Marlin_main.cpp 397 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "conv2str.h"
  63. #include "backlight.h"
  64. #include "planner.h"
  65. #include "stepper.h"
  66. #include "temperature.h"
  67. #include "fancheck.h"
  68. #include "motion_control.h"
  69. #include "cardreader.h"
  70. #include "ConfigurationStore.h"
  71. #include "language.h"
  72. #include "pins_arduino.h"
  73. #include "math.h"
  74. #include "util.h"
  75. #include "Timer.h"
  76. #include <avr/wdt.h>
  77. #include <avr/pgmspace.h>
  78. #include "Dcodes.h"
  79. #include "AutoDeplete.h"
  80. #ifndef LA_NOCOMPAT
  81. #include "la10compat.h"
  82. #endif
  83. #include "spi.h"
  84. #ifdef FILAMENT_SENSOR
  85. #include "fsensor.h"
  86. #ifdef IR_SENSOR
  87. #include "pat9125.h" // for pat9125_probe
  88. #endif
  89. #endif //FILAMENT_SENSOR
  90. #ifdef TMC2130
  91. #include "tmc2130.h"
  92. #endif //TMC2130
  93. #ifdef XFLASH
  94. #include "xflash.h"
  95. #include "optiboot_xflash.h"
  96. #endif //XFLASH
  97. #include "xflash_dump.h"
  98. #ifdef BLINKM
  99. #include "BlinkM.h"
  100. #include "Wire.h"
  101. #endif
  102. #ifdef ULTRALCD
  103. #include "ultralcd.h"
  104. #endif
  105. #if NUM_SERVOS > 0
  106. #include "Servo.h"
  107. #endif
  108. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  109. #include <SPI.h>
  110. #endif
  111. #include "mmu.h"
  112. #define VERSION_STRING "1.0.2"
  113. #include "ultralcd.h"
  114. #include "sound.h"
  115. #include "cmdqueue.h"
  116. //Macro for print fan speed
  117. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  141. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  142. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  143. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  144. uint8_t axis_relative_modes = 0;
  145. int feedmultiply=100; //100->1 200->2
  146. int extrudemultiply=100; //100->1 200->2
  147. int extruder_multiply[EXTRUDERS] = {100
  148. #if EXTRUDERS > 1
  149. , 100
  150. #if EXTRUDERS > 2
  151. , 100
  152. #endif
  153. #endif
  154. };
  155. bool homing_flag = false;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = _millis();
  159. unsigned long t_fan_rising_edge = _millis();
  160. LongTimer safetyTimer;
  161. static LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. #ifdef PRUSA_M28
  165. bool prusa_sd_card_upload = false;
  166. #endif
  167. uint8_t status_number = 0;
  168. unsigned long total_filament_used;
  169. HeatingStatus heating_status;
  170. uint8_t heating_status_counter;
  171. bool loading_flag = false;
  172. #define XY_NO_RESTORE_FLAG (mesh_bed_leveling_flag || homing_flag)
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. float extruder_multiplier[EXTRUDERS] = {1.0
  177. #if EXTRUDERS > 1
  178. , 1.0
  179. #if EXTRUDERS > 2
  180. , 1.0
  181. #endif
  182. #endif
  183. };
  184. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  185. //shortcuts for more readable code
  186. #define _x current_position[X_AXIS]
  187. #define _y current_position[Y_AXIS]
  188. #define _z current_position[Z_AXIS]
  189. #define _e current_position[E_AXIS]
  190. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  191. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  192. bool axis_known_position[3] = {false, false, false};
  193. // Extruder offset
  194. #if EXTRUDERS > 1
  195. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  196. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  197. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  198. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  199. #endif
  200. };
  201. #endif
  202. uint8_t active_extruder = 0;
  203. int fanSpeed=0;
  204. uint8_t newFanSpeed = 0;
  205. #ifdef FWRETRACT
  206. bool retracted[EXTRUDERS]={false
  207. #if EXTRUDERS > 1
  208. , false
  209. #if EXTRUDERS > 2
  210. , false
  211. #endif
  212. #endif
  213. };
  214. bool retracted_swap[EXTRUDERS]={false
  215. #if EXTRUDERS > 1
  216. , false
  217. #if EXTRUDERS > 2
  218. , false
  219. #endif
  220. #endif
  221. };
  222. float retract_length_swap = RETRACT_LENGTH_SWAP;
  223. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  224. #endif
  225. #ifdef PS_DEFAULT_OFF
  226. bool powersupply = false;
  227. #else
  228. bool powersupply = true;
  229. #endif
  230. bool cancel_heatup = false;
  231. int8_t busy_state = NOT_BUSY;
  232. static long prev_busy_signal_ms = -1;
  233. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  234. const char errormagic[] PROGMEM = "Error:";
  235. const char echomagic[] PROGMEM = "echo:";
  236. const char G28W0[] PROGMEM = "G28 W0";
  237. bool no_response = false;
  238. uint8_t important_status;
  239. uint8_t saved_filament_type;
  240. // Define some coordinates outside the clamp limits (making them invalid past the parsing stage) so
  241. // that they can be used later for various logical checks
  242. #define X_COORD_INVALID (X_MIN_POS-1)
  243. #define Y_COORD_INVALID (Y_MIN_POS-1)
  244. #define SAVED_TARGET_UNSET X_COORD_INVALID
  245. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  246. // save/restore printing in case that mmu was not responding
  247. bool mmu_print_saved = false;
  248. // storing estimated time to end of print counted by slicer
  249. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  253. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  254. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  255. uint32_t IP_address = 0;
  256. //===========================================================================
  257. //=============================Private Variables=============================
  258. //===========================================================================
  259. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  260. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  261. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  262. // For tracing an arc
  263. static float offset[3] = {0.0, 0.0, 0.0};
  264. // Current feedrate
  265. float feedrate = 1500.0;
  266. // Feedrate for the next move
  267. static float next_feedrate;
  268. // Original feedrate saved during homing moves
  269. static float saved_feedrate;
  270. const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; // Sensitive pin list for M42
  271. //static float tt = 0;
  272. //static float bt = 0;
  273. //Inactivity shutdown variables
  274. static LongTimer previous_millis_cmd;
  275. unsigned long max_inactive_time = 0;
  276. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  277. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  278. unsigned long starttime=0;
  279. unsigned long stoptime=0;
  280. ShortTimer usb_timer;
  281. bool Stopped=false;
  282. #if NUM_SERVOS > 0
  283. Servo servos[NUM_SERVOS];
  284. #endif
  285. bool target_direction;
  286. //Insert variables if CHDK is defined
  287. #ifdef CHDK
  288. unsigned long chdkHigh = 0;
  289. bool chdkActive = false;
  290. #endif
  291. //! @name RAM save/restore printing
  292. //! @{
  293. bool saved_printing = false; //!< Print is paused and saved in RAM
  294. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  295. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  296. static float saved_pos[4] = { X_COORD_INVALID, 0, 0, 0 };
  297. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  298. static int saved_feedmultiply2 = 0;
  299. static uint8_t saved_active_extruder = 0;
  300. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. class AutoReportFeatures {
  306. union {
  307. struct {
  308. uint8_t temp : 1; //Temperature flag
  309. uint8_t fans : 1; //Fans flag
  310. uint8_t pos: 1; //Position flag
  311. uint8_t ar4 : 1; //Unused
  312. uint8_t ar5 : 1; //Unused
  313. uint8_t ar6 : 1; //Unused
  314. uint8_t ar7 : 1; //Unused
  315. } __attribute__((packed)) bits;
  316. uint8_t byte;
  317. } arFunctionsActive;
  318. uint8_t auto_report_period;
  319. public:
  320. LongTimer auto_report_timer;
  321. AutoReportFeatures():auto_report_period(0){
  322. #if defined(AUTO_REPORT)
  323. arFunctionsActive.byte = 0xff;
  324. #else
  325. arFunctionsActive.byte = 0;
  326. #endif //AUTO_REPORT
  327. }
  328. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  329. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  330. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  331. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  332. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  333. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  334. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  335. /// sets the autoreporting timer's period
  336. /// setting it to zero stops the timer
  337. void SetPeriod(uint8_t p){
  338. auto_report_period = p;
  339. if (auto_report_period != 0){
  340. auto_report_timer.start();
  341. } else{
  342. auto_report_timer.stop();
  343. }
  344. }
  345. inline void TimerStart() { auto_report_timer.start(); }
  346. inline bool TimerRunning()const { return auto_report_timer.running(); }
  347. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  348. };
  349. AutoReportFeatures autoReportFeatures;
  350. //===========================================================================
  351. //=============================Routines======================================
  352. //===========================================================================
  353. static void get_arc_coordinates();
  354. static bool setTargetedHotend(int code, uint8_t &extruder);
  355. static void print_time_remaining_init();
  356. static void wait_for_heater(long codenum, uint8_t extruder);
  357. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  358. static void gcode_M105(uint8_t extruder);
  359. #ifndef PINDA_THERMISTOR
  360. static void temp_compensation_start();
  361. static void temp_compensation_apply();
  362. #endif
  363. #ifdef PRUSA_SN_SUPPORT
  364. static uint8_t get_PRUSA_SN(char* SN);
  365. #endif //PRUSA_SN_SUPPORT
  366. uint16_t gcode_in_progress = 0;
  367. uint16_t mcode_in_progress = 0;
  368. void serial_echopair_P(const char *s_P, float v)
  369. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  370. void serial_echopair_P(const char *s_P, double v)
  371. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  372. void serial_echopair_P(const char *s_P, unsigned long v)
  373. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. void serialprintPGM(const char *str) {
  375. while(uint8_t ch = pgm_read_byte(str)) {
  376. MYSERIAL.write((char)ch);
  377. ++str;
  378. }
  379. }
  380. void serialprintlnPGM(const char *str) {
  381. serialprintPGM(str);
  382. MYSERIAL.println();
  383. }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. void setup_killpin()
  403. {
  404. #if defined(KILL_PIN) && KILL_PIN > -1
  405. SET_INPUT(KILL_PIN);
  406. WRITE(KILL_PIN,HIGH);
  407. #endif
  408. }
  409. // Set home pin
  410. void setup_homepin(void)
  411. {
  412. #if defined(HOME_PIN) && HOME_PIN > -1
  413. SET_INPUT(HOME_PIN);
  414. WRITE(HOME_PIN,HIGH);
  415. #endif
  416. }
  417. void setup_photpin()
  418. {
  419. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  420. SET_OUTPUT(PHOTOGRAPH_PIN);
  421. WRITE(PHOTOGRAPH_PIN, LOW);
  422. #endif
  423. }
  424. void setup_powerhold()
  425. {
  426. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  427. SET_OUTPUT(SUICIDE_PIN);
  428. WRITE(SUICIDE_PIN, HIGH);
  429. #endif
  430. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  431. SET_OUTPUT(PS_ON_PIN);
  432. #if defined(PS_DEFAULT_OFF)
  433. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  434. #else
  435. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  436. #endif
  437. #endif
  438. }
  439. void suicide()
  440. {
  441. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  442. SET_OUTPUT(SUICIDE_PIN);
  443. WRITE(SUICIDE_PIN, LOW);
  444. #endif
  445. }
  446. void servo_init()
  447. {
  448. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  449. servos[0].attach(SERVO0_PIN);
  450. #endif
  451. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  452. servos[1].attach(SERVO1_PIN);
  453. #endif
  454. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  455. servos[2].attach(SERVO2_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  458. servos[3].attach(SERVO3_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 5)
  461. #error "TODO: enter initalisation code for more servos"
  462. #endif
  463. }
  464. bool fans_check_enabled = true;
  465. #ifdef TMC2130
  466. void crashdet_stop_and_save_print()
  467. {
  468. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  469. }
  470. void crashdet_restore_print_and_continue()
  471. {
  472. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  473. // babystep_apply();
  474. }
  475. void crashdet_fmt_error(char* buf, uint8_t mask)
  476. {
  477. if(mask & X_AXIS_MASK) *buf++ = axis_codes[X_AXIS];
  478. if(mask & Y_AXIS_MASK) *buf++ = axis_codes[Y_AXIS];
  479. *buf++ = ' ';
  480. strcpy_P(buf, _T(MSG_CRASH_DETECTED));
  481. }
  482. void crashdet_detected(uint8_t mask)
  483. {
  484. st_synchronize();
  485. static uint8_t crashDet_counter = 0;
  486. static uint8_t crashDet_axes = 0;
  487. bool automatic_recovery_after_crash = true;
  488. char msg[LCD_WIDTH+1] = "";
  489. if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)) {
  490. crashDet_counter = 0;
  491. }
  492. if(++crashDet_counter >= CRASHDET_COUNTER_MAX) {
  493. automatic_recovery_after_crash = false;
  494. }
  495. crashDetTimer.start();
  496. crashDet_axes |= mask;
  497. lcd_update_enable(true);
  498. lcd_clear();
  499. lcd_update(2);
  500. if (mask & X_AXIS_MASK)
  501. {
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  503. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  504. }
  505. if (mask & Y_AXIS_MASK)
  506. {
  507. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  508. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  509. }
  510. lcd_update_enable(true);
  511. lcd_update(2);
  512. // prepare the status message with the _current_ axes status
  513. crashdet_fmt_error(msg, mask);
  514. lcd_setstatus(msg);
  515. gcode_G28(true, true, false); //home X and Y
  516. st_synchronize();
  517. if (automatic_recovery_after_crash) {
  518. enquecommand_P(PSTR("CRASH_RECOVER"));
  519. }else{
  520. setTargetHotend(0, active_extruder);
  521. // notify the user of *all* the axes previously affected, not just the last one
  522. lcd_update_enable(false);
  523. lcd_clear();
  524. crashdet_fmt_error(msg, crashDet_axes);
  525. crashDet_axes = 0;
  526. lcd_print(msg);
  527. // ask whether to resume printing
  528. lcd_set_cursor(0, 1);
  529. lcd_puts_P(_T(MSG_RESUME_PRINT));
  530. lcd_putc('?');
  531. bool yesno = lcd_show_yes_no_and_wait(false);
  532. lcd_update_enable(true);
  533. if (yesno)
  534. {
  535. enquecommand_P(PSTR("CRASH_RECOVER"));
  536. }
  537. else
  538. {
  539. enquecommand_P(PSTR("CRASH_CANCEL"));
  540. }
  541. }
  542. }
  543. void crashdet_recover()
  544. {
  545. crashdet_restore_print_and_continue();
  546. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  547. }
  548. void crashdet_cancel()
  549. {
  550. saved_printing = false;
  551. tmc2130_sg_stop_on_crash = true;
  552. if (saved_printing_type == PRINTING_TYPE_SD) {
  553. lcd_print_stop();
  554. }else if(saved_printing_type == PRINTING_TYPE_USB){
  555. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  556. cmdqueue_reset();
  557. }
  558. }
  559. #endif //TMC2130
  560. void failstats_reset_print()
  561. {
  562. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  565. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  566. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  567. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  568. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  569. fsensor_softfail = 0;
  570. #endif
  571. }
  572. void softReset()
  573. {
  574. cli();
  575. wdt_enable(WDTO_15MS);
  576. while(1);
  577. }
  578. #ifdef MESH_BED_LEVELING
  579. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  580. #endif
  581. static void factory_reset_stats(){
  582. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  583. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  585. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  586. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  587. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  591. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  592. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  593. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  594. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  595. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  596. }
  597. // Factory reset function
  598. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  599. // Level input parameter sets depth of reset
  600. static void factory_reset(char level)
  601. {
  602. lcd_clear();
  603. Sound_MakeCustom(100,0,false);
  604. switch (level) {
  605. case 0: // Level 0: Language reset
  606. lang_reset();
  607. break;
  608. case 1: //Level 1: Reset statistics
  609. factory_reset_stats();
  610. lcd_menu_statistics();
  611. break;
  612. case 2: // Level 2: Prepare for shipping
  613. factory_reset_stats();
  614. // FALLTHRU
  615. case 3: // Level 3: Preparation after being serviced
  616. // Force language selection at the next boot up.
  617. lang_reset();
  618. // Force the "Follow calibration flow" message at the next boot up.
  619. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  620. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  621. farm_mode = false;
  622. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  623. #ifdef FILAMENT_SENSOR
  624. fsensor_enable();
  625. fsensor_autoload_set(true);
  626. #endif //FILAMENT_SENSOR
  627. break;
  628. case 4:
  629. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  630. // Erase EEPROM
  631. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  632. eeprom_update_byte((uint8_t*)i, 0xFF);
  633. menu_progressbar_update(i);
  634. }
  635. menu_progressbar_finish();
  636. softReset();
  637. break;
  638. default:
  639. break;
  640. }
  641. }
  642. extern "C" {
  643. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  644. }
  645. int uart_putchar(char c, FILE *)
  646. {
  647. MYSERIAL.write(c);
  648. return 0;
  649. }
  650. void lcd_splash()
  651. {
  652. lcd_clear(); // clears display and homes screen
  653. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  654. }
  655. void factory_reset()
  656. {
  657. KEEPALIVE_STATE(PAUSED_FOR_USER);
  658. if (!READ(BTN_ENC))
  659. {
  660. _delay_ms(1000);
  661. if (!READ(BTN_ENC))
  662. {
  663. lcd_clear();
  664. lcd_puts_P(PSTR("Factory RESET"));
  665. SET_OUTPUT(BEEPER);
  666. if(eSoundMode!=e_SOUND_MODE_SILENT)
  667. WRITE(BEEPER, HIGH);
  668. while (!READ(BTN_ENC));
  669. WRITE(BEEPER, LOW);
  670. _delay_ms(2000);
  671. char level = reset_menu();
  672. factory_reset(level);
  673. switch (level) {
  674. case 0:
  675. case 1:
  676. case 2:
  677. case 3:
  678. case 4: _delay_ms(0); break;
  679. }
  680. }
  681. }
  682. KEEPALIVE_STATE(IN_HANDLER);
  683. }
  684. void show_fw_version_warnings() {
  685. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  686. switch (FW_DEV_VERSION) {
  687. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  688. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  689. case(FW_VERSION_DEVEL):
  690. case(FW_VERSION_DEBUG):
  691. lcd_update_enable(false);
  692. lcd_clear();
  693. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  694. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  695. #else
  696. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  697. #endif
  698. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  699. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  700. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  701. lcd_wait_for_click();
  702. break;
  703. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  704. }
  705. lcd_update_enable(true);
  706. }
  707. //! @brief try to check if firmware is on right type of printer
  708. static void check_if_fw_is_on_right_printer(){
  709. #ifdef FILAMENT_SENSOR
  710. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  711. #ifdef IR_SENSOR
  712. if (pat9125_probe()){
  713. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////MSG_MK3S_FIRMWARE_ON_MK3 c=20 r=4
  714. #endif //IR_SENSOR
  715. #ifdef PAT9125
  716. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  717. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  718. if (ir_detected){
  719. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////MSG_MK3_FIRMWARE_ON_MK3S c=20 r=4
  720. #endif //PAT9125
  721. }
  722. #endif //FILAMENT_SENSOR
  723. }
  724. uint8_t check_printer_version()
  725. {
  726. uint8_t version_changed = 0;
  727. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  728. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  729. if (printer_type != PRINTER_TYPE) {
  730. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  731. else version_changed |= 0b10;
  732. }
  733. if (motherboard != MOTHERBOARD) {
  734. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  735. else version_changed |= 0b01;
  736. }
  737. return version_changed;
  738. }
  739. #ifdef BOOTAPP
  740. #include "bootapp.h" //bootloader support
  741. #endif //BOOTAPP
  742. #if (LANG_MODE != 0) //secondary language support
  743. #ifdef XFLASH
  744. // language update from external flash
  745. #define LANGBOOT_BLOCKSIZE 0x1000u
  746. #define LANGBOOT_RAMBUFFER 0x0800
  747. void update_sec_lang_from_external_flash()
  748. {
  749. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  750. {
  751. uint8_t lang = boot_reserved >> 3;
  752. uint8_t state = boot_reserved & 0x07;
  753. lang_table_header_t header;
  754. uint32_t src_addr;
  755. if (lang_get_header(lang, &header, &src_addr))
  756. {
  757. lcd_puts_at_P(1,3,PSTR("Language update."));
  758. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  759. _delay(100);
  760. boot_reserved = (boot_reserved & 0xF8) | ((state + 1) & 0x07);
  761. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  762. {
  763. cli();
  764. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  765. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  766. xflash_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  767. if (state == 0)
  768. {
  769. //TODO - check header integrity
  770. }
  771. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  772. }
  773. else
  774. {
  775. //TODO - check sec lang data integrity
  776. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  777. }
  778. }
  779. }
  780. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  781. }
  782. #ifdef DEBUG_XFLASH
  783. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  784. {
  785. lang_table_header_t header;
  786. uint8_t count = 0;
  787. uint32_t addr = 0x00000;
  788. while (1)
  789. {
  790. printf_P(_n("LANGTABLE%d:"), count);
  791. xflash_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  792. if (header.magic != LANG_MAGIC)
  793. {
  794. puts_P(_n("NG!"));
  795. break;
  796. }
  797. puts_P(_n("OK"));
  798. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  799. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  800. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  801. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  802. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  803. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  804. addr += header.size;
  805. codes[count] = header.code;
  806. count ++;
  807. }
  808. return count;
  809. }
  810. void list_sec_lang_from_external_flash()
  811. {
  812. uint16_t codes[8];
  813. uint8_t count = lang_xflash_enum_codes(codes);
  814. printf_P(_n("XFlash lang count = %hhd\n"), count);
  815. }
  816. #endif //DEBUG_XFLASH
  817. #endif //XFLASH
  818. #endif //(LANG_MODE != 0)
  819. static void fw_crash_init()
  820. {
  821. #ifdef XFLASH_DUMP
  822. dump_crash_reason crash_reason;
  823. if(xfdump_check_state(&crash_reason))
  824. {
  825. // always signal to the host that a dump is available for retrieval
  826. puts_P(_N("// action:dump_available"));
  827. #ifdef EMERGENCY_DUMP
  828. if(crash_reason != dump_crash_reason::manual &&
  829. eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG) != 0xFF)
  830. {
  831. lcd_show_fullscreen_message_and_wait_P(
  832. _n("FW crash detected! "
  833. "You can continue printing. "
  834. "Debug data available for analysis. "
  835. "Contact support to submit details."));
  836. }
  837. #endif
  838. }
  839. #else //XFLASH_DUMP
  840. dump_crash_reason crash_reason = (dump_crash_reason)eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG);
  841. if(crash_reason != dump_crash_reason::manual && (uint8_t)crash_reason != 0xFF)
  842. {
  843. lcd_beeper_quick_feedback();
  844. lcd_clear();
  845. lcd_puts_P(_n("FIRMWARE CRASH!\nCrash reason:\n"));
  846. switch(crash_reason)
  847. {
  848. case dump_crash_reason::stack_error:
  849. lcd_puts_P(_n("Static memory has\nbeen overwritten"));
  850. break;
  851. case dump_crash_reason::watchdog:
  852. lcd_puts_P(_n("Watchdog timeout"));
  853. break;
  854. case dump_crash_reason::bad_isr:
  855. lcd_puts_P(_n("Bad interrupt"));
  856. break;
  857. default:
  858. lcd_print((uint8_t)crash_reason);
  859. break;
  860. }
  861. lcd_wait_for_click();
  862. }
  863. #endif //XFLASH_DUMP
  864. // prevent crash prompts to reappear once acknowledged
  865. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, 0xFF);
  866. }
  867. static void xflash_err_msg()
  868. {
  869. puts_P(_n("XFLASH not responding."));
  870. lcd_show_fullscreen_message_and_wait_P(_n("External SPI flash\nXFLASH is not res-\nponding. Language\nswitch unavailable."));
  871. }
  872. // "Setup" function is called by the Arduino framework on startup.
  873. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  874. // are initialized by the main() routine provided by the Arduino framework.
  875. void setup()
  876. {
  877. timer2_init(); // enables functional millis
  878. mmu_init();
  879. ultralcd_init();
  880. spi_init();
  881. lcd_splash();
  882. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  883. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  884. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  885. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  886. MYSERIAL.begin(BAUDRATE);
  887. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  888. stdout = uartout;
  889. #ifdef XFLASH
  890. bool xflash_success = xflash_init();
  891. uint8_t optiboot_status = 1;
  892. if (xflash_success)
  893. {
  894. optiboot_status = optiboot_xflash_enter();
  895. #if (LANG_MODE != 0) //secondary language support
  896. update_sec_lang_from_external_flash();
  897. #endif //(LANG_MODE != 0)
  898. }
  899. #else
  900. const bool xflash_success = true;
  901. #endif //XFLASH
  902. setup_killpin();
  903. setup_powerhold();
  904. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  905. if (farm_mode == 0xFF) {
  906. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  907. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  908. } else if (farm_mode) {
  909. no_response = true; //we need confirmation by recieving PRUSA thx
  910. important_status = 8;
  911. prusa_statistics(8);
  912. #ifdef HAS_SECOND_SERIAL_PORT
  913. selectedSerialPort = 1;
  914. #endif //HAS_SECOND_SERIAL_PORT
  915. MYSERIAL.begin(BAUDRATE);
  916. #ifdef FILAMENT_SENSOR
  917. //disabled filament autoload (PFW360)
  918. fsensor_autoload_set(false);
  919. #endif //FILAMENT_SENSOR
  920. // ~ FanCheck -> on
  921. eeprom_update_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED, true);
  922. }
  923. #ifdef TMC2130
  924. if( FarmOrUserECool() ){
  925. //increased extruder current (PFW363)
  926. tmc2130_current_h[E_AXIS] = TMC2130_CURRENTS_FARM;
  927. tmc2130_current_r[E_AXIS] = TMC2130_CURRENTS_FARM;
  928. }
  929. #endif //TMC2130
  930. #ifdef PRUSA_SN_SUPPORT
  931. //Check for valid SN in EEPROM. Try to retrieve it in case it's invalid.
  932. //SN is valid only if it is NULL terminated and starts with "CZPX".
  933. {
  934. char SN[20];
  935. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  936. if (SN[19] || strncmp_P(SN, PSTR("CZPX"), 4))
  937. {
  938. if (!get_PRUSA_SN(SN))
  939. {
  940. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  941. puts_P(PSTR("SN updated"));
  942. }
  943. else
  944. puts_P(PSTR("SN update failed"));
  945. }
  946. }
  947. #endif //PRUSA_SN_SUPPORT
  948. #ifndef XFLASH
  949. SERIAL_PROTOCOLLNPGM("start");
  950. #else
  951. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  952. SERIAL_PROTOCOLLNPGM("start");
  953. #endif
  954. SERIAL_ECHO_START;
  955. puts_P(PSTR(" " FW_VERSION_FULL));
  956. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  957. #ifdef DEBUG_SEC_LANG
  958. lang_table_header_t header;
  959. uint32_t src_addr = 0x00000;
  960. if (lang_get_header(1, &header, &src_addr))
  961. {
  962. printf_P(
  963. _n(
  964. " _src_addr = 0x%08lx\n"
  965. " _lt_magic = 0x%08lx %S\n"
  966. " _lt_size = 0x%04x (%d)\n"
  967. " _lt_count = 0x%04x (%d)\n"
  968. " _lt_chsum = 0x%04x\n"
  969. " _lt_code = 0x%04x (%c%c)\n"
  970. " _lt_resv1 = 0x%08lx\n"
  971. ),
  972. src_addr,
  973. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  974. header.size, header.size,
  975. header.count, header.count,
  976. header.checksum,
  977. header.code, header.code >> 8, header.code & 0xff,
  978. header.signature
  979. );
  980. #if 0
  981. xflash_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  982. for (uint16_t i = 0; i < 1024; i++)
  983. {
  984. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  985. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  986. if ((i % 16) == 15) putchar('\n');
  987. }
  988. #endif
  989. uint16_t sum = 0;
  990. for (uint16_t i = 0; i < header.size; i++)
  991. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  992. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  993. sum -= header.checksum; //subtract checksum
  994. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  995. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  996. if (sum == header.checksum)
  997. puts_P(_n("Checksum OK"));
  998. else
  999. puts_P(_n("Checksum NG"));
  1000. }
  1001. else
  1002. puts_P(_n("lang_get_header failed!"));
  1003. #if 0
  1004. for (uint16_t i = 0; i < 1024*10; i++)
  1005. {
  1006. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1007. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1008. if ((i % 16) == 15) putchar('\n');
  1009. }
  1010. #endif
  1011. #if 0
  1012. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1013. for (int i = 0; i < 4096; ++i) {
  1014. int b = eeprom_read_byte((unsigned char*)i);
  1015. if (b != 255) {
  1016. SERIAL_ECHO(i);
  1017. SERIAL_ECHO(":");
  1018. SERIAL_ECHO(b);
  1019. SERIAL_ECHOLN("");
  1020. }
  1021. }
  1022. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1023. #endif
  1024. #endif //DEBUG_SEC_LANG
  1025. // Check startup - does nothing if bootloader sets MCUSR to 0
  1026. byte mcu = MCUSR;
  1027. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1028. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1029. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1030. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1031. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1032. if (mcu & 1) puts_P(MSG_POWERUP);
  1033. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1034. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1035. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1036. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1037. MCUSR = 0;
  1038. //SERIAL_ECHORPGM(MSG_MARLIN);
  1039. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1040. #ifdef STRING_VERSION_CONFIG_H
  1041. #ifdef STRING_CONFIG_H_AUTHOR
  1042. SERIAL_ECHO_START;
  1043. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1044. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1045. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1046. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1047. SERIAL_ECHOPGM("Compiled: ");
  1048. SERIAL_ECHOLNPGM(__DATE__);
  1049. #endif
  1050. #endif
  1051. SERIAL_ECHO_START;
  1052. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1053. SERIAL_ECHO(freeMemory());
  1054. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1055. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1056. //lcd_update_enable(false); // why do we need this?? - andre
  1057. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1058. bool previous_settings_retrieved = false;
  1059. uint8_t hw_changed = check_printer_version();
  1060. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1061. previous_settings_retrieved = Config_RetrieveSettings();
  1062. }
  1063. else { //printer version was changed so use default settings
  1064. Config_ResetDefault();
  1065. }
  1066. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1067. tp_init(); // Initialize temperature loop
  1068. #ifdef EXTRUDER_ALTFAN_DETECT
  1069. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1070. if (extruder_altfan_detect())
  1071. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1072. else
  1073. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1074. #endif //EXTRUDER_ALTFAN_DETECT
  1075. plan_init(); // Initialize planner;
  1076. factory_reset();
  1077. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1078. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1079. {
  1080. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1081. // where all the EEPROM entries are set to 0x0ff.
  1082. // Once a firmware boots up, it forces at least a language selection, which changes
  1083. // EEPROM_LANG to number lower than 0x0ff.
  1084. // 1) Set a high power mode.
  1085. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1086. #ifdef TMC2130
  1087. tmc2130_mode = TMC2130_MODE_NORMAL;
  1088. #endif //TMC2130
  1089. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1090. }
  1091. lcd_encoder_diff=0;
  1092. #ifdef TMC2130
  1093. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1094. if (silentMode == 0xff) silentMode = 0;
  1095. tmc2130_mode = TMC2130_MODE_NORMAL;
  1096. if (lcd_crash_detect_enabled() && !farm_mode)
  1097. {
  1098. lcd_crash_detect_enable();
  1099. puts_P(_N("CrashDetect ENABLED!"));
  1100. }
  1101. else
  1102. {
  1103. lcd_crash_detect_disable();
  1104. puts_P(_N("CrashDetect DISABLED"));
  1105. }
  1106. #ifdef TMC2130_LINEARITY_CORRECTION
  1107. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1108. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1109. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1110. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1111. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1112. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1113. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1114. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1115. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1116. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1117. #endif //TMC2130_LINEARITY_CORRECTION
  1118. #ifdef TMC2130_VARIABLE_RESOLUTION
  1119. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1120. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1121. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1122. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1123. #else //TMC2130_VARIABLE_RESOLUTION
  1124. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1125. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1126. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1127. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1128. #endif //TMC2130_VARIABLE_RESOLUTION
  1129. #endif //TMC2130
  1130. st_init(); // Initialize stepper, this enables interrupts!
  1131. #ifdef TMC2130
  1132. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1133. update_mode_profile();
  1134. tmc2130_init(TMCInitParams(false, FarmOrUserECool() ));
  1135. #endif //TMC2130
  1136. #ifdef PSU_Delta
  1137. init_force_z(); // ! important for correct Z-axis initialization
  1138. #endif // PSU_Delta
  1139. setup_photpin();
  1140. servo_init();
  1141. // Reset the machine correction matrix.
  1142. // It does not make sense to load the correction matrix until the machine is homed.
  1143. world2machine_reset();
  1144. // Initialize current_position accounting for software endstops to
  1145. // avoid unexpected initial shifts on the first move
  1146. clamp_to_software_endstops(current_position);
  1147. plan_set_position_curposXYZE();
  1148. // Show the xflash error message now that serial, lcd and encoder are available
  1149. if (!xflash_success)
  1150. xflash_err_msg();
  1151. #ifdef FILAMENT_SENSOR
  1152. fsensor_init();
  1153. #endif //FILAMENT_SENSOR
  1154. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1155. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1156. #endif
  1157. setup_homepin();
  1158. #if defined(Z_AXIS_ALWAYS_ON)
  1159. enable_z();
  1160. #endif
  1161. if (farm_mode) {
  1162. // The farm monitoring SW may accidentally expect
  1163. // 2 messages of "printer started" to consider a printer working.
  1164. prusa_statistics(8);
  1165. }
  1166. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1167. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1168. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1169. // but this times out if a blocking dialog is shown in setup().
  1170. card.initsd();
  1171. #ifdef DEBUG_SD_SPEED_TEST
  1172. if (card.cardOK)
  1173. {
  1174. uint8_t* buff = (uint8_t*)block_buffer;
  1175. uint32_t block = 0;
  1176. uint32_t sumr = 0;
  1177. uint32_t sumw = 0;
  1178. for (int i = 0; i < 1024; i++)
  1179. {
  1180. uint32_t u = _micros();
  1181. bool res = card.card.readBlock(i, buff);
  1182. u = _micros() - u;
  1183. if (res)
  1184. {
  1185. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1186. sumr += u;
  1187. u = _micros();
  1188. res = card.card.writeBlock(i, buff);
  1189. u = _micros() - u;
  1190. if (res)
  1191. {
  1192. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1193. sumw += u;
  1194. }
  1195. else
  1196. {
  1197. printf_P(PSTR("writeBlock %4d error\n"), i);
  1198. break;
  1199. }
  1200. }
  1201. else
  1202. {
  1203. printf_P(PSTR("readBlock %4d error\n"), i);
  1204. break;
  1205. }
  1206. }
  1207. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1208. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1209. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1210. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1211. }
  1212. else
  1213. printf_P(PSTR("Card NG!\n"));
  1214. #endif //DEBUG_SD_SPEED_TEST
  1215. eeprom_init();
  1216. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1217. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1218. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1219. #if (LANG_MODE != 0) //secondary language support
  1220. #ifdef DEBUG_XFLASH
  1221. XFLASH_SPI_ENTER();
  1222. uint8_t uid[8]; // 64bit unique id
  1223. xflash_rd_uid(uid);
  1224. puts_P(_n("XFLASH UID="));
  1225. for (uint8_t i = 0; i < 8; i ++)
  1226. printf_P(PSTR("%02x"), uid[i]);
  1227. putchar('\n');
  1228. list_sec_lang_from_external_flash();
  1229. #endif //DEBUG_XFLASH
  1230. // lang_reset();
  1231. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1232. lcd_language();
  1233. #ifdef DEBUG_SEC_LANG
  1234. uint16_t sec_lang_code = lang_get_code(1);
  1235. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1236. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1237. lang_print_sec_lang(uartout);
  1238. #endif //DEBUG_SEC_LANG
  1239. #endif //(LANG_MODE != 0)
  1240. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1241. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1242. }
  1243. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1244. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1245. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1246. int16_t z_shift = 0;
  1247. for (uint8_t i = 0; i < 5; i++) {
  1248. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  1249. }
  1250. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1251. }
  1252. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1253. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1254. }
  1255. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1256. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1257. }
  1258. //mbl_mode_init();
  1259. mbl_settings_init();
  1260. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1261. if (SilentModeMenu_MMU == 255) {
  1262. SilentModeMenu_MMU = 1;
  1263. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1264. }
  1265. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1266. setup_fan_interrupt();
  1267. #endif //DEBUG_DISABLE_FANCHECK
  1268. #ifdef PAT9125
  1269. fsensor_setup_interrupt();
  1270. #endif //PAT9125
  1271. #ifndef DEBUG_DISABLE_STARTMSGS
  1272. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1273. if (!farm_mode) {
  1274. check_if_fw_is_on_right_printer();
  1275. show_fw_version_warnings();
  1276. }
  1277. switch (hw_changed) {
  1278. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1279. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1280. case(0b01):
  1281. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1282. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1283. break;
  1284. case(0b10):
  1285. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1286. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1287. break;
  1288. case(0b11):
  1289. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1290. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1291. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1292. break;
  1293. default: break; //no change, show no message
  1294. }
  1295. if (!previous_settings_retrieved) {
  1296. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=6
  1297. Config_StoreSettings();
  1298. }
  1299. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1300. lcd_wizard(WizState::Run);
  1301. }
  1302. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1303. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1304. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1305. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1306. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1307. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1308. // Show the message.
  1309. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1310. }
  1311. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1312. // Show the message.
  1313. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1314. lcd_update_enable(true);
  1315. }
  1316. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1317. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1318. lcd_update_enable(true);
  1319. }
  1320. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1321. // Show the message.
  1322. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1323. }
  1324. }
  1325. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1326. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1327. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1328. update_current_firmware_version_to_eeprom();
  1329. lcd_selftest();
  1330. }
  1331. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1332. KEEPALIVE_STATE(IN_PROCESS);
  1333. #endif //DEBUG_DISABLE_STARTMSGS
  1334. lcd_update_enable(true);
  1335. lcd_clear();
  1336. lcd_update(2);
  1337. // Store the currently running firmware into an eeprom,
  1338. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1339. update_current_firmware_version_to_eeprom();
  1340. #ifdef TMC2130
  1341. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1342. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1343. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1344. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1345. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1346. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1347. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1348. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1349. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1350. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1351. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1352. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1353. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1354. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1355. #endif //TMC2130
  1356. // report crash failures
  1357. fw_crash_init();
  1358. #ifdef UVLO_SUPPORT
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1360. /*
  1361. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1362. else {
  1363. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1364. lcd_update_enable(true);
  1365. lcd_update(2);
  1366. lcd_setstatuspgm(MSG_WELCOME);
  1367. }
  1368. */
  1369. manage_heater(); // Update temperatures
  1370. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1371. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1372. #endif
  1373. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1374. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1375. puts_P(_N("Automatic recovery!"));
  1376. #endif
  1377. recover_print(1);
  1378. }
  1379. else{
  1380. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1381. puts_P(_N("Normal recovery!"));
  1382. #endif
  1383. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1384. else {
  1385. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1386. lcd_update_enable(true);
  1387. lcd_update(2);
  1388. lcd_setstatuspgm(MSG_WELCOME);
  1389. }
  1390. }
  1391. }
  1392. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1393. // the entire state machine initialized.
  1394. setup_uvlo_interrupt();
  1395. #endif //UVLO_SUPPORT
  1396. fCheckModeInit();
  1397. fSetMmuMode(mmu_enabled);
  1398. KEEPALIVE_STATE(NOT_BUSY);
  1399. #ifdef WATCHDOG
  1400. wdt_enable(WDTO_4S);
  1401. #ifdef EMERGENCY_HANDLERS
  1402. WDTCSR |= (1 << WDIE);
  1403. #endif //EMERGENCY_HANDLERS
  1404. #endif //WATCHDOG
  1405. }
  1406. static inline void crash_and_burn(dump_crash_reason reason)
  1407. {
  1408. WRITE(BEEPER, HIGH);
  1409. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, (uint8_t)reason);
  1410. #ifdef EMERGENCY_DUMP
  1411. xfdump_full_dump_and_reset(reason);
  1412. #elif defined(EMERGENCY_SERIAL_DUMP)
  1413. if(emergency_serial_dump)
  1414. serial_dump_and_reset(reason);
  1415. #endif
  1416. softReset();
  1417. }
  1418. #ifdef EMERGENCY_HANDLERS
  1419. #ifdef WATCHDOG
  1420. ISR(WDT_vect)
  1421. {
  1422. crash_and_burn(dump_crash_reason::watchdog);
  1423. }
  1424. #endif
  1425. ISR(BADISR_vect)
  1426. {
  1427. crash_and_burn(dump_crash_reason::bad_isr);
  1428. }
  1429. #endif //EMERGENCY_HANDLERS
  1430. void stack_error() {
  1431. crash_and_burn(dump_crash_reason::stack_error);
  1432. }
  1433. void pullup_error(bool fromTempISR) {
  1434. crash_and_burn(fromTempISR ? dump_crash_reason::bad_pullup_temp_isr : dump_crash_reason::bad_pullup_step_isr);
  1435. }
  1436. #ifdef PRUSA_M28
  1437. void trace();
  1438. #define CHUNK_SIZE 64 // bytes
  1439. #define SAFETY_MARGIN 1
  1440. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1441. void serial_read_stream() {
  1442. setAllTargetHotends(0);
  1443. setTargetBed(0);
  1444. lcd_clear();
  1445. lcd_puts_P(PSTR(" Upload in progress"));
  1446. // first wait for how many bytes we will receive
  1447. uint32_t bytesToReceive;
  1448. // receive the four bytes
  1449. char bytesToReceiveBuffer[4];
  1450. for (int i=0; i<4; i++) {
  1451. int data;
  1452. while ((data = MYSERIAL.read()) == -1) {};
  1453. bytesToReceiveBuffer[i] = data;
  1454. }
  1455. // make it a uint32
  1456. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1457. // we're ready, notify the sender
  1458. MYSERIAL.write('+');
  1459. // lock in the routine
  1460. uint32_t receivedBytes = 0;
  1461. while (prusa_sd_card_upload) {
  1462. int i;
  1463. for (i=0; i<CHUNK_SIZE; i++) {
  1464. int data;
  1465. // check if we're not done
  1466. if (receivedBytes == bytesToReceive) {
  1467. break;
  1468. }
  1469. // read the next byte
  1470. while ((data = MYSERIAL.read()) == -1) {};
  1471. receivedBytes++;
  1472. // save it to the chunk
  1473. chunk[i] = data;
  1474. }
  1475. // write the chunk to SD
  1476. card.write_command_no_newline(&chunk[0]);
  1477. // notify the sender we're ready for more data
  1478. MYSERIAL.write('+');
  1479. // for safety
  1480. manage_heater();
  1481. // check if we're done
  1482. if(receivedBytes == bytesToReceive) {
  1483. trace(); // beep
  1484. card.closefile();
  1485. prusa_sd_card_upload = false;
  1486. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1487. }
  1488. }
  1489. }
  1490. #endif //PRUSA_M28
  1491. /**
  1492. * Output autoreport values according to features requested in M155
  1493. */
  1494. #if defined(AUTO_REPORT)
  1495. static void host_autoreport()
  1496. {
  1497. if (autoReportFeatures.TimerExpired())
  1498. {
  1499. if(autoReportFeatures.Temp()){
  1500. gcode_M105(active_extruder);
  1501. }
  1502. if(autoReportFeatures.Pos()){
  1503. gcode_M114();
  1504. }
  1505. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1506. if(autoReportFeatures.Fans()){
  1507. gcode_M123();
  1508. }
  1509. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1510. autoReportFeatures.TimerStart();
  1511. }
  1512. }
  1513. #endif //AUTO_REPORT
  1514. /**
  1515. * Output a "busy" message at regular intervals
  1516. * while the machine is not accepting commands.
  1517. */
  1518. void host_keepalive() {
  1519. #ifndef HOST_KEEPALIVE_FEATURE
  1520. return;
  1521. #endif //HOST_KEEPALIVE_FEATURE
  1522. if (farm_mode) return;
  1523. long ms = _millis();
  1524. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1525. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1526. switch (busy_state) {
  1527. case IN_HANDLER:
  1528. case IN_PROCESS:
  1529. SERIAL_ECHO_START;
  1530. SERIAL_ECHOLNPGM("busy: processing");
  1531. break;
  1532. case PAUSED_FOR_USER:
  1533. SERIAL_ECHO_START;
  1534. SERIAL_ECHOLNPGM("busy: paused for user");
  1535. break;
  1536. case PAUSED_FOR_INPUT:
  1537. SERIAL_ECHO_START;
  1538. SERIAL_ECHOLNPGM("busy: paused for input");
  1539. break;
  1540. default:
  1541. break;
  1542. }
  1543. }
  1544. prev_busy_signal_ms = ms;
  1545. }
  1546. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1547. // Before loop(), the setup() function is called by the main() routine.
  1548. void loop()
  1549. {
  1550. KEEPALIVE_STATE(NOT_BUSY);
  1551. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) { //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1552. usb_timer.start();
  1553. }
  1554. else if (usb_timer.expired(10000)) { //just need to check if it expired. Nothing else is needed to be done.
  1555. ;
  1556. }
  1557. #ifdef FANCHECK
  1558. if (fan_check_error && isPrintPaused && !IS_SD_PRINTING) {
  1559. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1560. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1561. }
  1562. #endif
  1563. #ifdef PRUSA_M28
  1564. if (prusa_sd_card_upload)
  1565. {
  1566. //we read byte-by byte
  1567. serial_read_stream();
  1568. }
  1569. else
  1570. #endif
  1571. {
  1572. get_command();
  1573. #ifdef SDSUPPORT
  1574. card.checkautostart(false);
  1575. #endif
  1576. if(buflen)
  1577. {
  1578. cmdbuffer_front_already_processed = false;
  1579. #ifdef SDSUPPORT
  1580. if(card.saving)
  1581. {
  1582. // Saving a G-code file onto an SD-card is in progress.
  1583. // Saving starts with M28, saving until M29 is seen.
  1584. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1585. card.write_command(CMDBUFFER_CURRENT_STRING);
  1586. if(card.logging)
  1587. process_commands();
  1588. else
  1589. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1590. } else {
  1591. card.closefile();
  1592. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1593. }
  1594. } else {
  1595. process_commands();
  1596. }
  1597. #else
  1598. process_commands();
  1599. #endif //SDSUPPORT
  1600. if (! cmdbuffer_front_already_processed && buflen)
  1601. {
  1602. // ptr points to the start of the block currently being processed.
  1603. // The first character in the block is the block type.
  1604. char *ptr = cmdbuffer + bufindr;
  1605. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1606. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1607. union {
  1608. struct {
  1609. char lo;
  1610. char hi;
  1611. } lohi;
  1612. uint16_t value;
  1613. } sdlen;
  1614. sdlen.value = 0;
  1615. {
  1616. // This block locks the interrupts globally for 3.25 us,
  1617. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1618. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1619. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1620. cli();
  1621. // Reset the command to something, which will be ignored by the power panic routine,
  1622. // so this buffer length will not be counted twice.
  1623. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1624. // Extract the current buffer length.
  1625. sdlen.lohi.lo = *ptr ++;
  1626. sdlen.lohi.hi = *ptr;
  1627. // and pass it to the planner queue.
  1628. planner_add_sd_length(sdlen.value);
  1629. sei();
  1630. }
  1631. }
  1632. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1633. cli();
  1634. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1635. // and one for each command to previous block in the planner queue.
  1636. planner_add_sd_length(1);
  1637. sei();
  1638. }
  1639. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1640. // this block's SD card length will not be counted twice as its command type has been replaced
  1641. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1642. cmdqueue_pop_front();
  1643. }
  1644. host_keepalive();
  1645. }
  1646. }
  1647. //check heater every n milliseconds
  1648. manage_heater();
  1649. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1650. checkHitEndstops();
  1651. lcd_update(0);
  1652. #ifdef TMC2130
  1653. tmc2130_check_overtemp();
  1654. if (tmc2130_sg_crash)
  1655. {
  1656. uint8_t crash = tmc2130_sg_crash;
  1657. tmc2130_sg_crash = 0;
  1658. // crashdet_stop_and_save_print();
  1659. switch (crash)
  1660. {
  1661. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1662. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1663. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1664. }
  1665. }
  1666. #endif //TMC2130
  1667. mmu_loop();
  1668. }
  1669. #define DEFINE_PGM_READ_ANY(type, reader) \
  1670. static inline type pgm_read_any(const type *p) \
  1671. { return pgm_read_##reader##_near(p); }
  1672. DEFINE_PGM_READ_ANY(float, float);
  1673. DEFINE_PGM_READ_ANY(signed char, byte);
  1674. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1675. static const PROGMEM type array##_P[3] = \
  1676. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1677. static inline type array(uint8_t axis) \
  1678. { return pgm_read_any(&array##_P[axis]); } \
  1679. type array##_ext(uint8_t axis) \
  1680. { return pgm_read_any(&array##_P[axis]); }
  1681. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1682. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1683. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1684. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1685. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1686. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1687. static void axis_is_at_home(uint8_t axis) {
  1688. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1689. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1690. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1691. }
  1692. //! @return original feedmultiply
  1693. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1694. saved_feedrate = feedrate;
  1695. int l_feedmultiply = feedmultiply;
  1696. feedmultiply = 100;
  1697. previous_millis_cmd.start();
  1698. enable_endstops(enable_endstops_now);
  1699. return l_feedmultiply;
  1700. }
  1701. //! @param original_feedmultiply feedmultiply to restore
  1702. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1703. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1704. enable_endstops(false);
  1705. #endif
  1706. feedrate = saved_feedrate;
  1707. feedmultiply = original_feedmultiply;
  1708. previous_millis_cmd.start();
  1709. }
  1710. #ifdef ENABLE_AUTO_BED_LEVELING
  1711. #ifdef AUTO_BED_LEVELING_GRID
  1712. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1713. {
  1714. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1715. planeNormal.debug("planeNormal");
  1716. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1717. //bedLevel.debug("bedLevel");
  1718. //plan_bed_level_matrix.debug("bed level before");
  1719. //vector_3 uncorrected_position = plan_get_position_mm();
  1720. //uncorrected_position.debug("position before");
  1721. vector_3 corrected_position = plan_get_position();
  1722. // corrected_position.debug("position after");
  1723. current_position[X_AXIS] = corrected_position.x;
  1724. current_position[Y_AXIS] = corrected_position.y;
  1725. current_position[Z_AXIS] = corrected_position.z;
  1726. // put the bed at 0 so we don't go below it.
  1727. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1728. plan_set_position_curposXYZE();
  1729. }
  1730. #else // not AUTO_BED_LEVELING_GRID
  1731. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1732. plan_bed_level_matrix.set_to_identity();
  1733. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1734. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1735. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1736. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1737. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1738. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1739. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1740. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1741. vector_3 corrected_position = plan_get_position();
  1742. current_position[X_AXIS] = corrected_position.x;
  1743. current_position[Y_AXIS] = corrected_position.y;
  1744. current_position[Z_AXIS] = corrected_position.z;
  1745. // put the bed at 0 so we don't go below it.
  1746. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1747. plan_set_position_curposXYZE();
  1748. }
  1749. #endif // AUTO_BED_LEVELING_GRID
  1750. static void run_z_probe() {
  1751. plan_bed_level_matrix.set_to_identity();
  1752. feedrate = homing_feedrate[Z_AXIS];
  1753. // move down until you find the bed
  1754. float zPosition = -10;
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1756. st_synchronize();
  1757. // we have to let the planner know where we are right now as it is not where we said to go.
  1758. zPosition = st_get_position_mm(Z_AXIS);
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1760. // move up the retract distance
  1761. zPosition += home_retract_mm(Z_AXIS);
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. // move back down slowly to find bed
  1765. feedrate = homing_feedrate[Z_AXIS]/4;
  1766. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1770. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1771. plan_set_position_curposXYZE();
  1772. }
  1773. static void do_blocking_move_to(float x, float y, float z) {
  1774. float oldFeedRate = feedrate;
  1775. feedrate = homing_feedrate[Z_AXIS];
  1776. current_position[Z_AXIS] = z;
  1777. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. feedrate = XY_TRAVEL_SPEED;
  1780. current_position[X_AXIS] = x;
  1781. current_position[Y_AXIS] = y;
  1782. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1783. st_synchronize();
  1784. feedrate = oldFeedRate;
  1785. }
  1786. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1787. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1788. }
  1789. /// Probe bed height at position (x,y), returns the measured z value
  1790. static float probe_pt(float x, float y, float z_before) {
  1791. // move to right place
  1792. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1793. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1794. run_z_probe();
  1795. float measured_z = current_position[Z_AXIS];
  1796. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1797. SERIAL_PROTOCOLPGM(" x: ");
  1798. SERIAL_PROTOCOL(x);
  1799. SERIAL_PROTOCOLPGM(" y: ");
  1800. SERIAL_PROTOCOL(y);
  1801. SERIAL_PROTOCOLPGM(" z: ");
  1802. SERIAL_PROTOCOL(measured_z);
  1803. SERIAL_PROTOCOLPGM("\n");
  1804. return measured_z;
  1805. }
  1806. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1807. #ifdef LIN_ADVANCE
  1808. /**
  1809. * M900: Set and/or Get advance K factor
  1810. *
  1811. * K<factor> Set advance K factor
  1812. */
  1813. inline void gcode_M900() {
  1814. float newK = code_seen('K') ? code_value_float() : -2;
  1815. #ifdef LA_NOCOMPAT
  1816. if (newK >= 0 && newK < LA_K_MAX)
  1817. extruder_advance_K = newK;
  1818. else
  1819. SERIAL_ECHOLNPGM("K out of allowed range!");
  1820. #else
  1821. if (newK == 0)
  1822. {
  1823. extruder_advance_K = 0;
  1824. la10c_reset();
  1825. }
  1826. else
  1827. {
  1828. newK = la10c_value(newK);
  1829. if (newK < 0)
  1830. SERIAL_ECHOLNPGM("K out of allowed range!");
  1831. else
  1832. extruder_advance_K = newK;
  1833. }
  1834. #endif
  1835. SERIAL_ECHO_START;
  1836. SERIAL_ECHOPGM("Advance K=");
  1837. SERIAL_ECHOLN(extruder_advance_K);
  1838. }
  1839. #endif // LIN_ADVANCE
  1840. bool check_commands() {
  1841. bool end_command_found = false;
  1842. while (buflen)
  1843. {
  1844. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1845. if (!cmdbuffer_front_already_processed)
  1846. cmdqueue_pop_front();
  1847. cmdbuffer_front_already_processed = false;
  1848. }
  1849. return end_command_found;
  1850. }
  1851. // raise_z_above: slowly raise Z to the requested height
  1852. //
  1853. // contrarily to a simple move, this function will carefully plan a move
  1854. // when the current Z position is unknown. In such cases, stallguard is
  1855. // enabled and will prevent prolonged pushing against the Z tops
  1856. void raise_z_above(float target, bool plan)
  1857. {
  1858. if (current_position[Z_AXIS] >= target)
  1859. return;
  1860. // Z needs raising
  1861. current_position[Z_AXIS] = target;
  1862. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1863. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1864. #else
  1865. bool z_min_endstop = false;
  1866. #endif
  1867. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1868. {
  1869. // current position is known or very low, it's safe to raise Z
  1870. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1871. return;
  1872. }
  1873. // ensure Z is powered in normal mode to overcome initial load
  1874. enable_z();
  1875. st_synchronize();
  1876. // rely on crashguard to limit damage
  1877. bool z_endstop_enabled = enable_z_endstop(true);
  1878. #ifdef TMC2130
  1879. tmc2130_home_enter(Z_AXIS_MASK);
  1880. #endif //TMC2130
  1881. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1882. st_synchronize();
  1883. #ifdef TMC2130
  1884. if (endstop_z_hit_on_purpose())
  1885. {
  1886. // not necessarily exact, but will avoid further vertical moves
  1887. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1888. plan_set_position_curposXYZE();
  1889. }
  1890. tmc2130_home_exit();
  1891. #endif //TMC2130
  1892. enable_z_endstop(z_endstop_enabled);
  1893. }
  1894. #ifdef TMC2130
  1895. bool calibrate_z_auto()
  1896. {
  1897. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1898. lcd_clear();
  1899. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1900. bool endstops_enabled = enable_endstops(true);
  1901. int axis_up_dir = -home_dir(Z_AXIS);
  1902. tmc2130_home_enter(Z_AXIS_MASK);
  1903. current_position[Z_AXIS] = 0;
  1904. plan_set_position_curposXYZE();
  1905. set_destination_to_current();
  1906. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1907. feedrate = homing_feedrate[Z_AXIS];
  1908. plan_buffer_line_destinationXYZE(feedrate / 60);
  1909. st_synchronize();
  1910. // current_position[axis] = 0;
  1911. // plan_set_position_curposXYZE();
  1912. tmc2130_home_exit();
  1913. enable_endstops(false);
  1914. current_position[Z_AXIS] = 0;
  1915. plan_set_position_curposXYZE();
  1916. set_destination_to_current();
  1917. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1918. feedrate = homing_feedrate[Z_AXIS] / 2;
  1919. plan_buffer_line_destinationXYZE(feedrate / 60);
  1920. st_synchronize();
  1921. enable_endstops(endstops_enabled);
  1922. if (PRINTER_TYPE == PRINTER_MK3) {
  1923. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1924. }
  1925. else {
  1926. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1927. }
  1928. plan_set_position_curposXYZE();
  1929. return true;
  1930. }
  1931. #endif //TMC2130
  1932. #ifdef TMC2130
  1933. static void check_Z_crash(void)
  1934. {
  1935. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1936. FORCE_HIGH_POWER_END;
  1937. current_position[Z_AXIS] = 0;
  1938. plan_set_position_curposXYZE();
  1939. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1940. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1941. st_synchronize();
  1942. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1943. }
  1944. }
  1945. #endif //TMC2130
  1946. #ifdef TMC2130
  1947. void homeaxis(uint8_t axis, uint8_t cnt, uint8_t* pstep)
  1948. #else
  1949. void homeaxis(uint8_t axis, uint8_t cnt)
  1950. #endif //TMC2130
  1951. {
  1952. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1953. #define HOMEAXIS_DO(LETTER) \
  1954. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1955. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1956. {
  1957. int axis_home_dir = home_dir(axis);
  1958. feedrate = homing_feedrate[axis];
  1959. #ifdef TMC2130
  1960. tmc2130_home_enter(X_AXIS_MASK << axis);
  1961. #endif //TMC2130
  1962. // Move away a bit, so that the print head does not touch the end position,
  1963. // and the following movement to endstop has a chance to achieve the required velocity
  1964. // for the stall guard to work.
  1965. current_position[axis] = 0;
  1966. plan_set_position_curposXYZE();
  1967. set_destination_to_current();
  1968. // destination[axis] = 11.f;
  1969. destination[axis] = -3.f * axis_home_dir;
  1970. plan_buffer_line_destinationXYZE(feedrate/60);
  1971. st_synchronize();
  1972. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1973. endstops_hit_on_purpose();
  1974. enable_endstops(false);
  1975. current_position[axis] = 0;
  1976. plan_set_position_curposXYZE();
  1977. destination[axis] = 1. * axis_home_dir;
  1978. plan_buffer_line_destinationXYZE(feedrate/60);
  1979. st_synchronize();
  1980. // Now continue to move up to the left end stop with the collision detection enabled.
  1981. enable_endstops(true);
  1982. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1983. plan_buffer_line_destinationXYZE(feedrate/60);
  1984. st_synchronize();
  1985. for (uint8_t i = 0; i < cnt; i++)
  1986. {
  1987. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1988. endstops_hit_on_purpose();
  1989. enable_endstops(false);
  1990. current_position[axis] = 0;
  1991. plan_set_position_curposXYZE();
  1992. destination[axis] = -10.f * axis_home_dir;
  1993. plan_buffer_line_destinationXYZE(feedrate/60);
  1994. st_synchronize();
  1995. endstops_hit_on_purpose();
  1996. // Now move left up to the collision, this time with a repeatable velocity.
  1997. enable_endstops(true);
  1998. destination[axis] = 11.f * axis_home_dir;
  1999. #ifdef TMC2130
  2000. feedrate = homing_feedrate[axis];
  2001. #else //TMC2130
  2002. feedrate = homing_feedrate[axis] / 2;
  2003. #endif //TMC2130
  2004. plan_buffer_line_destinationXYZE(feedrate/60);
  2005. st_synchronize();
  2006. #ifdef TMC2130
  2007. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2008. if (pstep) pstep[i] = mscnt >> 4;
  2009. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2010. #endif //TMC2130
  2011. }
  2012. endstops_hit_on_purpose();
  2013. enable_endstops(false);
  2014. #ifdef TMC2130
  2015. uint8_t orig = tmc2130_home_origin[axis];
  2016. uint8_t back = tmc2130_home_bsteps[axis];
  2017. if (tmc2130_home_enabled && (orig <= 63))
  2018. {
  2019. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2020. if (back > 0)
  2021. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  2022. }
  2023. else
  2024. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  2025. tmc2130_home_exit();
  2026. #endif //TMC2130
  2027. axis_is_at_home(axis);
  2028. axis_known_position[axis] = true;
  2029. // Move from minimum
  2030. #ifdef TMC2130
  2031. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2032. #else //TMC2130
  2033. float dist = - axis_home_dir * 0.01f * 64;
  2034. #endif //TMC2130
  2035. current_position[axis] -= dist;
  2036. plan_set_position_curposXYZE();
  2037. current_position[axis] += dist;
  2038. destination[axis] = current_position[axis];
  2039. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2040. st_synchronize();
  2041. feedrate = 0.0;
  2042. }
  2043. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2044. {
  2045. #ifdef TMC2130
  2046. FORCE_HIGH_POWER_START;
  2047. #endif
  2048. int axis_home_dir = home_dir(axis);
  2049. current_position[axis] = 0;
  2050. plan_set_position_curposXYZE();
  2051. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2052. feedrate = homing_feedrate[axis];
  2053. plan_buffer_line_destinationXYZE(feedrate/60);
  2054. st_synchronize();
  2055. #ifdef TMC2130
  2056. check_Z_crash();
  2057. #endif //TMC2130
  2058. current_position[axis] = 0;
  2059. plan_set_position_curposXYZE();
  2060. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2061. plan_buffer_line_destinationXYZE(feedrate/60);
  2062. st_synchronize();
  2063. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2064. feedrate = homing_feedrate[axis]/2 ;
  2065. plan_buffer_line_destinationXYZE(feedrate/60);
  2066. st_synchronize();
  2067. #ifdef TMC2130
  2068. check_Z_crash();
  2069. #endif //TMC2130
  2070. axis_is_at_home(axis);
  2071. destination[axis] = current_position[axis];
  2072. feedrate = 0.0;
  2073. endstops_hit_on_purpose();
  2074. axis_known_position[axis] = true;
  2075. #ifdef TMC2130
  2076. FORCE_HIGH_POWER_END;
  2077. #endif
  2078. }
  2079. enable_endstops(endstops_enabled);
  2080. }
  2081. /**/
  2082. void home_xy()
  2083. {
  2084. set_destination_to_current();
  2085. homeaxis(X_AXIS);
  2086. homeaxis(Y_AXIS);
  2087. plan_set_position_curposXYZE();
  2088. endstops_hit_on_purpose();
  2089. }
  2090. void refresh_cmd_timeout(void)
  2091. {
  2092. previous_millis_cmd.start();
  2093. }
  2094. #ifdef FWRETRACT
  2095. void retract(bool retracting, bool swapretract = false) {
  2096. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2097. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2098. // position, which requires a sync
  2099. if(retracting && !retracted[active_extruder]) {
  2100. st_synchronize();
  2101. set_destination_to_current();
  2102. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2103. plan_set_e_position(current_position[E_AXIS]);
  2104. float oldFeedrate = feedrate;
  2105. feedrate=cs.retract_feedrate*60;
  2106. retracted[active_extruder]=true;
  2107. prepare_move();
  2108. if(cs.retract_zlift) {
  2109. st_synchronize();
  2110. current_position[Z_AXIS]-=cs.retract_zlift;
  2111. plan_set_position_curposXYZE();
  2112. prepare_move();
  2113. }
  2114. feedrate = oldFeedrate;
  2115. } else if(!retracting && retracted[active_extruder]) {
  2116. st_synchronize();
  2117. set_destination_to_current();
  2118. float oldFeedrate = feedrate;
  2119. feedrate=cs.retract_recover_feedrate*60;
  2120. if(cs.retract_zlift) {
  2121. current_position[Z_AXIS]+=cs.retract_zlift;
  2122. plan_set_position_curposXYZE();
  2123. prepare_move();
  2124. st_synchronize();
  2125. }
  2126. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2127. plan_set_e_position(current_position[E_AXIS]);
  2128. retracted[active_extruder]=false;
  2129. prepare_move();
  2130. feedrate = oldFeedrate;
  2131. }
  2132. } //retract
  2133. #endif //FWRETRACT
  2134. #ifdef PRUSA_M28
  2135. void trace() {
  2136. Sound_MakeCustom(25,440,true);
  2137. }
  2138. #endif
  2139. /*
  2140. void ramming() {
  2141. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2142. if (current_temperature[0] < 230) {
  2143. //PLA
  2144. max_feedrate[E_AXIS] = 50;
  2145. //current_position[E_AXIS] -= 8;
  2146. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2147. //current_position[E_AXIS] += 8;
  2148. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2149. current_position[E_AXIS] += 5.4;
  2150. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2151. current_position[E_AXIS] += 3.2;
  2152. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2153. current_position[E_AXIS] += 3;
  2154. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2155. st_synchronize();
  2156. max_feedrate[E_AXIS] = 80;
  2157. current_position[E_AXIS] -= 82;
  2158. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2159. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2160. current_position[E_AXIS] -= 20;
  2161. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2162. current_position[E_AXIS] += 5;
  2163. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2164. current_position[E_AXIS] += 5;
  2165. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2166. current_position[E_AXIS] -= 10;
  2167. st_synchronize();
  2168. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2169. current_position[E_AXIS] += 10;
  2170. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2171. current_position[E_AXIS] -= 10;
  2172. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2173. current_position[E_AXIS] += 10;
  2174. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2175. current_position[E_AXIS] -= 10;
  2176. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2177. st_synchronize();
  2178. }
  2179. else {
  2180. //ABS
  2181. max_feedrate[E_AXIS] = 50;
  2182. //current_position[E_AXIS] -= 8;
  2183. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2184. //current_position[E_AXIS] += 8;
  2185. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2186. current_position[E_AXIS] += 3.1;
  2187. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2188. current_position[E_AXIS] += 3.1;
  2189. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2190. current_position[E_AXIS] += 4;
  2191. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2192. st_synchronize();
  2193. //current_position[X_AXIS] += 23; //delay
  2194. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2195. //current_position[X_AXIS] -= 23; //delay
  2196. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2197. _delay(4700);
  2198. max_feedrate[E_AXIS] = 80;
  2199. current_position[E_AXIS] -= 92;
  2200. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2201. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2202. current_position[E_AXIS] -= 5;
  2203. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2204. current_position[E_AXIS] += 5;
  2205. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2206. current_position[E_AXIS] -= 5;
  2207. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2208. st_synchronize();
  2209. current_position[E_AXIS] += 5;
  2210. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2211. current_position[E_AXIS] -= 5;
  2212. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2213. current_position[E_AXIS] += 5;
  2214. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2215. current_position[E_AXIS] -= 5;
  2216. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2217. st_synchronize();
  2218. }
  2219. }
  2220. */
  2221. #ifdef TMC2130
  2222. void force_high_power_mode(bool start_high_power_section) {
  2223. #ifdef PSU_Delta
  2224. if (start_high_power_section == true) enable_force_z();
  2225. #endif //PSU_Delta
  2226. uint8_t silent;
  2227. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2228. if (silent == 1) {
  2229. //we are in silent mode, set to normal mode to enable crash detection
  2230. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2231. st_synchronize();
  2232. cli();
  2233. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2234. update_mode_profile();
  2235. tmc2130_init(TMCInitParams(FarmOrUserECool()));
  2236. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2237. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2238. st_reset_timer();
  2239. sei();
  2240. }
  2241. }
  2242. #endif //TMC2130
  2243. void gcode_M105(uint8_t extruder)
  2244. {
  2245. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2246. SERIAL_PROTOCOLPGM("T:");
  2247. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2248. SERIAL_PROTOCOLPGM(" /");
  2249. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2250. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2251. SERIAL_PROTOCOLPGM(" B:");
  2252. SERIAL_PROTOCOL_F(degBed(),1);
  2253. SERIAL_PROTOCOLPGM(" /");
  2254. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2255. #endif //TEMP_BED_PIN
  2256. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2257. SERIAL_PROTOCOLPGM(" T");
  2258. SERIAL_PROTOCOL(cur_extruder);
  2259. SERIAL_PROTOCOL(':');
  2260. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2261. SERIAL_PROTOCOLPGM(" /");
  2262. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2263. }
  2264. #else
  2265. SERIAL_ERROR_START;
  2266. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2267. #endif
  2268. SERIAL_PROTOCOLPGM(" @:");
  2269. #ifdef EXTRUDER_WATTS
  2270. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2271. SERIAL_PROTOCOLPGM("W");
  2272. #else
  2273. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2274. #endif
  2275. SERIAL_PROTOCOLPGM(" B@:");
  2276. #ifdef BED_WATTS
  2277. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2278. SERIAL_PROTOCOLPGM("W");
  2279. #else
  2280. SERIAL_PROTOCOL(getHeaterPower(-1));
  2281. #endif
  2282. #ifdef PINDA_THERMISTOR
  2283. SERIAL_PROTOCOLPGM(" P:");
  2284. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2285. #endif //PINDA_THERMISTOR
  2286. #ifdef AMBIENT_THERMISTOR
  2287. SERIAL_PROTOCOLPGM(" A:");
  2288. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2289. #endif //AMBIENT_THERMISTOR
  2290. #ifdef SHOW_TEMP_ADC_VALUES
  2291. {
  2292. float raw = 0.0;
  2293. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2294. SERIAL_PROTOCOLPGM(" ADC B:");
  2295. SERIAL_PROTOCOL_F(degBed(),1);
  2296. SERIAL_PROTOCOLPGM("C->");
  2297. raw = rawBedTemp();
  2298. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2299. SERIAL_PROTOCOLPGM(" Rb->");
  2300. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2301. SERIAL_PROTOCOLPGM(" Rxb->");
  2302. SERIAL_PROTOCOL_F(raw, 5);
  2303. #endif
  2304. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2305. SERIAL_PROTOCOLPGM(" T");
  2306. SERIAL_PROTOCOL(cur_extruder);
  2307. SERIAL_PROTOCOLPGM(":");
  2308. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2309. SERIAL_PROTOCOLPGM("C->");
  2310. raw = rawHotendTemp(cur_extruder);
  2311. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2312. SERIAL_PROTOCOLPGM(" Rt");
  2313. SERIAL_PROTOCOL(cur_extruder);
  2314. SERIAL_PROTOCOLPGM("->");
  2315. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2316. SERIAL_PROTOCOLPGM(" Rx");
  2317. SERIAL_PROTOCOL(cur_extruder);
  2318. SERIAL_PROTOCOLPGM("->");
  2319. SERIAL_PROTOCOL_F(raw, 5);
  2320. }
  2321. }
  2322. #endif
  2323. SERIAL_PROTOCOLLN();
  2324. }
  2325. #ifdef TMC2130
  2326. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2327. #else
  2328. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2329. #endif //TMC2130
  2330. {
  2331. // Flag for the display update routine and to disable the print cancelation during homing.
  2332. st_synchronize();
  2333. homing_flag = true;
  2334. #if 0
  2335. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2336. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2337. #endif
  2338. // Which axes should be homed?
  2339. bool home_x = home_x_axis;
  2340. bool home_y = home_y_axis;
  2341. bool home_z = home_z_axis;
  2342. // Either all X,Y,Z codes are present, or none of them.
  2343. bool home_all_axes = home_x == home_y && home_x == home_z;
  2344. if (home_all_axes)
  2345. // No X/Y/Z code provided means to home all axes.
  2346. home_x = home_y = home_z = true;
  2347. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2348. if (home_all_axes) {
  2349. raise_z_above(MESH_HOME_Z_SEARCH);
  2350. st_synchronize();
  2351. }
  2352. #ifdef ENABLE_AUTO_BED_LEVELING
  2353. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2354. #endif //ENABLE_AUTO_BED_LEVELING
  2355. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2356. // the planner will not perform any adjustments in the XY plane.
  2357. // Wait for the motors to stop and update the current position with the absolute values.
  2358. world2machine_revert_to_uncorrected();
  2359. // For mesh bed leveling deactivate the matrix temporarily.
  2360. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2361. // in a single axis only.
  2362. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2363. #ifdef MESH_BED_LEVELING
  2364. uint8_t mbl_was_active = mbl.active;
  2365. mbl.active = 0;
  2366. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2367. #endif
  2368. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2369. if (home_z)
  2370. babystep_undo();
  2371. int l_feedmultiply = setup_for_endstop_move();
  2372. set_destination_to_current();
  2373. feedrate = 0.0;
  2374. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2375. if(home_z)
  2376. homeaxis(Z_AXIS);
  2377. #endif
  2378. #ifdef QUICK_HOME
  2379. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2380. if(home_x && home_y) //first diagonal move
  2381. {
  2382. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2383. uint8_t x_axis_home_dir = home_dir(X_AXIS);
  2384. plan_set_position_curposXYZE();
  2385. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2386. feedrate = homing_feedrate[X_AXIS];
  2387. if(homing_feedrate[Y_AXIS]<feedrate)
  2388. feedrate = homing_feedrate[Y_AXIS];
  2389. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2390. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2391. } else {
  2392. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2393. }
  2394. plan_buffer_line_destinationXYZE(feedrate/60);
  2395. st_synchronize();
  2396. axis_is_at_home(X_AXIS);
  2397. axis_is_at_home(Y_AXIS);
  2398. plan_set_position_curposXYZE();
  2399. destination[X_AXIS] = current_position[X_AXIS];
  2400. destination[Y_AXIS] = current_position[Y_AXIS];
  2401. plan_buffer_line_destinationXYZE(feedrate/60);
  2402. feedrate = 0.0;
  2403. st_synchronize();
  2404. endstops_hit_on_purpose();
  2405. current_position[X_AXIS] = destination[X_AXIS];
  2406. current_position[Y_AXIS] = destination[Y_AXIS];
  2407. current_position[Z_AXIS] = destination[Z_AXIS];
  2408. }
  2409. #endif /* QUICK_HOME */
  2410. #ifdef TMC2130
  2411. if(home_x)
  2412. {
  2413. if (!calib)
  2414. homeaxis(X_AXIS);
  2415. else
  2416. tmc2130_home_calibrate(X_AXIS);
  2417. }
  2418. if(home_y)
  2419. {
  2420. if (!calib)
  2421. homeaxis(Y_AXIS);
  2422. else
  2423. tmc2130_home_calibrate(Y_AXIS);
  2424. }
  2425. #else //TMC2130
  2426. if(home_x) homeaxis(X_AXIS);
  2427. if(home_y) homeaxis(Y_AXIS);
  2428. #endif //TMC2130
  2429. if(home_x_axis && home_x_value != 0)
  2430. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2431. if(home_y_axis && home_y_value != 0)
  2432. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2433. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2434. #ifndef Z_SAFE_HOMING
  2435. if(home_z) {
  2436. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2437. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2438. st_synchronize();
  2439. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2440. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, move X&Y to safe position for home
  2441. raise_z_above(MESH_HOME_Z_SEARCH);
  2442. st_synchronize();
  2443. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2444. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2445. // 1st mesh bed leveling measurement point, corrected.
  2446. world2machine_initialize();
  2447. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2448. world2machine_reset();
  2449. if (destination[Y_AXIS] < Y_MIN_POS)
  2450. destination[Y_AXIS] = Y_MIN_POS;
  2451. feedrate = homing_feedrate[X_AXIS] / 20;
  2452. enable_endstops(false);
  2453. #ifdef DEBUG_BUILD
  2454. SERIAL_ECHOLNPGM("plan_set_position()");
  2455. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2456. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2457. #endif
  2458. plan_set_position_curposXYZE();
  2459. #ifdef DEBUG_BUILD
  2460. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2461. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2462. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2463. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2464. #endif
  2465. plan_buffer_line_destinationXYZE(feedrate);
  2466. st_synchronize();
  2467. current_position[X_AXIS] = destination[X_AXIS];
  2468. current_position[Y_AXIS] = destination[Y_AXIS];
  2469. enable_endstops(true);
  2470. endstops_hit_on_purpose();
  2471. homeaxis(Z_AXIS);
  2472. #else // MESH_BED_LEVELING
  2473. homeaxis(Z_AXIS);
  2474. #endif // MESH_BED_LEVELING
  2475. }
  2476. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2477. if(home_all_axes) {
  2478. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2479. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2480. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2481. feedrate = XY_TRAVEL_SPEED/60;
  2482. current_position[Z_AXIS] = 0;
  2483. plan_set_position_curposXYZE();
  2484. plan_buffer_line_destinationXYZE(feedrate);
  2485. st_synchronize();
  2486. current_position[X_AXIS] = destination[X_AXIS];
  2487. current_position[Y_AXIS] = destination[Y_AXIS];
  2488. homeaxis(Z_AXIS);
  2489. }
  2490. // Let's see if X and Y are homed and probe is inside bed area.
  2491. if(home_z) {
  2492. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2493. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2494. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2495. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2496. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2497. current_position[Z_AXIS] = 0;
  2498. plan_set_position_curposXYZE();
  2499. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2500. feedrate = max_feedrate[Z_AXIS];
  2501. plan_buffer_line_destinationXYZE(feedrate);
  2502. st_synchronize();
  2503. homeaxis(Z_AXIS);
  2504. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2505. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2506. SERIAL_ECHO_START;
  2507. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2508. } else {
  2509. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2510. SERIAL_ECHO_START;
  2511. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2512. }
  2513. }
  2514. #endif // Z_SAFE_HOMING
  2515. #endif // Z_HOME_DIR < 0
  2516. if(home_z_axis && home_z_value != 0)
  2517. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2518. #ifdef ENABLE_AUTO_BED_LEVELING
  2519. if(home_z)
  2520. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2521. #endif
  2522. // Set the planner and stepper routine positions.
  2523. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2524. // contains the machine coordinates.
  2525. plan_set_position_curposXYZE();
  2526. clean_up_after_endstop_move(l_feedmultiply);
  2527. endstops_hit_on_purpose();
  2528. #ifndef MESH_BED_LEVELING
  2529. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2530. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2531. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2532. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2533. lcd_adjust_z();
  2534. #endif
  2535. // Load the machine correction matrix
  2536. world2machine_initialize();
  2537. // and correct the current_position XY axes to match the transformed coordinate system.
  2538. world2machine_update_current();
  2539. #ifdef MESH_BED_LEVELING
  2540. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2541. {
  2542. if (! home_z && mbl_was_active) {
  2543. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2544. mbl.active = true;
  2545. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2546. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2547. }
  2548. }
  2549. #endif
  2550. if (farm_mode) { prusa_statistics(20); };
  2551. st_synchronize();
  2552. homing_flag = false;
  2553. #if 0
  2554. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2555. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2556. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2557. #endif
  2558. }
  2559. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2560. {
  2561. #ifdef TMC2130
  2562. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2563. #else
  2564. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2565. #endif //TMC2130
  2566. }
  2567. // G80 - Automatic mesh bed leveling
  2568. static void gcode_G80()
  2569. {
  2570. st_synchronize();
  2571. if (waiting_inside_plan_buffer_line_print_aborted)
  2572. return;
  2573. mesh_bed_leveling_flag = true;
  2574. #ifndef PINDA_THERMISTOR
  2575. static bool run = false; // thermistor-less PINDA temperature compensation is running
  2576. #endif // ndef PINDA_THERMISTOR
  2577. #ifdef SUPPORT_VERBOSITY
  2578. int8_t verbosity_level = 0;
  2579. if (code_seen('V')) {
  2580. // Just 'V' without a number counts as V1.
  2581. char c = strchr_pointer[1];
  2582. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2583. }
  2584. #endif //SUPPORT_VERBOSITY
  2585. // Firstly check if we know where we are
  2586. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2587. // We don't know where we are! HOME!
  2588. // Push the commands to the front of the message queue in the reverse order!
  2589. // There shall be always enough space reserved for these commands.
  2590. repeatcommand_front(); // repeat G80 with all its parameters
  2591. enquecommand_front_P(G28W0);
  2592. return;
  2593. }
  2594. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  2595. if (code_seen('N')) {
  2596. nMeasPoints = code_value_uint8();
  2597. if (nMeasPoints != 7) {
  2598. nMeasPoints = 3;
  2599. }
  2600. }
  2601. else {
  2602. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  2603. }
  2604. uint8_t nProbeRetry = 3;
  2605. if (code_seen('R')) {
  2606. nProbeRetry = code_value_uint8();
  2607. if (nProbeRetry > 10) {
  2608. nProbeRetry = 10;
  2609. }
  2610. }
  2611. else {
  2612. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  2613. }
  2614. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  2615. #ifndef PINDA_THERMISTOR
  2616. if (run == false && eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true && target_temperature_bed >= 50)
  2617. {
  2618. temp_compensation_start();
  2619. run = true;
  2620. repeatcommand_front(); // repeat G80 with all its parameters
  2621. enquecommand_front_P(G28W0);
  2622. break;
  2623. }
  2624. run = false;
  2625. #endif //PINDA_THERMISTOR
  2626. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2627. CustomMsg custom_message_type_old = custom_message_type;
  2628. uint8_t custom_message_state_old = custom_message_state;
  2629. custom_message_type = CustomMsg::MeshBedLeveling;
  2630. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  2631. lcd_update(1);
  2632. mbl.reset(); //reset mesh bed leveling
  2633. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2634. babystep_undo();
  2635. // Cycle through all points and probe them
  2636. // First move up. During this first movement, the babystepping will be reverted.
  2637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2638. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  2639. // The move to the first calibration point.
  2640. current_position[X_AXIS] = BED_X0;
  2641. current_position[Y_AXIS] = BED_Y0;
  2642. #ifdef SUPPORT_VERBOSITY
  2643. if (verbosity_level >= 1)
  2644. {
  2645. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2646. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2647. }
  2648. #else //SUPPORT_VERBOSITY
  2649. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2650. #endif //SUPPORT_VERBOSITY
  2651. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2652. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2653. // Wait until the move is finished.
  2654. st_synchronize();
  2655. if (waiting_inside_plan_buffer_line_print_aborted)
  2656. {
  2657. custom_message_type = custom_message_type_old;
  2658. custom_message_state = custom_message_state_old;
  2659. return;
  2660. }
  2661. uint8_t mesh_point = 0; //index number of calibration point
  2662. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2663. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2664. #ifdef SUPPORT_VERBOSITY
  2665. if (verbosity_level >= 1) {
  2666. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2667. }
  2668. #endif // SUPPORT_VERBOSITY
  2669. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2670. while (mesh_point != nMeasPoints * nMeasPoints) {
  2671. // Get coords of a measuring point.
  2672. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  2673. uint8_t iy = mesh_point / nMeasPoints;
  2674. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  2675. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  2676. custom_message_state--;
  2677. mesh_point++;
  2678. continue; //skip
  2679. }*/
  2680. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  2681. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  2682. {
  2683. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  2684. }
  2685. float z0 = 0.f;
  2686. if (has_z && (mesh_point > 0)) {
  2687. uint16_t z_offset_u = 0;
  2688. if (nMeasPoints == 7) {
  2689. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  2690. }
  2691. else {
  2692. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2693. }
  2694. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2695. #ifdef SUPPORT_VERBOSITY
  2696. if (verbosity_level >= 1) {
  2697. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  2698. }
  2699. #endif // SUPPORT_VERBOSITY
  2700. }
  2701. // Move Z up to MESH_HOME_Z_SEARCH.
  2702. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2703. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  2704. float init_z_bckp = current_position[Z_AXIS];
  2705. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2706. st_synchronize();
  2707. // Move to XY position of the sensor point.
  2708. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  2709. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  2710. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2711. #ifdef SUPPORT_VERBOSITY
  2712. if (verbosity_level >= 1) {
  2713. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2714. SERIAL_PROTOCOL(mesh_point);
  2715. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2716. }
  2717. #else //SUPPORT_VERBOSITY
  2718. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2719. #endif // SUPPORT_VERBOSITY
  2720. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2721. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2722. st_synchronize();
  2723. if (waiting_inside_plan_buffer_line_print_aborted)
  2724. {
  2725. custom_message_type = custom_message_type_old;
  2726. custom_message_state = custom_message_state_old;
  2727. return;
  2728. }
  2729. // Go down until endstop is hit
  2730. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2731. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2732. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2733. break;
  2734. }
  2735. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  2736. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  2737. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2738. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2739. st_synchronize();
  2740. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2741. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2742. break;
  2743. }
  2744. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2745. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  2746. break;
  2747. }
  2748. }
  2749. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2750. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  2751. break;
  2752. }
  2753. #ifdef SUPPORT_VERBOSITY
  2754. if (verbosity_level >= 10) {
  2755. SERIAL_ECHOPGM("X: ");
  2756. MYSERIAL.print(current_position[X_AXIS], 5);
  2757. SERIAL_ECHOLNPGM("");
  2758. SERIAL_ECHOPGM("Y: ");
  2759. MYSERIAL.print(current_position[Y_AXIS], 5);
  2760. SERIAL_PROTOCOLPGM("\n");
  2761. }
  2762. #endif // SUPPORT_VERBOSITY
  2763. float offset_z = 0;
  2764. #ifdef PINDA_THERMISTOR
  2765. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2766. #endif //PINDA_THERMISTOR
  2767. // #ifdef SUPPORT_VERBOSITY
  2768. /* if (verbosity_level >= 1)
  2769. {
  2770. SERIAL_ECHOPGM("mesh bed leveling: ");
  2771. MYSERIAL.print(current_position[Z_AXIS], 5);
  2772. SERIAL_ECHOPGM(" offset: ");
  2773. MYSERIAL.print(offset_z, 5);
  2774. SERIAL_ECHOLNPGM("");
  2775. }*/
  2776. // #endif // SUPPORT_VERBOSITY
  2777. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2778. custom_message_state--;
  2779. mesh_point++;
  2780. lcd_update(1);
  2781. }
  2782. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2783. #ifdef SUPPORT_VERBOSITY
  2784. if (verbosity_level >= 20) {
  2785. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2786. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2787. MYSERIAL.print(current_position[Z_AXIS], 5);
  2788. }
  2789. #endif // SUPPORT_VERBOSITY
  2790. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2791. st_synchronize();
  2792. if (mesh_point != nMeasPoints * nMeasPoints) {
  2793. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  2794. bool bState;
  2795. do { // repeat until Z-leveling o.k.
  2796. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ...")); ////MSG_ZLEVELING_ENFORCED c=20 r=4
  2797. #ifdef TMC2130
  2798. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  2799. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  2800. #else // TMC2130
  2801. lcd_wait_for_click_delay(0); // ~ no timeout
  2802. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  2803. #endif // TMC2130
  2804. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  2805. bState=enable_z_endstop(false);
  2806. current_position[Z_AXIS] -= 1;
  2807. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2808. st_synchronize();
  2809. enable_z_endstop(true);
  2810. #ifdef TMC2130
  2811. tmc2130_home_enter(Z_AXIS_MASK);
  2812. #endif // TMC2130
  2813. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2814. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2815. st_synchronize();
  2816. #ifdef TMC2130
  2817. tmc2130_home_exit();
  2818. #endif // TMC2130
  2819. enable_z_endstop(bState);
  2820. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  2821. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  2822. custom_message_type = custom_message_type_old;
  2823. custom_message_state = custom_message_state_old;
  2824. lcd_update_enable(true); // display / status-line recovery
  2825. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  2826. repeatcommand_front(); // re-run (i.e. of "G80")
  2827. return;
  2828. }
  2829. clean_up_after_endstop_move(l_feedmultiply);
  2830. // SERIAL_ECHOLNPGM("clean up finished ");
  2831. #ifndef PINDA_THERMISTOR
  2832. if(eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2833. #endif
  2834. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2835. // SERIAL_ECHOLNPGM("babystep applied");
  2836. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2837. #ifdef SUPPORT_VERBOSITY
  2838. if (verbosity_level >= 1) {
  2839. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2840. }
  2841. #endif // SUPPORT_VERBOSITY
  2842. for (uint8_t i = 0; i < 4; ++i) {
  2843. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2844. long correction = 0;
  2845. if (code_seen(codes[i]))
  2846. correction = code_value_long();
  2847. else if (eeprom_bed_correction_valid) {
  2848. unsigned char *addr = (i < 2) ?
  2849. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2850. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2851. correction = eeprom_read_int8(addr);
  2852. }
  2853. if (correction == 0)
  2854. continue;
  2855. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  2856. SERIAL_ERROR_START;
  2857. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2858. SERIAL_ECHO(correction);
  2859. SERIAL_ECHOLNPGM(" microns");
  2860. }
  2861. else {
  2862. float offset = float(correction) * 0.001f;
  2863. switch (i) {
  2864. case 0:
  2865. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2866. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  2867. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  2868. }
  2869. }
  2870. break;
  2871. case 1:
  2872. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2873. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  2874. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  2875. }
  2876. }
  2877. break;
  2878. case 2:
  2879. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2880. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2881. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  2882. }
  2883. }
  2884. break;
  2885. case 3:
  2886. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2887. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  2888. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  2889. }
  2890. }
  2891. break;
  2892. }
  2893. }
  2894. }
  2895. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2896. if (nMeasPoints == 3) {
  2897. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2898. }
  2899. /*
  2900. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2901. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2902. SERIAL_PROTOCOLPGM(",");
  2903. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2904. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2905. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2906. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2907. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2908. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2909. SERIAL_PROTOCOLPGM(" ");
  2910. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2911. }
  2912. SERIAL_PROTOCOLPGM("\n");
  2913. }
  2914. */
  2915. if (nMeasPoints == 7 && magnet_elimination) {
  2916. mbl_interpolation(nMeasPoints);
  2917. }
  2918. /*
  2919. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2920. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2921. SERIAL_PROTOCOLPGM(",");
  2922. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2923. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2924. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2925. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2926. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2927. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2928. SERIAL_PROTOCOLPGM(" ");
  2929. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2930. }
  2931. SERIAL_PROTOCOLPGM("\n");
  2932. }
  2933. */
  2934. // SERIAL_ECHOLNPGM("Upsample finished");
  2935. mbl.active = 1; //activate mesh bed leveling
  2936. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2937. go_home_with_z_lift();
  2938. // SERIAL_ECHOLNPGM("Go home finished");
  2939. //unretract (after PINDA preheat retraction)
  2940. if (((int)degHotend(active_extruder) > extrude_min_temp) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  2941. current_position[E_AXIS] += default_retraction;
  2942. plan_buffer_line_curposXYZE(400);
  2943. }
  2944. KEEPALIVE_STATE(NOT_BUSY);
  2945. // Restore custom message state
  2946. lcd_setstatuspgm(MSG_WELCOME);
  2947. custom_message_type = custom_message_type_old;
  2948. custom_message_state = custom_message_state_old;
  2949. lcd_update(2);
  2950. st_synchronize();
  2951. mesh_bed_leveling_flag = false;
  2952. }
  2953. void adjust_bed_reset()
  2954. {
  2955. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2956. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2957. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2958. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2959. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2960. }
  2961. //! @brief Calibrate XYZ
  2962. //! @param onlyZ if true, calibrate only Z axis
  2963. //! @param verbosity_level
  2964. //! @retval true Succeeded
  2965. //! @retval false Failed
  2966. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2967. {
  2968. bool final_result = false;
  2969. #ifdef TMC2130
  2970. FORCE_HIGH_POWER_START;
  2971. #endif // TMC2130
  2972. FORCE_BL_ON_START;
  2973. // Only Z calibration?
  2974. if (!onlyZ)
  2975. {
  2976. setTargetBed(0);
  2977. setAllTargetHotends(0);
  2978. adjust_bed_reset(); //reset bed level correction
  2979. }
  2980. // Disable the default update procedure of the display. We will do a modal dialog.
  2981. lcd_update_enable(false);
  2982. // Let the planner use the uncorrected coordinates.
  2983. mbl.reset();
  2984. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2985. // the planner will not perform any adjustments in the XY plane.
  2986. // Wait for the motors to stop and update the current position with the absolute values.
  2987. world2machine_revert_to_uncorrected();
  2988. // Reset the baby step value applied without moving the axes.
  2989. babystep_reset();
  2990. // Mark all axes as in a need for homing.
  2991. memset(axis_known_position, 0, sizeof(axis_known_position));
  2992. // Home in the XY plane.
  2993. //set_destination_to_current();
  2994. int l_feedmultiply = setup_for_endstop_move();
  2995. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2996. raise_z_above(MESH_HOME_Z_SEARCH);
  2997. st_synchronize();
  2998. home_xy();
  2999. enable_endstops(false);
  3000. current_position[X_AXIS] += 5;
  3001. current_position[Y_AXIS] += 5;
  3002. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3003. st_synchronize();
  3004. // Let the user move the Z axes up to the end stoppers.
  3005. #ifdef TMC2130
  3006. if (calibrate_z_auto())
  3007. {
  3008. #else //TMC2130
  3009. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  3010. {
  3011. #endif //TMC2130
  3012. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  3013. if(onlyZ){
  3014. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  3015. lcd_puts_at_P(0,3,_n("1/9"));
  3016. }else{
  3017. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3018. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3019. lcd_puts_at_P(0,3,_n("1/4"));
  3020. }
  3021. refresh_cmd_timeout();
  3022. #ifndef STEEL_SHEET
  3023. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  3024. {
  3025. lcd_wait_for_cool_down();
  3026. }
  3027. #endif //STEEL_SHEET
  3028. if(!onlyZ)
  3029. {
  3030. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3031. #ifdef STEEL_SHEET
  3032. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3033. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3034. #endif //STEEL_SHEET
  3035. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3036. KEEPALIVE_STATE(IN_HANDLER);
  3037. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3038. lcd_puts_at_P(0,3,_n("1/4"));
  3039. }
  3040. bool endstops_enabled = enable_endstops(false);
  3041. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  3042. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3043. st_synchronize();
  3044. // Move the print head close to the bed.
  3045. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3046. enable_endstops(true);
  3047. #ifdef TMC2130
  3048. tmc2130_home_enter(Z_AXIS_MASK);
  3049. #endif //TMC2130
  3050. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3051. st_synchronize();
  3052. #ifdef TMC2130
  3053. tmc2130_home_exit();
  3054. #endif //TMC2130
  3055. enable_endstops(endstops_enabled);
  3056. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  3057. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  3058. {
  3059. if (onlyZ)
  3060. {
  3061. clean_up_after_endstop_move(l_feedmultiply);
  3062. // Z only calibration.
  3063. // Load the machine correction matrix
  3064. world2machine_initialize();
  3065. // and correct the current_position to match the transformed coordinate system.
  3066. world2machine_update_current();
  3067. //FIXME
  3068. bool result = sample_mesh_and_store_reference();
  3069. if (result)
  3070. {
  3071. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3072. {
  3073. // Shipped, the nozzle height has been set already. The user can start printing now.
  3074. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3075. }
  3076. final_result = true;
  3077. // babystep_apply();
  3078. }
  3079. }
  3080. else
  3081. {
  3082. // Reset the baby step value and the baby step applied flag.
  3083. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  3084. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3085. // Complete XYZ calibration.
  3086. uint8_t point_too_far_mask = 0;
  3087. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3088. clean_up_after_endstop_move(l_feedmultiply);
  3089. // Print head up.
  3090. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3091. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3092. st_synchronize();
  3093. //#ifndef NEW_XYZCAL
  3094. if (result >= 0)
  3095. {
  3096. #ifdef HEATBED_V2
  3097. sample_z();
  3098. #else //HEATBED_V2
  3099. point_too_far_mask = 0;
  3100. // Second half: The fine adjustment.
  3101. // Let the planner use the uncorrected coordinates.
  3102. mbl.reset();
  3103. world2machine_reset();
  3104. // Home in the XY plane.
  3105. int l_feedmultiply = setup_for_endstop_move();
  3106. home_xy();
  3107. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3108. clean_up_after_endstop_move(l_feedmultiply);
  3109. // Print head up.
  3110. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3111. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3112. st_synchronize();
  3113. // if (result >= 0) babystep_apply();
  3114. #endif //HEATBED_V2
  3115. }
  3116. //#endif //NEW_XYZCAL
  3117. lcd_update_enable(true);
  3118. lcd_update(2);
  3119. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3120. if (result >= 0)
  3121. {
  3122. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3123. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3124. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  3125. final_result = true;
  3126. }
  3127. }
  3128. #ifdef TMC2130
  3129. tmc2130_home_exit();
  3130. #endif
  3131. }
  3132. else
  3133. {
  3134. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  3135. final_result = false;
  3136. }
  3137. }
  3138. else
  3139. {
  3140. // Timeouted.
  3141. }
  3142. lcd_update_enable(true);
  3143. #ifdef TMC2130
  3144. FORCE_HIGH_POWER_END;
  3145. #endif // TMC2130
  3146. FORCE_BL_ON_END;
  3147. return final_result;
  3148. }
  3149. void gcode_M114()
  3150. {
  3151. SERIAL_PROTOCOLPGM("X:");
  3152. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3153. SERIAL_PROTOCOLPGM(" Y:");
  3154. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3155. SERIAL_PROTOCOLPGM(" Z:");
  3156. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3157. SERIAL_PROTOCOLPGM(" E:");
  3158. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3159. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  3160. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  3161. SERIAL_PROTOCOLPGM(" Y:");
  3162. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  3163. SERIAL_PROTOCOLPGM(" Z:");
  3164. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  3165. SERIAL_PROTOCOLPGM(" E:");
  3166. SERIAL_PROTOCOLLN(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  3167. }
  3168. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3169. void gcode_M123()
  3170. {
  3171. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  3172. }
  3173. #endif //FANCHECK and TACH_0 or TACH_1
  3174. //! extracted code to compute z_shift for M600 in case of filament change operation
  3175. //! requested from fsensors.
  3176. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  3177. //! unlike the previous implementation, which was adding 25mm even when the head was
  3178. //! printing at e.g. 24mm height.
  3179. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  3180. //! the printout.
  3181. //! This function is templated to enable fast change of computation data type.
  3182. //! @return new z_shift value
  3183. template<typename T>
  3184. static T gcode_M600_filament_change_z_shift()
  3185. {
  3186. #ifdef FILAMENTCHANGE_ZADD
  3187. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  3188. // avoid floating point arithmetics when not necessary - results in shorter code
  3189. T z_shift = T(FILAMENTCHANGE_ZADD); // always move above printout
  3190. T ztmp = T( current_position[Z_AXIS] );
  3191. if((ztmp + z_shift) < T(MIN_Z_FOR_SWAP)){
  3192. z_shift = T(MIN_Z_FOR_SWAP) - ztmp; // make sure to be at least 25mm above the heat bed
  3193. }
  3194. return z_shift;
  3195. #else
  3196. return T(0);
  3197. #endif
  3198. }
  3199. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  3200. {
  3201. st_synchronize();
  3202. float lastpos[4];
  3203. if (farm_mode)
  3204. {
  3205. prusa_statistics(22);
  3206. }
  3207. //First backup current position and settings
  3208. int feedmultiplyBckp = feedmultiply;
  3209. float HotendTempBckp = degTargetHotend(active_extruder);
  3210. int fanSpeedBckp = fanSpeed;
  3211. lastpos[X_AXIS] = current_position[X_AXIS];
  3212. lastpos[Y_AXIS] = current_position[Y_AXIS];
  3213. lastpos[Z_AXIS] = current_position[Z_AXIS];
  3214. lastpos[E_AXIS] = current_position[E_AXIS];
  3215. //Retract E
  3216. current_position[E_AXIS] += e_shift;
  3217. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  3218. st_synchronize();
  3219. //Lift Z
  3220. current_position[Z_AXIS] += z_shift;
  3221. clamp_to_software_endstops(current_position);
  3222. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  3223. st_synchronize();
  3224. //Move XY to side
  3225. current_position[X_AXIS] = x_position;
  3226. current_position[Y_AXIS] = y_position;
  3227. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3228. st_synchronize();
  3229. //Beep, manage nozzle heater and wait for user to start unload filament
  3230. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  3231. lcd_change_fil_state = 0;
  3232. // Unload filament
  3233. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  3234. else unload_filament(true); //unload filament for single material (used also in M702)
  3235. //finish moves
  3236. st_synchronize();
  3237. if (!mmu_enabled)
  3238. {
  3239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3240. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(
  3241. _i("Was filament unload successful?"), ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  3242. false, true);
  3243. if (lcd_change_fil_state == 0)
  3244. {
  3245. lcd_clear();
  3246. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3247. current_position[X_AXIS] -= 100;
  3248. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3249. st_synchronize();
  3250. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=5
  3251. }
  3252. }
  3253. if (mmu_enabled)
  3254. {
  3255. if (!automatic) {
  3256. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  3257. mmu_M600_wait_and_beep();
  3258. if (saved_printing) {
  3259. lcd_clear();
  3260. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3261. mmu_command(MmuCmd::R0);
  3262. manage_response(false, false);
  3263. }
  3264. }
  3265. mmu_M600_load_filament(automatic, HotendTempBckp);
  3266. }
  3267. else
  3268. M600_load_filament();
  3269. if (!automatic) M600_check_state(HotendTempBckp);
  3270. lcd_update_enable(true);
  3271. //Not let's go back to print
  3272. fanSpeed = fanSpeedBckp;
  3273. //Feed a little of filament to stabilize pressure
  3274. if (!automatic)
  3275. {
  3276. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  3277. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  3278. }
  3279. //Move XY back
  3280. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  3281. FILAMENTCHANGE_XYFEED, active_extruder);
  3282. st_synchronize();
  3283. //Move Z back
  3284. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  3285. FILAMENTCHANGE_ZFEED, active_extruder);
  3286. st_synchronize();
  3287. //Set E position to original
  3288. plan_set_e_position(lastpos[E_AXIS]);
  3289. memcpy(current_position, lastpos, sizeof(lastpos));
  3290. set_destination_to_current();
  3291. //Recover feed rate
  3292. feedmultiply = feedmultiplyBckp;
  3293. char cmd[9];
  3294. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3295. enquecommand(cmd);
  3296. #ifdef IR_SENSOR
  3297. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  3298. fsensor_check_autoload();
  3299. #endif //IR_SENSOR
  3300. lcd_setstatuspgm(MSG_WELCOME);
  3301. custom_message_type = CustomMsg::Status;
  3302. }
  3303. void gcode_M701()
  3304. {
  3305. printf_P(PSTR("gcode_M701 begin\n"));
  3306. if (farm_mode)
  3307. {
  3308. prusa_statistics(22);
  3309. }
  3310. if (mmu_enabled)
  3311. {
  3312. extr_adj(tmp_extruder);//loads current extruder
  3313. mmu_extruder = tmp_extruder;
  3314. }
  3315. else
  3316. {
  3317. enable_z();
  3318. custom_message_type = CustomMsg::FilamentLoading;
  3319. #ifdef FSENSOR_QUALITY
  3320. fsensor_oq_meassure_start(40);
  3321. #endif //FSENSOR_QUALITY
  3322. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  3323. current_position[E_AXIS] += 40;
  3324. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3325. st_synchronize();
  3326. raise_z_above(MIN_Z_FOR_LOAD, false);
  3327. current_position[E_AXIS] += 30;
  3328. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3329. load_filament_final_feed(); //slow sequence
  3330. st_synchronize();
  3331. Sound_MakeCustom(50,500,false);
  3332. if (!farm_mode && loading_flag) {
  3333. lcd_load_filament_color_check();
  3334. }
  3335. lcd_update_enable(true);
  3336. lcd_update(2);
  3337. lcd_setstatuspgm(MSG_WELCOME);
  3338. disable_z();
  3339. loading_flag = false;
  3340. custom_message_type = CustomMsg::Status;
  3341. #ifdef FSENSOR_QUALITY
  3342. fsensor_oq_meassure_stop();
  3343. if (!fsensor_oq_result())
  3344. {
  3345. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  3346. lcd_update_enable(true);
  3347. lcd_update(2);
  3348. if (disable)
  3349. fsensor_disable();
  3350. }
  3351. #endif //FSENSOR_QUALITY
  3352. }
  3353. }
  3354. /**
  3355. * @brief Get serial number from 32U2 processor
  3356. *
  3357. * Typical format of S/N is:CZPX0917X003XC13518
  3358. *
  3359. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  3360. * reply is stored in *SN.
  3361. * Operation takes typically 23 ms. If no valid SN can be retrieved within the 250ms window, the function aborts
  3362. * and returns a general failure flag.
  3363. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  3364. * In that case the value that is stored in the EEPROM should be used instead.
  3365. *
  3366. * @return 0 on success
  3367. * @return 1 on general failure
  3368. */
  3369. #ifdef PRUSA_SN_SUPPORT
  3370. static uint8_t get_PRUSA_SN(char* SN)
  3371. {
  3372. uint8_t selectedSerialPort_bak = selectedSerialPort;
  3373. uint8_t rxIndex;
  3374. bool SN_valid = false;
  3375. ShortTimer timeout;
  3376. selectedSerialPort = 0;
  3377. timeout.start();
  3378. while (!SN_valid)
  3379. {
  3380. rxIndex = 0;
  3381. _delay(50);
  3382. MYSERIAL.flush(); //clear RX buffer
  3383. SERIAL_ECHOLNRPGM(PSTR(";S"));
  3384. while (rxIndex < 19)
  3385. {
  3386. if (timeout.expired(250u))
  3387. goto exit;
  3388. if (MYSERIAL.available() > 0)
  3389. {
  3390. SN[rxIndex] = MYSERIAL.read();
  3391. rxIndex++;
  3392. }
  3393. }
  3394. SN[rxIndex] = 0;
  3395. // printf_P(PSTR("SN:%s\n"), SN);
  3396. SN_valid = (strncmp_P(SN, PSTR("CZPX"), 4) == 0);
  3397. }
  3398. exit:
  3399. selectedSerialPort = selectedSerialPort_bak;
  3400. return !SN_valid;
  3401. }
  3402. #endif //PRUSA_SN_SUPPORT
  3403. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  3404. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  3405. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  3406. //! it may even interfere with other functions of the printer! You have been warned!
  3407. //! The test idea is to measure the time necessary to charge the capacitor.
  3408. //! So the algorithm is as follows:
  3409. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3410. //! 2. Wait a few ms
  3411. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3412. //! Repeat 1.-3. several times
  3413. //! Good RAMBo's times are in the range of approx. 260-320 us
  3414. //! Bad RAMBo's times are approx. 260-1200 us
  3415. //! So basically we are interested in maximum time, the minima are mostly the same.
  3416. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3417. static void gcode_PRUSA_BadRAMBoFanTest(){
  3418. //printf_P(PSTR("Enter fan pin test\n"));
  3419. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3420. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3421. unsigned long tach1max = 0;
  3422. uint8_t tach1cntr = 0;
  3423. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3424. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3425. SET_OUTPUT(TACH_1);
  3426. WRITE(TACH_1, LOW);
  3427. _delay(20); // the delay may be lower
  3428. unsigned long tachMeasure = _micros();
  3429. cli();
  3430. SET_INPUT(TACH_1);
  3431. // just wait brutally in an endless cycle until we reach HIGH
  3432. // if this becomes a problem it may be improved to non-endless cycle
  3433. while( READ(TACH_1) == 0 ) ;
  3434. sei();
  3435. tachMeasure = _micros() - tachMeasure;
  3436. if( tach1max < tachMeasure )
  3437. tach1max = tachMeasure;
  3438. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3439. }
  3440. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3441. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3442. if( tach1max > 500 ){
  3443. // bad RAMBo
  3444. SERIAL_PROTOCOLLNPGM("BAD");
  3445. } else {
  3446. SERIAL_PROTOCOLLNPGM("OK");
  3447. }
  3448. // cleanup after the test function
  3449. SET_INPUT(TACH_1);
  3450. WRITE(TACH_1, HIGH);
  3451. #endif
  3452. }
  3453. // G92 - Set current position to coordinates given
  3454. static void gcode_G92()
  3455. {
  3456. bool codes[NUM_AXIS];
  3457. float values[NUM_AXIS];
  3458. // Check which axes need to be set
  3459. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3460. {
  3461. codes[i] = code_seen(axis_codes[i]);
  3462. if(codes[i])
  3463. values[i] = code_value();
  3464. }
  3465. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3466. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3467. {
  3468. // As a special optimization, when _just_ clearing the E position
  3469. // we schedule a flag asynchronously along with the next block to
  3470. // reset the starting E position instead of stopping the planner
  3471. current_position[E_AXIS] = 0;
  3472. plan_reset_next_e();
  3473. }
  3474. else
  3475. {
  3476. // In any other case we're forced to synchronize
  3477. st_synchronize();
  3478. for(uint8_t i = 0; i < 3; ++i)
  3479. {
  3480. if(codes[i])
  3481. current_position[i] = values[i] + cs.add_homing[i];
  3482. }
  3483. if(codes[E_AXIS])
  3484. current_position[E_AXIS] = values[E_AXIS];
  3485. // Set all at once
  3486. plan_set_position_curposXYZE();
  3487. }
  3488. }
  3489. #ifdef EXTENDED_CAPABILITIES_REPORT
  3490. static void cap_line(const char* name, bool ena = false) {
  3491. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3492. }
  3493. static void extended_capabilities_report()
  3494. {
  3495. // AUTOREPORT_TEMP (M155)
  3496. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3497. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3498. // AUTOREPORT_FANS (M123)
  3499. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3500. #endif //FANCHECK and TACH_0 or TACH_1
  3501. // AUTOREPORT_POSITION (M114)
  3502. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3503. // EXTENDED_M20 (support for L and T parameters)
  3504. cap_line(PSTR("EXTENDED_M20"), 1);
  3505. cap_line(PSTR("PRUSA_MMU2"), 1); //this will soon change to ENABLED(PRUSA_MMU2_SUPPORT)
  3506. }
  3507. #endif //EXTENDED_CAPABILITIES_REPORT
  3508. #ifdef BACKLASH_X
  3509. extern uint8_t st_backlash_x;
  3510. #endif //BACKLASH_X
  3511. #ifdef BACKLASH_Y
  3512. extern uint8_t st_backlash_y;
  3513. #endif //BACKLASH_Y
  3514. //! \ingroup marlin_main
  3515. //! @brief Parse and process commands
  3516. //!
  3517. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3518. //!
  3519. //!
  3520. //! Implemented Codes
  3521. //! -------------------
  3522. //!
  3523. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3524. //!
  3525. //!@n PRUSA CODES
  3526. //!@n P F - Returns FW versions
  3527. //!@n P R - Returns revision of printer
  3528. //!
  3529. //!@n G0 -> G1
  3530. //!@n G1 - Coordinated Movement X Y Z E
  3531. //!@n G2 - CW ARC
  3532. //!@n G3 - CCW ARC
  3533. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3534. //!@n G10 - retract filament according to settings of M207
  3535. //!@n G11 - retract recover filament according to settings of M208
  3536. //!@n G28 - Home all Axes
  3537. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3538. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3539. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3540. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3541. //!@n G80 - Automatic mesh bed leveling
  3542. //!@n G81 - Print bed profile
  3543. //!@n G90 - Use Absolute Coordinates
  3544. //!@n G91 - Use Relative Coordinates
  3545. //!@n G92 - Set current position to coordinates given
  3546. //!
  3547. //!@n M Codes
  3548. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3549. //!@n M1 - Same as M0
  3550. //!@n M17 - Enable/Power all stepper motors
  3551. //!@n M18 - Disable all stepper motors; same as M84
  3552. //!@n M20 - List SD card
  3553. //!@n M21 - Init SD card
  3554. //!@n M22 - Release SD card
  3555. //!@n M23 - Select SD file (M23 filename.g)
  3556. //!@n M24 - Start/resume SD print
  3557. //!@n M25 - Pause SD print
  3558. //!@n M26 - Set SD position in bytes (M26 S12345)
  3559. //!@n M27 - Report SD print status
  3560. //!@n M28 - Start SD write (M28 filename.g)
  3561. //!@n M29 - Stop SD write
  3562. //!@n M30 - Delete file from SD (M30 filename.g)
  3563. //!@n M31 - Output time since last M109 or SD card start to serial
  3564. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3565. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3566. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3567. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3568. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3569. //!@n M73 - Show percent done and print time remaining
  3570. //!@n M80 - Turn on Power Supply
  3571. //!@n M81 - Turn off Power Supply
  3572. //!@n M82 - Set E codes absolute (default)
  3573. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3574. //!@n M84 - Disable steppers until next move,
  3575. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3576. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3577. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3578. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3579. //!@n M104 - Set extruder target temp
  3580. //!@n M105 - Read current temp
  3581. //!@n M106 - Fan on
  3582. //!@n M107 - Fan off
  3583. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3584. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3585. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3586. //!@n M112 - Emergency stop
  3587. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3588. //!@n M114 - Output current position to serial port
  3589. //!@n M115 - Capabilities string
  3590. //!@n M117 - display message
  3591. //!@n M119 - Output Endstop status to serial port
  3592. //!@n M123 - Tachometer value
  3593. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3594. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3595. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3596. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3597. //!@n M140 - Set bed target temp
  3598. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3599. //!@n M155 - Automatically send temperatures, fan speeds, position
  3600. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3601. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3602. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3603. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3604. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3605. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3606. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3607. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3608. //!@n M206 - set additional homing offset
  3609. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3610. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3611. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3612. //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  3613. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3614. //!@n M220 S<factor in percent>- set speed factor override percentage
  3615. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3616. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3617. //!@n M240 - Trigger a camera to take a photograph
  3618. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3619. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3620. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3621. //!@n M301 - Set PID parameters P I and D
  3622. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3623. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3624. //!@n M304 - Set bed PID parameters P I and D
  3625. //!@n M400 - Finish all moves
  3626. //!@n M401 - Lower z-probe if present
  3627. //!@n M402 - Raise z-probe if present
  3628. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3629. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3630. //!@n M406 - Turn off Filament Sensor extrusion control
  3631. //!@n M407 - Displays measured filament diameter
  3632. //!@n M500 - stores parameters in EEPROM
  3633. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3634. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3635. //!@n M503 - print the current settings (from memory not from EEPROM)
  3636. //!@n M509 - force language selection on next restart
  3637. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3638. //!@n M552 - Set IP address
  3639. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3640. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3641. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3642. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3643. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3644. //!@n M907 - Set digital trimpot motor current using axis codes.
  3645. //!@n M908 - Control digital trimpot directly.
  3646. //!@n M350 - Set microstepping mode.
  3647. //!@n M351 - Toggle MS1 MS2 pins directly.
  3648. //!
  3649. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3650. //!@n M999 - Restart after being stopped by error
  3651. //! <br><br>
  3652. /** @defgroup marlin_main Marlin main */
  3653. /** \ingroup GCodes */
  3654. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3655. /**
  3656. They are shown in order of appearance in the code.
  3657. There are reasons why some G Codes aren't in numerical order.
  3658. */
  3659. void process_commands()
  3660. {
  3661. #ifdef FANCHECK
  3662. if(fan_check_error == EFCE_DETECTED) {
  3663. fan_check_error = EFCE_REPORTED;
  3664. if (usb_timer.running())
  3665. lcd_pause_usb_print();
  3666. else
  3667. lcd_pause_print();
  3668. }
  3669. #endif
  3670. if (!buflen) return; //empty command
  3671. #ifdef CMDBUFFER_DEBUG
  3672. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3673. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3674. SERIAL_ECHOLNPGM("");
  3675. SERIAL_ECHOPGM("In cmdqueue: ");
  3676. SERIAL_ECHO(buflen);
  3677. SERIAL_ECHOLNPGM("");
  3678. #endif /* CMDBUFFER_DEBUG */
  3679. unsigned long codenum; //throw away variable
  3680. char *starpos = NULL;
  3681. #ifdef ENABLE_AUTO_BED_LEVELING
  3682. float x_tmp, y_tmp, z_tmp, real_z;
  3683. #endif
  3684. // PRUSA GCODES
  3685. KEEPALIVE_STATE(IN_HANDLER);
  3686. /*!
  3687. ---------------------------------------------------------------------------------
  3688. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3689. This causes the given message to be shown in the status line on an attached LCD.
  3690. It is processed early as to allow printing messages that contain G, M, N or T.
  3691. ---------------------------------------------------------------------------------
  3692. ### Special internal commands
  3693. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3694. They are processed early as the commands are complex (strings).
  3695. These are only available on the MK3(S) as these require TMC2130 drivers:
  3696. - CRASH DETECTED
  3697. - CRASH RECOVER
  3698. - CRASH_CANCEL
  3699. - TMC_SET_WAVE
  3700. - TMC_SET_STEP
  3701. - TMC_SET_CHOP
  3702. */
  3703. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3704. {
  3705. starpos = (strchr(strchr_pointer + 5, '*'));
  3706. if (starpos != NULL)
  3707. *(starpos) = '\0';
  3708. lcd_setstatus(strchr_pointer + 5);
  3709. custom_message_type = CustomMsg::M117;
  3710. }
  3711. /*!
  3712. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3713. #### Usage
  3714. M0 [P<ms<] [S<sec>] [string]
  3715. M1 [P<ms>] [S<sec>] [string]
  3716. #### Parameters
  3717. - `P<ms>` - Expire time, in milliseconds
  3718. - `S<sec>` - Expire time, in seconds
  3719. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3720. */
  3721. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3722. char *src = strchr_pointer + 2;
  3723. codenum = 0;
  3724. bool hasP = false, hasS = false;
  3725. if (code_seen('P')) {
  3726. codenum = code_value_long(); // milliseconds to wait
  3727. hasP = codenum > 0;
  3728. }
  3729. if (code_seen('S')) {
  3730. codenum = code_value_long() * 1000; // seconds to wait
  3731. hasS = codenum > 0;
  3732. }
  3733. starpos = strchr(src, '*');
  3734. if (starpos != NULL) *(starpos) = '\0';
  3735. while (*src == ' ') ++src;
  3736. custom_message_type = CustomMsg::M0Wait;
  3737. if (!hasP && !hasS && *src != '\0') {
  3738. lcd_setstatus(src);
  3739. } else {
  3740. // farmers want to abuse a bug from the previous firmware releases
  3741. // - they need to see the filename on the status screen instead of "Wait for user..."
  3742. // So we won't update the message in farm mode...
  3743. if( ! farm_mode){
  3744. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=20
  3745. } else {
  3746. custom_message_type = CustomMsg::Status; // let the lcd display the name of the printed G-code file in farm mode
  3747. }
  3748. }
  3749. lcd_ignore_click(); //call lcd_ignore_click also for else ???
  3750. st_synchronize();
  3751. previous_millis_cmd.start();
  3752. if (codenum > 0 ) {
  3753. codenum += _millis(); // keep track of when we started waiting
  3754. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3755. while(_millis() < codenum && !lcd_clicked()) {
  3756. manage_heater();
  3757. manage_inactivity(true);
  3758. lcd_update(0);
  3759. }
  3760. KEEPALIVE_STATE(IN_HANDLER);
  3761. lcd_ignore_click(false);
  3762. } else {
  3763. marlin_wait_for_click();
  3764. }
  3765. if (IS_SD_PRINTING)
  3766. custom_message_type = CustomMsg::Status;
  3767. else
  3768. LCD_MESSAGERPGM(MSG_WELCOME);
  3769. }
  3770. #ifdef TMC2130
  3771. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3772. {
  3773. // ### CRASH_DETECTED - TMC2130
  3774. // ---------------------------------
  3775. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3776. {
  3777. uint8_t mask = 0;
  3778. if (code_seen('X')) mask |= X_AXIS_MASK;
  3779. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3780. crashdet_detected(mask);
  3781. }
  3782. // ### CRASH_RECOVER - TMC2130
  3783. // ----------------------------------
  3784. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3785. crashdet_recover();
  3786. // ### CRASH_CANCEL - TMC2130
  3787. // ----------------------------------
  3788. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3789. crashdet_cancel();
  3790. }
  3791. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3792. {
  3793. // ### TMC_SET_WAVE_
  3794. // --------------------
  3795. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3796. {
  3797. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3798. axis = (axis == 'E')?3:(axis - 'X');
  3799. if (axis < 4)
  3800. {
  3801. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3802. tmc2130_set_wave(axis, 247, fac);
  3803. }
  3804. }
  3805. // ### TMC_SET_STEP_
  3806. // ------------------
  3807. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3808. {
  3809. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3810. axis = (axis == 'E')?3:(axis - 'X');
  3811. if (axis < 4)
  3812. {
  3813. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3814. uint16_t res = tmc2130_get_res(axis);
  3815. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3816. }
  3817. }
  3818. // ### TMC_SET_CHOP_
  3819. // -------------------
  3820. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3821. {
  3822. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3823. axis = (axis == 'E')?3:(axis - 'X');
  3824. if (axis < 4)
  3825. {
  3826. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3827. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3828. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3829. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3830. char* str_end = 0;
  3831. if (CMDBUFFER_CURRENT_STRING[14])
  3832. {
  3833. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3834. if (str_end && *str_end)
  3835. {
  3836. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3837. if (str_end && *str_end)
  3838. {
  3839. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3840. if (str_end && *str_end)
  3841. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3842. }
  3843. }
  3844. }
  3845. tmc2130_chopper_config[axis].toff = chop0;
  3846. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3847. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3848. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3849. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3850. //printf_P(_N("TMC_SET_CHOP_%c %d %d %d %d\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3851. }
  3852. }
  3853. }
  3854. #ifdef BACKLASH_X
  3855. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3856. {
  3857. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3858. st_backlash_x = bl;
  3859. printf_P(_N("st_backlash_x = %d\n"), st_backlash_x);
  3860. }
  3861. #endif //BACKLASH_X
  3862. #ifdef BACKLASH_Y
  3863. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3864. {
  3865. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3866. st_backlash_y = bl;
  3867. printf_P(_N("st_backlash_y = %d\n"), st_backlash_y);
  3868. }
  3869. #endif //BACKLASH_Y
  3870. #endif //TMC2130
  3871. else if(code_seen_P(PSTR("PRUSA"))){
  3872. /*!
  3873. ---------------------------------------------------------------------------------
  3874. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3875. Set of internal PRUSA commands
  3876. #### Usage
  3877. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | FR ]
  3878. #### Parameters
  3879. - `Ping`
  3880. - `PRN` - Prints revision of the printer
  3881. - `FAN` - Prints fan details
  3882. - `fn` - Prints farm no.
  3883. - `thx`
  3884. - `uvlo`
  3885. - `MMURES` - Reset MMU
  3886. - `RESET` - (Careful!)
  3887. - `fv` - ?
  3888. - `M28`
  3889. - `SN`
  3890. - `Fir` - Prints firmware version
  3891. - `Rev`- Prints filament size, elelectronics, nozzle type
  3892. - `Lang` - Reset the language
  3893. - `Lz`
  3894. - `FR` - Full factory reset
  3895. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3896. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3897. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3898. */
  3899. if (code_seen_P(PSTR("Ping"))) { // PRUSA Ping
  3900. if (farm_mode) {
  3901. PingTime = _millis();
  3902. }
  3903. }
  3904. else if (code_seen_P(PSTR("PRN"))) { // PRUSA PRN
  3905. printf_P(_N("%u"), status_number);
  3906. } else if( code_seen_P(PSTR("FANPINTST"))){
  3907. gcode_PRUSA_BadRAMBoFanTest();
  3908. }else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3909. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3910. }
  3911. else if (code_seen_P(PSTR("thx"))) // PRUSA thx
  3912. {
  3913. no_response = false;
  3914. }
  3915. else if (code_seen_P(PSTR("uvlo"))) // PRUSA uvlo
  3916. {
  3917. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3918. enquecommand_P(PSTR("M24"));
  3919. }
  3920. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3921. {
  3922. mmu_reset();
  3923. }
  3924. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3925. #ifdef WATCHDOG
  3926. #if defined(XFLASH) && defined(BOOTAPP)
  3927. boot_app_magic = BOOT_APP_MAGIC;
  3928. boot_app_flags = BOOT_APP_FLG_RUN;
  3929. #endif //defined(XFLASH) && defined(BOOTAPP)
  3930. softReset();
  3931. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3932. asm volatile("jmp 0x3E000");
  3933. #endif
  3934. } else if (code_seen_P(PSTR("fv"))) { // PRUSA fv
  3935. // get file version
  3936. #ifdef SDSUPPORT
  3937. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  3938. while (true) {
  3939. uint16_t readByte = card.getFilteredGcodeChar();
  3940. MYSERIAL.write(readByte);
  3941. if (readByte=='\n') {
  3942. break;
  3943. }
  3944. }
  3945. card.closefile();
  3946. #endif // SDSUPPORT
  3947. }
  3948. #ifdef PRUSA_M28
  3949. else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  3950. trace();
  3951. prusa_sd_card_upload = true;
  3952. card.openFileWrite(strchr_pointer+4);
  3953. }
  3954. #endif //PRUSA_M28
  3955. #ifdef PRUSA_SN_SUPPORT
  3956. else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  3957. char SN[20];
  3958. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  3959. if (SN[19])
  3960. puts_P(PSTR("SN invalid"));
  3961. else
  3962. puts(SN);
  3963. }
  3964. #endif //PRUSA_SN_SUPPORT
  3965. else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  3966. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3967. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  3968. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3969. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  3970. lang_reset();
  3971. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  3972. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3973. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  3974. // Factory full reset
  3975. factory_reset(0);
  3976. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  3977. // Change the MBL status without changing the logical Z position.
  3978. if(code_seen('V')) {
  3979. bool value = code_value_short();
  3980. st_synchronize();
  3981. if(value != mbl.active) {
  3982. mbl.active = value;
  3983. // Use plan_set_z_position to reset the physical values
  3984. plan_set_z_position(current_position[Z_AXIS]);
  3985. }
  3986. }
  3987. //-//
  3988. /*
  3989. } else if(code_seen("rrr")) {
  3990. MYSERIAL.println("=== checking ===");
  3991. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3992. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3993. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3994. MYSERIAL.println(farm_mode,DEC);
  3995. MYSERIAL.println(eCheckMode,DEC);
  3996. } else if(code_seen("www")) {
  3997. MYSERIAL.println("=== @ FF ===");
  3998. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3999. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  4000. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  4001. */
  4002. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  4003. uint16_t nDiameter;
  4004. if(code_seen('D'))
  4005. {
  4006. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4007. nozzle_diameter_check(nDiameter);
  4008. }
  4009. else if(code_seen_P(PSTR("set")) && farm_mode)
  4010. {
  4011. strchr_pointer++; // skip 1st char (~ 's')
  4012. strchr_pointer++; // skip 2nd char (~ 'e')
  4013. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4014. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  4015. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  4016. }
  4017. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  4018. //-// !!! SupportMenu
  4019. /*
  4020. // musi byt PRED "PRUSA model"
  4021. } else if (code_seen("smodel")) { //! PRUSA smodel
  4022. size_t nOffset;
  4023. // ! -> "l"
  4024. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  4025. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  4026. if(*(strchr_pointer+1+nOffset))
  4027. printer_smodel_check(strchr_pointer);
  4028. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  4029. } else if (code_seen("model")) { //! PRUSA model
  4030. uint16_t nPrinterModel;
  4031. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  4032. nPrinterModel=(uint16_t)code_value_long();
  4033. if(nPrinterModel!=0)
  4034. printer_model_check(nPrinterModel);
  4035. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  4036. } else if (code_seen("version")) { //! PRUSA version
  4037. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  4038. while(*strchr_pointer==' ') // skip leading spaces
  4039. strchr_pointer++;
  4040. if(*strchr_pointer!=0)
  4041. fw_version_check(strchr_pointer);
  4042. else SERIAL_PROTOCOLLN(FW_VERSION);
  4043. } else if (code_seen("gcode")) { //! PRUSA gcode
  4044. uint16_t nGcodeLevel;
  4045. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  4046. nGcodeLevel=(uint16_t)code_value_long();
  4047. if(nGcodeLevel!=0)
  4048. gcode_level_check(nGcodeLevel);
  4049. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  4050. */
  4051. }
  4052. //else if (code_seen('Cal')) {
  4053. // lcd_calibration();
  4054. // }
  4055. }
  4056. // This prevents reading files with "^" in their names.
  4057. // Since it is unclear, if there is some usage of this construct,
  4058. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  4059. // else if (code_seen('^')) {
  4060. // // nothing, this is a version line
  4061. // }
  4062. else if(code_seen('G'))
  4063. {
  4064. gcode_in_progress = code_value_short();
  4065. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  4066. switch (gcode_in_progress)
  4067. {
  4068. /*!
  4069. ---------------------------------------------------------------------------------
  4070. # G Codes
  4071. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  4072. In Prusa Firmware G0 and G1 are the same.
  4073. #### Usage
  4074. G0 [ X | Y | Z | E | F | S ]
  4075. G1 [ X | Y | Z | E | F | S ]
  4076. #### Parameters
  4077. - `X` - The position to move to on the X axis
  4078. - `Y` - The position to move to on the Y axis
  4079. - `Z` - The position to move to on the Z axis
  4080. - `E` - The amount to extrude between the starting point and ending point
  4081. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4082. */
  4083. case 0: // G0 -> G1
  4084. case 1: // G1
  4085. if(Stopped == false) {
  4086. get_coordinates(); // For X Y Z E F
  4087. // When recovering from a previous print move, restore the originally
  4088. // calculated target position on the first USB/SD command. This accounts
  4089. // properly for relative moves
  4090. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  4091. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  4092. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  4093. {
  4094. memcpy(destination, saved_target, sizeof(destination));
  4095. saved_target[0] = SAVED_TARGET_UNSET;
  4096. }
  4097. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  4098. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  4099. }
  4100. #ifdef FWRETRACT
  4101. if(cs.autoretract_enabled) {
  4102. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  4103. float echange=destination[E_AXIS]-current_position[E_AXIS];
  4104. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  4105. st_synchronize();
  4106. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  4107. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  4108. retract(!retracted[active_extruder]);
  4109. return;
  4110. }
  4111. }
  4112. }
  4113. #endif //FWRETRACT
  4114. prepare_move();
  4115. //ClearToSend();
  4116. }
  4117. break;
  4118. /*!
  4119. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  4120. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  4121. #### Usage
  4122. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  4123. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  4124. #### Parameters
  4125. - `X` - The position to move to on the X axis
  4126. - `Y` - The position to move to on the Y axis
  4127. - 'Z' - The position to move to on the Z axis
  4128. - `I` - The point in X space from the current X position to maintain a constant distance from
  4129. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  4130. - `E` - The amount to extrude between the starting point and ending point
  4131. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4132. */
  4133. case 2:
  4134. if(Stopped == false) {
  4135. get_arc_coordinates();
  4136. prepare_arc_move(true);
  4137. }
  4138. break;
  4139. // -------------------------------
  4140. case 3:
  4141. if(Stopped == false) {
  4142. get_arc_coordinates();
  4143. prepare_arc_move(false);
  4144. }
  4145. break;
  4146. /*!
  4147. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  4148. Pause the machine for a period of time.
  4149. #### Usage
  4150. G4 [ P | S ]
  4151. #### Parameters
  4152. - `P` - Time to wait, in milliseconds
  4153. - `S` - Time to wait, in seconds
  4154. */
  4155. case 4:
  4156. codenum = 0;
  4157. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  4158. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  4159. if(codenum != 0)
  4160. {
  4161. if(custom_message_type != CustomMsg::M117)
  4162. {
  4163. LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  4164. }
  4165. }
  4166. st_synchronize();
  4167. codenum += _millis(); // keep track of when we started waiting
  4168. previous_millis_cmd.start();
  4169. while(_millis() < codenum) {
  4170. manage_heater();
  4171. manage_inactivity();
  4172. lcd_update(0);
  4173. }
  4174. break;
  4175. #ifdef FWRETRACT
  4176. /*!
  4177. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  4178. Retracts filament according to settings of `M207`
  4179. */
  4180. case 10:
  4181. #if EXTRUDERS > 1
  4182. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  4183. retract(true,retracted_swap[active_extruder]);
  4184. #else
  4185. retract(true);
  4186. #endif
  4187. break;
  4188. /*!
  4189. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  4190. Unretracts/recovers filament according to settings of `M208`
  4191. */
  4192. case 11:
  4193. #if EXTRUDERS > 1
  4194. retract(false,retracted_swap[active_extruder]);
  4195. #else
  4196. retract(false);
  4197. #endif
  4198. break;
  4199. #endif //FWRETRACT
  4200. /*!
  4201. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  4202. Units are in millimeters. Prusa doesn't support inches.
  4203. */
  4204. case 21:
  4205. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  4206. /*!
  4207. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  4208. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  4209. #### Usage
  4210. G28 [ X | Y | Z | W | C ]
  4211. #### Parameters
  4212. - `X` - Flag to go back to the X axis origin
  4213. - `Y` - Flag to go back to the Y axis origin
  4214. - `Z` - Flag to go back to the Z axis origin
  4215. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  4216. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  4217. */
  4218. case 28:
  4219. {
  4220. long home_x_value = 0;
  4221. long home_y_value = 0;
  4222. long home_z_value = 0;
  4223. // Which axes should be homed?
  4224. bool home_x = code_seen(axis_codes[X_AXIS]);
  4225. home_x_value = code_value_long();
  4226. bool home_y = code_seen(axis_codes[Y_AXIS]);
  4227. home_y_value = code_value_long();
  4228. bool home_z = code_seen(axis_codes[Z_AXIS]);
  4229. home_z_value = code_value_long();
  4230. bool without_mbl = code_seen('W');
  4231. // calibrate?
  4232. #ifdef TMC2130
  4233. bool calib = code_seen('C');
  4234. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  4235. #else
  4236. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  4237. #endif //TMC2130
  4238. if ((home_x || home_y || without_mbl || home_z) == false) {
  4239. gcode_G80();
  4240. }
  4241. break;
  4242. }
  4243. #ifdef ENABLE_AUTO_BED_LEVELING
  4244. /*!
  4245. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  4246. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4247. See `G81`
  4248. */
  4249. case 29:
  4250. {
  4251. #if Z_MIN_PIN == -1
  4252. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  4253. #endif
  4254. // Prevent user from running a G29 without first homing in X and Y
  4255. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  4256. {
  4257. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  4258. SERIAL_ECHO_START;
  4259. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  4260. break; // abort G29, since we don't know where we are
  4261. }
  4262. st_synchronize();
  4263. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  4264. //vector_3 corrected_position = plan_get_position_mm();
  4265. //corrected_position.debug("position before G29");
  4266. plan_bed_level_matrix.set_to_identity();
  4267. vector_3 uncorrected_position = plan_get_position();
  4268. //uncorrected_position.debug("position durring G29");
  4269. current_position[X_AXIS] = uncorrected_position.x;
  4270. current_position[Y_AXIS] = uncorrected_position.y;
  4271. current_position[Z_AXIS] = uncorrected_position.z;
  4272. plan_set_position_curposXYZE();
  4273. int l_feedmultiply = setup_for_endstop_move();
  4274. feedrate = homing_feedrate[Z_AXIS];
  4275. #ifdef AUTO_BED_LEVELING_GRID
  4276. // probe at the points of a lattice grid
  4277. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4278. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4279. // solve the plane equation ax + by + d = z
  4280. // A is the matrix with rows [x y 1] for all the probed points
  4281. // B is the vector of the Z positions
  4282. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4283. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4284. // "A" matrix of the linear system of equations
  4285. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  4286. // "B" vector of Z points
  4287. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  4288. int probePointCounter = 0;
  4289. bool zig = true;
  4290. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  4291. {
  4292. int xProbe, xInc;
  4293. if (zig)
  4294. {
  4295. xProbe = LEFT_PROBE_BED_POSITION;
  4296. //xEnd = RIGHT_PROBE_BED_POSITION;
  4297. xInc = xGridSpacing;
  4298. zig = false;
  4299. } else // zag
  4300. {
  4301. xProbe = RIGHT_PROBE_BED_POSITION;
  4302. //xEnd = LEFT_PROBE_BED_POSITION;
  4303. xInc = -xGridSpacing;
  4304. zig = true;
  4305. }
  4306. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  4307. {
  4308. float z_before;
  4309. if (probePointCounter == 0)
  4310. {
  4311. // raise before probing
  4312. z_before = Z_RAISE_BEFORE_PROBING;
  4313. } else
  4314. {
  4315. // raise extruder
  4316. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4317. }
  4318. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4319. eqnBVector[probePointCounter] = measured_z;
  4320. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4321. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4322. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4323. probePointCounter++;
  4324. xProbe += xInc;
  4325. }
  4326. }
  4327. clean_up_after_endstop_move(l_feedmultiply);
  4328. // solve lsq problem
  4329. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4330. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4331. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4332. SERIAL_PROTOCOLPGM(" b: ");
  4333. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4334. SERIAL_PROTOCOLPGM(" d: ");
  4335. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4336. set_bed_level_equation_lsq(plane_equation_coefficients);
  4337. free(plane_equation_coefficients);
  4338. #else // AUTO_BED_LEVELING_GRID not defined
  4339. // Probe at 3 arbitrary points
  4340. // probe 1
  4341. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4342. // probe 2
  4343. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4344. // probe 3
  4345. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4346. clean_up_after_endstop_move(l_feedmultiply);
  4347. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4348. #endif // AUTO_BED_LEVELING_GRID
  4349. st_synchronize();
  4350. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4351. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4352. // When the bed is uneven, this height must be corrected.
  4353. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4354. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4355. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4356. z_tmp = current_position[Z_AXIS];
  4357. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4358. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4359. plan_set_position_curposXYZE();
  4360. }
  4361. break;
  4362. #ifndef Z_PROBE_SLED
  4363. /*!
  4364. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4365. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4366. */
  4367. case 30:
  4368. {
  4369. st_synchronize();
  4370. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4371. int l_feedmultiply = setup_for_endstop_move();
  4372. feedrate = homing_feedrate[Z_AXIS];
  4373. run_z_probe();
  4374. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4375. SERIAL_PROTOCOLPGM(" X: ");
  4376. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4377. SERIAL_PROTOCOLPGM(" Y: ");
  4378. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4379. SERIAL_PROTOCOLPGM(" Z: ");
  4380. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4381. SERIAL_PROTOCOLPGM("\n");
  4382. clean_up_after_endstop_move(l_feedmultiply);
  4383. }
  4384. break;
  4385. #else
  4386. /*!
  4387. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4388. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4389. */
  4390. case 31:
  4391. dock_sled(true);
  4392. break;
  4393. /*!
  4394. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4395. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4396. */
  4397. case 32:
  4398. dock_sled(false);
  4399. break;
  4400. #endif // Z_PROBE_SLED
  4401. #endif // ENABLE_AUTO_BED_LEVELING
  4402. #ifdef MESH_BED_LEVELING
  4403. /*!
  4404. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4405. Sensor must be over the bed.
  4406. The maximum travel distance before an error is triggered is 10mm.
  4407. */
  4408. case 30:
  4409. {
  4410. st_synchronize();
  4411. homing_flag = true;
  4412. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4413. int l_feedmultiply = setup_for_endstop_move();
  4414. feedrate = homing_feedrate[Z_AXIS];
  4415. find_bed_induction_sensor_point_z(-10.f, 3);
  4416. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4417. clean_up_after_endstop_move(l_feedmultiply);
  4418. homing_flag = false;
  4419. }
  4420. break;
  4421. /*!
  4422. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4423. Show/print PINDA temperature interpolating.
  4424. */
  4425. case 75:
  4426. {
  4427. for (uint8_t i = 40; i <= 110; i++)
  4428. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4429. }
  4430. break;
  4431. /*!
  4432. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4433. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4434. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4435. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4436. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4437. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4438. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4439. #### Example
  4440. ```
  4441. G76
  4442. echo PINDA probe calibration start
  4443. echo start temperature: 35.0°
  4444. echo ...
  4445. echo PINDA temperature -- Z shift (mm): 0.---
  4446. ```
  4447. */
  4448. case 76:
  4449. {
  4450. #ifdef PINDA_THERMISTOR
  4451. if (!has_temperature_compensation())
  4452. {
  4453. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4454. break;
  4455. }
  4456. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4457. //we need to know accurate position of first calibration point
  4458. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4459. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first.")); ////MSG_RUN_XYZ c=20 r=4
  4460. break;
  4461. }
  4462. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4463. {
  4464. // We don't know where we are! HOME!
  4465. // Push the commands to the front of the message queue in the reverse order!
  4466. // There shall be always enough space reserved for these commands.
  4467. repeatcommand_front(); // repeat G76 with all its parameters
  4468. enquecommand_front_P(G28W0);
  4469. break;
  4470. }
  4471. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4472. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4473. if (result)
  4474. {
  4475. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4476. plan_buffer_line_curposXYZE(3000 / 60);
  4477. current_position[Z_AXIS] = 50;
  4478. current_position[Y_AXIS] = 180;
  4479. plan_buffer_line_curposXYZE(3000 / 60);
  4480. st_synchronize();
  4481. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4482. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4483. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4484. plan_buffer_line_curposXYZE(3000 / 60);
  4485. st_synchronize();
  4486. gcode_G28(false, false, true);
  4487. }
  4488. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4489. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4490. current_position[Z_AXIS] = 100;
  4491. plan_buffer_line_curposXYZE(3000 / 60);
  4492. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4493. lcd_temp_cal_show_result(false);
  4494. break;
  4495. }
  4496. }
  4497. st_synchronize();
  4498. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4499. lcd_update_enable(true);
  4500. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4501. float zero_z;
  4502. int z_shift = 0; //unit: steps
  4503. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4504. if (start_temp < 35) start_temp = 35;
  4505. if (start_temp < current_temperature_pinda) start_temp += 5;
  4506. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4507. // setTargetHotend(200, 0);
  4508. setTargetBed(70 + (start_temp - 30));
  4509. custom_message_type = CustomMsg::TempCal;
  4510. custom_message_state = 1;
  4511. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4512. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4513. plan_buffer_line_curposXYZE(3000 / 60);
  4514. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4515. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4516. plan_buffer_line_curposXYZE(3000 / 60);
  4517. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4518. plan_buffer_line_curposXYZE(3000 / 60);
  4519. st_synchronize();
  4520. while (current_temperature_pinda < start_temp)
  4521. {
  4522. delay_keep_alive(1000);
  4523. serialecho_temperatures();
  4524. }
  4525. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4526. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4527. plan_buffer_line_curposXYZE(3000 / 60);
  4528. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4529. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4530. plan_buffer_line_curposXYZE(3000 / 60);
  4531. st_synchronize();
  4532. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4533. if (find_z_result == false) {
  4534. lcd_temp_cal_show_result(find_z_result);
  4535. homing_flag = false;
  4536. break;
  4537. }
  4538. zero_z = current_position[Z_AXIS];
  4539. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4540. int i = -1; for (; i < 5; i++)
  4541. {
  4542. float temp = (40 + i * 5);
  4543. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4544. if (i >= 0) {
  4545. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4546. }
  4547. if (start_temp <= temp) break;
  4548. }
  4549. for (i++; i < 5; i++)
  4550. {
  4551. float temp = (40 + i * 5);
  4552. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4553. custom_message_state = i + 2;
  4554. setTargetBed(50 + 10 * (temp - 30) / 5);
  4555. // setTargetHotend(255, 0);
  4556. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4557. plan_buffer_line_curposXYZE(3000 / 60);
  4558. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4559. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4560. plan_buffer_line_curposXYZE(3000 / 60);
  4561. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4562. plan_buffer_line_curposXYZE(3000 / 60);
  4563. st_synchronize();
  4564. while (current_temperature_pinda < temp)
  4565. {
  4566. delay_keep_alive(1000);
  4567. serialecho_temperatures();
  4568. }
  4569. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4570. plan_buffer_line_curposXYZE(3000 / 60);
  4571. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4572. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4573. plan_buffer_line_curposXYZE(3000 / 60);
  4574. st_synchronize();
  4575. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4576. if (find_z_result == false) {
  4577. lcd_temp_cal_show_result(find_z_result);
  4578. break;
  4579. }
  4580. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4581. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4582. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4583. }
  4584. lcd_temp_cal_show_result(true);
  4585. homing_flag = false;
  4586. #else //PINDA_THERMISTOR
  4587. setTargetBed(PINDA_MIN_T);
  4588. float zero_z;
  4589. int z_shift = 0; //unit: steps
  4590. int t_c; // temperature
  4591. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4592. // We don't know where we are! HOME!
  4593. // Push the commands to the front of the message queue in the reverse order!
  4594. // There shall be always enough space reserved for these commands.
  4595. repeatcommand_front(); // repeat G76 with all its parameters
  4596. enquecommand_front_P(G28W0);
  4597. break;
  4598. }
  4599. puts_P(_N("PINDA probe calibration start"));
  4600. custom_message_type = CustomMsg::TempCal;
  4601. custom_message_state = 1;
  4602. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4603. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4604. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4605. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4606. plan_buffer_line_curposXYZE(3000 / 60);
  4607. st_synchronize();
  4608. while (fabs(degBed() - PINDA_MIN_T) > 1) {
  4609. delay_keep_alive(1000);
  4610. serialecho_temperatures();
  4611. }
  4612. //enquecommand_P(PSTR("M190 S50"));
  4613. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4614. delay_keep_alive(1000);
  4615. serialecho_temperatures();
  4616. }
  4617. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4618. current_position[Z_AXIS] = 5;
  4619. plan_buffer_line_curposXYZE(3000 / 60);
  4620. current_position[X_AXIS] = BED_X0;
  4621. current_position[Y_AXIS] = BED_Y0;
  4622. plan_buffer_line_curposXYZE(3000 / 60);
  4623. st_synchronize();
  4624. find_bed_induction_sensor_point_z(-1.f);
  4625. zero_z = current_position[Z_AXIS];
  4626. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4627. for (int i = 0; i<5; i++) {
  4628. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4629. custom_message_state = i + 2;
  4630. t_c = 60 + i * 10;
  4631. setTargetBed(t_c);
  4632. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4633. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4634. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4635. plan_buffer_line_curposXYZE(3000 / 60);
  4636. st_synchronize();
  4637. while (degBed() < t_c) {
  4638. delay_keep_alive(1000);
  4639. serialecho_temperatures();
  4640. }
  4641. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4642. delay_keep_alive(1000);
  4643. serialecho_temperatures();
  4644. }
  4645. current_position[Z_AXIS] = 5;
  4646. plan_buffer_line_curposXYZE(3000 / 60);
  4647. current_position[X_AXIS] = BED_X0;
  4648. current_position[Y_AXIS] = BED_Y0;
  4649. plan_buffer_line_curposXYZE(3000 / 60);
  4650. st_synchronize();
  4651. find_bed_induction_sensor_point_z(-1.f);
  4652. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4653. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4654. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4655. }
  4656. custom_message_type = CustomMsg::Status;
  4657. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4658. puts_P(_N("Temperature calibration done."));
  4659. disable_x();
  4660. disable_y();
  4661. disable_z();
  4662. disable_e0();
  4663. disable_e1();
  4664. disable_e2();
  4665. setTargetBed(0); //set bed target temperature back to 0
  4666. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PINDA_CALIBRATION_DONE));
  4667. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4668. lcd_update_enable(true);
  4669. lcd_update(2);
  4670. #endif //PINDA_THERMISTOR
  4671. }
  4672. break;
  4673. /*!
  4674. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4675. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4676. #### Usage
  4677. G80 [ N | R | V | L | R | F | B ]
  4678. #### Parameters
  4679. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4680. - `R` - Probe retries. Default 3 max. 10
  4681. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4682. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4683. #### Additional Parameters
  4684. - `L` - Left Bed Level correct value in um.
  4685. - `R` - Right Bed Level correct value in um.
  4686. - `F` - Front Bed Level correct value in um.
  4687. - `B` - Back Bed Level correct value in um.
  4688. */
  4689. /*
  4690. * Probes a grid and produces a mesh to compensate for variable bed height
  4691. * The S0 report the points as below
  4692. * +----> X-axis
  4693. * |
  4694. * |
  4695. * v Y-axis
  4696. */
  4697. case 80: {
  4698. gcode_G80();
  4699. }
  4700. break;
  4701. /*!
  4702. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4703. Prints mesh bed leveling status and bed profile if activated.
  4704. */
  4705. case 81:
  4706. if (mbl.active) {
  4707. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4708. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4709. SERIAL_PROTOCOL(',');
  4710. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4711. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4712. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4713. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4714. for (uint8_t y = MESH_NUM_Y_POINTS; y-- > 0;) {
  4715. for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) {
  4716. SERIAL_PROTOCOLPGM(" ");
  4717. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4718. }
  4719. SERIAL_PROTOCOLLN();
  4720. }
  4721. }
  4722. else
  4723. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4724. break;
  4725. #if 0
  4726. /*!
  4727. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4728. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4729. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4730. */
  4731. case 82:
  4732. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4733. int l_feedmultiply = setup_for_endstop_move();
  4734. find_bed_induction_sensor_point_z();
  4735. clean_up_after_endstop_move(l_feedmultiply);
  4736. SERIAL_PROTOCOLPGM("Bed found at: ");
  4737. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4738. SERIAL_PROTOCOLPGM("\n");
  4739. break;
  4740. /*!
  4741. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4742. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4743. */
  4744. case 83:
  4745. {
  4746. int babystepz = code_seen('S') ? code_value() : 0;
  4747. int BabyPosition = code_seen('P') ? code_value() : 0;
  4748. if (babystepz != 0) {
  4749. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4750. // Is the axis indexed starting with zero or one?
  4751. if (BabyPosition > 4) {
  4752. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4753. }else{
  4754. // Save it to the eeprom
  4755. babystepLoadZ = babystepz;
  4756. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z0 + BabyPosition, babystepLoadZ);
  4757. // adjust the Z
  4758. babystepsTodoZadd(babystepLoadZ);
  4759. }
  4760. }
  4761. }
  4762. break;
  4763. /*!
  4764. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4765. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4766. */
  4767. case 84:
  4768. babystepsTodoZsubtract(babystepLoadZ);
  4769. // babystepLoadZ = 0;
  4770. break;
  4771. /*!
  4772. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4773. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4774. */
  4775. case 85:
  4776. lcd_pick_babystep();
  4777. break;
  4778. #endif
  4779. /*!
  4780. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4781. This G-code will be performed at the start of a calibration script.
  4782. (Prusa3D specific)
  4783. */
  4784. case 86:
  4785. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4786. break;
  4787. /*!
  4788. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4789. This G-code will be performed at the end of a calibration script.
  4790. (Prusa3D specific)
  4791. */
  4792. case 87:
  4793. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4794. break;
  4795. /*!
  4796. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4797. Currently has no effect.
  4798. */
  4799. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4800. case 88:
  4801. break;
  4802. #endif // ENABLE_MESH_BED_LEVELING
  4803. /*!
  4804. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4805. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4806. */
  4807. case 90: {
  4808. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4809. }
  4810. break;
  4811. /*!
  4812. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4813. All coordinates from now on are relative to the last position. E axis is left intact.
  4814. */
  4815. case 91: {
  4816. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4817. }
  4818. break;
  4819. /*!
  4820. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4821. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4822. If a parameter is omitted, that axis will not be affected.
  4823. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4824. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4825. #### Usage
  4826. G92 [ X | Y | Z | E ]
  4827. #### Parameters
  4828. - `X` - new X axis position
  4829. - `Y` - new Y axis position
  4830. - `Z` - new Z axis position
  4831. - `E` - new extruder position
  4832. */
  4833. case 92: {
  4834. gcode_G92();
  4835. }
  4836. break;
  4837. /*!
  4838. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4839. Enable Prusa-specific Farm functions and g-code.
  4840. See Internal Prusa commands.
  4841. */
  4842. case 98:
  4843. farm_mode = 1;
  4844. PingTime = _millis();
  4845. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4846. SilentModeMenu = SILENT_MODE_OFF;
  4847. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4848. fCheckModeInit(); // alternatively invoke printer reset
  4849. break;
  4850. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4851. Disables Prusa-specific Farm functions and g-code.
  4852. */
  4853. case 99:
  4854. farm_mode = 0;
  4855. lcd_printer_connected();
  4856. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4857. lcd_update(2);
  4858. fCheckModeInit(); // alternatively invoke printer reset
  4859. break;
  4860. default:
  4861. printf_P(MSG_UNKNOWN_CODE, 'G', cmdbuffer + bufindr + CMDHDRSIZE);
  4862. }
  4863. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4864. gcode_in_progress = 0;
  4865. } // end if(code_seen('G'))
  4866. /*!
  4867. ### End of G-Codes
  4868. */
  4869. /*!
  4870. ---------------------------------------------------------------------------------
  4871. # M Commands
  4872. */
  4873. else if(code_seen('M'))
  4874. {
  4875. int index;
  4876. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4877. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4878. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4879. printf_P(PSTR("Invalid M code: %s\n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4880. } else
  4881. {
  4882. mcode_in_progress = code_value_short();
  4883. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4884. switch(mcode_in_progress)
  4885. {
  4886. /*!
  4887. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4888. */
  4889. case 17:
  4890. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=20
  4891. enable_x();
  4892. enable_y();
  4893. enable_z();
  4894. enable_e0();
  4895. enable_e1();
  4896. enable_e2();
  4897. break;
  4898. #ifdef SDSUPPORT
  4899. /*!
  4900. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4901. #### Usage
  4902. M20 [ L | T ]
  4903. #### Parameters
  4904. - `T` - Report timestamps as well. The value is one uint32_t encoded as hex. Requires host software parsing (Cap:EXTENDED_M20).
  4905. - `L` - Reports long filenames instead of just short filenames. Requires host software parsing (Cap:EXTENDED_M20).
  4906. */
  4907. case 20:
  4908. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  4909. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4910. card.ls(CardReader::ls_param(code_seen('L'), code_seen('T')));
  4911. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4912. break;
  4913. /*!
  4914. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4915. */
  4916. case 21:
  4917. card.initsd();
  4918. break;
  4919. /*!
  4920. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4921. */
  4922. case 22:
  4923. card.release();
  4924. break;
  4925. /*!
  4926. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4927. #### Usage
  4928. M23 [filename]
  4929. */
  4930. case 23:
  4931. starpos = (strchr(strchr_pointer + 4,'*'));
  4932. if(starpos!=NULL)
  4933. *(starpos)='\0';
  4934. card.openFileReadFilteredGcode(strchr_pointer + 4, true);
  4935. break;
  4936. /*!
  4937. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4938. */
  4939. case 24:
  4940. if (isPrintPaused)
  4941. lcd_resume_print();
  4942. else
  4943. {
  4944. if (!card.get_sdpos())
  4945. {
  4946. // A new print has started from scratch, reset stats
  4947. failstats_reset_print();
  4948. #ifndef LA_NOCOMPAT
  4949. la10c_reset();
  4950. #endif
  4951. }
  4952. card.startFileprint();
  4953. starttime=_millis();
  4954. }
  4955. break;
  4956. /*!
  4957. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4958. Set position in SD card file to index in bytes.
  4959. This command is expected to be called after M23 and before M24.
  4960. Otherwise effect of this command is undefined.
  4961. #### Usage
  4962. M26 [ S ]
  4963. #### Parameters
  4964. - `S` - Index in bytes
  4965. */
  4966. case 26:
  4967. if(card.cardOK && code_seen('S')) {
  4968. long index = code_value_long();
  4969. card.setIndex(index);
  4970. // We don't disable interrupt during update of sdpos_atomic
  4971. // as we expect, that SD card print is not active in this moment
  4972. sdpos_atomic = index;
  4973. }
  4974. break;
  4975. /*!
  4976. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4977. #### Usage
  4978. M27 [ P ]
  4979. #### Parameters
  4980. - `P` - Show full SFN path instead of LFN only.
  4981. */
  4982. case 27:
  4983. card.getStatus(code_seen('P'));
  4984. break;
  4985. /*!
  4986. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4987. */
  4988. case 28:
  4989. starpos = (strchr(strchr_pointer + 4,'*'));
  4990. if(starpos != NULL){
  4991. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4992. strchr_pointer = strchr(npos,' ') + 1;
  4993. *(starpos) = '\0';
  4994. }
  4995. card.openFileWrite(strchr_pointer+4);
  4996. break;
  4997. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4998. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4999. */
  5000. case 29:
  5001. //processed in write to file routine above
  5002. //card,saving = false;
  5003. break;
  5004. /*!
  5005. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  5006. #### Usage
  5007. M30 [filename]
  5008. */
  5009. case 30:
  5010. if (card.cardOK){
  5011. card.closefile();
  5012. starpos = (strchr(strchr_pointer + 4,'*'));
  5013. if(starpos != NULL){
  5014. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5015. strchr_pointer = strchr(npos,' ') + 1;
  5016. *(starpos) = '\0';
  5017. }
  5018. card.removeFile(strchr_pointer + 4);
  5019. }
  5020. break;
  5021. /*!
  5022. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  5023. @todo What are the parameters P and S for in M32?
  5024. */
  5025. case 32:
  5026. {
  5027. if(card.sdprinting) {
  5028. st_synchronize();
  5029. }
  5030. starpos = (strchr(strchr_pointer + 4,'*'));
  5031. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5032. if(namestartpos==NULL)
  5033. {
  5034. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5035. }
  5036. else
  5037. namestartpos++; //to skip the '!'
  5038. if(starpos!=NULL)
  5039. *(starpos)='\0';
  5040. bool call_procedure=(code_seen('P'));
  5041. if(strchr_pointer>namestartpos)
  5042. call_procedure=false; //false alert, 'P' found within filename
  5043. if( card.cardOK )
  5044. {
  5045. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  5046. if(code_seen('S'))
  5047. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5048. card.setIndex(code_value_long());
  5049. card.startFileprint();
  5050. if(!call_procedure)
  5051. {
  5052. if(!card.get_sdpos())
  5053. {
  5054. // A new print has started from scratch, reset stats
  5055. failstats_reset_print();
  5056. #ifndef LA_NOCOMPAT
  5057. la10c_reset();
  5058. #endif
  5059. }
  5060. starttime=_millis(); // procedure calls count as normal print time.
  5061. }
  5062. }
  5063. } break;
  5064. /*!
  5065. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5066. #### Usage
  5067. M928 [filename]
  5068. */
  5069. case 928:
  5070. starpos = (strchr(strchr_pointer + 5,'*'));
  5071. if(starpos != NULL){
  5072. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5073. strchr_pointer = strchr(npos,' ') + 1;
  5074. *(starpos) = '\0';
  5075. }
  5076. card.openLogFile(strchr_pointer+5);
  5077. break;
  5078. #endif //SDSUPPORT
  5079. /*!
  5080. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5081. */
  5082. case 31: //M31 take time since the start of the SD print or an M109 command
  5083. {
  5084. stoptime=_millis();
  5085. char time[30];
  5086. unsigned long t=(stoptime-starttime)/1000;
  5087. int sec,min;
  5088. min=t/60;
  5089. sec=t%60;
  5090. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5091. SERIAL_ECHO_START;
  5092. SERIAL_ECHOLN(time);
  5093. lcd_setstatus(time);
  5094. autotempShutdown();
  5095. }
  5096. break;
  5097. /*!
  5098. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5099. #### Usage
  5100. M42 [ P | S ]
  5101. #### Parameters
  5102. - `P` - Pin number.
  5103. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5104. */
  5105. case 42:
  5106. if (code_seen('S'))
  5107. {
  5108. uint8_t pin_status = code_value_uint8();
  5109. int8_t pin_number = LED_PIN;
  5110. if (code_seen('P'))
  5111. pin_number = code_value_uint8();
  5112. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  5113. {
  5114. if ((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number)
  5115. {
  5116. pin_number = -1;
  5117. break;
  5118. }
  5119. }
  5120. #if defined(FAN_PIN) && FAN_PIN > -1
  5121. if (pin_number == FAN_PIN)
  5122. fanSpeed = pin_status;
  5123. #endif
  5124. if (pin_number > -1)
  5125. {
  5126. pinMode(pin_number, OUTPUT);
  5127. digitalWrite(pin_number, pin_status);
  5128. analogWrite(pin_number, pin_status);
  5129. }
  5130. }
  5131. break;
  5132. /*!
  5133. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5134. */
  5135. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5136. // Reset the baby step value and the baby step applied flag.
  5137. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5138. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5139. // Reset the skew and offset in both RAM and EEPROM.
  5140. reset_bed_offset_and_skew();
  5141. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5142. // the planner will not perform any adjustments in the XY plane.
  5143. // Wait for the motors to stop and update the current position with the absolute values.
  5144. world2machine_revert_to_uncorrected();
  5145. break;
  5146. /*!
  5147. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5148. #### Usage
  5149. M45 [ V ]
  5150. #### Parameters
  5151. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5152. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5153. */
  5154. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5155. {
  5156. int8_t verbosity_level = 0;
  5157. bool only_Z = code_seen('Z');
  5158. #ifdef SUPPORT_VERBOSITY
  5159. if (code_seen('V'))
  5160. {
  5161. // Just 'V' without a number counts as V1.
  5162. char c = strchr_pointer[1];
  5163. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5164. }
  5165. #endif //SUPPORT_VERBOSITY
  5166. gcode_M45(only_Z, verbosity_level);
  5167. }
  5168. break;
  5169. /*!
  5170. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5171. */
  5172. case 46:
  5173. {
  5174. // M46: Prusa3D: Show the assigned IP address.
  5175. if (card.ToshibaFlashAir_isEnabled()) {
  5176. uint8_t ip[4];
  5177. if (card.ToshibaFlashAir_GetIP(ip)) {
  5178. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5179. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5180. SERIAL_PROTOCOL('.');
  5181. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5182. SERIAL_PROTOCOL('.');
  5183. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5184. SERIAL_PROTOCOL('.');
  5185. SERIAL_PROTOCOLLN(uint8_t(ip[3]));
  5186. } else {
  5187. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5188. }
  5189. } else {
  5190. SERIAL_PROTOCOLLNPGM("n/a");
  5191. }
  5192. break;
  5193. }
  5194. /*!
  5195. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5196. */
  5197. case 47:
  5198. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5199. lcd_diag_show_end_stops();
  5200. KEEPALIVE_STATE(IN_HANDLER);
  5201. break;
  5202. #if 0
  5203. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5204. {
  5205. // Disable the default update procedure of the display. We will do a modal dialog.
  5206. lcd_update_enable(false);
  5207. // Let the planner use the uncorrected coordinates.
  5208. mbl.reset();
  5209. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5210. // the planner will not perform any adjustments in the XY plane.
  5211. // Wait for the motors to stop and update the current position with the absolute values.
  5212. world2machine_revert_to_uncorrected();
  5213. // Move the print head close to the bed.
  5214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5216. st_synchronize();
  5217. // Home in the XY plane.
  5218. set_destination_to_current();
  5219. int l_feedmultiply = setup_for_endstop_move();
  5220. home_xy();
  5221. int8_t verbosity_level = 0;
  5222. if (code_seen('V')) {
  5223. // Just 'V' without a number counts as V1.
  5224. char c = strchr_pointer[1];
  5225. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5226. }
  5227. bool success = scan_bed_induction_points(verbosity_level);
  5228. clean_up_after_endstop_move(l_feedmultiply);
  5229. // Print head up.
  5230. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5232. st_synchronize();
  5233. lcd_update_enable(true);
  5234. break;
  5235. }
  5236. #endif
  5237. #ifdef ENABLE_AUTO_BED_LEVELING
  5238. #ifdef Z_PROBE_REPEATABILITY_TEST
  5239. /*!
  5240. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5241. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5242. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5243. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5244. #### Usage
  5245. M48 [ n | X | Y | V | L ]
  5246. #### Parameters
  5247. - `n` - Number of samples. Valid values 4-50
  5248. - `X` - X position for samples
  5249. - `Y` - Y position for samples
  5250. - `V` - Verbose level. Valid values 1-4
  5251. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5252. */
  5253. case 48: // M48 Z-Probe repeatability
  5254. {
  5255. #if Z_MIN_PIN == -1
  5256. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5257. #endif
  5258. double sum=0.0;
  5259. double mean=0.0;
  5260. double sigma=0.0;
  5261. double sample_set[50];
  5262. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5263. double X_current, Y_current, Z_current;
  5264. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5265. if (code_seen('V') || code_seen('v')) {
  5266. verbose_level = code_value();
  5267. if (verbose_level<0 || verbose_level>4 ) {
  5268. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5269. goto Sigma_Exit;
  5270. }
  5271. }
  5272. if (verbose_level > 0) {
  5273. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5274. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5275. }
  5276. if (code_seen('n')) {
  5277. n_samples = code_value();
  5278. if (n_samples<4 || n_samples>50 ) {
  5279. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5280. goto Sigma_Exit;
  5281. }
  5282. }
  5283. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5284. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5285. Z_current = st_get_position_mm(Z_AXIS);
  5286. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5287. ext_position = st_get_position_mm(E_AXIS);
  5288. if (code_seen('X') || code_seen('x') ) {
  5289. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5290. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5291. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5292. goto Sigma_Exit;
  5293. }
  5294. }
  5295. if (code_seen('Y') || code_seen('y') ) {
  5296. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5297. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5298. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5299. goto Sigma_Exit;
  5300. }
  5301. }
  5302. if (code_seen('L') || code_seen('l') ) {
  5303. n_legs = code_value();
  5304. if ( n_legs==1 )
  5305. n_legs = 2;
  5306. if ( n_legs<0 || n_legs>15 ) {
  5307. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5308. goto Sigma_Exit;
  5309. }
  5310. }
  5311. //
  5312. // Do all the preliminary setup work. First raise the probe.
  5313. //
  5314. st_synchronize();
  5315. plan_bed_level_matrix.set_to_identity();
  5316. plan_buffer_line( X_current, Y_current, Z_start_location,
  5317. ext_position,
  5318. homing_feedrate[Z_AXIS]/60,
  5319. active_extruder);
  5320. st_synchronize();
  5321. //
  5322. // Now get everything to the specified probe point So we can safely do a probe to
  5323. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5324. // use that as a starting point for each probe.
  5325. //
  5326. if (verbose_level > 2)
  5327. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5328. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5329. ext_position,
  5330. homing_feedrate[X_AXIS]/60,
  5331. active_extruder);
  5332. st_synchronize();
  5333. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5334. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5335. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5336. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5337. //
  5338. // OK, do the inital probe to get us close to the bed.
  5339. // Then retrace the right amount and use that in subsequent probes
  5340. //
  5341. int l_feedmultiply = setup_for_endstop_move();
  5342. run_z_probe();
  5343. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5344. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5345. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5346. ext_position,
  5347. homing_feedrate[X_AXIS]/60,
  5348. active_extruder);
  5349. st_synchronize();
  5350. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5351. for( n=0; n<n_samples; n++) {
  5352. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5353. if ( n_legs) {
  5354. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5355. int rotational_direction, l;
  5356. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5357. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5358. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5359. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5360. //SERIAL_ECHOPAIR(" theta: ",theta);
  5361. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5362. //SERIAL_PROTOCOLLNPGM("");
  5363. for( l=0; l<n_legs-1; l++) {
  5364. if (rotational_direction==1)
  5365. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5366. else
  5367. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5368. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5369. if ( radius<0.0 )
  5370. radius = -radius;
  5371. X_current = X_probe_location + cos(theta) * radius;
  5372. Y_current = Y_probe_location + sin(theta) * radius;
  5373. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5374. X_current = X_MIN_POS;
  5375. if ( X_current>X_MAX_POS)
  5376. X_current = X_MAX_POS;
  5377. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5378. Y_current = Y_MIN_POS;
  5379. if ( Y_current>Y_MAX_POS)
  5380. Y_current = Y_MAX_POS;
  5381. if (verbose_level>3 ) {
  5382. SERIAL_ECHOPAIR("x: ", X_current);
  5383. SERIAL_ECHOPAIR("y: ", Y_current);
  5384. SERIAL_PROTOCOLLNPGM("");
  5385. }
  5386. do_blocking_move_to( X_current, Y_current, Z_current );
  5387. }
  5388. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5389. }
  5390. int l_feedmultiply = setup_for_endstop_move();
  5391. run_z_probe();
  5392. sample_set[n] = current_position[Z_AXIS];
  5393. //
  5394. // Get the current mean for the data points we have so far
  5395. //
  5396. sum=0.0;
  5397. for( j=0; j<=n; j++) {
  5398. sum = sum + sample_set[j];
  5399. }
  5400. mean = sum / (double (n+1));
  5401. //
  5402. // Now, use that mean to calculate the standard deviation for the
  5403. // data points we have so far
  5404. //
  5405. sum=0.0;
  5406. for( j=0; j<=n; j++) {
  5407. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5408. }
  5409. sigma = sqrt( sum / (double (n+1)) );
  5410. if (verbose_level > 1) {
  5411. SERIAL_PROTOCOL(n+1);
  5412. SERIAL_PROTOCOL(" of ");
  5413. SERIAL_PROTOCOL(n_samples);
  5414. SERIAL_PROTOCOLPGM(" z: ");
  5415. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5416. }
  5417. if (verbose_level > 2) {
  5418. SERIAL_PROTOCOL(" mean: ");
  5419. SERIAL_PROTOCOL_F(mean,6);
  5420. SERIAL_PROTOCOL(" sigma: ");
  5421. SERIAL_PROTOCOL_F(sigma,6);
  5422. }
  5423. if (verbose_level > 0)
  5424. SERIAL_PROTOCOLPGM("\n");
  5425. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5426. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5427. st_synchronize();
  5428. }
  5429. _delay(1000);
  5430. clean_up_after_endstop_move(l_feedmultiply);
  5431. // enable_endstops(true);
  5432. if (verbose_level > 0) {
  5433. SERIAL_PROTOCOLPGM("Mean: ");
  5434. SERIAL_PROTOCOL_F(mean, 6);
  5435. SERIAL_PROTOCOLPGM("\n");
  5436. }
  5437. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5438. SERIAL_PROTOCOL_F(sigma, 6);
  5439. SERIAL_PROTOCOLPGM("\n\n");
  5440. Sigma_Exit:
  5441. break;
  5442. }
  5443. #endif // Z_PROBE_REPEATABILITY_TEST
  5444. #endif // ENABLE_AUTO_BED_LEVELING
  5445. /*!
  5446. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5447. #### Usage
  5448. M73 [ P | R | Q | S | C | D ]
  5449. #### Parameters
  5450. - `P` - Percent in normal mode
  5451. - `R` - Time remaining in normal mode
  5452. - `Q` - Percent in silent mode
  5453. - `S` - Time in silent mode
  5454. - `C` - Time to change/pause/user interaction in normal mode
  5455. - `D` - Time to change/pause/user interaction in silent mode
  5456. */
  5457. case 73: //M73 show percent done, time remaining and time to change/pause
  5458. {
  5459. if(code_seen('P')) print_percent_done_normal = code_value_uint8();
  5460. if(code_seen('R')) print_time_remaining_normal = code_value();
  5461. if(code_seen('Q')) print_percent_done_silent = code_value_uint8();
  5462. if(code_seen('S')) print_time_remaining_silent = code_value();
  5463. if(code_seen('C')){
  5464. float print_time_to_change_normal_f = code_value_float();
  5465. print_time_to_change_normal = ( print_time_to_change_normal_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_normal_f;
  5466. }
  5467. if(code_seen('D')){
  5468. float print_time_to_change_silent_f = code_value_float();
  5469. print_time_to_change_silent = ( print_time_to_change_silent_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_silent_f;
  5470. }
  5471. {
  5472. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %hhd; print time remaining in mins: %d; Change in mins: %d\n");
  5473. printf_P(_msg_mode_done_remain, _N("NORMAL"), int8_t(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5474. printf_P(_msg_mode_done_remain, _N("SILENT"), int8_t(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5475. }
  5476. break;
  5477. }
  5478. /*!
  5479. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5480. #### Usage
  5481. M104 [ S ]
  5482. #### Parameters
  5483. - `S` - Target temperature
  5484. */
  5485. case 104: // M104
  5486. {
  5487. uint8_t extruder;
  5488. if(setTargetedHotend(104,extruder)){
  5489. break;
  5490. }
  5491. if (code_seen('S'))
  5492. {
  5493. setTargetHotendSafe(code_value(), extruder);
  5494. }
  5495. break;
  5496. }
  5497. /*!
  5498. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5499. It is processed much earlier as to bypass the cmdqueue.
  5500. */
  5501. case 112:
  5502. kill(MSG_M112_KILL, 3);
  5503. break;
  5504. /*!
  5505. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5506. #### Usage
  5507. M140 [ S ]
  5508. #### Parameters
  5509. - `S` - Target temperature
  5510. */
  5511. case 140:
  5512. if (code_seen('S')) setTargetBed(code_value());
  5513. break;
  5514. /*!
  5515. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5516. Prints temperatures:
  5517. - `T:` - Hotend (actual / target)
  5518. - `B:` - Bed (actual / target)
  5519. - `Tx:` - x Tool (actual / target)
  5520. - `@:` - Hotend power
  5521. - `B@:` - Bed power
  5522. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5523. - `A:` - Ambient actual (only MK3/s)
  5524. _Example:_
  5525. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5526. */
  5527. case 105:
  5528. {
  5529. uint8_t extruder;
  5530. if(setTargetedHotend(105, extruder)){
  5531. break;
  5532. }
  5533. SERIAL_PROTOCOLPGM("ok ");
  5534. gcode_M105(extruder);
  5535. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5536. cmdbuffer_front_already_processed = true;
  5537. break;
  5538. }
  5539. #if defined(AUTO_REPORT)
  5540. /*!
  5541. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5542. #### Usage
  5543. M155 [ S ] [ C ]
  5544. #### Parameters
  5545. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5546. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5547. bit 0 = Auto-report temperatures
  5548. bit 1 = Auto-report fans
  5549. bit 2 = Auto-report position
  5550. bit 3 = free
  5551. bit 4 = free
  5552. bit 5 = free
  5553. bit 6 = free
  5554. bit 7 = free
  5555. */
  5556. case 155:
  5557. {
  5558. if (code_seen('S')){
  5559. autoReportFeatures.SetPeriod( code_value_uint8() );
  5560. }
  5561. if (code_seen('C')){
  5562. autoReportFeatures.SetMask(code_value_uint8());
  5563. } else{
  5564. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5565. }
  5566. }
  5567. break;
  5568. #endif //AUTO_REPORT
  5569. /*!
  5570. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5571. #### Usage
  5572. M104 [ B | R | S ]
  5573. #### Parameters (not mandatory)
  5574. - `S` - Set extruder temperature
  5575. - `R` - Set extruder temperature
  5576. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5577. Parameters S and R are treated identically.
  5578. Command always waits for both cool down and heat up.
  5579. If no parameters are supplied waits for previously set extruder temperature.
  5580. */
  5581. case 109:
  5582. {
  5583. uint8_t extruder;
  5584. if(setTargetedHotend(109, extruder)){
  5585. break;
  5586. }
  5587. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5588. heating_status = HeatingStatus::EXTRUDER_HEATING;
  5589. if (farm_mode) { prusa_statistics(1); };
  5590. #ifdef AUTOTEMP
  5591. autotemp_enabled=false;
  5592. #endif
  5593. if (code_seen('S')) {
  5594. setTargetHotendSafe(code_value(), extruder);
  5595. } else if (code_seen('R')) {
  5596. setTargetHotendSafe(code_value(), extruder);
  5597. }
  5598. #ifdef AUTOTEMP
  5599. if (code_seen('S')) autotemp_min=code_value();
  5600. if (code_seen('B')) autotemp_max=code_value();
  5601. if (code_seen('F'))
  5602. {
  5603. autotemp_factor=code_value();
  5604. autotemp_enabled=true;
  5605. }
  5606. #endif
  5607. codenum = _millis();
  5608. /* See if we are heating up or cooling down */
  5609. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5610. cancel_heatup = false;
  5611. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5612. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5613. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  5614. if (farm_mode) { prusa_statistics(2); };
  5615. //starttime=_millis();
  5616. previous_millis_cmd.start();
  5617. }
  5618. break;
  5619. /*!
  5620. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5621. #### Usage
  5622. M190 [ R | S ]
  5623. #### Parameters (not mandatory)
  5624. - `S` - Set extruder temperature and wait for heating
  5625. - `R` - Set extruder temperature and wait for heating or cooling
  5626. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5627. */
  5628. case 190:
  5629. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5630. {
  5631. bool CooldownNoWait = false;
  5632. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5633. heating_status = HeatingStatus::BED_HEATING;
  5634. if (farm_mode) { prusa_statistics(1); };
  5635. if (code_seen('S'))
  5636. {
  5637. setTargetBed(code_value());
  5638. CooldownNoWait = true;
  5639. }
  5640. else if (code_seen('R'))
  5641. {
  5642. setTargetBed(code_value());
  5643. }
  5644. codenum = _millis();
  5645. cancel_heatup = false;
  5646. target_direction = isHeatingBed(); // true if heating, false if cooling
  5647. while ( (!cancel_heatup) && (target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false))) )
  5648. {
  5649. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5650. {
  5651. if (!farm_mode) {
  5652. float tt = degHotend(active_extruder);
  5653. SERIAL_PROTOCOLPGM("T:");
  5654. SERIAL_PROTOCOL(tt);
  5655. SERIAL_PROTOCOLPGM(" E:");
  5656. SERIAL_PROTOCOL((int)active_extruder);
  5657. SERIAL_PROTOCOLPGM(" B:");
  5658. SERIAL_PROTOCOL_F(degBed(), 1);
  5659. SERIAL_PROTOCOLLN();
  5660. }
  5661. codenum = _millis();
  5662. }
  5663. manage_heater();
  5664. manage_inactivity();
  5665. lcd_update(0);
  5666. }
  5667. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5668. heating_status = HeatingStatus::BED_HEATING_COMPLETE;
  5669. previous_millis_cmd.start();
  5670. }
  5671. #endif
  5672. break;
  5673. #if defined(FAN_PIN) && FAN_PIN > -1
  5674. /*!
  5675. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5676. #### Usage
  5677. M106 [ S ]
  5678. #### Parameters
  5679. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5680. */
  5681. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5682. if (code_seen('S')){
  5683. fanSpeed = code_value_uint8();
  5684. }
  5685. else {
  5686. fanSpeed = 255;
  5687. }
  5688. break;
  5689. /*!
  5690. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5691. */
  5692. case 107:
  5693. fanSpeed = 0;
  5694. break;
  5695. #endif //FAN_PIN
  5696. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5697. /*!
  5698. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5699. Only works if the firmware is compiled with PS_ON_PIN defined.
  5700. */
  5701. case 80:
  5702. SET_OUTPUT(PS_ON_PIN); //GND
  5703. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5704. // If you have a switch on suicide pin, this is useful
  5705. // if you want to start another print with suicide feature after
  5706. // a print without suicide...
  5707. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5708. SET_OUTPUT(SUICIDE_PIN);
  5709. WRITE(SUICIDE_PIN, HIGH);
  5710. #endif
  5711. powersupply = true;
  5712. LCD_MESSAGERPGM(MSG_WELCOME);
  5713. lcd_update(0);
  5714. break;
  5715. /*!
  5716. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5717. Only works if the firmware is compiled with PS_ON_PIN defined.
  5718. */
  5719. case 81:
  5720. disable_heater();
  5721. st_synchronize();
  5722. disable_e0();
  5723. disable_e1();
  5724. disable_e2();
  5725. finishAndDisableSteppers();
  5726. fanSpeed = 0;
  5727. _delay(1000); // Wait a little before to switch off
  5728. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5729. st_synchronize();
  5730. suicide();
  5731. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5732. SET_OUTPUT(PS_ON_PIN);
  5733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5734. #endif
  5735. powersupply = false;
  5736. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5737. lcd_update(0);
  5738. break;
  5739. #endif
  5740. /*!
  5741. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5742. Makes the extruder interpret extrusion as absolute positions.
  5743. */
  5744. case 82:
  5745. axis_relative_modes &= ~E_AXIS_MASK;
  5746. break;
  5747. /*!
  5748. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5749. Makes the extruder interpret extrusion values as relative positions.
  5750. */
  5751. case 83:
  5752. axis_relative_modes |= E_AXIS_MASK;
  5753. break;
  5754. /*!
  5755. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5756. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5757. This command can be used without any additional parameters. In that case all steppers are disabled.
  5758. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5759. M84 [ S | X | Y | Z | E ]
  5760. - `S` - Seconds
  5761. - `X` - X axis
  5762. - `Y` - Y axis
  5763. - `Z` - Z axis
  5764. - `E` - Extruder
  5765. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5766. Equal to M84 (compatibility)
  5767. */
  5768. case 18: //compatibility
  5769. case 84: // M84
  5770. if(code_seen('S')){
  5771. stepper_inactive_time = code_value() * 1000;
  5772. }
  5773. else
  5774. {
  5775. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5776. if(all_axis)
  5777. {
  5778. st_synchronize();
  5779. disable_e0();
  5780. disable_e1();
  5781. disable_e2();
  5782. finishAndDisableSteppers();
  5783. }
  5784. else
  5785. {
  5786. st_synchronize();
  5787. if (code_seen('X')) disable_x();
  5788. if (code_seen('Y')) disable_y();
  5789. if (code_seen('Z')) disable_z();
  5790. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5791. if (code_seen('E')) {
  5792. disable_e0();
  5793. disable_e1();
  5794. disable_e2();
  5795. }
  5796. #endif
  5797. }
  5798. }
  5799. break;
  5800. /*!
  5801. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5802. #### Usage
  5803. M85 [ S ]
  5804. #### Parameters
  5805. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5806. */
  5807. case 85: // M85
  5808. if(code_seen('S')) {
  5809. max_inactive_time = code_value() * 1000;
  5810. }
  5811. break;
  5812. #ifdef SAFETYTIMER
  5813. /*!
  5814. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5815. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5816. #### Usage
  5817. M86 [ S ]
  5818. #### Parameters
  5819. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5820. */
  5821. case 86:
  5822. if (code_seen('S')) {
  5823. safetytimer_inactive_time = code_value() * 1000;
  5824. safetyTimer.start();
  5825. }
  5826. break;
  5827. #endif
  5828. /*!
  5829. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5830. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5831. #### Usage
  5832. M92 [ X | Y | Z | E ]
  5833. #### Parameters
  5834. - `X` - Steps per unit for the X drive
  5835. - `Y` - Steps per unit for the Y drive
  5836. - `Z` - Steps per unit for the Z drive
  5837. - `E` - Steps per unit for the extruder drive
  5838. */
  5839. case 92:
  5840. for(int8_t i=0; i < NUM_AXIS; i++)
  5841. {
  5842. if(code_seen(axis_codes[i]))
  5843. {
  5844. if(i == E_AXIS) { // E
  5845. float value = code_value();
  5846. if(value < 20.0) {
  5847. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5848. cs.max_jerk[E_AXIS] *= factor;
  5849. max_feedrate[i] *= factor;
  5850. axis_steps_per_sqr_second[i] *= factor;
  5851. }
  5852. cs.axis_steps_per_unit[i] = value;
  5853. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5854. fsensor_set_axis_steps_per_unit(value);
  5855. #endif
  5856. }
  5857. else {
  5858. cs.axis_steps_per_unit[i] = code_value();
  5859. }
  5860. }
  5861. }
  5862. reset_acceleration_rates();
  5863. break;
  5864. /*!
  5865. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5866. Sets the line number in G-code
  5867. #### Usage
  5868. M110 [ N ]
  5869. #### Parameters
  5870. - `N` - Line number
  5871. */
  5872. case 110:
  5873. if (code_seen('N'))
  5874. gcode_LastN = code_value_long();
  5875. break;
  5876. /*!
  5877. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5878. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5879. #### Usage
  5880. M113 [ S ]
  5881. #### Parameters
  5882. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5883. */
  5884. case 113:
  5885. if (code_seen('S')) {
  5886. host_keepalive_interval = code_value_uint8();
  5887. // NOMORE(host_keepalive_interval, 60);
  5888. }
  5889. else {
  5890. SERIAL_ECHO_START;
  5891. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5892. SERIAL_PROTOCOLLN();
  5893. }
  5894. break;
  5895. /*!
  5896. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5897. Print the firmware info and capabilities
  5898. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5899. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5900. _Examples:_
  5901. `M115` results:
  5902. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5903. `M115 V` results:
  5904. `3.8.1`
  5905. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5906. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5907. #### Usage
  5908. M115 [ V | U ]
  5909. #### Parameters
  5910. - V - Report current installed firmware version
  5911. - U - Firmware version provided by G-code to be compared to current one.
  5912. */
  5913. case 115: // M115
  5914. if (code_seen('V')) {
  5915. // Report the Prusa version number.
  5916. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5917. } else if (code_seen('U')) {
  5918. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5919. // pause the print for 30s and ask the user to upgrade the firmware.
  5920. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5921. } else {
  5922. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5923. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5924. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5925. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5926. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5927. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5928. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5929. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5930. SERIAL_ECHOPGM(" UUID:");
  5931. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5932. #ifdef EXTENDED_CAPABILITIES_REPORT
  5933. extended_capabilities_report();
  5934. #endif //EXTENDED_CAPABILITIES_REPORT
  5935. }
  5936. break;
  5937. /*!
  5938. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5939. */
  5940. case 114:
  5941. gcode_M114();
  5942. break;
  5943. /*
  5944. M117 moved up to get the high priority
  5945. case 117: // M117 display message
  5946. starpos = (strchr(strchr_pointer + 5,'*'));
  5947. if(starpos!=NULL)
  5948. *(starpos)='\0';
  5949. lcd_setstatus(strchr_pointer + 5);
  5950. break;*/
  5951. #ifdef M120_M121_ENABLED
  5952. /*!
  5953. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5954. */
  5955. case 120:
  5956. enable_endstops(true) ;
  5957. break;
  5958. /*!
  5959. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5960. */
  5961. case 121:
  5962. enable_endstops(false) ;
  5963. break;
  5964. #endif //M120_M121_ENABLED
  5965. /*!
  5966. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5967. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5968. */
  5969. case 119:
  5970. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5971. SERIAL_PROTOCOLLN();
  5972. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5973. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5974. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5975. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5976. }else{
  5977. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5978. }
  5979. SERIAL_PROTOCOLLN();
  5980. #endif
  5981. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5982. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5983. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5984. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5985. }else{
  5986. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5987. }
  5988. SERIAL_PROTOCOLLN();
  5989. #endif
  5990. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5991. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5992. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5993. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5994. }else{
  5995. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5996. }
  5997. SERIAL_PROTOCOLLN();
  5998. #endif
  5999. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  6000. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  6001. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  6002. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6003. }else{
  6004. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6005. }
  6006. SERIAL_PROTOCOLLN();
  6007. #endif
  6008. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  6009. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  6010. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  6011. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6012. }else{
  6013. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6014. }
  6015. SERIAL_PROTOCOLLN();
  6016. #endif
  6017. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  6018. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  6019. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  6020. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6021. }else{
  6022. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6023. }
  6024. SERIAL_PROTOCOLLN();
  6025. #endif
  6026. break;
  6027. //!@todo update for all axes, use for loop
  6028. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  6029. /*!
  6030. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap_.26_Prusa.29">M123: Tachometer value</a>
  6031. This command is used to report fan speeds and fan pwm values.
  6032. #### Usage
  6033. M123
  6034. - E0: - Hotend fan speed in RPM
  6035. - PRN1: - Part cooling fans speed in RPM
  6036. - E0@: - Hotend fan PWM value
  6037. - PRN1@: -Part cooling fan PWM value
  6038. _Example:_
  6039. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  6040. */
  6041. case 123:
  6042. gcode_M123();
  6043. break;
  6044. #endif //FANCHECK and TACH_0 and TACH_1
  6045. #ifdef BLINKM
  6046. /*!
  6047. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6048. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6049. #### Usage
  6050. M150 [ R | U | B ]
  6051. #### Parameters
  6052. - `R` - Red color value
  6053. - `U` - Green color value. It is NOT `G`!
  6054. - `B` - Blue color value
  6055. */
  6056. case 150:
  6057. {
  6058. byte red;
  6059. byte grn;
  6060. byte blu;
  6061. if(code_seen('R')) red = code_value();
  6062. if(code_seen('U')) grn = code_value();
  6063. if(code_seen('B')) blu = code_value();
  6064. SendColors(red,grn,blu);
  6065. }
  6066. break;
  6067. #endif //BLINKM
  6068. /*!
  6069. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6070. #### Usage
  6071. M200 [ D | T ]
  6072. #### Parameters
  6073. - `D` - Diameter in mm
  6074. - `T` - Number of extruder (MMUs)
  6075. */
  6076. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6077. {
  6078. uint8_t extruder = active_extruder;
  6079. if(code_seen('T')) {
  6080. extruder = code_value_uint8();
  6081. if(extruder >= EXTRUDERS) {
  6082. SERIAL_ECHO_START;
  6083. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6084. break;
  6085. }
  6086. }
  6087. if(code_seen('D')) {
  6088. float diameter = code_value();
  6089. if (diameter == 0.0) {
  6090. // setting any extruder filament size disables volumetric on the assumption that
  6091. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6092. // for all extruders
  6093. cs.volumetric_enabled = false;
  6094. } else {
  6095. cs.filament_size[extruder] = code_value();
  6096. // make sure all extruders have some sane value for the filament size
  6097. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6098. #if EXTRUDERS > 1
  6099. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6100. #if EXTRUDERS > 2
  6101. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6102. #endif
  6103. #endif
  6104. cs.volumetric_enabled = true;
  6105. }
  6106. } else {
  6107. //reserved for setting filament diameter via UFID or filament measuring device
  6108. break;
  6109. }
  6110. calculate_extruder_multipliers();
  6111. }
  6112. break;
  6113. /*!
  6114. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_acceleration">M201: Set max printing acceleration</a>
  6115. For each axis individually.
  6116. ##### Usage
  6117. M201 [ X | Y | Z | E ]
  6118. ##### Parameters
  6119. - `X` - Acceleration for X axis in units/s^2
  6120. - `Y` - Acceleration for Y axis in units/s^2
  6121. - `Z` - Acceleration for Z axis in units/s^2
  6122. - `E` - Acceleration for the active or specified extruder in units/s^2
  6123. */
  6124. case 201:
  6125. for (int8_t i = 0; i < NUM_AXIS; i++)
  6126. {
  6127. if (code_seen(axis_codes[i]))
  6128. {
  6129. unsigned long val = code_value();
  6130. #ifdef TMC2130
  6131. unsigned long val_silent = val;
  6132. if ((i == X_AXIS) || (i == Y_AXIS))
  6133. {
  6134. if (val > NORMAL_MAX_ACCEL_XY)
  6135. val = NORMAL_MAX_ACCEL_XY;
  6136. if (val_silent > SILENT_MAX_ACCEL_XY)
  6137. val_silent = SILENT_MAX_ACCEL_XY;
  6138. }
  6139. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6140. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6141. #else //TMC2130
  6142. max_acceleration_units_per_sq_second[i] = val;
  6143. #endif //TMC2130
  6144. }
  6145. }
  6146. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6147. reset_acceleration_rates();
  6148. break;
  6149. #if 0 // Not used for Sprinter/grbl gen6
  6150. case 202: // M202
  6151. for(int8_t i=0; i < NUM_AXIS; i++) {
  6152. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6153. }
  6154. break;
  6155. #endif
  6156. /*!
  6157. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6158. For each axis individually.
  6159. ##### Usage
  6160. M203 [ X | Y | Z | E ]
  6161. ##### Parameters
  6162. - `X` - Maximum feedrate for X axis
  6163. - `Y` - Maximum feedrate for Y axis
  6164. - `Z` - Maximum feedrate for Z axis
  6165. - `E` - Maximum feedrate for extruder drives
  6166. */
  6167. case 203: // M203 max feedrate mm/sec
  6168. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6169. {
  6170. if (code_seen(axis_codes[i]))
  6171. {
  6172. float val = code_value();
  6173. #ifdef TMC2130
  6174. float val_silent = val;
  6175. if ((i == X_AXIS) || (i == Y_AXIS))
  6176. {
  6177. if (val > NORMAL_MAX_FEEDRATE_XY)
  6178. val = NORMAL_MAX_FEEDRATE_XY;
  6179. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6180. val_silent = SILENT_MAX_FEEDRATE_XY;
  6181. }
  6182. cs.max_feedrate_normal[i] = val;
  6183. cs.max_feedrate_silent[i] = val_silent;
  6184. #else //TMC2130
  6185. max_feedrate[i] = val;
  6186. #endif //TMC2130
  6187. }
  6188. }
  6189. break;
  6190. /*!
  6191. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6192. #### Old format:
  6193. ##### Usage
  6194. M204 [ S | T ]
  6195. ##### Parameters
  6196. - `S` - normal moves
  6197. - `T` - filmanent only moves
  6198. #### New format:
  6199. ##### Usage
  6200. M204 [ P | R | T ]
  6201. ##### Parameters
  6202. - `P` - printing moves
  6203. - `R` - filmanent only moves
  6204. - `T` - travel moves (as of now T is ignored)
  6205. */
  6206. case 204:
  6207. {
  6208. if(code_seen('S')) {
  6209. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6210. // and it is also generated by Slic3r to control acceleration per extrusion type
  6211. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6212. cs.acceleration = cs.travel_acceleration = code_value();
  6213. // Interpret the T value as retract acceleration in the old Marlin format.
  6214. if(code_seen('T'))
  6215. cs.retract_acceleration = code_value();
  6216. } else {
  6217. // New acceleration format, compatible with the upstream Marlin.
  6218. if(code_seen('P'))
  6219. cs.acceleration = code_value();
  6220. if(code_seen('R'))
  6221. cs.retract_acceleration = code_value();
  6222. if(code_seen('T'))
  6223. cs.travel_acceleration = code_value();
  6224. }
  6225. }
  6226. break;
  6227. /*!
  6228. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6229. Set some advanced settings related to movement.
  6230. #### Usage
  6231. M205 [ S | T | B | X | Y | Z | E ]
  6232. #### Parameters
  6233. - `S` - Minimum feedrate for print moves (unit/s)
  6234. - `T` - Minimum feedrate for travel moves (units/s)
  6235. - `B` - Minimum segment time (us)
  6236. - `X` - Maximum X jerk (units/s)
  6237. - `Y` - Maximum Y jerk (units/s)
  6238. - `Z` - Maximum Z jerk (units/s)
  6239. - `E` - Maximum E jerk (units/s)
  6240. */
  6241. case 205:
  6242. {
  6243. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6244. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6245. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6246. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6247. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6248. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6249. if(code_seen('E'))
  6250. {
  6251. float e = code_value();
  6252. #ifndef LA_NOCOMPAT
  6253. e = la10c_jerk(e);
  6254. #endif
  6255. cs.max_jerk[E_AXIS] = e;
  6256. }
  6257. }
  6258. break;
  6259. /*!
  6260. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6261. #### Usage
  6262. M206 [ X | Y | Z ]
  6263. #### Parameters
  6264. - `X` - X axis offset
  6265. - `Y` - Y axis offset
  6266. - `Z` - Z axis offset
  6267. */
  6268. case 206:
  6269. for(uint8_t i=0; i < 3; i++)
  6270. {
  6271. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6272. }
  6273. break;
  6274. #ifdef FWRETRACT
  6275. /*!
  6276. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6277. #### Usage
  6278. M207 [ S | F | Z ]
  6279. #### Parameters
  6280. - `S` - positive length to retract, in mm
  6281. - `F` - retraction feedrate, in mm/min
  6282. - `Z` - additional zlift/hop
  6283. */
  6284. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6285. {
  6286. if(code_seen('S'))
  6287. {
  6288. cs.retract_length = code_value() ;
  6289. }
  6290. if(code_seen('F'))
  6291. {
  6292. cs.retract_feedrate = code_value()/60 ;
  6293. }
  6294. if(code_seen('Z'))
  6295. {
  6296. cs.retract_zlift = code_value() ;
  6297. }
  6298. }break;
  6299. /*!
  6300. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6301. #### Usage
  6302. M208 [ S | F ]
  6303. #### Parameters
  6304. - `S` - positive length surplus to the M207 Snnn, in mm
  6305. - `F` - feedrate, in mm/sec
  6306. */
  6307. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6308. {
  6309. if(code_seen('S'))
  6310. {
  6311. cs.retract_recover_length = code_value() ;
  6312. }
  6313. if(code_seen('F'))
  6314. {
  6315. cs.retract_recover_feedrate = code_value()/60 ;
  6316. }
  6317. }break;
  6318. /*!
  6319. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6320. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6321. #### Usage
  6322. M209 [ S ]
  6323. #### Parameters
  6324. - `S` - 1=true or 0=false
  6325. */
  6326. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6327. {
  6328. if(code_seen('S'))
  6329. {
  6330. switch(code_value_uint8())
  6331. {
  6332. case 0:
  6333. {
  6334. cs.autoretract_enabled=false;
  6335. retracted[0]=false;
  6336. #if EXTRUDERS > 1
  6337. retracted[1]=false;
  6338. #endif
  6339. #if EXTRUDERS > 2
  6340. retracted[2]=false;
  6341. #endif
  6342. }break;
  6343. case 1:
  6344. {
  6345. cs.autoretract_enabled=true;
  6346. retracted[0]=false;
  6347. #if EXTRUDERS > 1
  6348. retracted[1]=false;
  6349. #endif
  6350. #if EXTRUDERS > 2
  6351. retracted[2]=false;
  6352. #endif
  6353. }break;
  6354. default:
  6355. SERIAL_ECHO_START;
  6356. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6357. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6358. SERIAL_ECHOLNPGM("\"(1)");
  6359. }
  6360. }
  6361. }break;
  6362. #endif // FWRETRACT
  6363. /*!
  6364. ### M214 - Set Arc configuration values (Use M500 to store in eeprom)
  6365. #### Usage
  6366. M214 [P] [S] [N] [R] [F]
  6367. #### Parameters
  6368. - `P` - A float representing the max and default millimeters per arc segment. Must be greater than 0.
  6369. - `S` - A float representing the minimum allowable millimeters per arc segment. Set to 0 to disable
  6370. - `N` - An int representing the number of arcs to draw before correcting the small angle approximation. Set to 0 to disable.
  6371. - `R` - An int representing the minimum number of segments per arcs of any radius,
  6372. except when the results in segment lengths greater than or less than the minimum
  6373. and maximum segment length. Set to 0 to disable.
  6374. - 'F' - An int representing the number of segments per second, unless this results in segment lengths
  6375. greater than or less than the minimum and maximum segment length. Set to 0 to disable.
  6376. */
  6377. case 214: //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  6378. {
  6379. // Extract all possible parameters if they appear
  6380. float p = code_seen('P') ? code_value_float() : cs.mm_per_arc_segment;
  6381. float s = code_seen('S') ? code_value_float() : cs.min_mm_per_arc_segment;
  6382. unsigned char n = code_seen('N') ? code_value() : cs.n_arc_correction;
  6383. unsigned short r = code_seen('R') ? code_value() : cs.min_arc_segments;
  6384. unsigned short f = code_seen('F') ? code_value() : cs.arc_segments_per_sec;
  6385. // Ensure mm_per_arc_segment is greater than 0, and that min_mm_per_arc_segment is sero or greater than or equal to mm_per_arc_segment
  6386. if (p <=0 || s < 0 || p < s)
  6387. {
  6388. // Should we display some error here?
  6389. break;
  6390. }
  6391. cs.mm_per_arc_segment = p;
  6392. cs.min_mm_per_arc_segment = s;
  6393. cs.n_arc_correction = n;
  6394. cs.min_arc_segments = r;
  6395. cs.arc_segments_per_sec = f;
  6396. }break;
  6397. #if EXTRUDERS > 1
  6398. /*!
  6399. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6400. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6401. #### Usage
  6402. M218 [ X | Y ]
  6403. #### Parameters
  6404. - `X` - X offset
  6405. - `Y` - Y offset
  6406. */
  6407. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6408. {
  6409. uint8_t extruder;
  6410. if(setTargetedHotend(218, extruder)){
  6411. break;
  6412. }
  6413. if(code_seen('X'))
  6414. {
  6415. extruder_offset[X_AXIS][extruder] = code_value();
  6416. }
  6417. if(code_seen('Y'))
  6418. {
  6419. extruder_offset[Y_AXIS][extruder] = code_value();
  6420. }
  6421. SERIAL_ECHO_START;
  6422. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6423. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6424. {
  6425. SERIAL_ECHO(" ");
  6426. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6427. SERIAL_ECHO(",");
  6428. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6429. }
  6430. SERIAL_ECHOLN("");
  6431. }break;
  6432. #endif
  6433. /*!
  6434. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6435. #### Usage
  6436. M220 [ B | S | R ]
  6437. #### Parameters
  6438. - `B` - Backup current speed factor
  6439. - `S` - Speed factor override percentage (0..100 or higher)
  6440. - `R` - Restore previous speed factor
  6441. */
  6442. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6443. {
  6444. bool codesWereSeen = false;
  6445. if (code_seen('B')) //backup current speed factor
  6446. {
  6447. saved_feedmultiply_mm = feedmultiply;
  6448. codesWereSeen = true;
  6449. }
  6450. if (code_seen('S'))
  6451. {
  6452. feedmultiply = code_value_short();
  6453. codesWereSeen = true;
  6454. }
  6455. if (code_seen('R')) //restore previous feedmultiply
  6456. {
  6457. feedmultiply = saved_feedmultiply_mm;
  6458. codesWereSeen = true;
  6459. }
  6460. if (!codesWereSeen)
  6461. {
  6462. printf_P(PSTR("%i%%\n"), feedmultiply);
  6463. }
  6464. }
  6465. break;
  6466. /*!
  6467. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6468. #### Usage
  6469. M221 [ S | T ]
  6470. #### Parameters
  6471. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6472. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6473. */
  6474. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6475. {
  6476. if (code_seen('S'))
  6477. {
  6478. int tmp_code = code_value_short();
  6479. if (code_seen('T'))
  6480. {
  6481. uint8_t extruder;
  6482. if (setTargetedHotend(221, extruder))
  6483. break;
  6484. extruder_multiply[extruder] = tmp_code;
  6485. }
  6486. else
  6487. {
  6488. extrudemultiply = tmp_code ;
  6489. }
  6490. }
  6491. else
  6492. {
  6493. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6494. }
  6495. calculate_extruder_multipliers();
  6496. }
  6497. break;
  6498. /*!
  6499. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6500. Wait until the specified pin reaches the state required
  6501. #### Usage
  6502. M226 [ P | S ]
  6503. #### Parameters
  6504. - `P` - pin number
  6505. - `S` - pin state
  6506. */
  6507. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6508. {
  6509. if(code_seen('P')){
  6510. int pin_number = code_value_short(); // pin number
  6511. int pin_state = -1; // required pin state - default is inverted
  6512. if(code_seen('S')) pin_state = code_value_short(); // required pin state
  6513. if(pin_state >= -1 && pin_state <= 1){
  6514. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  6515. {
  6516. if (((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number))
  6517. {
  6518. pin_number = -1;
  6519. break;
  6520. }
  6521. }
  6522. if (pin_number > -1)
  6523. {
  6524. int target = LOW;
  6525. st_synchronize();
  6526. pinMode(pin_number, INPUT);
  6527. switch(pin_state){
  6528. case 1:
  6529. target = HIGH;
  6530. break;
  6531. case 0:
  6532. target = LOW;
  6533. break;
  6534. case -1:
  6535. target = !digitalRead(pin_number);
  6536. break;
  6537. }
  6538. while(digitalRead(pin_number) != target){
  6539. manage_heater();
  6540. manage_inactivity();
  6541. lcd_update(0);
  6542. }
  6543. }
  6544. }
  6545. }
  6546. }
  6547. break;
  6548. #if NUM_SERVOS > 0
  6549. /*!
  6550. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6551. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6552. #### Usage
  6553. M280 [ P | S ]
  6554. #### Parameters
  6555. - `P` - Servo index (id)
  6556. - `S` - Target position
  6557. */
  6558. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6559. {
  6560. int servo_index = -1;
  6561. int servo_position = 0;
  6562. if (code_seen('P'))
  6563. servo_index = code_value();
  6564. if (code_seen('S')) {
  6565. servo_position = code_value();
  6566. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6567. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6568. servos[servo_index].attach(0);
  6569. #endif
  6570. servos[servo_index].write(servo_position);
  6571. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6572. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6573. servos[servo_index].detach();
  6574. #endif
  6575. }
  6576. else {
  6577. SERIAL_ECHO_START;
  6578. SERIAL_ECHO("Servo ");
  6579. SERIAL_ECHO(servo_index);
  6580. SERIAL_ECHOLN(" out of range");
  6581. }
  6582. }
  6583. else if (servo_index >= 0) {
  6584. SERIAL_PROTOCOL(MSG_OK);
  6585. SERIAL_PROTOCOL(" Servo ");
  6586. SERIAL_PROTOCOL(servo_index);
  6587. SERIAL_PROTOCOL(": ");
  6588. SERIAL_PROTOCOLLN(servos[servo_index].read());
  6589. }
  6590. }
  6591. break;
  6592. #endif // NUM_SERVOS > 0
  6593. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6594. /*!
  6595. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6596. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6597. #### Usage
  6598. M300 [ S | P ]
  6599. #### Parameters
  6600. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6601. - `P` - duration in milliseconds
  6602. */
  6603. case 300: // M300
  6604. {
  6605. uint16_t beepS = code_seen('S') ? code_value() : 0;
  6606. uint16_t beepP = code_seen('P') ? code_value() : 1000;
  6607. #if BEEPER > 0
  6608. if (beepP > 0)
  6609. Sound_MakeCustom(beepP,beepS,false);
  6610. #endif
  6611. }
  6612. break;
  6613. #endif // M300
  6614. #ifdef PIDTEMP
  6615. /*!
  6616. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6617. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6618. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6619. #### Usage
  6620. M301 [ P | I | D ]
  6621. #### Parameters
  6622. - `P` - proportional (Kp)
  6623. - `I` - integral (Ki)
  6624. - `D` - derivative (Kd)
  6625. */
  6626. case 301:
  6627. {
  6628. if(code_seen('P')) cs.Kp = code_value();
  6629. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6630. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6631. updatePID();
  6632. SERIAL_PROTOCOLRPGM(MSG_OK);
  6633. SERIAL_PROTOCOLPGM(" p:");
  6634. SERIAL_PROTOCOL(cs.Kp);
  6635. SERIAL_PROTOCOLPGM(" i:");
  6636. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6637. SERIAL_PROTOCOLPGM(" d:");
  6638. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6639. SERIAL_PROTOCOLLN();
  6640. }
  6641. break;
  6642. #endif //PIDTEMP
  6643. #ifdef PIDTEMPBED
  6644. /*!
  6645. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6646. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6647. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6648. #### Usage
  6649. M304 [ P | I | D ]
  6650. #### Parameters
  6651. - `P` - proportional (Kp)
  6652. - `I` - integral (Ki)
  6653. - `D` - derivative (Kd)
  6654. */
  6655. case 304:
  6656. {
  6657. if(code_seen('P')) cs.bedKp = code_value();
  6658. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6659. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6660. updatePID();
  6661. SERIAL_PROTOCOLRPGM(MSG_OK);
  6662. SERIAL_PROTOCOLPGM(" p:");
  6663. SERIAL_PROTOCOL(cs.bedKp);
  6664. SERIAL_PROTOCOLPGM(" i:");
  6665. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6666. SERIAL_PROTOCOLPGM(" d:");
  6667. SERIAL_PROTOCOLLN(unscalePID_d(cs.bedKd));
  6668. }
  6669. break;
  6670. #endif //PIDTEMP
  6671. /*!
  6672. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6673. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6674. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6675. */
  6676. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6677. {
  6678. #ifdef CHDK
  6679. SET_OUTPUT(CHDK);
  6680. WRITE(CHDK, HIGH);
  6681. chdkHigh = _millis();
  6682. chdkActive = true;
  6683. #else
  6684. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6685. const uint8_t NUM_PULSES=16;
  6686. const float PULSE_LENGTH=0.01524;
  6687. for(int i=0; i < NUM_PULSES; i++) {
  6688. WRITE(PHOTOGRAPH_PIN, HIGH);
  6689. _delay_ms(PULSE_LENGTH);
  6690. WRITE(PHOTOGRAPH_PIN, LOW);
  6691. _delay_ms(PULSE_LENGTH);
  6692. }
  6693. _delay(7.33);
  6694. for(int i=0; i < NUM_PULSES; i++) {
  6695. WRITE(PHOTOGRAPH_PIN, HIGH);
  6696. _delay_ms(PULSE_LENGTH);
  6697. WRITE(PHOTOGRAPH_PIN, LOW);
  6698. _delay_ms(PULSE_LENGTH);
  6699. }
  6700. #endif
  6701. #endif //chdk end if
  6702. }
  6703. break;
  6704. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6705. /*!
  6706. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6707. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6708. #### Usage
  6709. M302 [ S ]
  6710. #### Parameters
  6711. - `S` - Cold extrude minimum temperature
  6712. */
  6713. case 302:
  6714. {
  6715. int temp = 0;
  6716. if (code_seen('S')) temp=code_value_short();
  6717. set_extrude_min_temp(temp);
  6718. }
  6719. break;
  6720. #endif
  6721. /*!
  6722. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6723. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6724. #### Usage
  6725. M303 [ E | S | C ]
  6726. #### Parameters
  6727. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6728. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6729. - `C` - Cycles, default `5`
  6730. */
  6731. case 303:
  6732. {
  6733. float temp = 150.0;
  6734. int e = 0;
  6735. int c = 5;
  6736. if (code_seen('E')) e = code_value_short();
  6737. if (e < 0)
  6738. temp = 70;
  6739. if (code_seen('S')) temp = code_value();
  6740. if (code_seen('C')) c = code_value_short();
  6741. PID_autotune(temp, e, c);
  6742. }
  6743. break;
  6744. /*!
  6745. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6746. Finishes all current moves and and thus clears the buffer.
  6747. Equivalent to `G4` with no parameters.
  6748. */
  6749. case 400:
  6750. {
  6751. st_synchronize();
  6752. }
  6753. break;
  6754. /*!
  6755. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6756. Currently three different materials are needed (default, flex and PVA).
  6757. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6758. #### Usage
  6759. M403 [ E | F ]
  6760. #### Parameters
  6761. - `E` - Extruder number. 0-indexed.
  6762. - `F` - Filament type
  6763. */
  6764. case 403:
  6765. {
  6766. // currently three different materials are needed (default, flex and PVA)
  6767. // add storing this information for different load/unload profiles etc. in the future
  6768. // firmware does not wait for "ok" from mmu
  6769. if (mmu_enabled)
  6770. {
  6771. uint8_t extruder = 255;
  6772. uint8_t filament = FILAMENT_UNDEFINED;
  6773. if(code_seen('E')) extruder = code_value_uint8();
  6774. if(code_seen('F')) filament = code_value_uint8();
  6775. mmu_set_filament_type(extruder, filament);
  6776. }
  6777. }
  6778. break;
  6779. /*!
  6780. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6781. Save current parameters to EEPROM.
  6782. */
  6783. case 500:
  6784. {
  6785. Config_StoreSettings();
  6786. }
  6787. break;
  6788. /*!
  6789. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6790. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6791. */
  6792. case 501:
  6793. {
  6794. Config_RetrieveSettings();
  6795. }
  6796. break;
  6797. /*!
  6798. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6799. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6800. */
  6801. case 502:
  6802. {
  6803. Config_ResetDefault();
  6804. }
  6805. break;
  6806. /*!
  6807. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6808. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6809. */
  6810. case 503:
  6811. {
  6812. Config_PrintSettings();
  6813. }
  6814. break;
  6815. /*!
  6816. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6817. Resets the language to English.
  6818. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6819. */
  6820. case 509:
  6821. {
  6822. lang_reset();
  6823. SERIAL_ECHO_START;
  6824. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6825. }
  6826. break;
  6827. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6828. /*!
  6829. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6830. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6831. #### Usage
  6832. M540 [ S ]
  6833. #### Parameters
  6834. - `S` - disabled=0, enabled=1
  6835. */
  6836. case 540:
  6837. {
  6838. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6839. }
  6840. break;
  6841. #endif
  6842. /*!
  6843. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6844. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6845. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6846. #### Usage
  6847. M851 [ Z ]
  6848. #### Parameters
  6849. - `Z` - Z offset probe to nozzle.
  6850. */
  6851. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6852. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6853. {
  6854. float value;
  6855. if (code_seen('Z'))
  6856. {
  6857. value = code_value();
  6858. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6859. {
  6860. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6861. SERIAL_ECHO_START;
  6862. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6863. SERIAL_PROTOCOLLN();
  6864. }
  6865. else
  6866. {
  6867. SERIAL_ECHO_START;
  6868. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6869. SERIAL_ECHORPGM(MSG_Z_MIN);
  6870. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6871. SERIAL_ECHORPGM(MSG_Z_MAX);
  6872. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6873. SERIAL_PROTOCOLLN();
  6874. }
  6875. }
  6876. else
  6877. {
  6878. SERIAL_ECHO_START;
  6879. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6880. SERIAL_ECHO(-cs.zprobe_zoffset);
  6881. SERIAL_PROTOCOLLN();
  6882. }
  6883. break;
  6884. }
  6885. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6886. /*!
  6887. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6888. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6889. If P is not specified nothing happens.
  6890. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6891. #### Usage
  6892. M552 [ P<IP_address> ]
  6893. #### Parameters
  6894. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  6895. */
  6896. case 552:
  6897. {
  6898. if (code_seen('P'))
  6899. {
  6900. uint8_t valCnt = 0;
  6901. IP_address = 0;
  6902. do
  6903. {
  6904. *strchr_pointer = '*';
  6905. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  6906. valCnt++;
  6907. } while ((valCnt < 4) && code_seen('.'));
  6908. if (valCnt != 4)
  6909. IP_address = 0;
  6910. }
  6911. } break;
  6912. #ifdef FILAMENTCHANGEENABLE
  6913. /*!
  6914. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6915. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6916. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6917. #### Usage
  6918. M600 [ X | Y | Z | E | L | AUTO ]
  6919. - `X` - X position, default 211
  6920. - `Y` - Y position, default 0
  6921. - `Z` - relative lift Z, default 2.
  6922. - `E` - initial retract, default -2
  6923. - `L` - later retract distance for removal, default -80
  6924. - `AUTO` - Automatically (only with MMU)
  6925. */
  6926. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6927. {
  6928. st_synchronize();
  6929. float x_position = current_position[X_AXIS];
  6930. float y_position = current_position[Y_AXIS];
  6931. float z_shift = 0; // is it necessary to be a float?
  6932. float e_shift_init = 0;
  6933. float e_shift_late = 0;
  6934. bool automatic = false;
  6935. //Retract extruder
  6936. if(code_seen('E'))
  6937. {
  6938. e_shift_init = code_value();
  6939. }
  6940. else
  6941. {
  6942. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6943. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6944. #endif
  6945. }
  6946. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6947. if (code_seen('L'))
  6948. {
  6949. e_shift_late = code_value();
  6950. }
  6951. else
  6952. {
  6953. #ifdef FILAMENTCHANGE_FINALRETRACT
  6954. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6955. #endif
  6956. }
  6957. //Lift Z
  6958. if(code_seen('Z'))
  6959. {
  6960. z_shift = code_value();
  6961. }
  6962. else
  6963. {
  6964. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6965. }
  6966. //Move XY to side
  6967. if(code_seen('X'))
  6968. {
  6969. x_position = code_value();
  6970. }
  6971. else
  6972. {
  6973. #ifdef FILAMENTCHANGE_XPOS
  6974. x_position = FILAMENTCHANGE_XPOS;
  6975. #endif
  6976. }
  6977. if(code_seen('Y'))
  6978. {
  6979. y_position = code_value();
  6980. }
  6981. else
  6982. {
  6983. #ifdef FILAMENTCHANGE_YPOS
  6984. y_position = FILAMENTCHANGE_YPOS ;
  6985. #endif
  6986. }
  6987. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  6988. automatic = true;
  6989. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6990. }
  6991. break;
  6992. #endif //FILAMENTCHANGEENABLE
  6993. /*!
  6994. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6995. */
  6996. /*!
  6997. ### M125 - Pause print (TODO: not implemented)
  6998. */
  6999. /*!
  7000. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7001. */
  7002. case 25:
  7003. case 601:
  7004. {
  7005. if (!isPrintPaused) {
  7006. st_synchronize();
  7007. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7008. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7009. lcd_pause_print();
  7010. }
  7011. }
  7012. break;
  7013. /*!
  7014. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7015. */
  7016. case 602:
  7017. {
  7018. if (isPrintPaused) lcd_resume_print();
  7019. }
  7020. break;
  7021. /*!
  7022. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7023. */
  7024. case 603: {
  7025. lcd_print_stop();
  7026. }
  7027. break;
  7028. #ifdef PINDA_THERMISTOR
  7029. /*!
  7030. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7031. Wait for PINDA thermistor to reach target temperature
  7032. #### Usage
  7033. M860 [ S ]
  7034. #### Parameters
  7035. - `S` - Target temperature
  7036. */
  7037. case 860:
  7038. {
  7039. int set_target_pinda = 0;
  7040. if (code_seen('S')) {
  7041. set_target_pinda = code_value_short();
  7042. }
  7043. else {
  7044. break;
  7045. }
  7046. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7047. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7048. SERIAL_PROTOCOLLN(set_target_pinda);
  7049. codenum = _millis();
  7050. cancel_heatup = false;
  7051. bool is_pinda_cooling = false;
  7052. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7053. is_pinda_cooling = true;
  7054. }
  7055. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7056. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7057. {
  7058. SERIAL_PROTOCOLPGM("P:");
  7059. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7060. SERIAL_PROTOCOL('/');
  7061. SERIAL_PROTOCOLLN(set_target_pinda);
  7062. codenum = _millis();
  7063. }
  7064. manage_heater();
  7065. manage_inactivity();
  7066. lcd_update(0);
  7067. }
  7068. LCD_MESSAGERPGM(MSG_OK);
  7069. break;
  7070. }
  7071. /*!
  7072. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7073. Set compensation ustep value `S` for compensation table index `I`.
  7074. #### Usage
  7075. M861 [ ? | ! | Z | S | I ]
  7076. #### Parameters
  7077. - `?` - Print current EEPROM offset values
  7078. - `!` - Set factory default values
  7079. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7080. - `S` - Microsteps
  7081. - `I` - Table index
  7082. */
  7083. case 861: {
  7084. const char * const _header = PSTR("index, temp, ustep, um");
  7085. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7086. int16_t usteps = 0;
  7087. SERIAL_PROTOCOLPGM("PINDA cal status: ");
  7088. SERIAL_PROTOCOLLN(calibration_status_pinda());
  7089. SERIAL_PROTOCOLLNRPGM(_header);
  7090. for (uint8_t i = 0; i < 6; i++)
  7091. {
  7092. if(i > 0) {
  7093. usteps = eeprom_read_word((uint16_t*) EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7094. }
  7095. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7096. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7097. SERIAL_PROTOCOLPGM(", ");
  7098. SERIAL_PROTOCOL(35 + (i * 5));
  7099. SERIAL_PROTOCOLPGM(", ");
  7100. SERIAL_PROTOCOL(usteps);
  7101. SERIAL_PROTOCOLPGM(", ");
  7102. SERIAL_PROTOCOLLN(mm * 1000);
  7103. }
  7104. }
  7105. else if (code_seen('!')) { // ! - Set factory default values
  7106. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7107. int16_t z_shift = 8; //40C - 20um - 8usteps
  7108. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT, z_shift);
  7109. z_shift = 24; //45C - 60um - 24usteps
  7110. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 1, z_shift);
  7111. z_shift = 48; //50C - 120um - 48usteps
  7112. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 2, z_shift);
  7113. z_shift = 80; //55C - 200um - 80usteps
  7114. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 3, z_shift);
  7115. z_shift = 120; //60C - 300um - 120usteps
  7116. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 4, z_shift);
  7117. SERIAL_PROTOCOLLNPGM("factory restored");
  7118. }
  7119. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7120. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7121. int16_t z_shift = 0;
  7122. for (uint8_t i = 0; i < 5; i++) {
  7123. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  7124. }
  7125. SERIAL_PROTOCOLLNPGM("zerorized");
  7126. }
  7127. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7128. int16_t usteps = code_value_short();
  7129. if (code_seen('I')) {
  7130. uint8_t index = code_value_uint8();
  7131. if (index < 5) {
  7132. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + index, usteps);
  7133. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7134. SERIAL_PROTOCOLLNRPGM(_header);
  7135. for (uint8_t i = 0; i < 6; i++)
  7136. {
  7137. usteps = 0;
  7138. if (i > 0) {
  7139. usteps = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7140. }
  7141. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7142. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7143. SERIAL_PROTOCOLPGM(", ");
  7144. SERIAL_PROTOCOL(35 + (i * 5));
  7145. SERIAL_PROTOCOLPGM(", ");
  7146. SERIAL_PROTOCOL(usteps);
  7147. SERIAL_PROTOCOLPGM(", ");
  7148. SERIAL_PROTOCOLLN(mm * 1000);
  7149. }
  7150. }
  7151. }
  7152. }
  7153. else {
  7154. SERIAL_PROTOCOLLNPGM("no valid command");
  7155. }
  7156. } break;
  7157. #endif //PINDA_THERMISTOR
  7158. /*!
  7159. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7160. Checks the parameters of the printer and gcode and performs compatibility check
  7161. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7162. - M862.2 { P<model_code> | Q }
  7163. - M862.3 { P"<model_name>" | Q }
  7164. - M862.4 { P<fw_version> | Q }
  7165. - M862.5 { P<gcode_level> | Q }
  7166. When run with P<> argument, the check is performed against the input value.
  7167. When run with Q argument, the current value is shown.
  7168. M862.3 accepts text identifiers of printer types too.
  7169. The syntax of M862.3 is (note the quotes around the type):
  7170. M862.3 P "MK3S"
  7171. Accepted printer type identifiers and their numeric counterparts:
  7172. - MK1 (100)
  7173. - MK2 (200)
  7174. - MK2MM (201)
  7175. - MK2S (202)
  7176. - MK2SMM (203)
  7177. - MK2.5 (250)
  7178. - MK2.5MMU2 (20250)
  7179. - MK2.5S (252)
  7180. - MK2.5SMMU2S (20252)
  7181. - MK3 (300)
  7182. - MK3MMU2 (20300)
  7183. - MK3S (302)
  7184. - MK3SMMU2S (20302)
  7185. */
  7186. case 862: // M862: print checking
  7187. float nDummy;
  7188. uint8_t nCommand;
  7189. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7190. switch((ClPrintChecking)nCommand)
  7191. {
  7192. case ClPrintChecking::_Nozzle: // ~ .1
  7193. uint16_t nDiameter;
  7194. if(code_seen('P'))
  7195. {
  7196. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7197. nozzle_diameter_check(nDiameter);
  7198. }
  7199. /*
  7200. else if(code_seen('S')&&farm_mode)
  7201. {
  7202. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7203. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7204. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7205. }
  7206. */
  7207. else if(code_seen('Q'))
  7208. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7209. break;
  7210. case ClPrintChecking::_Model: // ~ .2
  7211. if(code_seen('P'))
  7212. {
  7213. uint16_t nPrinterModel;
  7214. nPrinterModel=(uint16_t)code_value_long();
  7215. printer_model_check(nPrinterModel);
  7216. }
  7217. else if(code_seen('Q'))
  7218. SERIAL_PROTOCOLLN(nPrinterType);
  7219. break;
  7220. case ClPrintChecking::_Smodel: // ~ .3
  7221. if(code_seen('P'))
  7222. printer_smodel_check(strchr_pointer);
  7223. else if(code_seen('Q'))
  7224. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7225. break;
  7226. case ClPrintChecking::_Version: // ~ .4
  7227. if(code_seen('P'))
  7228. fw_version_check(++strchr_pointer);
  7229. else if(code_seen('Q'))
  7230. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7231. break;
  7232. case ClPrintChecking::_Gcode: // ~ .5
  7233. if(code_seen('P'))
  7234. {
  7235. uint16_t nGcodeLevel;
  7236. nGcodeLevel=(uint16_t)code_value_long();
  7237. gcode_level_check(nGcodeLevel);
  7238. }
  7239. else if(code_seen('Q'))
  7240. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7241. break;
  7242. }
  7243. break;
  7244. #ifdef LIN_ADVANCE
  7245. /*!
  7246. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7247. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7248. #### Usage
  7249. M900 [ K | R | W | H | D]
  7250. #### Parameters
  7251. - `K` - Advance K factor
  7252. - `R` - Set ratio directly (overrides WH/D)
  7253. - `W` - Width
  7254. - `H` - Height
  7255. - `D` - Diameter Set ratio from WH/D
  7256. */
  7257. case 900:
  7258. gcode_M900();
  7259. break;
  7260. #endif
  7261. /*!
  7262. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7263. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7264. M907 has no effect when the experimental Extruder motor current scaling mode is active (that applies to farm printing as well)
  7265. #### Usage
  7266. M907 [ X | Y | Z | E | B | S ]
  7267. #### Parameters
  7268. - `X` - X motor driver
  7269. - `Y` - Y motor driver
  7270. - `Z` - Z motor driver
  7271. - `E` - Extruder motor driver
  7272. - `B` - Second Extruder motor driver
  7273. - `S` - All motors
  7274. */
  7275. case 907:
  7276. {
  7277. #ifdef TMC2130
  7278. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7279. for (uint_least8_t i = 0; i < NUM_AXIS; i++){
  7280. if(code_seen(axis_codes[i])){
  7281. if( i == E_AXIS && FarmOrUserECool() ){
  7282. SERIAL_ECHORPGM(eMotorCurrentScalingEnabled);
  7283. SERIAL_ECHOLNPGM(", M907 E ignored");
  7284. continue;
  7285. }
  7286. long cur_mA = code_value_long();
  7287. uint8_t val = tmc2130_cur2val(cur_mA);
  7288. tmc2130_set_current_h(i, val);
  7289. tmc2130_set_current_r(i, val);
  7290. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7291. }
  7292. }
  7293. #else //TMC2130
  7294. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7295. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7296. if(code_seen('B')) st_current_set(4,code_value());
  7297. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7298. #endif
  7299. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7300. if(code_seen('X')) st_current_set(0, code_value());
  7301. #endif
  7302. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7303. if(code_seen('Z')) st_current_set(1, code_value());
  7304. #endif
  7305. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7306. if(code_seen('E')) st_current_set(2, code_value());
  7307. #endif
  7308. #endif //TMC2130
  7309. }
  7310. break;
  7311. /*!
  7312. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7313. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7314. #### Usage
  7315. M908 [ P | S ]
  7316. #### Parameters
  7317. - `P` - channel
  7318. - `S` - current
  7319. */
  7320. case 908:
  7321. {
  7322. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7323. uint8_t channel,current;
  7324. if(code_seen('P')) channel=code_value();
  7325. if(code_seen('S')) current=code_value();
  7326. digitalPotWrite(channel, current);
  7327. #endif
  7328. }
  7329. break;
  7330. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7331. /*!
  7332. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7333. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7334. */
  7335. case 910:
  7336. {
  7337. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7338. }
  7339. break;
  7340. /*!
  7341. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7342. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7343. #### Usage
  7344. M911 [ X | Y | Z | E ]
  7345. #### Parameters
  7346. - `X` - X stepper driver holding current value
  7347. - `Y` - Y stepper driver holding current value
  7348. - `Z` - Z stepper driver holding current value
  7349. - `E` - Extruder stepper driver holding current value
  7350. */
  7351. case 911:
  7352. {
  7353. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7354. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7355. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7356. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7357. }
  7358. break;
  7359. /*!
  7360. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7361. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7362. #### Usage
  7363. M912 [ X | Y | Z | E ]
  7364. #### Parameters
  7365. - `X` - X stepper driver running current value
  7366. - `Y` - Y stepper driver running current value
  7367. - `Z` - Z stepper driver running current value
  7368. - `E` - Extruder stepper driver running current value
  7369. */
  7370. case 912:
  7371. {
  7372. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7373. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7374. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7375. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7376. }
  7377. break;
  7378. /*!
  7379. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7380. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7381. Shows TMC2130 currents.
  7382. */
  7383. case 913:
  7384. {
  7385. tmc2130_print_currents();
  7386. }
  7387. break;
  7388. /*!
  7389. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7390. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7391. */
  7392. case 914:
  7393. {
  7394. tmc2130_mode = TMC2130_MODE_NORMAL;
  7395. update_mode_profile();
  7396. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7397. }
  7398. break;
  7399. /*!
  7400. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7401. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7402. */
  7403. case 915:
  7404. {
  7405. tmc2130_mode = TMC2130_MODE_SILENT;
  7406. update_mode_profile();
  7407. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7408. }
  7409. break;
  7410. /*!
  7411. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7412. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7413. #### Usage
  7414. M916 [ X | Y | Z | E ]
  7415. #### Parameters
  7416. - `X` - X stepper driver stallguard sensitivity threshold value
  7417. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7418. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7419. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7420. */
  7421. case 916:
  7422. {
  7423. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7424. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7425. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7426. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7427. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7428. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7429. }
  7430. break;
  7431. /*!
  7432. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7433. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7434. #### Usage
  7435. M917 [ X | Y | Z | E ]
  7436. #### Parameters
  7437. - `X` - X stepper driver PWM amplitude offset value
  7438. - `Y` - Y stepper driver PWM amplitude offset value
  7439. - `Z` - Z stepper driver PWM amplitude offset value
  7440. - `E` - Extruder stepper driver PWM amplitude offset value
  7441. */
  7442. case 917:
  7443. {
  7444. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7445. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7446. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7447. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7448. }
  7449. break;
  7450. /*!
  7451. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7452. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7453. #### Usage
  7454. M918 [ X | Y | Z | E ]
  7455. #### Parameters
  7456. - `X` - X stepper driver PWM amplitude gradient value
  7457. - `Y` - Y stepper driver PWM amplitude gradient value
  7458. - `Z` - Z stepper driver PWM amplitude gradient value
  7459. - `E` - Extruder stepper driver PWM amplitude gradient value
  7460. */
  7461. case 918:
  7462. {
  7463. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7464. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7465. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7466. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7467. }
  7468. break;
  7469. #endif //TMC2130_SERVICE_CODES_M910_M918
  7470. /*!
  7471. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7472. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7473. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7474. #### Usage
  7475. M350 [ X | Y | Z | E | B | S ]
  7476. #### Parameters
  7477. - `X` - X new resolution
  7478. - `Y` - Y new resolution
  7479. - `Z` - Z new resolution
  7480. - `E` - E new resolution
  7481. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7482. - `B` - Second extruder new resolution
  7483. - `S` - All axes new resolution
  7484. */
  7485. case 350:
  7486. {
  7487. #ifdef TMC2130
  7488. for (uint_least8_t i=0; i<NUM_AXIS; i++)
  7489. {
  7490. if(code_seen(axis_codes[i]))
  7491. {
  7492. uint16_t res_new = code_value();
  7493. #ifdef ALLOW_ALL_MRES
  7494. bool res_valid = res_new > 0 && res_new <= 256 && !(res_new & (res_new - 1)); // must be a power of two
  7495. #else
  7496. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7497. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7498. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7499. #endif
  7500. if (res_valid)
  7501. {
  7502. st_synchronize();
  7503. uint16_t res = tmc2130_get_res(i);
  7504. tmc2130_set_res(i, res_new);
  7505. cs.axis_ustep_resolution[i] = res_new;
  7506. if (res_new > res)
  7507. {
  7508. uint16_t fac = (res_new / res);
  7509. cs.axis_steps_per_unit[i] *= fac;
  7510. position[i] *= fac;
  7511. }
  7512. else
  7513. {
  7514. uint16_t fac = (res / res_new);
  7515. cs.axis_steps_per_unit[i] /= fac;
  7516. position[i] /= fac;
  7517. }
  7518. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7519. if (i == E_AXIS)
  7520. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7521. #endif
  7522. }
  7523. }
  7524. }
  7525. reset_acceleration_rates();
  7526. #else //TMC2130
  7527. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7528. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7529. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7530. if(code_seen('B')) microstep_mode(4,code_value());
  7531. microstep_readings();
  7532. #endif
  7533. #endif //TMC2130
  7534. }
  7535. break;
  7536. /*!
  7537. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7538. Toggle MS1 MS2 pins directly.
  7539. #### Usage
  7540. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7541. #### Parameters
  7542. - `X` - Update X axis
  7543. - `Y` - Update Y axis
  7544. - `Z` - Update Z axis
  7545. - `E` - Update E axis
  7546. - `S` - which MSx pin to toggle
  7547. - `B` - new pin value
  7548. */
  7549. case 351:
  7550. {
  7551. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7552. if(code_seen('S')) switch((int)code_value())
  7553. {
  7554. case 1:
  7555. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7556. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7557. break;
  7558. case 2:
  7559. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7560. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7561. break;
  7562. }
  7563. microstep_readings();
  7564. #endif
  7565. }
  7566. break;
  7567. /*!
  7568. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7569. #### Usage
  7570. M701 [ E | T ]
  7571. #### Parameters
  7572. - `E` - ID of filament to load, ranges from 0 to 4
  7573. - `T` - Alias of `E`. Used for compatibility with Marlin
  7574. */
  7575. case 701:
  7576. {
  7577. if (mmu_enabled && (code_seen('E') || code_seen('T')))
  7578. tmp_extruder = code_value_uint8();
  7579. gcode_M701();
  7580. }
  7581. break;
  7582. /*!
  7583. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7584. #### Usage
  7585. M702 [ C ]
  7586. #### Parameters
  7587. - `C` - Unload just current filament
  7588. - without any parameters unload all filaments
  7589. */
  7590. case 702:
  7591. {
  7592. if (code_seen('C')) {
  7593. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7594. }
  7595. else {
  7596. if(mmu_enabled) extr_unload(); //! unload current filament
  7597. else unload_filament();
  7598. }
  7599. }
  7600. break;
  7601. /*!
  7602. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7603. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7604. */
  7605. case 999:
  7606. Stopped = false;
  7607. lcd_reset_alert_level();
  7608. gcode_LastN = Stopped_gcode_LastN;
  7609. FlushSerialRequestResend();
  7610. break;
  7611. /*!
  7612. #### End of M-Commands
  7613. */
  7614. default:
  7615. printf_P(MSG_UNKNOWN_CODE, 'M', cmdbuffer + bufindr + CMDHDRSIZE);
  7616. }
  7617. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7618. mcode_in_progress = 0;
  7619. }
  7620. }
  7621. // end if(code_seen('M')) (end of M codes)
  7622. /*!
  7623. -----------------------------------------------------------------------------------------
  7624. # T Codes
  7625. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7626. #### For MMU_V2:
  7627. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7628. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7629. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7630. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7631. */
  7632. else if(code_seen('T'))
  7633. {
  7634. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7635. int index;
  7636. bool load_to_nozzle = false;
  7637. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7638. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7639. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7640. SERIAL_ECHOLNPGM("Invalid T code.");
  7641. }
  7642. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7643. if (mmu_enabled)
  7644. {
  7645. tmp_extruder = choose_menu_P(_T(MSG_SELECT_FILAMENT), _T(MSG_FILAMENT));
  7646. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7647. {
  7648. puts_P(duplicate_Tcode_ignored);
  7649. }
  7650. else
  7651. {
  7652. st_synchronize();
  7653. mmu_command(MmuCmd::T0 + tmp_extruder);
  7654. manage_response(true, true, MMU_TCODE_MOVE);
  7655. }
  7656. }
  7657. }
  7658. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7659. if (mmu_enabled)
  7660. {
  7661. st_synchronize();
  7662. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7663. mmu_extruder = tmp_extruder; //filament change is finished
  7664. mmu_load_to_nozzle();
  7665. }
  7666. }
  7667. else {
  7668. if (*(strchr_pointer + index) == '?')
  7669. {
  7670. if(mmu_enabled)
  7671. {
  7672. tmp_extruder = choose_menu_P(_T(MSG_SELECT_FILAMENT), _T(MSG_FILAMENT));
  7673. load_to_nozzle = true;
  7674. } else
  7675. {
  7676. tmp_extruder = choose_menu_P(_T(MSG_SELECT_EXTRUDER), _T(MSG_EXTRUDER));
  7677. }
  7678. }
  7679. else {
  7680. tmp_extruder = code_value();
  7681. if (mmu_enabled && lcd_autoDepleteEnabled())
  7682. {
  7683. tmp_extruder = ad_getAlternative(tmp_extruder);
  7684. }
  7685. }
  7686. st_synchronize();
  7687. if (mmu_enabled)
  7688. {
  7689. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7690. {
  7691. puts_P(duplicate_Tcode_ignored);
  7692. }
  7693. else
  7694. {
  7695. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7696. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7697. {
  7698. mmu_command(MmuCmd::K0 + tmp_extruder);
  7699. manage_response(true, true, MMU_UNLOAD_MOVE);
  7700. }
  7701. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7702. mmu_command(MmuCmd::T0 + tmp_extruder);
  7703. manage_response(true, true, MMU_TCODE_MOVE);
  7704. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7705. mmu_extruder = tmp_extruder; //filament change is finished
  7706. if (load_to_nozzle)// for single material usage with mmu
  7707. {
  7708. mmu_load_to_nozzle();
  7709. }
  7710. }
  7711. }
  7712. else
  7713. {
  7714. if (tmp_extruder >= EXTRUDERS) {
  7715. SERIAL_ECHO_START;
  7716. SERIAL_ECHO('T');
  7717. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7718. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7719. }
  7720. else {
  7721. #if EXTRUDERS > 1
  7722. bool make_move = false;
  7723. #endif
  7724. if (code_seen('F')) {
  7725. #if EXTRUDERS > 1
  7726. make_move = true;
  7727. #endif
  7728. next_feedrate = code_value();
  7729. if (next_feedrate > 0.0) {
  7730. feedrate = next_feedrate;
  7731. }
  7732. }
  7733. #if EXTRUDERS > 1
  7734. if (tmp_extruder != active_extruder) {
  7735. // Save current position to return to after applying extruder offset
  7736. set_destination_to_current();
  7737. // Offset extruder (only by XY)
  7738. int i;
  7739. for (i = 0; i < 2; i++) {
  7740. current_position[i] = current_position[i] -
  7741. extruder_offset[i][active_extruder] +
  7742. extruder_offset[i][tmp_extruder];
  7743. }
  7744. // Set the new active extruder and position
  7745. active_extruder = tmp_extruder;
  7746. plan_set_position_curposXYZE();
  7747. // Move to the old position if 'F' was in the parameters
  7748. if (make_move && Stopped == false) {
  7749. prepare_move();
  7750. }
  7751. }
  7752. #endif
  7753. SERIAL_ECHO_START;
  7754. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7755. SERIAL_PROTOCOLLN((int)active_extruder);
  7756. }
  7757. }
  7758. }
  7759. } // end if(code_seen('T')) (end of T codes)
  7760. /*!
  7761. #### End of T-Codes
  7762. */
  7763. /**
  7764. *---------------------------------------------------------------------------------
  7765. *# D codes
  7766. */
  7767. else if (code_seen('D')) // D codes (debug)
  7768. {
  7769. switch(code_value_short())
  7770. {
  7771. /*!
  7772. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7773. */
  7774. case -1:
  7775. dcode__1(); break;
  7776. #ifdef DEBUG_DCODES
  7777. /*!
  7778. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7779. #### Usage
  7780. D0 [ B ]
  7781. #### Parameters
  7782. - `B` - Bootloader
  7783. */
  7784. case 0:
  7785. dcode_0(); break;
  7786. /*!
  7787. *
  7788. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7789. D1
  7790. *
  7791. */
  7792. case 1:
  7793. dcode_1(); break;
  7794. #endif
  7795. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  7796. /*!
  7797. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7798. This command can be used without any additional parameters. It will read the entire RAM.
  7799. #### Usage
  7800. D2 [ A | C | X ]
  7801. #### Parameters
  7802. - `A` - Address (x0000-x1fff)
  7803. - `C` - Count (1-8192)
  7804. - `X` - Data
  7805. #### Notes
  7806. - The hex address needs to be lowercase without the 0 before the x
  7807. - Count is decimal
  7808. - The hex data needs to be lowercase
  7809. */
  7810. case 2:
  7811. dcode_2(); break;
  7812. #endif //DEBUG_DCODES
  7813. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7814. /*!
  7815. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7816. This command can be used without any additional parameters. It will read the entire eeprom.
  7817. #### Usage
  7818. D3 [ A | C | X ]
  7819. #### Parameters
  7820. - `A` - Address (x0000-x0fff)
  7821. - `C` - Count (1-4096)
  7822. - `X` - Data (hex)
  7823. #### Notes
  7824. - The hex address needs to be lowercase without the 0 before the x
  7825. - Count is decimal
  7826. - The hex data needs to be lowercase
  7827. */
  7828. case 3:
  7829. dcode_3(); break;
  7830. #endif //DEBUG_DCODE3
  7831. #ifdef DEBUG_DCODES
  7832. /*!
  7833. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7834. To read the digital value of a pin you need only to define the pin number.
  7835. #### Usage
  7836. D4 [ P | F | V ]
  7837. #### Parameters
  7838. - `P` - Pin (0-255)
  7839. - `F` - Function in/out (0/1)
  7840. - `V` - Value (0/1)
  7841. */
  7842. case 4:
  7843. dcode_4(); break;
  7844. #endif //DEBUG_DCODES
  7845. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7846. /*!
  7847. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7848. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7849. #### Usage
  7850. D5 [ A | C | X | E ]
  7851. #### Parameters
  7852. - `A` - Address (x00000-x3ffff)
  7853. - `C` - Count (1-8192)
  7854. - `X` - Data (hex)
  7855. - `E` - Erase
  7856. #### Notes
  7857. - The hex address needs to be lowercase without the 0 before the x
  7858. - Count is decimal
  7859. - The hex data needs to be lowercase
  7860. */
  7861. case 5:
  7862. dcode_5(); break;
  7863. #endif //DEBUG_DCODE5
  7864. #if defined DEBUG_DCODE6 || defined DEBUG_DCODES
  7865. /*!
  7866. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7867. Reserved
  7868. */
  7869. case 6:
  7870. dcode_6(); break;
  7871. #endif
  7872. #ifdef DEBUG_DCODES
  7873. /*!
  7874. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7875. Reserved
  7876. */
  7877. case 7:
  7878. dcode_7(); break;
  7879. /*!
  7880. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7881. #### Usage
  7882. D8 [ ? | ! | P | Z ]
  7883. #### Parameters
  7884. - `?` - Read PINDA temperature shift values
  7885. - `!` - Reset PINDA temperature shift values to default
  7886. - `P` - Pinda temperature [C]
  7887. - `Z` - Z Offset [mm]
  7888. */
  7889. case 8:
  7890. dcode_8(); break;
  7891. /*!
  7892. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7893. #### Usage
  7894. D9 [ I | V ]
  7895. #### Parameters
  7896. - `I` - ADC channel index
  7897. - `0` - Heater 0 temperature
  7898. - `1` - Heater 1 temperature
  7899. - `2` - Bed temperature
  7900. - `3` - PINDA temperature
  7901. - `4` - PWR voltage
  7902. - `5` - Ambient temperature
  7903. - `6` - BED voltage
  7904. - `V` Value to be written as simulated
  7905. */
  7906. case 9:
  7907. dcode_9(); break;
  7908. /*!
  7909. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7910. */
  7911. case 10:
  7912. dcode_10(); break;
  7913. /*!
  7914. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7915. Writes the current time in the log file.
  7916. */
  7917. #endif //DEBUG_DCODES
  7918. #ifdef XFLASH_DUMP
  7919. /*!
  7920. ### D20 - Generate an offline crash dump <a href="https://reprap.org/wiki/G-code#D20:_Generate_an_offline_crash_dump">D20: Generate an offline crash dump</a>
  7921. Generate a crash dump for later retrival.
  7922. #### Usage
  7923. D20 [E]
  7924. ### Parameters
  7925. - `E` - Perform an emergency crash dump (resets the printer).
  7926. ### Notes
  7927. - A crash dump can be later recovered with D21, or cleared with D22.
  7928. - An emergency crash dump includes register data, but will cause the printer to reset after the dump
  7929. is completed.
  7930. */
  7931. case 20: {
  7932. dcode_20();
  7933. break;
  7934. };
  7935. /*!
  7936. ### D21 - Print crash dump to serial <a href="https://reprap.org/wiki/G-code#D21:_Print_crash_dump_to_serial">D21: Print crash dump to serial</a>
  7937. Output the complete crash dump (if present) to the serial.
  7938. #### Usage
  7939. D21
  7940. ### Notes
  7941. - The starting address can vary between builds, but it's always at the beginning of the data section.
  7942. */
  7943. case 21: {
  7944. dcode_21();
  7945. break;
  7946. };
  7947. /*!
  7948. ### D22 - Clear crash dump state <a href="https://reprap.org/wiki/G-code#D22:_Clear_crash_dump_state">D22: Clear crash dump state</a>
  7949. Clear an existing internal crash dump.
  7950. #### Usage
  7951. D22
  7952. */
  7953. case 22: {
  7954. dcode_22();
  7955. break;
  7956. };
  7957. #endif //XFLASH_DUMP
  7958. #ifdef EMERGENCY_SERIAL_DUMP
  7959. /*!
  7960. ### D23 - Request emergency dump on serial <a href="https://reprap.org/wiki/G-code#D23:_Request_emergency_dump_on_serial">D23: Request emergency dump on serial</a>
  7961. On boards without offline dump support, request online dumps to the serial port on firmware faults.
  7962. When online dumps are enabled, the FW will dump memory on the serial before resetting.
  7963. #### Usage
  7964. D23 [E] [R]
  7965. #### Parameters
  7966. - `E` - Perform an emergency crash dump (resets the printer).
  7967. - `R` - Disable online dumps.
  7968. */
  7969. case 23: {
  7970. dcode_23();
  7971. break;
  7972. };
  7973. #endif
  7974. #ifdef HEATBED_ANALYSIS
  7975. /*!
  7976. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7977. This command will log data to SD card file "mesh.txt".
  7978. #### Usage
  7979. D80 [ E | F | G | H | I | J ]
  7980. #### Parameters
  7981. - `E` - Dimension X (default 40)
  7982. - `F` - Dimention Y (default 40)
  7983. - `G` - Points X (default 40)
  7984. - `H` - Points Y (default 40)
  7985. - `I` - Offset X (default 74)
  7986. - `J` - Offset Y (default 34)
  7987. */
  7988. case 80:
  7989. dcode_80(); break;
  7990. /*!
  7991. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7992. This command will log data to SD card file "wldsd.txt".
  7993. #### Usage
  7994. D81 [ E | F | G | H | I | J ]
  7995. #### Parameters
  7996. - `E` - Dimension X (default 40)
  7997. - `F` - Dimention Y (default 40)
  7998. - `G` - Points X (default 40)
  7999. - `H` - Points Y (default 40)
  8000. - `I` - Offset X (default 74)
  8001. - `J` - Offset Y (default 34)
  8002. */
  8003. case 81:
  8004. dcode_81(); break;
  8005. #endif //HEATBED_ANALYSIS
  8006. #ifdef DEBUG_DCODES
  8007. /*!
  8008. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  8009. */
  8010. case 106:
  8011. dcode_106(); break;
  8012. #ifdef TMC2130
  8013. /*!
  8014. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  8015. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8016. #### Usage
  8017. D2130 [ Axis | Command | Subcommand | Value ]
  8018. #### Parameters
  8019. - Axis
  8020. - `X` - X stepper driver
  8021. - `Y` - Y stepper driver
  8022. - `Z` - Z stepper driver
  8023. - `E` - Extruder stepper driver
  8024. - Commands
  8025. - `0` - Current off
  8026. - `1` - Current on
  8027. - `+` - Single step
  8028. - `-` - Single step oposite direction
  8029. - `NNN` - Value sereval steps
  8030. - `?` - Read register
  8031. - Subcommands for read register
  8032. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8033. - `step` - Step
  8034. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8035. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8036. - `wave` - Microstep linearity compensation curve
  8037. - `!` - Set register
  8038. - Subcommands for set register
  8039. - `mres` - Micro step resolution
  8040. - `step` - Step
  8041. - `wave` - Microstep linearity compensation curve
  8042. - Values for set register
  8043. - `0, 180 --> 250` - Off
  8044. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8045. - `@` - Home calibrate axis
  8046. Examples:
  8047. D2130E?wave
  8048. Print extruder microstep linearity compensation curve
  8049. D2130E!wave0
  8050. Disable extruder linearity compensation curve, (sine curve is used)
  8051. D2130E!wave220
  8052. (sin(x))^1.1 extruder microstep compensation curve used
  8053. Notes:
  8054. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8055. *
  8056. */
  8057. case 2130:
  8058. dcode_2130(); break;
  8059. #endif //TMC2130
  8060. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8061. /*!
  8062. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8063. #### Usage
  8064. D9125 [ ? | ! | R | X | Y | L ]
  8065. #### Parameters
  8066. - `?` - Print values
  8067. - `!` - Print values
  8068. - `R` - Resolution. Not active in code
  8069. - `X` - X values
  8070. - `Y` - Y values
  8071. - `L` - Activate filament sensor log
  8072. */
  8073. case 9125:
  8074. dcode_9125(); break;
  8075. #endif //FILAMENT_SENSOR
  8076. #endif //DEBUG_DCODES
  8077. default:
  8078. printf_P(MSG_UNKNOWN_CODE, 'D', cmdbuffer + bufindr + CMDHDRSIZE);
  8079. }
  8080. }
  8081. else
  8082. {
  8083. SERIAL_ECHO_START;
  8084. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8085. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8086. SERIAL_ECHOLNPGM("\"(2)");
  8087. }
  8088. KEEPALIVE_STATE(NOT_BUSY);
  8089. ClearToSend();
  8090. }
  8091. /*!
  8092. #### End of D-Codes
  8093. */
  8094. /** @defgroup GCodes G-Code List
  8095. */
  8096. // ---------------------------------------------------
  8097. void FlushSerialRequestResend()
  8098. {
  8099. //char cmdbuffer[bufindr][100]="Resend:";
  8100. MYSERIAL.flush();
  8101. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8102. }
  8103. // Confirm the execution of a command, if sent from a serial line.
  8104. // Execution of a command from a SD card will not be confirmed.
  8105. void ClearToSend()
  8106. {
  8107. previous_millis_cmd.start();
  8108. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8109. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8110. }
  8111. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8112. void update_currents() {
  8113. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8114. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8115. float tmp_motor[3];
  8116. //SERIAL_ECHOLNPGM("Currents updated: ");
  8117. if (destination[Z_AXIS] < Z_SILENT) {
  8118. //SERIAL_ECHOLNPGM("LOW");
  8119. for (uint8_t i = 0; i < 3; i++) {
  8120. st_current_set(i, current_low[i]);
  8121. /*MYSERIAL.print(int(i));
  8122. SERIAL_ECHOPGM(": ");
  8123. MYSERIAL.println(current_low[i]);*/
  8124. }
  8125. }
  8126. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8127. //SERIAL_ECHOLNPGM("HIGH");
  8128. for (uint8_t i = 0; i < 3; i++) {
  8129. st_current_set(i, current_high[i]);
  8130. /*MYSERIAL.print(int(i));
  8131. SERIAL_ECHOPGM(": ");
  8132. MYSERIAL.println(current_high[i]);*/
  8133. }
  8134. }
  8135. else {
  8136. for (uint8_t i = 0; i < 3; i++) {
  8137. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8138. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8139. st_current_set(i, tmp_motor[i]);
  8140. /*MYSERIAL.print(int(i));
  8141. SERIAL_ECHOPGM(": ");
  8142. MYSERIAL.println(tmp_motor[i]);*/
  8143. }
  8144. }
  8145. }
  8146. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8147. void get_coordinates()
  8148. {
  8149. bool seen[4]={false,false,false,false};
  8150. for(int8_t i=0; i < NUM_AXIS; i++) {
  8151. if(code_seen(axis_codes[i]))
  8152. {
  8153. bool relative = axis_relative_modes & (1 << i);
  8154. destination[i] = code_value();
  8155. if (i == E_AXIS) {
  8156. float emult = extruder_multiplier[active_extruder];
  8157. if (emult != 1.) {
  8158. if (! relative) {
  8159. destination[i] -= current_position[i];
  8160. relative = true;
  8161. }
  8162. destination[i] *= emult;
  8163. }
  8164. }
  8165. if (relative)
  8166. destination[i] += current_position[i];
  8167. seen[i]=true;
  8168. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8169. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8170. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8171. }
  8172. else destination[i] = current_position[i]; //Are these else lines really needed?
  8173. }
  8174. if(code_seen('F')) {
  8175. next_feedrate = code_value();
  8176. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8177. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8178. {
  8179. // float e_max_speed =
  8180. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8181. }
  8182. }
  8183. }
  8184. void get_arc_coordinates()
  8185. {
  8186. #ifdef SF_ARC_FIX
  8187. bool relative_mode_backup = relative_mode;
  8188. relative_mode = true;
  8189. #endif
  8190. get_coordinates();
  8191. #ifdef SF_ARC_FIX
  8192. relative_mode=relative_mode_backup;
  8193. #endif
  8194. if(code_seen('I')) {
  8195. offset[0] = code_value();
  8196. }
  8197. else {
  8198. offset[0] = 0.0;
  8199. }
  8200. if(code_seen('J')) {
  8201. offset[1] = code_value();
  8202. }
  8203. else {
  8204. offset[1] = 0.0;
  8205. }
  8206. }
  8207. void clamp_to_software_endstops(float target[3])
  8208. {
  8209. #ifdef DEBUG_DISABLE_SWLIMITS
  8210. return;
  8211. #endif //DEBUG_DISABLE_SWLIMITS
  8212. world2machine_clamp(target[0], target[1]);
  8213. // Clamp the Z coordinate.
  8214. if (min_software_endstops) {
  8215. float negative_z_offset = 0;
  8216. #ifdef ENABLE_AUTO_BED_LEVELING
  8217. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8218. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8219. #endif
  8220. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8221. }
  8222. if (max_software_endstops) {
  8223. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8224. }
  8225. }
  8226. #ifdef MESH_BED_LEVELING
  8227. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8228. float dx = x - current_position[X_AXIS];
  8229. float dy = y - current_position[Y_AXIS];
  8230. int n_segments = 0;
  8231. if (mbl.active) {
  8232. float len = fabs(dx) + fabs(dy);
  8233. if (len > 0)
  8234. // Split to 3cm segments or shorter.
  8235. n_segments = int(ceil(len / 30.f));
  8236. }
  8237. if (n_segments > 1) {
  8238. // In a multi-segment move explicitly set the final target in the plan
  8239. // as the move will be recalculated in it's entirety
  8240. float gcode_target[NUM_AXIS];
  8241. gcode_target[X_AXIS] = x;
  8242. gcode_target[Y_AXIS] = y;
  8243. gcode_target[Z_AXIS] = z;
  8244. gcode_target[E_AXIS] = e;
  8245. float dz = z - current_position[Z_AXIS];
  8246. float de = e - current_position[E_AXIS];
  8247. for (int i = 1; i < n_segments; ++ i) {
  8248. float t = float(i) / float(n_segments);
  8249. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8250. current_position[Y_AXIS] + t * dy,
  8251. current_position[Z_AXIS] + t * dz,
  8252. current_position[E_AXIS] + t * de,
  8253. feed_rate, extruder, gcode_target);
  8254. if (waiting_inside_plan_buffer_line_print_aborted)
  8255. return;
  8256. }
  8257. }
  8258. // The rest of the path.
  8259. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8260. }
  8261. #endif // MESH_BED_LEVELING
  8262. void prepare_move()
  8263. {
  8264. clamp_to_software_endstops(destination);
  8265. previous_millis_cmd.start();
  8266. // Do not use feedmultiply for E or Z only moves
  8267. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8268. plan_buffer_line_destinationXYZE(feedrate/60);
  8269. }
  8270. else {
  8271. #ifdef MESH_BED_LEVELING
  8272. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8273. #else
  8274. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8275. #endif
  8276. }
  8277. set_current_to_destination();
  8278. }
  8279. void prepare_arc_move(bool isclockwise) {
  8280. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8281. // Trace the arc
  8282. mc_arc(current_position, destination, offset, feedrate * feedmultiply / 60 / 100.0, r, isclockwise, active_extruder);
  8283. // As far as the parser is concerned, the position is now == target. In reality the
  8284. // motion control system might still be processing the action and the real tool position
  8285. // in any intermediate location.
  8286. set_current_to_destination();
  8287. previous_millis_cmd.start();
  8288. }
  8289. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8290. #if defined(FAN_PIN)
  8291. #if CONTROLLERFAN_PIN == FAN_PIN
  8292. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8293. #endif
  8294. #endif
  8295. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8296. unsigned long lastMotorCheck = 0;
  8297. void controllerFan()
  8298. {
  8299. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8300. {
  8301. lastMotorCheck = _millis();
  8302. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8303. #if EXTRUDERS > 2
  8304. || !READ(E2_ENABLE_PIN)
  8305. #endif
  8306. #if EXTRUDER > 1
  8307. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8308. || !READ(X2_ENABLE_PIN)
  8309. #endif
  8310. || !READ(E1_ENABLE_PIN)
  8311. #endif
  8312. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8313. {
  8314. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8315. }
  8316. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8317. {
  8318. digitalWrite(CONTROLLERFAN_PIN, 0);
  8319. analogWrite(CONTROLLERFAN_PIN, 0);
  8320. }
  8321. else
  8322. {
  8323. // allows digital or PWM fan output to be used (see M42 handling)
  8324. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8325. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8326. }
  8327. }
  8328. }
  8329. #endif
  8330. #ifdef SAFETYTIMER
  8331. /**
  8332. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8333. *
  8334. * Full screen blocking notification message is shown after heater turning off.
  8335. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8336. * damage print.
  8337. *
  8338. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8339. */
  8340. static void handleSafetyTimer()
  8341. {
  8342. #if (EXTRUDERS > 1)
  8343. #error Implemented only for one extruder.
  8344. #endif //(EXTRUDERS > 1)
  8345. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8346. {
  8347. safetyTimer.stop();
  8348. }
  8349. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8350. {
  8351. safetyTimer.start();
  8352. }
  8353. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8354. {
  8355. setTargetBed(0);
  8356. setAllTargetHotends(0);
  8357. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=20 r=4
  8358. }
  8359. }
  8360. #endif //SAFETYTIMER
  8361. #ifdef IR_SENSOR_ANALOG
  8362. #define FS_CHECK_COUNT 16
  8363. /// Switching mechanism of the fsensor type.
  8364. /// Called from 2 spots which have a very similar behavior
  8365. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8366. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8367. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8368. bool bTemp = (!CHECK_ALL_HEATERS);
  8369. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8370. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8371. bTemp = bTemp && fsensor_enabled;
  8372. if (bTemp) {
  8373. nFSCheckCount++;
  8374. if (nFSCheckCount > FS_CHECK_COUNT) {
  8375. nFSCheckCount = 0; // not necessary
  8376. oFsensorPCB = switchTo;
  8377. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8378. printf_IRSensorAnalogBoardChange();
  8379. lcd_setstatuspgm(statusLineTxt_P);
  8380. }
  8381. } else {
  8382. nFSCheckCount = 0;
  8383. }
  8384. }
  8385. #endif
  8386. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8387. {
  8388. #ifdef FILAMENT_SENSOR
  8389. bool bInhibitFlag = false;
  8390. #ifdef IR_SENSOR_ANALOG
  8391. static uint16_t nFSCheckCount=0;
  8392. #endif // IR_SENSOR_ANALOG
  8393. if (mmu_enabled == false)
  8394. {
  8395. //-// if (mcode_in_progress != 600) //M600 not in progress
  8396. if (!PRINTER_ACTIVE) bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); //Block Filament sensor actions if PRINTER is not active and Support::SensorInfo menu active
  8397. #ifdef IR_SENSOR_ANALOG
  8398. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Block Filament sensor actions if Settings::HWsetup::FSdetect menu active
  8399. #endif // IR_SENSOR_ANALOG
  8400. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active
  8401. {
  8402. if (!moves_planned() && !IS_SD_PRINTING && !usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8403. {
  8404. #ifdef IR_SENSOR_ANALOG
  8405. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8406. // detect min-max, some long term sliding window for filtration may be added
  8407. // avoiding floating point operations, thus computing in raw
  8408. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8409. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8410. #if 0 // Start: IR Sensor debug info
  8411. { // debug print
  8412. static uint16_t lastVolt = ~0U;
  8413. if( current_voltage_raw_IR != lastVolt ){
  8414. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8415. lastVolt = current_voltage_raw_IR;
  8416. }
  8417. }
  8418. #endif // End: IR Sensor debug info
  8419. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8420. //! to be detected as the new fsensor
  8421. //! We can either fake it by extending the detection window to a looooong time
  8422. //! or do some other countermeasures
  8423. //! what we want to detect:
  8424. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8425. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8426. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8427. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8428. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8429. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8430. ){
  8431. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////MSG_FS_V_04_OR_NEWER c=18
  8432. }
  8433. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8434. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8435. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8436. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8437. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8438. ){
  8439. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////MSG_FS_V_03_OR_OLDER c=18
  8440. }
  8441. #endif // IR_SENSOR_ANALOG
  8442. if (fsensor_check_autoload())
  8443. {
  8444. #ifdef PAT9125
  8445. fsensor_autoload_check_stop();
  8446. #endif //PAT9125
  8447. //-// if ((int)degHotend0() > extrude_min_temp)
  8448. if(0)
  8449. {
  8450. Sound_MakeCustom(50,1000,false);
  8451. loading_flag = true;
  8452. enquecommand_front_P((PSTR("M701")));
  8453. }
  8454. else
  8455. {
  8456. /*
  8457. lcd_update_enable(false);
  8458. show_preheat_nozzle_warning();
  8459. lcd_update_enable(true);
  8460. */
  8461. eFilamentAction=FilamentAction::AutoLoad;
  8462. bFilamentFirstRun=false;
  8463. if(target_temperature[0] >= extrude_min_temp){
  8464. bFilamentPreheatState=true;
  8465. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8466. menu_submenu(mFilamentItemForce);
  8467. } else {
  8468. menu_submenu(lcd_generic_preheat_menu);
  8469. lcd_timeoutToStatus.start();
  8470. }
  8471. }
  8472. }
  8473. }
  8474. else
  8475. {
  8476. #ifdef PAT9125
  8477. fsensor_autoload_check_stop();
  8478. #endif //PAT9125
  8479. if (fsensor_enabled && !saved_printing)
  8480. fsensor_update();
  8481. }
  8482. }
  8483. }
  8484. #endif //FILAMENT_SENSOR
  8485. #ifdef SAFETYTIMER
  8486. handleSafetyTimer();
  8487. #endif //SAFETYTIMER
  8488. #if defined(KILL_PIN) && KILL_PIN > -1
  8489. static int killCount = 0; // make the inactivity button a bit less responsive
  8490. const int KILL_DELAY = 10000;
  8491. #endif
  8492. if(buflen < (BUFSIZE-1)){
  8493. get_command();
  8494. }
  8495. if(previous_millis_cmd.expired(max_inactive_time))
  8496. if(max_inactive_time)
  8497. kill(_n("Inactivity Shutdown"), 4);
  8498. if(stepper_inactive_time) {
  8499. if(previous_millis_cmd.expired(stepper_inactive_time))
  8500. {
  8501. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8502. disable_x();
  8503. disable_y();
  8504. disable_z();
  8505. disable_e0();
  8506. disable_e1();
  8507. disable_e2();
  8508. }
  8509. }
  8510. }
  8511. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8512. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8513. {
  8514. chdkActive = false;
  8515. WRITE(CHDK, LOW);
  8516. }
  8517. #endif
  8518. #if defined(KILL_PIN) && KILL_PIN > -1
  8519. // Check if the kill button was pressed and wait just in case it was an accidental
  8520. // key kill key press
  8521. // -------------------------------------------------------------------------------
  8522. if( 0 == READ(KILL_PIN) )
  8523. {
  8524. killCount++;
  8525. }
  8526. else if (killCount > 0)
  8527. {
  8528. killCount--;
  8529. }
  8530. // Exceeded threshold and we can confirm that it was not accidental
  8531. // KILL the machine
  8532. // ----------------------------------------------------------------
  8533. if ( killCount >= KILL_DELAY)
  8534. {
  8535. kill(NULL, 5);
  8536. }
  8537. #endif
  8538. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8539. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8540. #endif
  8541. #ifdef EXTRUDER_RUNOUT_PREVENT
  8542. if(previous_millis_cmd.expired(EXTRUDER_RUNOUT_SECONDS*1000))
  8543. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8544. {
  8545. bool oldstatus=READ(E0_ENABLE_PIN);
  8546. enable_e0();
  8547. float oldepos=current_position[E_AXIS];
  8548. float oldedes=destination[E_AXIS];
  8549. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8550. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8551. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8552. current_position[E_AXIS]=oldepos;
  8553. destination[E_AXIS]=oldedes;
  8554. plan_set_e_position(oldepos);
  8555. previous_millis_cmd.start();
  8556. st_synchronize();
  8557. WRITE(E0_ENABLE_PIN,oldstatus);
  8558. }
  8559. #endif
  8560. check_axes_activity();
  8561. mmu_loop();
  8562. // handle longpress
  8563. if(lcd_longpress_trigger)
  8564. {
  8565. // long press is not possible in modal mode, wait until ready
  8566. if (lcd_longpress_func && lcd_update_enabled)
  8567. {
  8568. lcd_longpress_func();
  8569. lcd_longpress_trigger = 0;
  8570. }
  8571. }
  8572. #if defined(AUTO_REPORT)
  8573. host_autoreport();
  8574. #endif //AUTO_REPORT
  8575. host_keepalive();
  8576. }
  8577. void kill(const char *full_screen_message, unsigned char id)
  8578. {
  8579. printf_P(_N("KILL: %d\n"), id);
  8580. //return;
  8581. cli(); // Stop interrupts
  8582. disable_heater();
  8583. disable_x();
  8584. // SERIAL_ECHOLNPGM("kill - disable Y");
  8585. disable_y();
  8586. poweroff_z();
  8587. disable_e0();
  8588. disable_e1();
  8589. disable_e2();
  8590. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8591. pinMode(PS_ON_PIN,INPUT);
  8592. #endif
  8593. SERIAL_ERROR_START;
  8594. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8595. if (full_screen_message != NULL) {
  8596. SERIAL_ERRORLNRPGM(full_screen_message);
  8597. lcd_display_message_fullscreen_P(full_screen_message);
  8598. } else {
  8599. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8600. }
  8601. // FMC small patch to update the LCD before ending
  8602. sei(); // enable interrupts
  8603. for ( int i=5; i--; lcd_update(0))
  8604. {
  8605. _delay(200);
  8606. }
  8607. cli(); // disable interrupts
  8608. suicide();
  8609. while(1)
  8610. {
  8611. #ifdef WATCHDOG
  8612. wdt_reset();
  8613. #endif //WATCHDOG
  8614. /* Intentionally left empty */
  8615. } // Wait for reset
  8616. }
  8617. void UnconditionalStop()
  8618. {
  8619. CRITICAL_SECTION_START;
  8620. // Disable all heaters and unroll the temperature wait loop stack
  8621. disable_heater();
  8622. cancel_heatup = true;
  8623. // Clear any saved printing state
  8624. cancel_saved_printing();
  8625. // Abort the planner
  8626. planner_abort_hard();
  8627. // Reset the queue
  8628. cmdqueue_reset();
  8629. cmdqueue_serial_disabled = false;
  8630. // Reset the sd status
  8631. card.sdprinting = false;
  8632. card.closefile();
  8633. st_reset_timer();
  8634. CRITICAL_SECTION_END;
  8635. }
  8636. // Stop: Emergency stop used by overtemp functions which allows recovery
  8637. //
  8638. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8639. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8640. // manually started from scratch with the LCD.
  8641. //
  8642. // Note that the current instruction is completely discarded, so resuming from Stop()
  8643. // will introduce either over/under extrusion on the current segment, and will not
  8644. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8645. // the addition of disabling the headers) could allow true recovery in the future.
  8646. void Stop()
  8647. {
  8648. // Keep disabling heaters
  8649. disable_heater();
  8650. // Call the regular stop function if that's the first time during a new print
  8651. if(Stopped == false) {
  8652. Stopped = true;
  8653. lcd_print_stop();
  8654. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8655. // Eventually report the stopped status (though this is usually overridden by a
  8656. // higher-priority alert status message)
  8657. SERIAL_ERROR_START;
  8658. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8659. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8660. }
  8661. // Return to the status screen to stop any pending menu action which could have been
  8662. // started by the user while stuck in the Stopped state. This also ensures the NEW
  8663. // error is immediately shown.
  8664. if (menu_menu != lcd_status_screen)
  8665. lcd_return_to_status();
  8666. }
  8667. bool IsStopped() { return Stopped; };
  8668. void finishAndDisableSteppers()
  8669. {
  8670. st_synchronize();
  8671. disable_x();
  8672. disable_y();
  8673. disable_z();
  8674. disable_e0();
  8675. disable_e1();
  8676. disable_e2();
  8677. #ifndef LA_NOCOMPAT
  8678. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8679. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8680. // state for the next print.
  8681. la10c_reset();
  8682. #endif
  8683. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  8684. print_time_remaining_init();
  8685. }
  8686. #ifdef FAST_PWM_FAN
  8687. void setPwmFrequency(uint8_t pin, int val)
  8688. {
  8689. val &= 0x07;
  8690. switch(digitalPinToTimer(pin))
  8691. {
  8692. #if defined(TCCR0A)
  8693. case TIMER0A:
  8694. case TIMER0B:
  8695. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8696. // TCCR0B |= val;
  8697. break;
  8698. #endif
  8699. #if defined(TCCR1A)
  8700. case TIMER1A:
  8701. case TIMER1B:
  8702. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8703. // TCCR1B |= val;
  8704. break;
  8705. #endif
  8706. #if defined(TCCR2)
  8707. case TIMER2:
  8708. case TIMER2:
  8709. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8710. TCCR2 |= val;
  8711. break;
  8712. #endif
  8713. #if defined(TCCR2A)
  8714. case TIMER2A:
  8715. case TIMER2B:
  8716. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8717. TCCR2B |= val;
  8718. break;
  8719. #endif
  8720. #if defined(TCCR3A)
  8721. case TIMER3A:
  8722. case TIMER3B:
  8723. case TIMER3C:
  8724. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8725. TCCR3B |= val;
  8726. break;
  8727. #endif
  8728. #if defined(TCCR4A)
  8729. case TIMER4A:
  8730. case TIMER4B:
  8731. case TIMER4C:
  8732. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8733. TCCR4B |= val;
  8734. break;
  8735. #endif
  8736. #if defined(TCCR5A)
  8737. case TIMER5A:
  8738. case TIMER5B:
  8739. case TIMER5C:
  8740. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8741. TCCR5B |= val;
  8742. break;
  8743. #endif
  8744. }
  8745. }
  8746. #endif //FAST_PWM_FAN
  8747. //! @brief Get and validate extruder number
  8748. //!
  8749. //! If it is not specified, active_extruder is returned in parameter extruder.
  8750. //! @param [in] code M code number
  8751. //! @param [out] extruder
  8752. //! @return error
  8753. //! @retval true Invalid extruder specified in T code
  8754. //! @retval false Valid extruder specified in T code, or not specifiead
  8755. bool setTargetedHotend(int code, uint8_t &extruder)
  8756. {
  8757. extruder = active_extruder;
  8758. if(code_seen('T')) {
  8759. extruder = code_value_uint8();
  8760. if(extruder >= EXTRUDERS) {
  8761. SERIAL_ECHO_START;
  8762. switch(code){
  8763. case 104:
  8764. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8765. break;
  8766. case 105:
  8767. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8768. break;
  8769. case 109:
  8770. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8771. break;
  8772. case 218:
  8773. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8774. break;
  8775. case 221:
  8776. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8777. break;
  8778. }
  8779. SERIAL_PROTOCOLLN((int)extruder);
  8780. return true;
  8781. }
  8782. }
  8783. return false;
  8784. }
  8785. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8786. {
  8787. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8788. {
  8789. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8790. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8791. }
  8792. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8793. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8794. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8795. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8796. total_filament_used = 0;
  8797. }
  8798. float calculate_extruder_multiplier(float diameter) {
  8799. float out = 1.f;
  8800. if (cs.volumetric_enabled && diameter > 0.f) {
  8801. float area = M_PI * diameter * diameter * 0.25;
  8802. out = 1.f / area;
  8803. }
  8804. if (extrudemultiply != 100)
  8805. out *= float(extrudemultiply) * 0.01f;
  8806. return out;
  8807. }
  8808. void calculate_extruder_multipliers() {
  8809. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8810. #if EXTRUDERS > 1
  8811. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8812. #if EXTRUDERS > 2
  8813. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8814. #endif
  8815. #endif
  8816. }
  8817. void delay_keep_alive(unsigned int ms)
  8818. {
  8819. for (;;) {
  8820. manage_heater();
  8821. // Manage inactivity, but don't disable steppers on timeout.
  8822. manage_inactivity(true);
  8823. lcd_update(0);
  8824. if (ms == 0)
  8825. break;
  8826. else if (ms >= 50) {
  8827. _delay(50);
  8828. ms -= 50;
  8829. } else {
  8830. _delay(ms);
  8831. ms = 0;
  8832. }
  8833. }
  8834. }
  8835. static void wait_for_heater(long codenum, uint8_t extruder) {
  8836. if (!degTargetHotend(extruder))
  8837. return;
  8838. #ifdef TEMP_RESIDENCY_TIME
  8839. long residencyStart;
  8840. residencyStart = -1;
  8841. /* continue to loop until we have reached the target temp
  8842. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8843. cancel_heatup = false;
  8844. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8845. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8846. #else
  8847. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8848. #endif //TEMP_RESIDENCY_TIME
  8849. if ((_millis() - codenum) > 1000UL)
  8850. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8851. if (!farm_mode) {
  8852. SERIAL_PROTOCOLPGM("T:");
  8853. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8854. SERIAL_PROTOCOLPGM(" E:");
  8855. SERIAL_PROTOCOL((int)extruder);
  8856. #ifdef TEMP_RESIDENCY_TIME
  8857. SERIAL_PROTOCOLPGM(" W:");
  8858. if (residencyStart > -1)
  8859. {
  8860. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8861. SERIAL_PROTOCOLLN(codenum);
  8862. }
  8863. else
  8864. {
  8865. SERIAL_PROTOCOLLN('?');
  8866. }
  8867. }
  8868. #else
  8869. SERIAL_PROTOCOLLN();
  8870. #endif
  8871. codenum = _millis();
  8872. }
  8873. manage_heater();
  8874. manage_inactivity(true); //do not disable steppers
  8875. lcd_update(0);
  8876. #ifdef TEMP_RESIDENCY_TIME
  8877. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8878. or when current temp falls outside the hysteresis after target temp was reached */
  8879. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8880. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8881. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8882. {
  8883. residencyStart = _millis();
  8884. }
  8885. #endif //TEMP_RESIDENCY_TIME
  8886. }
  8887. }
  8888. void check_babystep()
  8889. {
  8890. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8891. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8892. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8893. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8894. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8895. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8896. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8897. babystep_z);
  8898. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8899. lcd_update_enable(true);
  8900. }
  8901. }
  8902. #ifdef HEATBED_ANALYSIS
  8903. void d_setup()
  8904. {
  8905. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8906. pinMode(D_DATA, INPUT_PULLUP);
  8907. pinMode(D_REQUIRE, OUTPUT);
  8908. digitalWrite(D_REQUIRE, HIGH);
  8909. }
  8910. float d_ReadData()
  8911. {
  8912. int digit[13];
  8913. String mergeOutput;
  8914. float output;
  8915. digitalWrite(D_REQUIRE, HIGH);
  8916. for (int i = 0; i<13; i++)
  8917. {
  8918. for (int j = 0; j < 4; j++)
  8919. {
  8920. while (digitalRead(D_DATACLOCK) == LOW) {}
  8921. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8922. bitWrite(digit[i], j, digitalRead(D_DATA));
  8923. }
  8924. }
  8925. digitalWrite(D_REQUIRE, LOW);
  8926. mergeOutput = "";
  8927. output = 0;
  8928. for (int r = 5; r <= 10; r++) //Merge digits
  8929. {
  8930. mergeOutput += digit[r];
  8931. }
  8932. output = mergeOutput.toFloat();
  8933. if (digit[4] == 8) //Handle sign
  8934. {
  8935. output *= -1;
  8936. }
  8937. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8938. {
  8939. output /= 10;
  8940. }
  8941. return output;
  8942. }
  8943. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8944. int t1 = 0;
  8945. int t_delay = 0;
  8946. int digit[13];
  8947. int m;
  8948. char str[3];
  8949. //String mergeOutput;
  8950. char mergeOutput[15];
  8951. float output;
  8952. int mesh_point = 0; //index number of calibration point
  8953. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8954. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8955. float mesh_home_z_search = 4;
  8956. float measure_z_height = 0.2f;
  8957. float row[x_points_num];
  8958. int ix = 0;
  8959. int iy = 0;
  8960. const char* filename_wldsd = "mesh.txt";
  8961. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8962. char numb_wldsd[8]; // (" -A.BCD" + null)
  8963. #ifdef MICROMETER_LOGGING
  8964. d_setup();
  8965. #endif //MICROMETER_LOGGING
  8966. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8967. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8968. unsigned int custom_message_type_old = custom_message_type;
  8969. unsigned int custom_message_state_old = custom_message_state;
  8970. custom_message_type = CustomMsg::MeshBedLeveling;
  8971. custom_message_state = (x_points_num * y_points_num) + 10;
  8972. lcd_update(1);
  8973. //mbl.reset();
  8974. babystep_undo();
  8975. card.openFile(filename_wldsd, false);
  8976. /*destination[Z_AXIS] = mesh_home_z_search;
  8977. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8978. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8979. for(int8_t i=0; i < NUM_AXIS; i++) {
  8980. current_position[i] = destination[i];
  8981. }
  8982. st_synchronize();
  8983. */
  8984. destination[Z_AXIS] = measure_z_height;
  8985. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8986. for(int8_t i=0; i < NUM_AXIS; i++) {
  8987. current_position[i] = destination[i];
  8988. }
  8989. st_synchronize();
  8990. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8991. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8992. SERIAL_PROTOCOL(x_points_num);
  8993. SERIAL_PROTOCOLPGM(",");
  8994. SERIAL_PROTOCOL(y_points_num);
  8995. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8996. SERIAL_PROTOCOL(mesh_home_z_search);
  8997. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8998. SERIAL_PROTOCOL(x_dimension);
  8999. SERIAL_PROTOCOLPGM(",");
  9000. SERIAL_PROTOCOL(y_dimension);
  9001. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9002. while (mesh_point != x_points_num * y_points_num) {
  9003. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9004. iy = mesh_point / x_points_num;
  9005. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9006. float z0 = 0.f;
  9007. /*destination[Z_AXIS] = mesh_home_z_search;
  9008. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9009. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9010. for(int8_t i=0; i < NUM_AXIS; i++) {
  9011. current_position[i] = destination[i];
  9012. }
  9013. st_synchronize();*/
  9014. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9015. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9016. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  9017. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  9018. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  9019. set_current_to_destination();
  9020. st_synchronize();
  9021. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9022. delay_keep_alive(1000);
  9023. #ifdef MICROMETER_LOGGING
  9024. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9025. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9026. //strcat(data_wldsd, numb_wldsd);
  9027. //MYSERIAL.println(data_wldsd);
  9028. //delay(1000);
  9029. //delay(3000);
  9030. //t1 = millis();
  9031. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9032. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9033. memset(digit, 0, sizeof(digit));
  9034. //cli();
  9035. digitalWrite(D_REQUIRE, LOW);
  9036. for (int i = 0; i<13; i++)
  9037. {
  9038. //t1 = millis();
  9039. for (int j = 0; j < 4; j++)
  9040. {
  9041. while (digitalRead(D_DATACLOCK) == LOW) {}
  9042. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9043. //printf_P(PSTR("Done %d\n"), j);
  9044. bitWrite(digit[i], j, digitalRead(D_DATA));
  9045. }
  9046. //t_delay = (millis() - t1);
  9047. //SERIAL_PROTOCOLPGM(" ");
  9048. //SERIAL_PROTOCOL_F(t_delay, 5);
  9049. //SERIAL_PROTOCOLPGM(" ");
  9050. }
  9051. //sei();
  9052. digitalWrite(D_REQUIRE, HIGH);
  9053. mergeOutput[0] = '\0';
  9054. output = 0;
  9055. for (int r = 5; r <= 10; r++) //Merge digits
  9056. {
  9057. sprintf(str, "%d", digit[r]);
  9058. strcat(mergeOutput, str);
  9059. }
  9060. output = atof(mergeOutput);
  9061. if (digit[4] == 8) //Handle sign
  9062. {
  9063. output *= -1;
  9064. }
  9065. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9066. {
  9067. output *= 0.1;
  9068. }
  9069. //output = d_ReadData();
  9070. //row[ix] = current_position[Z_AXIS];
  9071. //row[ix] = d_ReadData();
  9072. row[ix] = output;
  9073. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9074. memset(data_wldsd, 0, sizeof(data_wldsd));
  9075. for (int i = 0; i < x_points_num; i++) {
  9076. SERIAL_PROTOCOLPGM(" ");
  9077. SERIAL_PROTOCOL_F(row[i], 5);
  9078. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9079. dtostrf(row[i], 7, 3, numb_wldsd);
  9080. strcat(data_wldsd, numb_wldsd);
  9081. }
  9082. card.write_command(data_wldsd);
  9083. SERIAL_PROTOCOLPGM("\n");
  9084. }
  9085. custom_message_state--;
  9086. mesh_point++;
  9087. lcd_update(1);
  9088. }
  9089. #endif //MICROMETER_LOGGING
  9090. card.closefile();
  9091. //clean_up_after_endstop_move(l_feedmultiply);
  9092. }
  9093. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9094. int t1 = 0;
  9095. int t_delay = 0;
  9096. int digit[13];
  9097. int m;
  9098. char str[3];
  9099. //String mergeOutput;
  9100. char mergeOutput[15];
  9101. float output;
  9102. int mesh_point = 0; //index number of calibration point
  9103. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9104. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9105. float mesh_home_z_search = 4;
  9106. float row[x_points_num];
  9107. int ix = 0;
  9108. int iy = 0;
  9109. const char* filename_wldsd = "wldsd.txt";
  9110. char data_wldsd[70];
  9111. char numb_wldsd[10];
  9112. d_setup();
  9113. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9114. // We don't know where we are! HOME!
  9115. // Push the commands to the front of the message queue in the reverse order!
  9116. // There shall be always enough space reserved for these commands.
  9117. repeatcommand_front(); // repeat G80 with all its parameters
  9118. enquecommand_front_P(G28W0);
  9119. enquecommand_front_P((PSTR("G1 Z5")));
  9120. return;
  9121. }
  9122. unsigned int custom_message_type_old = custom_message_type;
  9123. unsigned int custom_message_state_old = custom_message_state;
  9124. custom_message_type = CustomMsg::MeshBedLeveling;
  9125. custom_message_state = (x_points_num * y_points_num) + 10;
  9126. lcd_update(1);
  9127. mbl.reset();
  9128. babystep_undo();
  9129. card.openFile(filename_wldsd, false);
  9130. current_position[Z_AXIS] = mesh_home_z_search;
  9131. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9132. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9133. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9134. int l_feedmultiply = setup_for_endstop_move(false);
  9135. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9136. SERIAL_PROTOCOL(x_points_num);
  9137. SERIAL_PROTOCOLPGM(",");
  9138. SERIAL_PROTOCOL(y_points_num);
  9139. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9140. SERIAL_PROTOCOL(mesh_home_z_search);
  9141. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9142. SERIAL_PROTOCOL(x_dimension);
  9143. SERIAL_PROTOCOLPGM(",");
  9144. SERIAL_PROTOCOL(y_dimension);
  9145. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9146. while (mesh_point != x_points_num * y_points_num) {
  9147. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9148. iy = mesh_point / x_points_num;
  9149. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9150. float z0 = 0.f;
  9151. current_position[Z_AXIS] = mesh_home_z_search;
  9152. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9153. st_synchronize();
  9154. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9155. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9156. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9157. st_synchronize();
  9158. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9159. break;
  9160. card.closefile();
  9161. }
  9162. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9163. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9164. //strcat(data_wldsd, numb_wldsd);
  9165. //MYSERIAL.println(data_wldsd);
  9166. //_delay(1000);
  9167. //_delay(3000);
  9168. //t1 = _millis();
  9169. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9170. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9171. memset(digit, 0, sizeof(digit));
  9172. //cli();
  9173. digitalWrite(D_REQUIRE, LOW);
  9174. for (int i = 0; i<13; i++)
  9175. {
  9176. //t1 = _millis();
  9177. for (int j = 0; j < 4; j++)
  9178. {
  9179. while (digitalRead(D_DATACLOCK) == LOW) {}
  9180. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9181. bitWrite(digit[i], j, digitalRead(D_DATA));
  9182. }
  9183. //t_delay = (_millis() - t1);
  9184. //SERIAL_PROTOCOLPGM(" ");
  9185. //SERIAL_PROTOCOL_F(t_delay, 5);
  9186. //SERIAL_PROTOCOLPGM(" ");
  9187. }
  9188. //sei();
  9189. digitalWrite(D_REQUIRE, HIGH);
  9190. mergeOutput[0] = '\0';
  9191. output = 0;
  9192. for (int r = 5; r <= 10; r++) //Merge digits
  9193. {
  9194. sprintf(str, "%d", digit[r]);
  9195. strcat(mergeOutput, str);
  9196. }
  9197. output = atof(mergeOutput);
  9198. if (digit[4] == 8) //Handle sign
  9199. {
  9200. output *= -1;
  9201. }
  9202. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9203. {
  9204. output *= 0.1;
  9205. }
  9206. //output = d_ReadData();
  9207. //row[ix] = current_position[Z_AXIS];
  9208. memset(data_wldsd, 0, sizeof(data_wldsd));
  9209. for (int i = 0; i <3; i++) {
  9210. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9211. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9212. strcat(data_wldsd, numb_wldsd);
  9213. strcat(data_wldsd, ";");
  9214. }
  9215. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9216. dtostrf(output, 8, 5, numb_wldsd);
  9217. strcat(data_wldsd, numb_wldsd);
  9218. //strcat(data_wldsd, ";");
  9219. card.write_command(data_wldsd);
  9220. //row[ix] = d_ReadData();
  9221. row[ix] = output; // current_position[Z_AXIS];
  9222. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9223. for (int i = 0; i < x_points_num; i++) {
  9224. SERIAL_PROTOCOLPGM(" ");
  9225. SERIAL_PROTOCOL_F(row[i], 5);
  9226. }
  9227. SERIAL_PROTOCOLPGM("\n");
  9228. }
  9229. custom_message_state--;
  9230. mesh_point++;
  9231. lcd_update(1);
  9232. }
  9233. card.closefile();
  9234. clean_up_after_endstop_move(l_feedmultiply);
  9235. }
  9236. #endif //HEATBED_ANALYSIS
  9237. #ifndef PINDA_THERMISTOR
  9238. static void temp_compensation_start() {
  9239. custom_message_type = CustomMsg::TempCompPreheat;
  9240. custom_message_state = PINDA_HEAT_T + 1;
  9241. lcd_update(2);
  9242. if ((int)degHotend(active_extruder) > extrude_min_temp) {
  9243. current_position[E_AXIS] -= default_retraction;
  9244. }
  9245. plan_buffer_line_curposXYZE(400, active_extruder);
  9246. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9247. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9248. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9249. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9250. st_synchronize();
  9251. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9252. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9253. delay_keep_alive(1000);
  9254. custom_message_state = PINDA_HEAT_T - i;
  9255. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9256. else lcd_update(1);
  9257. }
  9258. custom_message_type = CustomMsg::Status;
  9259. custom_message_state = 0;
  9260. }
  9261. static void temp_compensation_apply() {
  9262. int i_add;
  9263. int z_shift = 0;
  9264. float z_shift_mm;
  9265. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9266. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9267. i_add = (target_temperature_bed - 60) / 10;
  9268. z_shift = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i_add);
  9269. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9270. }else {
  9271. //interpolation
  9272. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9273. }
  9274. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9275. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9276. st_synchronize();
  9277. plan_set_z_position(current_position[Z_AXIS]);
  9278. }
  9279. else {
  9280. //we have no temp compensation data
  9281. }
  9282. }
  9283. #endif //ndef PINDA_THERMISTOR
  9284. float temp_comp_interpolation(float inp_temperature) {
  9285. //cubic spline interpolation
  9286. int n, i, j;
  9287. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9288. int shift[10];
  9289. int temp_C[10];
  9290. n = 6; //number of measured points
  9291. shift[0] = 0;
  9292. for (i = 0; i < n; i++) {
  9293. if (i > 0) {
  9294. //read shift in steps from EEPROM
  9295. shift[i] = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  9296. }
  9297. temp_C[i] = 50 + i * 10; //temperature in C
  9298. #ifdef PINDA_THERMISTOR
  9299. constexpr int start_compensating_temp = 35;
  9300. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9301. #ifdef SUPERPINDA_SUPPORT
  9302. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9303. #endif //SUPERPINDA_SUPPORT
  9304. #else
  9305. temp_C[i] = 50 + i * 10; //temperature in C
  9306. #endif
  9307. x[i] = (float)temp_C[i];
  9308. f[i] = (float)shift[i];
  9309. }
  9310. if (inp_temperature < x[0]) return 0;
  9311. for (i = n - 1; i>0; i--) {
  9312. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9313. h[i - 1] = x[i] - x[i - 1];
  9314. }
  9315. //*********** formation of h, s , f matrix **************
  9316. for (i = 1; i<n - 1; i++) {
  9317. m[i][i] = 2 * (h[i - 1] + h[i]);
  9318. if (i != 1) {
  9319. m[i][i - 1] = h[i - 1];
  9320. m[i - 1][i] = h[i - 1];
  9321. }
  9322. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9323. }
  9324. //*********** forward elimination **************
  9325. for (i = 1; i<n - 2; i++) {
  9326. temp = (m[i + 1][i] / m[i][i]);
  9327. for (j = 1; j <= n - 1; j++)
  9328. m[i + 1][j] -= temp*m[i][j];
  9329. }
  9330. //*********** backward substitution *********
  9331. for (i = n - 2; i>0; i--) {
  9332. sum = 0;
  9333. for (j = i; j <= n - 2; j++)
  9334. sum += m[i][j] * s[j];
  9335. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9336. }
  9337. for (i = 0; i<n - 1; i++)
  9338. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9339. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9340. b = s[i] / 2;
  9341. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9342. d = f[i];
  9343. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9344. }
  9345. return sum;
  9346. }
  9347. #ifdef PINDA_THERMISTOR
  9348. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9349. {
  9350. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9351. if (!calibration_status_pinda()) return 0;
  9352. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9353. }
  9354. #endif //PINDA_THERMISTOR
  9355. void long_pause() //long pause print
  9356. {
  9357. st_synchronize();
  9358. start_pause_print = _millis();
  9359. // Stop heaters
  9360. setAllTargetHotends(0);
  9361. //lift z
  9362. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9363. clamp_to_software_endstops(current_position);
  9364. plan_buffer_line_curposXYZE(15);
  9365. //Move XY to side
  9366. current_position[X_AXIS] = X_PAUSE_POS;
  9367. current_position[Y_AXIS] = Y_PAUSE_POS;
  9368. plan_buffer_line_curposXYZE(50);
  9369. // Turn off the print fan
  9370. fanSpeed = 0;
  9371. }
  9372. void serialecho_temperatures() {
  9373. float tt = degHotend(active_extruder);
  9374. SERIAL_PROTOCOLPGM("T:");
  9375. SERIAL_PROTOCOL(tt);
  9376. SERIAL_PROTOCOLPGM(" E:");
  9377. SERIAL_PROTOCOL((int)active_extruder);
  9378. SERIAL_PROTOCOLPGM(" B:");
  9379. SERIAL_PROTOCOL_F(degBed(), 1);
  9380. SERIAL_PROTOCOLLN();
  9381. }
  9382. #ifdef UVLO_SUPPORT
  9383. void uvlo_drain_reset()
  9384. {
  9385. // burn all that residual power
  9386. wdt_enable(WDTO_1S);
  9387. WRITE(BEEPER,HIGH);
  9388. lcd_clear();
  9389. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9390. while(1);
  9391. }
  9392. void uvlo_()
  9393. {
  9394. unsigned long time_start = _millis();
  9395. bool sd_print = card.sdprinting;
  9396. // Conserve power as soon as possible.
  9397. #ifdef LCD_BL_PIN
  9398. backlightMode = BACKLIGHT_MODE_DIM;
  9399. backlightLevel_LOW = 0;
  9400. backlight_update();
  9401. #endif //LCD_BL_PIN
  9402. disable_x();
  9403. disable_y();
  9404. #ifdef TMC2130
  9405. tmc2130_set_current_h(Z_AXIS, 20);
  9406. tmc2130_set_current_r(Z_AXIS, 20);
  9407. tmc2130_set_current_h(E_AXIS, 20);
  9408. tmc2130_set_current_r(E_AXIS, 20);
  9409. #endif //TMC2130
  9410. // Stop all heaters
  9411. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9412. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9413. setAllTargetHotends(0);
  9414. setTargetBed(0);
  9415. // Calculate the file position, from which to resume this print.
  9416. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9417. {
  9418. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9419. sd_position -= sdlen_planner;
  9420. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9421. sd_position -= sdlen_cmdqueue;
  9422. if (sd_position < 0) sd_position = 0;
  9423. }
  9424. // save the global state at planning time
  9425. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9426. uint16_t feedrate_bckp;
  9427. if (current_block && !pos_invalid)
  9428. {
  9429. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9430. feedrate_bckp = current_block->gcode_feedrate;
  9431. }
  9432. else
  9433. {
  9434. saved_target[0] = SAVED_TARGET_UNSET;
  9435. feedrate_bckp = feedrate;
  9436. }
  9437. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9438. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9439. // get the physical Z for further manipulation.
  9440. bool mbl_was_active = mbl.active;
  9441. mbl.active = false;
  9442. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9443. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9444. // are in action.
  9445. planner_abort_hard();
  9446. // Store the print logical Z position, which we need to recover (a slight error here would be
  9447. // recovered on the next Gcode instruction, while a physical location error would not)
  9448. float logical_z = current_position[Z_AXIS];
  9449. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9450. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9451. // Store the print E position before we lose track
  9452. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9453. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9454. // Clean the input command queue, inhibit serial processing using saved_printing
  9455. cmdqueue_reset();
  9456. card.sdprinting = false;
  9457. saved_printing = true;
  9458. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9459. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9460. sei();
  9461. // Retract
  9462. current_position[E_AXIS] -= default_retraction;
  9463. plan_buffer_line_curposXYZE(95);
  9464. st_synchronize();
  9465. disable_e0();
  9466. // Read out the current Z motor microstep counter to move the axis up towards
  9467. // a full step before powering off. NOTE: we need to ensure to schedule more
  9468. // than "dropsegments" steps in order to move (this is always the case here
  9469. // due to UVLO_Z_AXIS_SHIFT being used)
  9470. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9471. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9472. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9473. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9474. + UVLO_Z_AXIS_SHIFT;
  9475. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9476. st_synchronize();
  9477. poweroff_z();
  9478. // Write the file position.
  9479. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9480. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9481. for (uint8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9482. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9483. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9484. // Scale the z value to 1u resolution.
  9485. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9486. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9487. }
  9488. // Write the _final_ Z position and motor microstep counter (unused).
  9489. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9490. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9491. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9492. // Store the current position.
  9493. if (pos_invalid)
  9494. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), X_COORD_INVALID);
  9495. else
  9496. {
  9497. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9498. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9499. }
  9500. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9501. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9502. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9503. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9504. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9505. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9506. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9507. #if EXTRUDERS > 1
  9508. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9509. #if EXTRUDERS > 2
  9510. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9511. #endif
  9512. #endif
  9513. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9514. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9515. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9516. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9517. // Store the saved target
  9518. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9519. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9520. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9521. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9522. #ifdef LIN_ADVANCE
  9523. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9524. #endif
  9525. // Finaly store the "power outage" flag.
  9526. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9527. // Increment power failure counter
  9528. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9529. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9530. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9531. WRITE(BEEPER,HIGH);
  9532. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9533. poweron_z();
  9534. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9535. plan_buffer_line_curposXYZE(500);
  9536. st_synchronize();
  9537. wdt_enable(WDTO_1S);
  9538. while(1);
  9539. }
  9540. void uvlo_tiny()
  9541. {
  9542. unsigned long time_start = _millis();
  9543. // Conserve power as soon as possible.
  9544. disable_x();
  9545. disable_y();
  9546. disable_e0();
  9547. #ifdef TMC2130
  9548. tmc2130_set_current_h(Z_AXIS, 20);
  9549. tmc2130_set_current_r(Z_AXIS, 20);
  9550. #endif //TMC2130
  9551. // Stop all heaters
  9552. setAllTargetHotends(0);
  9553. setTargetBed(0);
  9554. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9555. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9556. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9557. // Disable MBL (if not already) to work with physical coordinates.
  9558. mbl.active = false;
  9559. planner_abort_hard();
  9560. // Allow for small roundoffs to be ignored
  9561. if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9562. {
  9563. // Clean the input command queue, inhibit serial processing using saved_printing
  9564. cmdqueue_reset();
  9565. card.sdprinting = false;
  9566. saved_printing = true;
  9567. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9568. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9569. sei();
  9570. // The axis was moved: adjust Z as done on a regular UVLO.
  9571. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9572. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9573. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9574. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9575. + UVLO_TINY_Z_AXIS_SHIFT;
  9576. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9577. st_synchronize();
  9578. poweroff_z();
  9579. // Update Z position
  9580. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9581. // Update the _final_ Z motor microstep counter (unused).
  9582. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9583. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9584. }
  9585. // Update the the "power outage" flag.
  9586. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9587. // Increment power failure counter
  9588. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9589. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9590. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9591. uvlo_drain_reset();
  9592. }
  9593. #endif //UVLO_SUPPORT
  9594. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9595. void setup_fan_interrupt() {
  9596. //INT7
  9597. DDRE &= ~(1 << 7); //input pin
  9598. PORTE &= ~(1 << 7); //no internal pull-up
  9599. //start with sensing rising edge
  9600. EICRB &= ~(1 << 6);
  9601. EICRB |= (1 << 7);
  9602. //enable INT7 interrupt
  9603. EIMSK |= (1 << 7);
  9604. }
  9605. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9606. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9607. ISR(INT7_vect) {
  9608. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9609. #ifdef FAN_SOFT_PWM
  9610. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9611. #else //FAN_SOFT_PWM
  9612. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9613. #endif //FAN_SOFT_PWM
  9614. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9615. t_fan_rising_edge = millis_nc();
  9616. }
  9617. else { //interrupt was triggered by falling edge
  9618. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9619. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9620. }
  9621. }
  9622. EICRB ^= (1 << 6); //change edge
  9623. }
  9624. #endif
  9625. #ifdef UVLO_SUPPORT
  9626. void setup_uvlo_interrupt() {
  9627. DDRE &= ~(1 << 4); //input pin
  9628. PORTE &= ~(1 << 4); //no internal pull-up
  9629. // sensing falling edge
  9630. EICRB |= (1 << 0);
  9631. EICRB &= ~(1 << 1);
  9632. // enable INT4 interrupt
  9633. EIMSK |= (1 << 4);
  9634. // check if power was lost before we armed the interrupt
  9635. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9636. {
  9637. SERIAL_ECHOLNPGM("INT4");
  9638. uvlo_drain_reset();
  9639. }
  9640. }
  9641. ISR(INT4_vect) {
  9642. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9643. SERIAL_ECHOLNPGM("INT4");
  9644. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9645. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9646. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9647. }
  9648. void recover_print(uint8_t automatic) {
  9649. char cmd[30];
  9650. lcd_update_enable(true);
  9651. lcd_update(2);
  9652. lcd_setstatuspgm(_i("Recovering print"));////MSG_RECOVERING_PRINT c=20
  9653. // Recover position, temperatures and extrude_multipliers
  9654. bool mbl_was_active = recover_machine_state_after_power_panic();
  9655. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9656. // and second also so one may remove the excess priming material.
  9657. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9658. {
  9659. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9660. enquecommand(cmd);
  9661. }
  9662. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9663. // transformation status. G28 will not touch Z when MBL is off.
  9664. enquecommand_P(PSTR("G28 X Y"));
  9665. // Set the target bed and nozzle temperatures and wait.
  9666. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9667. enquecommand(cmd);
  9668. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9669. enquecommand(cmd);
  9670. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9671. enquecommand(cmd);
  9672. enquecommand_P(PSTR("M83")); //E axis relative mode
  9673. // If not automatically recoreverd (long power loss)
  9674. if(automatic == 0){
  9675. //Extrude some filament to stabilize the pressure
  9676. enquecommand_P(PSTR("G1 E5 F120"));
  9677. // Retract to be consistent with a short pause
  9678. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9679. enquecommand(cmd);
  9680. }
  9681. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9682. // Restart the print.
  9683. restore_print_from_eeprom(mbl_was_active);
  9684. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9685. }
  9686. bool recover_machine_state_after_power_panic()
  9687. {
  9688. // 1) Preset some dummy values for the XY axes
  9689. current_position[X_AXIS] = 0;
  9690. current_position[Y_AXIS] = 0;
  9691. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9692. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9693. bool mbl_was_active = false;
  9694. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9695. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9696. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9697. // Scale the z value to 10u resolution.
  9698. int16_t v;
  9699. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9700. if (v != 0)
  9701. mbl_was_active = true;
  9702. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9703. }
  9704. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9705. // The current position after power panic is moved to the next closest 0th full step.
  9706. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9707. // Recover last E axis position
  9708. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9709. // 3) Initialize the logical to physical coordinate system transformation.
  9710. world2machine_initialize();
  9711. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9712. // print_mesh_bed_leveling_table();
  9713. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9714. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9715. babystep_load();
  9716. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9717. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9718. clamp_to_software_endstops(current_position);
  9719. set_destination_to_current();
  9720. plan_set_position_curposXYZE();
  9721. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9722. print_world_coordinates();
  9723. // 6) Power up the Z motors, mark their positions as known.
  9724. axis_known_position[Z_AXIS] = true;
  9725. enable_z();
  9726. // 7) Recover the target temperatures.
  9727. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9728. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9729. // 8) Recover extruder multipilers
  9730. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9731. #if EXTRUDERS > 1
  9732. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9733. #if EXTRUDERS > 2
  9734. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9735. #endif
  9736. #endif
  9737. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9738. // 9) Recover the saved target
  9739. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9740. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9741. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9742. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9743. #ifdef LIN_ADVANCE
  9744. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9745. #endif
  9746. return mbl_was_active;
  9747. }
  9748. void restore_print_from_eeprom(bool mbl_was_active) {
  9749. int feedrate_rec;
  9750. int feedmultiply_rec;
  9751. uint8_t fan_speed_rec;
  9752. char cmd[48];
  9753. char filename[13];
  9754. uint8_t depth = 0;
  9755. char dir_name[9];
  9756. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9757. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9758. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9759. SERIAL_ECHOPGM("Feedrate:");
  9760. MYSERIAL.print(feedrate_rec);
  9761. SERIAL_ECHOPGM(", feedmultiply:");
  9762. MYSERIAL.println(feedmultiply_rec);
  9763. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9764. MYSERIAL.println(int(depth));
  9765. for (uint8_t i = 0; i < depth; i++) {
  9766. for (uint8_t j = 0; j < 8; j++) {
  9767. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9768. }
  9769. dir_name[8] = '\0';
  9770. MYSERIAL.println(dir_name);
  9771. // strcpy(card.dir_names[i], dir_name);
  9772. card.chdir(dir_name, false);
  9773. }
  9774. for (uint8_t i = 0; i < 8; i++) {
  9775. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9776. }
  9777. filename[8] = '\0';
  9778. MYSERIAL.print(filename);
  9779. strcat_P(filename, PSTR(".gco"));
  9780. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9781. enquecommand(cmd);
  9782. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9783. SERIAL_ECHOPGM("Position read from eeprom:");
  9784. MYSERIAL.println(position);
  9785. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9786. // without shifting Z along the way. This requires performing the move without mbl.
  9787. float pos_x = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9788. float pos_y = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9789. if (pos_x != X_COORD_INVALID)
  9790. {
  9791. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"), pos_x, pos_y);
  9792. enquecommand(cmd);
  9793. }
  9794. // Enable MBL and switch to logical positioning
  9795. if (mbl_was_active)
  9796. enquecommand_P(PSTR("PRUSA MBL V1"));
  9797. // Move the Z axis down to the print, in logical coordinates.
  9798. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9799. enquecommand(cmd);
  9800. // Restore acceleration settings
  9801. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9802. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9803. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9804. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9805. enquecommand(cmd);
  9806. // Unretract.
  9807. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9808. enquecommand(cmd);
  9809. // Recover final E axis position and mode
  9810. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9811. sprintf_P(cmd, PSTR("G92 E%6.3f"), pos_e);
  9812. enquecommand(cmd);
  9813. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9814. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9815. // Set the feedrates saved at the power panic.
  9816. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9817. enquecommand(cmd);
  9818. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9819. enquecommand(cmd);
  9820. // Set the fan speed saved at the power panic.
  9821. strcpy_P(cmd, PSTR("M106 S"));
  9822. strcat(cmd, itostr3(int(fan_speed_rec)));
  9823. enquecommand(cmd);
  9824. // Set a position in the file.
  9825. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9826. enquecommand(cmd);
  9827. enquecommand_P(PSTR("G4 S0"));
  9828. enquecommand_P(PSTR("PRUSA uvlo"));
  9829. }
  9830. #endif //UVLO_SUPPORT
  9831. //! @brief Immediately stop print moves
  9832. //!
  9833. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9834. //! If printing from sd card, position in file is saved.
  9835. //! If printing from USB, line number is saved.
  9836. //!
  9837. //! @param z_move
  9838. //! @param e_move
  9839. void stop_and_save_print_to_ram(float z_move, float e_move)
  9840. {
  9841. if (saved_printing) return;
  9842. #if 0
  9843. unsigned char nplanner_blocks;
  9844. #endif
  9845. unsigned char nlines;
  9846. uint16_t sdlen_planner;
  9847. uint16_t sdlen_cmdqueue;
  9848. cli();
  9849. if (card.sdprinting) {
  9850. #if 0
  9851. nplanner_blocks = number_of_blocks();
  9852. #endif
  9853. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9854. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9855. saved_sdpos -= sdlen_planner;
  9856. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9857. saved_sdpos -= sdlen_cmdqueue;
  9858. saved_printing_type = PRINTING_TYPE_SD;
  9859. }
  9860. else if (usb_timer.running()) { //reuse saved_sdpos for storing line number
  9861. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9862. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9863. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9864. saved_sdpos -= nlines;
  9865. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9866. saved_printing_type = PRINTING_TYPE_USB;
  9867. }
  9868. else {
  9869. saved_printing_type = PRINTING_TYPE_NONE;
  9870. //not sd printing nor usb printing
  9871. }
  9872. #if 0
  9873. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9874. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9875. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9876. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9877. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9878. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9879. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9880. {
  9881. card.setIndex(saved_sdpos);
  9882. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9883. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9884. MYSERIAL.print(char(card.get()));
  9885. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9886. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9887. MYSERIAL.print(char(card.get()));
  9888. SERIAL_ECHOLNPGM("End of command buffer");
  9889. }
  9890. {
  9891. // Print the content of the planner buffer, line by line:
  9892. card.setIndex(saved_sdpos);
  9893. int8_t iline = 0;
  9894. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9895. SERIAL_ECHOPGM("Planner line (from file): ");
  9896. MYSERIAL.print(int(iline), DEC);
  9897. SERIAL_ECHOPGM(", length: ");
  9898. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9899. SERIAL_ECHOPGM(", steps: (");
  9900. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9901. SERIAL_ECHOPGM(",");
  9902. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9903. SERIAL_ECHOPGM(",");
  9904. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9905. SERIAL_ECHOPGM(",");
  9906. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9907. SERIAL_ECHOPGM("), events: ");
  9908. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9909. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9910. MYSERIAL.print(char(card.get()));
  9911. }
  9912. }
  9913. {
  9914. // Print the content of the command buffer, line by line:
  9915. int8_t iline = 0;
  9916. union {
  9917. struct {
  9918. char lo;
  9919. char hi;
  9920. } lohi;
  9921. uint16_t value;
  9922. } sdlen_single;
  9923. int _bufindr = bufindr;
  9924. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9925. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9926. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9927. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9928. }
  9929. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9930. MYSERIAL.print(int(iline), DEC);
  9931. SERIAL_ECHOPGM(", type: ");
  9932. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9933. SERIAL_ECHOPGM(", len: ");
  9934. MYSERIAL.println(sdlen_single.value, DEC);
  9935. // Print the content of the buffer line.
  9936. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9937. SERIAL_ECHOPGM("Buffer line (from file): ");
  9938. MYSERIAL.println(int(iline), DEC);
  9939. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9940. MYSERIAL.print(char(card.get()));
  9941. if (-- _buflen == 0)
  9942. break;
  9943. // First skip the current command ID and iterate up to the end of the string.
  9944. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9945. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9946. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9947. // If the end of the buffer was empty,
  9948. if (_bufindr == sizeof(cmdbuffer)) {
  9949. // skip to the start and find the nonzero command.
  9950. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9951. }
  9952. }
  9953. }
  9954. #endif
  9955. // save the global state at planning time
  9956. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9957. if (current_block && !pos_invalid)
  9958. {
  9959. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9960. saved_feedrate2 = current_block->gcode_feedrate;
  9961. }
  9962. else
  9963. {
  9964. saved_target[0] = SAVED_TARGET_UNSET;
  9965. saved_feedrate2 = feedrate;
  9966. }
  9967. planner_abort_hard(); //abort printing
  9968. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9969. if (pos_invalid) saved_pos[X_AXIS] = X_COORD_INVALID;
  9970. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9971. saved_active_extruder = active_extruder; //save active_extruder
  9972. saved_extruder_temperature = degTargetHotend(active_extruder);
  9973. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9974. saved_fanSpeed = fanSpeed;
  9975. cmdqueue_reset(); //empty cmdqueue
  9976. card.sdprinting = false;
  9977. // card.closefile();
  9978. saved_printing = true;
  9979. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9980. st_reset_timer();
  9981. sei();
  9982. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9983. #if 1
  9984. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9985. // the caller can continue processing. This is used during powerpanic to save the state as we
  9986. // move away from the print.
  9987. char buf[48];
  9988. if(e_move)
  9989. {
  9990. // First unretract (relative extrusion)
  9991. if(!saved_extruder_relative_mode){
  9992. enquecommand(PSTR("M83"), true);
  9993. }
  9994. //retract 45mm/s
  9995. // A single sprintf may not be faster, but is definitely 20B shorter
  9996. // than a sequence of commands building the string piece by piece
  9997. // A snprintf would have been a safer call, but since it is not used
  9998. // in the whole program, its implementation would bring more bytes to the total size
  9999. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  10000. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  10001. enquecommand(buf, false);
  10002. }
  10003. if(z_move)
  10004. {
  10005. // Then lift Z axis
  10006. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  10007. enquecommand(buf, false);
  10008. }
  10009. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  10010. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  10011. repeatcommand_front();
  10012. #else
  10013. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  10014. st_synchronize(); //wait moving
  10015. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10016. set_destination_to_current();
  10017. #endif
  10018. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10019. }
  10020. }
  10021. //! @brief Restore print from ram
  10022. //!
  10023. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  10024. //! print fan speed, waits for extruder temperature restore, then restores
  10025. //! position and continues print moves.
  10026. //!
  10027. //! Internally lcd_update() is called by wait_for_heater().
  10028. //!
  10029. //! @param e_move
  10030. void restore_print_from_ram_and_continue(float e_move)
  10031. {
  10032. if (!saved_printing) return;
  10033. #ifdef FANCHECK
  10034. // Do not allow resume printing if fans are still not ok
  10035. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10036. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10037. #endif
  10038. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  10039. // current_position[axis] = st_get_position_mm(axis);
  10040. active_extruder = saved_active_extruder; //restore active_extruder
  10041. fanSpeed = saved_fanSpeed;
  10042. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10043. {
  10044. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10045. heating_status = HeatingStatus::EXTRUDER_HEATING;
  10046. wait_for_heater(_millis(), saved_active_extruder);
  10047. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  10048. }
  10049. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10050. float e = saved_pos[E_AXIS] - e_move;
  10051. plan_set_e_position(e);
  10052. #ifdef FANCHECK
  10053. fans_check_enabled = false;
  10054. #endif
  10055. // do not restore XY for commands that do not require that
  10056. if (saved_pos[X_AXIS] == X_COORD_INVALID)
  10057. {
  10058. saved_pos[X_AXIS] = current_position[X_AXIS];
  10059. saved_pos[Y_AXIS] = current_position[Y_AXIS];
  10060. }
  10061. //first move print head in XY to the saved position:
  10062. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10063. //then move Z
  10064. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10065. //and finaly unretract (35mm/s)
  10066. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10067. st_synchronize();
  10068. #ifdef FANCHECK
  10069. fans_check_enabled = true;
  10070. #endif
  10071. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10072. feedrate = saved_feedrate2;
  10073. feedmultiply = saved_feedmultiply2;
  10074. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10075. set_destination_to_current();
  10076. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10077. card.setIndex(saved_sdpos);
  10078. sdpos_atomic = saved_sdpos;
  10079. card.sdprinting = true;
  10080. }
  10081. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10082. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10083. serial_count = 0;
  10084. FlushSerialRequestResend();
  10085. }
  10086. else {
  10087. //not sd printing nor usb printing
  10088. }
  10089. lcd_setstatuspgm(MSG_WELCOME);
  10090. saved_printing_type = PRINTING_TYPE_NONE;
  10091. saved_printing = false;
  10092. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10093. }
  10094. // Cancel the state related to a currently saved print
  10095. void cancel_saved_printing()
  10096. {
  10097. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10098. saved_target[0] = SAVED_TARGET_UNSET;
  10099. saved_printing_type = PRINTING_TYPE_NONE;
  10100. saved_printing = false;
  10101. }
  10102. void print_world_coordinates()
  10103. {
  10104. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10105. }
  10106. void print_physical_coordinates()
  10107. {
  10108. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10109. }
  10110. void print_mesh_bed_leveling_table()
  10111. {
  10112. SERIAL_ECHOPGM("mesh bed leveling: ");
  10113. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10114. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10115. MYSERIAL.print(mbl.z_values[y][x], 3);
  10116. SERIAL_ECHO(' ');
  10117. }
  10118. SERIAL_ECHOLN();
  10119. }
  10120. uint8_t calc_percent_done()
  10121. {
  10122. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10123. uint8_t percent_done = 0;
  10124. #ifdef TMC2130
  10125. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10126. {
  10127. percent_done = print_percent_done_normal;
  10128. }
  10129. else if (print_percent_done_silent <= 100)
  10130. {
  10131. percent_done = print_percent_done_silent;
  10132. }
  10133. #else
  10134. if (print_percent_done_normal <= 100)
  10135. {
  10136. percent_done = print_percent_done_normal;
  10137. }
  10138. #endif //TMC2130
  10139. else
  10140. {
  10141. percent_done = card.percentDone();
  10142. }
  10143. return percent_done;
  10144. }
  10145. static void print_time_remaining_init()
  10146. {
  10147. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10148. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10149. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10150. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10151. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10152. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10153. }
  10154. void load_filament_final_feed()
  10155. {
  10156. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10157. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10158. }
  10159. //! @brief Wait for user to check the state
  10160. //! @par nozzle_temp nozzle temperature to load filament
  10161. void M600_check_state(float nozzle_temp)
  10162. {
  10163. lcd_change_fil_state = 0;
  10164. while (lcd_change_fil_state != 1)
  10165. {
  10166. lcd_change_fil_state = 0;
  10167. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10168. lcd_alright();
  10169. KEEPALIVE_STATE(IN_HANDLER);
  10170. switch(lcd_change_fil_state)
  10171. {
  10172. // Filament failed to load so load it again
  10173. case 2:
  10174. if (mmu_enabled)
  10175. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10176. else
  10177. M600_load_filament_movements();
  10178. break;
  10179. // Filament loaded properly but color is not clear
  10180. case 3:
  10181. st_synchronize();
  10182. load_filament_final_feed();
  10183. lcd_loading_color();
  10184. st_synchronize();
  10185. break;
  10186. // Everything good
  10187. default:
  10188. lcd_change_success();
  10189. break;
  10190. }
  10191. }
  10192. }
  10193. //! @brief Wait for user action
  10194. //!
  10195. //! Beep, manage nozzle heater and wait for user to start unload filament
  10196. //! If times out, active extruder temperature is set to 0.
  10197. //!
  10198. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10199. void M600_wait_for_user(float HotendTempBckp) {
  10200. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10201. int counterBeep = 0;
  10202. unsigned long waiting_start_time = _millis();
  10203. uint8_t wait_for_user_state = 0;
  10204. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10205. bool bFirst=true;
  10206. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10207. manage_heater();
  10208. manage_inactivity(true);
  10209. #if BEEPER > 0
  10210. if (counterBeep == 500) {
  10211. counterBeep = 0;
  10212. }
  10213. SET_OUTPUT(BEEPER);
  10214. if (counterBeep == 0) {
  10215. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10216. {
  10217. bFirst=false;
  10218. WRITE(BEEPER, HIGH);
  10219. }
  10220. }
  10221. if (counterBeep == 20) {
  10222. WRITE(BEEPER, LOW);
  10223. }
  10224. counterBeep++;
  10225. #endif //BEEPER > 0
  10226. switch (wait_for_user_state) {
  10227. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10228. delay_keep_alive(4);
  10229. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10230. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10231. wait_for_user_state = 1;
  10232. setAllTargetHotends(0);
  10233. st_synchronize();
  10234. disable_e0();
  10235. disable_e1();
  10236. disable_e2();
  10237. }
  10238. break;
  10239. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10240. delay_keep_alive(4);
  10241. if (lcd_clicked()) {
  10242. setTargetHotend(HotendTempBckp, active_extruder);
  10243. lcd_wait_for_heater();
  10244. wait_for_user_state = 2;
  10245. }
  10246. break;
  10247. case 2: //waiting for nozzle to reach target temperature
  10248. if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10249. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10250. waiting_start_time = _millis();
  10251. wait_for_user_state = 0;
  10252. }
  10253. else {
  10254. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10255. lcd_set_cursor(1, 4);
  10256. lcd_printf_P(PSTR("%3d"), (int16_t)degHotend(active_extruder));
  10257. }
  10258. break;
  10259. }
  10260. }
  10261. WRITE(BEEPER, LOW);
  10262. }
  10263. void M600_load_filament_movements()
  10264. {
  10265. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED;
  10266. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10267. load_filament_final_feed();
  10268. lcd_loading_filament();
  10269. st_synchronize();
  10270. }
  10271. void M600_load_filament() {
  10272. //load filament for single material and MMU
  10273. lcd_wait_interact();
  10274. //load_filament_time = _millis();
  10275. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10276. #ifdef PAT9125
  10277. fsensor_autoload_check_start();
  10278. #endif //PAT9125
  10279. while(!lcd_clicked())
  10280. {
  10281. manage_heater();
  10282. manage_inactivity(true);
  10283. #ifdef FILAMENT_SENSOR
  10284. if (fsensor_check_autoload())
  10285. {
  10286. Sound_MakeCustom(50,1000,false);
  10287. break;
  10288. }
  10289. #endif //FILAMENT_SENSOR
  10290. }
  10291. #ifdef PAT9125
  10292. fsensor_autoload_check_stop();
  10293. #endif //PAT9125
  10294. KEEPALIVE_STATE(IN_HANDLER);
  10295. #ifdef FSENSOR_QUALITY
  10296. fsensor_oq_meassure_start(70);
  10297. #endif //FSENSOR_QUALITY
  10298. M600_load_filament_movements();
  10299. Sound_MakeCustom(50,1000,false);
  10300. #ifdef FSENSOR_QUALITY
  10301. fsensor_oq_meassure_stop();
  10302. if (!fsensor_oq_result())
  10303. {
  10304. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10305. lcd_update_enable(true);
  10306. lcd_update(2);
  10307. if (disable)
  10308. fsensor_disable();
  10309. }
  10310. #endif //FSENSOR_QUALITY
  10311. lcd_update_enable(false);
  10312. }
  10313. //! @brief Wait for click
  10314. //!
  10315. //! Set
  10316. void marlin_wait_for_click()
  10317. {
  10318. int8_t busy_state_backup = busy_state;
  10319. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10320. lcd_consume_click();
  10321. while(!lcd_clicked())
  10322. {
  10323. manage_heater();
  10324. manage_inactivity(true);
  10325. lcd_update(0);
  10326. }
  10327. KEEPALIVE_STATE(busy_state_backup);
  10328. }
  10329. #define FIL_LOAD_LENGTH 60
  10330. #ifdef PSU_Delta
  10331. bool bEnableForce_z;
  10332. void init_force_z()
  10333. {
  10334. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10335. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10336. disable_force_z();
  10337. }
  10338. void check_force_z()
  10339. {
  10340. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10341. init_force_z(); // causes enforced switching into disable-state
  10342. }
  10343. void disable_force_z()
  10344. {
  10345. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10346. bEnableForce_z=false;
  10347. // switching to silent mode
  10348. #ifdef TMC2130
  10349. tmc2130_mode=TMC2130_MODE_SILENT;
  10350. update_mode_profile();
  10351. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10352. #endif // TMC2130
  10353. }
  10354. void enable_force_z()
  10355. {
  10356. if(bEnableForce_z)
  10357. return; // motor already enabled (may be ;-p )
  10358. bEnableForce_z=true;
  10359. // mode recovering
  10360. #ifdef TMC2130
  10361. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10362. update_mode_profile();
  10363. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10364. #endif // TMC2130
  10365. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10366. }
  10367. #endif // PSU_Delta