Marlin_main.cpp 310 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. //-//
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. // Macros for bit masks
  109. #define BIT(b) (1<<(b))
  110. #define TEST(n,b) (((n)&BIT(b))!=0)
  111. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  112. //Macro for print fan speed
  113. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  114. #define PRINTING_TYPE_SD 0
  115. #define PRINTING_TYPE_USB 1
  116. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  117. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  118. //Implemented Codes
  119. //-------------------
  120. // PRUSA CODES
  121. // P F - Returns FW versions
  122. // P R - Returns revision of printer
  123. // G0 -> G1
  124. // G1 - Coordinated Movement X Y Z E
  125. // G2 - CW ARC
  126. // G3 - CCW ARC
  127. // G4 - Dwell S<seconds> or P<milliseconds>
  128. // G10 - retract filament according to settings of M207
  129. // G11 - retract recover filament according to settings of M208
  130. // G28 - Home all Axis
  131. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  132. // G30 - Single Z Probe, probes bed at current XY location.
  133. // G31 - Dock sled (Z_PROBE_SLED only)
  134. // G32 - Undock sled (Z_PROBE_SLED only)
  135. // G80 - Automatic mesh bed leveling
  136. // G81 - Print bed profile
  137. // G90 - Use Absolute Coordinates
  138. // G91 - Use Relative Coordinates
  139. // G92 - Set current position to coordinates given
  140. // M Codes
  141. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  142. // M1 - Same as M0
  143. // M17 - Enable/Power all stepper motors
  144. // M18 - Disable all stepper motors; same as M84
  145. // M20 - List SD card
  146. // M21 - Init SD card
  147. // M22 - Release SD card
  148. // M23 - Select SD file (M23 filename.g)
  149. // M24 - Start/resume SD print
  150. // M25 - Pause SD print
  151. // M26 - Set SD position in bytes (M26 S12345)
  152. // M27 - Report SD print status
  153. // M28 - Start SD write (M28 filename.g)
  154. // M29 - Stop SD write
  155. // M30 - Delete file from SD (M30 filename.g)
  156. // M31 - Output time since last M109 or SD card start to serial
  157. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  158. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  159. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  160. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  161. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  162. // M73 - Show percent done and print time remaining
  163. // M80 - Turn on Power Supply
  164. // M81 - Turn off Power Supply
  165. // M82 - Set E codes absolute (default)
  166. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  167. // M84 - Disable steppers until next move,
  168. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  169. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  170. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  171. // M92 - Set axis_steps_per_unit - same syntax as G92
  172. // M104 - Set extruder target temp
  173. // M105 - Read current temp
  174. // M106 - Fan on
  175. // M107 - Fan off
  176. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  177. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  178. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  179. // M112 - Emergency stop
  180. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  181. // M114 - Output current position to serial port
  182. // M115 - Capabilities string
  183. // M117 - display message
  184. // M119 - Output Endstop status to serial port
  185. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  186. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  187. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  189. // M140 - Set bed target temp
  190. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  191. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  192. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  193. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  194. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  195. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  196. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  197. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  198. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  199. // M206 - set additional homing offset
  200. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  201. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  202. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  203. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  204. // M220 S<factor in percent>- set speed factor override percentage
  205. // M221 S<factor in percent>- set extrude factor override percentage
  206. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  207. // M240 - Trigger a camera to take a photograph
  208. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  209. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  210. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  211. // M301 - Set PID parameters P I and D
  212. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  213. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  214. // M304 - Set bed PID parameters P I and D
  215. // M400 - Finish all moves
  216. // M401 - Lower z-probe if present
  217. // M402 - Raise z-probe if present
  218. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  219. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  220. // M406 - Turn off Filament Sensor extrusion control
  221. // M407 - Displays measured filament diameter
  222. // M500 - stores parameters in EEPROM
  223. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  224. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  225. // M503 - print the current settings (from memory not from EEPROM)
  226. // M509 - force language selection on next restart
  227. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  228. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  229. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  230. // M860 - Wait for PINDA thermistor to reach target temperature.
  231. // M861 - Set / Read PINDA temperature compensation offsets
  232. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  233. // M907 - Set digital trimpot motor current using axis codes.
  234. // M908 - Control digital trimpot directly.
  235. // M350 - Set microstepping mode.
  236. // M351 - Toggle MS1 MS2 pins directly.
  237. // M928 - Start SD logging (M928 filename.g) - ended by M29
  238. // M999 - Restart after being stopped by error
  239. //Stepper Movement Variables
  240. //===========================================================================
  241. //=============================imported variables============================
  242. //===========================================================================
  243. //===========================================================================
  244. //=============================public variables=============================
  245. //===========================================================================
  246. #ifdef SDSUPPORT
  247. CardReader card;
  248. #endif
  249. unsigned long PingTime = millis();
  250. unsigned long NcTime;
  251. union Data
  252. {
  253. byte b[2];
  254. int value;
  255. };
  256. float homing_feedrate[] = HOMING_FEEDRATE;
  257. // Currently only the extruder axis may be switched to a relative mode.
  258. // Other axes are always absolute or relative based on the common relative_mode flag.
  259. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  260. int feedmultiply=100; //100->1 200->2
  261. int saved_feedmultiply;
  262. int extrudemultiply=100; //100->1 200->2
  263. int extruder_multiply[EXTRUDERS] = {100
  264. #if EXTRUDERS > 1
  265. , 100
  266. #if EXTRUDERS > 2
  267. , 100
  268. #endif
  269. #endif
  270. };
  271. int bowden_length[4] = {385, 385, 385, 385};
  272. bool is_usb_printing = false;
  273. bool homing_flag = false;
  274. bool temp_cal_active = false;
  275. unsigned long kicktime = millis()+100000;
  276. unsigned int usb_printing_counter;
  277. int lcd_change_fil_state = 0;
  278. int feedmultiplyBckp = 100;
  279. float HotendTempBckp = 0;
  280. int fanSpeedBckp = 0;
  281. float pause_lastpos[4];
  282. unsigned long pause_time = 0;
  283. unsigned long start_pause_print = millis();
  284. unsigned long t_fan_rising_edge = millis();
  285. static LongTimer safetyTimer;
  286. static LongTimer crashDetTimer;
  287. //unsigned long load_filament_time;
  288. bool mesh_bed_leveling_flag = false;
  289. bool mesh_bed_run_from_menu = false;
  290. int8_t FarmMode = 0;
  291. bool prusa_sd_card_upload = false;
  292. unsigned int status_number = 0;
  293. unsigned long total_filament_used;
  294. unsigned int heating_status;
  295. unsigned int heating_status_counter;
  296. bool custom_message;
  297. bool loading_flag = false;
  298. unsigned int custom_message_type;
  299. unsigned int custom_message_state;
  300. char snmm_filaments_used = 0;
  301. bool fan_state[2];
  302. int fan_edge_counter[2];
  303. int fan_speed[2];
  304. char dir_names[3][9];
  305. bool sortAlpha = false;
  306. bool volumetric_enabled = false;
  307. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 1
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #if EXTRUDERS > 2
  311. , DEFAULT_NOMINAL_FILAMENT_DIA
  312. #endif
  313. #endif
  314. };
  315. float extruder_multiplier[EXTRUDERS] = {1.0
  316. #if EXTRUDERS > 1
  317. , 1.0
  318. #if EXTRUDERS > 2
  319. , 1.0
  320. #endif
  321. #endif
  322. };
  323. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  324. //shortcuts for more readable code
  325. #define _x current_position[X_AXIS]
  326. #define _y current_position[Y_AXIS]
  327. #define _z current_position[Z_AXIS]
  328. #define _e current_position[E_AXIS]
  329. float add_homing[3]={0,0,0};
  330. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  331. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  332. bool axis_known_position[3] = {false, false, false};
  333. float zprobe_zoffset;
  334. // Extruder offset
  335. #if EXTRUDERS > 1
  336. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  337. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  338. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  339. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  340. #endif
  341. };
  342. #endif
  343. uint8_t active_extruder = 0;
  344. int fanSpeed=0;
  345. #ifdef FWRETRACT
  346. bool autoretract_enabled=false;
  347. bool retracted[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. bool retracted_swap[EXTRUDERS]={false
  356. #if EXTRUDERS > 1
  357. , false
  358. #if EXTRUDERS > 2
  359. , false
  360. #endif
  361. #endif
  362. };
  363. float retract_length = RETRACT_LENGTH;
  364. float retract_length_swap = RETRACT_LENGTH_SWAP;
  365. float retract_feedrate = RETRACT_FEEDRATE;
  366. float retract_zlift = RETRACT_ZLIFT;
  367. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  368. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  369. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  370. #endif
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  409. //static float tt = 0;
  410. //static float bt = 0;
  411. //Inactivity shutdown variables
  412. static unsigned long previous_millis_cmd = 0;
  413. unsigned long max_inactive_time = 0;
  414. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  415. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  416. unsigned long starttime=0;
  417. unsigned long stoptime=0;
  418. unsigned long _usb_timer = 0;
  419. static uint8_t tmp_extruder;
  420. bool extruder_under_pressure = true;
  421. bool Stopped=false;
  422. #if NUM_SERVOS > 0
  423. Servo servos[NUM_SERVOS];
  424. #endif
  425. bool CooldownNoWait = true;
  426. bool target_direction;
  427. //Insert variables if CHDK is defined
  428. #ifdef CHDK
  429. unsigned long chdkHigh = 0;
  430. boolean chdkActive = false;
  431. #endif
  432. // save/restore printing
  433. static uint32_t saved_sdpos = 0;
  434. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  435. static float saved_pos[4] = { 0, 0, 0, 0 };
  436. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  437. static float saved_feedrate2 = 0;
  438. static uint8_t saved_active_extruder = 0;
  439. static bool saved_extruder_under_pressure = false;
  440. static bool saved_extruder_relative_mode = false;
  441. //===========================================================================
  442. //=============================Routines======================================
  443. //===========================================================================
  444. static void get_arc_coordinates();
  445. static bool setTargetedHotend(int code);
  446. static void print_time_remaining_init();
  447. uint16_t gcode_in_progress = 0;
  448. uint16_t mcode_in_progress = 0;
  449. void serial_echopair_P(const char *s_P, float v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, double v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, unsigned long v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. #ifdef SDSUPPORT
  456. #include "SdFatUtil.h"
  457. int freeMemory() { return SdFatUtil::FreeRam(); }
  458. #else
  459. extern "C" {
  460. extern unsigned int __bss_end;
  461. extern unsigned int __heap_start;
  462. extern void *__brkval;
  463. int freeMemory() {
  464. int free_memory;
  465. if ((int)__brkval == 0)
  466. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  467. else
  468. free_memory = ((int)&free_memory) - ((int)__brkval);
  469. return free_memory;
  470. }
  471. }
  472. #endif //!SDSUPPORT
  473. void setup_killpin()
  474. {
  475. #if defined(KILL_PIN) && KILL_PIN > -1
  476. SET_INPUT(KILL_PIN);
  477. WRITE(KILL_PIN,HIGH);
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. SET_OUTPUT(PHOTOGRAPH_PIN);
  492. WRITE(PHOTOGRAPH_PIN, LOW);
  493. #endif
  494. }
  495. void setup_powerhold()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. SET_OUTPUT(PS_ON_PIN);
  503. #if defined(PS_DEFAULT_OFF)
  504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. SET_OUTPUT(SUICIDE_PIN);
  514. WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. }
  535. void stop_and_save_print_to_ram(float z_move, float e_move);
  536. void restore_print_from_ram_and_continue(float e_move);
  537. bool fans_check_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. if (crashDet_counter++ == 0) {
  579. crashDetTimer.start();
  580. }
  581. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  582. crashDetTimer.stop();
  583. crashDet_counter = 0;
  584. }
  585. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  586. automatic_recovery_after_crash = false;
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else {
  591. crashDetTimer.start();
  592. }
  593. lcd_update_enable(true);
  594. lcd_clear();
  595. lcd_update(2);
  596. if (mask & X_AXIS_MASK)
  597. {
  598. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  599. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  600. }
  601. if (mask & Y_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  605. }
  606. lcd_update_enable(true);
  607. lcd_update(2);
  608. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  609. gcode_G28(true, true, false); //home X and Y
  610. st_synchronize();
  611. if (automatic_recovery_after_crash) {
  612. enquecommand_P(PSTR("CRASH_RECOVER"));
  613. }else{
  614. HotendTempBckp = degTargetHotend(active_extruder);
  615. setTargetHotend(0, active_extruder);
  616. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  617. lcd_update_enable(true);
  618. if (yesno)
  619. {
  620. char cmd1[10];
  621. strcpy(cmd1, "M109 S");
  622. strcat(cmd1, ftostr3(HotendTempBckp));
  623. enquecommand(cmd1);
  624. enquecommand_P(PSTR("CRASH_RECOVER"));
  625. }
  626. else
  627. {
  628. enquecommand_P(PSTR("CRASH_CANCEL"));
  629. }
  630. }
  631. }
  632. void crashdet_recover()
  633. {
  634. crashdet_restore_print_and_continue();
  635. tmc2130_sg_stop_on_crash = true;
  636. }
  637. void crashdet_cancel()
  638. {
  639. tmc2130_sg_stop_on_crash = true;
  640. if (saved_printing_type == PRINTING_TYPE_SD) {
  641. lcd_print_stop();
  642. }else if(saved_printing_type == PRINTING_TYPE_USB){
  643. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  644. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  645. }
  646. }
  647. #endif //TMC2130
  648. void failstats_reset_print()
  649. {
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  654. }
  655. #ifdef MESH_BED_LEVELING
  656. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  657. #endif
  658. // Factory reset function
  659. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  660. // Level input parameter sets depth of reset
  661. // Quiet parameter masks all waitings for user interact.
  662. int er_progress = 0;
  663. void factory_reset(char level, bool quiet)
  664. {
  665. lcd_clear();
  666. switch (level) {
  667. // Level 0: Language reset
  668. case 0:
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. lang_reset();
  673. break;
  674. //Level 1: Reset statistics
  675. case 1:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  680. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  689. lcd_menu_statistics();
  690. break;
  691. // Level 2: Prepare for shipping
  692. case 2:
  693. //lcd_puts_P(PSTR("Factory RESET"));
  694. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  695. // Force language selection at the next boot up.
  696. lang_reset();
  697. // Force the "Follow calibration flow" message at the next boot up.
  698. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  699. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  700. farm_no = 0;
  701. farm_mode = false;
  702. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  703. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  704. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  705. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  706. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  707. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  708. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  709. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  710. #ifdef FILAMENT_SENSOR
  711. fsensor_enable();
  712. fsensor_autoload_set(true);
  713. #endif //FILAMENT_SENSOR
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. //_delay_ms(2000);
  718. break;
  719. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  720. case 3:
  721. lcd_puts_P(PSTR("Factory RESET"));
  722. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  723. WRITE(BEEPER, HIGH);
  724. _delay_ms(100);
  725. WRITE(BEEPER, LOW);
  726. er_progress = 0;
  727. lcd_puts_at_P(3, 3, PSTR(" "));
  728. lcd_set_cursor(3, 3);
  729. lcd_print(er_progress);
  730. // Erase EEPROM
  731. for (int i = 0; i < 4096; i++) {
  732. eeprom_write_byte((uint8_t*)i, 0xFF);
  733. if (i % 41 == 0) {
  734. er_progress++;
  735. lcd_puts_at_P(3, 3, PSTR(" "));
  736. lcd_set_cursor(3, 3);
  737. lcd_print(er_progress);
  738. lcd_puts_P(PSTR("%"));
  739. }
  740. }
  741. break;
  742. case 4:
  743. bowden_menu();
  744. break;
  745. default:
  746. break;
  747. }
  748. }
  749. FILE _uartout = {0};
  750. int uart_putchar(char c, FILE *stream)
  751. {
  752. MYSERIAL.write(c);
  753. return 0;
  754. }
  755. void lcd_splash()
  756. {
  757. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  758. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  759. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  760. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  761. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  762. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  763. }
  764. void factory_reset()
  765. {
  766. KEEPALIVE_STATE(PAUSED_FOR_USER);
  767. if (!READ(BTN_ENC))
  768. {
  769. _delay_ms(1000);
  770. if (!READ(BTN_ENC))
  771. {
  772. lcd_clear();
  773. lcd_puts_P(PSTR("Factory RESET"));
  774. SET_OUTPUT(BEEPER);
  775. WRITE(BEEPER, HIGH);
  776. while (!READ(BTN_ENC));
  777. WRITE(BEEPER, LOW);
  778. _delay_ms(2000);
  779. char level = reset_menu();
  780. factory_reset(level, false);
  781. switch (level) {
  782. case 0: _delay_ms(0); break;
  783. case 1: _delay_ms(0); break;
  784. case 2: _delay_ms(0); break;
  785. case 3: _delay_ms(0); break;
  786. }
  787. // _delay_ms(100);
  788. /*
  789. #ifdef MESH_BED_LEVELING
  790. _delay_ms(2000);
  791. if (!READ(BTN_ENC))
  792. {
  793. WRITE(BEEPER, HIGH);
  794. _delay_ms(100);
  795. WRITE(BEEPER, LOW);
  796. _delay_ms(200);
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. int _z = 0;
  801. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  802. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  803. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  804. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  805. }
  806. else
  807. {
  808. WRITE(BEEPER, HIGH);
  809. _delay_ms(100);
  810. WRITE(BEEPER, LOW);
  811. }
  812. #endif // mesh */
  813. }
  814. }
  815. else
  816. {
  817. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  818. }
  819. KEEPALIVE_STATE(IN_HANDLER);
  820. }
  821. void show_fw_version_warnings() {
  822. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  823. switch (FW_DEV_VERSION) {
  824. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  825. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  826. case(FW_VERSION_DEVEL):
  827. case(FW_VERSION_DEBUG):
  828. lcd_update_enable(false);
  829. lcd_clear();
  830. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  831. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  832. #else
  833. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  834. #endif
  835. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  836. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  837. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  838. lcd_wait_for_click();
  839. break;
  840. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  841. }
  842. lcd_update_enable(true);
  843. }
  844. uint8_t check_printer_version()
  845. {
  846. uint8_t version_changed = 0;
  847. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  848. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  849. if (printer_type != PRINTER_TYPE) {
  850. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  851. else version_changed |= 0b10;
  852. }
  853. if (motherboard != MOTHERBOARD) {
  854. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  855. else version_changed |= 0b01;
  856. }
  857. return version_changed;
  858. }
  859. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  860. {
  861. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  862. }
  863. #ifdef BOOTAPP
  864. #include "bootapp.h" //bootloader support
  865. #endif //BOOTAPP
  866. #if (LANG_MODE != 0) //secondary language support
  867. #ifdef W25X20CL
  868. // language update from external flash
  869. #define LANGBOOT_BLOCKSIZE 0x1000u
  870. #define LANGBOOT_RAMBUFFER 0x0800
  871. void update_sec_lang_from_external_flash()
  872. {
  873. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  874. {
  875. uint8_t lang = boot_reserved >> 4;
  876. uint8_t state = boot_reserved & 0xf;
  877. lang_table_header_t header;
  878. uint32_t src_addr;
  879. if (lang_get_header(lang, &header, &src_addr))
  880. {
  881. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  882. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  883. delay(100);
  884. boot_reserved = (state + 1) | (lang << 4);
  885. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  886. {
  887. cli();
  888. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  889. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  890. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  891. if (state == 0)
  892. {
  893. //TODO - check header integrity
  894. }
  895. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  896. }
  897. else
  898. {
  899. //TODO - check sec lang data integrity
  900. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  901. }
  902. }
  903. }
  904. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  905. }
  906. #ifdef DEBUG_W25X20CL
  907. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  908. {
  909. lang_table_header_t header;
  910. uint8_t count = 0;
  911. uint32_t addr = 0x00000;
  912. while (1)
  913. {
  914. printf_P(_n("LANGTABLE%d:"), count);
  915. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  916. if (header.magic != LANG_MAGIC)
  917. {
  918. printf_P(_n("NG!\n"));
  919. break;
  920. }
  921. printf_P(_n("OK\n"));
  922. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  923. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  924. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  925. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  926. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  927. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  928. addr += header.size;
  929. codes[count] = header.code;
  930. count ++;
  931. }
  932. return count;
  933. }
  934. void list_sec_lang_from_external_flash()
  935. {
  936. uint16_t codes[8];
  937. uint8_t count = lang_xflash_enum_codes(codes);
  938. printf_P(_n("XFlash lang count = %hhd\n"), count);
  939. }
  940. #endif //DEBUG_W25X20CL
  941. #endif //W25X20CL
  942. #endif //(LANG_MODE != 0)
  943. // "Setup" function is called by the Arduino framework on startup.
  944. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  945. // are initialized by the main() routine provided by the Arduino framework.
  946. void setup()
  947. {
  948. ultralcd_init();
  949. spi_init();
  950. lcd_splash();
  951. //-//
  952. Sound_Init();
  953. #ifdef W25X20CL
  954. if (!w25x20cl_init())
  955. kill(_i("External SPI flash W25X20CL not responding."));
  956. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  957. optiboot_w25x20cl_enter();
  958. #endif
  959. #if (LANG_MODE != 0) //secondary language support
  960. #ifdef W25X20CL
  961. if (w25x20cl_init())
  962. update_sec_lang_from_external_flash();
  963. #endif //W25X20CL
  964. #endif //(LANG_MODE != 0)
  965. setup_killpin();
  966. setup_powerhold();
  967. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  968. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  969. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  970. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  971. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  972. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  973. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  974. if (farm_mode)
  975. {
  976. no_response = true; //we need confirmation by recieving PRUSA thx
  977. important_status = 8;
  978. prusa_statistics(8);
  979. selectedSerialPort = 1;
  980. #ifdef TMC2130
  981. //increased extruder current (PFW363)
  982. tmc2130_current_h[E_AXIS] = 36;
  983. tmc2130_current_r[E_AXIS] = 36;
  984. #endif //TMC2130
  985. #ifdef FILAMENT_SENSOR
  986. //disabled filament autoload (PFW360)
  987. fsensor_autoload_set(false);
  988. #endif //FILAMENT_SENSOR
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. uart2_init();
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. tmc2130_mode = TMC2130_MODE_NORMAL;
  1160. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1161. if (crashdet && !farm_mode)
  1162. {
  1163. crashdet_enable();
  1164. puts_P(_N("CrashDetect ENABLED!"));
  1165. }
  1166. else
  1167. {
  1168. crashdet_disable();
  1169. puts_P(_N("CrashDetect DISABLED"));
  1170. }
  1171. #ifdef TMC2130_LINEARITY_CORRECTION
  1172. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1173. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1174. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1175. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1176. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1177. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1178. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1179. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1181. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1182. #endif //TMC2130_LINEARITY_CORRECTION
  1183. #ifdef TMC2130_VARIABLE_RESOLUTION
  1184. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1185. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1186. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1187. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1188. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1189. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1191. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1192. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1196. #else //TMC2130_VARIABLE_RESOLUTION
  1197. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1198. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1200. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1201. #endif //TMC2130_VARIABLE_RESOLUTION
  1202. #endif //TMC2130
  1203. st_init(); // Initialize stepper, this enables interrupts!
  1204. #ifdef TMC2130
  1205. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1206. update_mode_profile();
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef FILAMENT_SENSOR
  1215. fsensor_init();
  1216. #endif //FILAMENT_SENSOR
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef FILAMENT_SENSOR
  1373. fsensor_setup_interrupt();
  1374. #endif //FILAMENT_SENSOR
  1375. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1376. #ifndef DEBUG_DISABLE_STARTMSGS
  1377. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1378. show_fw_version_warnings();
  1379. switch (hw_changed) {
  1380. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1381. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1382. case(0b01):
  1383. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1384. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1385. break;
  1386. case(0b10):
  1387. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1388. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1389. break;
  1390. case(0b11):
  1391. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1392. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1393. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1394. break;
  1395. default: break; //no change, show no message
  1396. }
  1397. if (!previous_settings_retrieved) {
  1398. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1399. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1400. }
  1401. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1402. lcd_wizard(0);
  1403. }
  1404. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1405. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1406. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1407. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1408. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1409. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1410. // Show the message.
  1411. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1412. }
  1413. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1414. // Show the message.
  1415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1416. lcd_update_enable(true);
  1417. }
  1418. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1419. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1420. lcd_update_enable(true);
  1421. }
  1422. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1423. // Show the message.
  1424. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1425. }
  1426. }
  1427. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1428. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1429. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1430. update_current_firmware_version_to_eeprom();
  1431. lcd_selftest();
  1432. }
  1433. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1434. KEEPALIVE_STATE(IN_PROCESS);
  1435. #endif //DEBUG_DISABLE_STARTMSGS
  1436. lcd_update_enable(true);
  1437. lcd_clear();
  1438. lcd_update(2);
  1439. // Store the currently running firmware into an eeprom,
  1440. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1441. update_current_firmware_version_to_eeprom();
  1442. #ifdef TMC2130
  1443. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1444. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1445. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1446. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1447. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1448. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1449. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1450. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1451. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1452. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1453. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1454. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1455. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1456. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1457. #endif //TMC2130
  1458. #ifdef UVLO_SUPPORT
  1459. //-//
  1460. MYSERIAL.println(">>> Setup");
  1461. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
  1462. // if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1463. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1464. /*
  1465. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1466. else {
  1467. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1468. lcd_update_enable(true);
  1469. lcd_update(2);
  1470. lcd_setstatuspgm(_T(WELCOME_MSG));
  1471. }
  1472. */
  1473. manage_heater(); // Update temperatures
  1474. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1475. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1476. #endif
  1477. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1478. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1479. puts_P(_N("Automatic recovery!"));
  1480. #endif
  1481. recover_print(1);
  1482. }
  1483. else{
  1484. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1485. puts_P(_N("Normal recovery!"));
  1486. #endif
  1487. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1488. else {
  1489. //-//
  1490. // eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1491. lcd_update_enable(true);
  1492. lcd_update(2);
  1493. lcd_setstatuspgm(_T(WELCOME_MSG));
  1494. }
  1495. }
  1496. }
  1497. #endif //UVLO_SUPPORT
  1498. KEEPALIVE_STATE(NOT_BUSY);
  1499. #ifdef WATCHDOG
  1500. wdt_enable(WDTO_4S);
  1501. #endif //WATCHDOG
  1502. }
  1503. void trace();
  1504. #define CHUNK_SIZE 64 // bytes
  1505. #define SAFETY_MARGIN 1
  1506. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1507. int chunkHead = 0;
  1508. void serial_read_stream() {
  1509. setAllTargetHotends(0);
  1510. setTargetBed(0);
  1511. lcd_clear();
  1512. lcd_puts_P(PSTR(" Upload in progress"));
  1513. // first wait for how many bytes we will receive
  1514. uint32_t bytesToReceive;
  1515. // receive the four bytes
  1516. char bytesToReceiveBuffer[4];
  1517. for (int i=0; i<4; i++) {
  1518. int data;
  1519. while ((data = MYSERIAL.read()) == -1) {};
  1520. bytesToReceiveBuffer[i] = data;
  1521. }
  1522. // make it a uint32
  1523. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1524. // we're ready, notify the sender
  1525. MYSERIAL.write('+');
  1526. // lock in the routine
  1527. uint32_t receivedBytes = 0;
  1528. while (prusa_sd_card_upload) {
  1529. int i;
  1530. for (i=0; i<CHUNK_SIZE; i++) {
  1531. int data;
  1532. // check if we're not done
  1533. if (receivedBytes == bytesToReceive) {
  1534. break;
  1535. }
  1536. // read the next byte
  1537. while ((data = MYSERIAL.read()) == -1) {};
  1538. receivedBytes++;
  1539. // save it to the chunk
  1540. chunk[i] = data;
  1541. }
  1542. // write the chunk to SD
  1543. card.write_command_no_newline(&chunk[0]);
  1544. // notify the sender we're ready for more data
  1545. MYSERIAL.write('+');
  1546. // for safety
  1547. manage_heater();
  1548. // check if we're done
  1549. if(receivedBytes == bytesToReceive) {
  1550. trace(); // beep
  1551. card.closefile();
  1552. prusa_sd_card_upload = false;
  1553. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1554. }
  1555. }
  1556. }
  1557. #ifdef HOST_KEEPALIVE_FEATURE
  1558. /**
  1559. * Output a "busy" message at regular intervals
  1560. * while the machine is not accepting commands.
  1561. */
  1562. void host_keepalive() {
  1563. if (farm_mode) return;
  1564. long ms = millis();
  1565. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1566. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1567. switch (busy_state) {
  1568. case IN_HANDLER:
  1569. case IN_PROCESS:
  1570. SERIAL_ECHO_START;
  1571. SERIAL_ECHOLNPGM("busy: processing");
  1572. break;
  1573. case PAUSED_FOR_USER:
  1574. SERIAL_ECHO_START;
  1575. SERIAL_ECHOLNPGM("busy: paused for user");
  1576. break;
  1577. case PAUSED_FOR_INPUT:
  1578. SERIAL_ECHO_START;
  1579. SERIAL_ECHOLNPGM("busy: paused for input");
  1580. break;
  1581. default:
  1582. break;
  1583. }
  1584. }
  1585. prev_busy_signal_ms = ms;
  1586. }
  1587. #endif
  1588. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1589. // Before loop(), the setup() function is called by the main() routine.
  1590. void loop()
  1591. {
  1592. KEEPALIVE_STATE(NOT_BUSY);
  1593. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1594. {
  1595. is_usb_printing = true;
  1596. usb_printing_counter--;
  1597. _usb_timer = millis();
  1598. }
  1599. if (usb_printing_counter == 0)
  1600. {
  1601. is_usb_printing = false;
  1602. }
  1603. if (prusa_sd_card_upload)
  1604. {
  1605. //we read byte-by byte
  1606. serial_read_stream();
  1607. } else
  1608. {
  1609. get_command();
  1610. #ifdef SDSUPPORT
  1611. card.checkautostart(false);
  1612. #endif
  1613. if(buflen)
  1614. {
  1615. cmdbuffer_front_already_processed = false;
  1616. #ifdef SDSUPPORT
  1617. if(card.saving)
  1618. {
  1619. // Saving a G-code file onto an SD-card is in progress.
  1620. // Saving starts with M28, saving until M29 is seen.
  1621. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1622. card.write_command(CMDBUFFER_CURRENT_STRING);
  1623. if(card.logging)
  1624. process_commands();
  1625. else
  1626. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1627. } else {
  1628. card.closefile();
  1629. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1630. }
  1631. } else {
  1632. process_commands();
  1633. }
  1634. #else
  1635. process_commands();
  1636. #endif //SDSUPPORT
  1637. if (! cmdbuffer_front_already_processed && buflen)
  1638. {
  1639. // ptr points to the start of the block currently being processed.
  1640. // The first character in the block is the block type.
  1641. char *ptr = cmdbuffer + bufindr;
  1642. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1643. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1644. union {
  1645. struct {
  1646. char lo;
  1647. char hi;
  1648. } lohi;
  1649. uint16_t value;
  1650. } sdlen;
  1651. sdlen.value = 0;
  1652. {
  1653. // This block locks the interrupts globally for 3.25 us,
  1654. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1655. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1656. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1657. cli();
  1658. // Reset the command to something, which will be ignored by the power panic routine,
  1659. // so this buffer length will not be counted twice.
  1660. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1661. // Extract the current buffer length.
  1662. sdlen.lohi.lo = *ptr ++;
  1663. sdlen.lohi.hi = *ptr;
  1664. // and pass it to the planner queue.
  1665. planner_add_sd_length(sdlen.value);
  1666. sei();
  1667. }
  1668. }
  1669. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1670. cli();
  1671. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1672. // and one for each command to previous block in the planner queue.
  1673. planner_add_sd_length(1);
  1674. sei();
  1675. }
  1676. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1677. // this block's SD card length will not be counted twice as its command type has been replaced
  1678. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1679. cmdqueue_pop_front();
  1680. }
  1681. host_keepalive();
  1682. }
  1683. }
  1684. //check heater every n milliseconds
  1685. manage_heater();
  1686. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1687. checkHitEndstops();
  1688. lcd_update(0);
  1689. #ifdef FILAMENT_SENSOR
  1690. if (mcode_in_progress != 600) //M600 not in progress
  1691. fsensor_update();
  1692. #endif //FILAMENT_SENSOR
  1693. #ifdef TMC2130
  1694. tmc2130_check_overtemp();
  1695. if (tmc2130_sg_crash)
  1696. {
  1697. uint8_t crash = tmc2130_sg_crash;
  1698. tmc2130_sg_crash = 0;
  1699. // crashdet_stop_and_save_print();
  1700. switch (crash)
  1701. {
  1702. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1703. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1704. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1705. }
  1706. }
  1707. #endif //TMC2130
  1708. }
  1709. #define DEFINE_PGM_READ_ANY(type, reader) \
  1710. static inline type pgm_read_any(const type *p) \
  1711. { return pgm_read_##reader##_near(p); }
  1712. DEFINE_PGM_READ_ANY(float, float);
  1713. DEFINE_PGM_READ_ANY(signed char, byte);
  1714. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1715. static const PROGMEM type array##_P[3] = \
  1716. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1717. static inline type array(int axis) \
  1718. { return pgm_read_any(&array##_P[axis]); } \
  1719. type array##_ext(int axis) \
  1720. { return pgm_read_any(&array##_P[axis]); }
  1721. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1722. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1723. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1724. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1725. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1726. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1727. static void axis_is_at_home(int axis) {
  1728. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1729. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1730. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1731. }
  1732. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1733. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1734. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1735. saved_feedrate = feedrate;
  1736. saved_feedmultiply = feedmultiply;
  1737. feedmultiply = 100;
  1738. previous_millis_cmd = millis();
  1739. enable_endstops(enable_endstops_now);
  1740. }
  1741. static void clean_up_after_endstop_move() {
  1742. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1743. enable_endstops(false);
  1744. #endif
  1745. feedrate = saved_feedrate;
  1746. feedmultiply = saved_feedmultiply;
  1747. previous_millis_cmd = millis();
  1748. }
  1749. #ifdef ENABLE_AUTO_BED_LEVELING
  1750. #ifdef AUTO_BED_LEVELING_GRID
  1751. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1752. {
  1753. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1754. planeNormal.debug("planeNormal");
  1755. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1756. //bedLevel.debug("bedLevel");
  1757. //plan_bed_level_matrix.debug("bed level before");
  1758. //vector_3 uncorrected_position = plan_get_position_mm();
  1759. //uncorrected_position.debug("position before");
  1760. vector_3 corrected_position = plan_get_position();
  1761. // corrected_position.debug("position after");
  1762. current_position[X_AXIS] = corrected_position.x;
  1763. current_position[Y_AXIS] = corrected_position.y;
  1764. current_position[Z_AXIS] = corrected_position.z;
  1765. // put the bed at 0 so we don't go below it.
  1766. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. }
  1769. #else // not AUTO_BED_LEVELING_GRID
  1770. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1771. plan_bed_level_matrix.set_to_identity();
  1772. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1773. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1774. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1775. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1776. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1777. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1778. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1779. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1780. vector_3 corrected_position = plan_get_position();
  1781. current_position[X_AXIS] = corrected_position.x;
  1782. current_position[Y_AXIS] = corrected_position.y;
  1783. current_position[Z_AXIS] = corrected_position.z;
  1784. // put the bed at 0 so we don't go below it.
  1785. current_position[Z_AXIS] = zprobe_zoffset;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. }
  1788. #endif // AUTO_BED_LEVELING_GRID
  1789. static void run_z_probe() {
  1790. plan_bed_level_matrix.set_to_identity();
  1791. feedrate = homing_feedrate[Z_AXIS];
  1792. // move down until you find the bed
  1793. float zPosition = -10;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. // we have to let the planner know where we are right now as it is not where we said to go.
  1797. zPosition = st_get_position_mm(Z_AXIS);
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1799. // move up the retract distance
  1800. zPosition += home_retract_mm(Z_AXIS);
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1802. st_synchronize();
  1803. // move back down slowly to find bed
  1804. feedrate = homing_feedrate[Z_AXIS]/4;
  1805. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1809. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. }
  1812. static void do_blocking_move_to(float x, float y, float z) {
  1813. float oldFeedRate = feedrate;
  1814. feedrate = homing_feedrate[Z_AXIS];
  1815. current_position[Z_AXIS] = z;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1817. st_synchronize();
  1818. feedrate = XY_TRAVEL_SPEED;
  1819. current_position[X_AXIS] = x;
  1820. current_position[Y_AXIS] = y;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. feedrate = oldFeedRate;
  1824. }
  1825. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1826. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1827. }
  1828. /// Probe bed height at position (x,y), returns the measured z value
  1829. static float probe_pt(float x, float y, float z_before) {
  1830. // move to right place
  1831. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1832. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1833. run_z_probe();
  1834. float measured_z = current_position[Z_AXIS];
  1835. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1836. SERIAL_PROTOCOLPGM(" x: ");
  1837. SERIAL_PROTOCOL(x);
  1838. SERIAL_PROTOCOLPGM(" y: ");
  1839. SERIAL_PROTOCOL(y);
  1840. SERIAL_PROTOCOLPGM(" z: ");
  1841. SERIAL_PROTOCOL(measured_z);
  1842. SERIAL_PROTOCOLPGM("\n");
  1843. return measured_z;
  1844. }
  1845. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1846. #ifdef LIN_ADVANCE
  1847. /**
  1848. * M900: Set and/or Get advance K factor and WH/D ratio
  1849. *
  1850. * K<factor> Set advance K factor
  1851. * R<ratio> Set ratio directly (overrides WH/D)
  1852. * W<width> H<height> D<diam> Set ratio from WH/D
  1853. */
  1854. inline void gcode_M900() {
  1855. st_synchronize();
  1856. const float newK = code_seen('K') ? code_value_float() : -1;
  1857. if (newK >= 0) extruder_advance_k = newK;
  1858. float newR = code_seen('R') ? code_value_float() : -1;
  1859. if (newR < 0) {
  1860. const float newD = code_seen('D') ? code_value_float() : -1,
  1861. newW = code_seen('W') ? code_value_float() : -1,
  1862. newH = code_seen('H') ? code_value_float() : -1;
  1863. if (newD >= 0 && newW >= 0 && newH >= 0)
  1864. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1865. }
  1866. if (newR >= 0) advance_ed_ratio = newR;
  1867. SERIAL_ECHO_START;
  1868. SERIAL_ECHOPGM("Advance K=");
  1869. SERIAL_ECHOLN(extruder_advance_k);
  1870. SERIAL_ECHOPGM(" E/D=");
  1871. const float ratio = advance_ed_ratio;
  1872. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1873. }
  1874. #endif // LIN_ADVANCE
  1875. bool check_commands() {
  1876. bool end_command_found = false;
  1877. while (buflen)
  1878. {
  1879. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1880. if (!cmdbuffer_front_already_processed)
  1881. cmdqueue_pop_front();
  1882. cmdbuffer_front_already_processed = false;
  1883. }
  1884. return end_command_found;
  1885. }
  1886. #ifdef TMC2130
  1887. bool calibrate_z_auto()
  1888. {
  1889. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1890. lcd_clear();
  1891. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1892. bool endstops_enabled = enable_endstops(true);
  1893. int axis_up_dir = -home_dir(Z_AXIS);
  1894. tmc2130_home_enter(Z_AXIS_MASK);
  1895. current_position[Z_AXIS] = 0;
  1896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1897. set_destination_to_current();
  1898. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1899. feedrate = homing_feedrate[Z_AXIS];
  1900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1901. st_synchronize();
  1902. // current_position[axis] = 0;
  1903. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. tmc2130_home_exit();
  1905. enable_endstops(false);
  1906. current_position[Z_AXIS] = 0;
  1907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1908. set_destination_to_current();
  1909. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1910. feedrate = homing_feedrate[Z_AXIS] / 2;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. enable_endstops(endstops_enabled);
  1914. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1916. return true;
  1917. }
  1918. #endif //TMC2130
  1919. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1920. {
  1921. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1922. #define HOMEAXIS_DO(LETTER) \
  1923. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1924. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1925. {
  1926. int axis_home_dir = home_dir(axis);
  1927. feedrate = homing_feedrate[axis];
  1928. #ifdef TMC2130
  1929. tmc2130_home_enter(X_AXIS_MASK << axis);
  1930. #endif //TMC2130
  1931. // Move right a bit, so that the print head does not touch the left end position,
  1932. // and the following left movement has a chance to achieve the required velocity
  1933. // for the stall guard to work.
  1934. current_position[axis] = 0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. set_destination_to_current();
  1937. // destination[axis] = 11.f;
  1938. destination[axis] = 3.f;
  1939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1940. st_synchronize();
  1941. // Move left away from the possible collision with the collision detection disabled.
  1942. endstops_hit_on_purpose();
  1943. enable_endstops(false);
  1944. current_position[axis] = 0;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. destination[axis] = - 1.;
  1947. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1948. st_synchronize();
  1949. // Now continue to move up to the left end stop with the collision detection enabled.
  1950. enable_endstops(true);
  1951. destination[axis] = - 1.1 * max_length(axis);
  1952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1953. st_synchronize();
  1954. for (uint8_t i = 0; i < cnt; i++)
  1955. {
  1956. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1957. endstops_hit_on_purpose();
  1958. enable_endstops(false);
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = 10.f;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. endstops_hit_on_purpose();
  1965. // Now move left up to the collision, this time with a repeatable velocity.
  1966. enable_endstops(true);
  1967. destination[axis] = - 11.f;
  1968. #ifdef TMC2130
  1969. feedrate = homing_feedrate[axis];
  1970. #else //TMC2130
  1971. feedrate = homing_feedrate[axis] / 2;
  1972. #endif //TMC2130
  1973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1974. st_synchronize();
  1975. #ifdef TMC2130
  1976. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1977. if (pstep) pstep[i] = mscnt >> 4;
  1978. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1979. #endif //TMC2130
  1980. }
  1981. endstops_hit_on_purpose();
  1982. enable_endstops(false);
  1983. #ifdef TMC2130
  1984. uint8_t orig = tmc2130_home_origin[axis];
  1985. uint8_t back = tmc2130_home_bsteps[axis];
  1986. if (tmc2130_home_enabled && (orig <= 63))
  1987. {
  1988. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1989. if (back > 0)
  1990. tmc2130_do_steps(axis, back, 1, 1000);
  1991. }
  1992. else
  1993. tmc2130_do_steps(axis, 8, 2, 1000);
  1994. tmc2130_home_exit();
  1995. #endif //TMC2130
  1996. axis_is_at_home(axis);
  1997. axis_known_position[axis] = true;
  1998. // Move from minimum
  1999. #ifdef TMC2130
  2000. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2001. #else //TMC2130
  2002. float dist = 0.01f * 64;
  2003. #endif //TMC2130
  2004. current_position[axis] -= dist;
  2005. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2006. current_position[axis] += dist;
  2007. destination[axis] = current_position[axis];
  2008. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2009. st_synchronize();
  2010. feedrate = 0.0;
  2011. }
  2012. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2013. {
  2014. #ifdef TMC2130
  2015. FORCE_HIGH_POWER_START;
  2016. #endif
  2017. int axis_home_dir = home_dir(axis);
  2018. current_position[axis] = 0;
  2019. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2020. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2021. feedrate = homing_feedrate[axis];
  2022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2023. st_synchronize();
  2024. #ifdef TMC2130
  2025. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2026. FORCE_HIGH_POWER_END;
  2027. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2028. return;
  2029. }
  2030. #endif //TMC2130
  2031. current_position[axis] = 0;
  2032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2033. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2035. st_synchronize();
  2036. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2037. feedrate = homing_feedrate[axis]/2 ;
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2039. st_synchronize();
  2040. #ifdef TMC2130
  2041. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2042. FORCE_HIGH_POWER_END;
  2043. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2044. return;
  2045. }
  2046. #endif //TMC2130
  2047. axis_is_at_home(axis);
  2048. destination[axis] = current_position[axis];
  2049. feedrate = 0.0;
  2050. endstops_hit_on_purpose();
  2051. axis_known_position[axis] = true;
  2052. #ifdef TMC2130
  2053. FORCE_HIGH_POWER_END;
  2054. #endif
  2055. }
  2056. enable_endstops(endstops_enabled);
  2057. }
  2058. /**/
  2059. void home_xy()
  2060. {
  2061. set_destination_to_current();
  2062. homeaxis(X_AXIS);
  2063. homeaxis(Y_AXIS);
  2064. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2065. endstops_hit_on_purpose();
  2066. }
  2067. void refresh_cmd_timeout(void)
  2068. {
  2069. previous_millis_cmd = millis();
  2070. }
  2071. #ifdef FWRETRACT
  2072. void retract(bool retracting, bool swapretract = false) {
  2073. if(retracting && !retracted[active_extruder]) {
  2074. destination[X_AXIS]=current_position[X_AXIS];
  2075. destination[Y_AXIS]=current_position[Y_AXIS];
  2076. destination[Z_AXIS]=current_position[Z_AXIS];
  2077. destination[E_AXIS]=current_position[E_AXIS];
  2078. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2079. plan_set_e_position(current_position[E_AXIS]);
  2080. float oldFeedrate = feedrate;
  2081. feedrate=retract_feedrate*60;
  2082. retracted[active_extruder]=true;
  2083. prepare_move();
  2084. current_position[Z_AXIS]-=retract_zlift;
  2085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2086. prepare_move();
  2087. feedrate = oldFeedrate;
  2088. } else if(!retracting && retracted[active_extruder]) {
  2089. destination[X_AXIS]=current_position[X_AXIS];
  2090. destination[Y_AXIS]=current_position[Y_AXIS];
  2091. destination[Z_AXIS]=current_position[Z_AXIS];
  2092. destination[E_AXIS]=current_position[E_AXIS];
  2093. current_position[Z_AXIS]+=retract_zlift;
  2094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2095. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2096. plan_set_e_position(current_position[E_AXIS]);
  2097. float oldFeedrate = feedrate;
  2098. feedrate=retract_recover_feedrate*60;
  2099. retracted[active_extruder]=false;
  2100. prepare_move();
  2101. feedrate = oldFeedrate;
  2102. }
  2103. } //retract
  2104. #endif //FWRETRACT
  2105. void trace() {
  2106. tone(BEEPER, 440);
  2107. delay(25);
  2108. noTone(BEEPER);
  2109. delay(20);
  2110. }
  2111. /*
  2112. void ramming() {
  2113. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2114. if (current_temperature[0] < 230) {
  2115. //PLA
  2116. max_feedrate[E_AXIS] = 50;
  2117. //current_position[E_AXIS] -= 8;
  2118. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2119. //current_position[E_AXIS] += 8;
  2120. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2121. current_position[E_AXIS] += 5.4;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2123. current_position[E_AXIS] += 3.2;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2125. current_position[E_AXIS] += 3;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2127. st_synchronize();
  2128. max_feedrate[E_AXIS] = 80;
  2129. current_position[E_AXIS] -= 82;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2131. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2132. current_position[E_AXIS] -= 20;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2134. current_position[E_AXIS] += 5;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2136. current_position[E_AXIS] += 5;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2138. current_position[E_AXIS] -= 10;
  2139. st_synchronize();
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2141. current_position[E_AXIS] += 10;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2145. current_position[E_AXIS] += 10;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2147. current_position[E_AXIS] -= 10;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2149. st_synchronize();
  2150. }
  2151. else {
  2152. //ABS
  2153. max_feedrate[E_AXIS] = 50;
  2154. //current_position[E_AXIS] -= 8;
  2155. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2156. //current_position[E_AXIS] += 8;
  2157. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2158. current_position[E_AXIS] += 3.1;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2160. current_position[E_AXIS] += 3.1;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2162. current_position[E_AXIS] += 4;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2164. st_synchronize();
  2165. //current_position[X_AXIS] += 23; //delay
  2166. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2167. //current_position[X_AXIS] -= 23; //delay
  2168. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2169. delay(4700);
  2170. max_feedrate[E_AXIS] = 80;
  2171. current_position[E_AXIS] -= 92;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2173. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2174. current_position[E_AXIS] -= 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] += 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2178. current_position[E_AXIS] -= 5;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. st_synchronize();
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. current_position[E_AXIS] += 5;
  2186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2187. current_position[E_AXIS] -= 5;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2189. st_synchronize();
  2190. }
  2191. }
  2192. */
  2193. #ifdef TMC2130
  2194. void force_high_power_mode(bool start_high_power_section) {
  2195. uint8_t silent;
  2196. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2197. if (silent == 1) {
  2198. //we are in silent mode, set to normal mode to enable crash detection
  2199. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2200. st_synchronize();
  2201. cli();
  2202. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2203. update_mode_profile();
  2204. tmc2130_init();
  2205. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2206. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2207. st_reset_timer();
  2208. sei();
  2209. }
  2210. }
  2211. #endif //TMC2130
  2212. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2213. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2214. }
  2215. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2216. st_synchronize();
  2217. #if 0
  2218. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2219. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2220. #endif
  2221. // Flag for the display update routine and to disable the print cancelation during homing.
  2222. homing_flag = true;
  2223. // Which axes should be homed?
  2224. bool home_x = home_x_axis;
  2225. bool home_y = home_y_axis;
  2226. bool home_z = home_z_axis;
  2227. // Either all X,Y,Z codes are present, or none of them.
  2228. bool home_all_axes = home_x == home_y && home_x == home_z;
  2229. if (home_all_axes)
  2230. // No X/Y/Z code provided means to home all axes.
  2231. home_x = home_y = home_z = true;
  2232. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2233. if (home_all_axes) {
  2234. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2235. feedrate = homing_feedrate[Z_AXIS];
  2236. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2237. st_synchronize();
  2238. }
  2239. #ifdef ENABLE_AUTO_BED_LEVELING
  2240. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2241. #endif //ENABLE_AUTO_BED_LEVELING
  2242. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2243. // the planner will not perform any adjustments in the XY plane.
  2244. // Wait for the motors to stop and update the current position with the absolute values.
  2245. world2machine_revert_to_uncorrected();
  2246. // For mesh bed leveling deactivate the matrix temporarily.
  2247. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2248. // in a single axis only.
  2249. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2250. #ifdef MESH_BED_LEVELING
  2251. uint8_t mbl_was_active = mbl.active;
  2252. mbl.active = 0;
  2253. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2254. #endif
  2255. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2256. // consumed during the first movements following this statement.
  2257. if (home_z)
  2258. babystep_undo();
  2259. saved_feedrate = feedrate;
  2260. saved_feedmultiply = feedmultiply;
  2261. feedmultiply = 100;
  2262. previous_millis_cmd = millis();
  2263. enable_endstops(true);
  2264. memcpy(destination, current_position, sizeof(destination));
  2265. feedrate = 0.0;
  2266. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2267. if(home_z)
  2268. homeaxis(Z_AXIS);
  2269. #endif
  2270. #ifdef QUICK_HOME
  2271. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2272. if(home_x && home_y) //first diagonal move
  2273. {
  2274. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2275. int x_axis_home_dir = home_dir(X_AXIS);
  2276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2277. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2278. feedrate = homing_feedrate[X_AXIS];
  2279. if(homing_feedrate[Y_AXIS]<feedrate)
  2280. feedrate = homing_feedrate[Y_AXIS];
  2281. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2282. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2283. } else {
  2284. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2285. }
  2286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2287. st_synchronize();
  2288. axis_is_at_home(X_AXIS);
  2289. axis_is_at_home(Y_AXIS);
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. destination[X_AXIS] = current_position[X_AXIS];
  2292. destination[Y_AXIS] = current_position[Y_AXIS];
  2293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2294. feedrate = 0.0;
  2295. st_synchronize();
  2296. endstops_hit_on_purpose();
  2297. current_position[X_AXIS] = destination[X_AXIS];
  2298. current_position[Y_AXIS] = destination[Y_AXIS];
  2299. current_position[Z_AXIS] = destination[Z_AXIS];
  2300. }
  2301. #endif /* QUICK_HOME */
  2302. #ifdef TMC2130
  2303. if(home_x)
  2304. {
  2305. if (!calib)
  2306. homeaxis(X_AXIS);
  2307. else
  2308. tmc2130_home_calibrate(X_AXIS);
  2309. }
  2310. if(home_y)
  2311. {
  2312. if (!calib)
  2313. homeaxis(Y_AXIS);
  2314. else
  2315. tmc2130_home_calibrate(Y_AXIS);
  2316. }
  2317. #endif //TMC2130
  2318. if(home_x_axis && home_x_value != 0)
  2319. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2320. if(home_y_axis && home_y_value != 0)
  2321. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2322. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2323. #ifndef Z_SAFE_HOMING
  2324. if(home_z) {
  2325. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2326. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2327. feedrate = max_feedrate[Z_AXIS];
  2328. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2329. st_synchronize();
  2330. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2331. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2332. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2333. {
  2334. homeaxis(X_AXIS);
  2335. homeaxis(Y_AXIS);
  2336. }
  2337. // 1st mesh bed leveling measurement point, corrected.
  2338. world2machine_initialize();
  2339. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2340. world2machine_reset();
  2341. if (destination[Y_AXIS] < Y_MIN_POS)
  2342. destination[Y_AXIS] = Y_MIN_POS;
  2343. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2344. feedrate = homing_feedrate[Z_AXIS]/10;
  2345. current_position[Z_AXIS] = 0;
  2346. enable_endstops(false);
  2347. #ifdef DEBUG_BUILD
  2348. SERIAL_ECHOLNPGM("plan_set_position()");
  2349. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2350. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2351. #endif
  2352. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2353. #ifdef DEBUG_BUILD
  2354. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2355. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2356. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2357. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2358. #endif
  2359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2360. st_synchronize();
  2361. current_position[X_AXIS] = destination[X_AXIS];
  2362. current_position[Y_AXIS] = destination[Y_AXIS];
  2363. enable_endstops(true);
  2364. endstops_hit_on_purpose();
  2365. homeaxis(Z_AXIS);
  2366. #else // MESH_BED_LEVELING
  2367. homeaxis(Z_AXIS);
  2368. #endif // MESH_BED_LEVELING
  2369. }
  2370. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2371. if(home_all_axes) {
  2372. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2373. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2374. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2375. feedrate = XY_TRAVEL_SPEED/60;
  2376. current_position[Z_AXIS] = 0;
  2377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2379. st_synchronize();
  2380. current_position[X_AXIS] = destination[X_AXIS];
  2381. current_position[Y_AXIS] = destination[Y_AXIS];
  2382. homeaxis(Z_AXIS);
  2383. }
  2384. // Let's see if X and Y are homed and probe is inside bed area.
  2385. if(home_z) {
  2386. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2387. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2388. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2389. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2390. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2391. current_position[Z_AXIS] = 0;
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2394. feedrate = max_feedrate[Z_AXIS];
  2395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2396. st_synchronize();
  2397. homeaxis(Z_AXIS);
  2398. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2399. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2400. SERIAL_ECHO_START;
  2401. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2402. } else {
  2403. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2404. SERIAL_ECHO_START;
  2405. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2406. }
  2407. }
  2408. #endif // Z_SAFE_HOMING
  2409. #endif // Z_HOME_DIR < 0
  2410. if(home_z_axis && home_z_value != 0)
  2411. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2412. #ifdef ENABLE_AUTO_BED_LEVELING
  2413. if(home_z)
  2414. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2415. #endif
  2416. // Set the planner and stepper routine positions.
  2417. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2418. // contains the machine coordinates.
  2419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2420. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2421. enable_endstops(false);
  2422. #endif
  2423. feedrate = saved_feedrate;
  2424. feedmultiply = saved_feedmultiply;
  2425. previous_millis_cmd = millis();
  2426. endstops_hit_on_purpose();
  2427. #ifndef MESH_BED_LEVELING
  2428. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2429. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2430. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2431. lcd_adjust_z();
  2432. #endif
  2433. // Load the machine correction matrix
  2434. world2machine_initialize();
  2435. // and correct the current_position XY axes to match the transformed coordinate system.
  2436. world2machine_update_current();
  2437. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2438. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2439. {
  2440. if (! home_z && mbl_was_active) {
  2441. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2442. mbl.active = true;
  2443. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2444. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2445. }
  2446. }
  2447. else
  2448. {
  2449. st_synchronize();
  2450. homing_flag = false;
  2451. }
  2452. #endif
  2453. if (farm_mode) { prusa_statistics(20); };
  2454. homing_flag = false;
  2455. #if 0
  2456. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2457. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2458. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2459. #endif
  2460. }
  2461. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2462. {
  2463. bool final_result = false;
  2464. #ifdef TMC2130
  2465. FORCE_HIGH_POWER_START;
  2466. #endif // TMC2130
  2467. // Only Z calibration?
  2468. if (!onlyZ)
  2469. {
  2470. setTargetBed(0);
  2471. setAllTargetHotends(0);
  2472. adjust_bed_reset(); //reset bed level correction
  2473. }
  2474. // Disable the default update procedure of the display. We will do a modal dialog.
  2475. lcd_update_enable(false);
  2476. // Let the planner use the uncorrected coordinates.
  2477. mbl.reset();
  2478. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2479. // the planner will not perform any adjustments in the XY plane.
  2480. // Wait for the motors to stop and update the current position with the absolute values.
  2481. world2machine_revert_to_uncorrected();
  2482. // Reset the baby step value applied without moving the axes.
  2483. babystep_reset();
  2484. // Mark all axes as in a need for homing.
  2485. memset(axis_known_position, 0, sizeof(axis_known_position));
  2486. // Home in the XY plane.
  2487. //set_destination_to_current();
  2488. setup_for_endstop_move();
  2489. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2490. home_xy();
  2491. enable_endstops(false);
  2492. current_position[X_AXIS] += 5;
  2493. current_position[Y_AXIS] += 5;
  2494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2495. st_synchronize();
  2496. // Let the user move the Z axes up to the end stoppers.
  2497. #ifdef TMC2130
  2498. if (calibrate_z_auto())
  2499. {
  2500. #else //TMC2130
  2501. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2502. {
  2503. #endif //TMC2130
  2504. refresh_cmd_timeout();
  2505. #ifndef STEEL_SHEET
  2506. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2507. {
  2508. lcd_wait_for_cool_down();
  2509. }
  2510. #endif //STEEL_SHEET
  2511. if(!onlyZ)
  2512. {
  2513. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2514. #ifdef STEEL_SHEET
  2515. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2516. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2517. #endif //STEEL_SHEET
  2518. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2519. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2520. KEEPALIVE_STATE(IN_HANDLER);
  2521. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2522. lcd_set_cursor(0, 2);
  2523. lcd_print(1);
  2524. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2525. }
  2526. // Move the print head close to the bed.
  2527. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2528. bool endstops_enabled = enable_endstops(true);
  2529. #ifdef TMC2130
  2530. tmc2130_home_enter(Z_AXIS_MASK);
  2531. #endif //TMC2130
  2532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2533. st_synchronize();
  2534. #ifdef TMC2130
  2535. tmc2130_home_exit();
  2536. #endif //TMC2130
  2537. enable_endstops(endstops_enabled);
  2538. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2539. {
  2540. int8_t verbosity_level = 0;
  2541. if (code_seen('V'))
  2542. {
  2543. // Just 'V' without a number counts as V1.
  2544. char c = strchr_pointer[1];
  2545. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2546. }
  2547. if (onlyZ)
  2548. {
  2549. clean_up_after_endstop_move();
  2550. // Z only calibration.
  2551. // Load the machine correction matrix
  2552. world2machine_initialize();
  2553. // and correct the current_position to match the transformed coordinate system.
  2554. world2machine_update_current();
  2555. //FIXME
  2556. bool result = sample_mesh_and_store_reference();
  2557. if (result)
  2558. {
  2559. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2560. // Shipped, the nozzle height has been set already. The user can start printing now.
  2561. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2562. final_result = true;
  2563. // babystep_apply();
  2564. }
  2565. }
  2566. else
  2567. {
  2568. // Reset the baby step value and the baby step applied flag.
  2569. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2570. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2571. // Complete XYZ calibration.
  2572. uint8_t point_too_far_mask = 0;
  2573. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2574. clean_up_after_endstop_move();
  2575. // Print head up.
  2576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2578. st_synchronize();
  2579. //#ifndef NEW_XYZCAL
  2580. if (result >= 0)
  2581. {
  2582. #ifdef HEATBED_V2
  2583. sample_z();
  2584. #else //HEATBED_V2
  2585. point_too_far_mask = 0;
  2586. // Second half: The fine adjustment.
  2587. // Let the planner use the uncorrected coordinates.
  2588. mbl.reset();
  2589. world2machine_reset();
  2590. // Home in the XY plane.
  2591. setup_for_endstop_move();
  2592. home_xy();
  2593. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2594. clean_up_after_endstop_move();
  2595. // Print head up.
  2596. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2598. st_synchronize();
  2599. // if (result >= 0) babystep_apply();
  2600. #endif //HEATBED_V2
  2601. }
  2602. //#endif //NEW_XYZCAL
  2603. lcd_update_enable(true);
  2604. lcd_update(2);
  2605. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2606. if (result >= 0)
  2607. {
  2608. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2609. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2610. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2611. final_result = true;
  2612. }
  2613. }
  2614. #ifdef TMC2130
  2615. tmc2130_home_exit();
  2616. #endif
  2617. }
  2618. else
  2619. {
  2620. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2621. final_result = false;
  2622. }
  2623. }
  2624. else
  2625. {
  2626. // Timeouted.
  2627. }
  2628. lcd_update_enable(true);
  2629. #ifdef TMC2130
  2630. FORCE_HIGH_POWER_END;
  2631. #endif // TMC2130
  2632. return final_result;
  2633. }
  2634. void gcode_M114()
  2635. {
  2636. SERIAL_PROTOCOLPGM("X:");
  2637. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Y:");
  2639. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" Z:");
  2641. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" E:");
  2643. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2644. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2645. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2646. SERIAL_PROTOCOLPGM(" Y:");
  2647. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" Z:");
  2649. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2650. SERIAL_PROTOCOLPGM(" E:");
  2651. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2652. SERIAL_PROTOCOLLN("");
  2653. }
  2654. void gcode_M701()
  2655. {
  2656. printf_P(PSTR("gcode_M701 begin\n"));
  2657. #if defined (SNMM) || defined (SNMM_V2)
  2658. extr_adj(snmm_extruder);//loads current extruder
  2659. #else //defined (SNMM) || defined (SNMM_V2)
  2660. enable_z();
  2661. custom_message = true;
  2662. custom_message_type = 2;
  2663. #ifdef FILAMENT_SENSOR
  2664. fsensor_oq_meassure_start(40);
  2665. #endif //FILAMENT_SENSOR
  2666. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2667. current_position[E_AXIS] += 40;
  2668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2669. st_synchronize();
  2670. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2671. current_position[E_AXIS] += 30;
  2672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2673. st_synchronize();
  2674. current_position[E_AXIS] += 25;
  2675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2676. st_synchronize();
  2677. tone(BEEPER, 500);
  2678. delay_keep_alive(50);
  2679. noTone(BEEPER);
  2680. if (!farm_mode && loading_flag) {
  2681. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2682. while (!clean) {
  2683. lcd_update_enable(true);
  2684. lcd_update(2);
  2685. current_position[E_AXIS] += 25;
  2686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2687. st_synchronize();
  2688. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2689. }
  2690. }
  2691. lcd_update_enable(true);
  2692. lcd_update(2);
  2693. lcd_setstatuspgm(_T(WELCOME_MSG));
  2694. disable_z();
  2695. loading_flag = false;
  2696. custom_message = false;
  2697. custom_message_type = 0;
  2698. #ifdef FILAMENT_SENSOR
  2699. fsensor_oq_meassure_stop();
  2700. if (!fsensor_oq_result())
  2701. {
  2702. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2703. lcd_update_enable(true);
  2704. lcd_update(2);
  2705. if (disable)
  2706. fsensor_disable();
  2707. }
  2708. #endif //FILAMENT_SENSOR
  2709. #endif //defined (SNMM) || defined (SNMM_V2)
  2710. }
  2711. /**
  2712. * @brief Get serial number from 32U2 processor
  2713. *
  2714. * Typical format of S/N is:CZPX0917X003XC13518
  2715. *
  2716. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2717. *
  2718. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2719. * reply is transmitted to serial port 1 character by character.
  2720. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2721. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2722. * in any case.
  2723. */
  2724. static void gcode_PRUSA_SN()
  2725. {
  2726. if (farm_mode) {
  2727. selectedSerialPort = 0;
  2728. putchar(';');
  2729. putchar('S');
  2730. int numbersRead = 0;
  2731. ShortTimer timeout;
  2732. timeout.start();
  2733. while (numbersRead < 19) {
  2734. while (MSerial.available() > 0) {
  2735. uint8_t serial_char = MSerial.read();
  2736. selectedSerialPort = 1;
  2737. putchar(serial_char);
  2738. numbersRead++;
  2739. selectedSerialPort = 0;
  2740. }
  2741. if (timeout.expired(100u)) break;
  2742. }
  2743. selectedSerialPort = 1;
  2744. putchar('\n');
  2745. #if 0
  2746. for (int b = 0; b < 3; b++) {
  2747. tone(BEEPER, 110);
  2748. delay(50);
  2749. noTone(BEEPER);
  2750. delay(50);
  2751. }
  2752. #endif
  2753. } else {
  2754. puts_P(_N("Not in farm mode."));
  2755. }
  2756. }
  2757. #ifdef BACKLASH_X
  2758. extern uint8_t st_backlash_x;
  2759. #endif //BACKLASH_X
  2760. #ifdef BACKLASH_Y
  2761. extern uint8_t st_backlash_y;
  2762. #endif //BACKLASH_Y
  2763. void process_commands()
  2764. {
  2765. if (!buflen) return; //empty command
  2766. #ifdef FILAMENT_RUNOUT_SUPPORT
  2767. SET_INPUT(FR_SENS);
  2768. #endif
  2769. #ifdef CMDBUFFER_DEBUG
  2770. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2771. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2772. SERIAL_ECHOLNPGM("");
  2773. SERIAL_ECHOPGM("In cmdqueue: ");
  2774. SERIAL_ECHO(buflen);
  2775. SERIAL_ECHOLNPGM("");
  2776. #endif /* CMDBUFFER_DEBUG */
  2777. unsigned long codenum; //throw away variable
  2778. char *starpos = NULL;
  2779. #ifdef ENABLE_AUTO_BED_LEVELING
  2780. float x_tmp, y_tmp, z_tmp, real_z;
  2781. #endif
  2782. // PRUSA GCODES
  2783. KEEPALIVE_STATE(IN_HANDLER);
  2784. #ifdef SNMM
  2785. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2786. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2787. int8_t SilentMode;
  2788. #endif
  2789. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2790. starpos = (strchr(strchr_pointer + 5, '*'));
  2791. if (starpos != NULL)
  2792. *(starpos) = '\0';
  2793. lcd_setstatus(strchr_pointer + 5);
  2794. }
  2795. #ifdef TMC2130
  2796. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2797. {
  2798. if(code_seen("CRASH_DETECTED"))
  2799. {
  2800. uint8_t mask = 0;
  2801. if (code_seen("X")) mask |= X_AXIS_MASK;
  2802. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2803. crashdet_detected(mask);
  2804. }
  2805. else if(code_seen("CRASH_RECOVER"))
  2806. crashdet_recover();
  2807. else if(code_seen("CRASH_CANCEL"))
  2808. crashdet_cancel();
  2809. }
  2810. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2811. {
  2812. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2813. {
  2814. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2815. axis = (axis == 'E')?3:(axis - 'X');
  2816. if (axis < 4)
  2817. {
  2818. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2819. tmc2130_set_wave(axis, 247, fac);
  2820. }
  2821. }
  2822. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2823. {
  2824. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2825. axis = (axis == 'E')?3:(axis - 'X');
  2826. if (axis < 4)
  2827. {
  2828. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2829. uint16_t res = tmc2130_get_res(axis);
  2830. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2831. }
  2832. }
  2833. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2834. {
  2835. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2836. axis = (axis == 'E')?3:(axis - 'X');
  2837. if (axis < 4)
  2838. {
  2839. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2840. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2841. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2842. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2843. char* str_end = 0;
  2844. if (CMDBUFFER_CURRENT_STRING[14])
  2845. {
  2846. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2847. if (str_end && *str_end)
  2848. {
  2849. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2850. if (str_end && *str_end)
  2851. {
  2852. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2853. if (str_end && *str_end)
  2854. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2855. }
  2856. }
  2857. }
  2858. tmc2130_chopper_config[axis].toff = chop0;
  2859. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2860. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2861. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2862. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2863. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2864. }
  2865. }
  2866. }
  2867. #ifdef BACKLASH_X
  2868. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2869. {
  2870. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2871. st_backlash_x = bl;
  2872. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2873. }
  2874. #endif //BACKLASH_X
  2875. #ifdef BACKLASH_Y
  2876. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2877. {
  2878. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2879. st_backlash_y = bl;
  2880. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2881. }
  2882. #endif //BACKLASH_Y
  2883. #endif //TMC2130
  2884. else if(code_seen("PRUSA")){
  2885. if (code_seen("Ping")) { //PRUSA Ping
  2886. if (farm_mode) {
  2887. PingTime = millis();
  2888. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2889. }
  2890. }
  2891. else if (code_seen("PRN")) {
  2892. printf_P(_N("%d"), status_number);
  2893. }else if (code_seen("FAN")) {
  2894. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2895. }else if (code_seen("fn")) {
  2896. if (farm_mode) {
  2897. printf_P(_N("%d"), farm_no);
  2898. }
  2899. else {
  2900. puts_P(_N("Not in farm mode."));
  2901. }
  2902. }
  2903. else if (code_seen("thx")) {
  2904. no_response = false;
  2905. }
  2906. else if (code_seen("MMURES")) {
  2907. fprintf_P(uart2io, PSTR("X0"));
  2908. }
  2909. else if (code_seen("RESET")) {
  2910. // careful!
  2911. if (farm_mode) {
  2912. #ifdef WATCHDOG
  2913. boot_app_magic = BOOT_APP_MAGIC;
  2914. boot_app_flags = BOOT_APP_FLG_RUN;
  2915. wdt_enable(WDTO_15MS);
  2916. cli();
  2917. while(1);
  2918. #else //WATCHDOG
  2919. asm volatile("jmp 0x3E000");
  2920. #endif //WATCHDOG
  2921. }
  2922. else {
  2923. MYSERIAL.println("Not in farm mode.");
  2924. }
  2925. }else if (code_seen("fv")) {
  2926. // get file version
  2927. #ifdef SDSUPPORT
  2928. card.openFile(strchr_pointer + 3,true);
  2929. while (true) {
  2930. uint16_t readByte = card.get();
  2931. MYSERIAL.write(readByte);
  2932. if (readByte=='\n') {
  2933. break;
  2934. }
  2935. }
  2936. card.closefile();
  2937. #endif // SDSUPPORT
  2938. } else if (code_seen("M28")) {
  2939. trace();
  2940. prusa_sd_card_upload = true;
  2941. card.openFile(strchr_pointer+4,false);
  2942. } else if (code_seen("SN")) {
  2943. gcode_PRUSA_SN();
  2944. } else if(code_seen("Fir")){
  2945. SERIAL_PROTOCOLLN(FW_VERSION);
  2946. } else if(code_seen("Rev")){
  2947. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2948. } else if(code_seen("Lang")) {
  2949. lang_reset();
  2950. } else if(code_seen("Lz")) {
  2951. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2952. } else if(code_seen("Beat")) {
  2953. // Kick farm link timer
  2954. kicktime = millis();
  2955. } else if(code_seen("FR")) {
  2956. // Factory full reset
  2957. factory_reset(0,true);
  2958. }
  2959. //else if (code_seen('Cal')) {
  2960. // lcd_calibration();
  2961. // }
  2962. }
  2963. else if (code_seen('^')) {
  2964. // nothing, this is a version line
  2965. } else if(code_seen('G'))
  2966. {
  2967. gcode_in_progress = (int)code_value();
  2968. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  2969. switch (gcode_in_progress)
  2970. {
  2971. case 0: // G0 -> G1
  2972. case 1: // G1
  2973. if(Stopped == false) {
  2974. #ifdef FILAMENT_RUNOUT_SUPPORT
  2975. if(READ(FR_SENS)){
  2976. feedmultiplyBckp=feedmultiply;
  2977. float target[4];
  2978. float lastpos[4];
  2979. target[X_AXIS]=current_position[X_AXIS];
  2980. target[Y_AXIS]=current_position[Y_AXIS];
  2981. target[Z_AXIS]=current_position[Z_AXIS];
  2982. target[E_AXIS]=current_position[E_AXIS];
  2983. lastpos[X_AXIS]=current_position[X_AXIS];
  2984. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2985. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2986. lastpos[E_AXIS]=current_position[E_AXIS];
  2987. //retract by E
  2988. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2990. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2992. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2993. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2995. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2996. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2997. //finish moves
  2998. st_synchronize();
  2999. //disable extruder steppers so filament can be removed
  3000. disable_e0();
  3001. disable_e1();
  3002. disable_e2();
  3003. delay(100);
  3004. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3005. uint8_t cnt=0;
  3006. int counterBeep = 0;
  3007. lcd_wait_interact();
  3008. while(!lcd_clicked()){
  3009. cnt++;
  3010. manage_heater();
  3011. manage_inactivity(true);
  3012. //lcd_update(0);
  3013. if(cnt==0)
  3014. {
  3015. #if BEEPER > 0
  3016. if (counterBeep== 500){
  3017. counterBeep = 0;
  3018. }
  3019. SET_OUTPUT(BEEPER);
  3020. if (counterBeep== 0){
  3021. WRITE(BEEPER,HIGH);
  3022. }
  3023. if (counterBeep== 20){
  3024. WRITE(BEEPER,LOW);
  3025. }
  3026. counterBeep++;
  3027. #else
  3028. #endif
  3029. }
  3030. }
  3031. WRITE(BEEPER,LOW);
  3032. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3033. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3034. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3036. lcd_change_fil_state = 0;
  3037. lcd_loading_filament();
  3038. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3039. lcd_change_fil_state = 0;
  3040. lcd_alright();
  3041. switch(lcd_change_fil_state){
  3042. case 2:
  3043. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3045. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3047. lcd_loading_filament();
  3048. break;
  3049. case 3:
  3050. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3052. lcd_loading_color();
  3053. break;
  3054. default:
  3055. lcd_change_success();
  3056. break;
  3057. }
  3058. }
  3059. target[E_AXIS]+= 5;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3061. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3063. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3064. //plan_set_e_position(current_position[E_AXIS]);
  3065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3066. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3067. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3068. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3069. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3070. plan_set_e_position(lastpos[E_AXIS]);
  3071. feedmultiply=feedmultiplyBckp;
  3072. char cmd[9];
  3073. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3074. enquecommand(cmd);
  3075. }
  3076. #endif
  3077. get_coordinates(); // For X Y Z E F
  3078. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3079. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3080. }
  3081. #ifdef FWRETRACT
  3082. if(autoretract_enabled)
  3083. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3084. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3085. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3086. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3087. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3088. retract(!retracted[active_extruder]);
  3089. return;
  3090. }
  3091. }
  3092. #endif //FWRETRACT
  3093. prepare_move();
  3094. //ClearToSend();
  3095. }
  3096. break;
  3097. case 2: // G2 - CW ARC
  3098. if(Stopped == false) {
  3099. get_arc_coordinates();
  3100. prepare_arc_move(true);
  3101. }
  3102. break;
  3103. case 3: // G3 - CCW ARC
  3104. if(Stopped == false) {
  3105. get_arc_coordinates();
  3106. prepare_arc_move(false);
  3107. }
  3108. break;
  3109. case 4: // G4 dwell
  3110. codenum = 0;
  3111. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3112. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3113. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3114. st_synchronize();
  3115. codenum += millis(); // keep track of when we started waiting
  3116. previous_millis_cmd = millis();
  3117. while(millis() < codenum) {
  3118. manage_heater();
  3119. manage_inactivity();
  3120. lcd_update(0);
  3121. }
  3122. break;
  3123. #ifdef FWRETRACT
  3124. case 10: // G10 retract
  3125. #if EXTRUDERS > 1
  3126. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3127. retract(true,retracted_swap[active_extruder]);
  3128. #else
  3129. retract(true);
  3130. #endif
  3131. break;
  3132. case 11: // G11 retract_recover
  3133. #if EXTRUDERS > 1
  3134. retract(false,retracted_swap[active_extruder]);
  3135. #else
  3136. retract(false);
  3137. #endif
  3138. break;
  3139. #endif //FWRETRACT
  3140. case 28: //G28 Home all Axis one at a time
  3141. {
  3142. long home_x_value = 0;
  3143. long home_y_value = 0;
  3144. long home_z_value = 0;
  3145. // Which axes should be homed?
  3146. bool home_x = code_seen(axis_codes[X_AXIS]);
  3147. home_x_value = code_value_long();
  3148. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3149. home_y_value = code_value_long();
  3150. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3151. home_z_value = code_value_long();
  3152. bool without_mbl = code_seen('W');
  3153. // calibrate?
  3154. bool calib = code_seen('C');
  3155. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3156. if ((home_x || home_y || without_mbl || home_z) == false) {
  3157. // Push the commands to the front of the message queue in the reverse order!
  3158. // There shall be always enough space reserved for these commands.
  3159. goto case_G80;
  3160. }
  3161. break;
  3162. }
  3163. #ifdef ENABLE_AUTO_BED_LEVELING
  3164. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3165. {
  3166. #if Z_MIN_PIN == -1
  3167. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3168. #endif
  3169. // Prevent user from running a G29 without first homing in X and Y
  3170. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3171. {
  3172. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3173. SERIAL_ECHO_START;
  3174. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3175. break; // abort G29, since we don't know where we are
  3176. }
  3177. st_synchronize();
  3178. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3179. //vector_3 corrected_position = plan_get_position_mm();
  3180. //corrected_position.debug("position before G29");
  3181. plan_bed_level_matrix.set_to_identity();
  3182. vector_3 uncorrected_position = plan_get_position();
  3183. //uncorrected_position.debug("position durring G29");
  3184. current_position[X_AXIS] = uncorrected_position.x;
  3185. current_position[Y_AXIS] = uncorrected_position.y;
  3186. current_position[Z_AXIS] = uncorrected_position.z;
  3187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3188. setup_for_endstop_move();
  3189. feedrate = homing_feedrate[Z_AXIS];
  3190. #ifdef AUTO_BED_LEVELING_GRID
  3191. // probe at the points of a lattice grid
  3192. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3193. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3194. // solve the plane equation ax + by + d = z
  3195. // A is the matrix with rows [x y 1] for all the probed points
  3196. // B is the vector of the Z positions
  3197. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3198. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3199. // "A" matrix of the linear system of equations
  3200. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3201. // "B" vector of Z points
  3202. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3203. int probePointCounter = 0;
  3204. bool zig = true;
  3205. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3206. {
  3207. int xProbe, xInc;
  3208. if (zig)
  3209. {
  3210. xProbe = LEFT_PROBE_BED_POSITION;
  3211. //xEnd = RIGHT_PROBE_BED_POSITION;
  3212. xInc = xGridSpacing;
  3213. zig = false;
  3214. } else // zag
  3215. {
  3216. xProbe = RIGHT_PROBE_BED_POSITION;
  3217. //xEnd = LEFT_PROBE_BED_POSITION;
  3218. xInc = -xGridSpacing;
  3219. zig = true;
  3220. }
  3221. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3222. {
  3223. float z_before;
  3224. if (probePointCounter == 0)
  3225. {
  3226. // raise before probing
  3227. z_before = Z_RAISE_BEFORE_PROBING;
  3228. } else
  3229. {
  3230. // raise extruder
  3231. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3232. }
  3233. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3234. eqnBVector[probePointCounter] = measured_z;
  3235. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3236. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3237. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3238. probePointCounter++;
  3239. xProbe += xInc;
  3240. }
  3241. }
  3242. clean_up_after_endstop_move();
  3243. // solve lsq problem
  3244. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3245. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3246. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3247. SERIAL_PROTOCOLPGM(" b: ");
  3248. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3249. SERIAL_PROTOCOLPGM(" d: ");
  3250. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3251. set_bed_level_equation_lsq(plane_equation_coefficients);
  3252. free(plane_equation_coefficients);
  3253. #else // AUTO_BED_LEVELING_GRID not defined
  3254. // Probe at 3 arbitrary points
  3255. // probe 1
  3256. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3257. // probe 2
  3258. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3259. // probe 3
  3260. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3261. clean_up_after_endstop_move();
  3262. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3263. #endif // AUTO_BED_LEVELING_GRID
  3264. st_synchronize();
  3265. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3266. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3267. // When the bed is uneven, this height must be corrected.
  3268. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3269. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3270. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3271. z_tmp = current_position[Z_AXIS];
  3272. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3273. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3275. }
  3276. break;
  3277. #ifndef Z_PROBE_SLED
  3278. case 30: // G30 Single Z Probe
  3279. {
  3280. st_synchronize();
  3281. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3282. setup_for_endstop_move();
  3283. feedrate = homing_feedrate[Z_AXIS];
  3284. run_z_probe();
  3285. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3286. SERIAL_PROTOCOLPGM(" X: ");
  3287. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3288. SERIAL_PROTOCOLPGM(" Y: ");
  3289. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3290. SERIAL_PROTOCOLPGM(" Z: ");
  3291. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3292. SERIAL_PROTOCOLPGM("\n");
  3293. clean_up_after_endstop_move();
  3294. }
  3295. break;
  3296. #else
  3297. case 31: // dock the sled
  3298. dock_sled(true);
  3299. break;
  3300. case 32: // undock the sled
  3301. dock_sled(false);
  3302. break;
  3303. #endif // Z_PROBE_SLED
  3304. #endif // ENABLE_AUTO_BED_LEVELING
  3305. #ifdef MESH_BED_LEVELING
  3306. case 30: // G30 Single Z Probe
  3307. {
  3308. st_synchronize();
  3309. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3310. setup_for_endstop_move();
  3311. feedrate = homing_feedrate[Z_AXIS];
  3312. find_bed_induction_sensor_point_z(-10.f, 3);
  3313. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3314. clean_up_after_endstop_move();
  3315. }
  3316. break;
  3317. case 75:
  3318. {
  3319. for (int i = 40; i <= 110; i++)
  3320. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3321. }
  3322. break;
  3323. case 76: //PINDA probe temperature calibration
  3324. {
  3325. #ifdef PINDA_THERMISTOR
  3326. if (true)
  3327. {
  3328. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3329. //we need to know accurate position of first calibration point
  3330. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3331. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3332. break;
  3333. }
  3334. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3335. {
  3336. // We don't know where we are! HOME!
  3337. // Push the commands to the front of the message queue in the reverse order!
  3338. // There shall be always enough space reserved for these commands.
  3339. repeatcommand_front(); // repeat G76 with all its parameters
  3340. enquecommand_front_P((PSTR("G28 W0")));
  3341. break;
  3342. }
  3343. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3344. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3345. if (result)
  3346. {
  3347. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3349. current_position[Z_AXIS] = 50;
  3350. current_position[Y_AXIS] = 180;
  3351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3352. st_synchronize();
  3353. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3354. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3355. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3357. st_synchronize();
  3358. gcode_G28(false, false, true);
  3359. }
  3360. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3361. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3362. current_position[Z_AXIS] = 100;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3365. lcd_temp_cal_show_result(false);
  3366. break;
  3367. }
  3368. }
  3369. lcd_update_enable(true);
  3370. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3371. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3372. float zero_z;
  3373. int z_shift = 0; //unit: steps
  3374. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3375. if (start_temp < 35) start_temp = 35;
  3376. if (start_temp < current_temperature_pinda) start_temp += 5;
  3377. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3378. // setTargetHotend(200, 0);
  3379. setTargetBed(70 + (start_temp - 30));
  3380. custom_message = true;
  3381. custom_message_type = 4;
  3382. custom_message_state = 1;
  3383. custom_message = _T(MSG_TEMP_CALIBRATION);
  3384. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3386. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3387. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3389. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3391. st_synchronize();
  3392. while (current_temperature_pinda < start_temp)
  3393. {
  3394. delay_keep_alive(1000);
  3395. serialecho_temperatures();
  3396. }
  3397. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3398. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3400. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3401. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3403. st_synchronize();
  3404. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3405. if (find_z_result == false) {
  3406. lcd_temp_cal_show_result(find_z_result);
  3407. break;
  3408. }
  3409. zero_z = current_position[Z_AXIS];
  3410. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3411. int i = -1; for (; i < 5; i++)
  3412. {
  3413. float temp = (40 + i * 5);
  3414. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3415. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3416. if (start_temp <= temp) break;
  3417. }
  3418. for (i++; i < 5; i++)
  3419. {
  3420. float temp = (40 + i * 5);
  3421. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3422. custom_message_state = i + 2;
  3423. setTargetBed(50 + 10 * (temp - 30) / 5);
  3424. // setTargetHotend(255, 0);
  3425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3428. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3430. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. st_synchronize();
  3433. while (current_temperature_pinda < temp)
  3434. {
  3435. delay_keep_alive(1000);
  3436. serialecho_temperatures();
  3437. }
  3438. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3440. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3441. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3443. st_synchronize();
  3444. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3445. if (find_z_result == false) {
  3446. lcd_temp_cal_show_result(find_z_result);
  3447. break;
  3448. }
  3449. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3450. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3451. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3452. }
  3453. lcd_temp_cal_show_result(true);
  3454. break;
  3455. }
  3456. #endif //PINDA_THERMISTOR
  3457. setTargetBed(PINDA_MIN_T);
  3458. float zero_z;
  3459. int z_shift = 0; //unit: steps
  3460. int t_c; // temperature
  3461. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3462. // We don't know where we are! HOME!
  3463. // Push the commands to the front of the message queue in the reverse order!
  3464. // There shall be always enough space reserved for these commands.
  3465. repeatcommand_front(); // repeat G76 with all its parameters
  3466. enquecommand_front_P((PSTR("G28 W0")));
  3467. break;
  3468. }
  3469. puts_P(_N("PINDA probe calibration start"));
  3470. custom_message = true;
  3471. custom_message_type = 4;
  3472. custom_message_state = 1;
  3473. custom_message = _T(MSG_TEMP_CALIBRATION);
  3474. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3475. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3476. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. st_synchronize();
  3479. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. //enquecommand_P(PSTR("M190 S50"));
  3484. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3485. delay_keep_alive(1000);
  3486. serialecho_temperatures();
  3487. }
  3488. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3489. current_position[Z_AXIS] = 5;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3492. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. st_synchronize();
  3495. find_bed_induction_sensor_point_z(-1.f);
  3496. zero_z = current_position[Z_AXIS];
  3497. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3498. for (int i = 0; i<5; i++) {
  3499. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3500. custom_message_state = i + 2;
  3501. t_c = 60 + i * 10;
  3502. setTargetBed(t_c);
  3503. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3504. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3505. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3507. st_synchronize();
  3508. while (degBed() < t_c) {
  3509. delay_keep_alive(1000);
  3510. serialecho_temperatures();
  3511. }
  3512. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3513. delay_keep_alive(1000);
  3514. serialecho_temperatures();
  3515. }
  3516. current_position[Z_AXIS] = 5;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3519. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. st_synchronize();
  3522. find_bed_induction_sensor_point_z(-1.f);
  3523. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3524. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3525. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3526. }
  3527. custom_message_type = 0;
  3528. custom_message = false;
  3529. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3530. puts_P(_N("Temperature calibration done."));
  3531. disable_x();
  3532. disable_y();
  3533. disable_z();
  3534. disable_e0();
  3535. disable_e1();
  3536. disable_e2();
  3537. setTargetBed(0); //set bed target temperature back to 0
  3538. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3539. temp_cal_active = true;
  3540. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3541. lcd_update_enable(true);
  3542. lcd_update(2);
  3543. }
  3544. break;
  3545. #ifdef DIS
  3546. case 77:
  3547. {
  3548. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3549. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3550. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3551. float dimension_x = 40;
  3552. float dimension_y = 40;
  3553. int points_x = 40;
  3554. int points_y = 40;
  3555. float offset_x = 74;
  3556. float offset_y = 33;
  3557. if (code_seen('X')) dimension_x = code_value();
  3558. if (code_seen('Y')) dimension_y = code_value();
  3559. if (code_seen('XP')) points_x = code_value();
  3560. if (code_seen('YP')) points_y = code_value();
  3561. if (code_seen('XO')) offset_x = code_value();
  3562. if (code_seen('YO')) offset_y = code_value();
  3563. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3564. } break;
  3565. #endif
  3566. case 79: {
  3567. for (int i = 255; i > 0; i = i - 5) {
  3568. fanSpeed = i;
  3569. //delay_keep_alive(2000);
  3570. for (int j = 0; j < 100; j++) {
  3571. delay_keep_alive(100);
  3572. }
  3573. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3574. }
  3575. }break;
  3576. /**
  3577. * G80: Mesh-based Z probe, probes a grid and produces a
  3578. * mesh to compensate for variable bed height
  3579. *
  3580. * The S0 report the points as below
  3581. *
  3582. * +----> X-axis
  3583. * |
  3584. * |
  3585. * v Y-axis
  3586. *
  3587. */
  3588. case 80:
  3589. #ifdef MK1BP
  3590. break;
  3591. #endif //MK1BP
  3592. case_G80:
  3593. {
  3594. mesh_bed_leveling_flag = true;
  3595. static bool run = false;
  3596. #ifdef SUPPORT_VERBOSITY
  3597. int8_t verbosity_level = 0;
  3598. if (code_seen('V')) {
  3599. // Just 'V' without a number counts as V1.
  3600. char c = strchr_pointer[1];
  3601. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3602. }
  3603. #endif //SUPPORT_VERBOSITY
  3604. // Firstly check if we know where we are
  3605. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3606. // We don't know where we are! HOME!
  3607. // Push the commands to the front of the message queue in the reverse order!
  3608. // There shall be always enough space reserved for these commands.
  3609. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3610. repeatcommand_front(); // repeat G80 with all its parameters
  3611. enquecommand_front_P((PSTR("G28 W0")));
  3612. }
  3613. else {
  3614. mesh_bed_leveling_flag = false;
  3615. }
  3616. break;
  3617. }
  3618. bool temp_comp_start = true;
  3619. #ifdef PINDA_THERMISTOR
  3620. temp_comp_start = false;
  3621. #endif //PINDA_THERMISTOR
  3622. if (temp_comp_start)
  3623. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3624. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3625. temp_compensation_start();
  3626. run = true;
  3627. repeatcommand_front(); // repeat G80 with all its parameters
  3628. enquecommand_front_P((PSTR("G28 W0")));
  3629. }
  3630. else {
  3631. mesh_bed_leveling_flag = false;
  3632. }
  3633. break;
  3634. }
  3635. run = false;
  3636. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3637. mesh_bed_leveling_flag = false;
  3638. break;
  3639. }
  3640. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3641. bool custom_message_old = custom_message;
  3642. unsigned int custom_message_type_old = custom_message_type;
  3643. unsigned int custom_message_state_old = custom_message_state;
  3644. custom_message = true;
  3645. custom_message_type = 1;
  3646. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3647. lcd_update(1);
  3648. mbl.reset(); //reset mesh bed leveling
  3649. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3650. // consumed during the first movements following this statement.
  3651. babystep_undo();
  3652. // Cycle through all points and probe them
  3653. // First move up. During this first movement, the babystepping will be reverted.
  3654. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3656. // The move to the first calibration point.
  3657. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3658. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3659. #ifdef SUPPORT_VERBOSITY
  3660. if (verbosity_level >= 1)
  3661. {
  3662. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3663. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3664. }
  3665. #endif //SUPPORT_VERBOSITY
  3666. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3668. // Wait until the move is finished.
  3669. st_synchronize();
  3670. int mesh_point = 0; //index number of calibration point
  3671. int ix = 0;
  3672. int iy = 0;
  3673. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3674. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3675. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3676. #ifdef SUPPORT_VERBOSITY
  3677. if (verbosity_level >= 1) {
  3678. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3679. }
  3680. #endif // SUPPORT_VERBOSITY
  3681. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3682. const char *kill_message = NULL;
  3683. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3684. // Get coords of a measuring point.
  3685. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3686. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3687. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3688. float z0 = 0.f;
  3689. if (has_z && mesh_point > 0) {
  3690. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3691. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3692. //#if 0
  3693. #ifdef SUPPORT_VERBOSITY
  3694. if (verbosity_level >= 1) {
  3695. SERIAL_ECHOLNPGM("");
  3696. SERIAL_ECHOPGM("Bed leveling, point: ");
  3697. MYSERIAL.print(mesh_point);
  3698. SERIAL_ECHOPGM(", calibration z: ");
  3699. MYSERIAL.print(z0, 5);
  3700. SERIAL_ECHOLNPGM("");
  3701. }
  3702. #endif // SUPPORT_VERBOSITY
  3703. //#endif
  3704. }
  3705. // Move Z up to MESH_HOME_Z_SEARCH.
  3706. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3708. st_synchronize();
  3709. // Move to XY position of the sensor point.
  3710. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3711. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3712. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3713. #ifdef SUPPORT_VERBOSITY
  3714. if (verbosity_level >= 1) {
  3715. SERIAL_PROTOCOL(mesh_point);
  3716. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3717. }
  3718. #endif // SUPPORT_VERBOSITY
  3719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3720. st_synchronize();
  3721. // Go down until endstop is hit
  3722. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3723. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3724. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3725. break;
  3726. }
  3727. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3728. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3729. break;
  3730. }
  3731. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3732. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3733. break;
  3734. }
  3735. #ifdef SUPPORT_VERBOSITY
  3736. if (verbosity_level >= 10) {
  3737. SERIAL_ECHOPGM("X: ");
  3738. MYSERIAL.print(current_position[X_AXIS], 5);
  3739. SERIAL_ECHOLNPGM("");
  3740. SERIAL_ECHOPGM("Y: ");
  3741. MYSERIAL.print(current_position[Y_AXIS], 5);
  3742. SERIAL_PROTOCOLPGM("\n");
  3743. }
  3744. #endif // SUPPORT_VERBOSITY
  3745. float offset_z = 0;
  3746. #ifdef PINDA_THERMISTOR
  3747. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3748. #endif //PINDA_THERMISTOR
  3749. // #ifdef SUPPORT_VERBOSITY
  3750. /* if (verbosity_level >= 1)
  3751. {
  3752. SERIAL_ECHOPGM("mesh bed leveling: ");
  3753. MYSERIAL.print(current_position[Z_AXIS], 5);
  3754. SERIAL_ECHOPGM(" offset: ");
  3755. MYSERIAL.print(offset_z, 5);
  3756. SERIAL_ECHOLNPGM("");
  3757. }*/
  3758. // #endif // SUPPORT_VERBOSITY
  3759. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3760. custom_message_state--;
  3761. mesh_point++;
  3762. lcd_update(1);
  3763. }
  3764. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3765. #ifdef SUPPORT_VERBOSITY
  3766. if (verbosity_level >= 20) {
  3767. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3768. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3769. MYSERIAL.print(current_position[Z_AXIS], 5);
  3770. }
  3771. #endif // SUPPORT_VERBOSITY
  3772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3773. st_synchronize();
  3774. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3775. kill(kill_message);
  3776. SERIAL_ECHOLNPGM("killed");
  3777. }
  3778. clean_up_after_endstop_move();
  3779. // SERIAL_ECHOLNPGM("clean up finished ");
  3780. bool apply_temp_comp = true;
  3781. #ifdef PINDA_THERMISTOR
  3782. apply_temp_comp = false;
  3783. #endif
  3784. if (apply_temp_comp)
  3785. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3786. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3787. // SERIAL_ECHOLNPGM("babystep applied");
  3788. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3789. #ifdef SUPPORT_VERBOSITY
  3790. if (verbosity_level >= 1) {
  3791. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3792. }
  3793. #endif // SUPPORT_VERBOSITY
  3794. for (uint8_t i = 0; i < 4; ++i) {
  3795. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3796. long correction = 0;
  3797. if (code_seen(codes[i]))
  3798. correction = code_value_long();
  3799. else if (eeprom_bed_correction_valid) {
  3800. unsigned char *addr = (i < 2) ?
  3801. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3802. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3803. correction = eeprom_read_int8(addr);
  3804. }
  3805. if (correction == 0)
  3806. continue;
  3807. float offset = float(correction) * 0.001f;
  3808. if (fabs(offset) > 0.101f) {
  3809. SERIAL_ERROR_START;
  3810. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3811. SERIAL_ECHO(offset);
  3812. SERIAL_ECHOLNPGM(" microns");
  3813. }
  3814. else {
  3815. switch (i) {
  3816. case 0:
  3817. for (uint8_t row = 0; row < 3; ++row) {
  3818. mbl.z_values[row][1] += 0.5f * offset;
  3819. mbl.z_values[row][0] += offset;
  3820. }
  3821. break;
  3822. case 1:
  3823. for (uint8_t row = 0; row < 3; ++row) {
  3824. mbl.z_values[row][1] += 0.5f * offset;
  3825. mbl.z_values[row][2] += offset;
  3826. }
  3827. break;
  3828. case 2:
  3829. for (uint8_t col = 0; col < 3; ++col) {
  3830. mbl.z_values[1][col] += 0.5f * offset;
  3831. mbl.z_values[0][col] += offset;
  3832. }
  3833. break;
  3834. case 3:
  3835. for (uint8_t col = 0; col < 3; ++col) {
  3836. mbl.z_values[1][col] += 0.5f * offset;
  3837. mbl.z_values[2][col] += offset;
  3838. }
  3839. break;
  3840. }
  3841. }
  3842. }
  3843. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3844. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3845. // SERIAL_ECHOLNPGM("Upsample finished");
  3846. mbl.active = 1; //activate mesh bed leveling
  3847. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3848. go_home_with_z_lift();
  3849. // SERIAL_ECHOLNPGM("Go home finished");
  3850. //unretract (after PINDA preheat retraction)
  3851. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3852. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3854. }
  3855. KEEPALIVE_STATE(NOT_BUSY);
  3856. // Restore custom message state
  3857. lcd_setstatuspgm(_T(WELCOME_MSG));
  3858. custom_message = custom_message_old;
  3859. custom_message_type = custom_message_type_old;
  3860. custom_message_state = custom_message_state_old;
  3861. mesh_bed_leveling_flag = false;
  3862. mesh_bed_run_from_menu = false;
  3863. lcd_update(2);
  3864. }
  3865. break;
  3866. /**
  3867. * G81: Print mesh bed leveling status and bed profile if activated
  3868. */
  3869. case 81:
  3870. if (mbl.active) {
  3871. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3872. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3873. SERIAL_PROTOCOLPGM(",");
  3874. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3875. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3876. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3877. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3878. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3879. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3880. SERIAL_PROTOCOLPGM(" ");
  3881. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3882. }
  3883. SERIAL_PROTOCOLPGM("\n");
  3884. }
  3885. }
  3886. else
  3887. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3888. break;
  3889. #if 0
  3890. /**
  3891. * G82: Single Z probe at current location
  3892. *
  3893. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3894. *
  3895. */
  3896. case 82:
  3897. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3898. setup_for_endstop_move();
  3899. find_bed_induction_sensor_point_z();
  3900. clean_up_after_endstop_move();
  3901. SERIAL_PROTOCOLPGM("Bed found at: ");
  3902. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3903. SERIAL_PROTOCOLPGM("\n");
  3904. break;
  3905. /**
  3906. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3907. */
  3908. case 83:
  3909. {
  3910. int babystepz = code_seen('S') ? code_value() : 0;
  3911. int BabyPosition = code_seen('P') ? code_value() : 0;
  3912. if (babystepz != 0) {
  3913. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3914. // Is the axis indexed starting with zero or one?
  3915. if (BabyPosition > 4) {
  3916. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3917. }else{
  3918. // Save it to the eeprom
  3919. babystepLoadZ = babystepz;
  3920. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3921. // adjust the Z
  3922. babystepsTodoZadd(babystepLoadZ);
  3923. }
  3924. }
  3925. }
  3926. break;
  3927. /**
  3928. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3929. */
  3930. case 84:
  3931. babystepsTodoZsubtract(babystepLoadZ);
  3932. // babystepLoadZ = 0;
  3933. break;
  3934. /**
  3935. * G85: Prusa3D specific: Pick best babystep
  3936. */
  3937. case 85:
  3938. lcd_pick_babystep();
  3939. break;
  3940. #endif
  3941. /**
  3942. * G86: Prusa3D specific: Disable babystep correction after home.
  3943. * This G-code will be performed at the start of a calibration script.
  3944. */
  3945. case 86:
  3946. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3947. break;
  3948. /**
  3949. * G87: Prusa3D specific: Enable babystep correction after home
  3950. * This G-code will be performed at the end of a calibration script.
  3951. */
  3952. case 87:
  3953. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3954. break;
  3955. /**
  3956. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3957. */
  3958. case 88:
  3959. break;
  3960. #endif // ENABLE_MESH_BED_LEVELING
  3961. case 90: // G90
  3962. relative_mode = false;
  3963. break;
  3964. case 91: // G91
  3965. relative_mode = true;
  3966. break;
  3967. case 92: // G92
  3968. if(!code_seen(axis_codes[E_AXIS]))
  3969. st_synchronize();
  3970. for(int8_t i=0; i < NUM_AXIS; i++) {
  3971. if(code_seen(axis_codes[i])) {
  3972. if(i == E_AXIS) {
  3973. current_position[i] = code_value();
  3974. plan_set_e_position(current_position[E_AXIS]);
  3975. }
  3976. else {
  3977. current_position[i] = code_value()+add_homing[i];
  3978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3979. }
  3980. }
  3981. }
  3982. break;
  3983. case 98: // G98 (activate farm mode)
  3984. farm_mode = 1;
  3985. PingTime = millis();
  3986. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3987. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3988. SilentModeMenu = SILENT_MODE_OFF;
  3989. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3990. break;
  3991. case 99: // G99 (deactivate farm mode)
  3992. farm_mode = 0;
  3993. lcd_printer_connected();
  3994. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3995. lcd_update(2);
  3996. break;
  3997. default:
  3998. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3999. }
  4000. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4001. gcode_in_progress = 0;
  4002. } // end if(code_seen('G'))
  4003. else if(code_seen('M'))
  4004. {
  4005. int index;
  4006. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4007. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4008. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4009. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4010. } else
  4011. {
  4012. mcode_in_progress = (int)code_value();
  4013. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4014. switch(mcode_in_progress)
  4015. {
  4016. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4017. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4018. {
  4019. char *src = strchr_pointer + 2;
  4020. codenum = 0;
  4021. bool hasP = false, hasS = false;
  4022. if (code_seen('P')) {
  4023. codenum = code_value(); // milliseconds to wait
  4024. hasP = codenum > 0;
  4025. }
  4026. if (code_seen('S')) {
  4027. codenum = code_value() * 1000; // seconds to wait
  4028. hasS = codenum > 0;
  4029. }
  4030. starpos = strchr(src, '*');
  4031. if (starpos != NULL) *(starpos) = '\0';
  4032. while (*src == ' ') ++src;
  4033. if (!hasP && !hasS && *src != '\0') {
  4034. lcd_setstatus(src);
  4035. } else {
  4036. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4037. }
  4038. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4039. st_synchronize();
  4040. previous_millis_cmd = millis();
  4041. if (codenum > 0){
  4042. codenum += millis(); // keep track of when we started waiting
  4043. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4044. while(millis() < codenum && !lcd_clicked()){
  4045. manage_heater();
  4046. manage_inactivity(true);
  4047. lcd_update(0);
  4048. }
  4049. KEEPALIVE_STATE(IN_HANDLER);
  4050. lcd_ignore_click(false);
  4051. }else{
  4052. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4053. while(!lcd_clicked()){
  4054. manage_heater();
  4055. manage_inactivity(true);
  4056. lcd_update(0);
  4057. }
  4058. KEEPALIVE_STATE(IN_HANDLER);
  4059. }
  4060. if (IS_SD_PRINTING)
  4061. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4062. else
  4063. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4064. }
  4065. break;
  4066. case 17:
  4067. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4068. enable_x();
  4069. enable_y();
  4070. enable_z();
  4071. enable_e0();
  4072. enable_e1();
  4073. enable_e2();
  4074. break;
  4075. #ifdef SDSUPPORT
  4076. case 20: // M20 - list SD card
  4077. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4078. card.ls();
  4079. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4080. break;
  4081. case 21: // M21 - init SD card
  4082. card.initsd();
  4083. break;
  4084. case 22: //M22 - release SD card
  4085. card.release();
  4086. break;
  4087. case 23: //M23 - Select file
  4088. starpos = (strchr(strchr_pointer + 4,'*'));
  4089. if(starpos!=NULL)
  4090. *(starpos)='\0';
  4091. card.openFile(strchr_pointer + 4,true);
  4092. break;
  4093. case 24: //M24 - Start SD print
  4094. //-//
  4095. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  4096. if (!card.paused)
  4097. failstats_reset_print();
  4098. card.startFileprint();
  4099. starttime=millis();
  4100. break;
  4101. case 25: //M25 - Pause SD print
  4102. card.pauseSDPrint();
  4103. break;
  4104. case 26: //M26 - Set SD index
  4105. if(card.cardOK && code_seen('S')) {
  4106. card.setIndex(code_value_long());
  4107. }
  4108. break;
  4109. case 27: //M27 - Get SD status
  4110. card.getStatus();
  4111. break;
  4112. case 28: //M28 - Start SD write
  4113. starpos = (strchr(strchr_pointer + 4,'*'));
  4114. if(starpos != NULL){
  4115. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4116. strchr_pointer = strchr(npos,' ') + 1;
  4117. *(starpos) = '\0';
  4118. }
  4119. card.openFile(strchr_pointer+4,false);
  4120. break;
  4121. case 29: //M29 - Stop SD write
  4122. //processed in write to file routine above
  4123. //card,saving = false;
  4124. break;
  4125. case 30: //M30 <filename> Delete File
  4126. if (card.cardOK){
  4127. card.closefile();
  4128. starpos = (strchr(strchr_pointer + 4,'*'));
  4129. if(starpos != NULL){
  4130. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4131. strchr_pointer = strchr(npos,' ') + 1;
  4132. *(starpos) = '\0';
  4133. }
  4134. card.removeFile(strchr_pointer + 4);
  4135. }
  4136. break;
  4137. case 32: //M32 - Select file and start SD print
  4138. {
  4139. if(card.sdprinting) {
  4140. st_synchronize();
  4141. }
  4142. starpos = (strchr(strchr_pointer + 4,'*'));
  4143. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4144. if(namestartpos==NULL)
  4145. {
  4146. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4147. }
  4148. else
  4149. namestartpos++; //to skip the '!'
  4150. if(starpos!=NULL)
  4151. *(starpos)='\0';
  4152. bool call_procedure=(code_seen('P'));
  4153. if(strchr_pointer>namestartpos)
  4154. call_procedure=false; //false alert, 'P' found within filename
  4155. if( card.cardOK )
  4156. {
  4157. card.openFile(namestartpos,true,!call_procedure);
  4158. if(code_seen('S'))
  4159. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4160. card.setIndex(code_value_long());
  4161. card.startFileprint();
  4162. if(!call_procedure)
  4163. starttime=millis(); //procedure calls count as normal print time.
  4164. }
  4165. } break;
  4166. case 928: //M928 - Start SD write
  4167. starpos = (strchr(strchr_pointer + 5,'*'));
  4168. if(starpos != NULL){
  4169. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4170. strchr_pointer = strchr(npos,' ') + 1;
  4171. *(starpos) = '\0';
  4172. }
  4173. card.openLogFile(strchr_pointer+5);
  4174. break;
  4175. #endif //SDSUPPORT
  4176. case 31: //M31 take time since the start of the SD print or an M109 command
  4177. {
  4178. stoptime=millis();
  4179. char time[30];
  4180. unsigned long t=(stoptime-starttime)/1000;
  4181. int sec,min;
  4182. min=t/60;
  4183. sec=t%60;
  4184. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4185. SERIAL_ECHO_START;
  4186. SERIAL_ECHOLN(time);
  4187. lcd_setstatus(time);
  4188. autotempShutdown();
  4189. }
  4190. break;
  4191. case 42: //M42 -Change pin status via gcode
  4192. if (code_seen('S'))
  4193. {
  4194. int pin_status = code_value();
  4195. int pin_number = LED_PIN;
  4196. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4197. pin_number = code_value();
  4198. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4199. {
  4200. if (sensitive_pins[i] == pin_number)
  4201. {
  4202. pin_number = -1;
  4203. break;
  4204. }
  4205. }
  4206. #if defined(FAN_PIN) && FAN_PIN > -1
  4207. if (pin_number == FAN_PIN)
  4208. fanSpeed = pin_status;
  4209. #endif
  4210. if (pin_number > -1)
  4211. {
  4212. pinMode(pin_number, OUTPUT);
  4213. digitalWrite(pin_number, pin_status);
  4214. analogWrite(pin_number, pin_status);
  4215. }
  4216. }
  4217. break;
  4218. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4219. // Reset the baby step value and the baby step applied flag.
  4220. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4221. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4222. // Reset the skew and offset in both RAM and EEPROM.
  4223. reset_bed_offset_and_skew();
  4224. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4225. // the planner will not perform any adjustments in the XY plane.
  4226. // Wait for the motors to stop and update the current position with the absolute values.
  4227. world2machine_revert_to_uncorrected();
  4228. break;
  4229. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4230. {
  4231. int8_t verbosity_level = 0;
  4232. bool only_Z = code_seen('Z');
  4233. #ifdef SUPPORT_VERBOSITY
  4234. if (code_seen('V'))
  4235. {
  4236. // Just 'V' without a number counts as V1.
  4237. char c = strchr_pointer[1];
  4238. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4239. }
  4240. #endif //SUPPORT_VERBOSITY
  4241. gcode_M45(only_Z, verbosity_level);
  4242. }
  4243. break;
  4244. /*
  4245. case 46:
  4246. {
  4247. // M46: Prusa3D: Show the assigned IP address.
  4248. uint8_t ip[4];
  4249. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4250. if (hasIP) {
  4251. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4252. SERIAL_ECHO(int(ip[0]));
  4253. SERIAL_ECHOPGM(".");
  4254. SERIAL_ECHO(int(ip[1]));
  4255. SERIAL_ECHOPGM(".");
  4256. SERIAL_ECHO(int(ip[2]));
  4257. SERIAL_ECHOPGM(".");
  4258. SERIAL_ECHO(int(ip[3]));
  4259. SERIAL_ECHOLNPGM("");
  4260. } else {
  4261. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4262. }
  4263. break;
  4264. }
  4265. */
  4266. case 47:
  4267. // M47: Prusa3D: Show end stops dialog on the display.
  4268. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4269. lcd_diag_show_end_stops();
  4270. KEEPALIVE_STATE(IN_HANDLER);
  4271. break;
  4272. #if 0
  4273. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4274. {
  4275. // Disable the default update procedure of the display. We will do a modal dialog.
  4276. lcd_update_enable(false);
  4277. // Let the planner use the uncorrected coordinates.
  4278. mbl.reset();
  4279. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4280. // the planner will not perform any adjustments in the XY plane.
  4281. // Wait for the motors to stop and update the current position with the absolute values.
  4282. world2machine_revert_to_uncorrected();
  4283. // Move the print head close to the bed.
  4284. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4286. st_synchronize();
  4287. // Home in the XY plane.
  4288. set_destination_to_current();
  4289. setup_for_endstop_move();
  4290. home_xy();
  4291. int8_t verbosity_level = 0;
  4292. if (code_seen('V')) {
  4293. // Just 'V' without a number counts as V1.
  4294. char c = strchr_pointer[1];
  4295. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4296. }
  4297. bool success = scan_bed_induction_points(verbosity_level);
  4298. clean_up_after_endstop_move();
  4299. // Print head up.
  4300. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4302. st_synchronize();
  4303. lcd_update_enable(true);
  4304. break;
  4305. }
  4306. #endif
  4307. // M48 Z-Probe repeatability measurement function.
  4308. //
  4309. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4310. //
  4311. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4312. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4313. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4314. // regenerated.
  4315. //
  4316. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4317. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4318. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4319. //
  4320. #ifdef ENABLE_AUTO_BED_LEVELING
  4321. #ifdef Z_PROBE_REPEATABILITY_TEST
  4322. case 48: // M48 Z-Probe repeatability
  4323. {
  4324. #if Z_MIN_PIN == -1
  4325. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4326. #endif
  4327. double sum=0.0;
  4328. double mean=0.0;
  4329. double sigma=0.0;
  4330. double sample_set[50];
  4331. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4332. double X_current, Y_current, Z_current;
  4333. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4334. if (code_seen('V') || code_seen('v')) {
  4335. verbose_level = code_value();
  4336. if (verbose_level<0 || verbose_level>4 ) {
  4337. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4338. goto Sigma_Exit;
  4339. }
  4340. }
  4341. if (verbose_level > 0) {
  4342. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4343. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4344. }
  4345. if (code_seen('n')) {
  4346. n_samples = code_value();
  4347. if (n_samples<4 || n_samples>50 ) {
  4348. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4349. goto Sigma_Exit;
  4350. }
  4351. }
  4352. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4353. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4354. Z_current = st_get_position_mm(Z_AXIS);
  4355. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4356. ext_position = st_get_position_mm(E_AXIS);
  4357. if (code_seen('X') || code_seen('x') ) {
  4358. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4359. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4360. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4361. goto Sigma_Exit;
  4362. }
  4363. }
  4364. if (code_seen('Y') || code_seen('y') ) {
  4365. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4366. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4367. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4368. goto Sigma_Exit;
  4369. }
  4370. }
  4371. if (code_seen('L') || code_seen('l') ) {
  4372. n_legs = code_value();
  4373. if ( n_legs==1 )
  4374. n_legs = 2;
  4375. if ( n_legs<0 || n_legs>15 ) {
  4376. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4377. goto Sigma_Exit;
  4378. }
  4379. }
  4380. //
  4381. // Do all the preliminary setup work. First raise the probe.
  4382. //
  4383. st_synchronize();
  4384. plan_bed_level_matrix.set_to_identity();
  4385. plan_buffer_line( X_current, Y_current, Z_start_location,
  4386. ext_position,
  4387. homing_feedrate[Z_AXIS]/60,
  4388. active_extruder);
  4389. st_synchronize();
  4390. //
  4391. // Now get everything to the specified probe point So we can safely do a probe to
  4392. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4393. // use that as a starting point for each probe.
  4394. //
  4395. if (verbose_level > 2)
  4396. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4397. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4398. ext_position,
  4399. homing_feedrate[X_AXIS]/60,
  4400. active_extruder);
  4401. st_synchronize();
  4402. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4403. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4404. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4405. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4406. //
  4407. // OK, do the inital probe to get us close to the bed.
  4408. // Then retrace the right amount and use that in subsequent probes
  4409. //
  4410. setup_for_endstop_move();
  4411. run_z_probe();
  4412. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4413. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4414. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4415. ext_position,
  4416. homing_feedrate[X_AXIS]/60,
  4417. active_extruder);
  4418. st_synchronize();
  4419. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4420. for( n=0; n<n_samples; n++) {
  4421. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4422. if ( n_legs) {
  4423. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4424. int rotational_direction, l;
  4425. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4426. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4427. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4428. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4429. //SERIAL_ECHOPAIR(" theta: ",theta);
  4430. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4431. //SERIAL_PROTOCOLLNPGM("");
  4432. for( l=0; l<n_legs-1; l++) {
  4433. if (rotational_direction==1)
  4434. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4435. else
  4436. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4437. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4438. if ( radius<0.0 )
  4439. radius = -radius;
  4440. X_current = X_probe_location + cos(theta) * radius;
  4441. Y_current = Y_probe_location + sin(theta) * radius;
  4442. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4443. X_current = X_MIN_POS;
  4444. if ( X_current>X_MAX_POS)
  4445. X_current = X_MAX_POS;
  4446. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4447. Y_current = Y_MIN_POS;
  4448. if ( Y_current>Y_MAX_POS)
  4449. Y_current = Y_MAX_POS;
  4450. if (verbose_level>3 ) {
  4451. SERIAL_ECHOPAIR("x: ", X_current);
  4452. SERIAL_ECHOPAIR("y: ", Y_current);
  4453. SERIAL_PROTOCOLLNPGM("");
  4454. }
  4455. do_blocking_move_to( X_current, Y_current, Z_current );
  4456. }
  4457. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4458. }
  4459. setup_for_endstop_move();
  4460. run_z_probe();
  4461. sample_set[n] = current_position[Z_AXIS];
  4462. //
  4463. // Get the current mean for the data points we have so far
  4464. //
  4465. sum=0.0;
  4466. for( j=0; j<=n; j++) {
  4467. sum = sum + sample_set[j];
  4468. }
  4469. mean = sum / (double (n+1));
  4470. //
  4471. // Now, use that mean to calculate the standard deviation for the
  4472. // data points we have so far
  4473. //
  4474. sum=0.0;
  4475. for( j=0; j<=n; j++) {
  4476. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4477. }
  4478. sigma = sqrt( sum / (double (n+1)) );
  4479. if (verbose_level > 1) {
  4480. SERIAL_PROTOCOL(n+1);
  4481. SERIAL_PROTOCOL(" of ");
  4482. SERIAL_PROTOCOL(n_samples);
  4483. SERIAL_PROTOCOLPGM(" z: ");
  4484. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4485. }
  4486. if (verbose_level > 2) {
  4487. SERIAL_PROTOCOL(" mean: ");
  4488. SERIAL_PROTOCOL_F(mean,6);
  4489. SERIAL_PROTOCOL(" sigma: ");
  4490. SERIAL_PROTOCOL_F(sigma,6);
  4491. }
  4492. if (verbose_level > 0)
  4493. SERIAL_PROTOCOLPGM("\n");
  4494. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4495. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4496. st_synchronize();
  4497. }
  4498. delay(1000);
  4499. clean_up_after_endstop_move();
  4500. // enable_endstops(true);
  4501. if (verbose_level > 0) {
  4502. SERIAL_PROTOCOLPGM("Mean: ");
  4503. SERIAL_PROTOCOL_F(mean, 6);
  4504. SERIAL_PROTOCOLPGM("\n");
  4505. }
  4506. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4507. SERIAL_PROTOCOL_F(sigma, 6);
  4508. SERIAL_PROTOCOLPGM("\n\n");
  4509. Sigma_Exit:
  4510. break;
  4511. }
  4512. #endif // Z_PROBE_REPEATABILITY_TEST
  4513. #endif // ENABLE_AUTO_BED_LEVELING
  4514. case 73: //M73 show percent done and time remaining
  4515. if(code_seen('P')) print_percent_done_normal = code_value();
  4516. if(code_seen('R')) print_time_remaining_normal = code_value();
  4517. if(code_seen('Q')) print_percent_done_silent = code_value();
  4518. if(code_seen('S')) print_time_remaining_silent = code_value();
  4519. {
  4520. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4521. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4522. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4523. }
  4524. break;
  4525. case 104: // M104
  4526. if(setTargetedHotend(104)){
  4527. break;
  4528. }
  4529. if (code_seen('S'))
  4530. {
  4531. setTargetHotendSafe(code_value(), tmp_extruder);
  4532. }
  4533. setWatch();
  4534. break;
  4535. case 112: // M112 -Emergency Stop
  4536. kill(_n(""), 3);
  4537. break;
  4538. case 140: // M140 set bed temp
  4539. if (code_seen('S')) setTargetBed(code_value());
  4540. break;
  4541. case 105 : // M105
  4542. if(setTargetedHotend(105)){
  4543. break;
  4544. }
  4545. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4546. SERIAL_PROTOCOLPGM("ok T:");
  4547. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4548. SERIAL_PROTOCOLPGM(" /");
  4549. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4550. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4551. SERIAL_PROTOCOLPGM(" B:");
  4552. SERIAL_PROTOCOL_F(degBed(),1);
  4553. SERIAL_PROTOCOLPGM(" /");
  4554. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4555. #endif //TEMP_BED_PIN
  4556. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4557. SERIAL_PROTOCOLPGM(" T");
  4558. SERIAL_PROTOCOL(cur_extruder);
  4559. SERIAL_PROTOCOLPGM(":");
  4560. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4561. SERIAL_PROTOCOLPGM(" /");
  4562. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4563. }
  4564. #else
  4565. SERIAL_ERROR_START;
  4566. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4567. #endif
  4568. SERIAL_PROTOCOLPGM(" @:");
  4569. #ifdef EXTRUDER_WATTS
  4570. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4571. SERIAL_PROTOCOLPGM("W");
  4572. #else
  4573. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4574. #endif
  4575. SERIAL_PROTOCOLPGM(" B@:");
  4576. #ifdef BED_WATTS
  4577. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4578. SERIAL_PROTOCOLPGM("W");
  4579. #else
  4580. SERIAL_PROTOCOL(getHeaterPower(-1));
  4581. #endif
  4582. #ifdef PINDA_THERMISTOR
  4583. SERIAL_PROTOCOLPGM(" P:");
  4584. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4585. #endif //PINDA_THERMISTOR
  4586. #ifdef AMBIENT_THERMISTOR
  4587. SERIAL_PROTOCOLPGM(" A:");
  4588. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4589. #endif //AMBIENT_THERMISTOR
  4590. #ifdef SHOW_TEMP_ADC_VALUES
  4591. {float raw = 0.0;
  4592. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4593. SERIAL_PROTOCOLPGM(" ADC B:");
  4594. SERIAL_PROTOCOL_F(degBed(),1);
  4595. SERIAL_PROTOCOLPGM("C->");
  4596. raw = rawBedTemp();
  4597. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4598. SERIAL_PROTOCOLPGM(" Rb->");
  4599. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4600. SERIAL_PROTOCOLPGM(" Rxb->");
  4601. SERIAL_PROTOCOL_F(raw, 5);
  4602. #endif
  4603. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4604. SERIAL_PROTOCOLPGM(" T");
  4605. SERIAL_PROTOCOL(cur_extruder);
  4606. SERIAL_PROTOCOLPGM(":");
  4607. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4608. SERIAL_PROTOCOLPGM("C->");
  4609. raw = rawHotendTemp(cur_extruder);
  4610. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4611. SERIAL_PROTOCOLPGM(" Rt");
  4612. SERIAL_PROTOCOL(cur_extruder);
  4613. SERIAL_PROTOCOLPGM("->");
  4614. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4615. SERIAL_PROTOCOLPGM(" Rx");
  4616. SERIAL_PROTOCOL(cur_extruder);
  4617. SERIAL_PROTOCOLPGM("->");
  4618. SERIAL_PROTOCOL_F(raw, 5);
  4619. }}
  4620. #endif
  4621. SERIAL_PROTOCOLLN("");
  4622. KEEPALIVE_STATE(NOT_BUSY);
  4623. return;
  4624. break;
  4625. case 109:
  4626. {// M109 - Wait for extruder heater to reach target.
  4627. if(setTargetedHotend(109)){
  4628. break;
  4629. }
  4630. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4631. heating_status = 1;
  4632. if (farm_mode) { prusa_statistics(1); };
  4633. #ifdef AUTOTEMP
  4634. autotemp_enabled=false;
  4635. #endif
  4636. if (code_seen('S')) {
  4637. setTargetHotendSafe(code_value(), tmp_extruder);
  4638. CooldownNoWait = true;
  4639. } else if (code_seen('R')) {
  4640. setTargetHotendSafe(code_value(), tmp_extruder);
  4641. CooldownNoWait = false;
  4642. }
  4643. #ifdef AUTOTEMP
  4644. if (code_seen('S')) autotemp_min=code_value();
  4645. if (code_seen('B')) autotemp_max=code_value();
  4646. if (code_seen('F'))
  4647. {
  4648. autotemp_factor=code_value();
  4649. autotemp_enabled=true;
  4650. }
  4651. #endif
  4652. setWatch();
  4653. codenum = millis();
  4654. /* See if we are heating up or cooling down */
  4655. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4656. KEEPALIVE_STATE(NOT_BUSY);
  4657. cancel_heatup = false;
  4658. wait_for_heater(codenum); //loops until target temperature is reached
  4659. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4660. KEEPALIVE_STATE(IN_HANDLER);
  4661. heating_status = 2;
  4662. if (farm_mode) { prusa_statistics(2); };
  4663. //starttime=millis();
  4664. previous_millis_cmd = millis();
  4665. }
  4666. break;
  4667. case 190: // M190 - Wait for bed heater to reach target.
  4668. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4669. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4670. heating_status = 3;
  4671. if (farm_mode) { prusa_statistics(1); };
  4672. if (code_seen('S'))
  4673. {
  4674. setTargetBed(code_value());
  4675. CooldownNoWait = true;
  4676. }
  4677. else if (code_seen('R'))
  4678. {
  4679. setTargetBed(code_value());
  4680. CooldownNoWait = false;
  4681. }
  4682. codenum = millis();
  4683. cancel_heatup = false;
  4684. target_direction = isHeatingBed(); // true if heating, false if cooling
  4685. KEEPALIVE_STATE(NOT_BUSY);
  4686. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4687. {
  4688. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4689. {
  4690. if (!farm_mode) {
  4691. float tt = degHotend(active_extruder);
  4692. SERIAL_PROTOCOLPGM("T:");
  4693. SERIAL_PROTOCOL(tt);
  4694. SERIAL_PROTOCOLPGM(" E:");
  4695. SERIAL_PROTOCOL((int)active_extruder);
  4696. SERIAL_PROTOCOLPGM(" B:");
  4697. SERIAL_PROTOCOL_F(degBed(), 1);
  4698. SERIAL_PROTOCOLLN("");
  4699. }
  4700. codenum = millis();
  4701. }
  4702. manage_heater();
  4703. manage_inactivity();
  4704. lcd_update(0);
  4705. }
  4706. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4707. KEEPALIVE_STATE(IN_HANDLER);
  4708. heating_status = 4;
  4709. previous_millis_cmd = millis();
  4710. #endif
  4711. break;
  4712. #if defined(FAN_PIN) && FAN_PIN > -1
  4713. case 106: //M106 Fan On
  4714. if (code_seen('S')){
  4715. fanSpeed=constrain(code_value(),0,255);
  4716. }
  4717. else {
  4718. fanSpeed=255;
  4719. }
  4720. break;
  4721. case 107: //M107 Fan Off
  4722. fanSpeed = 0;
  4723. break;
  4724. #endif //FAN_PIN
  4725. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4726. case 80: // M80 - Turn on Power Supply
  4727. SET_OUTPUT(PS_ON_PIN); //GND
  4728. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4729. // If you have a switch on suicide pin, this is useful
  4730. // if you want to start another print with suicide feature after
  4731. // a print without suicide...
  4732. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4733. SET_OUTPUT(SUICIDE_PIN);
  4734. WRITE(SUICIDE_PIN, HIGH);
  4735. #endif
  4736. powersupply = true;
  4737. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4738. lcd_update(0);
  4739. break;
  4740. #endif
  4741. case 81: // M81 - Turn off Power Supply
  4742. disable_heater();
  4743. st_synchronize();
  4744. disable_e0();
  4745. disable_e1();
  4746. disable_e2();
  4747. finishAndDisableSteppers();
  4748. fanSpeed = 0;
  4749. delay(1000); // Wait a little before to switch off
  4750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4751. st_synchronize();
  4752. suicide();
  4753. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4754. SET_OUTPUT(PS_ON_PIN);
  4755. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4756. #endif
  4757. powersupply = false;
  4758. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4759. lcd_update(0);
  4760. break;
  4761. case 82:
  4762. axis_relative_modes[3] = false;
  4763. break;
  4764. case 83:
  4765. axis_relative_modes[3] = true;
  4766. break;
  4767. case 18: //compatibility
  4768. case 84: // M84
  4769. if(code_seen('S')){
  4770. stepper_inactive_time = code_value() * 1000;
  4771. }
  4772. else
  4773. {
  4774. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4775. if(all_axis)
  4776. {
  4777. st_synchronize();
  4778. disable_e0();
  4779. disable_e1();
  4780. disable_e2();
  4781. finishAndDisableSteppers();
  4782. }
  4783. else
  4784. {
  4785. st_synchronize();
  4786. if (code_seen('X')) disable_x();
  4787. if (code_seen('Y')) disable_y();
  4788. if (code_seen('Z')) disable_z();
  4789. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4790. if (code_seen('E')) {
  4791. disable_e0();
  4792. disable_e1();
  4793. disable_e2();
  4794. }
  4795. #endif
  4796. }
  4797. }
  4798. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4799. print_time_remaining_init();
  4800. snmm_filaments_used = 0;
  4801. break;
  4802. case 85: // M85
  4803. if(code_seen('S')) {
  4804. max_inactive_time = code_value() * 1000;
  4805. }
  4806. break;
  4807. #ifdef SAFETYTIMER
  4808. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4809. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4810. if (code_seen('S')) {
  4811. safetytimer_inactive_time = code_value() * 1000;
  4812. safetyTimer.start();
  4813. }
  4814. break;
  4815. #endif
  4816. case 92: // M92
  4817. for(int8_t i=0; i < NUM_AXIS; i++)
  4818. {
  4819. if(code_seen(axis_codes[i]))
  4820. {
  4821. if(i == 3) { // E
  4822. float value = code_value();
  4823. if(value < 20.0) {
  4824. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4825. max_jerk[E_AXIS] *= factor;
  4826. max_feedrate[i] *= factor;
  4827. axis_steps_per_sqr_second[i] *= factor;
  4828. }
  4829. axis_steps_per_unit[i] = value;
  4830. }
  4831. else {
  4832. axis_steps_per_unit[i] = code_value();
  4833. }
  4834. }
  4835. }
  4836. break;
  4837. case 110: // M110 - reset line pos
  4838. if (code_seen('N'))
  4839. gcode_LastN = code_value_long();
  4840. break;
  4841. #ifdef HOST_KEEPALIVE_FEATURE
  4842. case 113: // M113 - Get or set Host Keepalive interval
  4843. if (code_seen('S')) {
  4844. host_keepalive_interval = (uint8_t)code_value_short();
  4845. // NOMORE(host_keepalive_interval, 60);
  4846. }
  4847. else {
  4848. SERIAL_ECHO_START;
  4849. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4850. SERIAL_PROTOCOLLN("");
  4851. }
  4852. break;
  4853. #endif
  4854. case 115: // M115
  4855. if (code_seen('V')) {
  4856. // Report the Prusa version number.
  4857. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4858. } else if (code_seen('U')) {
  4859. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4860. // pause the print and ask the user to upgrade the firmware.
  4861. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4862. } else {
  4863. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4864. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4865. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4866. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4867. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4868. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4869. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4870. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4871. SERIAL_ECHOPGM(" UUID:");
  4872. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4873. }
  4874. break;
  4875. /* case 117: // M117 display message
  4876. starpos = (strchr(strchr_pointer + 5,'*'));
  4877. if(starpos!=NULL)
  4878. *(starpos)='\0';
  4879. lcd_setstatus(strchr_pointer + 5);
  4880. break;*/
  4881. case 114: // M114
  4882. gcode_M114();
  4883. break;
  4884. case 120: // M120
  4885. enable_endstops(false) ;
  4886. break;
  4887. case 121: // M121
  4888. enable_endstops(true) ;
  4889. break;
  4890. case 119: // M119
  4891. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4892. SERIAL_PROTOCOLLN("");
  4893. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4894. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4895. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4896. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4897. }else{
  4898. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4899. }
  4900. SERIAL_PROTOCOLLN("");
  4901. #endif
  4902. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4903. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4904. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4905. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4906. }else{
  4907. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4908. }
  4909. SERIAL_PROTOCOLLN("");
  4910. #endif
  4911. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4912. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4913. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4914. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4915. }else{
  4916. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4917. }
  4918. SERIAL_PROTOCOLLN("");
  4919. #endif
  4920. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4921. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4922. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4923. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4924. }else{
  4925. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4926. }
  4927. SERIAL_PROTOCOLLN("");
  4928. #endif
  4929. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4930. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4931. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4932. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4933. }else{
  4934. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4935. }
  4936. SERIAL_PROTOCOLLN("");
  4937. #endif
  4938. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4939. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4940. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4941. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4942. }else{
  4943. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4944. }
  4945. SERIAL_PROTOCOLLN("");
  4946. #endif
  4947. break;
  4948. //TODO: update for all axis, use for loop
  4949. #ifdef BLINKM
  4950. case 150: // M150
  4951. {
  4952. byte red;
  4953. byte grn;
  4954. byte blu;
  4955. if(code_seen('R')) red = code_value();
  4956. if(code_seen('U')) grn = code_value();
  4957. if(code_seen('B')) blu = code_value();
  4958. SendColors(red,grn,blu);
  4959. }
  4960. break;
  4961. #endif //BLINKM
  4962. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4963. {
  4964. tmp_extruder = active_extruder;
  4965. if(code_seen('T')) {
  4966. tmp_extruder = code_value();
  4967. if(tmp_extruder >= EXTRUDERS) {
  4968. SERIAL_ECHO_START;
  4969. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4970. break;
  4971. }
  4972. }
  4973. if(code_seen('D')) {
  4974. float diameter = (float)code_value();
  4975. if (diameter == 0.0) {
  4976. // setting any extruder filament size disables volumetric on the assumption that
  4977. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4978. // for all extruders
  4979. volumetric_enabled = false;
  4980. } else {
  4981. filament_size[tmp_extruder] = (float)code_value();
  4982. // make sure all extruders have some sane value for the filament size
  4983. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4984. #if EXTRUDERS > 1
  4985. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4986. #if EXTRUDERS > 2
  4987. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4988. #endif
  4989. #endif
  4990. volumetric_enabled = true;
  4991. }
  4992. } else {
  4993. //reserved for setting filament diameter via UFID or filament measuring device
  4994. break;
  4995. }
  4996. calculate_extruder_multipliers();
  4997. }
  4998. break;
  4999. case 201: // M201
  5000. for (int8_t i = 0; i < NUM_AXIS; i++)
  5001. {
  5002. if (code_seen(axis_codes[i]))
  5003. {
  5004. unsigned long val = code_value();
  5005. #ifdef TMC2130
  5006. unsigned long val_silent = val;
  5007. if ((i == X_AXIS) || (i == Y_AXIS))
  5008. {
  5009. if (val > NORMAL_MAX_ACCEL_XY)
  5010. val = NORMAL_MAX_ACCEL_XY;
  5011. if (val_silent > SILENT_MAX_ACCEL_XY)
  5012. val_silent = SILENT_MAX_ACCEL_XY;
  5013. }
  5014. max_acceleration_units_per_sq_second_normal[i] = val;
  5015. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5016. #else //TMC2130
  5017. max_acceleration_units_per_sq_second[i] = val;
  5018. #endif //TMC2130
  5019. }
  5020. }
  5021. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5022. reset_acceleration_rates();
  5023. break;
  5024. #if 0 // Not used for Sprinter/grbl gen6
  5025. case 202: // M202
  5026. for(int8_t i=0; i < NUM_AXIS; i++) {
  5027. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5028. }
  5029. break;
  5030. #endif
  5031. case 203: // M203 max feedrate mm/sec
  5032. for (int8_t i = 0; i < NUM_AXIS; i++)
  5033. {
  5034. if (code_seen(axis_codes[i]))
  5035. {
  5036. float val = code_value();
  5037. #ifdef TMC2130
  5038. float val_silent = val;
  5039. if ((i == X_AXIS) || (i == Y_AXIS))
  5040. {
  5041. if (val > NORMAL_MAX_FEEDRATE_XY)
  5042. val = NORMAL_MAX_FEEDRATE_XY;
  5043. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5044. val_silent = SILENT_MAX_FEEDRATE_XY;
  5045. }
  5046. max_feedrate_normal[i] = val;
  5047. max_feedrate_silent[i] = val_silent;
  5048. #else //TMC2130
  5049. max_feedrate[i] = val;
  5050. #endif //TMC2130
  5051. }
  5052. }
  5053. break;
  5054. case 204: // M204 acclereration S normal moves T filmanent only moves
  5055. {
  5056. if(code_seen('S')) acceleration = code_value() ;
  5057. if(code_seen('T')) retract_acceleration = code_value() ;
  5058. }
  5059. break;
  5060. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5061. {
  5062. if(code_seen('S')) minimumfeedrate = code_value();
  5063. if(code_seen('T')) mintravelfeedrate = code_value();
  5064. if(code_seen('B')) minsegmenttime = code_value() ;
  5065. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5066. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5067. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5068. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5069. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5070. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5071. }
  5072. break;
  5073. case 206: // M206 additional homing offset
  5074. for(int8_t i=0; i < 3; i++)
  5075. {
  5076. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5077. }
  5078. break;
  5079. #ifdef FWRETRACT
  5080. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5081. {
  5082. if(code_seen('S'))
  5083. {
  5084. retract_length = code_value() ;
  5085. }
  5086. if(code_seen('F'))
  5087. {
  5088. retract_feedrate = code_value()/60 ;
  5089. }
  5090. if(code_seen('Z'))
  5091. {
  5092. retract_zlift = code_value() ;
  5093. }
  5094. }break;
  5095. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5096. {
  5097. if(code_seen('S'))
  5098. {
  5099. retract_recover_length = code_value() ;
  5100. }
  5101. if(code_seen('F'))
  5102. {
  5103. retract_recover_feedrate = code_value()/60 ;
  5104. }
  5105. }break;
  5106. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5107. {
  5108. if(code_seen('S'))
  5109. {
  5110. int t= code_value() ;
  5111. switch(t)
  5112. {
  5113. case 0:
  5114. {
  5115. autoretract_enabled=false;
  5116. retracted[0]=false;
  5117. #if EXTRUDERS > 1
  5118. retracted[1]=false;
  5119. #endif
  5120. #if EXTRUDERS > 2
  5121. retracted[2]=false;
  5122. #endif
  5123. }break;
  5124. case 1:
  5125. {
  5126. autoretract_enabled=true;
  5127. retracted[0]=false;
  5128. #if EXTRUDERS > 1
  5129. retracted[1]=false;
  5130. #endif
  5131. #if EXTRUDERS > 2
  5132. retracted[2]=false;
  5133. #endif
  5134. }break;
  5135. default:
  5136. SERIAL_ECHO_START;
  5137. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5138. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5139. SERIAL_ECHOLNPGM("\"(1)");
  5140. }
  5141. }
  5142. }break;
  5143. #endif // FWRETRACT
  5144. #if EXTRUDERS > 1
  5145. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5146. {
  5147. if(setTargetedHotend(218)){
  5148. break;
  5149. }
  5150. if(code_seen('X'))
  5151. {
  5152. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5153. }
  5154. if(code_seen('Y'))
  5155. {
  5156. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5157. }
  5158. SERIAL_ECHO_START;
  5159. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5160. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5161. {
  5162. SERIAL_ECHO(" ");
  5163. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5164. SERIAL_ECHO(",");
  5165. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5166. }
  5167. SERIAL_ECHOLN("");
  5168. }break;
  5169. #endif
  5170. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5171. {
  5172. if(code_seen('S'))
  5173. {
  5174. feedmultiply = code_value() ;
  5175. }
  5176. }
  5177. break;
  5178. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5179. {
  5180. if(code_seen('S'))
  5181. {
  5182. int tmp_code = code_value();
  5183. if (code_seen('T'))
  5184. {
  5185. if(setTargetedHotend(221)){
  5186. break;
  5187. }
  5188. extruder_multiply[tmp_extruder] = tmp_code;
  5189. }
  5190. else
  5191. {
  5192. extrudemultiply = tmp_code ;
  5193. }
  5194. }
  5195. calculate_extruder_multipliers();
  5196. }
  5197. break;
  5198. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5199. {
  5200. if(code_seen('P')){
  5201. int pin_number = code_value(); // pin number
  5202. int pin_state = -1; // required pin state - default is inverted
  5203. if(code_seen('S')) pin_state = code_value(); // required pin state
  5204. if(pin_state >= -1 && pin_state <= 1){
  5205. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5206. {
  5207. if (sensitive_pins[i] == pin_number)
  5208. {
  5209. pin_number = -1;
  5210. break;
  5211. }
  5212. }
  5213. if (pin_number > -1)
  5214. {
  5215. int target = LOW;
  5216. st_synchronize();
  5217. pinMode(pin_number, INPUT);
  5218. switch(pin_state){
  5219. case 1:
  5220. target = HIGH;
  5221. break;
  5222. case 0:
  5223. target = LOW;
  5224. break;
  5225. case -1:
  5226. target = !digitalRead(pin_number);
  5227. break;
  5228. }
  5229. while(digitalRead(pin_number) != target){
  5230. manage_heater();
  5231. manage_inactivity();
  5232. lcd_update(0);
  5233. }
  5234. }
  5235. }
  5236. }
  5237. }
  5238. break;
  5239. #if NUM_SERVOS > 0
  5240. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5241. {
  5242. int servo_index = -1;
  5243. int servo_position = 0;
  5244. if (code_seen('P'))
  5245. servo_index = code_value();
  5246. if (code_seen('S')) {
  5247. servo_position = code_value();
  5248. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5249. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5250. servos[servo_index].attach(0);
  5251. #endif
  5252. servos[servo_index].write(servo_position);
  5253. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5254. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5255. servos[servo_index].detach();
  5256. #endif
  5257. }
  5258. else {
  5259. SERIAL_ECHO_START;
  5260. SERIAL_ECHO("Servo ");
  5261. SERIAL_ECHO(servo_index);
  5262. SERIAL_ECHOLN(" out of range");
  5263. }
  5264. }
  5265. else if (servo_index >= 0) {
  5266. SERIAL_PROTOCOL(_T(MSG_OK));
  5267. SERIAL_PROTOCOL(" Servo ");
  5268. SERIAL_PROTOCOL(servo_index);
  5269. SERIAL_PROTOCOL(": ");
  5270. SERIAL_PROTOCOL(servos[servo_index].read());
  5271. SERIAL_PROTOCOLLN("");
  5272. }
  5273. }
  5274. break;
  5275. #endif // NUM_SERVOS > 0
  5276. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5277. case 300: // M300
  5278. {
  5279. int beepS = code_seen('S') ? code_value() : 110;
  5280. int beepP = code_seen('P') ? code_value() : 1000;
  5281. if (beepS > 0)
  5282. {
  5283. #if BEEPER > 0
  5284. tone(BEEPER, beepS);
  5285. delay(beepP);
  5286. noTone(BEEPER);
  5287. #endif
  5288. }
  5289. else
  5290. {
  5291. delay(beepP);
  5292. }
  5293. }
  5294. break;
  5295. #endif // M300
  5296. #ifdef PIDTEMP
  5297. case 301: // M301
  5298. {
  5299. if(code_seen('P')) Kp = code_value();
  5300. if(code_seen('I')) Ki = scalePID_i(code_value());
  5301. if(code_seen('D')) Kd = scalePID_d(code_value());
  5302. #ifdef PID_ADD_EXTRUSION_RATE
  5303. if(code_seen('C')) Kc = code_value();
  5304. #endif
  5305. updatePID();
  5306. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5307. SERIAL_PROTOCOL(" p:");
  5308. SERIAL_PROTOCOL(Kp);
  5309. SERIAL_PROTOCOL(" i:");
  5310. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5311. SERIAL_PROTOCOL(" d:");
  5312. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5313. #ifdef PID_ADD_EXTRUSION_RATE
  5314. SERIAL_PROTOCOL(" c:");
  5315. //Kc does not have scaling applied above, or in resetting defaults
  5316. SERIAL_PROTOCOL(Kc);
  5317. #endif
  5318. SERIAL_PROTOCOLLN("");
  5319. }
  5320. break;
  5321. #endif //PIDTEMP
  5322. #ifdef PIDTEMPBED
  5323. case 304: // M304
  5324. {
  5325. if(code_seen('P')) bedKp = code_value();
  5326. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5327. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5328. updatePID();
  5329. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5330. SERIAL_PROTOCOL(" p:");
  5331. SERIAL_PROTOCOL(bedKp);
  5332. SERIAL_PROTOCOL(" i:");
  5333. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5334. SERIAL_PROTOCOL(" d:");
  5335. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5336. SERIAL_PROTOCOLLN("");
  5337. }
  5338. break;
  5339. #endif //PIDTEMP
  5340. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5341. {
  5342. #ifdef CHDK
  5343. SET_OUTPUT(CHDK);
  5344. WRITE(CHDK, HIGH);
  5345. chdkHigh = millis();
  5346. chdkActive = true;
  5347. #else
  5348. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5349. const uint8_t NUM_PULSES=16;
  5350. const float PULSE_LENGTH=0.01524;
  5351. for(int i=0; i < NUM_PULSES; i++) {
  5352. WRITE(PHOTOGRAPH_PIN, HIGH);
  5353. _delay_ms(PULSE_LENGTH);
  5354. WRITE(PHOTOGRAPH_PIN, LOW);
  5355. _delay_ms(PULSE_LENGTH);
  5356. }
  5357. delay(7.33);
  5358. for(int i=0; i < NUM_PULSES; i++) {
  5359. WRITE(PHOTOGRAPH_PIN, HIGH);
  5360. _delay_ms(PULSE_LENGTH);
  5361. WRITE(PHOTOGRAPH_PIN, LOW);
  5362. _delay_ms(PULSE_LENGTH);
  5363. }
  5364. #endif
  5365. #endif //chdk end if
  5366. }
  5367. break;
  5368. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5369. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5370. {
  5371. float temp = .0;
  5372. if (code_seen('S')) temp=code_value();
  5373. set_extrude_min_temp(temp);
  5374. }
  5375. break;
  5376. #endif
  5377. case 303: // M303 PID autotune
  5378. {
  5379. float temp = 150.0;
  5380. int e=0;
  5381. int c=5;
  5382. if (code_seen('E')) e=code_value();
  5383. if (e<0)
  5384. temp=70;
  5385. if (code_seen('S')) temp=code_value();
  5386. if (code_seen('C')) c=code_value();
  5387. PID_autotune(temp, e, c);
  5388. }
  5389. break;
  5390. case 400: // M400 finish all moves
  5391. {
  5392. st_synchronize();
  5393. }
  5394. break;
  5395. case 500: // M500 Store settings in EEPROM
  5396. {
  5397. Config_StoreSettings(EEPROM_OFFSET);
  5398. }
  5399. break;
  5400. case 501: // M501 Read settings from EEPROM
  5401. {
  5402. Config_RetrieveSettings(EEPROM_OFFSET);
  5403. }
  5404. break;
  5405. case 502: // M502 Revert to default settings
  5406. {
  5407. Config_ResetDefault();
  5408. }
  5409. break;
  5410. case 503: // M503 print settings currently in memory
  5411. {
  5412. Config_PrintSettings();
  5413. }
  5414. break;
  5415. case 509: //M509 Force language selection
  5416. {
  5417. lang_reset();
  5418. SERIAL_ECHO_START;
  5419. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5420. }
  5421. break;
  5422. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5423. case 540:
  5424. {
  5425. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5426. }
  5427. break;
  5428. #endif
  5429. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5430. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5431. {
  5432. float value;
  5433. if (code_seen('Z'))
  5434. {
  5435. value = code_value();
  5436. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5437. {
  5438. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5439. SERIAL_ECHO_START;
  5440. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5441. SERIAL_PROTOCOLLN("");
  5442. }
  5443. else
  5444. {
  5445. SERIAL_ECHO_START;
  5446. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5447. SERIAL_ECHORPGM(MSG_Z_MIN);
  5448. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5449. SERIAL_ECHORPGM(MSG_Z_MAX);
  5450. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5451. SERIAL_PROTOCOLLN("");
  5452. }
  5453. }
  5454. else
  5455. {
  5456. SERIAL_ECHO_START;
  5457. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5458. SERIAL_ECHO(-zprobe_zoffset);
  5459. SERIAL_PROTOCOLLN("");
  5460. }
  5461. break;
  5462. }
  5463. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5464. #ifdef FILAMENTCHANGEENABLE
  5465. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5466. {
  5467. st_synchronize();
  5468. float lastpos[4];
  5469. if (farm_mode)
  5470. {
  5471. prusa_statistics(22);
  5472. }
  5473. feedmultiplyBckp=feedmultiply;
  5474. float HotendTempBckp = degTargetHotend(active_extruder);
  5475. int fanSpeedBckp = fanSpeed;
  5476. lastpos[X_AXIS]=current_position[X_AXIS];
  5477. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5478. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5479. lastpos[E_AXIS]=current_position[E_AXIS];
  5480. //Restract extruder
  5481. if(code_seen('E'))
  5482. {
  5483. current_position[E_AXIS]+= code_value();
  5484. }
  5485. else
  5486. {
  5487. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5488. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5489. #endif
  5490. }
  5491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5492. //Lift Z
  5493. if(code_seen('Z'))
  5494. {
  5495. current_position[Z_AXIS]+= code_value();
  5496. }
  5497. else
  5498. {
  5499. #ifdef FILAMENTCHANGE_ZADD
  5500. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5501. if(current_position[Z_AXIS] < 10){
  5502. current_position[Z_AXIS]+= 10 ;
  5503. }
  5504. #endif
  5505. }
  5506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5507. //Move XY to side
  5508. if(code_seen('X'))
  5509. {
  5510. current_position[X_AXIS]+= code_value();
  5511. }
  5512. else
  5513. {
  5514. #ifdef FILAMENTCHANGE_XPOS
  5515. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5516. #endif
  5517. }
  5518. if(code_seen('Y'))
  5519. {
  5520. current_position[Y_AXIS]= code_value();
  5521. }
  5522. else
  5523. {
  5524. #ifdef FILAMENTCHANGE_YPOS
  5525. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5526. #endif
  5527. }
  5528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5529. st_synchronize();
  5530. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5531. int counterBeep = 0;
  5532. fanSpeed = 0;
  5533. unsigned long waiting_start_time = millis();
  5534. uint8_t wait_for_user_state = 0;
  5535. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5536. //-//
  5537. bool bFirst=true;
  5538. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5539. manage_heater();
  5540. manage_inactivity(true);
  5541. #if BEEPER > 0
  5542. if (counterBeep == 500) {
  5543. counterBeep = 0;
  5544. }
  5545. SET_OUTPUT(BEEPER);
  5546. if (counterBeep == 0) {
  5547. //-//
  5548. //if(eSoundMode==e_SOUND_MODE_LOUD)
  5549. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  5550. {
  5551. bFirst=false;
  5552. WRITE(BEEPER, HIGH);
  5553. }
  5554. }
  5555. if (counterBeep == 20) {
  5556. WRITE(BEEPER, LOW);
  5557. }
  5558. counterBeep++;
  5559. #endif
  5560. switch (wait_for_user_state) {
  5561. case 0:
  5562. delay_keep_alive(4);
  5563. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5564. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5565. wait_for_user_state = 1;
  5566. setAllTargetHotends(0);
  5567. st_synchronize();
  5568. disable_e0();
  5569. disable_e1();
  5570. disable_e2();
  5571. }
  5572. break;
  5573. case 1:
  5574. delay_keep_alive(4);
  5575. if (lcd_clicked()) {
  5576. setTargetHotend(HotendTempBckp, active_extruder);
  5577. lcd_wait_for_heater();
  5578. wait_for_user_state = 2;
  5579. }
  5580. break;
  5581. case 2:
  5582. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5583. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5584. waiting_start_time = millis();
  5585. wait_for_user_state = 0;
  5586. }
  5587. else {
  5588. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5589. lcd_set_cursor(1, 4);
  5590. lcd_print(ftostr3(degHotend(active_extruder)));
  5591. }
  5592. break;
  5593. }
  5594. }
  5595. WRITE(BEEPER, LOW);
  5596. lcd_change_fil_state = 0;
  5597. // Unload filament
  5598. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5599. KEEPALIVE_STATE(IN_HANDLER);
  5600. custom_message = true;
  5601. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5602. if (code_seen('L'))
  5603. {
  5604. current_position[E_AXIS] += code_value();
  5605. }
  5606. else
  5607. {
  5608. #ifdef SNMM
  5609. #else
  5610. #ifdef FILAMENTCHANGE_FINALRETRACT
  5611. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5612. #endif
  5613. #endif // SNMM
  5614. }
  5615. #ifdef SNMM
  5616. current_position[E_AXIS] += 12;
  5617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5618. current_position[E_AXIS] += 6;
  5619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5620. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5622. st_synchronize();
  5623. current_position[E_AXIS] += (FIL_COOLING);
  5624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5625. current_position[E_AXIS] += (FIL_COOLING*-1);
  5626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5627. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5629. st_synchronize();
  5630. #else
  5631. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5633. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5634. st_synchronize();
  5635. #ifdef TMC2130
  5636. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5637. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5638. #else
  5639. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5640. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5641. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5642. #endif //TMC2130
  5643. current_position[E_AXIS] -= 45;
  5644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5645. st_synchronize();
  5646. current_position[E_AXIS] -= 15;
  5647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5648. st_synchronize();
  5649. current_position[E_AXIS] -= 20;
  5650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5651. st_synchronize();
  5652. #ifdef TMC2130
  5653. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5654. #else
  5655. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5656. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5657. else st_current_set(2, tmp_motor_loud[2]);
  5658. #endif //TMC2130
  5659. #endif // SNMM
  5660. //finish moves
  5661. st_synchronize();
  5662. //disable extruder steppers so filament can be removed
  5663. disable_e0();
  5664. disable_e1();
  5665. disable_e2();
  5666. delay(100);
  5667. #ifdef SNMM_V2
  5668. fprintf_P(uart2io, PSTR("U0\n"));
  5669. // get response
  5670. bool response = mmu_get_reponse(false);
  5671. if (!response) mmu_not_responding();
  5672. #else
  5673. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5674. WRITE(BEEPER, HIGH);
  5675. counterBeep = 0;
  5676. while(!lcd_clicked() && (counterBeep < 50)) {
  5677. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5678. delay_keep_alive(100);
  5679. counterBeep++;
  5680. }
  5681. WRITE(BEEPER, LOW);
  5682. #endif
  5683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5684. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5685. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5686. //lcd_return_to_status();
  5687. lcd_update_enable(true);
  5688. #ifdef SNMM_V2
  5689. mmu_M600_load_filament();
  5690. #else
  5691. M600_load_filament();
  5692. #endif
  5693. //Wait for user to check the state
  5694. lcd_change_fil_state = 0;
  5695. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5696. lcd_change_fil_state = 0;
  5697. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5698. lcd_alright();
  5699. KEEPALIVE_STATE(IN_HANDLER);
  5700. switch(lcd_change_fil_state){
  5701. // Filament failed to load so load it again
  5702. case 2:
  5703. #ifdef SNMM_V2
  5704. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5705. #else
  5706. M600_load_filament_movements();
  5707. #endif
  5708. break;
  5709. // Filament loaded properly but color is not clear
  5710. case 3:
  5711. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5713. lcd_loading_color();
  5714. break;
  5715. // Everything good
  5716. default:
  5717. lcd_change_success();
  5718. lcd_update_enable(true);
  5719. break;
  5720. }
  5721. }
  5722. //Not let's go back to print
  5723. fanSpeed = fanSpeedBckp;
  5724. //Feed a little of filament to stabilize pressure
  5725. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5727. //Retract
  5728. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5730. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5731. //Move XY back
  5732. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5733. //Move Z back
  5734. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5735. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5736. //Unretract
  5737. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5738. //Set E position to original
  5739. plan_set_e_position(lastpos[E_AXIS]);
  5740. memcpy(current_position, lastpos, sizeof(lastpos));
  5741. memcpy(destination, current_position, sizeof(current_position));
  5742. //Recover feed rate
  5743. feedmultiply=feedmultiplyBckp;
  5744. char cmd[9];
  5745. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5746. enquecommand(cmd);
  5747. lcd_setstatuspgm(_T(WELCOME_MSG));
  5748. custom_message = false;
  5749. custom_message_type = 0;
  5750. }
  5751. break;
  5752. #endif //FILAMENTCHANGEENABLE
  5753. case 601: {
  5754. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5755. }
  5756. break;
  5757. case 602: {
  5758. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5759. }
  5760. break;
  5761. #ifdef PINDA_THERMISTOR
  5762. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5763. {
  5764. int set_target_pinda = 0;
  5765. if (code_seen('S')) {
  5766. set_target_pinda = code_value();
  5767. }
  5768. else {
  5769. break;
  5770. }
  5771. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5772. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5773. SERIAL_PROTOCOL(set_target_pinda);
  5774. SERIAL_PROTOCOLLN("");
  5775. codenum = millis();
  5776. cancel_heatup = false;
  5777. bool is_pinda_cooling = false;
  5778. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5779. is_pinda_cooling = true;
  5780. }
  5781. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5782. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5783. {
  5784. SERIAL_PROTOCOLPGM("P:");
  5785. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5786. SERIAL_PROTOCOLPGM("/");
  5787. SERIAL_PROTOCOL(set_target_pinda);
  5788. SERIAL_PROTOCOLLN("");
  5789. codenum = millis();
  5790. }
  5791. manage_heater();
  5792. manage_inactivity();
  5793. lcd_update(0);
  5794. }
  5795. LCD_MESSAGERPGM(_T(MSG_OK));
  5796. break;
  5797. }
  5798. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5799. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5800. uint8_t cal_status = calibration_status_pinda();
  5801. int16_t usteps = 0;
  5802. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5803. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5804. for (uint8_t i = 0; i < 6; i++)
  5805. {
  5806. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5807. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5808. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5809. SERIAL_PROTOCOLPGM(", ");
  5810. SERIAL_PROTOCOL(35 + (i * 5));
  5811. SERIAL_PROTOCOLPGM(", ");
  5812. SERIAL_PROTOCOL(usteps);
  5813. SERIAL_PROTOCOLPGM(", ");
  5814. SERIAL_PROTOCOL(mm * 1000);
  5815. SERIAL_PROTOCOLLN("");
  5816. }
  5817. }
  5818. else if (code_seen('!')) { // ! - Set factory default values
  5819. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5820. int16_t z_shift = 8; //40C - 20um - 8usteps
  5821. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5822. z_shift = 24; //45C - 60um - 24usteps
  5823. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5824. z_shift = 48; //50C - 120um - 48usteps
  5825. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5826. z_shift = 80; //55C - 200um - 80usteps
  5827. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5828. z_shift = 120; //60C - 300um - 120usteps
  5829. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5830. SERIAL_PROTOCOLLN("factory restored");
  5831. }
  5832. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5833. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5834. int16_t z_shift = 0;
  5835. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5836. SERIAL_PROTOCOLLN("zerorized");
  5837. }
  5838. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5839. int16_t usteps = code_value();
  5840. if (code_seen('I')) {
  5841. byte index = code_value();
  5842. if ((index >= 0) && (index < 5)) {
  5843. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5844. SERIAL_PROTOCOLLN("OK");
  5845. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5846. for (uint8_t i = 0; i < 6; i++)
  5847. {
  5848. usteps = 0;
  5849. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5850. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5851. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5852. SERIAL_PROTOCOLPGM(", ");
  5853. SERIAL_PROTOCOL(35 + (i * 5));
  5854. SERIAL_PROTOCOLPGM(", ");
  5855. SERIAL_PROTOCOL(usteps);
  5856. SERIAL_PROTOCOLPGM(", ");
  5857. SERIAL_PROTOCOL(mm * 1000);
  5858. SERIAL_PROTOCOLLN("");
  5859. }
  5860. }
  5861. }
  5862. }
  5863. else {
  5864. SERIAL_PROTOCOLPGM("no valid command");
  5865. }
  5866. break;
  5867. #endif //PINDA_THERMISTOR
  5868. #ifdef LIN_ADVANCE
  5869. case 900: // M900: Set LIN_ADVANCE options.
  5870. gcode_M900();
  5871. break;
  5872. #endif
  5873. case 907: // M907 Set digital trimpot motor current using axis codes.
  5874. {
  5875. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5876. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5877. if(code_seen('B')) st_current_set(4,code_value());
  5878. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5879. #endif
  5880. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5881. if(code_seen('X')) st_current_set(0, code_value());
  5882. #endif
  5883. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5884. if(code_seen('Z')) st_current_set(1, code_value());
  5885. #endif
  5886. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5887. if(code_seen('E')) st_current_set(2, code_value());
  5888. #endif
  5889. }
  5890. break;
  5891. case 908: // M908 Control digital trimpot directly.
  5892. {
  5893. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5894. uint8_t channel,current;
  5895. if(code_seen('P')) channel=code_value();
  5896. if(code_seen('S')) current=code_value();
  5897. digitalPotWrite(channel, current);
  5898. #endif
  5899. }
  5900. break;
  5901. #ifdef TMC2130
  5902. case 910: // M910 TMC2130 init
  5903. {
  5904. tmc2130_init();
  5905. }
  5906. break;
  5907. case 911: // M911 Set TMC2130 holding currents
  5908. {
  5909. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5910. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5911. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5912. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5913. }
  5914. break;
  5915. case 912: // M912 Set TMC2130 running currents
  5916. {
  5917. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5918. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5919. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5920. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5921. }
  5922. break;
  5923. case 913: // M913 Print TMC2130 currents
  5924. {
  5925. tmc2130_print_currents();
  5926. }
  5927. break;
  5928. case 914: // M914 Set normal mode
  5929. {
  5930. tmc2130_mode = TMC2130_MODE_NORMAL;
  5931. update_mode_profile();
  5932. tmc2130_init();
  5933. }
  5934. break;
  5935. case 915: // M915 Set silent mode
  5936. {
  5937. tmc2130_mode = TMC2130_MODE_SILENT;
  5938. update_mode_profile();
  5939. tmc2130_init();
  5940. }
  5941. break;
  5942. case 916: // M916 Set sg_thrs
  5943. {
  5944. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5945. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5946. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5947. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5948. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5949. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5950. }
  5951. break;
  5952. case 917: // M917 Set TMC2130 pwm_ampl
  5953. {
  5954. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5955. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5956. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5957. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5958. }
  5959. break;
  5960. case 918: // M918 Set TMC2130 pwm_grad
  5961. {
  5962. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5963. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5964. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5965. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5966. }
  5967. break;
  5968. #endif //TMC2130
  5969. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5970. {
  5971. #ifdef TMC2130
  5972. if(code_seen('E'))
  5973. {
  5974. uint16_t res_new = code_value();
  5975. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5976. {
  5977. st_synchronize();
  5978. uint8_t axis = E_AXIS;
  5979. uint16_t res = tmc2130_get_res(axis);
  5980. tmc2130_set_res(axis, res_new);
  5981. if (res_new > res)
  5982. {
  5983. uint16_t fac = (res_new / res);
  5984. axis_steps_per_unit[axis] *= fac;
  5985. position[E_AXIS] *= fac;
  5986. }
  5987. else
  5988. {
  5989. uint16_t fac = (res / res_new);
  5990. axis_steps_per_unit[axis] /= fac;
  5991. position[E_AXIS] /= fac;
  5992. }
  5993. }
  5994. }
  5995. #else //TMC2130
  5996. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5997. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5998. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5999. if(code_seen('B')) microstep_mode(4,code_value());
  6000. microstep_readings();
  6001. #endif
  6002. #endif //TMC2130
  6003. }
  6004. break;
  6005. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6006. {
  6007. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6008. if(code_seen('S')) switch((int)code_value())
  6009. {
  6010. case 1:
  6011. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6012. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6013. break;
  6014. case 2:
  6015. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6016. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6017. break;
  6018. }
  6019. microstep_readings();
  6020. #endif
  6021. }
  6022. break;
  6023. case 701: //M701: load filament
  6024. {
  6025. #ifdef SNMM_V2
  6026. if (code_seen('E'))
  6027. {
  6028. snmm_extruder = code_value();
  6029. }
  6030. #endif
  6031. gcode_M701();
  6032. }
  6033. break;
  6034. case 702:
  6035. {
  6036. #if defined (SNMM) || defined (SNMM_V2)
  6037. if (code_seen('U')) {
  6038. extr_unload_used(); //unload all filaments which were used in current print
  6039. }
  6040. else if (code_seen('C')) {
  6041. extr_unload(); //unload just current filament
  6042. }
  6043. else {
  6044. extr_unload_all(); //unload all filaments
  6045. }
  6046. #else
  6047. custom_message = true;
  6048. custom_message_type = 2;
  6049. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6050. // extr_unload2();
  6051. current_position[E_AXIS] -= 45;
  6052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6053. st_synchronize();
  6054. current_position[E_AXIS] -= 15;
  6055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6056. st_synchronize();
  6057. current_position[E_AXIS] -= 20;
  6058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6059. st_synchronize();
  6060. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6061. //disable extruder steppers so filament can be removed
  6062. disable_e0();
  6063. disable_e1();
  6064. disable_e2();
  6065. delay(100);
  6066. //-//
  6067. //if(eSoundMode==e_SOUND_MODE_LOUD)
  6068. // Sound_MakeSound_tmp();
  6069. Sound_MakeSound(e_SOUND_CLASS_Prompt,e_SOUND_TYPE_StandardPrompt);
  6070. /*
  6071. WRITE(BEEPER, HIGH);
  6072. uint8_t counterBeep = 0;
  6073. while (!lcd_clicked() && (counterBeep < 50)) {
  6074. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6075. delay_keep_alive(100);
  6076. counterBeep++;
  6077. }
  6078. WRITE(BEEPER, LOW);
  6079. */
  6080. uint8_t counterBeep = 0;
  6081. while (!lcd_clicked() && (counterBeep < 50)) {
  6082. delay_keep_alive(100);
  6083. counterBeep++;
  6084. }
  6085. //-//
  6086. st_synchronize();
  6087. while (lcd_clicked()) delay_keep_alive(100);
  6088. lcd_update_enable(true);
  6089. lcd_setstatuspgm(_T(WELCOME_MSG));
  6090. custom_message = false;
  6091. custom_message_type = 0;
  6092. #endif
  6093. }
  6094. break;
  6095. case 999: // M999: Restart after being stopped
  6096. Stopped = false;
  6097. lcd_reset_alert_level();
  6098. gcode_LastN = Stopped_gcode_LastN;
  6099. FlushSerialRequestResend();
  6100. break;
  6101. default:
  6102. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6103. }
  6104. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6105. mcode_in_progress = 0;
  6106. }
  6107. } // end if(code_seen('M')) (end of M codes)
  6108. else if(code_seen('T'))
  6109. {
  6110. int index;
  6111. st_synchronize();
  6112. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6113. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6114. SERIAL_ECHOLNPGM("Invalid T code.");
  6115. }
  6116. else {
  6117. if (*(strchr_pointer + index) == '?') {
  6118. tmp_extruder = choose_extruder_menu();
  6119. }
  6120. else {
  6121. tmp_extruder = code_value();
  6122. }
  6123. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6124. #ifdef SNMM_V2
  6125. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6126. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6127. bool response = mmu_get_reponse(false);
  6128. if (!response) mmu_not_responding();
  6129. snmm_extruder = tmp_extruder; //filament change is finished
  6130. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6131. mmu_load_to_nozzle();
  6132. }
  6133. #endif
  6134. #ifdef SNMM
  6135. #ifdef LIN_ADVANCE
  6136. if (snmm_extruder != tmp_extruder)
  6137. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6138. #endif
  6139. snmm_extruder = tmp_extruder;
  6140. delay(100);
  6141. disable_e0();
  6142. disable_e1();
  6143. disable_e2();
  6144. pinMode(E_MUX0_PIN, OUTPUT);
  6145. pinMode(E_MUX1_PIN, OUTPUT);
  6146. delay(100);
  6147. SERIAL_ECHO_START;
  6148. SERIAL_ECHO("T:");
  6149. SERIAL_ECHOLN((int)tmp_extruder);
  6150. switch (tmp_extruder) {
  6151. case 1:
  6152. WRITE(E_MUX0_PIN, HIGH);
  6153. WRITE(E_MUX1_PIN, LOW);
  6154. break;
  6155. case 2:
  6156. WRITE(E_MUX0_PIN, LOW);
  6157. WRITE(E_MUX1_PIN, HIGH);
  6158. break;
  6159. case 3:
  6160. WRITE(E_MUX0_PIN, HIGH);
  6161. WRITE(E_MUX1_PIN, HIGH);
  6162. break;
  6163. default:
  6164. WRITE(E_MUX0_PIN, LOW);
  6165. WRITE(E_MUX1_PIN, LOW);
  6166. break;
  6167. }
  6168. delay(100);
  6169. #else
  6170. if (tmp_extruder >= EXTRUDERS) {
  6171. SERIAL_ECHO_START;
  6172. SERIAL_ECHOPGM("T");
  6173. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6174. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6175. }
  6176. else {
  6177. #if EXTRUDERS > 1
  6178. boolean make_move = false;
  6179. #endif
  6180. if (code_seen('F')) {
  6181. #if EXTRUDERS > 1
  6182. make_move = true;
  6183. #endif
  6184. next_feedrate = code_value();
  6185. if (next_feedrate > 0.0) {
  6186. feedrate = next_feedrate;
  6187. }
  6188. }
  6189. #if EXTRUDERS > 1
  6190. if (tmp_extruder != active_extruder) {
  6191. // Save current position to return to after applying extruder offset
  6192. memcpy(destination, current_position, sizeof(destination));
  6193. // Offset extruder (only by XY)
  6194. int i;
  6195. for (i = 0; i < 2; i++) {
  6196. current_position[i] = current_position[i] -
  6197. extruder_offset[i][active_extruder] +
  6198. extruder_offset[i][tmp_extruder];
  6199. }
  6200. // Set the new active extruder and position
  6201. active_extruder = tmp_extruder;
  6202. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6203. // Move to the old position if 'F' was in the parameters
  6204. if (make_move && Stopped == false) {
  6205. prepare_move();
  6206. }
  6207. }
  6208. #endif
  6209. SERIAL_ECHO_START;
  6210. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6211. SERIAL_PROTOCOLLN((int)active_extruder);
  6212. }
  6213. #endif
  6214. }
  6215. } // end if(code_seen('T')) (end of T codes)
  6216. else if (code_seen('D')) // D codes (debug)
  6217. {
  6218. switch((int)code_value())
  6219. {
  6220. #ifdef DEBUG_DCODES
  6221. case -1: // D-1 - Endless loop
  6222. dcode__1(); break;
  6223. case 0: // D0 - Reset
  6224. dcode_0(); break;
  6225. case 1: // D1 - Clear EEPROM
  6226. dcode_1(); break;
  6227. case 2: // D2 - Read/Write RAM
  6228. dcode_2(); break;
  6229. #endif //DEBUG_DCODES
  6230. #ifdef DEBUG_DCODE3
  6231. case 3: // D3 - Read/Write EEPROM
  6232. dcode_3(); break;
  6233. #endif //DEBUG_DCODE3
  6234. #ifdef DEBUG_DCODES
  6235. case 4: // D4 - Read/Write PIN
  6236. dcode_4(); break;
  6237. case 5: // D5 - Read/Write FLASH
  6238. // dcode_5(); break;
  6239. break;
  6240. case 6: // D6 - Read/Write external FLASH
  6241. dcode_6(); break;
  6242. case 7: // D7 - Read/Write Bootloader
  6243. dcode_7(); break;
  6244. case 8: // D8 - Read/Write PINDA
  6245. dcode_8(); break;
  6246. case 9: // D9 - Read/Write ADC
  6247. dcode_9(); break;
  6248. case 10: // D10 - XYZ calibration = OK
  6249. dcode_10(); break;
  6250. #ifdef TMC2130
  6251. case 2130: // D9125 - TMC2130
  6252. dcode_2130(); break;
  6253. #endif //TMC2130
  6254. #ifdef FILAMENT_SENSOR
  6255. case 9125: // D9125 - FILAMENT_SENSOR
  6256. dcode_9125(); break;
  6257. #endif //FILAMENT_SENSOR
  6258. #endif //DEBUG_DCODES
  6259. }
  6260. }
  6261. else
  6262. {
  6263. SERIAL_ECHO_START;
  6264. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6265. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6266. SERIAL_ECHOLNPGM("\"(2)");
  6267. }
  6268. KEEPALIVE_STATE(NOT_BUSY);
  6269. ClearToSend();
  6270. }
  6271. void FlushSerialRequestResend()
  6272. {
  6273. //char cmdbuffer[bufindr][100]="Resend:";
  6274. MYSERIAL.flush();
  6275. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6276. }
  6277. // Confirm the execution of a command, if sent from a serial line.
  6278. // Execution of a command from a SD card will not be confirmed.
  6279. void ClearToSend()
  6280. {
  6281. previous_millis_cmd = millis();
  6282. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6283. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6284. }
  6285. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6286. void update_currents() {
  6287. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6288. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6289. float tmp_motor[3];
  6290. //SERIAL_ECHOLNPGM("Currents updated: ");
  6291. if (destination[Z_AXIS] < Z_SILENT) {
  6292. //SERIAL_ECHOLNPGM("LOW");
  6293. for (uint8_t i = 0; i < 3; i++) {
  6294. st_current_set(i, current_low[i]);
  6295. /*MYSERIAL.print(int(i));
  6296. SERIAL_ECHOPGM(": ");
  6297. MYSERIAL.println(current_low[i]);*/
  6298. }
  6299. }
  6300. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6301. //SERIAL_ECHOLNPGM("HIGH");
  6302. for (uint8_t i = 0; i < 3; i++) {
  6303. st_current_set(i, current_high[i]);
  6304. /*MYSERIAL.print(int(i));
  6305. SERIAL_ECHOPGM(": ");
  6306. MYSERIAL.println(current_high[i]);*/
  6307. }
  6308. }
  6309. else {
  6310. for (uint8_t i = 0; i < 3; i++) {
  6311. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6312. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6313. st_current_set(i, tmp_motor[i]);
  6314. /*MYSERIAL.print(int(i));
  6315. SERIAL_ECHOPGM(": ");
  6316. MYSERIAL.println(tmp_motor[i]);*/
  6317. }
  6318. }
  6319. }
  6320. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6321. void get_coordinates()
  6322. {
  6323. bool seen[4]={false,false,false,false};
  6324. for(int8_t i=0; i < NUM_AXIS; i++) {
  6325. if(code_seen(axis_codes[i]))
  6326. {
  6327. bool relative = axis_relative_modes[i] || relative_mode;
  6328. destination[i] = (float)code_value();
  6329. if (i == E_AXIS) {
  6330. float emult = extruder_multiplier[active_extruder];
  6331. if (emult != 1.) {
  6332. if (! relative) {
  6333. destination[i] -= current_position[i];
  6334. relative = true;
  6335. }
  6336. destination[i] *= emult;
  6337. }
  6338. }
  6339. if (relative)
  6340. destination[i] += current_position[i];
  6341. seen[i]=true;
  6342. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6343. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6344. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6345. }
  6346. else destination[i] = current_position[i]; //Are these else lines really needed?
  6347. }
  6348. if(code_seen('F')) {
  6349. next_feedrate = code_value();
  6350. #ifdef MAX_SILENT_FEEDRATE
  6351. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6352. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6353. #endif //MAX_SILENT_FEEDRATE
  6354. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6355. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6356. {
  6357. // float e_max_speed =
  6358. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6359. }
  6360. }
  6361. }
  6362. void get_arc_coordinates()
  6363. {
  6364. #ifdef SF_ARC_FIX
  6365. bool relative_mode_backup = relative_mode;
  6366. relative_mode = true;
  6367. #endif
  6368. get_coordinates();
  6369. #ifdef SF_ARC_FIX
  6370. relative_mode=relative_mode_backup;
  6371. #endif
  6372. if(code_seen('I')) {
  6373. offset[0] = code_value();
  6374. }
  6375. else {
  6376. offset[0] = 0.0;
  6377. }
  6378. if(code_seen('J')) {
  6379. offset[1] = code_value();
  6380. }
  6381. else {
  6382. offset[1] = 0.0;
  6383. }
  6384. }
  6385. void clamp_to_software_endstops(float target[3])
  6386. {
  6387. #ifdef DEBUG_DISABLE_SWLIMITS
  6388. return;
  6389. #endif //DEBUG_DISABLE_SWLIMITS
  6390. world2machine_clamp(target[0], target[1]);
  6391. // Clamp the Z coordinate.
  6392. if (min_software_endstops) {
  6393. float negative_z_offset = 0;
  6394. #ifdef ENABLE_AUTO_BED_LEVELING
  6395. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6396. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6397. #endif
  6398. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6399. }
  6400. if (max_software_endstops) {
  6401. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6402. }
  6403. }
  6404. #ifdef MESH_BED_LEVELING
  6405. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6406. float dx = x - current_position[X_AXIS];
  6407. float dy = y - current_position[Y_AXIS];
  6408. float dz = z - current_position[Z_AXIS];
  6409. int n_segments = 0;
  6410. if (mbl.active) {
  6411. float len = abs(dx) + abs(dy);
  6412. if (len > 0)
  6413. // Split to 3cm segments or shorter.
  6414. n_segments = int(ceil(len / 30.f));
  6415. }
  6416. if (n_segments > 1) {
  6417. float de = e - current_position[E_AXIS];
  6418. for (int i = 1; i < n_segments; ++ i) {
  6419. float t = float(i) / float(n_segments);
  6420. if (saved_printing || (mbl.active == false)) return;
  6421. plan_buffer_line(
  6422. current_position[X_AXIS] + t * dx,
  6423. current_position[Y_AXIS] + t * dy,
  6424. current_position[Z_AXIS] + t * dz,
  6425. current_position[E_AXIS] + t * de,
  6426. feed_rate, extruder);
  6427. }
  6428. }
  6429. // The rest of the path.
  6430. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6431. current_position[X_AXIS] = x;
  6432. current_position[Y_AXIS] = y;
  6433. current_position[Z_AXIS] = z;
  6434. current_position[E_AXIS] = e;
  6435. }
  6436. #endif // MESH_BED_LEVELING
  6437. void prepare_move()
  6438. {
  6439. clamp_to_software_endstops(destination);
  6440. previous_millis_cmd = millis();
  6441. // Do not use feedmultiply for E or Z only moves
  6442. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6444. }
  6445. else {
  6446. #ifdef MESH_BED_LEVELING
  6447. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6448. #else
  6449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6450. #endif
  6451. }
  6452. for(int8_t i=0; i < NUM_AXIS; i++) {
  6453. current_position[i] = destination[i];
  6454. }
  6455. }
  6456. void prepare_arc_move(char isclockwise) {
  6457. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6458. // Trace the arc
  6459. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6460. // As far as the parser is concerned, the position is now == target. In reality the
  6461. // motion control system might still be processing the action and the real tool position
  6462. // in any intermediate location.
  6463. for(int8_t i=0; i < NUM_AXIS; i++) {
  6464. current_position[i] = destination[i];
  6465. }
  6466. previous_millis_cmd = millis();
  6467. }
  6468. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6469. #if defined(FAN_PIN)
  6470. #if CONTROLLERFAN_PIN == FAN_PIN
  6471. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6472. #endif
  6473. #endif
  6474. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6475. unsigned long lastMotorCheck = 0;
  6476. void controllerFan()
  6477. {
  6478. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6479. {
  6480. lastMotorCheck = millis();
  6481. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6482. #if EXTRUDERS > 2
  6483. || !READ(E2_ENABLE_PIN)
  6484. #endif
  6485. #if EXTRUDER > 1
  6486. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6487. || !READ(X2_ENABLE_PIN)
  6488. #endif
  6489. || !READ(E1_ENABLE_PIN)
  6490. #endif
  6491. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6492. {
  6493. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6494. }
  6495. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6496. {
  6497. digitalWrite(CONTROLLERFAN_PIN, 0);
  6498. analogWrite(CONTROLLERFAN_PIN, 0);
  6499. }
  6500. else
  6501. {
  6502. // allows digital or PWM fan output to be used (see M42 handling)
  6503. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6504. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6505. }
  6506. }
  6507. }
  6508. #endif
  6509. #ifdef TEMP_STAT_LEDS
  6510. static bool blue_led = false;
  6511. static bool red_led = false;
  6512. static uint32_t stat_update = 0;
  6513. void handle_status_leds(void) {
  6514. float max_temp = 0.0;
  6515. if(millis() > stat_update) {
  6516. stat_update += 500; // Update every 0.5s
  6517. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6518. max_temp = max(max_temp, degHotend(cur_extruder));
  6519. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6520. }
  6521. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6522. max_temp = max(max_temp, degTargetBed());
  6523. max_temp = max(max_temp, degBed());
  6524. #endif
  6525. if((max_temp > 55.0) && (red_led == false)) {
  6526. digitalWrite(STAT_LED_RED, 1);
  6527. digitalWrite(STAT_LED_BLUE, 0);
  6528. red_led = true;
  6529. blue_led = false;
  6530. }
  6531. if((max_temp < 54.0) && (blue_led == false)) {
  6532. digitalWrite(STAT_LED_RED, 0);
  6533. digitalWrite(STAT_LED_BLUE, 1);
  6534. red_led = false;
  6535. blue_led = true;
  6536. }
  6537. }
  6538. }
  6539. #endif
  6540. #ifdef SAFETYTIMER
  6541. /**
  6542. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6543. *
  6544. * Full screen blocking notification message is shown after heater turning off.
  6545. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6546. * damage print.
  6547. *
  6548. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6549. */
  6550. static void handleSafetyTimer()
  6551. {
  6552. #if (EXTRUDERS > 1)
  6553. #error Implemented only for one extruder.
  6554. #endif //(EXTRUDERS > 1)
  6555. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6556. {
  6557. safetyTimer.stop();
  6558. }
  6559. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6560. {
  6561. safetyTimer.start();
  6562. }
  6563. else if (safetyTimer.expired(safetytimer_inactive_time))
  6564. {
  6565. setTargetBed(0);
  6566. setAllTargetHotends(0);
  6567. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6568. }
  6569. }
  6570. #endif //SAFETYTIMER
  6571. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6572. {
  6573. #ifdef FILAMENT_SENSOR
  6574. if (mcode_in_progress != 600) //M600 not in progress
  6575. {
  6576. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6577. {
  6578. if (fsensor_check_autoload())
  6579. {
  6580. fsensor_autoload_check_stop();
  6581. if (degHotend0() > EXTRUDE_MINTEMP)
  6582. {
  6583. tone(BEEPER, 1000);
  6584. delay_keep_alive(50);
  6585. noTone(BEEPER);
  6586. loading_flag = true;
  6587. enquecommand_front_P((PSTR("M701")));
  6588. }
  6589. else
  6590. {
  6591. lcd_update_enable(false);
  6592. lcd_clear();
  6593. lcd_set_cursor(0, 0);
  6594. lcd_puts_P(_T(MSG_ERROR));
  6595. lcd_set_cursor(0, 2);
  6596. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6597. delay(2000);
  6598. lcd_clear();
  6599. lcd_update_enable(true);
  6600. }
  6601. }
  6602. }
  6603. else
  6604. fsensor_autoload_check_stop();
  6605. }
  6606. #endif //FILAMENT_SENSOR
  6607. #ifdef SAFETYTIMER
  6608. handleSafetyTimer();
  6609. #endif //SAFETYTIMER
  6610. #if defined(KILL_PIN) && KILL_PIN > -1
  6611. static int killCount = 0; // make the inactivity button a bit less responsive
  6612. const int KILL_DELAY = 10000;
  6613. #endif
  6614. if(buflen < (BUFSIZE-1)){
  6615. get_command();
  6616. }
  6617. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6618. if(max_inactive_time)
  6619. kill(_n(""), 4);
  6620. if(stepper_inactive_time) {
  6621. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6622. {
  6623. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6624. disable_x();
  6625. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6626. disable_y();
  6627. disable_z();
  6628. disable_e0();
  6629. disable_e1();
  6630. disable_e2();
  6631. }
  6632. }
  6633. }
  6634. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6635. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6636. {
  6637. chdkActive = false;
  6638. WRITE(CHDK, LOW);
  6639. }
  6640. #endif
  6641. #if defined(KILL_PIN) && KILL_PIN > -1
  6642. // Check if the kill button was pressed and wait just in case it was an accidental
  6643. // key kill key press
  6644. // -------------------------------------------------------------------------------
  6645. if( 0 == READ(KILL_PIN) )
  6646. {
  6647. killCount++;
  6648. }
  6649. else if (killCount > 0)
  6650. {
  6651. killCount--;
  6652. }
  6653. // Exceeded threshold and we can confirm that it was not accidental
  6654. // KILL the machine
  6655. // ----------------------------------------------------------------
  6656. if ( killCount >= KILL_DELAY)
  6657. {
  6658. kill("", 5);
  6659. }
  6660. #endif
  6661. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6662. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6663. #endif
  6664. #ifdef EXTRUDER_RUNOUT_PREVENT
  6665. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6666. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6667. {
  6668. bool oldstatus=READ(E0_ENABLE_PIN);
  6669. enable_e0();
  6670. float oldepos=current_position[E_AXIS];
  6671. float oldedes=destination[E_AXIS];
  6672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6673. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6674. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6675. current_position[E_AXIS]=oldepos;
  6676. destination[E_AXIS]=oldedes;
  6677. plan_set_e_position(oldepos);
  6678. previous_millis_cmd=millis();
  6679. st_synchronize();
  6680. WRITE(E0_ENABLE_PIN,oldstatus);
  6681. }
  6682. #endif
  6683. #ifdef TEMP_STAT_LEDS
  6684. handle_status_leds();
  6685. #endif
  6686. check_axes_activity();
  6687. }
  6688. void kill(const char *full_screen_message, unsigned char id)
  6689. {
  6690. printf_P(_N("KILL: %d\n"), id);
  6691. //return;
  6692. cli(); // Stop interrupts
  6693. disable_heater();
  6694. disable_x();
  6695. // SERIAL_ECHOLNPGM("kill - disable Y");
  6696. disable_y();
  6697. disable_z();
  6698. disable_e0();
  6699. disable_e1();
  6700. disable_e2();
  6701. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6702. pinMode(PS_ON_PIN,INPUT);
  6703. #endif
  6704. SERIAL_ERROR_START;
  6705. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6706. if (full_screen_message != NULL) {
  6707. SERIAL_ERRORLNRPGM(full_screen_message);
  6708. lcd_display_message_fullscreen_P(full_screen_message);
  6709. } else {
  6710. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6711. }
  6712. // FMC small patch to update the LCD before ending
  6713. sei(); // enable interrupts
  6714. for ( int i=5; i--; lcd_update(0))
  6715. {
  6716. delay(200);
  6717. }
  6718. cli(); // disable interrupts
  6719. suicide();
  6720. while(1)
  6721. {
  6722. #ifdef WATCHDOG
  6723. wdt_reset();
  6724. #endif //WATCHDOG
  6725. /* Intentionally left empty */
  6726. } // Wait for reset
  6727. }
  6728. void Stop()
  6729. {
  6730. disable_heater();
  6731. if(Stopped == false) {
  6732. Stopped = true;
  6733. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6734. SERIAL_ERROR_START;
  6735. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6736. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6737. }
  6738. }
  6739. bool IsStopped() { return Stopped; };
  6740. #ifdef FAST_PWM_FAN
  6741. void setPwmFrequency(uint8_t pin, int val)
  6742. {
  6743. val &= 0x07;
  6744. switch(digitalPinToTimer(pin))
  6745. {
  6746. #if defined(TCCR0A)
  6747. case TIMER0A:
  6748. case TIMER0B:
  6749. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6750. // TCCR0B |= val;
  6751. break;
  6752. #endif
  6753. #if defined(TCCR1A)
  6754. case TIMER1A:
  6755. case TIMER1B:
  6756. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6757. // TCCR1B |= val;
  6758. break;
  6759. #endif
  6760. #if defined(TCCR2)
  6761. case TIMER2:
  6762. case TIMER2:
  6763. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6764. TCCR2 |= val;
  6765. break;
  6766. #endif
  6767. #if defined(TCCR2A)
  6768. case TIMER2A:
  6769. case TIMER2B:
  6770. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6771. TCCR2B |= val;
  6772. break;
  6773. #endif
  6774. #if defined(TCCR3A)
  6775. case TIMER3A:
  6776. case TIMER3B:
  6777. case TIMER3C:
  6778. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6779. TCCR3B |= val;
  6780. break;
  6781. #endif
  6782. #if defined(TCCR4A)
  6783. case TIMER4A:
  6784. case TIMER4B:
  6785. case TIMER4C:
  6786. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6787. TCCR4B |= val;
  6788. break;
  6789. #endif
  6790. #if defined(TCCR5A)
  6791. case TIMER5A:
  6792. case TIMER5B:
  6793. case TIMER5C:
  6794. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6795. TCCR5B |= val;
  6796. break;
  6797. #endif
  6798. }
  6799. }
  6800. #endif //FAST_PWM_FAN
  6801. bool setTargetedHotend(int code){
  6802. tmp_extruder = active_extruder;
  6803. if(code_seen('T')) {
  6804. tmp_extruder = code_value();
  6805. if(tmp_extruder >= EXTRUDERS) {
  6806. SERIAL_ECHO_START;
  6807. switch(code){
  6808. case 104:
  6809. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6810. break;
  6811. case 105:
  6812. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6813. break;
  6814. case 109:
  6815. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6816. break;
  6817. case 218:
  6818. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6819. break;
  6820. case 221:
  6821. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6822. break;
  6823. }
  6824. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6825. return true;
  6826. }
  6827. }
  6828. return false;
  6829. }
  6830. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6831. {
  6832. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6833. {
  6834. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6835. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6836. }
  6837. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6838. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6839. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6840. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6841. total_filament_used = 0;
  6842. }
  6843. float calculate_extruder_multiplier(float diameter) {
  6844. float out = 1.f;
  6845. if (volumetric_enabled && diameter > 0.f) {
  6846. float area = M_PI * diameter * diameter * 0.25;
  6847. out = 1.f / area;
  6848. }
  6849. if (extrudemultiply != 100)
  6850. out *= float(extrudemultiply) * 0.01f;
  6851. return out;
  6852. }
  6853. void calculate_extruder_multipliers() {
  6854. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6855. #if EXTRUDERS > 1
  6856. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6857. #if EXTRUDERS > 2
  6858. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6859. #endif
  6860. #endif
  6861. }
  6862. void delay_keep_alive(unsigned int ms)
  6863. {
  6864. for (;;) {
  6865. manage_heater();
  6866. // Manage inactivity, but don't disable steppers on timeout.
  6867. manage_inactivity(true);
  6868. lcd_update(0);
  6869. if (ms == 0)
  6870. break;
  6871. else if (ms >= 50) {
  6872. delay(50);
  6873. ms -= 50;
  6874. } else {
  6875. delay(ms);
  6876. ms = 0;
  6877. }
  6878. }
  6879. }
  6880. void wait_for_heater(long codenum) {
  6881. #ifdef TEMP_RESIDENCY_TIME
  6882. long residencyStart;
  6883. residencyStart = -1;
  6884. /* continue to loop until we have reached the target temp
  6885. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6886. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6887. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6888. #else
  6889. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6890. #endif //TEMP_RESIDENCY_TIME
  6891. if ((millis() - codenum) > 1000UL)
  6892. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6893. if (!farm_mode) {
  6894. SERIAL_PROTOCOLPGM("T:");
  6895. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6896. SERIAL_PROTOCOLPGM(" E:");
  6897. SERIAL_PROTOCOL((int)tmp_extruder);
  6898. #ifdef TEMP_RESIDENCY_TIME
  6899. SERIAL_PROTOCOLPGM(" W:");
  6900. if (residencyStart > -1)
  6901. {
  6902. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6903. SERIAL_PROTOCOLLN(codenum);
  6904. }
  6905. else
  6906. {
  6907. SERIAL_PROTOCOLLN("?");
  6908. }
  6909. }
  6910. #else
  6911. SERIAL_PROTOCOLLN("");
  6912. #endif
  6913. codenum = millis();
  6914. }
  6915. manage_heater();
  6916. manage_inactivity();
  6917. lcd_update(0);
  6918. #ifdef TEMP_RESIDENCY_TIME
  6919. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6920. or when current temp falls outside the hysteresis after target temp was reached */
  6921. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6922. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6923. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6924. {
  6925. residencyStart = millis();
  6926. }
  6927. #endif //TEMP_RESIDENCY_TIME
  6928. }
  6929. }
  6930. void check_babystep() {
  6931. int babystep_z;
  6932. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6933. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6934. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6935. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6936. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6937. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6938. lcd_update_enable(true);
  6939. }
  6940. }
  6941. #ifdef DIS
  6942. void d_setup()
  6943. {
  6944. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6945. pinMode(D_DATA, INPUT_PULLUP);
  6946. pinMode(D_REQUIRE, OUTPUT);
  6947. digitalWrite(D_REQUIRE, HIGH);
  6948. }
  6949. float d_ReadData()
  6950. {
  6951. int digit[13];
  6952. String mergeOutput;
  6953. float output;
  6954. digitalWrite(D_REQUIRE, HIGH);
  6955. for (int i = 0; i<13; i++)
  6956. {
  6957. for (int j = 0; j < 4; j++)
  6958. {
  6959. while (digitalRead(D_DATACLOCK) == LOW) {}
  6960. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6961. bitWrite(digit[i], j, digitalRead(D_DATA));
  6962. }
  6963. }
  6964. digitalWrite(D_REQUIRE, LOW);
  6965. mergeOutput = "";
  6966. output = 0;
  6967. for (int r = 5; r <= 10; r++) //Merge digits
  6968. {
  6969. mergeOutput += digit[r];
  6970. }
  6971. output = mergeOutput.toFloat();
  6972. if (digit[4] == 8) //Handle sign
  6973. {
  6974. output *= -1;
  6975. }
  6976. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6977. {
  6978. output /= 10;
  6979. }
  6980. return output;
  6981. }
  6982. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6983. int t1 = 0;
  6984. int t_delay = 0;
  6985. int digit[13];
  6986. int m;
  6987. char str[3];
  6988. //String mergeOutput;
  6989. char mergeOutput[15];
  6990. float output;
  6991. int mesh_point = 0; //index number of calibration point
  6992. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6993. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6994. float mesh_home_z_search = 4;
  6995. float row[x_points_num];
  6996. int ix = 0;
  6997. int iy = 0;
  6998. char* filename_wldsd = "wldsd.txt";
  6999. char data_wldsd[70];
  7000. char numb_wldsd[10];
  7001. d_setup();
  7002. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7003. // We don't know where we are! HOME!
  7004. // Push the commands to the front of the message queue in the reverse order!
  7005. // There shall be always enough space reserved for these commands.
  7006. repeatcommand_front(); // repeat G80 with all its parameters
  7007. enquecommand_front_P((PSTR("G28 W0")));
  7008. enquecommand_front_P((PSTR("G1 Z5")));
  7009. return;
  7010. }
  7011. bool custom_message_old = custom_message;
  7012. unsigned int custom_message_type_old = custom_message_type;
  7013. unsigned int custom_message_state_old = custom_message_state;
  7014. custom_message = true;
  7015. custom_message_type = 1;
  7016. custom_message_state = (x_points_num * y_points_num) + 10;
  7017. lcd_update(1);
  7018. mbl.reset();
  7019. babystep_undo();
  7020. card.openFile(filename_wldsd, false);
  7021. current_position[Z_AXIS] = mesh_home_z_search;
  7022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7023. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7024. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7025. setup_for_endstop_move(false);
  7026. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7027. SERIAL_PROTOCOL(x_points_num);
  7028. SERIAL_PROTOCOLPGM(",");
  7029. SERIAL_PROTOCOL(y_points_num);
  7030. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7031. SERIAL_PROTOCOL(mesh_home_z_search);
  7032. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7033. SERIAL_PROTOCOL(x_dimension);
  7034. SERIAL_PROTOCOLPGM(",");
  7035. SERIAL_PROTOCOL(y_dimension);
  7036. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7037. while (mesh_point != x_points_num * y_points_num) {
  7038. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7039. iy = mesh_point / x_points_num;
  7040. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7041. float z0 = 0.f;
  7042. current_position[Z_AXIS] = mesh_home_z_search;
  7043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7044. st_synchronize();
  7045. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7046. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7048. st_synchronize();
  7049. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7050. break;
  7051. card.closefile();
  7052. }
  7053. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7054. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7055. //strcat(data_wldsd, numb_wldsd);
  7056. //MYSERIAL.println(data_wldsd);
  7057. //delay(1000);
  7058. //delay(3000);
  7059. //t1 = millis();
  7060. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7061. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7062. memset(digit, 0, sizeof(digit));
  7063. //cli();
  7064. digitalWrite(D_REQUIRE, LOW);
  7065. for (int i = 0; i<13; i++)
  7066. {
  7067. //t1 = millis();
  7068. for (int j = 0; j < 4; j++)
  7069. {
  7070. while (digitalRead(D_DATACLOCK) == LOW) {}
  7071. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7072. bitWrite(digit[i], j, digitalRead(D_DATA));
  7073. }
  7074. //t_delay = (millis() - t1);
  7075. //SERIAL_PROTOCOLPGM(" ");
  7076. //SERIAL_PROTOCOL_F(t_delay, 5);
  7077. //SERIAL_PROTOCOLPGM(" ");
  7078. }
  7079. //sei();
  7080. digitalWrite(D_REQUIRE, HIGH);
  7081. mergeOutput[0] = '\0';
  7082. output = 0;
  7083. for (int r = 5; r <= 10; r++) //Merge digits
  7084. {
  7085. sprintf(str, "%d", digit[r]);
  7086. strcat(mergeOutput, str);
  7087. }
  7088. output = atof(mergeOutput);
  7089. if (digit[4] == 8) //Handle sign
  7090. {
  7091. output *= -1;
  7092. }
  7093. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7094. {
  7095. output *= 0.1;
  7096. }
  7097. //output = d_ReadData();
  7098. //row[ix] = current_position[Z_AXIS];
  7099. memset(data_wldsd, 0, sizeof(data_wldsd));
  7100. for (int i = 0; i <3; i++) {
  7101. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7102. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7103. strcat(data_wldsd, numb_wldsd);
  7104. strcat(data_wldsd, ";");
  7105. }
  7106. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7107. dtostrf(output, 8, 5, numb_wldsd);
  7108. strcat(data_wldsd, numb_wldsd);
  7109. //strcat(data_wldsd, ";");
  7110. card.write_command(data_wldsd);
  7111. //row[ix] = d_ReadData();
  7112. row[ix] = output; // current_position[Z_AXIS];
  7113. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7114. for (int i = 0; i < x_points_num; i++) {
  7115. SERIAL_PROTOCOLPGM(" ");
  7116. SERIAL_PROTOCOL_F(row[i], 5);
  7117. }
  7118. SERIAL_PROTOCOLPGM("\n");
  7119. }
  7120. custom_message_state--;
  7121. mesh_point++;
  7122. lcd_update(1);
  7123. }
  7124. card.closefile();
  7125. }
  7126. #endif
  7127. void temp_compensation_start() {
  7128. custom_message = true;
  7129. custom_message_type = 5;
  7130. custom_message_state = PINDA_HEAT_T + 1;
  7131. lcd_update(2);
  7132. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7133. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7134. }
  7135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7136. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7137. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7138. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7140. st_synchronize();
  7141. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7142. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7143. delay_keep_alive(1000);
  7144. custom_message_state = PINDA_HEAT_T - i;
  7145. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7146. else lcd_update(1);
  7147. }
  7148. custom_message_type = 0;
  7149. custom_message_state = 0;
  7150. custom_message = false;
  7151. }
  7152. void temp_compensation_apply() {
  7153. int i_add;
  7154. int z_shift = 0;
  7155. float z_shift_mm;
  7156. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7157. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7158. i_add = (target_temperature_bed - 60) / 10;
  7159. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7160. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7161. }else {
  7162. //interpolation
  7163. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7164. }
  7165. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7167. st_synchronize();
  7168. plan_set_z_position(current_position[Z_AXIS]);
  7169. }
  7170. else {
  7171. //we have no temp compensation data
  7172. }
  7173. }
  7174. float temp_comp_interpolation(float inp_temperature) {
  7175. //cubic spline interpolation
  7176. int n, i, j;
  7177. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7178. int shift[10];
  7179. int temp_C[10];
  7180. n = 6; //number of measured points
  7181. shift[0] = 0;
  7182. for (i = 0; i < n; i++) {
  7183. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7184. temp_C[i] = 50 + i * 10; //temperature in C
  7185. #ifdef PINDA_THERMISTOR
  7186. temp_C[i] = 35 + i * 5; //temperature in C
  7187. #else
  7188. temp_C[i] = 50 + i * 10; //temperature in C
  7189. #endif
  7190. x[i] = (float)temp_C[i];
  7191. f[i] = (float)shift[i];
  7192. }
  7193. if (inp_temperature < x[0]) return 0;
  7194. for (i = n - 1; i>0; i--) {
  7195. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7196. h[i - 1] = x[i] - x[i - 1];
  7197. }
  7198. //*********** formation of h, s , f matrix **************
  7199. for (i = 1; i<n - 1; i++) {
  7200. m[i][i] = 2 * (h[i - 1] + h[i]);
  7201. if (i != 1) {
  7202. m[i][i - 1] = h[i - 1];
  7203. m[i - 1][i] = h[i - 1];
  7204. }
  7205. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7206. }
  7207. //*********** forward elimination **************
  7208. for (i = 1; i<n - 2; i++) {
  7209. temp = (m[i + 1][i] / m[i][i]);
  7210. for (j = 1; j <= n - 1; j++)
  7211. m[i + 1][j] -= temp*m[i][j];
  7212. }
  7213. //*********** backward substitution *********
  7214. for (i = n - 2; i>0; i--) {
  7215. sum = 0;
  7216. for (j = i; j <= n - 2; j++)
  7217. sum += m[i][j] * s[j];
  7218. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7219. }
  7220. for (i = 0; i<n - 1; i++)
  7221. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7222. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7223. b = s[i] / 2;
  7224. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7225. d = f[i];
  7226. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7227. }
  7228. return sum;
  7229. }
  7230. #ifdef PINDA_THERMISTOR
  7231. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7232. {
  7233. if (!temp_cal_active) return 0;
  7234. if (!calibration_status_pinda()) return 0;
  7235. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7236. }
  7237. #endif //PINDA_THERMISTOR
  7238. void long_pause() //long pause print
  7239. {
  7240. st_synchronize();
  7241. //save currently set parameters to global variables
  7242. saved_feedmultiply = feedmultiply;
  7243. HotendTempBckp = degTargetHotend(active_extruder);
  7244. fanSpeedBckp = fanSpeed;
  7245. start_pause_print = millis();
  7246. //save position
  7247. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7248. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7249. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7250. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7251. //retract
  7252. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7254. //lift z
  7255. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7256. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7258. //set nozzle target temperature to 0
  7259. setAllTargetHotends(0);
  7260. //Move XY to side
  7261. current_position[X_AXIS] = X_PAUSE_POS;
  7262. current_position[Y_AXIS] = Y_PAUSE_POS;
  7263. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7264. // Turn off the print fan
  7265. fanSpeed = 0;
  7266. st_synchronize();
  7267. }
  7268. void serialecho_temperatures() {
  7269. float tt = degHotend(active_extruder);
  7270. SERIAL_PROTOCOLPGM("T:");
  7271. SERIAL_PROTOCOL(tt);
  7272. SERIAL_PROTOCOLPGM(" E:");
  7273. SERIAL_PROTOCOL((int)active_extruder);
  7274. SERIAL_PROTOCOLPGM(" B:");
  7275. SERIAL_PROTOCOL_F(degBed(), 1);
  7276. SERIAL_PROTOCOLLN("");
  7277. }
  7278. extern uint32_t sdpos_atomic;
  7279. #ifdef UVLO_SUPPORT
  7280. void uvlo_()
  7281. {
  7282. unsigned long time_start = millis();
  7283. bool sd_print = card.sdprinting;
  7284. //-//
  7285. MYSERIAL.println(">>> uvlo()");
  7286. // Conserve power as soon as possible.
  7287. disable_x();
  7288. disable_y();
  7289. #ifdef TMC2130
  7290. tmc2130_set_current_h(Z_AXIS, 20);
  7291. tmc2130_set_current_r(Z_AXIS, 20);
  7292. tmc2130_set_current_h(E_AXIS, 20);
  7293. tmc2130_set_current_r(E_AXIS, 20);
  7294. #endif //TMC2130
  7295. // Indicate that the interrupt has been triggered.
  7296. // SERIAL_ECHOLNPGM("UVLO");
  7297. // Read out the current Z motor microstep counter. This will be later used
  7298. // for reaching the zero full step before powering off.
  7299. uint16_t z_microsteps = 0;
  7300. #ifdef TMC2130
  7301. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7302. #endif //TMC2130
  7303. // Calculate the file position, from which to resume this print.
  7304. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7305. {
  7306. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7307. sd_position -= sdlen_planner;
  7308. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7309. sd_position -= sdlen_cmdqueue;
  7310. if (sd_position < 0) sd_position = 0;
  7311. }
  7312. // Backup the feedrate in mm/min.
  7313. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7314. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7315. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7316. // are in action.
  7317. planner_abort_hard();
  7318. // Store the current extruder position.
  7319. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7320. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7321. // Clean the input command queue.
  7322. cmdqueue_reset();
  7323. card.sdprinting = false;
  7324. // card.closefile();
  7325. // Enable stepper driver interrupt to move Z axis.
  7326. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7327. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7328. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7329. sei();
  7330. plan_buffer_line(
  7331. current_position[X_AXIS],
  7332. current_position[Y_AXIS],
  7333. current_position[Z_AXIS],
  7334. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7335. 95, active_extruder);
  7336. st_synchronize();
  7337. disable_e0();
  7338. plan_buffer_line(
  7339. current_position[X_AXIS],
  7340. current_position[Y_AXIS],
  7341. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7342. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7343. 40, active_extruder);
  7344. st_synchronize();
  7345. disable_e0();
  7346. plan_buffer_line(
  7347. current_position[X_AXIS],
  7348. current_position[Y_AXIS],
  7349. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7350. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7351. 40, active_extruder);
  7352. st_synchronize();
  7353. disable_e0();
  7354. disable_z();
  7355. // Move Z up to the next 0th full step.
  7356. // Write the file position.
  7357. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7358. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7359. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7360. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7361. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7362. // Scale the z value to 1u resolution.
  7363. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7364. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7365. }
  7366. // Read out the current Z motor microstep counter. This will be later used
  7367. // for reaching the zero full step before powering off.
  7368. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7369. // Store the current position.
  7370. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7371. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7372. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7373. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7374. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7375. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7376. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7377. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7378. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7379. #if EXTRUDERS > 1
  7380. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7381. #if EXTRUDERS > 2
  7382. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7383. #endif
  7384. #endif
  7385. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7386. // Finaly store the "power outage" flag.
  7387. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7388. st_synchronize();
  7389. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7390. disable_z();
  7391. // Increment power failure counter
  7392. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7393. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7394. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7395. #if 0
  7396. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7397. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7399. st_synchronize();
  7400. #endif
  7401. cli();
  7402. volatile unsigned int ppcount = 0;
  7403. SET_OUTPUT(BEEPER);
  7404. WRITE(BEEPER, HIGH);
  7405. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7406. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7407. }
  7408. WRITE(BEEPER, LOW);
  7409. while(1){
  7410. #if 1
  7411. WRITE(BEEPER, LOW);
  7412. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7413. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7414. }
  7415. #endif
  7416. };
  7417. }
  7418. void uvlo_tiny()
  7419. {
  7420. uint16_t z_microsteps=0;
  7421. bool sd_print=card.sdprinting;
  7422. MYSERIAL.println(">>> uvloTiny()");
  7423. // Conserve power as soon as possible.
  7424. disable_x();
  7425. disable_y();
  7426. disable_e0();
  7427. #ifdef TMC2130
  7428. tmc2130_set_current_h(Z_AXIS, 20);
  7429. tmc2130_set_current_r(Z_AXIS, 20);
  7430. #endif //TMC2130
  7431. // Read out the current Z motor microstep counter
  7432. #ifdef TMC2130
  7433. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7434. #endif //TMC2130
  7435. planner_abort_hard();
  7436. sei();
  7437. plan_buffer_line(
  7438. current_position[X_AXIS],
  7439. current_position[Y_AXIS],
  7440. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7441. current_position[E_AXIS],
  7442. 40, active_extruder);
  7443. st_synchronize();
  7444. disable_z();
  7445. // Finaly store the "power outage" flag.
  7446. //if(sd_print)
  7447. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7448. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7449. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7450. // Increment power failure counter
  7451. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7452. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7453. }
  7454. #endif //UVLO_SUPPORT
  7455. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7456. void setup_fan_interrupt() {
  7457. //INT7
  7458. DDRE &= ~(1 << 7); //input pin
  7459. PORTE &= ~(1 << 7); //no internal pull-up
  7460. //start with sensing rising edge
  7461. EICRB &= ~(1 << 6);
  7462. EICRB |= (1 << 7);
  7463. //enable INT7 interrupt
  7464. EIMSK |= (1 << 7);
  7465. }
  7466. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7467. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7468. ISR(INT7_vect) {
  7469. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7470. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7471. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7472. t_fan_rising_edge = millis_nc();
  7473. }
  7474. else { //interrupt was triggered by falling edge
  7475. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7476. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7477. }
  7478. }
  7479. EICRB ^= (1 << 6); //change edge
  7480. }
  7481. #endif
  7482. #ifdef UVLO_SUPPORT
  7483. void setup_uvlo_interrupt() {
  7484. DDRE &= ~(1 << 4); //input pin
  7485. PORTE &= ~(1 << 4); //no internal pull-up
  7486. //sensing falling edge
  7487. EICRB |= (1 << 0);
  7488. EICRB &= ~(1 << 1);
  7489. //enable INT4 interrupt
  7490. EIMSK |= (1 << 4);
  7491. }
  7492. ISR(INT4_vect) {
  7493. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7494. SERIAL_ECHOLNPGM("INT4");
  7495. //-//
  7496. // if (IS_SD_PRINTING) uvlo_();
  7497. //if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7498. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7499. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7500. /*
  7501. if(IS_SD_PRINTING)
  7502. {
  7503. MYSERIAL.println(">>> ");
  7504. if(!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))
  7505. uvlo_();
  7506. else uvlo_tiny();
  7507. }
  7508. */
  7509. }
  7510. void recover_print(uint8_t automatic) {
  7511. char cmd[30];
  7512. lcd_update_enable(true);
  7513. lcd_update(2);
  7514. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7515. //-//
  7516. // recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7517. MYSERIAL.println(">>> RecoverPrint");
  7518. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_UVLO),DEC);
  7519. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7520. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7521. // Lift the print head, so one may remove the excess priming material.
  7522. //-//
  7523. //if (current_position[Z_AXIS] < 25)
  7524. if(!bTiny&&(current_position[Z_AXIS]<25))
  7525. enquecommand_P(PSTR("G1 Z25 F800"));
  7526. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7527. enquecommand_P(PSTR("G28 X Y"));
  7528. // Set the target bed and nozzle temperatures and wait.
  7529. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7530. enquecommand(cmd);
  7531. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7532. enquecommand(cmd);
  7533. enquecommand_P(PSTR("M83")); //E axis relative mode
  7534. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7535. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7536. if(automatic == 0){
  7537. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7538. }
  7539. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7540. // Mark the power panic status as inactive.
  7541. //-//
  7542. MYSERIAL.println("===== before");
  7543. // eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7544. MYSERIAL.println("===== after");
  7545. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7546. delay_keep_alive(1000);
  7547. }*/
  7548. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7549. // Restart the print.
  7550. restore_print_from_eeprom();
  7551. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7552. }
  7553. void recover_machine_state_after_power_panic(bool bTiny)
  7554. {
  7555. char cmd[30];
  7556. // 1) Recover the logical cordinates at the time of the power panic.
  7557. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7558. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7559. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7560. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7561. // The current position after power panic is moved to the next closest 0th full step.
  7562. //-//
  7563. // current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7564. // UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7565. if(bTiny)
  7566. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7567. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7568. else
  7569. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7570. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7571. //-//
  7572. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7573. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7574. sprintf_P(cmd, PSTR("G92 E"));
  7575. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7576. enquecommand(cmd);
  7577. }
  7578. memcpy(destination, current_position, sizeof(destination));
  7579. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7580. print_world_coordinates();
  7581. // 2) Initialize the logical to physical coordinate system transformation.
  7582. world2machine_initialize();
  7583. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7584. mbl.active = false;
  7585. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7586. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7587. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7588. // Scale the z value to 10u resolution.
  7589. int16_t v;
  7590. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7591. if (v != 0)
  7592. mbl.active = true;
  7593. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7594. }
  7595. if (mbl.active)
  7596. mbl.upsample_3x3();
  7597. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7598. // print_mesh_bed_leveling_table();
  7599. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7600. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7601. babystep_load();
  7602. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7604. // 6) Power up the motors, mark their positions as known.
  7605. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7606. axis_known_position[X_AXIS] = true; enable_x();
  7607. axis_known_position[Y_AXIS] = true; enable_y();
  7608. axis_known_position[Z_AXIS] = true; enable_z();
  7609. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7610. print_physical_coordinates();
  7611. // 7) Recover the target temperatures.
  7612. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7613. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7614. // 8) Recover extruder multipilers
  7615. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7616. #if EXTRUDERS > 1
  7617. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7618. #if EXTRUDERS > 2
  7619. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7620. #endif
  7621. #endif
  7622. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7623. }
  7624. void restore_print_from_eeprom() {
  7625. int feedrate_rec;
  7626. uint8_t fan_speed_rec;
  7627. char cmd[30];
  7628. char filename[13];
  7629. uint8_t depth = 0;
  7630. char dir_name[9];
  7631. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7632. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7633. SERIAL_ECHOPGM("Feedrate:");
  7634. MYSERIAL.println(feedrate_rec);
  7635. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7636. MYSERIAL.println(int(depth));
  7637. for (int i = 0; i < depth; i++) {
  7638. for (int j = 0; j < 8; j++) {
  7639. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7640. }
  7641. dir_name[8] = '\0';
  7642. MYSERIAL.println(dir_name);
  7643. strcpy(dir_names[i], dir_name);
  7644. card.chdir(dir_name);
  7645. }
  7646. for (int i = 0; i < 8; i++) {
  7647. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7648. }
  7649. filename[8] = '\0';
  7650. MYSERIAL.print(filename);
  7651. strcat_P(filename, PSTR(".gco"));
  7652. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7653. enquecommand(cmd);
  7654. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7655. SERIAL_ECHOPGM("Position read from eeprom:");
  7656. MYSERIAL.println(position);
  7657. // E axis relative mode.
  7658. enquecommand_P(PSTR("M83"));
  7659. // Move to the XY print position in logical coordinates, where the print has been killed.
  7660. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7661. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7662. strcat_P(cmd, PSTR(" F2000"));
  7663. enquecommand(cmd);
  7664. // Move the Z axis down to the print, in logical coordinates.
  7665. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7666. enquecommand(cmd);
  7667. // Unretract.
  7668. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7669. // Set the feedrate saved at the power panic.
  7670. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7671. enquecommand(cmd);
  7672. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7673. {
  7674. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7675. }
  7676. // Set the fan speed saved at the power panic.
  7677. strcpy_P(cmd, PSTR("M106 S"));
  7678. strcat(cmd, itostr3(int(fan_speed_rec)));
  7679. enquecommand(cmd);
  7680. // Set a position in the file.
  7681. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7682. enquecommand(cmd);
  7683. //-//
  7684. enquecommand_P(PSTR("G4 S0"));
  7685. // Start SD print.
  7686. enquecommand_P(PSTR("M24"));
  7687. }
  7688. #endif //UVLO_SUPPORT
  7689. ////////////////////////////////////////////////////////////////////////////////
  7690. // save/restore printing
  7691. void stop_and_save_print_to_ram(float z_move, float e_move)
  7692. {
  7693. if (saved_printing) return;
  7694. #if 0
  7695. unsigned char nplanner_blocks;
  7696. #endif
  7697. unsigned char nlines;
  7698. uint16_t sdlen_planner;
  7699. uint16_t sdlen_cmdqueue;
  7700. cli();
  7701. if (card.sdprinting) {
  7702. #if 0
  7703. nplanner_blocks = number_of_blocks();
  7704. #endif
  7705. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7706. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7707. saved_sdpos -= sdlen_planner;
  7708. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7709. saved_sdpos -= sdlen_cmdqueue;
  7710. saved_printing_type = PRINTING_TYPE_SD;
  7711. }
  7712. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7713. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7714. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7715. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7716. saved_sdpos -= nlines;
  7717. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7718. saved_printing_type = PRINTING_TYPE_USB;
  7719. }
  7720. else {
  7721. //not sd printing nor usb printing
  7722. }
  7723. #if 0
  7724. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7725. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7726. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7727. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7728. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7729. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7730. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7731. {
  7732. card.setIndex(saved_sdpos);
  7733. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7734. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7735. MYSERIAL.print(char(card.get()));
  7736. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7737. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7738. MYSERIAL.print(char(card.get()));
  7739. SERIAL_ECHOLNPGM("End of command buffer");
  7740. }
  7741. {
  7742. // Print the content of the planner buffer, line by line:
  7743. card.setIndex(saved_sdpos);
  7744. int8_t iline = 0;
  7745. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7746. SERIAL_ECHOPGM("Planner line (from file): ");
  7747. MYSERIAL.print(int(iline), DEC);
  7748. SERIAL_ECHOPGM(", length: ");
  7749. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7750. SERIAL_ECHOPGM(", steps: (");
  7751. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7752. SERIAL_ECHOPGM(",");
  7753. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7754. SERIAL_ECHOPGM(",");
  7755. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7756. SERIAL_ECHOPGM(",");
  7757. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7758. SERIAL_ECHOPGM("), events: ");
  7759. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7760. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7761. MYSERIAL.print(char(card.get()));
  7762. }
  7763. }
  7764. {
  7765. // Print the content of the command buffer, line by line:
  7766. int8_t iline = 0;
  7767. union {
  7768. struct {
  7769. char lo;
  7770. char hi;
  7771. } lohi;
  7772. uint16_t value;
  7773. } sdlen_single;
  7774. int _bufindr = bufindr;
  7775. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7776. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7777. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7778. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7779. }
  7780. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7781. MYSERIAL.print(int(iline), DEC);
  7782. SERIAL_ECHOPGM(", type: ");
  7783. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7784. SERIAL_ECHOPGM(", len: ");
  7785. MYSERIAL.println(sdlen_single.value, DEC);
  7786. // Print the content of the buffer line.
  7787. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7788. SERIAL_ECHOPGM("Buffer line (from file): ");
  7789. MYSERIAL.println(int(iline), DEC);
  7790. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7791. MYSERIAL.print(char(card.get()));
  7792. if (-- _buflen == 0)
  7793. break;
  7794. // First skip the current command ID and iterate up to the end of the string.
  7795. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7796. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7797. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7798. // If the end of the buffer was empty,
  7799. if (_bufindr == sizeof(cmdbuffer)) {
  7800. // skip to the start and find the nonzero command.
  7801. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7802. }
  7803. }
  7804. }
  7805. #endif
  7806. #if 0
  7807. saved_feedrate2 = feedrate; //save feedrate
  7808. #else
  7809. // Try to deduce the feedrate from the first block of the planner.
  7810. // Speed is in mm/min.
  7811. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7812. #endif
  7813. planner_abort_hard(); //abort printing
  7814. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7815. saved_active_extruder = active_extruder; //save active_extruder
  7816. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7817. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7818. cmdqueue_reset(); //empty cmdqueue
  7819. card.sdprinting = false;
  7820. // card.closefile();
  7821. saved_printing = true;
  7822. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7823. st_reset_timer();
  7824. sei();
  7825. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7826. #if 1
  7827. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7828. char buf[48];
  7829. // First unretract (relative extrusion)
  7830. if(!saved_extruder_relative_mode){
  7831. strcpy_P(buf, PSTR("M83"));
  7832. enquecommand(buf, false);
  7833. }
  7834. //retract 45mm/s
  7835. strcpy_P(buf, PSTR("G1 E"));
  7836. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7837. strcat_P(buf, PSTR(" F"));
  7838. dtostrf(2700, 8, 3, buf + strlen(buf));
  7839. enquecommand(buf, false);
  7840. // Then lift Z axis
  7841. strcpy_P(buf, PSTR("G1 Z"));
  7842. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7843. strcat_P(buf, PSTR(" F"));
  7844. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7845. // At this point the command queue is empty.
  7846. enquecommand(buf, false);
  7847. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7848. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7849. repeatcommand_front();
  7850. #else
  7851. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7852. st_synchronize(); //wait moving
  7853. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7854. memcpy(destination, current_position, sizeof(destination));
  7855. #endif
  7856. }
  7857. }
  7858. void restore_print_from_ram_and_continue(float e_move)
  7859. {
  7860. if (!saved_printing) return;
  7861. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7862. // current_position[axis] = st_get_position_mm(axis);
  7863. active_extruder = saved_active_extruder; //restore active_extruder
  7864. feedrate = saved_feedrate2; //restore feedrate
  7865. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7866. float e = saved_pos[E_AXIS] - e_move;
  7867. plan_set_e_position(e);
  7868. //first move print head in XY to the saved position:
  7869. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7870. st_synchronize();
  7871. //then move Z
  7872. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7873. st_synchronize();
  7874. //and finaly unretract (35mm/s)
  7875. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7876. st_synchronize();
  7877. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7878. memcpy(destination, current_position, sizeof(destination));
  7879. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7880. card.setIndex(saved_sdpos);
  7881. sdpos_atomic = saved_sdpos;
  7882. card.sdprinting = true;
  7883. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7884. }
  7885. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7886. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7887. serial_count = 0;
  7888. FlushSerialRequestResend();
  7889. }
  7890. else {
  7891. //not sd printing nor usb printing
  7892. }
  7893. lcd_setstatuspgm(_T(WELCOME_MSG));
  7894. saved_printing = false;
  7895. }
  7896. void print_world_coordinates()
  7897. {
  7898. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7899. }
  7900. void print_physical_coordinates()
  7901. {
  7902. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7903. }
  7904. void print_mesh_bed_leveling_table()
  7905. {
  7906. SERIAL_ECHOPGM("mesh bed leveling: ");
  7907. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7908. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7909. MYSERIAL.print(mbl.z_values[y][x], 3);
  7910. SERIAL_ECHOPGM(" ");
  7911. }
  7912. SERIAL_ECHOLNPGM("");
  7913. }
  7914. uint16_t print_time_remaining() {
  7915. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7916. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7917. else print_t = print_time_remaining_silent;
  7918. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7919. return print_t;
  7920. }
  7921. uint8_t print_percent_done() {
  7922. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7923. uint8_t percent_done = 0;
  7924. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7925. percent_done = print_percent_done_normal;
  7926. }
  7927. else if (print_percent_done_silent <= 100) {
  7928. percent_done = print_percent_done_silent;
  7929. }
  7930. else {
  7931. percent_done = card.percentDone();
  7932. }
  7933. return percent_done;
  7934. }
  7935. static void print_time_remaining_init() {
  7936. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7937. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7938. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7939. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7940. }
  7941. bool mmu_get_reponse(bool timeout) {
  7942. bool response = true;
  7943. LongTimer mmu_get_reponse_timeout;
  7944. uart2_rx_clr();
  7945. mmu_get_reponse_timeout.start();
  7946. while (!uart2_rx_ok())
  7947. {
  7948. delay_keep_alive(100);
  7949. if (timeout && mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7950. response = false;
  7951. break;
  7952. }
  7953. }
  7954. return response;
  7955. }
  7956. void mmu_not_responding() {
  7957. printf_P(PSTR("MMU not responding"));
  7958. }
  7959. void mmu_load_to_nozzle() {
  7960. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7961. if (!saved_e_relative_mode) {
  7962. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7963. }
  7964. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7965. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7966. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7967. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7968. if (!saved_e_relative_mode) {
  7969. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7970. }*/
  7971. st_synchronize();
  7972. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7973. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7974. current_position[E_AXIS] += 7.2f;
  7975. float feedrate = 562;
  7976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7977. st_synchronize();
  7978. current_position[E_AXIS] += 14.4f;
  7979. feedrate = 871;
  7980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7981. st_synchronize();
  7982. current_position[E_AXIS] += 36.0f;
  7983. feedrate = 1393;
  7984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7985. st_synchronize();
  7986. current_position[E_AXIS] += 14.4f;
  7987. feedrate = 871;
  7988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7989. st_synchronize();
  7990. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7991. }
  7992. void mmu_switch_extruder(uint8_t extruder) {
  7993. }
  7994. void mmu_M600_load_filament() {
  7995. #ifdef SNMM_V2
  7996. bool response = false;
  7997. tmp_extruder = choose_extruder_menu();
  7998. lcd_update_enable(false);
  7999. lcd_clear();
  8000. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  8001. lcd_print(" ");
  8002. lcd_print(snmm_extruder + 1);
  8003. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  8004. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  8005. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  8006. response = mmu_get_reponse(false);
  8007. if (!response) mmu_not_responding();
  8008. snmm_extruder = tmp_extruder; //filament change is finished
  8009. mmu_load_to_nozzle();
  8010. #endif
  8011. }
  8012. void M600_load_filament_movements() {
  8013. #ifdef SNMM
  8014. display_loading();
  8015. do {
  8016. current_position[E_AXIS] += 0.002;
  8017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8018. delay_keep_alive(2);
  8019. } while (!lcd_clicked());
  8020. st_synchronize();
  8021. current_position[E_AXIS] += bowden_length[snmm_extruder];
  8022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8023. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8025. current_position[E_AXIS] += 40;
  8026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8027. current_position[E_AXIS] += 10;
  8028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8029. #else
  8030. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  8032. #endif
  8033. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  8034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  8035. lcd_loading_filament();
  8036. }
  8037. void M600_load_filament()
  8038. {
  8039. lcd_wait_interact();
  8040. //load_filament_time = millis();
  8041. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8042. #ifdef FILAMENT_SENSOR
  8043. fsensor_autoload_check_start();
  8044. #endif //FILAMENT_SENSOR
  8045. while(!lcd_clicked())
  8046. {
  8047. manage_heater();
  8048. manage_inactivity(true);
  8049. #ifdef FILAMENT_SENSOR
  8050. if (fsensor_check_autoload())
  8051. {
  8052. tone(BEEPER, 1000);
  8053. delay_keep_alive(50);
  8054. noTone(BEEPER);
  8055. break;
  8056. }
  8057. #endif //FILAMENT_SENSOR
  8058. }
  8059. #ifdef FILAMENT_SENSOR
  8060. fsensor_autoload_check_stop();
  8061. #endif //FILAMENT_SENSOR
  8062. KEEPALIVE_STATE(IN_HANDLER);
  8063. #ifdef FILAMENT_SENSOR
  8064. fsensor_oq_meassure_start(70);
  8065. #endif //FILAMENT_SENSOR
  8066. M600_load_filament_movements();
  8067. tone(BEEPER, 500);
  8068. delay_keep_alive(50);
  8069. noTone(BEEPER);
  8070. #ifdef FILAMENT_SENSOR
  8071. fsensor_oq_meassure_stop();
  8072. if (!fsensor_oq_result())
  8073. {
  8074. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8075. lcd_update_enable(true);
  8076. lcd_update(2);
  8077. if (disable)
  8078. fsensor_disable();
  8079. }
  8080. #endif //FILAMENT_SENSOR
  8081. }
  8082. #define FIL_LOAD_LENGTH 60