. SERIAL_PROTOCOL(" of ");
  4400. SERIAL_PROTOCOL(n_samples);
  4401. SERIAL_PROTOCOLPGM(" z: ");
  4402. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4403. }
  4404. if (verbose_level > 2) {
  4405. SERIAL_PROTOCOL(" mean: ");
  4406. SERIAL_PROTOCOL_F(mean,6);
  4407. SERIAL_PROTOCOL(" sigma: ");
  4408. SERIAL_PROTOCOL_F(sigma,6);
  4409. }
  4410. if (verbose_level > 0)
  4411. SERIAL_PROTOCOLPGM("\n");
  4412. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4413. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4414. st_synchronize();
  4415. }
  4416. delay(1000);
  4417. clean_up_after_endstop_move();
  4418. // enable_endstops(true);
  4419. if (verbose_level > 0) {
  4420. SERIAL_PROTOCOLPGM("Mean: ");
  4421. SERIAL_PROTOCOL_F(mean, 6);
  4422. SERIAL_PROTOCOLPGM("\n");
  4423. }
  4424. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4425. SERIAL_PROTOCOL_F(sigma, 6);
  4426. SERIAL_PROTOCOLPGM("\n\n");
  4427. Sigma_Exit:
  4428. break;
  4429. }
  4430. #endif // Z_PROBE_REPEATABILITY_TEST
  4431. #endif // ENABLE_AUTO_BED_LEVELING
  4432. case 73: //M73 show percent done and time remaining
  4433. if(code_seen('P')) print_percent_done_normal = code_value();
  4434. if(code_seen('R')) print_time_remaining_normal = code_value();
  4435. if(code_seen('Q')) print_percent_done_silent = code_value();
  4436. if(code_seen('S')) print_time_remaining_silent = code_value();
  4437. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  4438. MYSERIAL.print(int(print_percent_done_normal));
  4439. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4440. MYSERIAL.println(print_time_remaining_normal);
  4441. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  4442. MYSERIAL.print(int(print_percent_done_silent));
  4443. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4444. MYSERIAL.println(print_time_remaining_silent);
  4445. break;
  4446. case 104: // M104
  4447. if(setTargetedHotend(104)){
  4448. break;
  4449. }
  4450. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4451. setWatch();
  4452. break;
  4453. case 112: // M112 -Emergency Stop
  4454. kill(_n(""), 3);
  4455. break;
  4456. case 140: // M140 set bed temp
  4457. if (code_seen('S')) setTargetBed(code_value());
  4458. break;
  4459. case 105 : // M105
  4460. if(setTargetedHotend(105)){
  4461. break;
  4462. }
  4463. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4464. SERIAL_PROTOCOLPGM("ok T:");
  4465. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4466. SERIAL_PROTOCOLPGM(" /");
  4467. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4468. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4469. SERIAL_PROTOCOLPGM(" B:");
  4470. SERIAL_PROTOCOL_F(degBed(),1);
  4471. SERIAL_PROTOCOLPGM(" /");
  4472. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4473. #endif //TEMP_BED_PIN
  4474. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4475. SERIAL_PROTOCOLPGM(" T");
  4476. SERIAL_PROTOCOL(cur_extruder);
  4477. SERIAL_PROTOCOLPGM(":");
  4478. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4479. SERIAL_PROTOCOLPGM(" /");
  4480. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4481. }
  4482. #else
  4483. SERIAL_ERROR_START;
  4484. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4485. #endif
  4486. SERIAL_PROTOCOLPGM(" @:");
  4487. #ifdef EXTRUDER_WATTS
  4488. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4489. SERIAL_PROTOCOLPGM("W");
  4490. #else
  4491. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4492. #endif
  4493. SERIAL_PROTOCOLPGM(" B@:");
  4494. #ifdef BED_WATTS
  4495. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4496. SERIAL_PROTOCOLPGM("W");
  4497. #else
  4498. SERIAL_PROTOCOL(getHeaterPower(-1));
  4499. #endif
  4500. #ifdef PINDA_THERMISTOR
  4501. SERIAL_PROTOCOLPGM(" P:");
  4502. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4503. #endif //PINDA_THERMISTOR
  4504. #ifdef AMBIENT_THERMISTOR
  4505. SERIAL_PROTOCOLPGM(" A:");
  4506. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4507. #endif //AMBIENT_THERMISTOR
  4508. #ifdef SHOW_TEMP_ADC_VALUES
  4509. {float raw = 0.0;
  4510. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4511. SERIAL_PROTOCOLPGM(" ADC B:");
  4512. SERIAL_PROTOCOL_F(degBed(),1);
  4513. SERIAL_PROTOCOLPGM("C->");
  4514. raw = rawBedTemp();
  4515. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4516. SERIAL_PROTOCOLPGM(" Rb->");
  4517. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4518. SERIAL_PROTOCOLPGM(" Rxb->");
  4519. SERIAL_PROTOCOL_F(raw, 5);
  4520. #endif
  4521. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4522. SERIAL_PROTOCOLPGM(" T");
  4523. SERIAL_PROTOCOL(cur_extruder);
  4524. SERIAL_PROTOCOLPGM(":");
  4525. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4526. SERIAL_PROTOCOLPGM("C->");
  4527. raw = rawHotendTemp(cur_extruder);
  4528. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4529. SERIAL_PROTOCOLPGM(" Rt");
  4530. SERIAL_PROTOCOL(cur_extruder);
  4531. SERIAL_PROTOCOLPGM("->");
  4532. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4533. SERIAL_PROTOCOLPGM(" Rx");
  4534. SERIAL_PROTOCOL(cur_extruder);
  4535. SERIAL_PROTOCOLPGM("->");
  4536. SERIAL_PROTOCOL_F(raw, 5);
  4537. }}
  4538. #endif
  4539. SERIAL_PROTOCOLLN("");
  4540. KEEPALIVE_STATE(NOT_BUSY);
  4541. return;
  4542. break;
  4543. case 109:
  4544. {// M109 - Wait for extruder heater to reach target.
  4545. if(setTargetedHotend(109)){
  4546. break;
  4547. }
  4548. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4549. heating_status = 1;
  4550. if (farm_mode) { prusa_statistics(1); };
  4551. #ifdef AUTOTEMP
  4552. autotemp_enabled=false;
  4553. #endif
  4554. if (code_seen('S')) {
  4555. setTargetHotend(code_value(), tmp_extruder);
  4556. CooldownNoWait = true;
  4557. } else if (code_seen('R')) {
  4558. setTargetHotend(code_value(), tmp_extruder);
  4559. CooldownNoWait = false;
  4560. }
  4561. #ifdef AUTOTEMP
  4562. if (code_seen('S')) autotemp_min=code_value();
  4563. if (code_seen('B')) autotemp_max=code_value();
  4564. if (code_seen('F'))
  4565. {
  4566. autotemp_factor=code_value();
  4567. autotemp_enabled=true;
  4568. }
  4569. #endif
  4570. setWatch();
  4571. codenum = millis();
  4572. /* See if we are heating up or cooling down */
  4573. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4574. KEEPALIVE_STATE(NOT_BUSY);
  4575. cancel_heatup = false;
  4576. wait_for_heater(codenum); //loops until target temperature is reached
  4577. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4578. KEEPALIVE_STATE(IN_HANDLER);
  4579. heating_status = 2;
  4580. if (farm_mode) { prusa_statistics(2); };
  4581. //starttime=millis();
  4582. previous_millis_cmd = millis();
  4583. }
  4584. break;
  4585. case 190: // M190 - Wait for bed heater to reach target.
  4586. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4587. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4588. heating_status = 3;
  4589. if (farm_mode) { prusa_statistics(1); };
  4590. if (code_seen('S'))
  4591. {
  4592. setTargetBed(code_value());
  4593. CooldownNoWait = true;
  4594. }
  4595. else if (code_seen('R'))
  4596. {
  4597. setTargetBed(code_value());
  4598. CooldownNoWait = false;
  4599. }
  4600. codenum = millis();
  4601. cancel_heatup = false;
  4602. target_direction = isHeatingBed(); // true if heating, false if cooling
  4603. KEEPALIVE_STATE(NOT_BUSY);
  4604. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4605. {
  4606. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4607. {
  4608. if (!farm_mode) {
  4609. float tt = degHotend(active_extruder);
  4610. SERIAL_PROTOCOLPGM("T:");
  4611. SERIAL_PROTOCOL(tt);
  4612. SERIAL_PROTOCOLPGM(" E:");
  4613. SERIAL_PROTOCOL((int)active_extruder);
  4614. SERIAL_PROTOCOLPGM(" B:");
  4615. SERIAL_PROTOCOL_F(degBed(), 1);
  4616. SERIAL_PROTOCOLLN("");
  4617. }
  4618. codenum = millis();
  4619. }
  4620. manage_heater();
  4621. manage_inactivity();
  4622. lcd_update();
  4623. }
  4624. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4625. KEEPALIVE_STATE(IN_HANDLER);
  4626. heating_status = 4;
  4627. previous_millis_cmd = millis();
  4628. #endif
  4629. break;
  4630. #if defined(FAN_PIN) && FAN_PIN > -1
  4631. case 106: //M106 Fan On
  4632. if (code_seen('S')){
  4633. fanSpeed=constrain(code_value(),0,255);
  4634. }
  4635. else {
  4636. fanSpeed=255;
  4637. }
  4638. break;
  4639. case 107: //M107 Fan Off
  4640. fanSpeed = 0;
  4641. break;
  4642. #endif //FAN_PIN
  4643. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4644. case 80: // M80 - Turn on Power Supply
  4645. SET_OUTPUT(PS_ON_PIN); //GND
  4646. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4647. // If you have a switch on suicide pin, this is useful
  4648. // if you want to start another print with suicide feature after
  4649. // a print without suicide...
  4650. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4651. SET_OUTPUT(SUICIDE_PIN);
  4652. WRITE(SUICIDE_PIN, HIGH);
  4653. #endif
  4654. #ifdef ULTIPANEL
  4655. powersupply = true;
  4656. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4657. lcd_update();
  4658. #endif
  4659. break;
  4660. #endif
  4661. case 81: // M81 - Turn off Power Supply
  4662. disable_heater();
  4663. st_synchronize();
  4664. disable_e0();
  4665. disable_e1();
  4666. disable_e2();
  4667. finishAndDisableSteppers();
  4668. fanSpeed = 0;
  4669. delay(1000); // Wait a little before to switch off
  4670. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4671. st_synchronize();
  4672. suicide();
  4673. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4674. SET_OUTPUT(PS_ON_PIN);
  4675. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4676. #endif
  4677. #ifdef ULTIPANEL
  4678. powersupply = false;
  4679. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4680. lcd_update();
  4681. #endif
  4682. break;
  4683. case 82:
  4684. axis_relative_modes[3] = false;
  4685. break;
  4686. case 83:
  4687. axis_relative_modes[3] = true;
  4688. break;
  4689. case 18: //compatibility
  4690. case 84: // M84
  4691. if(code_seen('S')){
  4692. stepper_inactive_time = code_value() * 1000;
  4693. }
  4694. else
  4695. {
  4696. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4697. if(all_axis)
  4698. {
  4699. st_synchronize();
  4700. disable_e0();
  4701. disable_e1();
  4702. disable_e2();
  4703. finishAndDisableSteppers();
  4704. }
  4705. else
  4706. {
  4707. st_synchronize();
  4708. if (code_seen('X')) disable_x();
  4709. if (code_seen('Y')) disable_y();
  4710. if (code_seen('Z')) disable_z();
  4711. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4712. if (code_seen('E')) {
  4713. disable_e0();
  4714. disable_e1();
  4715. disable_e2();
  4716. }
  4717. #endif
  4718. }
  4719. }
  4720. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4721. print_time_remaining_init();
  4722. snmm_filaments_used = 0;
  4723. break;
  4724. case 85: // M85
  4725. if(code_seen('S')) {
  4726. max_inactive_time = code_value() * 1000;
  4727. }
  4728. break;
  4729. case 92: // M92
  4730. for(int8_t i=0; i < NUM_AXIS; i++)
  4731. {
  4732. if(code_seen(axis_codes[i]))
  4733. {
  4734. if(i == 3) { // E
  4735. float value = code_value();
  4736. if(value < 20.0) {
  4737. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4738. max_jerk[E_AXIS] *= factor;
  4739. max_feedrate[i] *= factor;
  4740. axis_steps_per_sqr_second[i] *= factor;
  4741. }
  4742. axis_steps_per_unit[i] = value;
  4743. }
  4744. else {
  4745. axis_steps_per_unit[i] = code_value();
  4746. }
  4747. }
  4748. }
  4749. break;
  4750. case 110: // M110 - reset line pos
  4751. if (code_seen('N'))
  4752. gcode_LastN = code_value_long();
  4753. break;
  4754. #ifdef HOST_KEEPALIVE_FEATURE
  4755. case 113: // M113 - Get or set Host Keepalive interval
  4756. if (code_seen('S')) {
  4757. host_keepalive_interval = (uint8_t)code_value_short();
  4758. // NOMORE(host_keepalive_interval, 60);
  4759. }
  4760. else {
  4761. SERIAL_ECHO_START;
  4762. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4763. SERIAL_PROTOCOLLN("");
  4764. }
  4765. break;
  4766. #endif
  4767. case 115: // M115
  4768. if (code_seen('V')) {
  4769. // Report the Prusa version number.
  4770. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4771. } else if (code_seen('U')) {
  4772. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4773. // pause the print and ask the user to upgrade the firmware.
  4774. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4775. } else {
  4776. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4777. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4778. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4779. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4780. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4781. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4782. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4783. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4784. SERIAL_ECHOPGM(" UUID:");
  4785. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4786. }
  4787. break;
  4788. /* case 117: // M117 display message
  4789. starpos = (strchr(strchr_pointer + 5,'*'));
  4790. if(starpos!=NULL)
  4791. *(starpos)='\0';
  4792. lcd_setstatus(strchr_pointer + 5);
  4793. break;*/
  4794. case 114: // M114
  4795. gcode_M114();
  4796. break;
  4797. case 120: // M120
  4798. enable_endstops(false) ;
  4799. break;
  4800. case 121: // M121
  4801. enable_endstops(true) ;
  4802. break;
  4803. case 119: // M119
  4804. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4805. SERIAL_PROTOCOLLN("");
  4806. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4807. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4808. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4809. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4810. }else{
  4811. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4812. }
  4813. SERIAL_PROTOCOLLN("");
  4814. #endif
  4815. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4816. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4817. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4818. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4819. }else{
  4820. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4821. }
  4822. SERIAL_PROTOCOLLN("");
  4823. #endif
  4824. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4825. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4826. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4827. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4828. }else{
  4829. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4830. }
  4831. SERIAL_PROTOCOLLN("");
  4832. #endif
  4833. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4834. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4835. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4836. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4837. }else{
  4838. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4839. }
  4840. SERIAL_PROTOCOLLN("");
  4841. #endif
  4842. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4843. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4844. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4845. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4846. }else{
  4847. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4848. }
  4849. SERIAL_PROTOCOLLN("");
  4850. #endif
  4851. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4852. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4853. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4854. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4855. }else{
  4856. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4857. }
  4858. SERIAL_PROTOCOLLN("");
  4859. #endif
  4860. break;
  4861. //TODO: update for all axis, use for loop
  4862. #ifdef BLINKM
  4863. case 150: // M150
  4864. {
  4865. byte red;
  4866. byte grn;
  4867. byte blu;
  4868. if(code_seen('R')) red = code_value();
  4869. if(code_seen('U')) grn = code_value();
  4870. if(code_seen('B')) blu = code_value();
  4871. SendColors(red,grn,blu);
  4872. }
  4873. break;
  4874. #endif //BLINKM
  4875. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4876. {
  4877. tmp_extruder = active_extruder;
  4878. if(code_seen('T')) {
  4879. tmp_extruder = code_value();
  4880. if(tmp_extruder >= EXTRUDERS) {
  4881. SERIAL_ECHO_START;
  4882. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4883. break;
  4884. }
  4885. }
  4886. float area = .0;
  4887. if(code_seen('D')) {
  4888. float diameter = (float)code_value();
  4889. if (diameter == 0.0) {
  4890. // setting any extruder filament size disables volumetric on the assumption that
  4891. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4892. // for all extruders
  4893. volumetric_enabled = false;
  4894. } else {
  4895. filament_size[tmp_extruder] = (float)code_value();
  4896. // make sure all extruders have some sane value for the filament size
  4897. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4898. #if EXTRUDERS > 1
  4899. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4900. #if EXTRUDERS > 2
  4901. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4902. #endif
  4903. #endif
  4904. volumetric_enabled = true;
  4905. }
  4906. } else {
  4907. //reserved for setting filament diameter via UFID or filament measuring device
  4908. break;
  4909. }
  4910. calculate_extruder_multipliers();
  4911. }
  4912. break;
  4913. case 201: // M201
  4914. for(int8_t i=0; i < NUM_AXIS; i++)
  4915. {
  4916. if(code_seen(axis_codes[i]))
  4917. {
  4918. max_acceleration_units_per_sq_second[i] = code_value();
  4919. }
  4920. }
  4921. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4922. reset_acceleration_rates();
  4923. break;
  4924. #if 0 // Not used for Sprinter/grbl gen6
  4925. case 202: // M202
  4926. for(int8_t i=0; i < NUM_AXIS; i++) {
  4927. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4928. }
  4929. break;
  4930. #endif
  4931. case 203: // M203 max feedrate mm/sec
  4932. for(int8_t i=0; i < NUM_AXIS; i++) {
  4933. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4934. }
  4935. break;
  4936. case 204: // M204 acclereration S normal moves T filmanent only moves
  4937. {
  4938. if(code_seen('S')) acceleration = code_value() ;
  4939. if(code_seen('T')) retract_acceleration = code_value() ;
  4940. }
  4941. break;
  4942. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4943. {
  4944. if(code_seen('S')) minimumfeedrate = code_value();
  4945. if(code_seen('T')) mintravelfeedrate = code_value();
  4946. if(code_seen('B')) minsegmenttime = code_value() ;
  4947. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4948. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4949. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4950. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4951. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4952. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4953. }
  4954. break;
  4955. case 206: // M206 additional homing offset
  4956. for(int8_t i=0; i < 3; i++)
  4957. {
  4958. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4959. }
  4960. break;
  4961. #ifdef FWRETRACT
  4962. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4963. {
  4964. if(code_seen('S'))
  4965. {
  4966. retract_length = code_value() ;
  4967. }
  4968. if(code_seen('F'))
  4969. {
  4970. retract_feedrate = code_value()/60 ;
  4971. }
  4972. if(code_seen('Z'))
  4973. {
  4974. retract_zlift = code_value() ;
  4975. }
  4976. }break;
  4977. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4978. {
  4979. if(code_seen('S'))
  4980. {
  4981. retract_recover_length = code_value() ;
  4982. }
  4983. if(code_seen('F'))
  4984. {
  4985. retract_recover_feedrate = code_value()/60 ;
  4986. }
  4987. }break;
  4988. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4989. {
  4990. if(code_seen('S'))
  4991. {
  4992. int t= code_value() ;
  4993. switch(t)
  4994. {
  4995. case 0:
  4996. {
  4997. autoretract_enabled=false;
  4998. retracted[0]=false;
  4999. #if EXTRUDERS > 1
  5000. retracted[1]=false;
  5001. #endif
  5002. #if EXTRUDERS > 2
  5003. retracted[2]=false;
  5004. #endif
  5005. }break;
  5006. case 1:
  5007. {
  5008. autoretract_enabled=true;
  5009. retracted[0]=false;
  5010. #if EXTRUDERS > 1
  5011. retracted[1]=false;
  5012. #endif
  5013. #if EXTRUDERS > 2
  5014. retracted[2]=false;
  5015. #endif
  5016. }break;
  5017. default:
  5018. SERIAL_ECHO_START;
  5019. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5020. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5021. SERIAL_ECHOLNPGM("\"(1)");
  5022. }
  5023. }
  5024. }break;
  5025. #endif // FWRETRACT
  5026. #if EXTRUDERS > 1
  5027. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5028. {
  5029. if(setTargetedHotend(218)){
  5030. break;
  5031. }
  5032. if(code_seen('X'))
  5033. {
  5034. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5035. }
  5036. if(code_seen('Y'))
  5037. {
  5038. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5039. }
  5040. SERIAL_ECHO_START;
  5041. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5042. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5043. {
  5044. SERIAL_ECHO(" ");
  5045. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5046. SERIAL_ECHO(",");
  5047. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5048. }
  5049. SERIAL_ECHOLN("");
  5050. }break;
  5051. #endif
  5052. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5053. {
  5054. if(code_seen('S'))
  5055. {
  5056. feedmultiply = code_value() ;
  5057. }
  5058. }
  5059. break;
  5060. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5061. {
  5062. if(code_seen('S'))
  5063. {
  5064. int tmp_code = code_value();
  5065. if (code_seen('T'))
  5066. {
  5067. if(setTargetedHotend(221)){
  5068. break;
  5069. }
  5070. extruder_multiply[tmp_extruder] = tmp_code;
  5071. }
  5072. else
  5073. {
  5074. extrudemultiply = tmp_code ;
  5075. }
  5076. }
  5077. calculate_extruder_multipliers();
  5078. }
  5079. break;
  5080. #ifndef _DISABLE_M42_M226
  5081. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5082. {
  5083. if(code_seen('P')){
  5084. int pin_number = code_value(); // pin number
  5085. int pin_state = -1; // required pin state - default is inverted
  5086. if(code_seen('S')) pin_state = code_value(); // required pin state
  5087. if(pin_state >= -1 && pin_state <= 1){
  5088. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5089. {
  5090. if (sensitive_pins[i] == pin_number)
  5091. {
  5092. pin_number = -1;
  5093. break;
  5094. }
  5095. }
  5096. if (pin_number > -1)
  5097. {
  5098. int target = LOW;
  5099. st_synchronize();
  5100. pinMode(pin_number, INPUT);
  5101. switch(pin_state){
  5102. case 1:
  5103. target = HIGH;
  5104. break;
  5105. case 0:
  5106. target = LOW;
  5107. break;
  5108. case -1:
  5109. target = !digitalRead(pin_number);
  5110. break;
  5111. }
  5112. while(digitalRead(pin_number) != target){
  5113. manage_heater();
  5114. manage_inactivity();
  5115. lcd_update();
  5116. }
  5117. }
  5118. }
  5119. }
  5120. }
  5121. break;
  5122. #endif //_DISABLE_M42_M226
  5123. #if NUM_SERVOS > 0
  5124. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5125. {
  5126. int servo_index = -1;
  5127. int servo_position = 0;
  5128. if (code_seen('P'))
  5129. servo_index = code_value();
  5130. if (code_seen('S')) {
  5131. servo_position = code_value();
  5132. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5133. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5134. servos[servo_index].attach(0);
  5135. #endif
  5136. servos[servo_index].write(servo_position);
  5137. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5138. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5139. servos[servo_index].detach();
  5140. #endif
  5141. }
  5142. else {
  5143. SERIAL_ECHO_START;
  5144. SERIAL_ECHO("Servo ");
  5145. SERIAL_ECHO(servo_index);
  5146. SERIAL_ECHOLN(" out of range");
  5147. }
  5148. }
  5149. else if (servo_index >= 0) {
  5150. SERIAL_PROTOCOL(_T(MSG_OK));
  5151. SERIAL_PROTOCOL(" Servo ");
  5152. SERIAL_PROTOCOL(servo_index);
  5153. SERIAL_PROTOCOL(": ");
  5154. SERIAL_PROTOCOL(servos[servo_index].read());
  5155. SERIAL_PROTOCOLLN("");
  5156. }
  5157. }
  5158. break;
  5159. #endif // NUM_SERVOS > 0
  5160. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5161. case 300: // M300
  5162. {
  5163. int beepS = code_seen('S') ? code_value() : 110;
  5164. int beepP = code_seen('P') ? code_value() : 1000;
  5165. if (beepS > 0)
  5166. {
  5167. #if BEEPER > 0
  5168. tone(BEEPER, beepS);
  5169. delay(beepP);
  5170. noTone(BEEPER);
  5171. #elif defined(ULTRALCD)
  5172. lcd_buzz(beepS, beepP);
  5173. #elif defined(LCD_USE_I2C_BUZZER)
  5174. lcd_buzz(beepP, beepS);
  5175. #endif
  5176. }
  5177. else
  5178. {
  5179. delay(beepP);
  5180. }
  5181. }
  5182. break;
  5183. #endif // M300
  5184. #ifdef PIDTEMP
  5185. case 301: // M301
  5186. {
  5187. if(code_seen('P')) Kp = code_value();
  5188. if(code_seen('I')) Ki = scalePID_i(code_value());
  5189. if(code_seen('D')) Kd = scalePID_d(code_value());
  5190. #ifdef PID_ADD_EXTRUSION_RATE
  5191. if(code_seen('C')) Kc = code_value();
  5192. #endif
  5193. updatePID();
  5194. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5195. SERIAL_PROTOCOL(" p:");
  5196. SERIAL_PROTOCOL(Kp);
  5197. SERIAL_PROTOCOL(" i:");
  5198. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5199. SERIAL_PROTOCOL(" d:");
  5200. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5201. #ifdef PID_ADD_EXTRUSION_RATE
  5202. SERIAL_PROTOCOL(" c:");
  5203. //Kc does not have scaling applied above, or in resetting defaults
  5204. SERIAL_PROTOCOL(Kc);
  5205. #endif
  5206. SERIAL_PROTOCOLLN("");
  5207. }
  5208. break;
  5209. #endif //PIDTEMP
  5210. #ifdef PIDTEMPBED
  5211. case 304: // M304
  5212. {
  5213. if(code_seen('P')) bedKp = code_value();
  5214. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5215. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5216. updatePID();
  5217. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5218. SERIAL_PROTOCOL(" p:");
  5219. SERIAL_PROTOCOL(bedKp);
  5220. SERIAL_PROTOCOL(" i:");
  5221. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5222. SERIAL_PROTOCOL(" d:");
  5223. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5224. SERIAL_PROTOCOLLN("");
  5225. }
  5226. break;
  5227. #endif //PIDTEMP
  5228. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5229. {
  5230. #ifdef CHDK
  5231. SET_OUTPUT(CHDK);
  5232. WRITE(CHDK, HIGH);
  5233. chdkHigh = millis();
  5234. chdkActive = true;
  5235. #else
  5236. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5237. const uint8_t NUM_PULSES=16;
  5238. const float PULSE_LENGTH=0.01524;
  5239. for(int i=0; i < NUM_PULSES; i++) {
  5240. WRITE(PHOTOGRAPH_PIN, HIGH);
  5241. _delay_ms(PULSE_LENGTH);
  5242. WRITE(PHOTOGRAPH_PIN, LOW);
  5243. _delay_ms(PULSE_LENGTH);
  5244. }
  5245. delay(7.33);
  5246. for(int i=0; i < NUM_PULSES; i++) {
  5247. WRITE(PHOTOGRAPH_PIN, HIGH);
  5248. _delay_ms(PULSE_LENGTH);
  5249. WRITE(PHOTOGRAPH_PIN, LOW);
  5250. _delay_ms(PULSE_LENGTH);
  5251. }
  5252. #endif
  5253. #endif //chdk end if
  5254. }
  5255. break;
  5256. #ifdef DOGLCD
  5257. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5258. {
  5259. if (code_seen('C')) {
  5260. lcd_setcontrast( ((int)code_value())&63 );
  5261. }
  5262. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5263. SERIAL_PROTOCOL(lcd_contrast);
  5264. SERIAL_PROTOCOLLN("");
  5265. }
  5266. break;
  5267. #endif
  5268. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5269. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5270. {
  5271. float temp = .0;
  5272. if (code_seen('S')) temp=code_value();
  5273. set_extrude_min_temp(temp);
  5274. }
  5275. break;
  5276. #endif
  5277. case 303: // M303 PID autotune
  5278. {
  5279. float temp = 150.0;
  5280. int e=0;
  5281. int c=5;
  5282. if (code_seen('E')) e=code_value();
  5283. if (e<0)
  5284. temp=70;
  5285. if (code_seen('S')) temp=code_value();
  5286. if (code_seen('C')) c=code_value();
  5287. PID_autotune(temp, e, c);
  5288. }
  5289. break;
  5290. case 400: // M400 finish all moves
  5291. {
  5292. st_synchronize();
  5293. }
  5294. break;
  5295. case 500: // M500 Store settings in EEPROM
  5296. {
  5297. Config_StoreSettings(EEPROM_OFFSET);
  5298. }
  5299. break;
  5300. case 501: // M501 Read settings from EEPROM
  5301. {
  5302. Config_RetrieveSettings(EEPROM_OFFSET);
  5303. }
  5304. break;
  5305. case 502: // M502 Revert to default settings
  5306. {
  5307. Config_ResetDefault();
  5308. }
  5309. break;
  5310. case 503: // M503 print settings currently in memory
  5311. {
  5312. Config_PrintSettings();
  5313. }
  5314. break;
  5315. case 509: //M509 Force language selection
  5316. {
  5317. lang_reset();
  5318. SERIAL_ECHO_START;
  5319. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5320. }
  5321. break;
  5322. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5323. case 540:
  5324. {
  5325. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5326. }
  5327. break;
  5328. #endif
  5329. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5330. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5331. {
  5332. float value;
  5333. if (code_seen('Z'))
  5334. {
  5335. value = code_value();
  5336. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5337. {
  5338. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5339. SERIAL_ECHO_START;
  5340. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5341. SERIAL_PROTOCOLLN("");
  5342. }
  5343. else
  5344. {
  5345. SERIAL_ECHO_START;
  5346. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5347. SERIAL_ECHORPGM(MSG_Z_MIN);
  5348. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5349. SERIAL_ECHORPGM(MSG_Z_MAX);
  5350. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5351. SERIAL_PROTOCOLLN("");
  5352. }
  5353. }
  5354. else
  5355. {
  5356. SERIAL_ECHO_START;
  5357. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5358. SERIAL_ECHO(-zprobe_zoffset);
  5359. SERIAL_PROTOCOLLN("");
  5360. }
  5361. break;
  5362. }
  5363. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5364. #ifdef FILAMENTCHANGEENABLE
  5365. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5366. {
  5367. #ifdef PAT9125
  5368. bool old_fsensor_enabled = fsensor_enabled;
  5369. fsensor_enabled = false; //temporary solution for unexpected restarting
  5370. #endif //PAT9125
  5371. st_synchronize();
  5372. float target[4];
  5373. float lastpos[4];
  5374. if (farm_mode)
  5375. {
  5376. prusa_statistics(22);
  5377. }
  5378. feedmultiplyBckp=feedmultiply;
  5379. int8_t TooLowZ = 0;
  5380. float HotendTempBckp = degTargetHotend(active_extruder);
  5381. int fanSpeedBckp = fanSpeed;
  5382. target[X_AXIS]=current_position[X_AXIS];
  5383. target[Y_AXIS]=current_position[Y_AXIS];
  5384. target[Z_AXIS]=current_position[Z_AXIS];
  5385. target[E_AXIS]=current_position[E_AXIS];
  5386. lastpos[X_AXIS]=current_position[X_AXIS];
  5387. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5388. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5389. lastpos[E_AXIS]=current_position[E_AXIS];
  5390. //Restract extruder
  5391. if(code_seen('E'))
  5392. {
  5393. target[E_AXIS]+= code_value();
  5394. }
  5395. else
  5396. {
  5397. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5398. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5399. #endif
  5400. }
  5401. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5402. //Lift Z
  5403. if(code_seen('Z'))
  5404. {
  5405. target[Z_AXIS]+= code_value();
  5406. }
  5407. else
  5408. {
  5409. #ifdef FILAMENTCHANGE_ZADD
  5410. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5411. if(target[Z_AXIS] < 10){
  5412. target[Z_AXIS]+= 10 ;
  5413. TooLowZ = 1;
  5414. }else{
  5415. TooLowZ = 0;
  5416. }
  5417. #endif
  5418. }
  5419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5420. //Move XY to side
  5421. if(code_seen('X'))
  5422. {
  5423. target[X_AXIS]+= code_value();
  5424. }
  5425. else
  5426. {
  5427. #ifdef FILAMENTCHANGE_XPOS
  5428. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5429. #endif
  5430. }
  5431. if(code_seen('Y'))
  5432. {
  5433. target[Y_AXIS]= code_value();
  5434. }
  5435. else
  5436. {
  5437. #ifdef FILAMENTCHANGE_YPOS
  5438. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5439. #endif
  5440. }
  5441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5442. st_synchronize();
  5443. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5444. uint8_t cnt = 0;
  5445. int counterBeep = 0;
  5446. fanSpeed = 0;
  5447. unsigned long waiting_start_time = millis();
  5448. uint8_t wait_for_user_state = 0;
  5449. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5450. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5451. //cnt++;
  5452. manage_heater();
  5453. manage_inactivity(true);
  5454. /*#ifdef SNMM
  5455. target[E_AXIS] += 0.002;
  5456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5457. #endif // SNMM*/
  5458. //if (cnt == 0)
  5459. {
  5460. #if BEEPER > 0
  5461. if (counterBeep == 500) {
  5462. counterBeep = 0;
  5463. }
  5464. SET_OUTPUT(BEEPER);
  5465. if (counterBeep == 0) {
  5466. WRITE(BEEPER, HIGH);
  5467. }
  5468. if (counterBeep == 20) {
  5469. WRITE(BEEPER, LOW);
  5470. }
  5471. counterBeep++;
  5472. #else
  5473. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5474. lcd_buzz(1000 / 6, 100);
  5475. #else
  5476. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5477. #endif
  5478. #endif
  5479. }
  5480. switch (wait_for_user_state) {
  5481. case 0:
  5482. delay_keep_alive(4);
  5483. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5484. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5485. wait_for_user_state = 1;
  5486. setTargetHotend(0, 0);
  5487. setTargetHotend(0, 1);
  5488. setTargetHotend(0, 2);
  5489. st_synchronize();
  5490. disable_e0();
  5491. disable_e1();
  5492. disable_e2();
  5493. }
  5494. break;
  5495. case 1:
  5496. delay_keep_alive(4);
  5497. if (lcd_clicked()) {
  5498. setTargetHotend(HotendTempBckp, active_extruder);
  5499. lcd_wait_for_heater();
  5500. wait_for_user_state = 2;
  5501. }
  5502. break;
  5503. case 2:
  5504. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5505. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5506. waiting_start_time = millis();
  5507. wait_for_user_state = 0;
  5508. }
  5509. else {
  5510. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5511. lcd.setCursor(1, 4);
  5512. lcd.print(ftostr3(degHotend(active_extruder)));
  5513. }
  5514. break;
  5515. }
  5516. }
  5517. WRITE(BEEPER, LOW);
  5518. lcd_change_fil_state = 0;
  5519. // Unload filament
  5520. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5521. KEEPALIVE_STATE(IN_HANDLER);
  5522. custom_message = true;
  5523. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5524. if (code_seen('L'))
  5525. {
  5526. target[E_AXIS] += code_value();
  5527. }
  5528. else
  5529. {
  5530. #ifdef SNMM
  5531. #else
  5532. #ifdef FILAMENTCHANGE_FINALRETRACT
  5533. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5534. #endif
  5535. #endif // SNMM
  5536. }
  5537. #ifdef SNMM
  5538. target[E_AXIS] += 12;
  5539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5540. target[E_AXIS] += 6;
  5541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5542. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5544. st_synchronize();
  5545. target[E_AXIS] += (FIL_COOLING);
  5546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5547. target[E_AXIS] += (FIL_COOLING*-1);
  5548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5549. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5551. st_synchronize();
  5552. #else
  5553. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5554. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5555. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5556. st_synchronize();
  5557. #ifdef TMC2130
  5558. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5559. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5560. #else
  5561. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5562. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5563. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5564. #endif //TMC2130
  5565. target[E_AXIS] -= 45;
  5566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5567. st_synchronize();
  5568. target[E_AXIS] -= 15;
  5569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5570. st_synchronize();
  5571. target[E_AXIS] -= 20;
  5572. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5573. st_synchronize();
  5574. #ifdef TMC2130
  5575. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5576. #else
  5577. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5578. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5579. else st_current_set(2, tmp_motor_loud[2]);
  5580. #endif //TMC2130
  5581. #endif // SNMM
  5582. //finish moves
  5583. st_synchronize();
  5584. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5585. //disable extruder steppers so filament can be removed
  5586. disable_e0();
  5587. disable_e1();
  5588. disable_e2();
  5589. delay(100);
  5590. WRITE(BEEPER, HIGH);
  5591. counterBeep = 0;
  5592. while(!lcd_clicked() && (counterBeep < 50)) {
  5593. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5594. delay_keep_alive(100);
  5595. counterBeep++;
  5596. }
  5597. WRITE(BEEPER, LOW);
  5598. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5599. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5600. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5601. //lcd_return_to_status();
  5602. lcd_update_enable(true);
  5603. //Wait for user to insert filament
  5604. lcd_wait_interact();
  5605. //load_filament_time = millis();
  5606. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5607. #ifdef PAT9125
  5608. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5609. #endif //PAT9125
  5610. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5611. while(!lcd_clicked())
  5612. {
  5613. manage_heater();
  5614. manage_inactivity(true);
  5615. #ifdef PAT9125
  5616. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5617. {
  5618. tone(BEEPER, 1000);
  5619. delay_keep_alive(50);
  5620. noTone(BEEPER);
  5621. break;
  5622. }
  5623. #endif //PAT9125
  5624. /*#ifdef SNMM
  5625. target[E_AXIS] += 0.002;
  5626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5627. #endif // SNMM*/
  5628. }
  5629. #ifdef PAT9125
  5630. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5631. #endif //PAT9125
  5632. //WRITE(BEEPER, LOW);
  5633. KEEPALIVE_STATE(IN_HANDLER);
  5634. #ifdef SNMM
  5635. display_loading();
  5636. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5637. do {
  5638. target[E_AXIS] += 0.002;
  5639. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5640. delay_keep_alive(2);
  5641. } while (!lcd_clicked());
  5642. KEEPALIVE_STATE(IN_HANDLER);
  5643. /*if (millis() - load_filament_time > 2) {
  5644. load_filament_time = millis();
  5645. target[E_AXIS] += 0.001;
  5646. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5647. }*/
  5648. //Filament inserted
  5649. //Feed the filament to the end of nozzle quickly
  5650. st_synchronize();
  5651. target[E_AXIS] += bowden_length[snmm_extruder];
  5652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5653. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5655. target[E_AXIS] += 40;
  5656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5657. target[E_AXIS] += 10;
  5658. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5659. #else
  5660. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5661. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5662. #endif // SNMM
  5663. //Extrude some filament
  5664. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5666. //Wait for user to check the state
  5667. lcd_change_fil_state = 0;
  5668. lcd_loading_filament();
  5669. tone(BEEPER, 500);
  5670. delay_keep_alive(50);
  5671. noTone(BEEPER);
  5672. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5673. lcd_change_fil_state = 0;
  5674. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5675. lcd_alright();
  5676. KEEPALIVE_STATE(IN_HANDLER);
  5677. switch(lcd_change_fil_state){
  5678. // Filament failed to load so load it again
  5679. case 2:
  5680. #ifdef SNMM
  5681. display_loading();
  5682. do {
  5683. target[E_AXIS] += 0.002;
  5684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5685. delay_keep_alive(2);
  5686. } while (!lcd_clicked());
  5687. st_synchronize();
  5688. target[E_AXIS] += bowden_length[snmm_extruder];
  5689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5690. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5692. target[E_AXIS] += 40;
  5693. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5694. target[E_AXIS] += 10;
  5695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5696. #else
  5697. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5698. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5699. #endif
  5700. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5702. lcd_loading_filament();
  5703. break;
  5704. // Filament loaded properly but color is not clear
  5705. case 3:
  5706. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5707. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5708. lcd_loading_color();
  5709. break;
  5710. // Everything good
  5711. default:
  5712. lcd_change_success();
  5713. lcd_update_enable(true);
  5714. break;
  5715. }
  5716. }
  5717. //Not let's go back to print
  5718. fanSpeed = fanSpeedBckp;
  5719. //Feed a little of filament to stabilize pressure
  5720. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5722. //Retract
  5723. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5725. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5726. //Move XY back
  5727. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5728. //Move Z back
  5729. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5730. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5731. //Unretract
  5732. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5733. //Set E position to original
  5734. plan_set_e_position(lastpos[E_AXIS]);
  5735. //Recover feed rate
  5736. feedmultiply=feedmultiplyBckp;
  5737. char cmd[9];
  5738. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5739. enquecommand(cmd);
  5740. lcd_setstatuspgm(_T(WELCOME_MSG));
  5741. custom_message = false;
  5742. custom_message_type = 0;
  5743. #ifdef PAT9125
  5744. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5745. if (fsensor_M600)
  5746. {
  5747. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5748. st_synchronize();
  5749. while (!is_buffer_empty())
  5750. {
  5751. process_commands();
  5752. cmdqueue_pop_front();
  5753. }
  5754. fsensor_enable();
  5755. fsensor_restore_print_and_continue();
  5756. }
  5757. #endif //PAT9125
  5758. }
  5759. break;
  5760. #endif //FILAMENTCHANGEENABLE
  5761. case 601: {
  5762. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5763. }
  5764. break;
  5765. case 602: {
  5766. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5767. }
  5768. break;
  5769. #ifdef PINDA_THERMISTOR
  5770. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5771. {
  5772. int set_target_pinda = 0;
  5773. if (code_seen('S')) {
  5774. set_target_pinda = code_value();
  5775. }
  5776. else {
  5777. break;
  5778. }
  5779. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5780. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5781. SERIAL_PROTOCOL(set_target_pinda);
  5782. SERIAL_PROTOCOLLN("");
  5783. codenum = millis();
  5784. cancel_heatup = false;
  5785. bool is_pinda_cooling = false;
  5786. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5787. is_pinda_cooling = true;
  5788. }
  5789. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5790. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5791. {
  5792. SERIAL_PROTOCOLPGM("P:");
  5793. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5794. SERIAL_PROTOCOLPGM("/");
  5795. SERIAL_PROTOCOL(set_target_pinda);
  5796. SERIAL_PROTOCOLLN("");
  5797. codenum = millis();
  5798. }
  5799. manage_heater();
  5800. manage_inactivity();
  5801. lcd_update();
  5802. }
  5803. LCD_MESSAGERPGM(_T(MSG_OK));
  5804. break;
  5805. }
  5806. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5807. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5808. uint8_t cal_status = calibration_status_pinda();
  5809. int16_t usteps = 0;
  5810. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5811. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5812. for (uint8_t i = 0; i < 6; i++)
  5813. {
  5814. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5815. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5816. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5817. SERIAL_PROTOCOLPGM(", ");
  5818. SERIAL_PROTOCOL(35 + (i * 5));
  5819. SERIAL_PROTOCOLPGM(", ");
  5820. SERIAL_PROTOCOL(usteps);
  5821. SERIAL_PROTOCOLPGM(", ");
  5822. SERIAL_PROTOCOL(mm * 1000);
  5823. SERIAL_PROTOCOLLN("");
  5824. }
  5825. }
  5826. else if (code_seen('!')) { // ! - Set factory default values
  5827. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5828. int16_t z_shift = 8; //40C - 20um - 8usteps
  5829. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5830. z_shift = 24; //45C - 60um - 24usteps
  5831. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5832. z_shift = 48; //50C - 120um - 48usteps
  5833. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5834. z_shift = 80; //55C - 200um - 80usteps
  5835. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5836. z_shift = 120; //60C - 300um - 120usteps
  5837. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5838. SERIAL_PROTOCOLLN("factory restored");
  5839. }
  5840. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5841. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5842. int16_t z_shift = 0;
  5843. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5844. SERIAL_PROTOCOLLN("zerorized");
  5845. }
  5846. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5847. int16_t usteps = code_value();
  5848. if (code_seen('I')) {
  5849. byte index = code_value();
  5850. if ((index >= 0) && (index < 5)) {
  5851. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5852. SERIAL_PROTOCOLLN("OK");
  5853. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5854. for (uint8_t i = 0; i < 6; i++)
  5855. {
  5856. usteps = 0;
  5857. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5858. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5859. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5860. SERIAL_PROTOCOLPGM(", ");
  5861. SERIAL_PROTOCOL(35 + (i * 5));
  5862. SERIAL_PROTOCOLPGM(", ");
  5863. SERIAL_PROTOCOL(usteps);
  5864. SERIAL_PROTOCOLPGM(", ");
  5865. SERIAL_PROTOCOL(mm * 1000);
  5866. SERIAL_PROTOCOLLN("");
  5867. }
  5868. }
  5869. }
  5870. }
  5871. else {
  5872. SERIAL_PROTOCOLPGM("no valid command");
  5873. }
  5874. break;
  5875. #endif //PINDA_THERMISTOR
  5876. #ifdef LIN_ADVANCE
  5877. case 900: // M900: Set LIN_ADVANCE options.
  5878. gcode_M900();
  5879. break;
  5880. #endif
  5881. case 907: // M907 Set digital trimpot motor current using axis codes.
  5882. {
  5883. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5884. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5885. if(code_seen('B')) st_current_set(4,code_value());
  5886. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5887. #endif
  5888. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5889. if(code_seen('X')) st_current_set(0, code_value());
  5890. #endif
  5891. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5892. if(code_seen('Z')) st_current_set(1, code_value());
  5893. #endif
  5894. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5895. if(code_seen('E')) st_current_set(2, code_value());
  5896. #endif
  5897. }
  5898. break;
  5899. case 908: // M908 Control digital trimpot directly.
  5900. {
  5901. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5902. uint8_t channel,current;
  5903. if(code_seen('P')) channel=code_value();
  5904. if(code_seen('S')) current=code_value();
  5905. digitalPotWrite(channel, current);
  5906. #endif
  5907. }
  5908. break;
  5909. #ifdef TMC2130
  5910. case 910: // M910 TMC2130 init
  5911. {
  5912. tmc2130_init();
  5913. }
  5914. break;
  5915. case 911: // M911 Set TMC2130 holding currents
  5916. {
  5917. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5918. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5919. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5920. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5921. }
  5922. break;
  5923. case 912: // M912 Set TMC2130 running currents
  5924. {
  5925. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5926. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5927. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5928. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5929. }
  5930. break;
  5931. case 913: // M913 Print TMC2130 currents
  5932. {
  5933. tmc2130_print_currents();
  5934. }
  5935. break;
  5936. case 914: // M914 Set normal mode
  5937. {
  5938. tmc2130_mode = TMC2130_MODE_NORMAL;
  5939. tmc2130_init();
  5940. }
  5941. break;
  5942. case 915: // M915 Set silent mode
  5943. {
  5944. tmc2130_mode = TMC2130_MODE_SILENT;
  5945. tmc2130_init();
  5946. }
  5947. break;
  5948. case 916: // M916 Set sg_thrs
  5949. {
  5950. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5951. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5952. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5953. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5954. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5955. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5956. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5957. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5958. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5959. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5960. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5961. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5962. }
  5963. break;
  5964. case 917: // M917 Set TMC2130 pwm_ampl
  5965. {
  5966. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5967. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5968. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5969. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5970. }
  5971. break;
  5972. case 918: // M918 Set TMC2130 pwm_grad
  5973. {
  5974. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5975. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5976. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5977. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5978. }
  5979. break;
  5980. #endif //TMC2130
  5981. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5982. {
  5983. #ifdef TMC2130
  5984. if(code_seen('E'))
  5985. {
  5986. uint16_t res_new = code_value();
  5987. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5988. {
  5989. st_synchronize();
  5990. uint8_t axis = E_AXIS;
  5991. uint16_t res = tmc2130_get_res(axis);
  5992. tmc2130_set_res(axis, res_new);
  5993. if (res_new > res)
  5994. {
  5995. uint16_t fac = (res_new / res);
  5996. axis_steps_per_unit[axis] *= fac;
  5997. position[E_AXIS] *= fac;
  5998. }
  5999. else
  6000. {
  6001. uint16_t fac = (res / res_new);
  6002. axis_steps_per_unit[axis] /= fac;
  6003. position[E_AXIS] /= fac;
  6004. }
  6005. }
  6006. }
  6007. #else //TMC2130
  6008. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6009. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6010. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6011. if(code_seen('B')) microstep_mode(4,code_value());
  6012. microstep_readings();
  6013. #endif
  6014. #endif //TMC2130
  6015. }
  6016. break;
  6017. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6018. {
  6019. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6020. if(code_seen('S')) switch((int)code_value())
  6021. {
  6022. case 1:
  6023. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6024. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6025. break;
  6026. case 2:
  6027. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6028. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6029. break;
  6030. }
  6031. microstep_readings();
  6032. #endif
  6033. }
  6034. break;
  6035. case 701: //M701: load filament
  6036. {
  6037. gcode_M701();
  6038. }
  6039. break;
  6040. case 702:
  6041. {
  6042. #ifdef SNMM
  6043. if (code_seen('U')) {
  6044. extr_unload_used(); //unload all filaments which were used in current print
  6045. }
  6046. else if (code_seen('C')) {
  6047. extr_unload(); //unload just current filament
  6048. }
  6049. else {
  6050. extr_unload_all(); //unload all filaments
  6051. }
  6052. #else
  6053. #ifdef PAT9125
  6054. bool old_fsensor_enabled = fsensor_enabled;
  6055. fsensor_enabled = false;
  6056. #endif //PAT9125
  6057. custom_message = true;
  6058. custom_message_type = 2;
  6059. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6060. // extr_unload2();
  6061. current_position[E_AXIS] -= 45;
  6062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6063. st_synchronize();
  6064. current_position[E_AXIS] -= 15;
  6065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6066. st_synchronize();
  6067. current_position[E_AXIS] -= 20;
  6068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6069. st_synchronize();
  6070. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6071. //disable extruder steppers so filament can be removed
  6072. disable_e0();
  6073. disable_e1();
  6074. disable_e2();
  6075. delay(100);
  6076. WRITE(BEEPER, HIGH);
  6077. uint8_t counterBeep = 0;
  6078. while (!lcd_clicked() && (counterBeep < 50)) {
  6079. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6080. delay_keep_alive(100);
  6081. counterBeep++;
  6082. }
  6083. WRITE(BEEPER, LOW);
  6084. st_synchronize();
  6085. while (lcd_clicked()) delay_keep_alive(100);
  6086. lcd_update_enable(true);
  6087. lcd_setstatuspgm(_T(WELCOME_MSG));
  6088. custom_message = false;
  6089. custom_message_type = 0;
  6090. #ifdef PAT9125
  6091. fsensor_enabled = old_fsensor_enabled;
  6092. #endif //PAT9125
  6093. #endif
  6094. }
  6095. break;
  6096. case 999: // M999: Restart after being stopped
  6097. Stopped = false;
  6098. lcd_reset_alert_level();
  6099. gcode_LastN = Stopped_gcode_LastN;
  6100. FlushSerialRequestResend();
  6101. break;
  6102. default:
  6103. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6104. }
  6105. } // end if(code_seen('M')) (end of M codes)
  6106. else if(code_seen('T'))
  6107. {
  6108. int index;
  6109. st_synchronize();
  6110. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6111. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6112. SERIAL_ECHOLNPGM("Invalid T code.");
  6113. }
  6114. else {
  6115. if (*(strchr_pointer + index) == '?') {
  6116. tmp_extruder = choose_extruder_menu();
  6117. }
  6118. else {
  6119. tmp_extruder = code_value();
  6120. }
  6121. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6122. #ifdef SNMM
  6123. #ifdef LIN_ADVANCE
  6124. if (snmm_extruder != tmp_extruder)
  6125. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6126. #endif
  6127. snmm_extruder = tmp_extruder;
  6128. delay(100);
  6129. disable_e0();
  6130. disable_e1();
  6131. disable_e2();
  6132. pinMode(E_MUX0_PIN, OUTPUT);
  6133. pinMode(E_MUX1_PIN, OUTPUT);
  6134. delay(100);
  6135. SERIAL_ECHO_START;
  6136. SERIAL_ECHO("T:");
  6137. SERIAL_ECHOLN((int)tmp_extruder);
  6138. switch (tmp_extruder) {
  6139. case 1:
  6140. WRITE(E_MUX0_PIN, HIGH);
  6141. WRITE(E_MUX1_PIN, LOW);
  6142. break;
  6143. case 2:
  6144. WRITE(E_MUX0_PIN, LOW);
  6145. WRITE(E_MUX1_PIN, HIGH);
  6146. break;
  6147. case 3:
  6148. WRITE(E_MUX0_PIN, HIGH);
  6149. WRITE(E_MUX1_PIN, HIGH);
  6150. break;
  6151. default:
  6152. WRITE(E_MUX0_PIN, LOW);
  6153. WRITE(E_MUX1_PIN, LOW);
  6154. break;
  6155. }
  6156. delay(100);
  6157. #else
  6158. if (tmp_extruder >= EXTRUDERS) {
  6159. SERIAL_ECHO_START;
  6160. SERIAL_ECHOPGM("T");
  6161. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6162. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6163. }
  6164. else {
  6165. boolean make_move = false;
  6166. if (code_seen('F')) {
  6167. make_move = true;
  6168. next_feedrate = code_value();
  6169. if (next_feedrate > 0.0) {
  6170. feedrate = next_feedrate;
  6171. }
  6172. }
  6173. #if EXTRUDERS > 1
  6174. if (tmp_extruder != active_extruder) {
  6175. // Save current position to return to after applying extruder offset
  6176. memcpy(destination, current_position, sizeof(destination));
  6177. // Offset extruder (only by XY)
  6178. int i;
  6179. for (i = 0; i < 2; i++) {
  6180. current_position[i] = current_position[i] -
  6181. extruder_offset[i][active_extruder] +
  6182. extruder_offset[i][tmp_extruder];
  6183. }
  6184. // Set the new active extruder and position
  6185. active_extruder = tmp_extruder;
  6186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6187. // Move to the old position if 'F' was in the parameters
  6188. if (make_move && Stopped == false) {
  6189. prepare_move();
  6190. }
  6191. }
  6192. #endif
  6193. SERIAL_ECHO_START;
  6194. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6195. SERIAL_PROTOCOLLN((int)active_extruder);
  6196. }
  6197. #endif
  6198. }
  6199. } // end if(code_seen('T')) (end of T codes)
  6200. #ifdef DEBUG_DCODES
  6201. else if (code_seen('D')) // D codes (debug)
  6202. {
  6203. switch((int)code_value())
  6204. {
  6205. case -1: // D-1 - Endless loop
  6206. dcode__1(); break;
  6207. case 0: // D0 - Reset
  6208. dcode_0(); break;
  6209. case 1: // D1 - Clear EEPROM
  6210. dcode_1(); break;
  6211. case 2: // D2 - Read/Write RAM
  6212. dcode_2(); break;
  6213. case 3: // D3 - Read/Write EEPROM
  6214. dcode_3(); break;
  6215. case 4: // D4 - Read/Write PIN
  6216. dcode_4(); break;
  6217. case 5: // D5 - Read/Write FLASH
  6218. // dcode_5(); break;
  6219. break;
  6220. case 6: // D6 - Read/Write external FLASH
  6221. dcode_6(); break;
  6222. case 7: // D7 - Read/Write Bootloader
  6223. dcode_7(); break;
  6224. case 8: // D8 - Read/Write PINDA
  6225. dcode_8(); break;
  6226. case 9: // D9 - Read/Write ADC
  6227. dcode_9(); break;
  6228. case 10: // D10 - XYZ calibration = OK
  6229. dcode_10(); break;
  6230. #ifdef TMC2130
  6231. case 2130: // D9125 - TMC2130
  6232. dcode_2130(); break;
  6233. #endif //TMC2130
  6234. #ifdef PAT9125
  6235. case 9125: // D9125 - PAT9125
  6236. dcode_9125(); break;
  6237. #endif //PAT9125
  6238. }
  6239. }
  6240. #endif //DEBUG_DCODES
  6241. else
  6242. {
  6243. SERIAL_ECHO_START;
  6244. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6245. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6246. SERIAL_ECHOLNPGM("\"(2)");
  6247. }
  6248. KEEPALIVE_STATE(NOT_BUSY);
  6249. ClearToSend();
  6250. }
  6251. void FlushSerialRequestResend()
  6252. {
  6253. //char cmdbuffer[bufindr][100]="Resend:";
  6254. MYSERIAL.flush();
  6255. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6256. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6257. previous_millis_cmd = millis();
  6258. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6259. }
  6260. // Confirm the execution of a command, if sent from a serial line.
  6261. // Execution of a command from a SD card will not be confirmed.
  6262. void ClearToSend()
  6263. {
  6264. previous_millis_cmd = millis();
  6265. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6266. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6267. }
  6268. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6269. void update_currents() {
  6270. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6271. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6272. float tmp_motor[3];
  6273. //SERIAL_ECHOLNPGM("Currents updated: ");
  6274. if (destination[Z_AXIS] < Z_SILENT) {
  6275. //SERIAL_ECHOLNPGM("LOW");
  6276. for (uint8_t i = 0; i < 3; i++) {
  6277. st_current_set(i, current_low[i]);
  6278. /*MYSERIAL.print(int(i));
  6279. SERIAL_ECHOPGM(": ");
  6280. MYSERIAL.println(current_low[i]);*/
  6281. }
  6282. }
  6283. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6284. //SERIAL_ECHOLNPGM("HIGH");
  6285. for (uint8_t i = 0; i < 3; i++) {
  6286. st_current_set(i, current_high[i]);
  6287. /*MYSERIAL.print(int(i));
  6288. SERIAL_ECHOPGM(": ");
  6289. MYSERIAL.println(current_high[i]);*/
  6290. }
  6291. }
  6292. else {
  6293. for (uint8_t i = 0; i < 3; i++) {
  6294. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6295. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6296. st_current_set(i, tmp_motor[i]);
  6297. /*MYSERIAL.print(int(i));
  6298. SERIAL_ECHOPGM(": ");
  6299. MYSERIAL.println(tmp_motor[i]);*/
  6300. }
  6301. }
  6302. }
  6303. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6304. void get_coordinates()
  6305. {
  6306. bool seen[4]={false,false,false,false};
  6307. for(int8_t i=0; i < NUM_AXIS; i++) {
  6308. if(code_seen(axis_codes[i]))
  6309. {
  6310. bool relative = axis_relative_modes[i] || relative_mode;
  6311. destination[i] = (float)code_value();
  6312. if (i == E_AXIS) {
  6313. float emult = extruder_multiplier[active_extruder];
  6314. if (emult != 1.) {
  6315. if (! relative) {
  6316. destination[i] -= current_position[i];
  6317. relative = true;
  6318. }
  6319. destination[i] *= emult;
  6320. }
  6321. }
  6322. if (relative)
  6323. destination[i] += current_position[i];
  6324. seen[i]=true;
  6325. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6326. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6327. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6328. }
  6329. else destination[i] = current_position[i]; //Are these else lines really needed?
  6330. }
  6331. if(code_seen('F')) {
  6332. next_feedrate = code_value();
  6333. #ifdef MAX_SILENT_FEEDRATE
  6334. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6335. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6336. #endif //MAX_SILENT_FEEDRATE
  6337. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6338. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6339. {
  6340. // float e_max_speed =
  6341. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6342. }
  6343. }
  6344. }
  6345. void get_arc_coordinates()
  6346. {
  6347. #ifdef SF_ARC_FIX
  6348. bool relative_mode_backup = relative_mode;
  6349. relative_mode = true;
  6350. #endif
  6351. get_coordinates();
  6352. #ifdef SF_ARC_FIX
  6353. relative_mode=relative_mode_backup;
  6354. #endif
  6355. if(code_seen('I')) {
  6356. offset[0] = code_value();
  6357. }
  6358. else {
  6359. offset[0] = 0.0;
  6360. }
  6361. if(code_seen('J')) {
  6362. offset[1] = code_value();
  6363. }
  6364. else {
  6365. offset[1] = 0.0;
  6366. }
  6367. }
  6368. void clamp_to_software_endstops(float target[3])
  6369. {
  6370. #ifdef DEBUG_DISABLE_SWLIMITS
  6371. return;
  6372. #endif //DEBUG_DISABLE_SWLIMITS
  6373. world2machine_clamp(target[0], target[1]);
  6374. // Clamp the Z coordinate.
  6375. if (min_software_endstops) {
  6376. float negative_z_offset = 0;
  6377. #ifdef ENABLE_AUTO_BED_LEVELING
  6378. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6379. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6380. #endif
  6381. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6382. }
  6383. if (max_software_endstops) {
  6384. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6385. }
  6386. }
  6387. #ifdef MESH_BED_LEVELING
  6388. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6389. float dx = x - current_position[X_AXIS];
  6390. float dy = y - current_position[Y_AXIS];
  6391. float dz = z - current_position[Z_AXIS];
  6392. int n_segments = 0;
  6393. if (mbl.active) {
  6394. float len = abs(dx) + abs(dy);
  6395. if (len > 0)
  6396. // Split to 3cm segments or shorter.
  6397. n_segments = int(ceil(len / 30.f));
  6398. }
  6399. if (n_segments > 1) {
  6400. float de = e - current_position[E_AXIS];
  6401. for (int i = 1; i < n_segments; ++ i) {
  6402. float t = float(i) / float(n_segments);
  6403. plan_buffer_line(
  6404. current_position[X_AXIS] + t * dx,
  6405. current_position[Y_AXIS] + t * dy,
  6406. current_position[Z_AXIS] + t * dz,
  6407. current_position[E_AXIS] + t * de,
  6408. feed_rate, extruder);
  6409. }
  6410. }
  6411. // The rest of the path.
  6412. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6413. current_position[X_AXIS] = x;
  6414. current_position[Y_AXIS] = y;
  6415. current_position[Z_AXIS] = z;
  6416. current_position[E_AXIS] = e;
  6417. }
  6418. #endif // MESH_BED_LEVELING
  6419. void prepare_move()
  6420. {
  6421. clamp_to_software_endstops(destination);
  6422. previous_millis_cmd = millis();
  6423. // Do not use feedmultiply for E or Z only moves
  6424. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6426. }
  6427. else {
  6428. #ifdef MESH_BED_LEVELING
  6429. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6430. #else
  6431. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6432. #endif
  6433. }
  6434. for(int8_t i=0; i < NUM_AXIS; i++) {
  6435. current_position[i] = destination[i];
  6436. }
  6437. }
  6438. void prepare_arc_move(char isclockwise) {
  6439. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6440. // Trace the arc
  6441. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6442. // As far as the parser is concerned, the position is now == target. In reality the
  6443. // motion control system might still be processing the action and the real tool position
  6444. // in any intermediate location.
  6445. for(int8_t i=0; i < NUM_AXIS; i++) {
  6446. current_position[i] = destination[i];
  6447. }
  6448. previous_millis_cmd = millis();
  6449. }
  6450. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6451. #if defined(FAN_PIN)
  6452. #if CONTROLLERFAN_PIN == FAN_PIN
  6453. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6454. #endif
  6455. #endif
  6456. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6457. unsigned long lastMotorCheck = 0;
  6458. void controllerFan()
  6459. {
  6460. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6461. {
  6462. lastMotorCheck = millis();
  6463. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6464. #if EXTRUDERS > 2
  6465. || !READ(E2_ENABLE_PIN)
  6466. #endif
  6467. #if EXTRUDER > 1
  6468. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6469. || !READ(X2_ENABLE_PIN)
  6470. #endif
  6471. || !READ(E1_ENABLE_PIN)
  6472. #endif
  6473. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6474. {
  6475. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6476. }
  6477. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6478. {
  6479. digitalWrite(CONTROLLERFAN_PIN, 0);
  6480. analogWrite(CONTROLLERFAN_PIN, 0);
  6481. }
  6482. else
  6483. {
  6484. // allows digital or PWM fan output to be used (see M42 handling)
  6485. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6486. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6487. }
  6488. }
  6489. }
  6490. #endif
  6491. #ifdef TEMP_STAT_LEDS
  6492. static bool blue_led = false;
  6493. static bool red_led = false;
  6494. static uint32_t stat_update = 0;
  6495. void handle_status_leds(void) {
  6496. float max_temp = 0.0;
  6497. if(millis() > stat_update) {
  6498. stat_update += 500; // Update every 0.5s
  6499. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6500. max_temp = max(max_temp, degHotend(cur_extruder));
  6501. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6502. }
  6503. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6504. max_temp = max(max_temp, degTargetBed());
  6505. max_temp = max(max_temp, degBed());
  6506. #endif
  6507. if((max_temp > 55.0) && (red_led == false)) {
  6508. digitalWrite(STAT_LED_RED, 1);
  6509. digitalWrite(STAT_LED_BLUE, 0);
  6510. red_led = true;
  6511. blue_led = false;
  6512. }
  6513. if((max_temp < 54.0) && (blue_led == false)) {
  6514. digitalWrite(STAT_LED_RED, 0);
  6515. digitalWrite(STAT_LED_BLUE, 1);
  6516. red_led = false;
  6517. blue_led = true;
  6518. }
  6519. }
  6520. }
  6521. #endif
  6522. #ifdef SAFETYTIMER
  6523. /**
  6524. * @brief Turn off heating after 30 minutes of inactivity
  6525. *
  6526. * Full screen blocking notification message is shown after heater turning off.
  6527. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6528. * damage print.
  6529. */
  6530. static void handleSafetyTimer()
  6531. {
  6532. #if (EXTRUDERS > 1)
  6533. #error Implemented only for one extruder.
  6534. #endif //(EXTRUDERS > 1)
  6535. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6536. {
  6537. safetyTimer.stop();
  6538. }
  6539. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6540. {
  6541. safetyTimer.start();
  6542. }
  6543. else if (safetyTimer.expired(1800000ul)) //30 min
  6544. {
  6545. setTargetBed(0);
  6546. setTargetHotend(0, 0);
  6547. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6548. }
  6549. }
  6550. #endif //SAFETYTIMER
  6551. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6552. {
  6553. #ifdef PAT9125
  6554. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6555. {
  6556. if (fsensor_autoload_enabled)
  6557. {
  6558. if (fsensor_check_autoload())
  6559. {
  6560. if (degHotend0() > EXTRUDE_MINTEMP)
  6561. {
  6562. fsensor_autoload_check_stop();
  6563. tone(BEEPER, 1000);
  6564. delay_keep_alive(50);
  6565. noTone(BEEPER);
  6566. loading_flag = true;
  6567. enquecommand_front_P((PSTR("M701")));
  6568. }
  6569. else
  6570. {
  6571. lcd_update_enable(false);
  6572. lcd_implementation_clear();
  6573. lcd.setCursor(0, 0);
  6574. lcd_printPGM(_T(MSG_ERROR));
  6575. lcd.setCursor(0, 2);
  6576. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6577. delay(2000);
  6578. lcd_implementation_clear();
  6579. lcd_update_enable(true);
  6580. }
  6581. }
  6582. }
  6583. else
  6584. fsensor_autoload_check_start();
  6585. }
  6586. else
  6587. if (fsensor_autoload_enabled)
  6588. fsensor_autoload_check_stop();
  6589. #endif //PAT9125
  6590. #ifdef SAFETYTIMER
  6591. handleSafetyTimer();
  6592. #endif //SAFETYTIMER
  6593. #if defined(KILL_PIN) && KILL_PIN > -1
  6594. static int killCount = 0; // make the inactivity button a bit less responsive
  6595. const int KILL_DELAY = 10000;
  6596. #endif
  6597. if(buflen < (BUFSIZE-1)){
  6598. get_command();
  6599. }
  6600. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6601. if(max_inactive_time)
  6602. kill(_n(""), 4);
  6603. if(stepper_inactive_time) {
  6604. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6605. {
  6606. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6607. disable_x();
  6608. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6609. disable_y();
  6610. disable_z();
  6611. disable_e0();
  6612. disable_e1();
  6613. disable_e2();
  6614. }
  6615. }
  6616. }
  6617. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6618. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6619. {
  6620. chdkActive = false;
  6621. WRITE(CHDK, LOW);
  6622. }
  6623. #endif
  6624. #if defined(KILL_PIN) && KILL_PIN > -1
  6625. // Check if the kill button was pressed and wait just in case it was an accidental
  6626. // key kill key press
  6627. // -------------------------------------------------------------------------------
  6628. if( 0 == READ(KILL_PIN) )
  6629. {
  6630. killCount++;
  6631. }
  6632. else if (killCount > 0)
  6633. {
  6634. killCount--;
  6635. }
  6636. // Exceeded threshold and we can confirm that it was not accidental
  6637. // KILL the machine
  6638. // ----------------------------------------------------------------
  6639. if ( killCount >= KILL_DELAY)
  6640. {
  6641. kill("", 5);
  6642. }
  6643. #endif
  6644. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6645. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6646. #endif
  6647. #ifdef EXTRUDER_RUNOUT_PREVENT
  6648. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6649. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6650. {
  6651. bool oldstatus=READ(E0_ENABLE_PIN);
  6652. enable_e0();
  6653. float oldepos=current_position[E_AXIS];
  6654. float oldedes=destination[E_AXIS];
  6655. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6656. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6657. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6658. current_position[E_AXIS]=oldepos;
  6659. destination[E_AXIS]=oldedes;
  6660. plan_set_e_position(oldepos);
  6661. previous_millis_cmd=millis();
  6662. st_synchronize();
  6663. WRITE(E0_ENABLE_PIN,oldstatus);
  6664. }
  6665. #endif
  6666. #ifdef TEMP_STAT_LEDS
  6667. handle_status_leds();
  6668. #endif
  6669. check_axes_activity();
  6670. }
  6671. void kill(const char *full_screen_message, unsigned char id)
  6672. {
  6673. SERIAL_ECHOPGM("KILL: ");
  6674. MYSERIAL.println(int(id));
  6675. //return;
  6676. cli(); // Stop interrupts
  6677. disable_heater();
  6678. disable_x();
  6679. // SERIAL_ECHOLNPGM("kill - disable Y");
  6680. disable_y();
  6681. disable_z();
  6682. disable_e0();
  6683. disable_e1();
  6684. disable_e2();
  6685. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6686. pinMode(PS_ON_PIN,INPUT);
  6687. #endif
  6688. SERIAL_ERROR_START;
  6689. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6690. if (full_screen_message != NULL) {
  6691. SERIAL_ERRORLNRPGM(full_screen_message);
  6692. lcd_display_message_fullscreen_P(full_screen_message);
  6693. } else {
  6694. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6695. }
  6696. // FMC small patch to update the LCD before ending
  6697. sei(); // enable interrupts
  6698. for ( int i=5; i--; lcd_update())
  6699. {
  6700. delay(200);
  6701. }
  6702. cli(); // disable interrupts
  6703. suicide();
  6704. while(1)
  6705. {
  6706. #ifdef WATCHDOG
  6707. wdt_reset();
  6708. #endif //WATCHDOG
  6709. /* Intentionally left empty */
  6710. } // Wait for reset
  6711. }
  6712. void Stop()
  6713. {
  6714. disable_heater();
  6715. if(Stopped == false) {
  6716. Stopped = true;
  6717. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6718. SERIAL_ERROR_START;
  6719. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6720. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6721. }
  6722. }
  6723. bool IsStopped() { return Stopped; };
  6724. #ifdef FAST_PWM_FAN
  6725. void setPwmFrequency(uint8_t pin, int val)
  6726. {
  6727. val &= 0x07;
  6728. switch(digitalPinToTimer(pin))
  6729. {
  6730. #if defined(TCCR0A)
  6731. case TIMER0A:
  6732. case TIMER0B:
  6733. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6734. // TCCR0B |= val;
  6735. break;
  6736. #endif
  6737. #if defined(TCCR1A)
  6738. case TIMER1A:
  6739. case TIMER1B:
  6740. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6741. // TCCR1B |= val;
  6742. break;
  6743. #endif
  6744. #if defined(TCCR2)
  6745. case TIMER2:
  6746. case TIMER2:
  6747. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6748. TCCR2 |= val;
  6749. break;
  6750. #endif
  6751. #if defined(TCCR2A)
  6752. case TIMER2A:
  6753. case TIMER2B:
  6754. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6755. TCCR2B |= val;
  6756. break;
  6757. #endif
  6758. #if defined(TCCR3A)
  6759. case TIMER3A:
  6760. case TIMER3B:
  6761. case TIMER3C:
  6762. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6763. TCCR3B |= val;
  6764. break;
  6765. #endif
  6766. #if defined(TCCR4A)
  6767. case TIMER4A:
  6768. case TIMER4B:
  6769. case TIMER4C:
  6770. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6771. TCCR4B |= val;
  6772. break;
  6773. #endif
  6774. #if defined(TCCR5A)
  6775. case TIMER5A:
  6776. case TIMER5B:
  6777. case TIMER5C:
  6778. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6779. TCCR5B |= val;
  6780. break;
  6781. #endif
  6782. }
  6783. }
  6784. #endif //FAST_PWM_FAN
  6785. bool setTargetedHotend(int code){
  6786. tmp_extruder = active_extruder;
  6787. if(code_seen('T')) {
  6788. tmp_extruder = code_value();
  6789. if(tmp_extruder >= EXTRUDERS) {
  6790. SERIAL_ECHO_START;
  6791. switch(code){
  6792. case 104:
  6793. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6794. break;
  6795. case 105:
  6796. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6797. break;
  6798. case 109:
  6799. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6800. break;
  6801. case 218:
  6802. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6803. break;
  6804. case 221:
  6805. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6806. break;
  6807. }
  6808. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6809. return true;
  6810. }
  6811. }
  6812. return false;
  6813. }
  6814. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6815. {
  6816. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6817. {
  6818. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6819. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6820. }
  6821. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6822. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6823. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6824. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6825. total_filament_used = 0;
  6826. }
  6827. float calculate_extruder_multiplier(float diameter) {
  6828. float out = 1.f;
  6829. if (volumetric_enabled && diameter > 0.f) {
  6830. float area = M_PI * diameter * diameter * 0.25;
  6831. out = 1.f / area;
  6832. }
  6833. if (extrudemultiply != 100)
  6834. out *= float(extrudemultiply) * 0.01f;
  6835. return out;
  6836. }
  6837. void calculate_extruder_multipliers() {
  6838. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6839. #if EXTRUDERS > 1
  6840. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6841. #if EXTRUDERS > 2
  6842. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6843. #endif
  6844. #endif
  6845. }
  6846. void delay_keep_alive(unsigned int ms)
  6847. {
  6848. for (;;) {
  6849. manage_heater();
  6850. // Manage inactivity, but don't disable steppers on timeout.
  6851. manage_inactivity(true);
  6852. lcd_update();
  6853. if (ms == 0)
  6854. break;
  6855. else if (ms >= 50) {
  6856. delay(50);
  6857. ms -= 50;
  6858. } else {
  6859. delay(ms);
  6860. ms = 0;
  6861. }
  6862. }
  6863. }
  6864. void wait_for_heater(long codenum) {
  6865. #ifdef TEMP_RESIDENCY_TIME
  6866. long residencyStart;
  6867. residencyStart = -1;
  6868. /* continue to loop until we have reached the target temp
  6869. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6870. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6871. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6872. #else
  6873. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6874. #endif //TEMP_RESIDENCY_TIME
  6875. if ((millis() - codenum) > 1000UL)
  6876. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6877. if (!farm_mode) {
  6878. SERIAL_PROTOCOLPGM("T:");
  6879. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6880. SERIAL_PROTOCOLPGM(" E:");
  6881. SERIAL_PROTOCOL((int)tmp_extruder);
  6882. #ifdef TEMP_RESIDENCY_TIME
  6883. SERIAL_PROTOCOLPGM(" W:");
  6884. if (residencyStart > -1)
  6885. {
  6886. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6887. SERIAL_PROTOCOLLN(codenum);
  6888. }
  6889. else
  6890. {
  6891. SERIAL_PROTOCOLLN("?");
  6892. }
  6893. }
  6894. #else
  6895. SERIAL_PROTOCOLLN("");
  6896. #endif
  6897. codenum = millis();
  6898. }
  6899. manage_heater();
  6900. manage_inactivity();
  6901. lcd_update();
  6902. #ifdef TEMP_RESIDENCY_TIME
  6903. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6904. or when current temp falls outside the hysteresis after target temp was reached */
  6905. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6906. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6907. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6908. {
  6909. residencyStart = millis();
  6910. }
  6911. #endif //TEMP_RESIDENCY_TIME
  6912. }
  6913. }
  6914. void check_babystep() {
  6915. int babystep_z;
  6916. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6917. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6918. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6919. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6920. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6921. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6922. lcd_update_enable(true);
  6923. }
  6924. }
  6925. #ifdef DIS
  6926. void d_setup()
  6927. {
  6928. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6929. pinMode(D_DATA, INPUT_PULLUP);
  6930. pinMode(D_REQUIRE, OUTPUT);
  6931. digitalWrite(D_REQUIRE, HIGH);
  6932. }
  6933. float d_ReadData()
  6934. {
  6935. int digit[13];
  6936. String mergeOutput;
  6937. float output;
  6938. digitalWrite(D_REQUIRE, HIGH);
  6939. for (int i = 0; i<13; i++)
  6940. {
  6941. for (int j = 0; j < 4; j++)
  6942. {
  6943. while (digitalRead(D_DATACLOCK) == LOW) {}
  6944. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6945. bitWrite(digit[i], j, digitalRead(D_DATA));
  6946. }
  6947. }
  6948. digitalWrite(D_REQUIRE, LOW);
  6949. mergeOutput = "";
  6950. output = 0;
  6951. for (int r = 5; r <= 10; r++) //Merge digits
  6952. {
  6953. mergeOutput += digit[r];
  6954. }
  6955. output = mergeOutput.toFloat();
  6956. if (digit[4] == 8) //Handle sign
  6957. {
  6958. output *= -1;
  6959. }
  6960. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6961. {
  6962. output /= 10;
  6963. }
  6964. return output;
  6965. }
  6966. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6967. int t1 = 0;
  6968. int t_delay = 0;
  6969. int digit[13];
  6970. int m;
  6971. char str[3];
  6972. //String mergeOutput;
  6973. char mergeOutput[15];
  6974. float output;
  6975. int mesh_point = 0; //index number of calibration point
  6976. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6977. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6978. float mesh_home_z_search = 4;
  6979. float row[x_points_num];
  6980. int ix = 0;
  6981. int iy = 0;
  6982. char* filename_wldsd = "wldsd.txt";
  6983. char data_wldsd[70];
  6984. char numb_wldsd[10];
  6985. d_setup();
  6986. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6987. // We don't know where we are! HOME!
  6988. // Push the commands to the front of the message queue in the reverse order!
  6989. // There shall be always enough space reserved for these commands.
  6990. repeatcommand_front(); // repeat G80 with all its parameters
  6991. enquecommand_front_P((PSTR("G28 W0")));
  6992. enquecommand_front_P((PSTR("G1 Z5")));
  6993. return;
  6994. }
  6995. bool custom_message_old = custom_message;
  6996. unsigned int custom_message_type_old = custom_message_type;
  6997. unsigned int custom_message_state_old = custom_message_state;
  6998. custom_message = true;
  6999. custom_message_type = 1;
  7000. custom_message_state = (x_points_num * y_points_num) + 10;
  7001. lcd_update(1);
  7002. mbl.reset();
  7003. babystep_undo();
  7004. card.openFile(filename_wldsd, false);
  7005. current_position[Z_AXIS] = mesh_home_z_search;
  7006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7007. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7008. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7009. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7010. setup_for_endstop_move(false);
  7011. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7012. SERIAL_PROTOCOL(x_points_num);
  7013. SERIAL_PROTOCOLPGM(",");
  7014. SERIAL_PROTOCOL(y_points_num);
  7015. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7016. SERIAL_PROTOCOL(mesh_home_z_search);
  7017. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7018. SERIAL_PROTOCOL(x_dimension);
  7019. SERIAL_PROTOCOLPGM(",");
  7020. SERIAL_PROTOCOL(y_dimension);
  7021. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7022. while (mesh_point != x_points_num * y_points_num) {
  7023. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7024. iy = mesh_point / x_points_num;
  7025. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7026. float z0 = 0.f;
  7027. current_position[Z_AXIS] = mesh_home_z_search;
  7028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7029. st_synchronize();
  7030. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7031. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7033. st_synchronize();
  7034. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7035. break;
  7036. card.closefile();
  7037. }
  7038. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7039. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7040. //strcat(data_wldsd, numb_wldsd);
  7041. //MYSERIAL.println(data_wldsd);
  7042. //delay(1000);
  7043. //delay(3000);
  7044. //t1 = millis();
  7045. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7046. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7047. memset(digit, 0, sizeof(digit));
  7048. //cli();
  7049. digitalWrite(D_REQUIRE, LOW);
  7050. for (int i = 0; i<13; i++)
  7051. {
  7052. //t1 = millis();
  7053. for (int j = 0; j < 4; j++)
  7054. {
  7055. while (digitalRead(D_DATACLOCK) == LOW) {}
  7056. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7057. bitWrite(digit[i], j, digitalRead(D_DATA));
  7058. }
  7059. //t_delay = (millis() - t1);
  7060. //SERIAL_PROTOCOLPGM(" ");
  7061. //SERIAL_PROTOCOL_F(t_delay, 5);
  7062. //SERIAL_PROTOCOLPGM(" ");
  7063. }
  7064. //sei();
  7065. digitalWrite(D_REQUIRE, HIGH);
  7066. mergeOutput[0] = '\0';
  7067. output = 0;
  7068. for (int r = 5; r <= 10; r++) //Merge digits
  7069. {
  7070. sprintf(str, "%d", digit[r]);
  7071. strcat(mergeOutput, str);
  7072. }
  7073. output = atof(mergeOutput);
  7074. if (digit[4] == 8) //Handle sign
  7075. {
  7076. output *= -1;
  7077. }
  7078. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7079. {
  7080. output *= 0.1;
  7081. }
  7082. //output = d_ReadData();
  7083. //row[ix] = current_position[Z_AXIS];
  7084. memset(data_wldsd, 0, sizeof(data_wldsd));
  7085. for (int i = 0; i <3; i++) {
  7086. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7087. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7088. strcat(data_wldsd, numb_wldsd);
  7089. strcat(data_wldsd, ";");
  7090. }
  7091. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7092. dtostrf(output, 8, 5, numb_wldsd);
  7093. strcat(data_wldsd, numb_wldsd);
  7094. //strcat(data_wldsd, ";");
  7095. card.write_command(data_wldsd);
  7096. //row[ix] = d_ReadData();
  7097. row[ix] = output; // current_position[Z_AXIS];
  7098. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7099. for (int i = 0; i < x_points_num; i++) {
  7100. SERIAL_PROTOCOLPGM(" ");
  7101. SERIAL_PROTOCOL_F(row[i], 5);
  7102. }
  7103. SERIAL_PROTOCOLPGM("\n");
  7104. }
  7105. custom_message_state--;
  7106. mesh_point++;
  7107. lcd_update(1);
  7108. }
  7109. card.closefile();
  7110. }
  7111. #endif
  7112. void temp_compensation_start() {
  7113. custom_message = true;
  7114. custom_message_type = 5;
  7115. custom_message_state = PINDA_HEAT_T + 1;
  7116. lcd_update(2);
  7117. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7118. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7119. }
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7121. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7122. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7123. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7125. st_synchronize();
  7126. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7127. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7128. delay_keep_alive(1000);
  7129. custom_message_state = PINDA_HEAT_T - i;
  7130. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7131. else lcd_update(1);
  7132. }
  7133. custom_message_type = 0;
  7134. custom_message_state = 0;
  7135. custom_message = false;
  7136. }
  7137. void temp_compensation_apply() {
  7138. int i_add;
  7139. int compensation_value;
  7140. int z_shift = 0;
  7141. float z_shift_mm;
  7142. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7143. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7144. i_add = (target_temperature_bed - 60) / 10;
  7145. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7146. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7147. }else {
  7148. //interpolation
  7149. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7150. }
  7151. SERIAL_PROTOCOLPGM("\n");
  7152. SERIAL_PROTOCOLPGM("Z shift applied:");
  7153. MYSERIAL.print(z_shift_mm);
  7154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7155. st_synchronize();
  7156. plan_set_z_position(current_position[Z_AXIS]);
  7157. }
  7158. else {
  7159. //we have no temp compensation data
  7160. }
  7161. }
  7162. float temp_comp_interpolation(float inp_temperature) {
  7163. //cubic spline interpolation
  7164. int n, i, j, k;
  7165. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7166. int shift[10];
  7167. int temp_C[10];
  7168. n = 6; //number of measured points
  7169. shift[0] = 0;
  7170. for (i = 0; i < n; i++) {
  7171. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7172. temp_C[i] = 50 + i * 10; //temperature in C
  7173. #ifdef PINDA_THERMISTOR
  7174. temp_C[i] = 35 + i * 5; //temperature in C
  7175. #else
  7176. temp_C[i] = 50 + i * 10; //temperature in C
  7177. #endif
  7178. x[i] = (float)temp_C[i];
  7179. f[i] = (float)shift[i];
  7180. }
  7181. if (inp_temperature < x[0]) return 0;
  7182. for (i = n - 1; i>0; i--) {
  7183. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7184. h[i - 1] = x[i] - x[i - 1];
  7185. }
  7186. //*********** formation of h, s , f matrix **************
  7187. for (i = 1; i<n - 1; i++) {
  7188. m[i][i] = 2 * (h[i - 1] + h[i]);
  7189. if (i != 1) {
  7190. m[i][i - 1] = h[i - 1];
  7191. m[i - 1][i] = h[i - 1];
  7192. }
  7193. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7194. }
  7195. //*********** forward elimination **************
  7196. for (i = 1; i<n - 2; i++) {
  7197. temp = (m[i + 1][i] / m[i][i]);
  7198. for (j = 1; j <= n - 1; j++)
  7199. m[i + 1][j] -= temp*m[i][j];
  7200. }
  7201. //*********** backward substitution *********
  7202. for (i = n - 2; i>0; i--) {
  7203. sum = 0;
  7204. for (j = i; j <= n - 2; j++)
  7205. sum += m[i][j] * s[j];
  7206. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7207. }
  7208. for (i = 0; i<n - 1; i++)
  7209. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7210. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7211. b = s[i] / 2;
  7212. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7213. d = f[i];
  7214. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7215. }
  7216. return sum;
  7217. }
  7218. #ifdef PINDA_THERMISTOR
  7219. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7220. {
  7221. if (!temp_cal_active) return 0;
  7222. if (!calibration_status_pinda()) return 0;
  7223. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7224. }
  7225. #endif //PINDA_THERMISTOR
  7226. void long_pause() //long pause print
  7227. {
  7228. st_synchronize();
  7229. //save currently set parameters to global variables
  7230. saved_feedmultiply = feedmultiply;
  7231. HotendTempBckp = degTargetHotend(active_extruder);
  7232. fanSpeedBckp = fanSpeed;
  7233. start_pause_print = millis();
  7234. //save position
  7235. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7236. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7237. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7238. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7239. //retract
  7240. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7241. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7242. //lift z
  7243. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7244. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7245. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7246. //set nozzle target temperature to 0
  7247. setTargetHotend(0, 0);
  7248. setTargetHotend(0, 1);
  7249. setTargetHotend(0, 2);
  7250. //Move XY to side
  7251. current_position[X_AXIS] = X_PAUSE_POS;
  7252. current_position[Y_AXIS] = Y_PAUSE_POS;
  7253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7254. // Turn off the print fan
  7255. fanSpeed = 0;
  7256. st_synchronize();
  7257. }
  7258. void serialecho_temperatures() {
  7259. float tt = degHotend(active_extruder);
  7260. SERIAL_PROTOCOLPGM("T:");
  7261. SERIAL_PROTOCOL(tt);
  7262. SERIAL_PROTOCOLPGM(" E:");
  7263. SERIAL_PROTOCOL((int)active_extruder);
  7264. SERIAL_PROTOCOLPGM(" B:");
  7265. SERIAL_PROTOCOL_F(degBed(), 1);
  7266. SERIAL_PROTOCOLLN("");
  7267. }
  7268. extern uint32_t sdpos_atomic;
  7269. #ifdef UVLO_SUPPORT
  7270. void uvlo_()
  7271. {
  7272. unsigned long time_start = millis();
  7273. bool sd_print = card.sdprinting;
  7274. // Conserve power as soon as possible.
  7275. disable_x();
  7276. disable_y();
  7277. #ifdef TMC2130
  7278. tmc2130_set_current_h(Z_AXIS, 20);
  7279. tmc2130_set_current_r(Z_AXIS, 20);
  7280. tmc2130_set_current_h(E_AXIS, 20);
  7281. tmc2130_set_current_r(E_AXIS, 20);
  7282. #endif //TMC2130
  7283. // Indicate that the interrupt has been triggered.
  7284. // SERIAL_ECHOLNPGM("UVLO");
  7285. // Read out the current Z motor microstep counter. This will be later used
  7286. // for reaching the zero full step before powering off.
  7287. uint16_t z_microsteps = 0;
  7288. #ifdef TMC2130
  7289. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7290. #endif //TMC2130
  7291. // Calculate the file position, from which to resume this print.
  7292. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7293. {
  7294. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7295. sd_position -= sdlen_planner;
  7296. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7297. sd_position -= sdlen_cmdqueue;
  7298. if (sd_position < 0) sd_position = 0;
  7299. }
  7300. // Backup the feedrate in mm/min.
  7301. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7302. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7303. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7304. // are in action.
  7305. planner_abort_hard();
  7306. // Store the current extruder position.
  7307. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7308. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7309. // Clean the input command queue.
  7310. cmdqueue_reset();
  7311. card.sdprinting = false;
  7312. // card.closefile();
  7313. // Enable stepper driver interrupt to move Z axis.
  7314. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7315. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7316. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7317. sei();
  7318. plan_buffer_line(
  7319. current_position[X_AXIS],
  7320. current_position[Y_AXIS],
  7321. current_position[Z_AXIS],
  7322. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7323. 95, active_extruder);
  7324. st_synchronize();
  7325. disable_e0();
  7326. plan_buffer_line(
  7327. current_position[X_AXIS],
  7328. current_position[Y_AXIS],
  7329. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7330. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7331. 40, active_extruder);
  7332. st_synchronize();
  7333. disable_e0();
  7334. plan_buffer_line(
  7335. current_position[X_AXIS],
  7336. current_position[Y_AXIS],
  7337. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7338. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7339. 40, active_extruder);
  7340. st_synchronize();
  7341. disable_e0();
  7342. disable_z();
  7343. // Move Z up to the next 0th full step.
  7344. // Write the file position.
  7345. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7346. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7347. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7348. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7349. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7350. // Scale the z value to 1u resolution.
  7351. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7352. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7353. }
  7354. // Read out the current Z motor microstep counter. This will be later used
  7355. // for reaching the zero full step before powering off.
  7356. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7357. // Store the current position.
  7358. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7359. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7360. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7361. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7362. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7363. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7364. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7365. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7366. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7367. #if EXTRUDERS > 1
  7368. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7369. #if EXTRUDERS > 2
  7370. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7371. #endif
  7372. #endif
  7373. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7374. // Finaly store the "power outage" flag.
  7375. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7376. st_synchronize();
  7377. SERIAL_ECHOPGM("stps");
  7378. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7379. disable_z();
  7380. // Increment power failure counter
  7381. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7382. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7383. SERIAL_ECHOLNPGM("UVLO - end");
  7384. MYSERIAL.println(millis() - time_start);
  7385. #if 0
  7386. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7387. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7389. st_synchronize();
  7390. #endif
  7391. cli();
  7392. volatile unsigned int ppcount = 0;
  7393. SET_OUTPUT(BEEPER);
  7394. WRITE(BEEPER, HIGH);
  7395. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7396. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7397. }
  7398. WRITE(BEEPER, LOW);
  7399. while(1){
  7400. #if 1
  7401. WRITE(BEEPER, LOW);
  7402. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7403. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7404. }
  7405. #endif
  7406. };
  7407. }
  7408. #endif //UVLO_SUPPORT
  7409. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7410. void setup_fan_interrupt() {
  7411. //INT7
  7412. DDRE &= ~(1 << 7); //input pin
  7413. PORTE &= ~(1 << 7); //no internal pull-up
  7414. //start with sensing rising edge
  7415. EICRB &= ~(1 << 6);
  7416. EICRB |= (1 << 7);
  7417. //enable INT7 interrupt
  7418. EIMSK |= (1 << 7);
  7419. }
  7420. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7421. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7422. ISR(INT7_vect) {
  7423. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7424. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7425. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7426. t_fan_rising_edge = millis_nc();
  7427. }
  7428. else { //interrupt was triggered by falling edge
  7429. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7430. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7431. }
  7432. }
  7433. EICRB ^= (1 << 6); //change edge
  7434. }
  7435. #endif
  7436. #ifdef UVLO_SUPPORT
  7437. void setup_uvlo_interrupt() {
  7438. DDRE &= ~(1 << 4); //input pin
  7439. PORTE &= ~(1 << 4); //no internal pull-up
  7440. //sensing falling edge
  7441. EICRB |= (1 << 0);
  7442. EICRB &= ~(1 << 1);
  7443. //enable INT4 interrupt
  7444. EIMSK |= (1 << 4);
  7445. }
  7446. ISR(INT4_vect) {
  7447. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7448. SERIAL_ECHOLNPGM("INT4");
  7449. if (IS_SD_PRINTING) uvlo_();
  7450. }
  7451. void recover_print(uint8_t automatic) {
  7452. char cmd[30];
  7453. lcd_update_enable(true);
  7454. lcd_update(2);
  7455. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7456. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7457. // Lift the print head, so one may remove the excess priming material.
  7458. if (current_position[Z_AXIS] < 25)
  7459. enquecommand_P(PSTR("G1 Z25 F800"));
  7460. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7461. enquecommand_P(PSTR("G28 X Y"));
  7462. // Set the target bed and nozzle temperatures and wait.
  7463. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7464. enquecommand(cmd);
  7465. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7466. enquecommand(cmd);
  7467. enquecommand_P(PSTR("M83")); //E axis relative mode
  7468. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7469. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7470. if(automatic == 0){
  7471. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7472. }
  7473. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7474. // Mark the power panic status as inactive.
  7475. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7476. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7477. delay_keep_alive(1000);
  7478. }*/
  7479. SERIAL_ECHOPGM("After waiting for temp:");
  7480. SERIAL_ECHOPGM("Current position X_AXIS:");
  7481. MYSERIAL.println(current_position[X_AXIS]);
  7482. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7483. MYSERIAL.println(current_position[Y_AXIS]);
  7484. // Restart the print.
  7485. restore_print_from_eeprom();
  7486. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7487. MYSERIAL.print(current_position[Z_AXIS]);
  7488. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7489. MYSERIAL.print(current_position[E_AXIS]);
  7490. }
  7491. void recover_machine_state_after_power_panic()
  7492. {
  7493. char cmd[30];
  7494. // 1) Recover the logical cordinates at the time of the power panic.
  7495. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7496. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7497. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7498. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7499. // The current position after power panic is moved to the next closest 0th full step.
  7500. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7501. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7502. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7503. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7504. sprintf_P(cmd, PSTR("G92 E"));
  7505. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7506. enquecommand(cmd);
  7507. }
  7508. memcpy(destination, current_position, sizeof(destination));
  7509. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7510. print_world_coordinates();
  7511. // 2) Initialize the logical to physical coordinate system transformation.
  7512. world2machine_initialize();
  7513. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7514. mbl.active = false;
  7515. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7516. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7517. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7518. // Scale the z value to 10u resolution.
  7519. int16_t v;
  7520. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7521. if (v != 0)
  7522. mbl.active = true;
  7523. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7524. }
  7525. if (mbl.active)
  7526. mbl.upsample_3x3();
  7527. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7528. // print_mesh_bed_leveling_table();
  7529. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7530. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7531. babystep_load();
  7532. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7534. // 6) Power up the motors, mark their positions as known.
  7535. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7536. axis_known_position[X_AXIS] = true; enable_x();
  7537. axis_known_position[Y_AXIS] = true; enable_y();
  7538. axis_known_position[Z_AXIS] = true; enable_z();
  7539. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7540. print_physical_coordinates();
  7541. // 7) Recover the target temperatures.
  7542. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7543. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7544. // 8) Recover extruder multipilers
  7545. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7546. #if EXTRUDERS > 1
  7547. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7548. #if EXTRUDERS > 2
  7549. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7550. #endif
  7551. #endif
  7552. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7553. }
  7554. void restore_print_from_eeprom() {
  7555. float x_rec, y_rec, z_pos;
  7556. int feedrate_rec;
  7557. uint8_t fan_speed_rec;
  7558. char cmd[30];
  7559. char* c;
  7560. char filename[13];
  7561. uint8_t depth = 0;
  7562. char dir_name[9];
  7563. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7564. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7565. SERIAL_ECHOPGM("Feedrate:");
  7566. MYSERIAL.println(feedrate_rec);
  7567. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7568. MYSERIAL.println(int(depth));
  7569. for (int i = 0; i < depth; i++) {
  7570. for (int j = 0; j < 8; j++) {
  7571. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7572. }
  7573. dir_name[8] = '\0';
  7574. MYSERIAL.println(dir_name);
  7575. card.chdir(dir_name);
  7576. }
  7577. for (int i = 0; i < 8; i++) {
  7578. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7579. }
  7580. filename[8] = '\0';
  7581. MYSERIAL.print(filename);
  7582. strcat_P(filename, PSTR(".gco"));
  7583. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7584. for (c = &cmd[4]; *c; c++)
  7585. *c = tolower(*c);
  7586. enquecommand(cmd);
  7587. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7588. SERIAL_ECHOPGM("Position read from eeprom:");
  7589. MYSERIAL.println(position);
  7590. // E axis relative mode.
  7591. enquecommand_P(PSTR("M83"));
  7592. // Move to the XY print position in logical coordinates, where the print has been killed.
  7593. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7594. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7595. strcat_P(cmd, PSTR(" F2000"));
  7596. enquecommand(cmd);
  7597. // Move the Z axis down to the print, in logical coordinates.
  7598. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7599. enquecommand(cmd);
  7600. // Unretract.
  7601. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7602. // Set the feedrate saved at the power panic.
  7603. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7604. enquecommand(cmd);
  7605. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7606. {
  7607. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7608. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7609. }
  7610. // Set the fan speed saved at the power panic.
  7611. strcpy_P(cmd, PSTR("M106 S"));
  7612. strcat(cmd, itostr3(int(fan_speed_rec)));
  7613. enquecommand(cmd);
  7614. // Set a position in the file.
  7615. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7616. enquecommand(cmd);
  7617. // Start SD print.
  7618. enquecommand_P(PSTR("M24"));
  7619. }
  7620. #endif //UVLO_SUPPORT
  7621. ////////////////////////////////////////////////////////////////////////////////
  7622. // save/restore printing
  7623. void stop_and_save_print_to_ram(float z_move, float e_move)
  7624. {
  7625. if (saved_printing) return;
  7626. unsigned char nplanner_blocks;
  7627. unsigned char nlines;
  7628. uint16_t sdlen_planner;
  7629. uint16_t sdlen_cmdqueue;
  7630. cli();
  7631. if (card.sdprinting) {
  7632. nplanner_blocks = number_of_blocks();
  7633. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7634. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7635. saved_sdpos -= sdlen_planner;
  7636. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7637. saved_sdpos -= sdlen_cmdqueue;
  7638. saved_printing_type = PRINTING_TYPE_SD;
  7639. }
  7640. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7641. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7642. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7643. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7644. saved_sdpos -= nlines;
  7645. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7646. saved_printing_type = PRINTING_TYPE_USB;
  7647. }
  7648. else {
  7649. //not sd printing nor usb printing
  7650. }
  7651. #if 0
  7652. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7653. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7654. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7655. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7656. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7657. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7658. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7659. {
  7660. card.setIndex(saved_sdpos);
  7661. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7662. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7663. MYSERIAL.print(char(card.get()));
  7664. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7665. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7666. MYSERIAL.print(char(card.get()));
  7667. SERIAL_ECHOLNPGM("End of command buffer");
  7668. }
  7669. {
  7670. // Print the content of the planner buffer, line by line:
  7671. card.setIndex(saved_sdpos);
  7672. int8_t iline = 0;
  7673. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7674. SERIAL_ECHOPGM("Planner line (from file): ");
  7675. MYSERIAL.print(int(iline), DEC);
  7676. SERIAL_ECHOPGM(", length: ");
  7677. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7678. SERIAL_ECHOPGM(", steps: (");
  7679. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7680. SERIAL_ECHOPGM(",");
  7681. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7682. SERIAL_ECHOPGM(",");
  7683. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7684. SERIAL_ECHOPGM(",");
  7685. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7686. SERIAL_ECHOPGM("), events: ");
  7687. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7688. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7689. MYSERIAL.print(char(card.get()));
  7690. }
  7691. }
  7692. {
  7693. // Print the content of the command buffer, line by line:
  7694. int8_t iline = 0;
  7695. union {
  7696. struct {
  7697. char lo;
  7698. char hi;
  7699. } lohi;
  7700. uint16_t value;
  7701. } sdlen_single;
  7702. int _bufindr = bufindr;
  7703. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7704. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7705. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7706. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7707. }
  7708. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7709. MYSERIAL.print(int(iline), DEC);
  7710. SERIAL_ECHOPGM(", type: ");
  7711. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7712. SERIAL_ECHOPGM(", len: ");
  7713. MYSERIAL.println(sdlen_single.value, DEC);
  7714. // Print the content of the buffer line.
  7715. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7716. SERIAL_ECHOPGM("Buffer line (from file): ");
  7717. MYSERIAL.print(int(iline), DEC);
  7718. MYSERIAL.println(int(iline), DEC);
  7719. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7720. MYSERIAL.print(char(card.get()));
  7721. if (-- _buflen == 0)
  7722. break;
  7723. // First skip the current command ID and iterate up to the end of the string.
  7724. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7725. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7726. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7727. // If the end of the buffer was empty,
  7728. if (_bufindr == sizeof(cmdbuffer)) {
  7729. // skip to the start and find the nonzero command.
  7730. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7731. }
  7732. }
  7733. }
  7734. #endif
  7735. #if 0
  7736. saved_feedrate2 = feedrate; //save feedrate
  7737. #else
  7738. // Try to deduce the feedrate from the first block of the planner.
  7739. // Speed is in mm/min.
  7740. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7741. #endif
  7742. planner_abort_hard(); //abort printing
  7743. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7744. saved_active_extruder = active_extruder; //save active_extruder
  7745. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7746. cmdqueue_reset(); //empty cmdqueue
  7747. card.sdprinting = false;
  7748. // card.closefile();
  7749. saved_printing = true;
  7750. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7751. st_reset_timer();
  7752. sei();
  7753. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7754. #if 1
  7755. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7756. char buf[48];
  7757. // First unretract (relative extrusion)
  7758. strcpy_P(buf, PSTR("G1 E"));
  7759. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7760. strcat_P(buf, PSTR(" F"));
  7761. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7762. enquecommand(buf, false);
  7763. // Then lift Z axis
  7764. strcpy_P(buf, PSTR("G1 Z"));
  7765. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7766. strcat_P(buf, PSTR(" F"));
  7767. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7768. // At this point the command queue is empty.
  7769. enquecommand(buf, false);
  7770. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7771. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7772. repeatcommand_front();
  7773. #else
  7774. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7775. st_synchronize(); //wait moving
  7776. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7777. memcpy(destination, current_position, sizeof(destination));
  7778. #endif
  7779. }
  7780. }
  7781. void restore_print_from_ram_and_continue(float e_move)
  7782. {
  7783. if (!saved_printing) return;
  7784. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7785. // current_position[axis] = st_get_position_mm(axis);
  7786. active_extruder = saved_active_extruder; //restore active_extruder
  7787. feedrate = saved_feedrate2; //restore feedrate
  7788. float e = saved_pos[E_AXIS] - e_move;
  7789. plan_set_e_position(e);
  7790. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7791. st_synchronize();
  7792. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7793. memcpy(destination, current_position, sizeof(destination));
  7794. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7795. card.setIndex(saved_sdpos);
  7796. sdpos_atomic = saved_sdpos;
  7797. card.sdprinting = true;
  7798. }
  7799. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7800. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7801. FlushSerialRequestResend();
  7802. }
  7803. else {
  7804. //not sd printing nor usb printing
  7805. }
  7806. saved_printing = false;
  7807. }
  7808. void print_world_coordinates()
  7809. {
  7810. SERIAL_ECHOPGM("world coordinates: (");
  7811. MYSERIAL.print(current_position[X_AXIS], 3);
  7812. SERIAL_ECHOPGM(", ");
  7813. MYSERIAL.print(current_position[Y_AXIS], 3);
  7814. SERIAL_ECHOPGM(", ");
  7815. MYSERIAL.print(current_position[Z_AXIS], 3);
  7816. SERIAL_ECHOLNPGM(")");
  7817. }
  7818. void print_physical_coordinates()
  7819. {
  7820. SERIAL_ECHOPGM("physical coordinates: (");
  7821. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7822. SERIAL_ECHOPGM(", ");
  7823. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7824. SERIAL_ECHOPGM(", ");
  7825. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7826. SERIAL_ECHOLNPGM(")");
  7827. }
  7828. void print_mesh_bed_leveling_table()
  7829. {
  7830. SERIAL_ECHOPGM("mesh bed leveling: ");
  7831. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7832. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7833. MYSERIAL.print(mbl.z_values[y][x], 3);
  7834. SERIAL_ECHOPGM(" ");
  7835. }
  7836. SERIAL_ECHOLNPGM("");
  7837. }
  7838. uint16_t print_time_remaining() {
  7839. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7840. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7841. else print_t = print_time_remaining_silent;
  7842. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7843. return print_t;
  7844. }
  7845. uint8_t print_percent_done() {
  7846. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7847. uint8_t percent_done = 0;
  7848. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7849. percent_done = print_percent_done_normal;
  7850. }
  7851. else if (print_percent_done_silent <= 100) {
  7852. percent_done = print_percent_done_silent;
  7853. }
  7854. else {
  7855. percent_done = card.percentDone();
  7856. }
  7857. return percent_done;
  7858. }
  7859. static void print_time_remaining_init() {
  7860. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7861. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7862. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7863. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7864. }
  7865. #define FIL_LOAD_LENGTH 60