Marlin_main.cpp 179 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. float homing_feedrate[] = HOMING_FEEDRATE;
  199. // Currently only the extruder axis may be switched to a relative mode.
  200. // Other axes are always absolute or relative based on the common relative_mode flag.
  201. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  202. int feedmultiply=100; //100->1 200->2
  203. int saved_feedmultiply;
  204. int extrudemultiply=100; //100->1 200->2
  205. int extruder_multiply[EXTRUDERS] = {100
  206. #if EXTRUDERS > 1
  207. , 100
  208. #if EXTRUDERS > 2
  209. , 100
  210. #endif
  211. #endif
  212. };
  213. bool is_usb_printing = false;
  214. unsigned int usb_printing_counter;
  215. int lcd_change_fil_state = 0;
  216. int feedmultiplyBckp = 100;
  217. unsigned char lang_selected = 0;
  218. unsigned long total_filament_used;
  219. unsigned int heating_status;
  220. unsigned int heating_status_counter;
  221. bool custom_message;
  222. unsigned int custom_message_type;
  223. unsigned int custom_message_state;
  224. bool volumetric_enabled = false;
  225. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  226. #if EXTRUDERS > 1
  227. , DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 2
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #endif
  231. #endif
  232. };
  233. float volumetric_multiplier[EXTRUDERS] = {1.0
  234. #if EXTRUDERS > 1
  235. , 1.0
  236. #if EXTRUDERS > 2
  237. , 1.0
  238. #endif
  239. #endif
  240. };
  241. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  242. float add_homing[3]={0,0,0};
  243. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  244. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  245. bool axis_known_position[3] = {false, false, false};
  246. float zprobe_zoffset;
  247. // Extruder offset
  248. #if EXTRUDERS > 1
  249. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  250. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  251. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed=0;
  258. #ifdef FWRETRACT
  259. bool autoretract_enabled=false;
  260. bool retracted[EXTRUDERS]={false
  261. #if EXTRUDERS > 1
  262. , false
  263. #if EXTRUDERS > 2
  264. , false
  265. #endif
  266. #endif
  267. };
  268. bool retracted_swap[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. float retract_length = RETRACT_LENGTH;
  277. float retract_length_swap = RETRACT_LENGTH_SWAP;
  278. float retract_feedrate = RETRACT_FEEDRATE;
  279. float retract_zlift = RETRACT_ZLIFT;
  280. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  281. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  282. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  283. #endif
  284. #ifdef ULTIPANEL
  285. #ifdef PS_DEFAULT_OFF
  286. bool powersupply = false;
  287. #else
  288. bool powersupply = true;
  289. #endif
  290. #endif
  291. bool cancel_heatup = false ;
  292. #ifdef FILAMENT_SENSOR
  293. //Variables for Filament Sensor input
  294. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  295. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  296. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  297. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  298. int delay_index1=0; //index into ring buffer
  299. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  300. float delay_dist=0; //delay distance counter
  301. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  302. #endif
  303. const char errormagic[] PROGMEM = "Error:";
  304. const char echomagic[] PROGMEM = "echo:";
  305. //===========================================================================
  306. //=============================Private Variables=============================
  307. //===========================================================================
  308. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  309. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  310. static float delta[3] = {0.0, 0.0, 0.0};
  311. // For tracing an arc
  312. static float offset[3] = {0.0, 0.0, 0.0};
  313. static bool home_all_axis = true;
  314. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  315. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  316. // Determines Absolute or Relative Coordinates.
  317. // Also there is bool axis_relative_modes[] per axis flag.
  318. static bool relative_mode = false;
  319. // String circular buffer. Commands may be pushed to the buffer from both sides:
  320. // Chained commands will be pushed to the front, interactive (from LCD menu)
  321. // and printing commands (from serial line or from SD card) are pushed to the tail.
  322. // First character of each entry indicates the type of the entry:
  323. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  324. // Command in cmdbuffer was sent over USB.
  325. #define CMDBUFFER_CURRENT_TYPE_USB 1
  326. // Command in cmdbuffer was read from SDCARD.
  327. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  328. // Command in cmdbuffer was generated by the UI.
  329. #define CMDBUFFER_CURRENT_TYPE_UI 3
  330. // Command in cmdbuffer was generated by another G-code.
  331. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  332. // How much space to reserve for the chained commands
  333. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  334. // which are pushed to the front of the queue?
  335. // Maximum 5 commands of max length 20 + null terminator.
  336. #define CMDBUFFER_RESERVE_FRONT (5*21)
  337. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  338. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  339. // Head of the circular buffer, where to read.
  340. static int bufindr = 0;
  341. // Tail of the buffer, where to write.
  342. static int bufindw = 0;
  343. // Number of lines in cmdbuffer.
  344. static int buflen = 0;
  345. // Flag for processing the current command inside the main Arduino loop().
  346. // If a new command was pushed to the front of a command buffer while
  347. // processing another command, this replaces the command on the top.
  348. // Therefore don't remove the command from the queue in the loop() function.
  349. static bool cmdbuffer_front_already_processed = false;
  350. // Type of a command, which is to be executed right now.
  351. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  352. // String of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  354. // Enable debugging of the command buffer.
  355. // Debugging information will be sent to serial line.
  356. // #define CMDBUFFER_DEBUG
  357. static int serial_count = 0;
  358. static boolean comment_mode = false;
  359. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  360. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  361. //static float tt = 0;
  362. //static float bt = 0;
  363. //Inactivity shutdown variables
  364. static unsigned long previous_millis_cmd = 0;
  365. unsigned long max_inactive_time = 0;
  366. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  367. unsigned long starttime=0;
  368. unsigned long stoptime=0;
  369. unsigned long _usb_timer = 0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. // Pop the currently processed command from the queue.
  412. // It is expected, that there is at least one command in the queue.
  413. bool cmdqueue_pop_front()
  414. {
  415. if (buflen > 0) {
  416. #ifdef CMDBUFFER_DEBUG
  417. SERIAL_ECHOPGM("Dequeing ");
  418. SERIAL_ECHO(cmdbuffer+bufindr+1);
  419. SERIAL_ECHOLNPGM("");
  420. SERIAL_ECHOPGM("Old indices: buflen ");
  421. SERIAL_ECHO(buflen);
  422. SERIAL_ECHOPGM(", bufindr ");
  423. SERIAL_ECHO(bufindr);
  424. SERIAL_ECHOPGM(", bufindw ");
  425. SERIAL_ECHO(bufindw);
  426. SERIAL_ECHOPGM(", serial_count ");
  427. SERIAL_ECHO(serial_count);
  428. SERIAL_ECHOPGM(", bufsize ");
  429. SERIAL_ECHO(sizeof(cmdbuffer));
  430. SERIAL_ECHOLNPGM("");
  431. #endif /* CMDBUFFER_DEBUG */
  432. if (-- buflen == 0) {
  433. // Empty buffer.
  434. if (serial_count == 0)
  435. // No serial communication is pending. Reset both pointers to zero.
  436. bufindw = 0;
  437. bufindr = bufindw;
  438. } else {
  439. // There is at least one ready line in the buffer.
  440. // First skip the current command ID and iterate up to the end of the string.
  441. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  442. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  443. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  444. // If the end of the buffer was empty,
  445. if (bufindr == sizeof(cmdbuffer)) {
  446. // skip to the start and find the nonzero command.
  447. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  448. }
  449. #ifdef CMDBUFFER_DEBUG
  450. SERIAL_ECHOPGM("New indices: buflen ");
  451. SERIAL_ECHO(buflen);
  452. SERIAL_ECHOPGM(", bufindr ");
  453. SERIAL_ECHO(bufindr);
  454. SERIAL_ECHOPGM(", bufindw ");
  455. SERIAL_ECHO(bufindw);
  456. SERIAL_ECHOPGM(", serial_count ");
  457. SERIAL_ECHO(serial_count);
  458. SERIAL_ECHOPGM(" new command on the top: ");
  459. SERIAL_ECHO(cmdbuffer+bufindr+1);
  460. SERIAL_ECHOLNPGM("");
  461. #endif /* CMDBUFFER_DEBUG */
  462. }
  463. return true;
  464. }
  465. return false;
  466. }
  467. void cmdqueue_reset()
  468. {
  469. while (cmdqueue_pop_front()) ;
  470. }
  471. // How long a string could be pushed to the front of the command queue?
  472. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  473. // len_asked does not contain the zero terminator size.
  474. bool cmdqueue_could_enqueue_front(int len_asked)
  475. {
  476. // MAX_CMD_SIZE has to accommodate the zero terminator.
  477. if (len_asked >= MAX_CMD_SIZE)
  478. return false;
  479. // Remove the currently processed command from the queue.
  480. if (! cmdbuffer_front_already_processed) {
  481. cmdqueue_pop_front();
  482. cmdbuffer_front_already_processed = true;
  483. }
  484. if (bufindr == bufindw && buflen > 0)
  485. // Full buffer.
  486. return false;
  487. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  488. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  489. if (bufindw < bufindr) {
  490. int bufindr_new = bufindr - len_asked - 2;
  491. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  492. if (endw <= bufindr_new) {
  493. bufindr = bufindr_new;
  494. return true;
  495. }
  496. } else {
  497. // Otherwise the free space is split between the start and end.
  498. if (len_asked + 2 <= bufindr) {
  499. // Could fit at the start.
  500. bufindr -= len_asked + 2;
  501. return true;
  502. }
  503. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  504. if (endw <= bufindr_new) {
  505. memset(cmdbuffer, 0, bufindr);
  506. bufindr = bufindr_new;
  507. return true;
  508. }
  509. }
  510. return false;
  511. }
  512. // Could one enqueue a command of lenthg len_asked into the buffer,
  513. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  514. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  515. // len_asked does not contain the zero terminator size.
  516. bool cmdqueue_could_enqueue_back(int len_asked)
  517. {
  518. // MAX_CMD_SIZE has to accommodate the zero terminator.
  519. if (len_asked >= MAX_CMD_SIZE)
  520. return false;
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. if (serial_count > 0) {
  525. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  526. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  527. // serial data.
  528. // How much memory to reserve for the commands pushed to the front?
  529. // End of the queue, when pushing to the end.
  530. int endw = bufindw + len_asked + 2;
  531. if (bufindw < bufindr)
  532. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  533. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  534. // Otherwise the free space is split between the start and end.
  535. if (// Could one fit to the end, including the reserve?
  536. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  537. // Could one fit to the end, and the reserve to the start?
  538. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  539. return true;
  540. // Could one fit both to the start?
  541. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  542. // Mark the rest of the buffer as used.
  543. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  544. // and point to the start.
  545. bufindw = 0;
  546. return true;
  547. }
  548. } else {
  549. // How much memory to reserve for the commands pushed to the front?
  550. // End of the queue, when pushing to the end.
  551. int endw = bufindw + len_asked + 2;
  552. if (bufindw < bufindr)
  553. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  554. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  555. // Otherwise the free space is split between the start and end.
  556. if (// Could one fit to the end, including the reserve?
  557. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  558. // Could one fit to the end, and the reserve to the start?
  559. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  560. return true;
  561. // Could one fit both to the start?
  562. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  563. // Mark the rest of the buffer as used.
  564. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  565. // and point to the start.
  566. bufindw = 0;
  567. return true;
  568. }
  569. }
  570. return false;
  571. }
  572. #ifdef CMDBUFFER_DEBUG
  573. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  574. {
  575. SERIAL_ECHOPGM("Entry nr: ");
  576. SERIAL_ECHO(nr);
  577. SERIAL_ECHOPGM(", type: ");
  578. SERIAL_ECHO(int(*p));
  579. SERIAL_ECHOPGM(", cmd: ");
  580. SERIAL_ECHO(p+1);
  581. SERIAL_ECHOLNPGM("");
  582. }
  583. static void cmdqueue_dump_to_serial()
  584. {
  585. if (buflen == 0) {
  586. SERIAL_ECHOLNPGM("The command buffer is empty.");
  587. } else {
  588. SERIAL_ECHOPGM("Content of the buffer: entries ");
  589. SERIAL_ECHO(buflen);
  590. SERIAL_ECHOPGM(", indr ");
  591. SERIAL_ECHO(bufindr);
  592. SERIAL_ECHOPGM(", indw ");
  593. SERIAL_ECHO(bufindw);
  594. SERIAL_ECHOLNPGM("");
  595. int nr = 0;
  596. if (bufindr < bufindw) {
  597. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  598. cmdqueue_dump_to_serial_single_line(nr, p);
  599. // Skip the command.
  600. for (++p; *p != 0; ++ p);
  601. // Skip the gaps.
  602. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  603. }
  604. } else {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  611. }
  612. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  613. cmdqueue_dump_to_serial_single_line(nr, p);
  614. // Skip the command.
  615. for (++p; *p != 0; ++ p);
  616. // Skip the gaps.
  617. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  618. }
  619. }
  620. SERIAL_ECHOLNPGM("End of the buffer.");
  621. }
  622. }
  623. #endif /* CMDBUFFER_DEBUG */
  624. //adds an command to the main command buffer
  625. //thats really done in a non-safe way.
  626. //needs overworking someday
  627. // Currently the maximum length of a command piped through this function is around 20 characters
  628. void enquecommand(const char *cmd, bool from_progmem)
  629. {
  630. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  631. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  632. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  633. if (cmdqueue_could_enqueue_back(len)) {
  634. // This is dangerous if a mixing of serial and this happens
  635. // This may easily be tested: If serial_count > 0, we have a problem.
  636. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  637. if (from_progmem)
  638. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  639. else
  640. strcpy(cmdbuffer + bufindw + 1, cmd);
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_Enqueing);
  643. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  644. SERIAL_ECHOLNPGM("\"");
  645. bufindw += len + 2;
  646. if (bufindw == sizeof(cmdbuffer))
  647. bufindw = 0;
  648. ++ buflen;
  649. #ifdef CMDBUFFER_DEBUG
  650. cmdqueue_dump_to_serial();
  651. #endif /* CMDBUFFER_DEBUG */
  652. } else {
  653. SERIAL_ERROR_START;
  654. SERIAL_ECHORPGM(MSG_Enqueing);
  655. if (from_progmem)
  656. SERIAL_PROTOCOLRPGM(cmd);
  657. else
  658. SERIAL_ECHO(cmd);
  659. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. }
  664. }
  665. void enquecommand_front(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  669. if (cmdqueue_could_enqueue_front(len)) {
  670. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  671. if (from_progmem)
  672. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  673. else
  674. strcpy(cmdbuffer + bufindr + 1, cmd);
  675. ++ buflen;
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPGM("Enqueing to the front: \"");
  678. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  679. SERIAL_ECHOLNPGM("\"");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ERROR_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. // Mark the command at the top of the command queue as new.
  697. // Therefore it will not be removed from the queue.
  698. void repeatcommand_front()
  699. {
  700. cmdbuffer_front_already_processed = true;
  701. }
  702. void setup_killpin()
  703. {
  704. #if defined(KILL_PIN) && KILL_PIN > -1
  705. SET_INPUT(KILL_PIN);
  706. WRITE(KILL_PIN,HIGH);
  707. #endif
  708. }
  709. // Set home pin
  710. void setup_homepin(void)
  711. {
  712. #if defined(HOME_PIN) && HOME_PIN > -1
  713. SET_INPUT(HOME_PIN);
  714. WRITE(HOME_PIN,HIGH);
  715. #endif
  716. }
  717. void setup_photpin()
  718. {
  719. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  720. SET_OUTPUT(PHOTOGRAPH_PIN);
  721. WRITE(PHOTOGRAPH_PIN, LOW);
  722. #endif
  723. }
  724. void setup_powerhold()
  725. {
  726. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  727. SET_OUTPUT(SUICIDE_PIN);
  728. WRITE(SUICIDE_PIN, HIGH);
  729. #endif
  730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  731. SET_OUTPUT(PS_ON_PIN);
  732. #if defined(PS_DEFAULT_OFF)
  733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  734. #else
  735. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  736. #endif
  737. #endif
  738. }
  739. void suicide()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, LOW);
  744. #endif
  745. }
  746. void servo_init()
  747. {
  748. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  749. servos[0].attach(SERVO0_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  752. servos[1].attach(SERVO1_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  755. servos[2].attach(SERVO2_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  758. servos[3].attach(SERVO3_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 5)
  761. #error "TODO: enter initalisation code for more servos"
  762. #endif
  763. }
  764. static void lcd_language_menu();
  765. #ifdef MESH_BED_LEVELING
  766. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  767. #endif
  768. // "Setup" function is called by the Arduino framework on startup.
  769. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  770. // are initialized by the main() routine provided by the Arduino framework.
  771. void setup()
  772. {
  773. setup_killpin();
  774. setup_powerhold();
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++ i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  798. MCUSR=0;
  799. //SERIAL_ECHORPGM(MSG_MARLIN);
  800. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  801. #ifdef STRING_VERSION_CONFIG_H
  802. #ifdef STRING_CONFIG_H_AUTHOR
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  805. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  806. SERIAL_ECHORPGM(MSG_AUTHOR);
  807. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  808. SERIAL_ECHOPGM("Compiled: ");
  809. SERIAL_ECHOLNPGM(__DATE__);
  810. #endif
  811. #endif
  812. SERIAL_ECHO_START;
  813. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  814. SERIAL_ECHO(freeMemory());
  815. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  816. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  817. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  818. Config_RetrieveSettings();
  819. tp_init(); // Initialize temperature loop
  820. plan_init(); // Initialize planner;
  821. watchdog_init();
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. lcd_init();
  829. if (!READ(BTN_ENC))
  830. {
  831. _delay_ms(1000);
  832. if (!READ(BTN_ENC))
  833. {
  834. SET_OUTPUT(BEEPER);
  835. WRITE(BEEPER, HIGH);
  836. lcd_force_language_selection();
  837. farm_no = 0;
  838. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  839. farm_mode = false;
  840. while (!READ(BTN_ENC));
  841. WRITE(BEEPER, LOW);
  842. #ifdef MESH_BED_LEVELING
  843. _delay_ms(2000);
  844. if (!READ(BTN_ENC))
  845. {
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. _delay_ms(200);
  850. WRITE(BEEPER, HIGH);
  851. _delay_ms(100);
  852. WRITE(BEEPER, LOW);
  853. int _z = 0;
  854. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  855. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  856. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  857. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  858. }
  859. else
  860. {
  861. WRITE(BEEPER, HIGH);
  862. _delay_ms(100);
  863. WRITE(BEEPER, LOW);
  864. }
  865. #endif // mesh
  866. }
  867. }
  868. else
  869. {
  870. _delay_ms(1000); // wait 1sec to display the splash screen
  871. }
  872. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  873. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  874. #endif
  875. #ifdef DIGIPOT_I2C
  876. digipot_i2c_init();
  877. #endif
  878. setup_homepin();
  879. #if defined(Z_AXIS_ALWAYS_ON)
  880. enable_z();
  881. #endif
  882. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  883. if (farm_no > 0)
  884. {
  885. farm_mode = true;
  886. farm_no = farm_no;
  887. prusa_statistics(8);
  888. }
  889. else
  890. {
  891. farm_mode = false;
  892. farm_no = 0;
  893. }
  894. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  895. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  896. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  897. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  898. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  899. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  900. // where all the EEPROM entries are set to 0x0ff.
  901. // Once a firmware boots up, it forces at least a language selection, which changes
  902. // EEPROM_LANG to number lower than 0x0ff.
  903. // 1) Set a high power mode.
  904. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  905. }
  906. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  907. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  908. // is being written into the EEPROM, so the update procedure will be triggered only once.
  909. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  910. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  911. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  912. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  913. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  914. // Get the selected laugnage index before display update.
  915. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  916. if (lang_selected >= LANG_NUM)
  917. lang_selected = LANG_ID_DEFAULT; // Czech language
  918. // Show the message.
  919. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  920. lcd_update_enable(true);
  921. lcd_implementation_clear();
  922. }
  923. // Store the currently running firmware into an eeprom,
  924. // so the next time the firmware gets updated, it will know from which version it has been updated.
  925. update_current_firmware_version_to_eeprom();
  926. }
  927. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  928. // Before loop(), the setup() function is called by the main() routine.
  929. void loop()
  930. {
  931. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  932. {
  933. is_usb_printing = true;
  934. usb_printing_counter--;
  935. _usb_timer = millis();
  936. }
  937. if (usb_printing_counter == 0)
  938. {
  939. is_usb_printing = false;
  940. }
  941. get_command();
  942. #ifdef SDSUPPORT
  943. card.checkautostart(false);
  944. #endif
  945. if(buflen)
  946. {
  947. #ifdef SDSUPPORT
  948. if(card.saving)
  949. {
  950. // Saving a G-code file onto an SD-card is in progress.
  951. // Saving starts with M28, saving until M29 is seen.
  952. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  953. card.write_command(CMDBUFFER_CURRENT_STRING);
  954. if(card.logging)
  955. process_commands();
  956. else
  957. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  958. } else {
  959. card.closefile();
  960. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  961. }
  962. } else {
  963. process_commands();
  964. }
  965. #else
  966. process_commands();
  967. #endif //SDSUPPORT
  968. if (! cmdbuffer_front_already_processed)
  969. cmdqueue_pop_front();
  970. cmdbuffer_front_already_processed = false;
  971. }
  972. //check heater every n milliseconds
  973. manage_heater();
  974. manage_inactivity();
  975. checkHitEndstops();
  976. lcd_update();
  977. }
  978. void get_command()
  979. {
  980. // Test and reserve space for the new command string.
  981. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  982. return;
  983. while (MYSERIAL.available() > 0) {
  984. char serial_char = MYSERIAL.read();
  985. if (serial_char < 0)
  986. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  987. // and Marlin does not support such file names anyway.
  988. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  989. // to a hang-up of the print process from an SD card.
  990. continue;
  991. if(serial_char == '\n' ||
  992. serial_char == '\r' ||
  993. (serial_char == ':' && comment_mode == false) ||
  994. serial_count >= (MAX_CMD_SIZE - 1) )
  995. {
  996. if(!serial_count) { //if empty line
  997. comment_mode = false; //for new command
  998. return;
  999. }
  1000. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1001. if(!comment_mode){
  1002. comment_mode = false; //for new command
  1003. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1004. {
  1005. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1006. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1007. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1008. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1009. // M110 - set current line number.
  1010. // Line numbers not sent in succession.
  1011. SERIAL_ERROR_START;
  1012. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1013. SERIAL_ERRORLN(gcode_LastN);
  1014. //Serial.println(gcode_N);
  1015. FlushSerialRequestResend();
  1016. serial_count = 0;
  1017. return;
  1018. }
  1019. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1020. {
  1021. byte checksum = 0;
  1022. char *p = cmdbuffer+bufindw+1;
  1023. while (p != strchr_pointer)
  1024. checksum = checksum^(*p++);
  1025. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1026. SERIAL_ERROR_START;
  1027. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1028. SERIAL_ERRORLN(gcode_LastN);
  1029. FlushSerialRequestResend();
  1030. serial_count = 0;
  1031. return;
  1032. }
  1033. // If no errors, remove the checksum and continue parsing.
  1034. *strchr_pointer = 0;
  1035. }
  1036. else
  1037. {
  1038. SERIAL_ERROR_START;
  1039. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1040. SERIAL_ERRORLN(gcode_LastN);
  1041. FlushSerialRequestResend();
  1042. serial_count = 0;
  1043. return;
  1044. }
  1045. gcode_LastN = gcode_N;
  1046. //if no errors, continue parsing
  1047. } // end of 'N' command
  1048. else // if we don't receive 'N' but still see '*'
  1049. {
  1050. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1051. {
  1052. SERIAL_ERROR_START;
  1053. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1054. SERIAL_ERRORLN(gcode_LastN);
  1055. serial_count = 0;
  1056. return;
  1057. }
  1058. } // end of '*' command
  1059. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1060. if (! IS_SD_PRINTING) {
  1061. usb_printing_counter = 10;
  1062. is_usb_printing = true;
  1063. }
  1064. if (Stopped == true) {
  1065. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1066. if (gcode >= 0 && gcode <= 3) {
  1067. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1068. LCD_MESSAGERPGM(MSG_STOPPED);
  1069. }
  1070. }
  1071. } // end of 'G' command
  1072. //If command was e-stop process now
  1073. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1074. kill();
  1075. // Store the current line into buffer, move to the next line.
  1076. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1077. #ifdef CMDBUFFER_DEBUG
  1078. SERIAL_ECHO_START;
  1079. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1080. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1081. SERIAL_ECHOLNPGM("");
  1082. #endif /* CMDBUFFER_DEBUG */
  1083. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1084. if (bufindw == sizeof(cmdbuffer))
  1085. bufindw = 0;
  1086. ++ buflen;
  1087. #ifdef CMDBUFFER_DEBUG
  1088. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1089. SERIAL_ECHO(buflen);
  1090. SERIAL_ECHOLNPGM("");
  1091. #endif /* CMDBUFFER_DEBUG */
  1092. } // end of 'not comment mode'
  1093. serial_count = 0; //clear buffer
  1094. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1095. // in the queue, as this function will reserve the memory.
  1096. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1097. return;
  1098. } // end of "end of line" processing
  1099. else {
  1100. // Not an "end of line" symbol. Store the new character into a buffer.
  1101. if(serial_char == ';') comment_mode = true;
  1102. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1103. }
  1104. } // end of serial line processing loop
  1105. #ifdef SDSUPPORT
  1106. if(!card.sdprinting || serial_count!=0){
  1107. // If there is a half filled buffer from serial line, wait until return before
  1108. // continuing with the serial line.
  1109. return;
  1110. }
  1111. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1112. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1113. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1114. static bool stop_buffering=false;
  1115. if(buflen==0) stop_buffering=false;
  1116. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1117. while( !card.eof() && !stop_buffering) {
  1118. int16_t n=card.get();
  1119. char serial_char = (char)n;
  1120. if(serial_char == '\n' ||
  1121. serial_char == '\r' ||
  1122. (serial_char == '#' && comment_mode == false) ||
  1123. (serial_char == ':' && comment_mode == false) ||
  1124. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1125. {
  1126. if(card.eof()){
  1127. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1128. stoptime=millis();
  1129. char time[30];
  1130. unsigned long t=(stoptime-starttime)/1000;
  1131. int hours, minutes;
  1132. minutes=(t/60)%60;
  1133. hours=t/60/60;
  1134. save_statistics(total_filament_used, t);
  1135. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHOLN(time);
  1138. lcd_setstatus(time);
  1139. card.printingHasFinished();
  1140. card.checkautostart(true);
  1141. if (farm_mode)
  1142. {
  1143. prusa_statistics(6);
  1144. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1145. }
  1146. }
  1147. if(serial_char=='#')
  1148. stop_buffering=true;
  1149. if(!serial_count)
  1150. {
  1151. comment_mode = false; //for new command
  1152. return; //if empty line
  1153. }
  1154. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1155. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1156. ++ buflen;
  1157. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1158. if (bufindw == sizeof(cmdbuffer))
  1159. bufindw = 0;
  1160. comment_mode = false; //for new command
  1161. serial_count = 0; //clear buffer
  1162. // The following line will reserve buffer space if available.
  1163. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1164. return;
  1165. }
  1166. else
  1167. {
  1168. if(serial_char == ';') comment_mode = true;
  1169. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1170. }
  1171. }
  1172. #endif //SDSUPPORT
  1173. }
  1174. // Return True if a character was found
  1175. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1176. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1177. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1178. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1179. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1180. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1181. #define DEFINE_PGM_READ_ANY(type, reader) \
  1182. static inline type pgm_read_any(const type *p) \
  1183. { return pgm_read_##reader##_near(p); }
  1184. DEFINE_PGM_READ_ANY(float, float);
  1185. DEFINE_PGM_READ_ANY(signed char, byte);
  1186. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1187. static const PROGMEM type array##_P[3] = \
  1188. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1189. static inline type array(int axis) \
  1190. { return pgm_read_any(&array##_P[axis]); } \
  1191. type array##_ext(int axis) \
  1192. { return pgm_read_any(&array##_P[axis]); }
  1193. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1194. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1195. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1196. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1197. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1198. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1199. static void axis_is_at_home(int axis) {
  1200. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1201. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1202. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1203. }
  1204. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1205. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1206. static void setup_for_endstop_move() {
  1207. saved_feedrate = feedrate;
  1208. saved_feedmultiply = feedmultiply;
  1209. feedmultiply = 100;
  1210. previous_millis_cmd = millis();
  1211. enable_endstops(true);
  1212. }
  1213. static void clean_up_after_endstop_move() {
  1214. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1215. enable_endstops(false);
  1216. #endif
  1217. feedrate = saved_feedrate;
  1218. feedmultiply = saved_feedmultiply;
  1219. previous_millis_cmd = millis();
  1220. }
  1221. #ifdef ENABLE_AUTO_BED_LEVELING
  1222. #ifdef AUTO_BED_LEVELING_GRID
  1223. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1224. {
  1225. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1226. planeNormal.debug("planeNormal");
  1227. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1228. //bedLevel.debug("bedLevel");
  1229. //plan_bed_level_matrix.debug("bed level before");
  1230. //vector_3 uncorrected_position = plan_get_position_mm();
  1231. //uncorrected_position.debug("position before");
  1232. vector_3 corrected_position = plan_get_position();
  1233. // corrected_position.debug("position after");
  1234. current_position[X_AXIS] = corrected_position.x;
  1235. current_position[Y_AXIS] = corrected_position.y;
  1236. current_position[Z_AXIS] = corrected_position.z;
  1237. // put the bed at 0 so we don't go below it.
  1238. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1240. }
  1241. #else // not AUTO_BED_LEVELING_GRID
  1242. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1243. plan_bed_level_matrix.set_to_identity();
  1244. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1245. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1246. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1247. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1248. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1249. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1250. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1251. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1252. vector_3 corrected_position = plan_get_position();
  1253. current_position[X_AXIS] = corrected_position.x;
  1254. current_position[Y_AXIS] = corrected_position.y;
  1255. current_position[Z_AXIS] = corrected_position.z;
  1256. // put the bed at 0 so we don't go below it.
  1257. current_position[Z_AXIS] = zprobe_zoffset;
  1258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1259. }
  1260. #endif // AUTO_BED_LEVELING_GRID
  1261. static void run_z_probe() {
  1262. plan_bed_level_matrix.set_to_identity();
  1263. feedrate = homing_feedrate[Z_AXIS];
  1264. // move down until you find the bed
  1265. float zPosition = -10;
  1266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1267. st_synchronize();
  1268. // we have to let the planner know where we are right now as it is not where we said to go.
  1269. zPosition = st_get_position_mm(Z_AXIS);
  1270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1271. // move up the retract distance
  1272. zPosition += home_retract_mm(Z_AXIS);
  1273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1274. st_synchronize();
  1275. // move back down slowly to find bed
  1276. feedrate = homing_feedrate[Z_AXIS]/4;
  1277. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1279. st_synchronize();
  1280. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1281. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1283. }
  1284. static void do_blocking_move_to(float x, float y, float z) {
  1285. float oldFeedRate = feedrate;
  1286. feedrate = homing_feedrate[Z_AXIS];
  1287. current_position[Z_AXIS] = z;
  1288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1289. st_synchronize();
  1290. feedrate = XY_TRAVEL_SPEED;
  1291. current_position[X_AXIS] = x;
  1292. current_position[Y_AXIS] = y;
  1293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1294. st_synchronize();
  1295. feedrate = oldFeedRate;
  1296. }
  1297. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1298. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1299. }
  1300. /// Probe bed height at position (x,y), returns the measured z value
  1301. static float probe_pt(float x, float y, float z_before) {
  1302. // move to right place
  1303. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1304. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1305. run_z_probe();
  1306. float measured_z = current_position[Z_AXIS];
  1307. SERIAL_PROTOCOLRPGM(MSG_BED);
  1308. SERIAL_PROTOCOLPGM(" x: ");
  1309. SERIAL_PROTOCOL(x);
  1310. SERIAL_PROTOCOLPGM(" y: ");
  1311. SERIAL_PROTOCOL(y);
  1312. SERIAL_PROTOCOLPGM(" z: ");
  1313. SERIAL_PROTOCOL(measured_z);
  1314. SERIAL_PROTOCOLPGM("\n");
  1315. return measured_z;
  1316. }
  1317. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1318. void homeaxis(int axis) {
  1319. #define HOMEAXIS_DO(LETTER) \
  1320. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1321. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1322. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1323. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1324. 0) {
  1325. int axis_home_dir = home_dir(axis);
  1326. current_position[axis] = 0;
  1327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1328. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1329. feedrate = homing_feedrate[axis];
  1330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1331. st_synchronize();
  1332. current_position[axis] = 0;
  1333. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1334. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1335. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1336. st_synchronize();
  1337. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1338. feedrate = homing_feedrate[axis]/2 ;
  1339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. axis_is_at_home(axis);
  1342. destination[axis] = current_position[axis];
  1343. feedrate = 0.0;
  1344. endstops_hit_on_purpose();
  1345. axis_known_position[axis] = true;
  1346. }
  1347. }
  1348. void home_xy()
  1349. {
  1350. set_destination_to_current();
  1351. homeaxis(X_AXIS);
  1352. homeaxis(Y_AXIS);
  1353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1354. endstops_hit_on_purpose();
  1355. }
  1356. void refresh_cmd_timeout(void)
  1357. {
  1358. previous_millis_cmd = millis();
  1359. }
  1360. #ifdef FWRETRACT
  1361. void retract(bool retracting, bool swapretract = false) {
  1362. if(retracting && !retracted[active_extruder]) {
  1363. destination[X_AXIS]=current_position[X_AXIS];
  1364. destination[Y_AXIS]=current_position[Y_AXIS];
  1365. destination[Z_AXIS]=current_position[Z_AXIS];
  1366. destination[E_AXIS]=current_position[E_AXIS];
  1367. if (swapretract) {
  1368. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1369. } else {
  1370. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1371. }
  1372. plan_set_e_position(current_position[E_AXIS]);
  1373. float oldFeedrate = feedrate;
  1374. feedrate=retract_feedrate*60;
  1375. retracted[active_extruder]=true;
  1376. prepare_move();
  1377. current_position[Z_AXIS]-=retract_zlift;
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. prepare_move();
  1380. feedrate = oldFeedrate;
  1381. } else if(!retracting && retracted[active_extruder]) {
  1382. destination[X_AXIS]=current_position[X_AXIS];
  1383. destination[Y_AXIS]=current_position[Y_AXIS];
  1384. destination[Z_AXIS]=current_position[Z_AXIS];
  1385. destination[E_AXIS]=current_position[E_AXIS];
  1386. current_position[Z_AXIS]+=retract_zlift;
  1387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1388. //prepare_move();
  1389. if (swapretract) {
  1390. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1391. } else {
  1392. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1393. }
  1394. plan_set_e_position(current_position[E_AXIS]);
  1395. float oldFeedrate = feedrate;
  1396. feedrate=retract_recover_feedrate*60;
  1397. retracted[active_extruder]=false;
  1398. prepare_move();
  1399. feedrate = oldFeedrate;
  1400. }
  1401. } //retract
  1402. #endif //FWRETRACT
  1403. void process_commands()
  1404. {
  1405. #ifdef FILAMENT_RUNOUT_SUPPORT
  1406. SET_INPUT(FR_SENS);
  1407. #endif
  1408. #ifdef CMDBUFFER_DEBUG
  1409. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1410. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1411. SERIAL_ECHOLNPGM("");
  1412. SERIAL_ECHOPGM("In cmdqueue: ");
  1413. SERIAL_ECHO(buflen);
  1414. SERIAL_ECHOLNPGM("");
  1415. #endif /* CMDBUFFER_DEBUG */
  1416. unsigned long codenum; //throw away variable
  1417. char *starpos = NULL;
  1418. #ifdef ENABLE_AUTO_BED_LEVELING
  1419. float x_tmp, y_tmp, z_tmp, real_z;
  1420. #endif
  1421. // PRUSA GCODES
  1422. if(code_seen("PRUSA")){
  1423. if(code_seen("Fir")){
  1424. SERIAL_PROTOCOLLN(FW_version);
  1425. } else if(code_seen("Rev")){
  1426. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1427. } else if(code_seen("Lang")) {
  1428. lcd_force_language_selection();
  1429. } else if(code_seen("Lz")) {
  1430. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1431. }
  1432. //else if (code_seen('Cal')) {
  1433. // lcd_calibration();
  1434. // }
  1435. }
  1436. else
  1437. if(code_seen('G'))
  1438. {
  1439. switch((int)code_value())
  1440. {
  1441. case 0: // G0 -> G1
  1442. case 1: // G1
  1443. if(Stopped == false) {
  1444. #ifdef FILAMENT_RUNOUT_SUPPORT
  1445. if(READ(FR_SENS)){
  1446. feedmultiplyBckp=feedmultiply;
  1447. float target[4];
  1448. float lastpos[4];
  1449. target[X_AXIS]=current_position[X_AXIS];
  1450. target[Y_AXIS]=current_position[Y_AXIS];
  1451. target[Z_AXIS]=current_position[Z_AXIS];
  1452. target[E_AXIS]=current_position[E_AXIS];
  1453. lastpos[X_AXIS]=current_position[X_AXIS];
  1454. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1455. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1456. lastpos[E_AXIS]=current_position[E_AXIS];
  1457. //retract by E
  1458. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1460. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1462. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1463. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1465. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1467. //finish moves
  1468. st_synchronize();
  1469. //disable extruder steppers so filament can be removed
  1470. disable_e0();
  1471. disable_e1();
  1472. disable_e2();
  1473. delay(100);
  1474. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1475. uint8_t cnt=0;
  1476. int counterBeep = 0;
  1477. lcd_wait_interact();
  1478. while(!lcd_clicked()){
  1479. cnt++;
  1480. manage_heater();
  1481. manage_inactivity(true);
  1482. //lcd_update();
  1483. if(cnt==0)
  1484. {
  1485. #if BEEPER > 0
  1486. if (counterBeep== 500){
  1487. counterBeep = 0;
  1488. }
  1489. SET_OUTPUT(BEEPER);
  1490. if (counterBeep== 0){
  1491. WRITE(BEEPER,HIGH);
  1492. }
  1493. if (counterBeep== 20){
  1494. WRITE(BEEPER,LOW);
  1495. }
  1496. counterBeep++;
  1497. #else
  1498. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1499. lcd_buzz(1000/6,100);
  1500. #else
  1501. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1502. #endif
  1503. #endif
  1504. }
  1505. }
  1506. WRITE(BEEPER,LOW);
  1507. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1509. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1511. lcd_change_fil_state = 0;
  1512. lcd_loading_filament();
  1513. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1514. lcd_change_fil_state = 0;
  1515. lcd_alright();
  1516. switch(lcd_change_fil_state){
  1517. case 2:
  1518. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1520. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1522. lcd_loading_filament();
  1523. break;
  1524. case 3:
  1525. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1527. lcd_loading_color();
  1528. break;
  1529. default:
  1530. lcd_change_success();
  1531. break;
  1532. }
  1533. }
  1534. target[E_AXIS]+= 5;
  1535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1536. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1538. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1539. //plan_set_e_position(current_position[E_AXIS]);
  1540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1541. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1542. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1543. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1544. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1545. plan_set_e_position(lastpos[E_AXIS]);
  1546. feedmultiply=feedmultiplyBckp;
  1547. char cmd[9];
  1548. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1549. enquecommand(cmd);
  1550. }
  1551. #endif
  1552. get_coordinates(); // For X Y Z E F
  1553. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1554. #ifdef FWRETRACT
  1555. if(autoretract_enabled)
  1556. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1557. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1558. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1559. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1560. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1561. retract(!retracted);
  1562. return;
  1563. }
  1564. }
  1565. #endif //FWRETRACT
  1566. prepare_move();
  1567. //ClearToSend();
  1568. }
  1569. break;
  1570. case 2: // G2 - CW ARC
  1571. if(Stopped == false) {
  1572. get_arc_coordinates();
  1573. prepare_arc_move(true);
  1574. }
  1575. break;
  1576. case 3: // G3 - CCW ARC
  1577. if(Stopped == false) {
  1578. get_arc_coordinates();
  1579. prepare_arc_move(false);
  1580. }
  1581. break;
  1582. case 4: // G4 dwell
  1583. LCD_MESSAGERPGM(MSG_DWELL);
  1584. codenum = 0;
  1585. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1586. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1587. st_synchronize();
  1588. codenum += millis(); // keep track of when we started waiting
  1589. previous_millis_cmd = millis();
  1590. while(millis() < codenum) {
  1591. manage_heater();
  1592. manage_inactivity();
  1593. lcd_update();
  1594. }
  1595. break;
  1596. #ifdef FWRETRACT
  1597. case 10: // G10 retract
  1598. #if EXTRUDERS > 1
  1599. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1600. retract(true,retracted_swap[active_extruder]);
  1601. #else
  1602. retract(true);
  1603. #endif
  1604. break;
  1605. case 11: // G11 retract_recover
  1606. #if EXTRUDERS > 1
  1607. retract(false,retracted_swap[active_extruder]);
  1608. #else
  1609. retract(false);
  1610. #endif
  1611. break;
  1612. #endif //FWRETRACT
  1613. case 28: //G28 Home all Axis one at a time
  1614. #ifdef ENABLE_AUTO_BED_LEVELING
  1615. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1616. #endif //ENABLE_AUTO_BED_LEVELING
  1617. // For mesh bed leveling deactivate the matrix temporarily
  1618. #ifdef MESH_BED_LEVELING
  1619. mbl.active = 0;
  1620. #endif
  1621. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1622. // the planner will not perform any adjustments in the XY plane.
  1623. // Wait for the motors to stop and update the current position with the absolute values.
  1624. world2machine_revert_to_uncorrected();
  1625. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1626. // consumed during the first movements following this statement.
  1627. babystep_undo();
  1628. saved_feedrate = feedrate;
  1629. saved_feedmultiply = feedmultiply;
  1630. feedmultiply = 100;
  1631. previous_millis_cmd = millis();
  1632. enable_endstops(true);
  1633. for(int8_t i=0; i < NUM_AXIS; i++)
  1634. destination[i] = current_position[i];
  1635. feedrate = 0.0;
  1636. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1637. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1638. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1639. homeaxis(Z_AXIS);
  1640. }
  1641. #endif
  1642. #ifdef QUICK_HOME
  1643. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1644. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1645. {
  1646. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1647. int x_axis_home_dir = home_dir(X_AXIS);
  1648. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1649. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1650. feedrate = homing_feedrate[X_AXIS];
  1651. if(homing_feedrate[Y_AXIS]<feedrate)
  1652. feedrate = homing_feedrate[Y_AXIS];
  1653. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1654. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1655. } else {
  1656. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1657. }
  1658. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1659. st_synchronize();
  1660. axis_is_at_home(X_AXIS);
  1661. axis_is_at_home(Y_AXIS);
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. destination[X_AXIS] = current_position[X_AXIS];
  1664. destination[Y_AXIS] = current_position[Y_AXIS];
  1665. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1666. feedrate = 0.0;
  1667. st_synchronize();
  1668. endstops_hit_on_purpose();
  1669. current_position[X_AXIS] = destination[X_AXIS];
  1670. current_position[Y_AXIS] = destination[Y_AXIS];
  1671. current_position[Z_AXIS] = destination[Z_AXIS];
  1672. }
  1673. #endif /* QUICK_HOME */
  1674. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1675. homeaxis(X_AXIS);
  1676. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1677. homeaxis(Y_AXIS);
  1678. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1679. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1680. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1681. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1682. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1683. #ifndef Z_SAFE_HOMING
  1684. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1685. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1686. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1687. feedrate = max_feedrate[Z_AXIS];
  1688. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1689. st_synchronize();
  1690. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1691. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1692. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1693. {
  1694. homeaxis(X_AXIS);
  1695. homeaxis(Y_AXIS);
  1696. }
  1697. // 1st mesh bed leveling measurement point, corrected.
  1698. world2machine_initialize();
  1699. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1700. world2machine_reset();
  1701. if (destination[Y_AXIS] < Y_MIN_POS)
  1702. destination[Y_AXIS] = Y_MIN_POS;
  1703. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1704. feedrate = homing_feedrate[Z_AXIS]/10;
  1705. current_position[Z_AXIS] = 0;
  1706. enable_endstops(false);
  1707. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1709. st_synchronize();
  1710. current_position[X_AXIS] = destination[X_AXIS];
  1711. current_position[Y_AXIS] = destination[Y_AXIS];
  1712. enable_endstops(true);
  1713. endstops_hit_on_purpose();
  1714. homeaxis(Z_AXIS);
  1715. #else // MESH_BED_LEVELING
  1716. homeaxis(Z_AXIS);
  1717. #endif // MESH_BED_LEVELING
  1718. }
  1719. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1720. if(home_all_axis) {
  1721. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1722. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1723. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1724. feedrate = XY_TRAVEL_SPEED/60;
  1725. current_position[Z_AXIS] = 0;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1728. st_synchronize();
  1729. current_position[X_AXIS] = destination[X_AXIS];
  1730. current_position[Y_AXIS] = destination[Y_AXIS];
  1731. homeaxis(Z_AXIS);
  1732. }
  1733. // Let's see if X and Y are homed and probe is inside bed area.
  1734. if(code_seen(axis_codes[Z_AXIS])) {
  1735. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1736. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1737. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1738. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1739. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1740. current_position[Z_AXIS] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1743. feedrate = max_feedrate[Z_AXIS];
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1745. st_synchronize();
  1746. homeaxis(Z_AXIS);
  1747. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1748. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1749. SERIAL_ECHO_START;
  1750. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1751. } else {
  1752. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1753. SERIAL_ECHO_START;
  1754. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1755. }
  1756. }
  1757. #endif // Z_SAFE_HOMING
  1758. #endif // Z_HOME_DIR < 0
  1759. if(code_seen(axis_codes[Z_AXIS])) {
  1760. if(code_value_long() != 0) {
  1761. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1762. }
  1763. }
  1764. #ifdef ENABLE_AUTO_BED_LEVELING
  1765. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1766. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1767. }
  1768. #endif
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1771. enable_endstops(false);
  1772. #endif
  1773. feedrate = saved_feedrate;
  1774. feedmultiply = saved_feedmultiply;
  1775. previous_millis_cmd = millis();
  1776. endstops_hit_on_purpose();
  1777. #ifndef MESH_BED_LEVELING
  1778. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1779. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1780. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1781. lcd_adjust_z();
  1782. #endif
  1783. // Load the machine correction matrix
  1784. world2machine_initialize();
  1785. // and correct the current_position to match the transformed coordinate system.
  1786. world2machine_update_current();
  1787. #ifdef MESH_BED_LEVELING
  1788. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1789. {
  1790. }
  1791. else
  1792. {
  1793. st_synchronize();
  1794. // Push the commands to the front of the message queue in the reverse order!
  1795. // There shall be always enough space reserved for these commands.
  1796. // enquecommand_front_P((PSTR("G80")));
  1797. goto case_G80;
  1798. }
  1799. #endif
  1800. if (farm_mode) { prusa_statistics(20); };
  1801. break;
  1802. #ifdef ENABLE_AUTO_BED_LEVELING
  1803. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1804. {
  1805. #if Z_MIN_PIN == -1
  1806. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1807. #endif
  1808. // Prevent user from running a G29 without first homing in X and Y
  1809. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1810. {
  1811. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1812. SERIAL_ECHO_START;
  1813. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1814. break; // abort G29, since we don't know where we are
  1815. }
  1816. st_synchronize();
  1817. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1818. //vector_3 corrected_position = plan_get_position_mm();
  1819. //corrected_position.debug("position before G29");
  1820. plan_bed_level_matrix.set_to_identity();
  1821. vector_3 uncorrected_position = plan_get_position();
  1822. //uncorrected_position.debug("position durring G29");
  1823. current_position[X_AXIS] = uncorrected_position.x;
  1824. current_position[Y_AXIS] = uncorrected_position.y;
  1825. current_position[Z_AXIS] = uncorrected_position.z;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. setup_for_endstop_move();
  1828. feedrate = homing_feedrate[Z_AXIS];
  1829. #ifdef AUTO_BED_LEVELING_GRID
  1830. // probe at the points of a lattice grid
  1831. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1832. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1833. // solve the plane equation ax + by + d = z
  1834. // A is the matrix with rows [x y 1] for all the probed points
  1835. // B is the vector of the Z positions
  1836. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1837. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1838. // "A" matrix of the linear system of equations
  1839. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1840. // "B" vector of Z points
  1841. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1842. int probePointCounter = 0;
  1843. bool zig = true;
  1844. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1845. {
  1846. int xProbe, xInc;
  1847. if (zig)
  1848. {
  1849. xProbe = LEFT_PROBE_BED_POSITION;
  1850. //xEnd = RIGHT_PROBE_BED_POSITION;
  1851. xInc = xGridSpacing;
  1852. zig = false;
  1853. } else // zag
  1854. {
  1855. xProbe = RIGHT_PROBE_BED_POSITION;
  1856. //xEnd = LEFT_PROBE_BED_POSITION;
  1857. xInc = -xGridSpacing;
  1858. zig = true;
  1859. }
  1860. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1861. {
  1862. float z_before;
  1863. if (probePointCounter == 0)
  1864. {
  1865. // raise before probing
  1866. z_before = Z_RAISE_BEFORE_PROBING;
  1867. } else
  1868. {
  1869. // raise extruder
  1870. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1871. }
  1872. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1873. eqnBVector[probePointCounter] = measured_z;
  1874. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1875. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1876. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1877. probePointCounter++;
  1878. xProbe += xInc;
  1879. }
  1880. }
  1881. clean_up_after_endstop_move();
  1882. // solve lsq problem
  1883. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1884. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1885. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1886. SERIAL_PROTOCOLPGM(" b: ");
  1887. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1888. SERIAL_PROTOCOLPGM(" d: ");
  1889. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1890. set_bed_level_equation_lsq(plane_equation_coefficients);
  1891. free(plane_equation_coefficients);
  1892. #else // AUTO_BED_LEVELING_GRID not defined
  1893. // Probe at 3 arbitrary points
  1894. // probe 1
  1895. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1896. // probe 2
  1897. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1898. // probe 3
  1899. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1900. clean_up_after_endstop_move();
  1901. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1902. #endif // AUTO_BED_LEVELING_GRID
  1903. st_synchronize();
  1904. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1905. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1906. // When the bed is uneven, this height must be corrected.
  1907. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1908. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1909. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1910. z_tmp = current_position[Z_AXIS];
  1911. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1912. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. }
  1915. break;
  1916. #ifndef Z_PROBE_SLED
  1917. case 30: // G30 Single Z Probe
  1918. {
  1919. st_synchronize();
  1920. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1921. setup_for_endstop_move();
  1922. feedrate = homing_feedrate[Z_AXIS];
  1923. run_z_probe();
  1924. SERIAL_PROTOCOLPGM(MSG_BED);
  1925. SERIAL_PROTOCOLPGM(" X: ");
  1926. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1927. SERIAL_PROTOCOLPGM(" Y: ");
  1928. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1929. SERIAL_PROTOCOLPGM(" Z: ");
  1930. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1931. SERIAL_PROTOCOLPGM("\n");
  1932. clean_up_after_endstop_move();
  1933. }
  1934. break;
  1935. #else
  1936. case 31: // dock the sled
  1937. dock_sled(true);
  1938. break;
  1939. case 32: // undock the sled
  1940. dock_sled(false);
  1941. break;
  1942. #endif // Z_PROBE_SLED
  1943. #endif // ENABLE_AUTO_BED_LEVELING
  1944. #ifdef MESH_BED_LEVELING
  1945. case 30: // G30 Single Z Probe
  1946. {
  1947. st_synchronize();
  1948. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1949. setup_for_endstop_move();
  1950. feedrate = homing_feedrate[Z_AXIS];
  1951. find_bed_induction_sensor_point_z(-10.f, 3);
  1952. SERIAL_PROTOCOLRPGM(MSG_BED);
  1953. SERIAL_PROTOCOLPGM(" X: ");
  1954. MYSERIAL.print(current_position[X_AXIS], 5);
  1955. SERIAL_PROTOCOLPGM(" Y: ");
  1956. MYSERIAL.print(current_position[Y_AXIS], 5);
  1957. SERIAL_PROTOCOLPGM(" Z: ");
  1958. MYSERIAL.print(current_position[Z_AXIS], 5);
  1959. SERIAL_PROTOCOLPGM("\n");
  1960. clean_up_after_endstop_move();
  1961. }
  1962. break;
  1963. /**
  1964. * G80: Mesh-based Z probe, probes a grid and produces a
  1965. * mesh to compensate for variable bed height
  1966. *
  1967. * The S0 report the points as below
  1968. *
  1969. * +----> X-axis
  1970. * |
  1971. * |
  1972. * v Y-axis
  1973. *
  1974. */
  1975. case 80:
  1976. case_G80:
  1977. {
  1978. // Firstly check if we know where we are
  1979. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1980. // We don't know where we are! HOME!
  1981. // Push the commands to the front of the message queue in the reverse order!
  1982. // There shall be always enough space reserved for these commands.
  1983. repeatcommand_front(); // repeat G80 with all its parameters
  1984. enquecommand_front_P((PSTR("G28 W0")));
  1985. break;
  1986. }
  1987. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  1988. bool custom_message_old = custom_message;
  1989. unsigned int custom_message_type_old = custom_message_type;
  1990. unsigned int custom_message_state_old = custom_message_state;
  1991. custom_message = true;
  1992. custom_message_type = 1;
  1993. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1994. lcd_update(1);
  1995. mbl.reset();
  1996. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1997. // consumed during the first movements following this statement.
  1998. babystep_undo();
  1999. // Cycle through all points and probe them
  2000. // First move up. During this first movement, the babystepping will be reverted.
  2001. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2003. // The move to the first calibration point.
  2004. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2005. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2006. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2007. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2009. // Wait until the move is finished.
  2010. st_synchronize();
  2011. int mesh_point = 0;
  2012. int ix = 0;
  2013. int iy = 0;
  2014. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2015. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2016. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2017. bool has_z = is_bed_z_jitter_data_valid();
  2018. setup_for_endstop_move();
  2019. const char *kill_message = NULL;
  2020. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2021. // Get coords of a measuring point.
  2022. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2023. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2024. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2025. float z0 = 0.f;
  2026. if (has_z && mesh_point > 0) {
  2027. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2028. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2029. #if 0
  2030. SERIAL_ECHOPGM("Bed leveling, point: ");
  2031. MYSERIAL.print(mesh_point);
  2032. SERIAL_ECHOPGM(", calibration z: ");
  2033. MYSERIAL.print(z0, 5);
  2034. SERIAL_ECHOLNPGM("");
  2035. #endif
  2036. }
  2037. // Move Z to proper distance
  2038. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2040. st_synchronize();
  2041. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2042. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2043. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2044. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2045. enable_endstops(false);
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2047. st_synchronize();
  2048. // Go down until endstop is hit
  2049. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2050. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2051. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2052. break;
  2053. }
  2054. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2055. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2056. break;
  2057. }
  2058. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2059. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2060. break;
  2061. }
  2062. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2063. custom_message_state--;
  2064. mesh_point++;
  2065. lcd_update(1);
  2066. }
  2067. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2069. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2070. st_synchronize();
  2071. kill(kill_message);
  2072. }
  2073. clean_up_after_endstop_move();
  2074. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2075. babystep_apply();
  2076. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2077. for (uint8_t i = 0; i < 4; ++ i) {
  2078. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2079. long correction = 0;
  2080. if (code_seen(codes[i]))
  2081. correction = code_value_long();
  2082. else if (eeprom_bed_correction_valid) {
  2083. unsigned char *addr = (i < 2) ?
  2084. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2085. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2086. correction = eeprom_read_int8(addr);
  2087. }
  2088. if (correction == 0)
  2089. continue;
  2090. float offset = float(correction) * 0.001f;
  2091. if (fabs(offset) > 0.101f) {
  2092. SERIAL_ERROR_START;
  2093. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2094. SERIAL_ECHO(offset);
  2095. SERIAL_ECHOLNPGM(" microns");
  2096. } else {
  2097. switch (i) {
  2098. case 0:
  2099. for (uint8_t row = 0; row < 3; ++ row) {
  2100. mbl.z_values[row][1] += 0.5f * offset;
  2101. mbl.z_values[row][0] += offset;
  2102. }
  2103. break;
  2104. case 1:
  2105. for (uint8_t row = 0; row < 3; ++ row) {
  2106. mbl.z_values[row][1] += 0.5f * offset;
  2107. mbl.z_values[row][2] += offset;
  2108. }
  2109. break;
  2110. case 2:
  2111. for (uint8_t col = 0; col < 3; ++ col) {
  2112. mbl.z_values[1][col] += 0.5f * offset;
  2113. mbl.z_values[0][col] += offset;
  2114. }
  2115. break;
  2116. case 3:
  2117. for (uint8_t col = 0; col < 3; ++ col) {
  2118. mbl.z_values[1][col] += 0.5f * offset;
  2119. mbl.z_values[2][col] += offset;
  2120. }
  2121. break;
  2122. }
  2123. }
  2124. }
  2125. mbl.upsample_3x3();
  2126. mbl.active = 1;
  2127. current_position[X_AXIS] = X_MIN_POS+0.2;
  2128. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2129. current_position[Z_AXIS] = Z_MIN_POS;
  2130. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2131. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2132. st_synchronize();
  2133. // Restore custom message state
  2134. custom_message = custom_message_old;
  2135. custom_message_type = custom_message_type_old;
  2136. custom_message_state = custom_message_state_old;
  2137. lcd_update(1);
  2138. }
  2139. break;
  2140. /**
  2141. * G81: Print mesh bed leveling status and bed profile if activated
  2142. */
  2143. case 81:
  2144. if (mbl.active) {
  2145. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2146. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2147. SERIAL_PROTOCOLPGM(",");
  2148. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2149. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2150. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2151. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2152. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2153. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2154. SERIAL_PROTOCOLPGM(" ");
  2155. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2156. }
  2157. SERIAL_PROTOCOLPGM("\n");
  2158. }
  2159. }
  2160. else
  2161. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2162. break;
  2163. #if 0
  2164. /**
  2165. * G82: Single Z probe at current location
  2166. *
  2167. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2168. *
  2169. */
  2170. case 82:
  2171. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2172. setup_for_endstop_move();
  2173. find_bed_induction_sensor_point_z();
  2174. clean_up_after_endstop_move();
  2175. SERIAL_PROTOCOLPGM("Bed found at: ");
  2176. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2177. SERIAL_PROTOCOLPGM("\n");
  2178. break;
  2179. /**
  2180. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2181. */
  2182. case 83:
  2183. {
  2184. int babystepz = code_seen('S') ? code_value() : 0;
  2185. int BabyPosition = code_seen('P') ? code_value() : 0;
  2186. if (babystepz != 0) {
  2187. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2188. // Is the axis indexed starting with zero or one?
  2189. if (BabyPosition > 4) {
  2190. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2191. }else{
  2192. // Save it to the eeprom
  2193. babystepLoadZ = babystepz;
  2194. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2195. // adjust the Z
  2196. babystepsTodoZadd(babystepLoadZ);
  2197. }
  2198. }
  2199. }
  2200. break;
  2201. /**
  2202. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2203. */
  2204. case 84:
  2205. babystepsTodoZsubtract(babystepLoadZ);
  2206. // babystepLoadZ = 0;
  2207. break;
  2208. /**
  2209. * G85: Prusa3D specific: Pick best babystep
  2210. */
  2211. case 85:
  2212. lcd_pick_babystep();
  2213. break;
  2214. #endif
  2215. /**
  2216. * G86: Prusa3D specific: Disable babystep correction after home.
  2217. * This G-code will be performed at the start of a calibration script.
  2218. */
  2219. case 86:
  2220. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2221. break;
  2222. /**
  2223. * G87: Prusa3D specific: Enable babystep correction after home
  2224. * This G-code will be performed at the end of a calibration script.
  2225. */
  2226. case 87:
  2227. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2228. break;
  2229. /**
  2230. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2231. */
  2232. case 88:
  2233. break;
  2234. #endif // ENABLE_MESH_BED_LEVELING
  2235. case 90: // G90
  2236. relative_mode = false;
  2237. break;
  2238. case 91: // G91
  2239. relative_mode = true;
  2240. break;
  2241. case 92: // G92
  2242. if(!code_seen(axis_codes[E_AXIS]))
  2243. st_synchronize();
  2244. for(int8_t i=0; i < NUM_AXIS; i++) {
  2245. if(code_seen(axis_codes[i])) {
  2246. if(i == E_AXIS) {
  2247. current_position[i] = code_value();
  2248. plan_set_e_position(current_position[E_AXIS]);
  2249. }
  2250. else {
  2251. current_position[i] = code_value()+add_homing[i];
  2252. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2253. }
  2254. }
  2255. }
  2256. break;
  2257. case 98:
  2258. farm_no = 21;
  2259. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2260. farm_mode = true;
  2261. break;
  2262. case 99:
  2263. farm_no = 0;
  2264. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2265. farm_mode = false;
  2266. break;
  2267. }
  2268. } // end if(code_seen('G'))
  2269. else if(code_seen('M'))
  2270. {
  2271. switch( (int)code_value() )
  2272. {
  2273. #ifdef ULTIPANEL
  2274. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2275. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2276. {
  2277. char *src = strchr_pointer + 2;
  2278. codenum = 0;
  2279. bool hasP = false, hasS = false;
  2280. if (code_seen('P')) {
  2281. codenum = code_value(); // milliseconds to wait
  2282. hasP = codenum > 0;
  2283. }
  2284. if (code_seen('S')) {
  2285. codenum = code_value() * 1000; // seconds to wait
  2286. hasS = codenum > 0;
  2287. }
  2288. starpos = strchr(src, '*');
  2289. if (starpos != NULL) *(starpos) = '\0';
  2290. while (*src == ' ') ++src;
  2291. if (!hasP && !hasS && *src != '\0') {
  2292. lcd_setstatus(src);
  2293. } else {
  2294. LCD_MESSAGERPGM(MSG_USERWAIT);
  2295. }
  2296. lcd_ignore_click();
  2297. st_synchronize();
  2298. previous_millis_cmd = millis();
  2299. if (codenum > 0){
  2300. codenum += millis(); // keep track of when we started waiting
  2301. while(millis() < codenum && !lcd_clicked()){
  2302. manage_heater();
  2303. manage_inactivity();
  2304. lcd_update();
  2305. }
  2306. lcd_ignore_click(false);
  2307. }else{
  2308. if (!lcd_detected())
  2309. break;
  2310. while(!lcd_clicked()){
  2311. manage_heater();
  2312. manage_inactivity();
  2313. lcd_update();
  2314. }
  2315. }
  2316. if (IS_SD_PRINTING)
  2317. LCD_MESSAGERPGM(MSG_RESUMING);
  2318. else
  2319. LCD_MESSAGERPGM(WELCOME_MSG);
  2320. }
  2321. break;
  2322. #endif
  2323. case 17:
  2324. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2325. enable_x();
  2326. enable_y();
  2327. enable_z();
  2328. enable_e0();
  2329. enable_e1();
  2330. enable_e2();
  2331. break;
  2332. #ifdef SDSUPPORT
  2333. case 20: // M20 - list SD card
  2334. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2335. card.ls();
  2336. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2337. break;
  2338. case 21: // M21 - init SD card
  2339. card.initsd();
  2340. break;
  2341. case 22: //M22 - release SD card
  2342. card.release();
  2343. break;
  2344. case 23: //M23 - Select file
  2345. starpos = (strchr(strchr_pointer + 4,'*'));
  2346. if(starpos!=NULL)
  2347. *(starpos)='\0';
  2348. card.openFile(strchr_pointer + 4,true);
  2349. break;
  2350. case 24: //M24 - Start SD print
  2351. card.startFileprint();
  2352. starttime=millis();
  2353. break;
  2354. case 25: //M25 - Pause SD print
  2355. card.pauseSDPrint();
  2356. break;
  2357. case 26: //M26 - Set SD index
  2358. if(card.cardOK && code_seen('S')) {
  2359. card.setIndex(code_value_long());
  2360. }
  2361. break;
  2362. case 27: //M27 - Get SD status
  2363. card.getStatus();
  2364. break;
  2365. case 28: //M28 - Start SD write
  2366. starpos = (strchr(strchr_pointer + 4,'*'));
  2367. if(starpos != NULL){
  2368. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2369. strchr_pointer = strchr(npos,' ') + 1;
  2370. *(starpos) = '\0';
  2371. }
  2372. card.openFile(strchr_pointer+4,false);
  2373. break;
  2374. case 29: //M29 - Stop SD write
  2375. //processed in write to file routine above
  2376. //card,saving = false;
  2377. break;
  2378. case 30: //M30 <filename> Delete File
  2379. if (card.cardOK){
  2380. card.closefile();
  2381. starpos = (strchr(strchr_pointer + 4,'*'));
  2382. if(starpos != NULL){
  2383. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2384. strchr_pointer = strchr(npos,' ') + 1;
  2385. *(starpos) = '\0';
  2386. }
  2387. card.removeFile(strchr_pointer + 4);
  2388. }
  2389. break;
  2390. case 32: //M32 - Select file and start SD print
  2391. {
  2392. if(card.sdprinting) {
  2393. st_synchronize();
  2394. }
  2395. starpos = (strchr(strchr_pointer + 4,'*'));
  2396. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2397. if(namestartpos==NULL)
  2398. {
  2399. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2400. }
  2401. else
  2402. namestartpos++; //to skip the '!'
  2403. if(starpos!=NULL)
  2404. *(starpos)='\0';
  2405. bool call_procedure=(code_seen('P'));
  2406. if(strchr_pointer>namestartpos)
  2407. call_procedure=false; //false alert, 'P' found within filename
  2408. if( card.cardOK )
  2409. {
  2410. card.openFile(namestartpos,true,!call_procedure);
  2411. if(code_seen('S'))
  2412. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2413. card.setIndex(code_value_long());
  2414. card.startFileprint();
  2415. if(!call_procedure)
  2416. starttime=millis(); //procedure calls count as normal print time.
  2417. }
  2418. } break;
  2419. case 928: //M928 - Start SD write
  2420. starpos = (strchr(strchr_pointer + 5,'*'));
  2421. if(starpos != NULL){
  2422. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2423. strchr_pointer = strchr(npos,' ') + 1;
  2424. *(starpos) = '\0';
  2425. }
  2426. card.openLogFile(strchr_pointer+5);
  2427. break;
  2428. #endif //SDSUPPORT
  2429. case 31: //M31 take time since the start of the SD print or an M109 command
  2430. {
  2431. stoptime=millis();
  2432. char time[30];
  2433. unsigned long t=(stoptime-starttime)/1000;
  2434. int sec,min;
  2435. min=t/60;
  2436. sec=t%60;
  2437. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2438. SERIAL_ECHO_START;
  2439. SERIAL_ECHOLN(time);
  2440. lcd_setstatus(time);
  2441. autotempShutdown();
  2442. }
  2443. break;
  2444. case 42: //M42 -Change pin status via gcode
  2445. if (code_seen('S'))
  2446. {
  2447. int pin_status = code_value();
  2448. int pin_number = LED_PIN;
  2449. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2450. pin_number = code_value();
  2451. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2452. {
  2453. if (sensitive_pins[i] == pin_number)
  2454. {
  2455. pin_number = -1;
  2456. break;
  2457. }
  2458. }
  2459. #if defined(FAN_PIN) && FAN_PIN > -1
  2460. if (pin_number == FAN_PIN)
  2461. fanSpeed = pin_status;
  2462. #endif
  2463. if (pin_number > -1)
  2464. {
  2465. pinMode(pin_number, OUTPUT);
  2466. digitalWrite(pin_number, pin_status);
  2467. analogWrite(pin_number, pin_status);
  2468. }
  2469. }
  2470. break;
  2471. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2472. // Reset the skew and offset in both RAM and EEPROM.
  2473. reset_bed_offset_and_skew();
  2474. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2475. // the planner will not perform any adjustments in the XY plane.
  2476. // Wait for the motors to stop and update the current position with the absolute values.
  2477. world2machine_revert_to_uncorrected();
  2478. break;
  2479. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2480. {
  2481. // Disable the default update procedure of the display. We will do a modal dialog.
  2482. lcd_update_enable(false);
  2483. // Let the planner use the uncorrected coordinates.
  2484. mbl.reset();
  2485. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2486. // the planner will not perform any adjustments in the XY plane.
  2487. // Wait for the motors to stop and update the current position with the absolute values.
  2488. world2machine_revert_to_uncorrected();
  2489. // Reset the baby step value applied without moving the axes.
  2490. babystep_reset();
  2491. // Mark all axes as in a need for homing.
  2492. memset(axis_known_position, 0, sizeof(axis_known_position));
  2493. // Only Z calibration?
  2494. bool onlyZ = code_seen('Z');
  2495. // Let the user move the Z axes up to the end stoppers.
  2496. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2497. refresh_cmd_timeout();
  2498. // Move the print head close to the bed.
  2499. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2501. st_synchronize();
  2502. // Home in the XY plane.
  2503. set_destination_to_current();
  2504. setup_for_endstop_move();
  2505. home_xy();
  2506. int8_t verbosity_level = 0;
  2507. if (code_seen('V')) {
  2508. // Just 'V' without a number counts as V1.
  2509. char c = strchr_pointer[1];
  2510. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2511. }
  2512. if (onlyZ) {
  2513. clean_up_after_endstop_move();
  2514. // Z only calibration.
  2515. // Load the machine correction matrix
  2516. world2machine_initialize();
  2517. // and correct the current_position to match the transformed coordinate system.
  2518. world2machine_update_current();
  2519. //FIXME
  2520. bool result = sample_mesh_and_store_reference();
  2521. // if (result) babystep_apply();
  2522. } else {
  2523. // Complete XYZ calibration.
  2524. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2525. uint8_t point_too_far_mask = 0;
  2526. clean_up_after_endstop_move();
  2527. // Print head up.
  2528. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2530. st_synchronize();
  2531. if (result >= 0) {
  2532. // Second half: The fine adjustment.
  2533. // Let the planner use the uncorrected coordinates.
  2534. mbl.reset();
  2535. world2machine_reset();
  2536. // Home in the XY plane.
  2537. setup_for_endstop_move();
  2538. home_xy();
  2539. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2540. clean_up_after_endstop_move();
  2541. // Print head up.
  2542. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2544. st_synchronize();
  2545. // if (result >= 0) babystep_apply();
  2546. }
  2547. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2548. }
  2549. } else {
  2550. // Timeouted.
  2551. }
  2552. lcd_update_enable(true);
  2553. lcd_implementation_clear();
  2554. // lcd_return_to_status();
  2555. lcd_update();
  2556. break;
  2557. }
  2558. /*
  2559. case 46:
  2560. {
  2561. // M46: Prusa3D: Show the assigned IP address.
  2562. uint8_t ip[4];
  2563. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2564. if (hasIP) {
  2565. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2566. SERIAL_ECHO(int(ip[0]));
  2567. SERIAL_ECHOPGM(".");
  2568. SERIAL_ECHO(int(ip[1]));
  2569. SERIAL_ECHOPGM(".");
  2570. SERIAL_ECHO(int(ip[2]));
  2571. SERIAL_ECHOPGM(".");
  2572. SERIAL_ECHO(int(ip[3]));
  2573. SERIAL_ECHOLNPGM("");
  2574. } else {
  2575. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2576. }
  2577. break;
  2578. }
  2579. */
  2580. case 47:
  2581. // M47: Prusa3D: Show end stops dialog on the display.
  2582. lcd_diag_show_end_stops();
  2583. break;
  2584. #if 0
  2585. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2586. {
  2587. // Disable the default update procedure of the display. We will do a modal dialog.
  2588. lcd_update_enable(false);
  2589. // Let the planner use the uncorrected coordinates.
  2590. mbl.reset();
  2591. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2592. // the planner will not perform any adjustments in the XY plane.
  2593. // Wait for the motors to stop and update the current position with the absolute values.
  2594. world2machine_revert_to_uncorrected();
  2595. // Move the print head close to the bed.
  2596. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2598. st_synchronize();
  2599. // Home in the XY plane.
  2600. set_destination_to_current();
  2601. setup_for_endstop_move();
  2602. home_xy();
  2603. int8_t verbosity_level = 0;
  2604. if (code_seen('V')) {
  2605. // Just 'V' without a number counts as V1.
  2606. char c = strchr_pointer[1];
  2607. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2608. }
  2609. bool success = scan_bed_induction_points(verbosity_level);
  2610. clean_up_after_endstop_move();
  2611. // Print head up.
  2612. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2614. st_synchronize();
  2615. lcd_update_enable(true);
  2616. lcd_implementation_clear();
  2617. // lcd_return_to_status();
  2618. lcd_update();
  2619. break;
  2620. }
  2621. #endif
  2622. // M48 Z-Probe repeatability measurement function.
  2623. //
  2624. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2625. //
  2626. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2627. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2628. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2629. // regenerated.
  2630. //
  2631. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2632. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2633. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2634. //
  2635. #ifdef ENABLE_AUTO_BED_LEVELING
  2636. #ifdef Z_PROBE_REPEATABILITY_TEST
  2637. case 48: // M48 Z-Probe repeatability
  2638. {
  2639. #if Z_MIN_PIN == -1
  2640. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2641. #endif
  2642. double sum=0.0;
  2643. double mean=0.0;
  2644. double sigma=0.0;
  2645. double sample_set[50];
  2646. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2647. double X_current, Y_current, Z_current;
  2648. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2649. if (code_seen('V') || code_seen('v')) {
  2650. verbose_level = code_value();
  2651. if (verbose_level<0 || verbose_level>4 ) {
  2652. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2653. goto Sigma_Exit;
  2654. }
  2655. }
  2656. if (verbose_level > 0) {
  2657. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2658. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2659. }
  2660. if (code_seen('n')) {
  2661. n_samples = code_value();
  2662. if (n_samples<4 || n_samples>50 ) {
  2663. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2664. goto Sigma_Exit;
  2665. }
  2666. }
  2667. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2668. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2669. Z_current = st_get_position_mm(Z_AXIS);
  2670. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2671. ext_position = st_get_position_mm(E_AXIS);
  2672. if (code_seen('X') || code_seen('x') ) {
  2673. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2674. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2675. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2676. goto Sigma_Exit;
  2677. }
  2678. }
  2679. if (code_seen('Y') || code_seen('y') ) {
  2680. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2681. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2682. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2683. goto Sigma_Exit;
  2684. }
  2685. }
  2686. if (code_seen('L') || code_seen('l') ) {
  2687. n_legs = code_value();
  2688. if ( n_legs==1 )
  2689. n_legs = 2;
  2690. if ( n_legs<0 || n_legs>15 ) {
  2691. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2692. goto Sigma_Exit;
  2693. }
  2694. }
  2695. //
  2696. // Do all the preliminary setup work. First raise the probe.
  2697. //
  2698. st_synchronize();
  2699. plan_bed_level_matrix.set_to_identity();
  2700. plan_buffer_line( X_current, Y_current, Z_start_location,
  2701. ext_position,
  2702. homing_feedrate[Z_AXIS]/60,
  2703. active_extruder);
  2704. st_synchronize();
  2705. //
  2706. // Now get everything to the specified probe point So we can safely do a probe to
  2707. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2708. // use that as a starting point for each probe.
  2709. //
  2710. if (verbose_level > 2)
  2711. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2712. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2713. ext_position,
  2714. homing_feedrate[X_AXIS]/60,
  2715. active_extruder);
  2716. st_synchronize();
  2717. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2718. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2719. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2720. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2721. //
  2722. // OK, do the inital probe to get us close to the bed.
  2723. // Then retrace the right amount and use that in subsequent probes
  2724. //
  2725. setup_for_endstop_move();
  2726. run_z_probe();
  2727. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2728. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2729. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2730. ext_position,
  2731. homing_feedrate[X_AXIS]/60,
  2732. active_extruder);
  2733. st_synchronize();
  2734. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2735. for( n=0; n<n_samples; n++) {
  2736. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2737. if ( n_legs) {
  2738. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2739. int rotational_direction, l;
  2740. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2741. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2742. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2743. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2744. //SERIAL_ECHOPAIR(" theta: ",theta);
  2745. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2746. //SERIAL_PROTOCOLLNPGM("");
  2747. for( l=0; l<n_legs-1; l++) {
  2748. if (rotational_direction==1)
  2749. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2750. else
  2751. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2752. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2753. if ( radius<0.0 )
  2754. radius = -radius;
  2755. X_current = X_probe_location + cos(theta) * radius;
  2756. Y_current = Y_probe_location + sin(theta) * radius;
  2757. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2758. X_current = X_MIN_POS;
  2759. if ( X_current>X_MAX_POS)
  2760. X_current = X_MAX_POS;
  2761. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2762. Y_current = Y_MIN_POS;
  2763. if ( Y_current>Y_MAX_POS)
  2764. Y_current = Y_MAX_POS;
  2765. if (verbose_level>3 ) {
  2766. SERIAL_ECHOPAIR("x: ", X_current);
  2767. SERIAL_ECHOPAIR("y: ", Y_current);
  2768. SERIAL_PROTOCOLLNPGM("");
  2769. }
  2770. do_blocking_move_to( X_current, Y_current, Z_current );
  2771. }
  2772. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2773. }
  2774. setup_for_endstop_move();
  2775. run_z_probe();
  2776. sample_set[n] = current_position[Z_AXIS];
  2777. //
  2778. // Get the current mean for the data points we have so far
  2779. //
  2780. sum=0.0;
  2781. for( j=0; j<=n; j++) {
  2782. sum = sum + sample_set[j];
  2783. }
  2784. mean = sum / (double (n+1));
  2785. //
  2786. // Now, use that mean to calculate the standard deviation for the
  2787. // data points we have so far
  2788. //
  2789. sum=0.0;
  2790. for( j=0; j<=n; j++) {
  2791. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2792. }
  2793. sigma = sqrt( sum / (double (n+1)) );
  2794. if (verbose_level > 1) {
  2795. SERIAL_PROTOCOL(n+1);
  2796. SERIAL_PROTOCOL(" of ");
  2797. SERIAL_PROTOCOL(n_samples);
  2798. SERIAL_PROTOCOLPGM(" z: ");
  2799. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2800. }
  2801. if (verbose_level > 2) {
  2802. SERIAL_PROTOCOL(" mean: ");
  2803. SERIAL_PROTOCOL_F(mean,6);
  2804. SERIAL_PROTOCOL(" sigma: ");
  2805. SERIAL_PROTOCOL_F(sigma,6);
  2806. }
  2807. if (verbose_level > 0)
  2808. SERIAL_PROTOCOLPGM("\n");
  2809. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2810. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2811. st_synchronize();
  2812. }
  2813. delay(1000);
  2814. clean_up_after_endstop_move();
  2815. // enable_endstops(true);
  2816. if (verbose_level > 0) {
  2817. SERIAL_PROTOCOLPGM("Mean: ");
  2818. SERIAL_PROTOCOL_F(mean, 6);
  2819. SERIAL_PROTOCOLPGM("\n");
  2820. }
  2821. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2822. SERIAL_PROTOCOL_F(sigma, 6);
  2823. SERIAL_PROTOCOLPGM("\n\n");
  2824. Sigma_Exit:
  2825. break;
  2826. }
  2827. #endif // Z_PROBE_REPEATABILITY_TEST
  2828. #endif // ENABLE_AUTO_BED_LEVELING
  2829. case 104: // M104
  2830. if(setTargetedHotend(104)){
  2831. break;
  2832. }
  2833. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2834. setWatch();
  2835. break;
  2836. case 112: // M112 -Emergency Stop
  2837. kill();
  2838. break;
  2839. case 140: // M140 set bed temp
  2840. if (code_seen('S')) setTargetBed(code_value());
  2841. break;
  2842. case 105 : // M105
  2843. if(setTargetedHotend(105)){
  2844. break;
  2845. }
  2846. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2847. SERIAL_PROTOCOLPGM("ok T:");
  2848. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2849. SERIAL_PROTOCOLPGM(" /");
  2850. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2851. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2852. SERIAL_PROTOCOLPGM(" B:");
  2853. SERIAL_PROTOCOL_F(degBed(),1);
  2854. SERIAL_PROTOCOLPGM(" /");
  2855. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2856. #endif //TEMP_BED_PIN
  2857. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2858. SERIAL_PROTOCOLPGM(" T");
  2859. SERIAL_PROTOCOL(cur_extruder);
  2860. SERIAL_PROTOCOLPGM(":");
  2861. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2862. SERIAL_PROTOCOLPGM(" /");
  2863. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2864. }
  2865. #else
  2866. SERIAL_ERROR_START;
  2867. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2868. #endif
  2869. SERIAL_PROTOCOLPGM(" @:");
  2870. #ifdef EXTRUDER_WATTS
  2871. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2872. SERIAL_PROTOCOLPGM("W");
  2873. #else
  2874. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2875. #endif
  2876. SERIAL_PROTOCOLPGM(" B@:");
  2877. #ifdef BED_WATTS
  2878. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2879. SERIAL_PROTOCOLPGM("W");
  2880. #else
  2881. SERIAL_PROTOCOL(getHeaterPower(-1));
  2882. #endif
  2883. #ifdef SHOW_TEMP_ADC_VALUES
  2884. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2885. SERIAL_PROTOCOLPGM(" ADC B:");
  2886. SERIAL_PROTOCOL_F(degBed(),1);
  2887. SERIAL_PROTOCOLPGM("C->");
  2888. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2889. #endif
  2890. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2891. SERIAL_PROTOCOLPGM(" T");
  2892. SERIAL_PROTOCOL(cur_extruder);
  2893. SERIAL_PROTOCOLPGM(":");
  2894. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2895. SERIAL_PROTOCOLPGM("C->");
  2896. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2897. }
  2898. #endif
  2899. SERIAL_PROTOCOLLN("");
  2900. return;
  2901. break;
  2902. case 109:
  2903. {// M109 - Wait for extruder heater to reach target.
  2904. if(setTargetedHotend(109)){
  2905. break;
  2906. }
  2907. LCD_MESSAGERPGM(MSG_HEATING);
  2908. heating_status = 1;
  2909. if (farm_mode) { prusa_statistics(1); };
  2910. #ifdef AUTOTEMP
  2911. autotemp_enabled=false;
  2912. #endif
  2913. if (code_seen('S')) {
  2914. setTargetHotend(code_value(), tmp_extruder);
  2915. CooldownNoWait = true;
  2916. } else if (code_seen('R')) {
  2917. setTargetHotend(code_value(), tmp_extruder);
  2918. CooldownNoWait = false;
  2919. }
  2920. #ifdef AUTOTEMP
  2921. if (code_seen('S')) autotemp_min=code_value();
  2922. if (code_seen('B')) autotemp_max=code_value();
  2923. if (code_seen('F'))
  2924. {
  2925. autotemp_factor=code_value();
  2926. autotemp_enabled=true;
  2927. }
  2928. #endif
  2929. setWatch();
  2930. codenum = millis();
  2931. /* See if we are heating up or cooling down */
  2932. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2933. cancel_heatup = false;
  2934. #ifdef TEMP_RESIDENCY_TIME
  2935. long residencyStart;
  2936. residencyStart = -1;
  2937. /* continue to loop until we have reached the target temp
  2938. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2939. while((!cancel_heatup)&&((residencyStart == -1) ||
  2940. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2941. #else
  2942. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2943. #endif //TEMP_RESIDENCY_TIME
  2944. if( (millis() - codenum) > 1000UL )
  2945. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2946. SERIAL_PROTOCOLPGM("T:");
  2947. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2948. SERIAL_PROTOCOLPGM(" E:");
  2949. SERIAL_PROTOCOL((int)tmp_extruder);
  2950. #ifdef TEMP_RESIDENCY_TIME
  2951. SERIAL_PROTOCOLPGM(" W:");
  2952. if(residencyStart > -1)
  2953. {
  2954. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2955. SERIAL_PROTOCOLLN( codenum );
  2956. }
  2957. else
  2958. {
  2959. SERIAL_PROTOCOLLN( "?" );
  2960. }
  2961. #else
  2962. SERIAL_PROTOCOLLN("");
  2963. #endif
  2964. codenum = millis();
  2965. }
  2966. manage_heater();
  2967. manage_inactivity();
  2968. lcd_update();
  2969. #ifdef TEMP_RESIDENCY_TIME
  2970. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2971. or when current temp falls outside the hysteresis after target temp was reached */
  2972. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2973. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2974. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2975. {
  2976. residencyStart = millis();
  2977. }
  2978. #endif //TEMP_RESIDENCY_TIME
  2979. }
  2980. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2981. heating_status = 2;
  2982. if (farm_mode) { prusa_statistics(2); };
  2983. starttime=millis();
  2984. previous_millis_cmd = millis();
  2985. }
  2986. break;
  2987. case 190: // M190 - Wait for bed heater to reach target.
  2988. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2989. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2990. heating_status = 3;
  2991. if (farm_mode) { prusa_statistics(1); };
  2992. if (code_seen('S'))
  2993. {
  2994. setTargetBed(code_value());
  2995. CooldownNoWait = true;
  2996. }
  2997. else if (code_seen('R'))
  2998. {
  2999. setTargetBed(code_value());
  3000. CooldownNoWait = false;
  3001. }
  3002. codenum = millis();
  3003. cancel_heatup = false;
  3004. target_direction = isHeatingBed(); // true if heating, false if cooling
  3005. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3006. {
  3007. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3008. {
  3009. float tt=degHotend(active_extruder);
  3010. SERIAL_PROTOCOLPGM("T:");
  3011. SERIAL_PROTOCOL(tt);
  3012. SERIAL_PROTOCOLPGM(" E:");
  3013. SERIAL_PROTOCOL((int)active_extruder);
  3014. SERIAL_PROTOCOLPGM(" B:");
  3015. SERIAL_PROTOCOL_F(degBed(),1);
  3016. SERIAL_PROTOCOLLN("");
  3017. codenum = millis();
  3018. }
  3019. manage_heater();
  3020. manage_inactivity();
  3021. lcd_update();
  3022. }
  3023. LCD_MESSAGERPGM(MSG_BED_DONE);
  3024. heating_status = 4;
  3025. previous_millis_cmd = millis();
  3026. #endif
  3027. break;
  3028. #if defined(FAN_PIN) && FAN_PIN > -1
  3029. case 106: //M106 Fan On
  3030. if (code_seen('S')){
  3031. fanSpeed=constrain(code_value(),0,255);
  3032. }
  3033. else {
  3034. fanSpeed=255;
  3035. }
  3036. break;
  3037. case 107: //M107 Fan Off
  3038. fanSpeed = 0;
  3039. break;
  3040. #endif //FAN_PIN
  3041. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3042. case 80: // M80 - Turn on Power Supply
  3043. SET_OUTPUT(PS_ON_PIN); //GND
  3044. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3045. // If you have a switch on suicide pin, this is useful
  3046. // if you want to start another print with suicide feature after
  3047. // a print without suicide...
  3048. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3049. SET_OUTPUT(SUICIDE_PIN);
  3050. WRITE(SUICIDE_PIN, HIGH);
  3051. #endif
  3052. #ifdef ULTIPANEL
  3053. powersupply = true;
  3054. LCD_MESSAGERPGM(WELCOME_MSG);
  3055. lcd_update();
  3056. #endif
  3057. break;
  3058. #endif
  3059. case 81: // M81 - Turn off Power Supply
  3060. disable_heater();
  3061. st_synchronize();
  3062. disable_e0();
  3063. disable_e1();
  3064. disable_e2();
  3065. finishAndDisableSteppers();
  3066. fanSpeed = 0;
  3067. delay(1000); // Wait a little before to switch off
  3068. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3069. st_synchronize();
  3070. suicide();
  3071. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3072. SET_OUTPUT(PS_ON_PIN);
  3073. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3074. #endif
  3075. #ifdef ULTIPANEL
  3076. powersupply = false;
  3077. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3078. /*
  3079. MACHNAME = "Prusa i3"
  3080. MSGOFF = "Vypnuto"
  3081. "Prusai3"" ""vypnuto""."
  3082. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3083. */
  3084. lcd_update();
  3085. #endif
  3086. break;
  3087. case 82:
  3088. axis_relative_modes[3] = false;
  3089. break;
  3090. case 83:
  3091. axis_relative_modes[3] = true;
  3092. break;
  3093. case 18: //compatibility
  3094. case 84: // M84
  3095. if(code_seen('S')){
  3096. stepper_inactive_time = code_value() * 1000;
  3097. }
  3098. else
  3099. {
  3100. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3101. if(all_axis)
  3102. {
  3103. st_synchronize();
  3104. disable_e0();
  3105. disable_e1();
  3106. disable_e2();
  3107. finishAndDisableSteppers();
  3108. }
  3109. else
  3110. {
  3111. st_synchronize();
  3112. if(code_seen('X')) disable_x();
  3113. if(code_seen('Y')) disable_y();
  3114. if(code_seen('Z')) disable_z();
  3115. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3116. if(code_seen('E')) {
  3117. disable_e0();
  3118. disable_e1();
  3119. disable_e2();
  3120. }
  3121. #endif
  3122. }
  3123. }
  3124. break;
  3125. case 85: // M85
  3126. if(code_seen('S')) {
  3127. max_inactive_time = code_value() * 1000;
  3128. }
  3129. break;
  3130. case 92: // M92
  3131. for(int8_t i=0; i < NUM_AXIS; i++)
  3132. {
  3133. if(code_seen(axis_codes[i]))
  3134. {
  3135. if(i == 3) { // E
  3136. float value = code_value();
  3137. if(value < 20.0) {
  3138. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3139. max_jerk[E_AXIS] *= factor;
  3140. max_feedrate[i] *= factor;
  3141. axis_steps_per_sqr_second[i] *= factor;
  3142. }
  3143. axis_steps_per_unit[i] = value;
  3144. }
  3145. else {
  3146. axis_steps_per_unit[i] = code_value();
  3147. }
  3148. }
  3149. }
  3150. break;
  3151. case 115: // M115
  3152. if (code_seen('V')) {
  3153. // Report the Prusa version number.
  3154. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3155. } else if (code_seen('U')) {
  3156. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3157. // pause the print and ask the user to upgrade the firmware.
  3158. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3159. } else {
  3160. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3161. }
  3162. break;
  3163. case 117: // M117 display message
  3164. starpos = (strchr(strchr_pointer + 5,'*'));
  3165. if(starpos!=NULL)
  3166. *(starpos)='\0';
  3167. lcd_setstatus(strchr_pointer + 5);
  3168. break;
  3169. case 114: // M114
  3170. SERIAL_PROTOCOLPGM("X:");
  3171. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3172. SERIAL_PROTOCOLPGM(" Y:");
  3173. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3174. SERIAL_PROTOCOLPGM(" Z:");
  3175. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3176. SERIAL_PROTOCOLPGM(" E:");
  3177. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3178. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3179. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3180. SERIAL_PROTOCOLPGM(" Y:");
  3181. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3182. SERIAL_PROTOCOLPGM(" Z:");
  3183. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3184. SERIAL_PROTOCOLLN("");
  3185. break;
  3186. case 120: // M120
  3187. enable_endstops(false) ;
  3188. break;
  3189. case 121: // M121
  3190. enable_endstops(true) ;
  3191. break;
  3192. case 119: // M119
  3193. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3194. SERIAL_PROTOCOLLN("");
  3195. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3196. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3197. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3198. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3199. }else{
  3200. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3201. }
  3202. SERIAL_PROTOCOLLN("");
  3203. #endif
  3204. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3205. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3206. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3207. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3208. }else{
  3209. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3210. }
  3211. SERIAL_PROTOCOLLN("");
  3212. #endif
  3213. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3214. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3215. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3216. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3217. }else{
  3218. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3219. }
  3220. SERIAL_PROTOCOLLN("");
  3221. #endif
  3222. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3223. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3224. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3225. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3226. }else{
  3227. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3228. }
  3229. SERIAL_PROTOCOLLN("");
  3230. #endif
  3231. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3232. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3233. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3234. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3235. }else{
  3236. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3237. }
  3238. SERIAL_PROTOCOLLN("");
  3239. #endif
  3240. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3241. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3242. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3243. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3244. }else{
  3245. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3246. }
  3247. SERIAL_PROTOCOLLN("");
  3248. #endif
  3249. break;
  3250. //TODO: update for all axis, use for loop
  3251. #ifdef BLINKM
  3252. case 150: // M150
  3253. {
  3254. byte red;
  3255. byte grn;
  3256. byte blu;
  3257. if(code_seen('R')) red = code_value();
  3258. if(code_seen('U')) grn = code_value();
  3259. if(code_seen('B')) blu = code_value();
  3260. SendColors(red,grn,blu);
  3261. }
  3262. break;
  3263. #endif //BLINKM
  3264. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3265. {
  3266. tmp_extruder = active_extruder;
  3267. if(code_seen('T')) {
  3268. tmp_extruder = code_value();
  3269. if(tmp_extruder >= EXTRUDERS) {
  3270. SERIAL_ECHO_START;
  3271. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3272. break;
  3273. }
  3274. }
  3275. float area = .0;
  3276. if(code_seen('D')) {
  3277. float diameter = (float)code_value();
  3278. if (diameter == 0.0) {
  3279. // setting any extruder filament size disables volumetric on the assumption that
  3280. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3281. // for all extruders
  3282. volumetric_enabled = false;
  3283. } else {
  3284. filament_size[tmp_extruder] = (float)code_value();
  3285. // make sure all extruders have some sane value for the filament size
  3286. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3287. #if EXTRUDERS > 1
  3288. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3289. #if EXTRUDERS > 2
  3290. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3291. #endif
  3292. #endif
  3293. volumetric_enabled = true;
  3294. }
  3295. } else {
  3296. //reserved for setting filament diameter via UFID or filament measuring device
  3297. break;
  3298. }
  3299. calculate_volumetric_multipliers();
  3300. }
  3301. break;
  3302. case 201: // M201
  3303. for(int8_t i=0; i < NUM_AXIS; i++)
  3304. {
  3305. if(code_seen(axis_codes[i]))
  3306. {
  3307. max_acceleration_units_per_sq_second[i] = code_value();
  3308. }
  3309. }
  3310. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3311. reset_acceleration_rates();
  3312. break;
  3313. #if 0 // Not used for Sprinter/grbl gen6
  3314. case 202: // M202
  3315. for(int8_t i=0; i < NUM_AXIS; i++) {
  3316. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3317. }
  3318. break;
  3319. #endif
  3320. case 203: // M203 max feedrate mm/sec
  3321. for(int8_t i=0; i < NUM_AXIS; i++) {
  3322. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3323. }
  3324. break;
  3325. case 204: // M204 acclereration S normal moves T filmanent only moves
  3326. {
  3327. if(code_seen('S')) acceleration = code_value() ;
  3328. if(code_seen('T')) retract_acceleration = code_value() ;
  3329. }
  3330. break;
  3331. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3332. {
  3333. if(code_seen('S')) minimumfeedrate = code_value();
  3334. if(code_seen('T')) mintravelfeedrate = code_value();
  3335. if(code_seen('B')) minsegmenttime = code_value() ;
  3336. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3337. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3338. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3339. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3340. }
  3341. break;
  3342. case 206: // M206 additional homing offset
  3343. for(int8_t i=0; i < 3; i++)
  3344. {
  3345. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3346. }
  3347. break;
  3348. #ifdef FWRETRACT
  3349. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3350. {
  3351. if(code_seen('S'))
  3352. {
  3353. retract_length = code_value() ;
  3354. }
  3355. if(code_seen('F'))
  3356. {
  3357. retract_feedrate = code_value()/60 ;
  3358. }
  3359. if(code_seen('Z'))
  3360. {
  3361. retract_zlift = code_value() ;
  3362. }
  3363. }break;
  3364. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3365. {
  3366. if(code_seen('S'))
  3367. {
  3368. retract_recover_length = code_value() ;
  3369. }
  3370. if(code_seen('F'))
  3371. {
  3372. retract_recover_feedrate = code_value()/60 ;
  3373. }
  3374. }break;
  3375. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3376. {
  3377. if(code_seen('S'))
  3378. {
  3379. int t= code_value() ;
  3380. switch(t)
  3381. {
  3382. case 0:
  3383. {
  3384. autoretract_enabled=false;
  3385. retracted[0]=false;
  3386. #if EXTRUDERS > 1
  3387. retracted[1]=false;
  3388. #endif
  3389. #if EXTRUDERS > 2
  3390. retracted[2]=false;
  3391. #endif
  3392. }break;
  3393. case 1:
  3394. {
  3395. autoretract_enabled=true;
  3396. retracted[0]=false;
  3397. #if EXTRUDERS > 1
  3398. retracted[1]=false;
  3399. #endif
  3400. #if EXTRUDERS > 2
  3401. retracted[2]=false;
  3402. #endif
  3403. }break;
  3404. default:
  3405. SERIAL_ECHO_START;
  3406. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3407. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3408. SERIAL_ECHOLNPGM("\"");
  3409. }
  3410. }
  3411. }break;
  3412. #endif // FWRETRACT
  3413. #if EXTRUDERS > 1
  3414. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3415. {
  3416. if(setTargetedHotend(218)){
  3417. break;
  3418. }
  3419. if(code_seen('X'))
  3420. {
  3421. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3422. }
  3423. if(code_seen('Y'))
  3424. {
  3425. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3426. }
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3429. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3430. {
  3431. SERIAL_ECHO(" ");
  3432. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3433. SERIAL_ECHO(",");
  3434. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3435. }
  3436. SERIAL_ECHOLN("");
  3437. }break;
  3438. #endif
  3439. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3440. {
  3441. if(code_seen('S'))
  3442. {
  3443. feedmultiply = code_value() ;
  3444. }
  3445. }
  3446. break;
  3447. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3448. {
  3449. if(code_seen('S'))
  3450. {
  3451. int tmp_code = code_value();
  3452. if (code_seen('T'))
  3453. {
  3454. if(setTargetedHotend(221)){
  3455. break;
  3456. }
  3457. extruder_multiply[tmp_extruder] = tmp_code;
  3458. }
  3459. else
  3460. {
  3461. extrudemultiply = tmp_code ;
  3462. }
  3463. }
  3464. }
  3465. break;
  3466. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3467. {
  3468. if(code_seen('P')){
  3469. int pin_number = code_value(); // pin number
  3470. int pin_state = -1; // required pin state - default is inverted
  3471. if(code_seen('S')) pin_state = code_value(); // required pin state
  3472. if(pin_state >= -1 && pin_state <= 1){
  3473. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3474. {
  3475. if (sensitive_pins[i] == pin_number)
  3476. {
  3477. pin_number = -1;
  3478. break;
  3479. }
  3480. }
  3481. if (pin_number > -1)
  3482. {
  3483. int target = LOW;
  3484. st_synchronize();
  3485. pinMode(pin_number, INPUT);
  3486. switch(pin_state){
  3487. case 1:
  3488. target = HIGH;
  3489. break;
  3490. case 0:
  3491. target = LOW;
  3492. break;
  3493. case -1:
  3494. target = !digitalRead(pin_number);
  3495. break;
  3496. }
  3497. while(digitalRead(pin_number) != target){
  3498. manage_heater();
  3499. manage_inactivity();
  3500. lcd_update();
  3501. }
  3502. }
  3503. }
  3504. }
  3505. }
  3506. break;
  3507. #if NUM_SERVOS > 0
  3508. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3509. {
  3510. int servo_index = -1;
  3511. int servo_position = 0;
  3512. if (code_seen('P'))
  3513. servo_index = code_value();
  3514. if (code_seen('S')) {
  3515. servo_position = code_value();
  3516. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3517. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3518. servos[servo_index].attach(0);
  3519. #endif
  3520. servos[servo_index].write(servo_position);
  3521. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3522. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3523. servos[servo_index].detach();
  3524. #endif
  3525. }
  3526. else {
  3527. SERIAL_ECHO_START;
  3528. SERIAL_ECHO("Servo ");
  3529. SERIAL_ECHO(servo_index);
  3530. SERIAL_ECHOLN(" out of range");
  3531. }
  3532. }
  3533. else if (servo_index >= 0) {
  3534. SERIAL_PROTOCOL(MSG_OK);
  3535. SERIAL_PROTOCOL(" Servo ");
  3536. SERIAL_PROTOCOL(servo_index);
  3537. SERIAL_PROTOCOL(": ");
  3538. SERIAL_PROTOCOL(servos[servo_index].read());
  3539. SERIAL_PROTOCOLLN("");
  3540. }
  3541. }
  3542. break;
  3543. #endif // NUM_SERVOS > 0
  3544. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3545. case 300: // M300
  3546. {
  3547. int beepS = code_seen('S') ? code_value() : 110;
  3548. int beepP = code_seen('P') ? code_value() : 1000;
  3549. if (beepS > 0)
  3550. {
  3551. #if BEEPER > 0
  3552. tone(BEEPER, beepS);
  3553. delay(beepP);
  3554. noTone(BEEPER);
  3555. #elif defined(ULTRALCD)
  3556. lcd_buzz(beepS, beepP);
  3557. #elif defined(LCD_USE_I2C_BUZZER)
  3558. lcd_buzz(beepP, beepS);
  3559. #endif
  3560. }
  3561. else
  3562. {
  3563. delay(beepP);
  3564. }
  3565. }
  3566. break;
  3567. #endif // M300
  3568. #ifdef PIDTEMP
  3569. case 301: // M301
  3570. {
  3571. if(code_seen('P')) Kp = code_value();
  3572. if(code_seen('I')) Ki = scalePID_i(code_value());
  3573. if(code_seen('D')) Kd = scalePID_d(code_value());
  3574. #ifdef PID_ADD_EXTRUSION_RATE
  3575. if(code_seen('C')) Kc = code_value();
  3576. #endif
  3577. updatePID();
  3578. SERIAL_PROTOCOL(MSG_OK);
  3579. SERIAL_PROTOCOL(" p:");
  3580. SERIAL_PROTOCOL(Kp);
  3581. SERIAL_PROTOCOL(" i:");
  3582. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3583. SERIAL_PROTOCOL(" d:");
  3584. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3585. #ifdef PID_ADD_EXTRUSION_RATE
  3586. SERIAL_PROTOCOL(" c:");
  3587. //Kc does not have scaling applied above, or in resetting defaults
  3588. SERIAL_PROTOCOL(Kc);
  3589. #endif
  3590. SERIAL_PROTOCOLLN("");
  3591. }
  3592. break;
  3593. #endif //PIDTEMP
  3594. #ifdef PIDTEMPBED
  3595. case 304: // M304
  3596. {
  3597. if(code_seen('P')) bedKp = code_value();
  3598. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3599. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3600. updatePID();
  3601. SERIAL_PROTOCOL(MSG_OK);
  3602. SERIAL_PROTOCOL(" p:");
  3603. SERIAL_PROTOCOL(bedKp);
  3604. SERIAL_PROTOCOL(" i:");
  3605. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3606. SERIAL_PROTOCOL(" d:");
  3607. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3608. SERIAL_PROTOCOLLN("");
  3609. }
  3610. break;
  3611. #endif //PIDTEMP
  3612. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3613. {
  3614. #ifdef CHDK
  3615. SET_OUTPUT(CHDK);
  3616. WRITE(CHDK, HIGH);
  3617. chdkHigh = millis();
  3618. chdkActive = true;
  3619. #else
  3620. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3621. const uint8_t NUM_PULSES=16;
  3622. const float PULSE_LENGTH=0.01524;
  3623. for(int i=0; i < NUM_PULSES; i++) {
  3624. WRITE(PHOTOGRAPH_PIN, HIGH);
  3625. _delay_ms(PULSE_LENGTH);
  3626. WRITE(PHOTOGRAPH_PIN, LOW);
  3627. _delay_ms(PULSE_LENGTH);
  3628. }
  3629. delay(7.33);
  3630. for(int i=0; i < NUM_PULSES; i++) {
  3631. WRITE(PHOTOGRAPH_PIN, HIGH);
  3632. _delay_ms(PULSE_LENGTH);
  3633. WRITE(PHOTOGRAPH_PIN, LOW);
  3634. _delay_ms(PULSE_LENGTH);
  3635. }
  3636. #endif
  3637. #endif //chdk end if
  3638. }
  3639. break;
  3640. #ifdef DOGLCD
  3641. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3642. {
  3643. if (code_seen('C')) {
  3644. lcd_setcontrast( ((int)code_value())&63 );
  3645. }
  3646. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3647. SERIAL_PROTOCOL(lcd_contrast);
  3648. SERIAL_PROTOCOLLN("");
  3649. }
  3650. break;
  3651. #endif
  3652. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3653. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3654. {
  3655. float temp = .0;
  3656. if (code_seen('S')) temp=code_value();
  3657. set_extrude_min_temp(temp);
  3658. }
  3659. break;
  3660. #endif
  3661. case 303: // M303 PID autotune
  3662. {
  3663. float temp = 150.0;
  3664. int e=0;
  3665. int c=5;
  3666. if (code_seen('E')) e=code_value();
  3667. if (e<0)
  3668. temp=70;
  3669. if (code_seen('S')) temp=code_value();
  3670. if (code_seen('C')) c=code_value();
  3671. PID_autotune(temp, e, c);
  3672. }
  3673. break;
  3674. case 400: // M400 finish all moves
  3675. {
  3676. st_synchronize();
  3677. }
  3678. break;
  3679. #ifdef FILAMENT_SENSOR
  3680. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3681. {
  3682. #if (FILWIDTH_PIN > -1)
  3683. if(code_seen('N')) filament_width_nominal=code_value();
  3684. else{
  3685. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3686. SERIAL_PROTOCOLLN(filament_width_nominal);
  3687. }
  3688. #endif
  3689. }
  3690. break;
  3691. case 405: //M405 Turn on filament sensor for control
  3692. {
  3693. if(code_seen('D')) meas_delay_cm=code_value();
  3694. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3695. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3696. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3697. {
  3698. int temp_ratio = widthFil_to_size_ratio();
  3699. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3700. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3701. }
  3702. delay_index1=0;
  3703. delay_index2=0;
  3704. }
  3705. filament_sensor = true ;
  3706. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3707. //SERIAL_PROTOCOL(filament_width_meas);
  3708. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3709. //SERIAL_PROTOCOL(extrudemultiply);
  3710. }
  3711. break;
  3712. case 406: //M406 Turn off filament sensor for control
  3713. {
  3714. filament_sensor = false ;
  3715. }
  3716. break;
  3717. case 407: //M407 Display measured filament diameter
  3718. {
  3719. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3720. SERIAL_PROTOCOLLN(filament_width_meas);
  3721. }
  3722. break;
  3723. #endif
  3724. case 500: // M500 Store settings in EEPROM
  3725. {
  3726. Config_StoreSettings();
  3727. }
  3728. break;
  3729. case 501: // M501 Read settings from EEPROM
  3730. {
  3731. Config_RetrieveSettings();
  3732. }
  3733. break;
  3734. case 502: // M502 Revert to default settings
  3735. {
  3736. Config_ResetDefault();
  3737. }
  3738. break;
  3739. case 503: // M503 print settings currently in memory
  3740. {
  3741. Config_PrintSettings();
  3742. }
  3743. break;
  3744. case 509: //M509 Force language selection
  3745. {
  3746. lcd_force_language_selection();
  3747. SERIAL_ECHO_START;
  3748. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3749. }
  3750. break;
  3751. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3752. case 540:
  3753. {
  3754. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3755. }
  3756. break;
  3757. #endif
  3758. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3759. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3760. {
  3761. float value;
  3762. if (code_seen('Z'))
  3763. {
  3764. value = code_value();
  3765. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3766. {
  3767. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3768. SERIAL_ECHO_START;
  3769. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3770. SERIAL_PROTOCOLLN("");
  3771. }
  3772. else
  3773. {
  3774. SERIAL_ECHO_START;
  3775. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3776. SERIAL_ECHORPGM(MSG_Z_MIN);
  3777. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3778. SERIAL_ECHORPGM(MSG_Z_MAX);
  3779. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3780. SERIAL_PROTOCOLLN("");
  3781. }
  3782. }
  3783. else
  3784. {
  3785. SERIAL_ECHO_START;
  3786. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3787. SERIAL_ECHO(-zprobe_zoffset);
  3788. SERIAL_PROTOCOLLN("");
  3789. }
  3790. break;
  3791. }
  3792. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3793. #ifdef FILAMENTCHANGEENABLE
  3794. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3795. {
  3796. st_synchronize();
  3797. feedmultiplyBckp=feedmultiply;
  3798. int8_t TooLowZ = 0;
  3799. float target[4];
  3800. float lastpos[4];
  3801. target[X_AXIS]=current_position[X_AXIS];
  3802. target[Y_AXIS]=current_position[Y_AXIS];
  3803. target[Z_AXIS]=current_position[Z_AXIS];
  3804. target[E_AXIS]=current_position[E_AXIS];
  3805. lastpos[X_AXIS]=current_position[X_AXIS];
  3806. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3807. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3808. lastpos[E_AXIS]=current_position[E_AXIS];
  3809. //Restract extruder
  3810. if(code_seen('E'))
  3811. {
  3812. target[E_AXIS]+= code_value();
  3813. }
  3814. else
  3815. {
  3816. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3817. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3818. #endif
  3819. }
  3820. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3821. //Lift Z
  3822. if(code_seen('Z'))
  3823. {
  3824. target[Z_AXIS]+= code_value();
  3825. }
  3826. else
  3827. {
  3828. #ifdef FILAMENTCHANGE_ZADD
  3829. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3830. if(target[Z_AXIS] < 10){
  3831. target[Z_AXIS]+= 10 ;
  3832. TooLowZ = 1;
  3833. }else{
  3834. TooLowZ = 0;
  3835. }
  3836. #endif
  3837. }
  3838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3839. //Move XY to side
  3840. if(code_seen('X'))
  3841. {
  3842. target[X_AXIS]+= code_value();
  3843. }
  3844. else
  3845. {
  3846. #ifdef FILAMENTCHANGE_XPOS
  3847. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3848. #endif
  3849. }
  3850. if(code_seen('Y'))
  3851. {
  3852. target[Y_AXIS]= code_value();
  3853. }
  3854. else
  3855. {
  3856. #ifdef FILAMENTCHANGE_YPOS
  3857. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3858. #endif
  3859. }
  3860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3861. // Unload filament
  3862. if(code_seen('L'))
  3863. {
  3864. target[E_AXIS]+= code_value();
  3865. }
  3866. else
  3867. {
  3868. #ifdef FILAMENTCHANGE_FINALRETRACT
  3869. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3870. #endif
  3871. }
  3872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3873. //finish moves
  3874. st_synchronize();
  3875. //disable extruder steppers so filament can be removed
  3876. disable_e0();
  3877. disable_e1();
  3878. disable_e2();
  3879. delay(100);
  3880. //Wait for user to insert filament
  3881. uint8_t cnt=0;
  3882. int counterBeep = 0;
  3883. lcd_wait_interact();
  3884. while(!lcd_clicked()){
  3885. cnt++;
  3886. manage_heater();
  3887. manage_inactivity(true);
  3888. if(cnt==0)
  3889. {
  3890. #if BEEPER > 0
  3891. if (counterBeep== 500){
  3892. counterBeep = 0;
  3893. }
  3894. SET_OUTPUT(BEEPER);
  3895. if (counterBeep== 0){
  3896. WRITE(BEEPER,HIGH);
  3897. }
  3898. if (counterBeep== 20){
  3899. WRITE(BEEPER,LOW);
  3900. }
  3901. counterBeep++;
  3902. #else
  3903. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3904. lcd_buzz(1000/6,100);
  3905. #else
  3906. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3907. #endif
  3908. #endif
  3909. }
  3910. }
  3911. //Filament inserted
  3912. WRITE(BEEPER,LOW);
  3913. //Feed the filament to the end of nozzle quickly
  3914. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3915. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3916. //Extrude some filament
  3917. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3919. //Wait for user to check the state
  3920. lcd_change_fil_state = 0;
  3921. lcd_loading_filament();
  3922. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3923. lcd_change_fil_state = 0;
  3924. lcd_alright();
  3925. switch(lcd_change_fil_state){
  3926. // Filament failed to load so load it again
  3927. case 2:
  3928. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3930. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3932. lcd_loading_filament();
  3933. break;
  3934. // Filament loaded properly but color is not clear
  3935. case 3:
  3936. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3937. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3938. lcd_loading_color();
  3939. break;
  3940. // Everything good
  3941. default:
  3942. lcd_change_success();
  3943. break;
  3944. }
  3945. }
  3946. //Not let's go back to print
  3947. //Feed a little of filament to stabilize pressure
  3948. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3949. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3950. //Retract
  3951. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3952. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3953. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3954. //Move XY back
  3955. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3956. //Move Z back
  3957. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3958. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3959. //Unretract
  3960. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3961. //Set E position to original
  3962. plan_set_e_position(lastpos[E_AXIS]);
  3963. //Recover feed rate
  3964. feedmultiply=feedmultiplyBckp;
  3965. char cmd[9];
  3966. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3967. enquecommand(cmd);
  3968. }
  3969. break;
  3970. #endif //FILAMENTCHANGEENABLE
  3971. case 907: // M907 Set digital trimpot motor current using axis codes.
  3972. {
  3973. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3974. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3975. if(code_seen('B')) digipot_current(4,code_value());
  3976. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3977. #endif
  3978. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3979. if(code_seen('X')) digipot_current(0, code_value());
  3980. #endif
  3981. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3982. if(code_seen('Z')) digipot_current(1, code_value());
  3983. #endif
  3984. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3985. if(code_seen('E')) digipot_current(2, code_value());
  3986. #endif
  3987. #ifdef DIGIPOT_I2C
  3988. // this one uses actual amps in floating point
  3989. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3990. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3991. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3992. #endif
  3993. }
  3994. break;
  3995. case 908: // M908 Control digital trimpot directly.
  3996. {
  3997. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3998. uint8_t channel,current;
  3999. if(code_seen('P')) channel=code_value();
  4000. if(code_seen('S')) current=code_value();
  4001. digitalPotWrite(channel, current);
  4002. #endif
  4003. }
  4004. break;
  4005. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4006. {
  4007. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4008. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4009. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4010. if(code_seen('B')) microstep_mode(4,code_value());
  4011. microstep_readings();
  4012. #endif
  4013. }
  4014. break;
  4015. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4016. {
  4017. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4018. if(code_seen('S')) switch((int)code_value())
  4019. {
  4020. case 1:
  4021. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4022. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4023. break;
  4024. case 2:
  4025. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4026. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4027. break;
  4028. }
  4029. microstep_readings();
  4030. #endif
  4031. }
  4032. break;
  4033. case 999: // M999: Restart after being stopped
  4034. Stopped = false;
  4035. lcd_reset_alert_level();
  4036. gcode_LastN = Stopped_gcode_LastN;
  4037. FlushSerialRequestResend();
  4038. break;
  4039. }
  4040. } // end if(code_seen('M')) (end of M codes)
  4041. else if(code_seen('T'))
  4042. {
  4043. tmp_extruder = code_value();
  4044. if(tmp_extruder >= EXTRUDERS) {
  4045. SERIAL_ECHO_START;
  4046. SERIAL_ECHO("T");
  4047. SERIAL_ECHO(tmp_extruder);
  4048. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4049. }
  4050. else {
  4051. boolean make_move = false;
  4052. if(code_seen('F')) {
  4053. make_move = true;
  4054. next_feedrate = code_value();
  4055. if(next_feedrate > 0.0) {
  4056. feedrate = next_feedrate;
  4057. }
  4058. }
  4059. #if EXTRUDERS > 1
  4060. if(tmp_extruder != active_extruder) {
  4061. // Save current position to return to after applying extruder offset
  4062. memcpy(destination, current_position, sizeof(destination));
  4063. // Offset extruder (only by XY)
  4064. int i;
  4065. for(i = 0; i < 2; i++) {
  4066. current_position[i] = current_position[i] -
  4067. extruder_offset[i][active_extruder] +
  4068. extruder_offset[i][tmp_extruder];
  4069. }
  4070. // Set the new active extruder and position
  4071. active_extruder = tmp_extruder;
  4072. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4073. // Move to the old position if 'F' was in the parameters
  4074. if(make_move && Stopped == false) {
  4075. prepare_move();
  4076. }
  4077. }
  4078. #endif
  4079. SERIAL_ECHO_START;
  4080. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4081. SERIAL_PROTOCOLLN((int)active_extruder);
  4082. }
  4083. } // end if(code_seen('T')) (end of T codes)
  4084. else
  4085. {
  4086. SERIAL_ECHO_START;
  4087. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4088. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4089. SERIAL_ECHOLNPGM("\"");
  4090. }
  4091. ClearToSend();
  4092. }
  4093. void FlushSerialRequestResend()
  4094. {
  4095. //char cmdbuffer[bufindr][100]="Resend:";
  4096. MYSERIAL.flush();
  4097. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4098. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4099. ClearToSend();
  4100. }
  4101. // Confirm the execution of a command, if sent from a serial line.
  4102. // Execution of a command from a SD card will not be confirmed.
  4103. void ClearToSend()
  4104. {
  4105. previous_millis_cmd = millis();
  4106. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4107. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4108. }
  4109. void get_coordinates()
  4110. {
  4111. bool seen[4]={false,false,false,false};
  4112. for(int8_t i=0; i < NUM_AXIS; i++) {
  4113. if(code_seen(axis_codes[i]))
  4114. {
  4115. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4116. seen[i]=true;
  4117. }
  4118. else destination[i] = current_position[i]; //Are these else lines really needed?
  4119. }
  4120. if(code_seen('F')) {
  4121. next_feedrate = code_value();
  4122. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4123. }
  4124. }
  4125. void get_arc_coordinates()
  4126. {
  4127. #ifdef SF_ARC_FIX
  4128. bool relative_mode_backup = relative_mode;
  4129. relative_mode = true;
  4130. #endif
  4131. get_coordinates();
  4132. #ifdef SF_ARC_FIX
  4133. relative_mode=relative_mode_backup;
  4134. #endif
  4135. if(code_seen('I')) {
  4136. offset[0] = code_value();
  4137. }
  4138. else {
  4139. offset[0] = 0.0;
  4140. }
  4141. if(code_seen('J')) {
  4142. offset[1] = code_value();
  4143. }
  4144. else {
  4145. offset[1] = 0.0;
  4146. }
  4147. }
  4148. void clamp_to_software_endstops(float target[3])
  4149. {
  4150. world2machine_clamp(target[0], target[1]);
  4151. // Clamp the Z coordinate.
  4152. if (min_software_endstops) {
  4153. float negative_z_offset = 0;
  4154. #ifdef ENABLE_AUTO_BED_LEVELING
  4155. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4156. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4157. #endif
  4158. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4159. }
  4160. if (max_software_endstops) {
  4161. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4162. }
  4163. }
  4164. #ifdef MESH_BED_LEVELING
  4165. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4166. float dx = x - current_position[X_AXIS];
  4167. float dy = y - current_position[Y_AXIS];
  4168. float dz = z - current_position[Z_AXIS];
  4169. int n_segments = 0;
  4170. if (mbl.active) {
  4171. float len = abs(dx) + abs(dy);
  4172. if (len > 0)
  4173. // Split to 3cm segments or shorter.
  4174. n_segments = int(ceil(len / 30.f));
  4175. }
  4176. if (n_segments > 1) {
  4177. float de = e - current_position[E_AXIS];
  4178. for (int i = 1; i < n_segments; ++ i) {
  4179. float t = float(i) / float(n_segments);
  4180. plan_buffer_line(
  4181. current_position[X_AXIS] + t * dx,
  4182. current_position[Y_AXIS] + t * dy,
  4183. current_position[Z_AXIS] + t * dz,
  4184. current_position[E_AXIS] + t * de,
  4185. feed_rate, extruder);
  4186. }
  4187. }
  4188. // The rest of the path.
  4189. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4190. current_position[X_AXIS] = x;
  4191. current_position[Y_AXIS] = y;
  4192. current_position[Z_AXIS] = z;
  4193. current_position[E_AXIS] = e;
  4194. }
  4195. #endif // MESH_BED_LEVELING
  4196. void prepare_move()
  4197. {
  4198. clamp_to_software_endstops(destination);
  4199. previous_millis_cmd = millis();
  4200. // Do not use feedmultiply for E or Z only moves
  4201. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4202. #ifdef MESH_BED_LEVELING
  4203. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4204. #else
  4205. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4206. #endif
  4207. }
  4208. else {
  4209. #ifdef MESH_BED_LEVELING
  4210. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4211. #else
  4212. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4213. #endif
  4214. }
  4215. for(int8_t i=0; i < NUM_AXIS; i++) {
  4216. current_position[i] = destination[i];
  4217. }
  4218. }
  4219. void prepare_arc_move(char isclockwise) {
  4220. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4221. // Trace the arc
  4222. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4223. // As far as the parser is concerned, the position is now == target. In reality the
  4224. // motion control system might still be processing the action and the real tool position
  4225. // in any intermediate location.
  4226. for(int8_t i=0; i < NUM_AXIS; i++) {
  4227. current_position[i] = destination[i];
  4228. }
  4229. previous_millis_cmd = millis();
  4230. }
  4231. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4232. #if defined(FAN_PIN)
  4233. #if CONTROLLERFAN_PIN == FAN_PIN
  4234. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4235. #endif
  4236. #endif
  4237. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4238. unsigned long lastMotorCheck = 0;
  4239. void controllerFan()
  4240. {
  4241. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4242. {
  4243. lastMotorCheck = millis();
  4244. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4245. #if EXTRUDERS > 2
  4246. || !READ(E2_ENABLE_PIN)
  4247. #endif
  4248. #if EXTRUDER > 1
  4249. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4250. || !READ(X2_ENABLE_PIN)
  4251. #endif
  4252. || !READ(E1_ENABLE_PIN)
  4253. #endif
  4254. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4255. {
  4256. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4257. }
  4258. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4259. {
  4260. digitalWrite(CONTROLLERFAN_PIN, 0);
  4261. analogWrite(CONTROLLERFAN_PIN, 0);
  4262. }
  4263. else
  4264. {
  4265. // allows digital or PWM fan output to be used (see M42 handling)
  4266. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4267. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4268. }
  4269. }
  4270. }
  4271. #endif
  4272. #ifdef TEMP_STAT_LEDS
  4273. static bool blue_led = false;
  4274. static bool red_led = false;
  4275. static uint32_t stat_update = 0;
  4276. void handle_status_leds(void) {
  4277. float max_temp = 0.0;
  4278. if(millis() > stat_update) {
  4279. stat_update += 500; // Update every 0.5s
  4280. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4281. max_temp = max(max_temp, degHotend(cur_extruder));
  4282. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4283. }
  4284. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4285. max_temp = max(max_temp, degTargetBed());
  4286. max_temp = max(max_temp, degBed());
  4287. #endif
  4288. if((max_temp > 55.0) && (red_led == false)) {
  4289. digitalWrite(STAT_LED_RED, 1);
  4290. digitalWrite(STAT_LED_BLUE, 0);
  4291. red_led = true;
  4292. blue_led = false;
  4293. }
  4294. if((max_temp < 54.0) && (blue_led == false)) {
  4295. digitalWrite(STAT_LED_RED, 0);
  4296. digitalWrite(STAT_LED_BLUE, 1);
  4297. red_led = false;
  4298. blue_led = true;
  4299. }
  4300. }
  4301. }
  4302. #endif
  4303. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4304. {
  4305. #if defined(KILL_PIN) && KILL_PIN > -1
  4306. static int killCount = 0; // make the inactivity button a bit less responsive
  4307. const int KILL_DELAY = 10000;
  4308. #endif
  4309. if(buflen < (BUFSIZE-1))
  4310. get_command();
  4311. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4312. if(max_inactive_time)
  4313. kill();
  4314. if(stepper_inactive_time) {
  4315. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4316. {
  4317. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4318. disable_x();
  4319. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4320. disable_y();
  4321. disable_z();
  4322. disable_e0();
  4323. disable_e1();
  4324. disable_e2();
  4325. }
  4326. }
  4327. }
  4328. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4329. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4330. {
  4331. chdkActive = false;
  4332. WRITE(CHDK, LOW);
  4333. }
  4334. #endif
  4335. #if defined(KILL_PIN) && KILL_PIN > -1
  4336. // Check if the kill button was pressed and wait just in case it was an accidental
  4337. // key kill key press
  4338. // -------------------------------------------------------------------------------
  4339. if( 0 == READ(KILL_PIN) )
  4340. {
  4341. killCount++;
  4342. }
  4343. else if (killCount > 0)
  4344. {
  4345. killCount--;
  4346. }
  4347. // Exceeded threshold and we can confirm that it was not accidental
  4348. // KILL the machine
  4349. // ----------------------------------------------------------------
  4350. if ( killCount >= KILL_DELAY)
  4351. {
  4352. kill();
  4353. }
  4354. #endif
  4355. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4356. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4357. #endif
  4358. #ifdef EXTRUDER_RUNOUT_PREVENT
  4359. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4360. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4361. {
  4362. bool oldstatus=READ(E0_ENABLE_PIN);
  4363. enable_e0();
  4364. float oldepos=current_position[E_AXIS];
  4365. float oldedes=destination[E_AXIS];
  4366. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4367. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4368. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4369. current_position[E_AXIS]=oldepos;
  4370. destination[E_AXIS]=oldedes;
  4371. plan_set_e_position(oldepos);
  4372. previous_millis_cmd=millis();
  4373. st_synchronize();
  4374. WRITE(E0_ENABLE_PIN,oldstatus);
  4375. }
  4376. #endif
  4377. #ifdef TEMP_STAT_LEDS
  4378. handle_status_leds();
  4379. #endif
  4380. check_axes_activity();
  4381. }
  4382. void kill(const char *full_screen_message)
  4383. {
  4384. cli(); // Stop interrupts
  4385. disable_heater();
  4386. disable_x();
  4387. // SERIAL_ECHOLNPGM("kill - disable Y");
  4388. disable_y();
  4389. disable_z();
  4390. disable_e0();
  4391. disable_e1();
  4392. disable_e2();
  4393. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4394. pinMode(PS_ON_PIN,INPUT);
  4395. #endif
  4396. SERIAL_ERROR_START;
  4397. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4398. if (full_screen_message != NULL) {
  4399. SERIAL_ERRORLNRPGM(full_screen_message);
  4400. lcd_display_message_fullscreen_P(full_screen_message);
  4401. } else {
  4402. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4403. }
  4404. // FMC small patch to update the LCD before ending
  4405. sei(); // enable interrupts
  4406. for ( int i=5; i--; lcd_update())
  4407. {
  4408. delay(200);
  4409. }
  4410. cli(); // disable interrupts
  4411. suicide();
  4412. while(1) { /* Intentionally left empty */ } // Wait for reset
  4413. }
  4414. void Stop()
  4415. {
  4416. disable_heater();
  4417. if(Stopped == false) {
  4418. Stopped = true;
  4419. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4420. SERIAL_ERROR_START;
  4421. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4422. LCD_MESSAGERPGM(MSG_STOPPED);
  4423. }
  4424. }
  4425. bool IsStopped() { return Stopped; };
  4426. #ifdef FAST_PWM_FAN
  4427. void setPwmFrequency(uint8_t pin, int val)
  4428. {
  4429. val &= 0x07;
  4430. switch(digitalPinToTimer(pin))
  4431. {
  4432. #if defined(TCCR0A)
  4433. case TIMER0A:
  4434. case TIMER0B:
  4435. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4436. // TCCR0B |= val;
  4437. break;
  4438. #endif
  4439. #if defined(TCCR1A)
  4440. case TIMER1A:
  4441. case TIMER1B:
  4442. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4443. // TCCR1B |= val;
  4444. break;
  4445. #endif
  4446. #if defined(TCCR2)
  4447. case TIMER2:
  4448. case TIMER2:
  4449. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4450. TCCR2 |= val;
  4451. break;
  4452. #endif
  4453. #if defined(TCCR2A)
  4454. case TIMER2A:
  4455. case TIMER2B:
  4456. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4457. TCCR2B |= val;
  4458. break;
  4459. #endif
  4460. #if defined(TCCR3A)
  4461. case TIMER3A:
  4462. case TIMER3B:
  4463. case TIMER3C:
  4464. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4465. TCCR3B |= val;
  4466. break;
  4467. #endif
  4468. #if defined(TCCR4A)
  4469. case TIMER4A:
  4470. case TIMER4B:
  4471. case TIMER4C:
  4472. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4473. TCCR4B |= val;
  4474. break;
  4475. #endif
  4476. #if defined(TCCR5A)
  4477. case TIMER5A:
  4478. case TIMER5B:
  4479. case TIMER5C:
  4480. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4481. TCCR5B |= val;
  4482. break;
  4483. #endif
  4484. }
  4485. }
  4486. #endif //FAST_PWM_FAN
  4487. bool setTargetedHotend(int code){
  4488. tmp_extruder = active_extruder;
  4489. if(code_seen('T')) {
  4490. tmp_extruder = code_value();
  4491. if(tmp_extruder >= EXTRUDERS) {
  4492. SERIAL_ECHO_START;
  4493. switch(code){
  4494. case 104:
  4495. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4496. break;
  4497. case 105:
  4498. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4499. break;
  4500. case 109:
  4501. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4502. break;
  4503. case 218:
  4504. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4505. break;
  4506. case 221:
  4507. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4508. break;
  4509. }
  4510. SERIAL_ECHOLN(tmp_extruder);
  4511. return true;
  4512. }
  4513. }
  4514. return false;
  4515. }
  4516. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4517. {
  4518. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4519. {
  4520. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4521. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4522. }
  4523. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4524. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4525. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4526. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4527. total_filament_used = 0;
  4528. }
  4529. float calculate_volumetric_multiplier(float diameter) {
  4530. float area = .0;
  4531. float radius = .0;
  4532. radius = diameter * .5;
  4533. if (! volumetric_enabled || radius == 0) {
  4534. area = 1;
  4535. }
  4536. else {
  4537. area = M_PI * pow(radius, 2);
  4538. }
  4539. return 1.0 / area;
  4540. }
  4541. void calculate_volumetric_multipliers() {
  4542. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4543. #if EXTRUDERS > 1
  4544. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4545. #if EXTRUDERS > 2
  4546. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4547. #endif
  4548. #endif
  4549. }
  4550. void delay_keep_alive(int ms)
  4551. {
  4552. for (;;) {
  4553. manage_heater();
  4554. // Manage inactivity, but don't disable steppers on timeout.
  4555. manage_inactivity(true);
  4556. lcd_update();
  4557. if (ms == 0)
  4558. break;
  4559. else if (ms >= 50) {
  4560. delay(50);
  4561. ms -= 50;
  4562. } else {
  4563. delay(ms);
  4564. ms = 0;
  4565. }
  4566. }
  4567. }