Marlin_main.cpp 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. // Number of baby steps applied
  199. int babystepLoadZ = 0;
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. void cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. }
  466. }
  467. // How long a string could be pushed to the front of the command queue?
  468. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  469. // len_asked does not contain the zero terminator size.
  470. bool cmdqueue_could_enqueue_front(int len_asked)
  471. {
  472. // MAX_CMD_SIZE has to accommodate the zero terminator.
  473. if (len_asked >= MAX_CMD_SIZE)
  474. return false;
  475. // Remove the currently processed command from the queue.
  476. if (! cmdbuffer_front_already_processed) {
  477. cmdqueue_pop_front();
  478. cmdbuffer_front_already_processed = true;
  479. }
  480. if (bufindr == bufindw && buflen > 0)
  481. // Full buffer.
  482. return false;
  483. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  484. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  485. if (bufindw < bufindr) {
  486. int bufindr_new = bufindr - len_asked - 2;
  487. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  488. if (endw <= bufindr_new) {
  489. bufindr = bufindr_new;
  490. return true;
  491. }
  492. } else {
  493. // Otherwise the free space is split between the start and end.
  494. if (len_asked + 2 <= bufindr) {
  495. // Could fit at the start.
  496. bufindr -= len_asked + 2;
  497. return true;
  498. }
  499. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  500. if (endw <= bufindr_new) {
  501. memset(cmdbuffer, 0, bufindr);
  502. bufindr = bufindr_new;
  503. return true;
  504. }
  505. }
  506. return false;
  507. }
  508. // Could one enqueue a command of lenthg len_asked into the buffer,
  509. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  510. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  511. // len_asked does not contain the zero terminator size.
  512. bool cmdqueue_could_enqueue_back(int len_asked)
  513. {
  514. // MAX_CMD_SIZE has to accommodate the zero terminator.
  515. if (len_asked >= MAX_CMD_SIZE)
  516. return false;
  517. if (bufindr == bufindw && buflen > 0)
  518. // Full buffer.
  519. return false;
  520. if (serial_count > 0) {
  521. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  522. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  523. // serial data.
  524. // How much memory to reserve for the commands pushed to the front?
  525. // End of the queue, when pushing to the end.
  526. int endw = bufindw + len_asked + 2;
  527. if (bufindw < bufindr)
  528. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  529. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  530. // Otherwise the free space is split between the start and end.
  531. if (// Could one fit to the end, including the reserve?
  532. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  533. // Could one fit to the end, and the reserve to the start?
  534. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  535. return true;
  536. // Could one fit both to the start?
  537. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  538. // Mark the rest of the buffer as used.
  539. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  540. // and point to the start.
  541. bufindw = 0;
  542. return true;
  543. }
  544. } else {
  545. // How much memory to reserve for the commands pushed to the front?
  546. // End of the queue, when pushing to the end.
  547. int endw = bufindw + len_asked + 2;
  548. if (bufindw < bufindr)
  549. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  550. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  551. // Otherwise the free space is split between the start and end.
  552. if (// Could one fit to the end, including the reserve?
  553. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  554. // Could one fit to the end, and the reserve to the start?
  555. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  556. return true;
  557. // Could one fit both to the start?
  558. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  559. // Mark the rest of the buffer as used.
  560. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  561. // and point to the start.
  562. bufindw = 0;
  563. return true;
  564. }
  565. }
  566. return false;
  567. }
  568. #ifdef CMDBUFFER_DEBUG
  569. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  570. {
  571. SERIAL_ECHOPGM("Entry nr: ");
  572. SERIAL_ECHO(nr);
  573. SERIAL_ECHOPGM(", type: ");
  574. SERIAL_ECHO(int(*p));
  575. SERIAL_ECHOPGM(", cmd: ");
  576. SERIAL_ECHO(p+1);
  577. SERIAL_ECHOLNPGM("");
  578. }
  579. static void cmdqueue_dump_to_serial()
  580. {
  581. if (buflen == 0) {
  582. SERIAL_ECHOLNPGM("The command buffer is empty.");
  583. } else {
  584. SERIAL_ECHOPGM("Content of the buffer: entries ");
  585. SERIAL_ECHO(buflen);
  586. SERIAL_ECHOPGM(", indr ");
  587. SERIAL_ECHO(bufindr);
  588. SERIAL_ECHOPGM(", indw ");
  589. SERIAL_ECHO(bufindw);
  590. SERIAL_ECHOLNPGM("");
  591. int nr = 0;
  592. if (bufindr < bufindw) {
  593. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  594. cmdqueue_dump_to_serial_single_line(nr, p);
  595. // Skip the command.
  596. for (++p; *p != 0; ++ p);
  597. // Skip the gaps.
  598. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  599. }
  600. } else {
  601. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  602. cmdqueue_dump_to_serial_single_line(nr, p);
  603. // Skip the command.
  604. for (++p; *p != 0; ++ p);
  605. // Skip the gaps.
  606. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  607. }
  608. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  614. }
  615. }
  616. SERIAL_ECHOLNPGM("End of the buffer.");
  617. }
  618. }
  619. #endif /* CMDBUFFER_DEBUG */
  620. //adds an command to the main command buffer
  621. //thats really done in a non-safe way.
  622. //needs overworking someday
  623. // Currently the maximum length of a command piped through this function is around 20 characters
  624. void enquecommand(const char *cmd, bool from_progmem)
  625. {
  626. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  627. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  628. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  629. if (cmdqueue_could_enqueue_back(len)) {
  630. // This is dangerous if a mixing of serial and this happens
  631. // This may easily be tested: If serial_count > 0, we have a problem.
  632. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  633. if (from_progmem)
  634. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  635. else
  636. strcpy(cmdbuffer + bufindw + 1, cmd);
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHORPGM(MSG_Enqueing);
  639. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  640. SERIAL_ECHOLNPGM("\"");
  641. bufindw += len + 2;
  642. if (bufindw == sizeof(cmdbuffer))
  643. bufindw = 0;
  644. ++ buflen;
  645. #ifdef CMDBUFFER_DEBUG
  646. cmdqueue_dump_to_serial();
  647. #endif /* CMDBUFFER_DEBUG */
  648. } else {
  649. SERIAL_ERROR_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. if (from_progmem)
  652. SERIAL_PROTOCOLRPGM(cmd);
  653. else
  654. SERIAL_ECHO(cmd);
  655. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  656. #ifdef CMDBUFFER_DEBUG
  657. cmdqueue_dump_to_serial();
  658. #endif /* CMDBUFFER_DEBUG */
  659. }
  660. }
  661. void enquecommand_front(const char *cmd, bool from_progmem)
  662. {
  663. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  664. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  665. if (cmdqueue_could_enqueue_front(len)) {
  666. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  667. if (from_progmem)
  668. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  669. else
  670. strcpy(cmdbuffer + bufindr + 1, cmd);
  671. ++ buflen;
  672. SERIAL_ECHO_START;
  673. SERIAL_ECHOPGM("Enqueing to the front: \"");
  674. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  675. SERIAL_ECHOLNPGM("\"");
  676. #ifdef CMDBUFFER_DEBUG
  677. cmdqueue_dump_to_serial();
  678. #endif /* CMDBUFFER_DEBUG */
  679. } else {
  680. SERIAL_ERROR_START;
  681. SERIAL_ECHOPGM("Enqueing to the front: \"");
  682. if (from_progmem)
  683. SERIAL_PROTOCOLRPGM(cmd);
  684. else
  685. SERIAL_ECHO(cmd);
  686. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  687. #ifdef CMDBUFFER_DEBUG
  688. cmdqueue_dump_to_serial();
  689. #endif /* CMDBUFFER_DEBUG */
  690. }
  691. }
  692. // Mark the command at the top of the command queue as new.
  693. // Therefore it will not be removed from the queue.
  694. void repeatcommand_front()
  695. {
  696. cmdbuffer_front_already_processed = true;
  697. }
  698. void setup_killpin()
  699. {
  700. #if defined(KILL_PIN) && KILL_PIN > -1
  701. SET_INPUT(KILL_PIN);
  702. WRITE(KILL_PIN,HIGH);
  703. #endif
  704. }
  705. // Set home pin
  706. void setup_homepin(void)
  707. {
  708. #if defined(HOME_PIN) && HOME_PIN > -1
  709. SET_INPUT(HOME_PIN);
  710. WRITE(HOME_PIN,HIGH);
  711. #endif
  712. }
  713. void setup_photpin()
  714. {
  715. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  716. SET_OUTPUT(PHOTOGRAPH_PIN);
  717. WRITE(PHOTOGRAPH_PIN, LOW);
  718. #endif
  719. }
  720. void setup_powerhold()
  721. {
  722. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  723. SET_OUTPUT(SUICIDE_PIN);
  724. WRITE(SUICIDE_PIN, HIGH);
  725. #endif
  726. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  727. SET_OUTPUT(PS_ON_PIN);
  728. #if defined(PS_DEFAULT_OFF)
  729. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  730. #else
  731. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  732. #endif
  733. #endif
  734. }
  735. void suicide()
  736. {
  737. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  738. SET_OUTPUT(SUICIDE_PIN);
  739. WRITE(SUICIDE_PIN, LOW);
  740. #endif
  741. }
  742. void servo_init()
  743. {
  744. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  745. servos[0].attach(SERVO0_PIN);
  746. #endif
  747. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  748. servos[1].attach(SERVO1_PIN);
  749. #endif
  750. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  751. servos[2].attach(SERVO2_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  754. servos[3].attach(SERVO3_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 5)
  757. #error "TODO: enter initalisation code for more servos"
  758. #endif
  759. }
  760. static void lcd_language_menu();
  761. #ifdef MESH_BED_LEVELING
  762. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  763. #endif
  764. // "Setup" function is called by the Arduino framework on startup.
  765. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  766. // are initialized by the main() routine provided by the Arduino framework.
  767. void setup()
  768. {
  769. setup_killpin();
  770. setup_powerhold();
  771. MYSERIAL.begin(BAUDRATE);
  772. SERIAL_PROTOCOLLNPGM("start");
  773. SERIAL_ECHO_START;
  774. #if 0
  775. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  776. for (int i = 0; i < 4096; ++ i) {
  777. int b = eeprom_read_byte((unsigned char*)i);
  778. if (b != 255) {
  779. SERIAL_ECHO(i);
  780. SERIAL_ECHO(":");
  781. SERIAL_ECHO(b);
  782. SERIAL_ECHOLN("");
  783. }
  784. }
  785. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  786. #endif
  787. // Check startup - does nothing if bootloader sets MCUSR to 0
  788. byte mcu = MCUSR;
  789. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  790. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  791. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  792. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  793. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  794. MCUSR=0;
  795. //SERIAL_ECHORPGM(MSG_MARLIN);
  796. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  797. #ifdef STRING_VERSION_CONFIG_H
  798. #ifdef STRING_CONFIG_H_AUTHOR
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  801. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  802. SERIAL_ECHORPGM(MSG_AUTHOR);
  803. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  804. SERIAL_ECHOPGM("Compiled: ");
  805. SERIAL_ECHOLNPGM(__DATE__);
  806. #endif
  807. #endif
  808. SERIAL_ECHO_START;
  809. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  810. SERIAL_ECHO(freeMemory());
  811. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  812. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  813. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  814. Config_RetrieveSettings();
  815. tp_init(); // Initialize temperature loop
  816. plan_init(); // Initialize planner;
  817. watchdog_init();
  818. st_init(); // Initialize stepper, this enables interrupts!
  819. setup_photpin();
  820. servo_init();
  821. // Reset the machine correction matrix.
  822. // It does not make sense to load the correction matrix until the machine is homed.
  823. world2machine_reset();
  824. lcd_init();
  825. if (!READ(BTN_ENC))
  826. {
  827. _delay_ms(1000);
  828. if (!READ(BTN_ENC))
  829. {
  830. SET_OUTPUT(BEEPER);
  831. WRITE(BEEPER, HIGH);
  832. lcd_force_language_selection();
  833. farm_no = 0;
  834. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  835. farm_mode = false;
  836. while (!READ(BTN_ENC));
  837. WRITE(BEEPER, LOW);
  838. #ifdef MESH_BED_LEVELING
  839. _delay_ms(2000);
  840. if (!READ(BTN_ENC))
  841. {
  842. WRITE(BEEPER, HIGH);
  843. _delay_ms(100);
  844. WRITE(BEEPER, LOW);
  845. _delay_ms(200);
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. int _z = 0;
  850. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  851. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  852. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  853. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  854. }
  855. else
  856. {
  857. WRITE(BEEPER, HIGH);
  858. _delay_ms(100);
  859. WRITE(BEEPER, LOW);
  860. }
  861. #endif // mesh
  862. }
  863. }
  864. else
  865. {
  866. _delay_ms(1000); // wait 1sec to display the splash screen
  867. }
  868. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  869. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  870. #endif
  871. #ifdef DIGIPOT_I2C
  872. digipot_i2c_init();
  873. #endif
  874. setup_homepin();
  875. #if defined(Z_AXIS_ALWAYS_ON)
  876. enable_z();
  877. #endif
  878. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  879. if (farm_no > 0)
  880. {
  881. farm_mode = true;
  882. farm_no = farm_no;
  883. prusa_statistics(8);
  884. }
  885. else
  886. {
  887. farm_mode = false;
  888. farm_no = 0;
  889. }
  890. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  891. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  892. // is being written into the EEPROM, so the update procedure will be triggered only once.
  893. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  894. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  895. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  896. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  897. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  898. // Get the selected laugnage index before display update.
  899. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  900. if (lang_selected >= LANG_NUM)
  901. lang_selected = 1;
  902. // Show the message.
  903. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  904. lcd_update_enable(true);
  905. lcd_implementation_clear();
  906. }
  907. // Store the currently running firmware into an eeprom,
  908. // so the next time the firmware gets updated, it will know from which version it has been updated.
  909. update_current_firmware_version_to_eeprom();
  910. }
  911. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  912. // Before loop(), the setup() function is called by the main() routine.
  913. void loop()
  914. {
  915. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  916. {
  917. is_usb_printing = true;
  918. usb_printing_counter--;
  919. _usb_timer = millis();
  920. }
  921. if (usb_printing_counter == 0)
  922. {
  923. is_usb_printing = false;
  924. }
  925. get_command();
  926. #ifdef SDSUPPORT
  927. card.checkautostart(false);
  928. #endif
  929. if(buflen)
  930. {
  931. #ifdef SDSUPPORT
  932. if(card.saving)
  933. {
  934. // Saving a G-code file onto an SD-card is in progress.
  935. // Saving starts with M28, saving until M29 is seen.
  936. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  937. card.write_command(CMDBUFFER_CURRENT_STRING);
  938. if(card.logging)
  939. process_commands();
  940. else
  941. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  942. } else {
  943. card.closefile();
  944. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  945. }
  946. } else {
  947. process_commands();
  948. }
  949. #else
  950. process_commands();
  951. #endif //SDSUPPORT
  952. if (! cmdbuffer_front_already_processed)
  953. cmdqueue_pop_front();
  954. cmdbuffer_front_already_processed = false;
  955. }
  956. //check heater every n milliseconds
  957. manage_heater();
  958. manage_inactivity();
  959. checkHitEndstops();
  960. lcd_update();
  961. }
  962. void get_command()
  963. {
  964. // Test and reserve space for the new command string.
  965. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  966. return;
  967. while (MYSERIAL.available() > 0) {
  968. char serial_char = MYSERIAL.read();
  969. if (serial_char < 0)
  970. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  971. // and Marlin does not support such file names anyway.
  972. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  973. // to a hang-up of the print process from an SD card.
  974. continue;
  975. if(serial_char == '\n' ||
  976. serial_char == '\r' ||
  977. (serial_char == ':' && comment_mode == false) ||
  978. serial_count >= (MAX_CMD_SIZE - 1) )
  979. {
  980. if(!serial_count) { //if empty line
  981. comment_mode = false; //for new command
  982. return;
  983. }
  984. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  985. if(!comment_mode){
  986. comment_mode = false; //for new command
  987. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  988. {
  989. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  990. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  991. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  992. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  993. // M110 - set current line number.
  994. // Line numbers not sent in succession.
  995. SERIAL_ERROR_START;
  996. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  997. SERIAL_ERRORLN(gcode_LastN);
  998. //Serial.println(gcode_N);
  999. FlushSerialRequestResend();
  1000. serial_count = 0;
  1001. return;
  1002. }
  1003. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1004. {
  1005. byte checksum = 0;
  1006. char *p = cmdbuffer+bufindw+1;
  1007. while (p != strchr_pointer)
  1008. checksum = checksum^(*p++);
  1009. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1010. SERIAL_ERROR_START;
  1011. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1012. SERIAL_ERRORLN(gcode_LastN);
  1013. FlushSerialRequestResend();
  1014. serial_count = 0;
  1015. return;
  1016. }
  1017. // If no errors, remove the checksum and continue parsing.
  1018. *strchr_pointer = 0;
  1019. }
  1020. else
  1021. {
  1022. SERIAL_ERROR_START;
  1023. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1024. SERIAL_ERRORLN(gcode_LastN);
  1025. FlushSerialRequestResend();
  1026. serial_count = 0;
  1027. return;
  1028. }
  1029. gcode_LastN = gcode_N;
  1030. //if no errors, continue parsing
  1031. } // end of 'N' command
  1032. else // if we don't receive 'N' but still see '*'
  1033. {
  1034. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1035. {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1038. SERIAL_ERRORLN(gcode_LastN);
  1039. serial_count = 0;
  1040. return;
  1041. }
  1042. } // end of '*' command
  1043. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1044. if (! IS_SD_PRINTING) {
  1045. usb_printing_counter = 10;
  1046. is_usb_printing = true;
  1047. }
  1048. if (Stopped == true) {
  1049. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1050. if (gcode >= 0 && gcode <= 3) {
  1051. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1052. LCD_MESSAGERPGM(MSG_STOPPED);
  1053. }
  1054. }
  1055. } // end of 'G' command
  1056. //If command was e-stop process now
  1057. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1058. kill();
  1059. // Store the current line into buffer, move to the next line.
  1060. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1061. #ifdef CMDBUFFER_DEBUG
  1062. SERIAL_ECHO_START;
  1063. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1064. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1065. SERIAL_ECHOLNPGM("");
  1066. #endif /* CMDBUFFER_DEBUG */
  1067. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1068. if (bufindw == sizeof(cmdbuffer))
  1069. bufindw = 0;
  1070. ++ buflen;
  1071. #ifdef CMDBUFFER_DEBUG
  1072. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1073. SERIAL_ECHO(buflen);
  1074. SERIAL_ECHOLNPGM("");
  1075. #endif /* CMDBUFFER_DEBUG */
  1076. } // end of 'not comment mode'
  1077. serial_count = 0; //clear buffer
  1078. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1079. // in the queue, as this function will reserve the memory.
  1080. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1081. return;
  1082. } // end of "end of line" processing
  1083. else {
  1084. // Not an "end of line" symbol. Store the new character into a buffer.
  1085. if(serial_char == ';') comment_mode = true;
  1086. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1087. }
  1088. } // end of serial line processing loop
  1089. #ifdef SDSUPPORT
  1090. if(!card.sdprinting || serial_count!=0){
  1091. // If there is a half filled buffer from serial line, wait until return before
  1092. // continuing with the serial line.
  1093. return;
  1094. }
  1095. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1096. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1097. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1098. static bool stop_buffering=false;
  1099. if(buflen==0) stop_buffering=false;
  1100. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1101. while( !card.eof() && !stop_buffering) {
  1102. int16_t n=card.get();
  1103. char serial_char = (char)n;
  1104. if(serial_char == '\n' ||
  1105. serial_char == '\r' ||
  1106. (serial_char == '#' && comment_mode == false) ||
  1107. (serial_char == ':' && comment_mode == false) ||
  1108. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1109. {
  1110. if(card.eof()){
  1111. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1112. stoptime=millis();
  1113. char time[30];
  1114. unsigned long t=(stoptime-starttime)/1000;
  1115. int hours, minutes;
  1116. minutes=(t/60)%60;
  1117. hours=t/60/60;
  1118. save_statistics(total_filament_used, t);
  1119. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLN(time);
  1122. lcd_setstatus(time);
  1123. card.printingHasFinished();
  1124. card.checkautostart(true);
  1125. if (farm_mode)
  1126. {
  1127. prusa_statistics(6);
  1128. lcd_commands_type = 4;
  1129. }
  1130. }
  1131. if(serial_char=='#')
  1132. stop_buffering=true;
  1133. if(!serial_count)
  1134. {
  1135. comment_mode = false; //for new command
  1136. return; //if empty line
  1137. }
  1138. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1139. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1140. ++ buflen;
  1141. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1142. if (bufindw == sizeof(cmdbuffer))
  1143. bufindw = 0;
  1144. comment_mode = false; //for new command
  1145. serial_count = 0; //clear buffer
  1146. // The following line will reserve buffer space if available.
  1147. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1148. return;
  1149. }
  1150. else
  1151. {
  1152. if(serial_char == ';') comment_mode = true;
  1153. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1154. }
  1155. }
  1156. #endif //SDSUPPORT
  1157. }
  1158. // Return True if a character was found
  1159. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1160. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1161. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1162. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1163. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1164. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1165. #define DEFINE_PGM_READ_ANY(type, reader) \
  1166. static inline type pgm_read_any(const type *p) \
  1167. { return pgm_read_##reader##_near(p); }
  1168. DEFINE_PGM_READ_ANY(float, float);
  1169. DEFINE_PGM_READ_ANY(signed char, byte);
  1170. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1171. static const PROGMEM type array##_P[3] = \
  1172. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1173. static inline type array(int axis) \
  1174. { return pgm_read_any(&array##_P[axis]); } \
  1175. type array##_ext(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); }
  1177. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1178. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1181. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1182. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1183. static void axis_is_at_home(int axis) {
  1184. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1185. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1186. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1187. }
  1188. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1189. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1190. static void setup_for_endstop_move() {
  1191. saved_feedrate = feedrate;
  1192. saved_feedmultiply = feedmultiply;
  1193. feedmultiply = 100;
  1194. previous_millis_cmd = millis();
  1195. enable_endstops(true);
  1196. }
  1197. static void clean_up_after_endstop_move() {
  1198. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1199. enable_endstops(false);
  1200. #endif
  1201. feedrate = saved_feedrate;
  1202. feedmultiply = saved_feedmultiply;
  1203. previous_millis_cmd = millis();
  1204. }
  1205. #ifdef ENABLE_AUTO_BED_LEVELING
  1206. #ifdef AUTO_BED_LEVELING_GRID
  1207. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1208. {
  1209. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1210. planeNormal.debug("planeNormal");
  1211. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1212. //bedLevel.debug("bedLevel");
  1213. //plan_bed_level_matrix.debug("bed level before");
  1214. //vector_3 uncorrected_position = plan_get_position_mm();
  1215. //uncorrected_position.debug("position before");
  1216. vector_3 corrected_position = plan_get_position();
  1217. // corrected_position.debug("position after");
  1218. current_position[X_AXIS] = corrected_position.x;
  1219. current_position[Y_AXIS] = corrected_position.y;
  1220. current_position[Z_AXIS] = corrected_position.z;
  1221. // put the bed at 0 so we don't go below it.
  1222. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1223. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1224. }
  1225. #else // not AUTO_BED_LEVELING_GRID
  1226. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1227. plan_bed_level_matrix.set_to_identity();
  1228. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1229. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1230. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1231. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1232. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1233. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1234. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1235. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1236. vector_3 corrected_position = plan_get_position();
  1237. current_position[X_AXIS] = corrected_position.x;
  1238. current_position[Y_AXIS] = corrected_position.y;
  1239. current_position[Z_AXIS] = corrected_position.z;
  1240. // put the bed at 0 so we don't go below it.
  1241. current_position[Z_AXIS] = zprobe_zoffset;
  1242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1243. }
  1244. #endif // AUTO_BED_LEVELING_GRID
  1245. static void run_z_probe() {
  1246. plan_bed_level_matrix.set_to_identity();
  1247. feedrate = homing_feedrate[Z_AXIS];
  1248. // move down until you find the bed
  1249. float zPosition = -10;
  1250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1251. st_synchronize();
  1252. // we have to let the planner know where we are right now as it is not where we said to go.
  1253. zPosition = st_get_position_mm(Z_AXIS);
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1255. // move up the retract distance
  1256. zPosition += home_retract_mm(Z_AXIS);
  1257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1258. st_synchronize();
  1259. // move back down slowly to find bed
  1260. feedrate = homing_feedrate[Z_AXIS]/4;
  1261. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1263. st_synchronize();
  1264. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1265. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. }
  1268. static void do_blocking_move_to(float x, float y, float z) {
  1269. float oldFeedRate = feedrate;
  1270. feedrate = homing_feedrate[Z_AXIS];
  1271. current_position[Z_AXIS] = z;
  1272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. feedrate = XY_TRAVEL_SPEED;
  1275. current_position[X_AXIS] = x;
  1276. current_position[Y_AXIS] = y;
  1277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. feedrate = oldFeedRate;
  1280. }
  1281. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1282. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1283. }
  1284. /// Probe bed height at position (x,y), returns the measured z value
  1285. static float probe_pt(float x, float y, float z_before) {
  1286. // move to right place
  1287. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1288. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1289. run_z_probe();
  1290. float measured_z = current_position[Z_AXIS];
  1291. SERIAL_PROTOCOLRPGM(MSG_BED);
  1292. SERIAL_PROTOCOLPGM(" x: ");
  1293. SERIAL_PROTOCOL(x);
  1294. SERIAL_PROTOCOLPGM(" y: ");
  1295. SERIAL_PROTOCOL(y);
  1296. SERIAL_PROTOCOLPGM(" z: ");
  1297. SERIAL_PROTOCOL(measured_z);
  1298. SERIAL_PROTOCOLPGM("\n");
  1299. return measured_z;
  1300. }
  1301. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1302. void homeaxis(int axis) {
  1303. #define HOMEAXIS_DO(LETTER) \
  1304. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1305. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1306. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1307. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1308. 0) {
  1309. int axis_home_dir = home_dir(axis);
  1310. current_position[axis] = 0;
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1313. feedrate = homing_feedrate[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. current_position[axis] = 0;
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1320. st_synchronize();
  1321. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1322. feedrate = homing_feedrate[axis]/2 ;
  1323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1324. st_synchronize();
  1325. axis_is_at_home(axis);
  1326. destination[axis] = current_position[axis];
  1327. feedrate = 0.0;
  1328. endstops_hit_on_purpose();
  1329. axis_known_position[axis] = true;
  1330. }
  1331. }
  1332. void home_xy()
  1333. {
  1334. set_destination_to_current();
  1335. homeaxis(X_AXIS);
  1336. homeaxis(Y_AXIS);
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. endstops_hit_on_purpose();
  1339. }
  1340. void refresh_cmd_timeout(void)
  1341. {
  1342. previous_millis_cmd = millis();
  1343. }
  1344. #ifdef FWRETRACT
  1345. void retract(bool retracting, bool swapretract = false) {
  1346. if(retracting && !retracted[active_extruder]) {
  1347. destination[X_AXIS]=current_position[X_AXIS];
  1348. destination[Y_AXIS]=current_position[Y_AXIS];
  1349. destination[Z_AXIS]=current_position[Z_AXIS];
  1350. destination[E_AXIS]=current_position[E_AXIS];
  1351. if (swapretract) {
  1352. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1353. } else {
  1354. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1355. }
  1356. plan_set_e_position(current_position[E_AXIS]);
  1357. float oldFeedrate = feedrate;
  1358. feedrate=retract_feedrate*60;
  1359. retracted[active_extruder]=true;
  1360. prepare_move();
  1361. current_position[Z_AXIS]-=retract_zlift;
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1363. prepare_move();
  1364. feedrate = oldFeedrate;
  1365. } else if(!retracting && retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. current_position[Z_AXIS]+=retract_zlift;
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. //prepare_move();
  1373. if (swapretract) {
  1374. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1375. } else {
  1376. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1377. }
  1378. plan_set_e_position(current_position[E_AXIS]);
  1379. float oldFeedrate = feedrate;
  1380. feedrate=retract_recover_feedrate*60;
  1381. retracted[active_extruder]=false;
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. }
  1385. } //retract
  1386. #endif //FWRETRACT
  1387. void process_commands()
  1388. {
  1389. #ifdef FILAMENT_RUNOUT_SUPPORT
  1390. SET_INPUT(FR_SENS);
  1391. #endif
  1392. #ifdef CMDBUFFER_DEBUG
  1393. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1394. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1395. SERIAL_ECHOLNPGM("");
  1396. SERIAL_ECHOPGM("In cmdqueue: ");
  1397. SERIAL_ECHO(buflen);
  1398. SERIAL_ECHOLNPGM("");
  1399. #endif /* CMDBUFFER_DEBUG */
  1400. unsigned long codenum; //throw away variable
  1401. char *starpos = NULL;
  1402. #ifdef ENABLE_AUTO_BED_LEVELING
  1403. float x_tmp, y_tmp, z_tmp, real_z;
  1404. #endif
  1405. // PRUSA GCODES
  1406. if(code_seen("PRUSA")){
  1407. if(code_seen("Fir")){
  1408. SERIAL_PROTOCOLLN(FW_version);
  1409. } else if(code_seen("Rev")){
  1410. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1411. } else if(code_seen("Lang")) {
  1412. lcd_force_language_selection();
  1413. } else if(code_seen("Lz")) {
  1414. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1415. }
  1416. //else if (code_seen('Cal')) {
  1417. // lcd_calibration();
  1418. // }
  1419. }
  1420. else
  1421. if(code_seen('G'))
  1422. {
  1423. switch((int)code_value())
  1424. {
  1425. case 0: // G0 -> G1
  1426. case 1: // G1
  1427. if(Stopped == false) {
  1428. #ifdef FILAMENT_RUNOUT_SUPPORT
  1429. if(READ(FR_SENS)){
  1430. feedmultiplyBckp=feedmultiply;
  1431. float target[4];
  1432. float lastpos[4];
  1433. target[X_AXIS]=current_position[X_AXIS];
  1434. target[Y_AXIS]=current_position[Y_AXIS];
  1435. target[Z_AXIS]=current_position[Z_AXIS];
  1436. target[E_AXIS]=current_position[E_AXIS];
  1437. lastpos[X_AXIS]=current_position[X_AXIS];
  1438. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1439. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1440. lastpos[E_AXIS]=current_position[E_AXIS];
  1441. //retract by E
  1442. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1444. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1446. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1447. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1449. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1451. //finish moves
  1452. st_synchronize();
  1453. //disable extruder steppers so filament can be removed
  1454. disable_e0();
  1455. disable_e1();
  1456. disable_e2();
  1457. delay(100);
  1458. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1459. uint8_t cnt=0;
  1460. int counterBeep = 0;
  1461. lcd_wait_interact();
  1462. while(!lcd_clicked()){
  1463. cnt++;
  1464. manage_heater();
  1465. manage_inactivity(true);
  1466. //lcd_update();
  1467. if(cnt==0)
  1468. {
  1469. #if BEEPER > 0
  1470. if (counterBeep== 500){
  1471. counterBeep = 0;
  1472. }
  1473. SET_OUTPUT(BEEPER);
  1474. if (counterBeep== 0){
  1475. WRITE(BEEPER,HIGH);
  1476. }
  1477. if (counterBeep== 20){
  1478. WRITE(BEEPER,LOW);
  1479. }
  1480. counterBeep++;
  1481. #else
  1482. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1483. lcd_buzz(1000/6,100);
  1484. #else
  1485. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1486. #endif
  1487. #endif
  1488. }
  1489. }
  1490. WRITE(BEEPER,LOW);
  1491. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1493. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1495. lcd_change_fil_state = 0;
  1496. lcd_loading_filament();
  1497. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1498. lcd_change_fil_state = 0;
  1499. lcd_alright();
  1500. switch(lcd_change_fil_state){
  1501. case 2:
  1502. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1504. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1506. lcd_loading_filament();
  1507. break;
  1508. case 3:
  1509. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1511. lcd_loading_color();
  1512. break;
  1513. default:
  1514. lcd_change_success();
  1515. break;
  1516. }
  1517. }
  1518. target[E_AXIS]+= 5;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1520. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1522. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1523. //plan_set_e_position(current_position[E_AXIS]);
  1524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1525. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1526. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1527. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1528. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1529. plan_set_e_position(lastpos[E_AXIS]);
  1530. feedmultiply=feedmultiplyBckp;
  1531. char cmd[9];
  1532. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1533. enquecommand(cmd);
  1534. }
  1535. #endif
  1536. get_coordinates(); // For X Y Z E F
  1537. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1538. #ifdef FWRETRACT
  1539. if(autoretract_enabled)
  1540. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1541. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1542. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1543. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1544. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1545. retract(!retracted);
  1546. return;
  1547. }
  1548. }
  1549. #endif //FWRETRACT
  1550. prepare_move();
  1551. //ClearToSend();
  1552. }
  1553. break;
  1554. case 2: // G2 - CW ARC
  1555. if(Stopped == false) {
  1556. get_arc_coordinates();
  1557. prepare_arc_move(true);
  1558. }
  1559. break;
  1560. case 3: // G3 - CCW ARC
  1561. if(Stopped == false) {
  1562. get_arc_coordinates();
  1563. prepare_arc_move(false);
  1564. }
  1565. break;
  1566. case 4: // G4 dwell
  1567. LCD_MESSAGERPGM(MSG_DWELL);
  1568. codenum = 0;
  1569. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1570. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1571. st_synchronize();
  1572. codenum += millis(); // keep track of when we started waiting
  1573. previous_millis_cmd = millis();
  1574. while(millis() < codenum) {
  1575. manage_heater();
  1576. manage_inactivity();
  1577. lcd_update();
  1578. }
  1579. break;
  1580. #ifdef FWRETRACT
  1581. case 10: // G10 retract
  1582. #if EXTRUDERS > 1
  1583. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1584. retract(true,retracted_swap[active_extruder]);
  1585. #else
  1586. retract(true);
  1587. #endif
  1588. break;
  1589. case 11: // G11 retract_recover
  1590. #if EXTRUDERS > 1
  1591. retract(false,retracted_swap[active_extruder]);
  1592. #else
  1593. retract(false);
  1594. #endif
  1595. break;
  1596. #endif //FWRETRACT
  1597. case 28: //G28 Home all Axis one at a time
  1598. #ifdef ENABLE_AUTO_BED_LEVELING
  1599. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1600. #endif //ENABLE_AUTO_BED_LEVELING
  1601. // For mesh bed leveling deactivate the matrix temporarily
  1602. #ifdef MESH_BED_LEVELING
  1603. mbl.active = 0;
  1604. #endif
  1605. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1606. // the planner will not perform any adjustments in the XY plane.
  1607. // Wait for the motors to stop and update the current position with the absolute values.
  1608. world2machine_revert_to_uncorrected();
  1609. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1610. // consumed during the first movements following this statement.
  1611. babystepsTodoZsubtract(babystepLoadZ);
  1612. babystepLoadZ = 0;
  1613. saved_feedrate = feedrate;
  1614. saved_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = millis();
  1617. enable_endstops(true);
  1618. for(int8_t i=0; i < NUM_AXIS; i++)
  1619. destination[i] = current_position[i];
  1620. feedrate = 0.0;
  1621. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1622. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1623. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1624. homeaxis(Z_AXIS);
  1625. }
  1626. #endif
  1627. #ifdef QUICK_HOME
  1628. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1629. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1630. {
  1631. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1632. int x_axis_home_dir = home_dir(X_AXIS);
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1634. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1635. feedrate = homing_feedrate[X_AXIS];
  1636. if(homing_feedrate[Y_AXIS]<feedrate)
  1637. feedrate = homing_feedrate[Y_AXIS];
  1638. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1639. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1640. } else {
  1641. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1642. }
  1643. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1644. st_synchronize();
  1645. axis_is_at_home(X_AXIS);
  1646. axis_is_at_home(Y_AXIS);
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. destination[X_AXIS] = current_position[X_AXIS];
  1649. destination[Y_AXIS] = current_position[Y_AXIS];
  1650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1651. feedrate = 0.0;
  1652. st_synchronize();
  1653. endstops_hit_on_purpose();
  1654. current_position[X_AXIS] = destination[X_AXIS];
  1655. current_position[Y_AXIS] = destination[Y_AXIS];
  1656. current_position[Z_AXIS] = destination[Z_AXIS];
  1657. }
  1658. #endif /* QUICK_HOME */
  1659. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1660. homeaxis(X_AXIS);
  1661. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1662. homeaxis(Y_AXIS);
  1663. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1664. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1665. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1666. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1667. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1668. #ifndef Z_SAFE_HOMING
  1669. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1670. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1671. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1672. feedrate = max_feedrate[Z_AXIS];
  1673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1674. st_synchronize();
  1675. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1676. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1677. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1678. {
  1679. homeaxis(X_AXIS);
  1680. homeaxis(Y_AXIS);
  1681. }
  1682. // 1st mesh bed leveling measurement point, corrected.
  1683. world2machine_initialize();
  1684. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1685. world2machine_reset();
  1686. if (destination[Y_AXIS] < Y_MIN_POS)
  1687. destination[Y_AXIS] = Y_MIN_POS;
  1688. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1689. feedrate = homing_feedrate[Z_AXIS]/10;
  1690. current_position[Z_AXIS] = 0;
  1691. enable_endstops(false);
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1694. st_synchronize();
  1695. current_position[X_AXIS] = destination[X_AXIS];
  1696. current_position[Y_AXIS] = destination[Y_AXIS];
  1697. enable_endstops(true);
  1698. endstops_hit_on_purpose();
  1699. homeaxis(Z_AXIS);
  1700. #else // MESH_BED_LEVELING
  1701. homeaxis(Z_AXIS);
  1702. #endif // MESH_BED_LEVELING
  1703. }
  1704. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1705. if(home_all_axis) {
  1706. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1707. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1708. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1709. feedrate = XY_TRAVEL_SPEED/60;
  1710. current_position[Z_AXIS] = 0;
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1713. st_synchronize();
  1714. current_position[X_AXIS] = destination[X_AXIS];
  1715. current_position[Y_AXIS] = destination[Y_AXIS];
  1716. homeaxis(Z_AXIS);
  1717. }
  1718. // Let's see if X and Y are homed and probe is inside bed area.
  1719. if(code_seen(axis_codes[Z_AXIS])) {
  1720. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1721. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1722. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1723. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1724. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1725. current_position[Z_AXIS] = 0;
  1726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1728. feedrate = max_feedrate[Z_AXIS];
  1729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1730. st_synchronize();
  1731. homeaxis(Z_AXIS);
  1732. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1733. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1736. } else {
  1737. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1738. SERIAL_ECHO_START;
  1739. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1740. }
  1741. }
  1742. #endif // Z_SAFE_HOMING
  1743. #endif // Z_HOME_DIR < 0
  1744. if(code_seen(axis_codes[Z_AXIS])) {
  1745. if(code_value_long() != 0) {
  1746. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1747. }
  1748. }
  1749. #ifdef ENABLE_AUTO_BED_LEVELING
  1750. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1751. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1752. }
  1753. #endif
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1756. enable_endstops(false);
  1757. #endif
  1758. feedrate = saved_feedrate;
  1759. feedmultiply = saved_feedmultiply;
  1760. previous_millis_cmd = millis();
  1761. endstops_hit_on_purpose();
  1762. #ifndef MESH_BED_LEVELING
  1763. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1764. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1765. if(card.sdprinting) {
  1766. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1767. if(babystepLoadZ != 0)
  1768. lcd_adjust_z();
  1769. }
  1770. #endif
  1771. // Load the machine correction matrix
  1772. world2machine_initialize();
  1773. // and correct the current_position to match the transformed coordinate system.
  1774. world2machine_update_current();
  1775. #ifdef MESH_BED_LEVELING
  1776. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1777. {
  1778. }
  1779. else
  1780. {
  1781. st_synchronize();
  1782. // Push the commands to the front of the message queue in the reverse order!
  1783. // There shall be always enough space reserved for these commands.
  1784. // enquecommand_front_P((PSTR("G80")));
  1785. goto case_G80;
  1786. }
  1787. #endif
  1788. if (farm_mode) { prusa_statistics(20); };
  1789. break;
  1790. #ifdef ENABLE_AUTO_BED_LEVELING
  1791. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1792. {
  1793. #if Z_MIN_PIN == -1
  1794. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1795. #endif
  1796. // Prevent user from running a G29 without first homing in X and Y
  1797. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1798. {
  1799. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1800. SERIAL_ECHO_START;
  1801. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1802. break; // abort G29, since we don't know where we are
  1803. }
  1804. st_synchronize();
  1805. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1806. //vector_3 corrected_position = plan_get_position_mm();
  1807. //corrected_position.debug("position before G29");
  1808. plan_bed_level_matrix.set_to_identity();
  1809. vector_3 uncorrected_position = plan_get_position();
  1810. //uncorrected_position.debug("position durring G29");
  1811. current_position[X_AXIS] = uncorrected_position.x;
  1812. current_position[Y_AXIS] = uncorrected_position.y;
  1813. current_position[Z_AXIS] = uncorrected_position.z;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. setup_for_endstop_move();
  1816. feedrate = homing_feedrate[Z_AXIS];
  1817. #ifdef AUTO_BED_LEVELING_GRID
  1818. // probe at the points of a lattice grid
  1819. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1820. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1821. // solve the plane equation ax + by + d = z
  1822. // A is the matrix with rows [x y 1] for all the probed points
  1823. // B is the vector of the Z positions
  1824. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1825. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1826. // "A" matrix of the linear system of equations
  1827. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1828. // "B" vector of Z points
  1829. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1830. int probePointCounter = 0;
  1831. bool zig = true;
  1832. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1833. {
  1834. int xProbe, xInc;
  1835. if (zig)
  1836. {
  1837. xProbe = LEFT_PROBE_BED_POSITION;
  1838. //xEnd = RIGHT_PROBE_BED_POSITION;
  1839. xInc = xGridSpacing;
  1840. zig = false;
  1841. } else // zag
  1842. {
  1843. xProbe = RIGHT_PROBE_BED_POSITION;
  1844. //xEnd = LEFT_PROBE_BED_POSITION;
  1845. xInc = -xGridSpacing;
  1846. zig = true;
  1847. }
  1848. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1849. {
  1850. float z_before;
  1851. if (probePointCounter == 0)
  1852. {
  1853. // raise before probing
  1854. z_before = Z_RAISE_BEFORE_PROBING;
  1855. } else
  1856. {
  1857. // raise extruder
  1858. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1859. }
  1860. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1861. eqnBVector[probePointCounter] = measured_z;
  1862. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1863. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1864. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1865. probePointCounter++;
  1866. xProbe += xInc;
  1867. }
  1868. }
  1869. clean_up_after_endstop_move();
  1870. // solve lsq problem
  1871. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1872. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1873. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1874. SERIAL_PROTOCOLPGM(" b: ");
  1875. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1876. SERIAL_PROTOCOLPGM(" d: ");
  1877. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1878. set_bed_level_equation_lsq(plane_equation_coefficients);
  1879. free(plane_equation_coefficients);
  1880. #else // AUTO_BED_LEVELING_GRID not defined
  1881. // Probe at 3 arbitrary points
  1882. // probe 1
  1883. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1884. // probe 2
  1885. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1886. // probe 3
  1887. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1888. clean_up_after_endstop_move();
  1889. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1890. #endif // AUTO_BED_LEVELING_GRID
  1891. st_synchronize();
  1892. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1893. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1894. // When the bed is uneven, this height must be corrected.
  1895. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1896. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1897. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1898. z_tmp = current_position[Z_AXIS];
  1899. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1900. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. }
  1903. break;
  1904. #ifndef Z_PROBE_SLED
  1905. case 30: // G30 Single Z Probe
  1906. {
  1907. st_synchronize();
  1908. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1909. setup_for_endstop_move();
  1910. feedrate = homing_feedrate[Z_AXIS];
  1911. run_z_probe();
  1912. SERIAL_PROTOCOLPGM(MSG_BED);
  1913. SERIAL_PROTOCOLPGM(" X: ");
  1914. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1915. SERIAL_PROTOCOLPGM(" Y: ");
  1916. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1917. SERIAL_PROTOCOLPGM(" Z: ");
  1918. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1919. SERIAL_PROTOCOLPGM("\n");
  1920. clean_up_after_endstop_move();
  1921. }
  1922. break;
  1923. #else
  1924. case 31: // dock the sled
  1925. dock_sled(true);
  1926. break;
  1927. case 32: // undock the sled
  1928. dock_sled(false);
  1929. break;
  1930. #endif // Z_PROBE_SLED
  1931. #endif // ENABLE_AUTO_BED_LEVELING
  1932. #ifdef MESH_BED_LEVELING
  1933. /**
  1934. * G80: Mesh-based Z probe, probes a grid and produces a
  1935. * mesh to compensate for variable bed height
  1936. *
  1937. * The S0 report the points as below
  1938. *
  1939. * +----> X-axis
  1940. * |
  1941. * |
  1942. * v Y-axis
  1943. *
  1944. */
  1945. case 80:
  1946. case_G80:
  1947. {
  1948. if (!IS_SD_PRINTING)
  1949. {
  1950. custom_message = true;
  1951. custom_message_type = 1;
  1952. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1953. }
  1954. // Firstly check if we know where we are
  1955. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1956. // We don't know where we are! HOME!
  1957. // Push the commands to the front of the message queue in the reverse order!
  1958. // There shall be always enough space reserved for these commands.
  1959. repeatcommand_front(); // repeat G80 with all its parameters
  1960. enquecommand_front_P((PSTR("G28 W0")));
  1961. break;
  1962. }
  1963. mbl.reset();
  1964. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1965. // consumed during the first movements following this statement.
  1966. babystepsTodoZsubtract(babystepLoadZ);
  1967. babystepLoadZ = 0;
  1968. // Cycle through all points and probe them
  1969. // First move up. During this first movement, the babystepping will be reverted.
  1970. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1972. // The move to the first calibration point.
  1973. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1974. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1975. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1976. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  1977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1978. // Wait until the move is finished.
  1979. st_synchronize();
  1980. int mesh_point = 0;
  1981. int ix = 0;
  1982. int iy = 0;
  1983. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1984. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1985. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1986. bool has_z = is_bed_z_jitter_data_valid();
  1987. setup_for_endstop_move();
  1988. const char *kill_message = NULL;
  1989. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  1990. // Get coords of a measuring point.
  1991. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1992. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1993. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1994. float z0 = 0.f;
  1995. if (has_z && mesh_point > 0) {
  1996. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  1997. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1998. #if 0
  1999. SERIAL_ECHOPGM("Bed leveling, point: ");
  2000. MYSERIAL.print(mesh_point);
  2001. SERIAL_ECHOPGM(", calibration z: ");
  2002. MYSERIAL.print(z0, 5);
  2003. SERIAL_ECHOLNPGM("");
  2004. #endif
  2005. }
  2006. // Move Z to proper distance
  2007. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2009. st_synchronize();
  2010. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2011. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2012. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2013. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2014. enable_endstops(false);
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2016. st_synchronize();
  2017. // Go down until endstop is hit
  2018. const float Z_CALIBRATION_THRESHOLD = 0.5f;
  2019. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2020. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2021. break;
  2022. }
  2023. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2024. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2025. break;
  2026. }
  2027. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2028. if (!IS_SD_PRINTING)
  2029. {
  2030. custom_message_state--;
  2031. }
  2032. mesh_point++;
  2033. }
  2034. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2036. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2037. st_synchronize();
  2038. kill(kill_message);
  2039. }
  2040. clean_up_after_endstop_move();
  2041. mbl.upsample_3x3();
  2042. mbl.active = 1;
  2043. current_position[X_AXIS] = X_MIN_POS+0.2;
  2044. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2045. current_position[Z_AXIS] = Z_MIN_POS;
  2046. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2047. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2048. st_synchronize();
  2049. if(card.sdprinting || is_usb_printing )
  2050. {
  2051. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2052. {
  2053. // End of G80: Apply the baby stepping value.
  2054. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  2055. babystepsTodoZadd(babystepLoadZ);
  2056. }
  2057. }
  2058. }
  2059. break;
  2060. /**
  2061. * G81: Print mesh bed leveling status and bed profile if activated
  2062. */
  2063. case 81:
  2064. if (mbl.active) {
  2065. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2066. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2067. SERIAL_PROTOCOLPGM(",");
  2068. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2069. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2070. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2071. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2072. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2073. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2074. SERIAL_PROTOCOLPGM(" ");
  2075. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2076. }
  2077. SERIAL_PROTOCOLPGM("\n");
  2078. }
  2079. }
  2080. else
  2081. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2082. break;
  2083. /**
  2084. * G82: Single Z probe at current location
  2085. *
  2086. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2087. *
  2088. */
  2089. case 82:
  2090. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2091. setup_for_endstop_move();
  2092. find_bed_induction_sensor_point_z();
  2093. clean_up_after_endstop_move();
  2094. SERIAL_PROTOCOLPGM("Bed found at: ");
  2095. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2096. SERIAL_PROTOCOLPGM("\n");
  2097. break;
  2098. /**
  2099. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2100. */
  2101. case 83:
  2102. {
  2103. int babystepz = code_seen('S') ? code_value() : 0;
  2104. int BabyPosition = code_seen('P') ? code_value() : 0;
  2105. if (babystepz != 0) {
  2106. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2107. // Is the axis indexed starting with zero or one?
  2108. if (BabyPosition > 4) {
  2109. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2110. }else{
  2111. // Save it to the eeprom
  2112. babystepLoadZ = babystepz;
  2113. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2114. // adjust the Z
  2115. babystepsTodoZadd(babystepLoadZ);
  2116. }
  2117. }
  2118. }
  2119. break;
  2120. /**
  2121. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2122. */
  2123. case 84:
  2124. babystepsTodoZsubtract(babystepLoadZ);
  2125. // babystepLoadZ = 0;
  2126. break;
  2127. /**
  2128. * G85: Prusa3D specific: Pick best babystep
  2129. */
  2130. case 85:
  2131. lcd_pick_babystep();
  2132. break;
  2133. /**
  2134. * G86: Prusa3D specific: Disable babystep correction after home.
  2135. * This G-code will be performed at the start of a calibration script.
  2136. */
  2137. case 86:
  2138. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2139. break;
  2140. /**
  2141. * G87: Prusa3D specific: Enable babystep correction after home
  2142. * This G-code will be performed at the end of a calibration script.
  2143. */
  2144. case 87:
  2145. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2146. break;
  2147. case 88:
  2148. break;
  2149. #endif // ENABLE_MESH_BED_LEVELING
  2150. case 90: // G90
  2151. relative_mode = false;
  2152. break;
  2153. case 91: // G91
  2154. relative_mode = true;
  2155. break;
  2156. case 92: // G92
  2157. if(!code_seen(axis_codes[E_AXIS]))
  2158. st_synchronize();
  2159. for(int8_t i=0; i < NUM_AXIS; i++) {
  2160. if(code_seen(axis_codes[i])) {
  2161. if(i == E_AXIS) {
  2162. current_position[i] = code_value();
  2163. plan_set_e_position(current_position[E_AXIS]);
  2164. }
  2165. else {
  2166. current_position[i] = code_value()+add_homing[i];
  2167. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2168. }
  2169. }
  2170. }
  2171. break;
  2172. case 98:
  2173. farm_no = 21;
  2174. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2175. farm_mode = true;
  2176. break;
  2177. case 99:
  2178. farm_no = 0;
  2179. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2180. farm_mode = false;
  2181. break;
  2182. }
  2183. } // end if(code_seen('G'))
  2184. else if(code_seen('M'))
  2185. {
  2186. switch( (int)code_value() )
  2187. {
  2188. #ifdef ULTIPANEL
  2189. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2190. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2191. {
  2192. char *src = strchr_pointer + 2;
  2193. codenum = 0;
  2194. bool hasP = false, hasS = false;
  2195. if (code_seen('P')) {
  2196. codenum = code_value(); // milliseconds to wait
  2197. hasP = codenum > 0;
  2198. }
  2199. if (code_seen('S')) {
  2200. codenum = code_value() * 1000; // seconds to wait
  2201. hasS = codenum > 0;
  2202. }
  2203. starpos = strchr(src, '*');
  2204. if (starpos != NULL) *(starpos) = '\0';
  2205. while (*src == ' ') ++src;
  2206. if (!hasP && !hasS && *src != '\0') {
  2207. lcd_setstatus(src);
  2208. } else {
  2209. LCD_MESSAGERPGM(MSG_USERWAIT);
  2210. }
  2211. lcd_ignore_click();
  2212. st_synchronize();
  2213. previous_millis_cmd = millis();
  2214. if (codenum > 0){
  2215. codenum += millis(); // keep track of when we started waiting
  2216. while(millis() < codenum && !lcd_clicked()){
  2217. manage_heater();
  2218. manage_inactivity();
  2219. lcd_update();
  2220. }
  2221. lcd_ignore_click(false);
  2222. }else{
  2223. if (!lcd_detected())
  2224. break;
  2225. while(!lcd_clicked()){
  2226. manage_heater();
  2227. manage_inactivity();
  2228. lcd_update();
  2229. }
  2230. }
  2231. if (IS_SD_PRINTING)
  2232. LCD_MESSAGERPGM(MSG_RESUMING);
  2233. else
  2234. LCD_MESSAGERPGM(WELCOME_MSG);
  2235. }
  2236. break;
  2237. #endif
  2238. case 17:
  2239. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2240. enable_x();
  2241. enable_y();
  2242. enable_z();
  2243. enable_e0();
  2244. enable_e1();
  2245. enable_e2();
  2246. break;
  2247. #ifdef SDSUPPORT
  2248. case 20: // M20 - list SD card
  2249. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2250. card.ls();
  2251. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2252. break;
  2253. case 21: // M21 - init SD card
  2254. card.initsd();
  2255. break;
  2256. case 22: //M22 - release SD card
  2257. card.release();
  2258. break;
  2259. case 23: //M23 - Select file
  2260. starpos = (strchr(strchr_pointer + 4,'*'));
  2261. if(starpos!=NULL)
  2262. *(starpos)='\0';
  2263. card.openFile(strchr_pointer + 4,true);
  2264. break;
  2265. case 24: //M24 - Start SD print
  2266. card.startFileprint();
  2267. starttime=millis();
  2268. break;
  2269. case 25: //M25 - Pause SD print
  2270. card.pauseSDPrint();
  2271. break;
  2272. case 26: //M26 - Set SD index
  2273. if(card.cardOK && code_seen('S')) {
  2274. card.setIndex(code_value_long());
  2275. }
  2276. break;
  2277. case 27: //M27 - Get SD status
  2278. card.getStatus();
  2279. break;
  2280. case 28: //M28 - Start SD write
  2281. starpos = (strchr(strchr_pointer + 4,'*'));
  2282. if(starpos != NULL){
  2283. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2284. strchr_pointer = strchr(npos,' ') + 1;
  2285. *(starpos) = '\0';
  2286. }
  2287. card.openFile(strchr_pointer+4,false);
  2288. break;
  2289. case 29: //M29 - Stop SD write
  2290. //processed in write to file routine above
  2291. //card,saving = false;
  2292. break;
  2293. case 30: //M30 <filename> Delete File
  2294. if (card.cardOK){
  2295. card.closefile();
  2296. starpos = (strchr(strchr_pointer + 4,'*'));
  2297. if(starpos != NULL){
  2298. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2299. strchr_pointer = strchr(npos,' ') + 1;
  2300. *(starpos) = '\0';
  2301. }
  2302. card.removeFile(strchr_pointer + 4);
  2303. }
  2304. break;
  2305. case 32: //M32 - Select file and start SD print
  2306. {
  2307. if(card.sdprinting) {
  2308. st_synchronize();
  2309. }
  2310. starpos = (strchr(strchr_pointer + 4,'*'));
  2311. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2312. if(namestartpos==NULL)
  2313. {
  2314. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2315. }
  2316. else
  2317. namestartpos++; //to skip the '!'
  2318. if(starpos!=NULL)
  2319. *(starpos)='\0';
  2320. bool call_procedure=(code_seen('P'));
  2321. if(strchr_pointer>namestartpos)
  2322. call_procedure=false; //false alert, 'P' found within filename
  2323. if( card.cardOK )
  2324. {
  2325. card.openFile(namestartpos,true,!call_procedure);
  2326. if(code_seen('S'))
  2327. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2328. card.setIndex(code_value_long());
  2329. card.startFileprint();
  2330. if(!call_procedure)
  2331. starttime=millis(); //procedure calls count as normal print time.
  2332. }
  2333. } break;
  2334. case 928: //M928 - Start SD write
  2335. starpos = (strchr(strchr_pointer + 5,'*'));
  2336. if(starpos != NULL){
  2337. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2338. strchr_pointer = strchr(npos,' ') + 1;
  2339. *(starpos) = '\0';
  2340. }
  2341. card.openLogFile(strchr_pointer+5);
  2342. break;
  2343. #endif //SDSUPPORT
  2344. case 31: //M31 take time since the start of the SD print or an M109 command
  2345. {
  2346. stoptime=millis();
  2347. char time[30];
  2348. unsigned long t=(stoptime-starttime)/1000;
  2349. int sec,min;
  2350. min=t/60;
  2351. sec=t%60;
  2352. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2353. SERIAL_ECHO_START;
  2354. SERIAL_ECHOLN(time);
  2355. lcd_setstatus(time);
  2356. autotempShutdown();
  2357. }
  2358. break;
  2359. case 42: //M42 -Change pin status via gcode
  2360. if (code_seen('S'))
  2361. {
  2362. int pin_status = code_value();
  2363. int pin_number = LED_PIN;
  2364. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2365. pin_number = code_value();
  2366. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2367. {
  2368. if (sensitive_pins[i] == pin_number)
  2369. {
  2370. pin_number = -1;
  2371. break;
  2372. }
  2373. }
  2374. #if defined(FAN_PIN) && FAN_PIN > -1
  2375. if (pin_number == FAN_PIN)
  2376. fanSpeed = pin_status;
  2377. #endif
  2378. if (pin_number > -1)
  2379. {
  2380. pinMode(pin_number, OUTPUT);
  2381. digitalWrite(pin_number, pin_status);
  2382. analogWrite(pin_number, pin_status);
  2383. }
  2384. }
  2385. break;
  2386. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2387. // Reset the skew and offset in both RAM and EEPROM.
  2388. reset_bed_offset_and_skew();
  2389. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2390. // the planner will not perform any adjustments in the XY plane.
  2391. // Wait for the motors to stop and update the current position with the absolute values.
  2392. world2machine_revert_to_uncorrected();
  2393. break;
  2394. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2395. {
  2396. // Disable the default update procedure of the display. We will do a modal dialog.
  2397. lcd_update_enable(false);
  2398. // Let the planner use the uncorrected coordinates.
  2399. mbl.reset();
  2400. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2401. // the planner will not perform any adjustments in the XY plane.
  2402. // Wait for the motors to stop and update the current position with the absolute values.
  2403. world2machine_revert_to_uncorrected();
  2404. // Let the user move the Z axes up to the end stoppers.
  2405. if (lcd_calibrate_z_end_stop_manual()) {
  2406. refresh_cmd_timeout();
  2407. // Move the print head close to the bed.
  2408. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2410. st_synchronize();
  2411. // Home in the XY plane.
  2412. set_destination_to_current();
  2413. setup_for_endstop_move();
  2414. home_xy();
  2415. int8_t verbosity_level = 0;
  2416. if (code_seen('V')) {
  2417. // Just 'V' without a number counts as V1.
  2418. char c = strchr_pointer[1];
  2419. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2420. }
  2421. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2422. uint8_t point_too_far_mask = 0;
  2423. clean_up_after_endstop_move();
  2424. // Print head up.
  2425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2427. st_synchronize();
  2428. if (result >= 0) {
  2429. // Second half: The fine adjustment.
  2430. // Let the planner use the uncorrected coordinates.
  2431. mbl.reset();
  2432. world2machine_reset();
  2433. // Home in the XY plane.
  2434. setup_for_endstop_move();
  2435. home_xy();
  2436. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2437. clean_up_after_endstop_move();
  2438. // Print head up.
  2439. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2441. st_synchronize();
  2442. }
  2443. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2444. } else {
  2445. // Timeouted.
  2446. }
  2447. lcd_update_enable(true);
  2448. lcd_implementation_clear();
  2449. // lcd_return_to_status();
  2450. lcd_update();
  2451. break;
  2452. }
  2453. /*
  2454. case 46:
  2455. {
  2456. // M46: Prusa3D: Show the assigned IP address.
  2457. uint8_t ip[4];
  2458. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2459. if (hasIP) {
  2460. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2461. SERIAL_ECHO(int(ip[0]));
  2462. SERIAL_ECHOPGM(".");
  2463. SERIAL_ECHO(int(ip[1]));
  2464. SERIAL_ECHOPGM(".");
  2465. SERIAL_ECHO(int(ip[2]));
  2466. SERIAL_ECHOPGM(".");
  2467. SERIAL_ECHO(int(ip[3]));
  2468. SERIAL_ECHOLNPGM("");
  2469. } else {
  2470. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2471. }
  2472. break;
  2473. }
  2474. */
  2475. case 47:
  2476. // M47: Prusa3D: Show end stops dialog on the display.
  2477. lcd_diag_show_end_stops();
  2478. break;
  2479. #if 0
  2480. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2481. {
  2482. // Disable the default update procedure of the display. We will do a modal dialog.
  2483. lcd_update_enable(false);
  2484. // Let the planner use the uncorrected coordinates.
  2485. mbl.reset();
  2486. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2487. // the planner will not perform any adjustments in the XY plane.
  2488. // Wait for the motors to stop and update the current position with the absolute values.
  2489. world2machine_revert_to_uncorrected();
  2490. // Move the print head close to the bed.
  2491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2493. st_synchronize();
  2494. // Home in the XY plane.
  2495. set_destination_to_current();
  2496. setup_for_endstop_move();
  2497. home_xy();
  2498. int8_t verbosity_level = 0;
  2499. if (code_seen('V')) {
  2500. // Just 'V' without a number counts as V1.
  2501. char c = strchr_pointer[1];
  2502. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2503. }
  2504. bool success = scan_bed_induction_points(verbosity_level);
  2505. clean_up_after_endstop_move();
  2506. // Print head up.
  2507. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2509. st_synchronize();
  2510. lcd_update_enable(true);
  2511. lcd_implementation_clear();
  2512. // lcd_return_to_status();
  2513. lcd_update();
  2514. break;
  2515. }
  2516. #endif
  2517. // M48 Z-Probe repeatability measurement function.
  2518. //
  2519. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2520. //
  2521. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2522. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2523. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2524. // regenerated.
  2525. //
  2526. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2527. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2528. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2529. //
  2530. #ifdef ENABLE_AUTO_BED_LEVELING
  2531. #ifdef Z_PROBE_REPEATABILITY_TEST
  2532. case 48: // M48 Z-Probe repeatability
  2533. {
  2534. #if Z_MIN_PIN == -1
  2535. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2536. #endif
  2537. double sum=0.0;
  2538. double mean=0.0;
  2539. double sigma=0.0;
  2540. double sample_set[50];
  2541. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2542. double X_current, Y_current, Z_current;
  2543. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2544. if (code_seen('V') || code_seen('v')) {
  2545. verbose_level = code_value();
  2546. if (verbose_level<0 || verbose_level>4 ) {
  2547. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2548. goto Sigma_Exit;
  2549. }
  2550. }
  2551. if (verbose_level > 0) {
  2552. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2553. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2554. }
  2555. if (code_seen('n')) {
  2556. n_samples = code_value();
  2557. if (n_samples<4 || n_samples>50 ) {
  2558. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2559. goto Sigma_Exit;
  2560. }
  2561. }
  2562. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2563. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2564. Z_current = st_get_position_mm(Z_AXIS);
  2565. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2566. ext_position = st_get_position_mm(E_AXIS);
  2567. if (code_seen('X') || code_seen('x') ) {
  2568. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2569. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2570. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2571. goto Sigma_Exit;
  2572. }
  2573. }
  2574. if (code_seen('Y') || code_seen('y') ) {
  2575. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2576. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2577. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2578. goto Sigma_Exit;
  2579. }
  2580. }
  2581. if (code_seen('L') || code_seen('l') ) {
  2582. n_legs = code_value();
  2583. if ( n_legs==1 )
  2584. n_legs = 2;
  2585. if ( n_legs<0 || n_legs>15 ) {
  2586. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2587. goto Sigma_Exit;
  2588. }
  2589. }
  2590. //
  2591. // Do all the preliminary setup work. First raise the probe.
  2592. //
  2593. st_synchronize();
  2594. plan_bed_level_matrix.set_to_identity();
  2595. plan_buffer_line( X_current, Y_current, Z_start_location,
  2596. ext_position,
  2597. homing_feedrate[Z_AXIS]/60,
  2598. active_extruder);
  2599. st_synchronize();
  2600. //
  2601. // Now get everything to the specified probe point So we can safely do a probe to
  2602. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2603. // use that as a starting point for each probe.
  2604. //
  2605. if (verbose_level > 2)
  2606. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2607. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2608. ext_position,
  2609. homing_feedrate[X_AXIS]/60,
  2610. active_extruder);
  2611. st_synchronize();
  2612. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2613. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2614. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2615. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2616. //
  2617. // OK, do the inital probe to get us close to the bed.
  2618. // Then retrace the right amount and use that in subsequent probes
  2619. //
  2620. setup_for_endstop_move();
  2621. run_z_probe();
  2622. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2623. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2624. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2625. ext_position,
  2626. homing_feedrate[X_AXIS]/60,
  2627. active_extruder);
  2628. st_synchronize();
  2629. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2630. for( n=0; n<n_samples; n++) {
  2631. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2632. if ( n_legs) {
  2633. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2634. int rotational_direction, l;
  2635. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2636. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2637. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2638. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2639. //SERIAL_ECHOPAIR(" theta: ",theta);
  2640. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2641. //SERIAL_PROTOCOLLNPGM("");
  2642. for( l=0; l<n_legs-1; l++) {
  2643. if (rotational_direction==1)
  2644. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2645. else
  2646. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2647. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2648. if ( radius<0.0 )
  2649. radius = -radius;
  2650. X_current = X_probe_location + cos(theta) * radius;
  2651. Y_current = Y_probe_location + sin(theta) * radius;
  2652. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2653. X_current = X_MIN_POS;
  2654. if ( X_current>X_MAX_POS)
  2655. X_current = X_MAX_POS;
  2656. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2657. Y_current = Y_MIN_POS;
  2658. if ( Y_current>Y_MAX_POS)
  2659. Y_current = Y_MAX_POS;
  2660. if (verbose_level>3 ) {
  2661. SERIAL_ECHOPAIR("x: ", X_current);
  2662. SERIAL_ECHOPAIR("y: ", Y_current);
  2663. SERIAL_PROTOCOLLNPGM("");
  2664. }
  2665. do_blocking_move_to( X_current, Y_current, Z_current );
  2666. }
  2667. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2668. }
  2669. setup_for_endstop_move();
  2670. run_z_probe();
  2671. sample_set[n] = current_position[Z_AXIS];
  2672. //
  2673. // Get the current mean for the data points we have so far
  2674. //
  2675. sum=0.0;
  2676. for( j=0; j<=n; j++) {
  2677. sum = sum + sample_set[j];
  2678. }
  2679. mean = sum / (double (n+1));
  2680. //
  2681. // Now, use that mean to calculate the standard deviation for the
  2682. // data points we have so far
  2683. //
  2684. sum=0.0;
  2685. for( j=0; j<=n; j++) {
  2686. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2687. }
  2688. sigma = sqrt( sum / (double (n+1)) );
  2689. if (verbose_level > 1) {
  2690. SERIAL_PROTOCOL(n+1);
  2691. SERIAL_PROTOCOL(" of ");
  2692. SERIAL_PROTOCOL(n_samples);
  2693. SERIAL_PROTOCOLPGM(" z: ");
  2694. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2695. }
  2696. if (verbose_level > 2) {
  2697. SERIAL_PROTOCOL(" mean: ");
  2698. SERIAL_PROTOCOL_F(mean,6);
  2699. SERIAL_PROTOCOL(" sigma: ");
  2700. SERIAL_PROTOCOL_F(sigma,6);
  2701. }
  2702. if (verbose_level > 0)
  2703. SERIAL_PROTOCOLPGM("\n");
  2704. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2705. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2706. st_synchronize();
  2707. }
  2708. delay(1000);
  2709. clean_up_after_endstop_move();
  2710. // enable_endstops(true);
  2711. if (verbose_level > 0) {
  2712. SERIAL_PROTOCOLPGM("Mean: ");
  2713. SERIAL_PROTOCOL_F(mean, 6);
  2714. SERIAL_PROTOCOLPGM("\n");
  2715. }
  2716. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2717. SERIAL_PROTOCOL_F(sigma, 6);
  2718. SERIAL_PROTOCOLPGM("\n\n");
  2719. Sigma_Exit:
  2720. break;
  2721. }
  2722. #endif // Z_PROBE_REPEATABILITY_TEST
  2723. #endif // ENABLE_AUTO_BED_LEVELING
  2724. case 104: // M104
  2725. if(setTargetedHotend(104)){
  2726. break;
  2727. }
  2728. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2729. setWatch();
  2730. break;
  2731. case 112: // M112 -Emergency Stop
  2732. kill();
  2733. break;
  2734. case 140: // M140 set bed temp
  2735. if (code_seen('S')) setTargetBed(code_value());
  2736. break;
  2737. case 105 : // M105
  2738. if(setTargetedHotend(105)){
  2739. break;
  2740. }
  2741. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2742. SERIAL_PROTOCOLPGM("ok T:");
  2743. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2744. SERIAL_PROTOCOLPGM(" /");
  2745. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2746. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2747. SERIAL_PROTOCOLPGM(" B:");
  2748. SERIAL_PROTOCOL_F(degBed(),1);
  2749. SERIAL_PROTOCOLPGM(" /");
  2750. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2751. #endif //TEMP_BED_PIN
  2752. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2753. SERIAL_PROTOCOLPGM(" T");
  2754. SERIAL_PROTOCOL(cur_extruder);
  2755. SERIAL_PROTOCOLPGM(":");
  2756. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2757. SERIAL_PROTOCOLPGM(" /");
  2758. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2759. }
  2760. #else
  2761. SERIAL_ERROR_START;
  2762. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2763. #endif
  2764. SERIAL_PROTOCOLPGM(" @:");
  2765. #ifdef EXTRUDER_WATTS
  2766. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2767. SERIAL_PROTOCOLPGM("W");
  2768. #else
  2769. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2770. #endif
  2771. SERIAL_PROTOCOLPGM(" B@:");
  2772. #ifdef BED_WATTS
  2773. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2774. SERIAL_PROTOCOLPGM("W");
  2775. #else
  2776. SERIAL_PROTOCOL(getHeaterPower(-1));
  2777. #endif
  2778. #ifdef SHOW_TEMP_ADC_VALUES
  2779. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2780. SERIAL_PROTOCOLPGM(" ADC B:");
  2781. SERIAL_PROTOCOL_F(degBed(),1);
  2782. SERIAL_PROTOCOLPGM("C->");
  2783. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2784. #endif
  2785. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2786. SERIAL_PROTOCOLPGM(" T");
  2787. SERIAL_PROTOCOL(cur_extruder);
  2788. SERIAL_PROTOCOLPGM(":");
  2789. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2790. SERIAL_PROTOCOLPGM("C->");
  2791. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2792. }
  2793. #endif
  2794. SERIAL_PROTOCOLLN("");
  2795. return;
  2796. break;
  2797. case 109:
  2798. {// M109 - Wait for extruder heater to reach target.
  2799. if(setTargetedHotend(109)){
  2800. break;
  2801. }
  2802. LCD_MESSAGERPGM(MSG_HEATING);
  2803. heating_status = 1;
  2804. if (farm_mode) { prusa_statistics(1); };
  2805. #ifdef AUTOTEMP
  2806. autotemp_enabled=false;
  2807. #endif
  2808. if (code_seen('S')) {
  2809. setTargetHotend(code_value(), tmp_extruder);
  2810. CooldownNoWait = true;
  2811. } else if (code_seen('R')) {
  2812. setTargetHotend(code_value(), tmp_extruder);
  2813. CooldownNoWait = false;
  2814. }
  2815. #ifdef AUTOTEMP
  2816. if (code_seen('S')) autotemp_min=code_value();
  2817. if (code_seen('B')) autotemp_max=code_value();
  2818. if (code_seen('F'))
  2819. {
  2820. autotemp_factor=code_value();
  2821. autotemp_enabled=true;
  2822. }
  2823. #endif
  2824. setWatch();
  2825. codenum = millis();
  2826. /* See if we are heating up or cooling down */
  2827. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2828. cancel_heatup = false;
  2829. #ifdef TEMP_RESIDENCY_TIME
  2830. long residencyStart;
  2831. residencyStart = -1;
  2832. /* continue to loop until we have reached the target temp
  2833. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2834. while((!cancel_heatup)&&((residencyStart == -1) ||
  2835. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2836. #else
  2837. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2838. #endif //TEMP_RESIDENCY_TIME
  2839. if( (millis() - codenum) > 1000UL )
  2840. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2841. SERIAL_PROTOCOLPGM("T:");
  2842. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2843. SERIAL_PROTOCOLPGM(" E:");
  2844. SERIAL_PROTOCOL((int)tmp_extruder);
  2845. #ifdef TEMP_RESIDENCY_TIME
  2846. SERIAL_PROTOCOLPGM(" W:");
  2847. if(residencyStart > -1)
  2848. {
  2849. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2850. SERIAL_PROTOCOLLN( codenum );
  2851. }
  2852. else
  2853. {
  2854. SERIAL_PROTOCOLLN( "?" );
  2855. }
  2856. #else
  2857. SERIAL_PROTOCOLLN("");
  2858. #endif
  2859. codenum = millis();
  2860. }
  2861. manage_heater();
  2862. manage_inactivity();
  2863. lcd_update();
  2864. #ifdef TEMP_RESIDENCY_TIME
  2865. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2866. or when current temp falls outside the hysteresis after target temp was reached */
  2867. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2868. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2869. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2870. {
  2871. residencyStart = millis();
  2872. }
  2873. #endif //TEMP_RESIDENCY_TIME
  2874. }
  2875. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2876. heating_status = 2;
  2877. if (farm_mode) { prusa_statistics(2); };
  2878. starttime=millis();
  2879. previous_millis_cmd = millis();
  2880. }
  2881. break;
  2882. case 190: // M190 - Wait for bed heater to reach target.
  2883. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2884. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2885. heating_status = 3;
  2886. if (farm_mode) { prusa_statistics(1); };
  2887. if (code_seen('S'))
  2888. {
  2889. setTargetBed(code_value());
  2890. CooldownNoWait = true;
  2891. }
  2892. else if (code_seen('R'))
  2893. {
  2894. setTargetBed(code_value());
  2895. CooldownNoWait = false;
  2896. }
  2897. codenum = millis();
  2898. cancel_heatup = false;
  2899. target_direction = isHeatingBed(); // true if heating, false if cooling
  2900. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2901. {
  2902. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2903. {
  2904. float tt=degHotend(active_extruder);
  2905. SERIAL_PROTOCOLPGM("T:");
  2906. SERIAL_PROTOCOL(tt);
  2907. SERIAL_PROTOCOLPGM(" E:");
  2908. SERIAL_PROTOCOL((int)active_extruder);
  2909. SERIAL_PROTOCOLPGM(" B:");
  2910. SERIAL_PROTOCOL_F(degBed(),1);
  2911. SERIAL_PROTOCOLLN("");
  2912. codenum = millis();
  2913. }
  2914. manage_heater();
  2915. manage_inactivity();
  2916. lcd_update();
  2917. }
  2918. LCD_MESSAGERPGM(MSG_BED_DONE);
  2919. heating_status = 4;
  2920. previous_millis_cmd = millis();
  2921. #endif
  2922. break;
  2923. #if defined(FAN_PIN) && FAN_PIN > -1
  2924. case 106: //M106 Fan On
  2925. if (code_seen('S')){
  2926. fanSpeed=constrain(code_value(),0,255);
  2927. }
  2928. else {
  2929. fanSpeed=255;
  2930. }
  2931. break;
  2932. case 107: //M107 Fan Off
  2933. fanSpeed = 0;
  2934. break;
  2935. #endif //FAN_PIN
  2936. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2937. case 80: // M80 - Turn on Power Supply
  2938. SET_OUTPUT(PS_ON_PIN); //GND
  2939. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2940. // If you have a switch on suicide pin, this is useful
  2941. // if you want to start another print with suicide feature after
  2942. // a print without suicide...
  2943. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2944. SET_OUTPUT(SUICIDE_PIN);
  2945. WRITE(SUICIDE_PIN, HIGH);
  2946. #endif
  2947. #ifdef ULTIPANEL
  2948. powersupply = true;
  2949. LCD_MESSAGERPGM(WELCOME_MSG);
  2950. lcd_update();
  2951. #endif
  2952. break;
  2953. #endif
  2954. case 81: // M81 - Turn off Power Supply
  2955. disable_heater();
  2956. st_synchronize();
  2957. disable_e0();
  2958. disable_e1();
  2959. disable_e2();
  2960. finishAndDisableSteppers();
  2961. fanSpeed = 0;
  2962. delay(1000); // Wait a little before to switch off
  2963. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2964. st_synchronize();
  2965. suicide();
  2966. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2967. SET_OUTPUT(PS_ON_PIN);
  2968. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2969. #endif
  2970. #ifdef ULTIPANEL
  2971. powersupply = false;
  2972. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2973. /*
  2974. MACHNAME = "Prusa i3"
  2975. MSGOFF = "Vypnuto"
  2976. "Prusai3"" ""vypnuto""."
  2977. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2978. */
  2979. lcd_update();
  2980. #endif
  2981. break;
  2982. case 82:
  2983. axis_relative_modes[3] = false;
  2984. break;
  2985. case 83:
  2986. axis_relative_modes[3] = true;
  2987. break;
  2988. case 18: //compatibility
  2989. case 84: // M84
  2990. if(code_seen('S')){
  2991. stepper_inactive_time = code_value() * 1000;
  2992. }
  2993. else
  2994. {
  2995. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2996. if(all_axis)
  2997. {
  2998. st_synchronize();
  2999. disable_e0();
  3000. disable_e1();
  3001. disable_e2();
  3002. finishAndDisableSteppers();
  3003. }
  3004. else
  3005. {
  3006. st_synchronize();
  3007. if(code_seen('X')) disable_x();
  3008. if(code_seen('Y')) disable_y();
  3009. if(code_seen('Z')) disable_z();
  3010. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3011. if(code_seen('E')) {
  3012. disable_e0();
  3013. disable_e1();
  3014. disable_e2();
  3015. }
  3016. #endif
  3017. }
  3018. }
  3019. break;
  3020. case 85: // M85
  3021. if(code_seen('S')) {
  3022. max_inactive_time = code_value() * 1000;
  3023. }
  3024. break;
  3025. case 92: // M92
  3026. for(int8_t i=0; i < NUM_AXIS; i++)
  3027. {
  3028. if(code_seen(axis_codes[i]))
  3029. {
  3030. if(i == 3) { // E
  3031. float value = code_value();
  3032. if(value < 20.0) {
  3033. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3034. max_e_jerk *= factor;
  3035. max_feedrate[i] *= factor;
  3036. axis_steps_per_sqr_second[i] *= factor;
  3037. }
  3038. axis_steps_per_unit[i] = value;
  3039. }
  3040. else {
  3041. axis_steps_per_unit[i] = code_value();
  3042. }
  3043. }
  3044. }
  3045. break;
  3046. case 115: // M115
  3047. if (code_seen('V')) {
  3048. // Report the Prusa version number.
  3049. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3050. } else if (code_seen('U')) {
  3051. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3052. // pause the print and ask the user to upgrade the firmware.
  3053. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3054. } else {
  3055. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3056. }
  3057. break;
  3058. case 117: // M117 display message
  3059. starpos = (strchr(strchr_pointer + 5,'*'));
  3060. if(starpos!=NULL)
  3061. *(starpos)='\0';
  3062. lcd_setstatus(strchr_pointer + 5);
  3063. break;
  3064. case 114: // M114
  3065. SERIAL_PROTOCOLPGM("X:");
  3066. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" Y:");
  3068. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3069. SERIAL_PROTOCOLPGM(" Z:");
  3070. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3071. SERIAL_PROTOCOLPGM(" E:");
  3072. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3073. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3074. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3075. SERIAL_PROTOCOLPGM(" Y:");
  3076. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3077. SERIAL_PROTOCOLPGM(" Z:");
  3078. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3079. SERIAL_PROTOCOLLN("");
  3080. break;
  3081. case 120: // M120
  3082. enable_endstops(false) ;
  3083. break;
  3084. case 121: // M121
  3085. enable_endstops(true) ;
  3086. break;
  3087. case 119: // M119
  3088. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3089. SERIAL_PROTOCOLLN("");
  3090. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3091. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3092. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3093. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3094. }else{
  3095. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3096. }
  3097. SERIAL_PROTOCOLLN("");
  3098. #endif
  3099. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3100. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3101. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3102. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3103. }else{
  3104. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3105. }
  3106. SERIAL_PROTOCOLLN("");
  3107. #endif
  3108. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3109. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3110. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3111. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3112. }else{
  3113. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3114. }
  3115. SERIAL_PROTOCOLLN("");
  3116. #endif
  3117. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3118. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3119. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3120. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3121. }else{
  3122. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3123. }
  3124. SERIAL_PROTOCOLLN("");
  3125. #endif
  3126. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3127. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3128. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3129. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3130. }else{
  3131. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3132. }
  3133. SERIAL_PROTOCOLLN("");
  3134. #endif
  3135. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3136. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3137. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3138. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3139. }else{
  3140. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3141. }
  3142. SERIAL_PROTOCOLLN("");
  3143. #endif
  3144. break;
  3145. //TODO: update for all axis, use for loop
  3146. #ifdef BLINKM
  3147. case 150: // M150
  3148. {
  3149. byte red;
  3150. byte grn;
  3151. byte blu;
  3152. if(code_seen('R')) red = code_value();
  3153. if(code_seen('U')) grn = code_value();
  3154. if(code_seen('B')) blu = code_value();
  3155. SendColors(red,grn,blu);
  3156. }
  3157. break;
  3158. #endif //BLINKM
  3159. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3160. {
  3161. tmp_extruder = active_extruder;
  3162. if(code_seen('T')) {
  3163. tmp_extruder = code_value();
  3164. if(tmp_extruder >= EXTRUDERS) {
  3165. SERIAL_ECHO_START;
  3166. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3167. break;
  3168. }
  3169. }
  3170. float area = .0;
  3171. if(code_seen('D')) {
  3172. float diameter = (float)code_value();
  3173. if (diameter == 0.0) {
  3174. // setting any extruder filament size disables volumetric on the assumption that
  3175. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3176. // for all extruders
  3177. volumetric_enabled = false;
  3178. } else {
  3179. filament_size[tmp_extruder] = (float)code_value();
  3180. // make sure all extruders have some sane value for the filament size
  3181. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3182. #if EXTRUDERS > 1
  3183. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3184. #if EXTRUDERS > 2
  3185. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3186. #endif
  3187. #endif
  3188. volumetric_enabled = true;
  3189. }
  3190. } else {
  3191. //reserved for setting filament diameter via UFID or filament measuring device
  3192. break;
  3193. }
  3194. calculate_volumetric_multipliers();
  3195. }
  3196. break;
  3197. case 201: // M201
  3198. for(int8_t i=0; i < NUM_AXIS; i++)
  3199. {
  3200. if(code_seen(axis_codes[i]))
  3201. {
  3202. max_acceleration_units_per_sq_second[i] = code_value();
  3203. }
  3204. }
  3205. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3206. reset_acceleration_rates();
  3207. break;
  3208. #if 0 // Not used for Sprinter/grbl gen6
  3209. case 202: // M202
  3210. for(int8_t i=0; i < NUM_AXIS; i++) {
  3211. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3212. }
  3213. break;
  3214. #endif
  3215. case 203: // M203 max feedrate mm/sec
  3216. for(int8_t i=0; i < NUM_AXIS; i++) {
  3217. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3218. }
  3219. break;
  3220. case 204: // M204 acclereration S normal moves T filmanent only moves
  3221. {
  3222. if(code_seen('S')) acceleration = code_value() ;
  3223. if(code_seen('T')) retract_acceleration = code_value() ;
  3224. }
  3225. break;
  3226. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3227. {
  3228. if(code_seen('S')) minimumfeedrate = code_value();
  3229. if(code_seen('T')) mintravelfeedrate = code_value();
  3230. if(code_seen('B')) minsegmenttime = code_value() ;
  3231. if(code_seen('X')) max_xy_jerk = code_value() ;
  3232. if(code_seen('Z')) max_z_jerk = code_value() ;
  3233. if(code_seen('E')) max_e_jerk = code_value() ;
  3234. }
  3235. break;
  3236. case 206: // M206 additional homing offset
  3237. for(int8_t i=0; i < 3; i++)
  3238. {
  3239. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3240. }
  3241. break;
  3242. #ifdef FWRETRACT
  3243. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3244. {
  3245. if(code_seen('S'))
  3246. {
  3247. retract_length = code_value() ;
  3248. }
  3249. if(code_seen('F'))
  3250. {
  3251. retract_feedrate = code_value()/60 ;
  3252. }
  3253. if(code_seen('Z'))
  3254. {
  3255. retract_zlift = code_value() ;
  3256. }
  3257. }break;
  3258. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3259. {
  3260. if(code_seen('S'))
  3261. {
  3262. retract_recover_length = code_value() ;
  3263. }
  3264. if(code_seen('F'))
  3265. {
  3266. retract_recover_feedrate = code_value()/60 ;
  3267. }
  3268. }break;
  3269. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3270. {
  3271. if(code_seen('S'))
  3272. {
  3273. int t= code_value() ;
  3274. switch(t)
  3275. {
  3276. case 0:
  3277. {
  3278. autoretract_enabled=false;
  3279. retracted[0]=false;
  3280. #if EXTRUDERS > 1
  3281. retracted[1]=false;
  3282. #endif
  3283. #if EXTRUDERS > 2
  3284. retracted[2]=false;
  3285. #endif
  3286. }break;
  3287. case 1:
  3288. {
  3289. autoretract_enabled=true;
  3290. retracted[0]=false;
  3291. #if EXTRUDERS > 1
  3292. retracted[1]=false;
  3293. #endif
  3294. #if EXTRUDERS > 2
  3295. retracted[2]=false;
  3296. #endif
  3297. }break;
  3298. default:
  3299. SERIAL_ECHO_START;
  3300. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3301. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3302. SERIAL_ECHOLNPGM("\"");
  3303. }
  3304. }
  3305. }break;
  3306. #endif // FWRETRACT
  3307. #if EXTRUDERS > 1
  3308. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3309. {
  3310. if(setTargetedHotend(218)){
  3311. break;
  3312. }
  3313. if(code_seen('X'))
  3314. {
  3315. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3316. }
  3317. if(code_seen('Y'))
  3318. {
  3319. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3320. }
  3321. SERIAL_ECHO_START;
  3322. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3323. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3324. {
  3325. SERIAL_ECHO(" ");
  3326. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3327. SERIAL_ECHO(",");
  3328. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3329. }
  3330. SERIAL_ECHOLN("");
  3331. }break;
  3332. #endif
  3333. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3334. {
  3335. if(code_seen('S'))
  3336. {
  3337. feedmultiply = code_value() ;
  3338. }
  3339. }
  3340. break;
  3341. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3342. {
  3343. if(code_seen('S'))
  3344. {
  3345. int tmp_code = code_value();
  3346. if (code_seen('T'))
  3347. {
  3348. if(setTargetedHotend(221)){
  3349. break;
  3350. }
  3351. extruder_multiply[tmp_extruder] = tmp_code;
  3352. }
  3353. else
  3354. {
  3355. extrudemultiply = tmp_code ;
  3356. }
  3357. }
  3358. }
  3359. break;
  3360. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3361. {
  3362. if(code_seen('P')){
  3363. int pin_number = code_value(); // pin number
  3364. int pin_state = -1; // required pin state - default is inverted
  3365. if(code_seen('S')) pin_state = code_value(); // required pin state
  3366. if(pin_state >= -1 && pin_state <= 1){
  3367. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3368. {
  3369. if (sensitive_pins[i] == pin_number)
  3370. {
  3371. pin_number = -1;
  3372. break;
  3373. }
  3374. }
  3375. if (pin_number > -1)
  3376. {
  3377. int target = LOW;
  3378. st_synchronize();
  3379. pinMode(pin_number, INPUT);
  3380. switch(pin_state){
  3381. case 1:
  3382. target = HIGH;
  3383. break;
  3384. case 0:
  3385. target = LOW;
  3386. break;
  3387. case -1:
  3388. target = !digitalRead(pin_number);
  3389. break;
  3390. }
  3391. while(digitalRead(pin_number) != target){
  3392. manage_heater();
  3393. manage_inactivity();
  3394. lcd_update();
  3395. }
  3396. }
  3397. }
  3398. }
  3399. }
  3400. break;
  3401. #if NUM_SERVOS > 0
  3402. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3403. {
  3404. int servo_index = -1;
  3405. int servo_position = 0;
  3406. if (code_seen('P'))
  3407. servo_index = code_value();
  3408. if (code_seen('S')) {
  3409. servo_position = code_value();
  3410. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3411. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3412. servos[servo_index].attach(0);
  3413. #endif
  3414. servos[servo_index].write(servo_position);
  3415. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3416. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3417. servos[servo_index].detach();
  3418. #endif
  3419. }
  3420. else {
  3421. SERIAL_ECHO_START;
  3422. SERIAL_ECHO("Servo ");
  3423. SERIAL_ECHO(servo_index);
  3424. SERIAL_ECHOLN(" out of range");
  3425. }
  3426. }
  3427. else if (servo_index >= 0) {
  3428. SERIAL_PROTOCOL(MSG_OK);
  3429. SERIAL_PROTOCOL(" Servo ");
  3430. SERIAL_PROTOCOL(servo_index);
  3431. SERIAL_PROTOCOL(": ");
  3432. SERIAL_PROTOCOL(servos[servo_index].read());
  3433. SERIAL_PROTOCOLLN("");
  3434. }
  3435. }
  3436. break;
  3437. #endif // NUM_SERVOS > 0
  3438. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3439. case 300: // M300
  3440. {
  3441. int beepS = code_seen('S') ? code_value() : 110;
  3442. int beepP = code_seen('P') ? code_value() : 1000;
  3443. if (beepS > 0)
  3444. {
  3445. #if BEEPER > 0
  3446. tone(BEEPER, beepS);
  3447. delay(beepP);
  3448. noTone(BEEPER);
  3449. #elif defined(ULTRALCD)
  3450. lcd_buzz(beepS, beepP);
  3451. #elif defined(LCD_USE_I2C_BUZZER)
  3452. lcd_buzz(beepP, beepS);
  3453. #endif
  3454. }
  3455. else
  3456. {
  3457. delay(beepP);
  3458. }
  3459. }
  3460. break;
  3461. #endif // M300
  3462. #ifdef PIDTEMP
  3463. case 301: // M301
  3464. {
  3465. if(code_seen('P')) Kp = code_value();
  3466. if(code_seen('I')) Ki = scalePID_i(code_value());
  3467. if(code_seen('D')) Kd = scalePID_d(code_value());
  3468. #ifdef PID_ADD_EXTRUSION_RATE
  3469. if(code_seen('C')) Kc = code_value();
  3470. #endif
  3471. updatePID();
  3472. SERIAL_PROTOCOL(MSG_OK);
  3473. SERIAL_PROTOCOL(" p:");
  3474. SERIAL_PROTOCOL(Kp);
  3475. SERIAL_PROTOCOL(" i:");
  3476. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3477. SERIAL_PROTOCOL(" d:");
  3478. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3479. #ifdef PID_ADD_EXTRUSION_RATE
  3480. SERIAL_PROTOCOL(" c:");
  3481. //Kc does not have scaling applied above, or in resetting defaults
  3482. SERIAL_PROTOCOL(Kc);
  3483. #endif
  3484. SERIAL_PROTOCOLLN("");
  3485. }
  3486. break;
  3487. #endif //PIDTEMP
  3488. #ifdef PIDTEMPBED
  3489. case 304: // M304
  3490. {
  3491. if(code_seen('P')) bedKp = code_value();
  3492. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3493. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3494. updatePID();
  3495. SERIAL_PROTOCOL(MSG_OK);
  3496. SERIAL_PROTOCOL(" p:");
  3497. SERIAL_PROTOCOL(bedKp);
  3498. SERIAL_PROTOCOL(" i:");
  3499. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3500. SERIAL_PROTOCOL(" d:");
  3501. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3502. SERIAL_PROTOCOLLN("");
  3503. }
  3504. break;
  3505. #endif //PIDTEMP
  3506. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3507. {
  3508. #ifdef CHDK
  3509. SET_OUTPUT(CHDK);
  3510. WRITE(CHDK, HIGH);
  3511. chdkHigh = millis();
  3512. chdkActive = true;
  3513. #else
  3514. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3515. const uint8_t NUM_PULSES=16;
  3516. const float PULSE_LENGTH=0.01524;
  3517. for(int i=0; i < NUM_PULSES; i++) {
  3518. WRITE(PHOTOGRAPH_PIN, HIGH);
  3519. _delay_ms(PULSE_LENGTH);
  3520. WRITE(PHOTOGRAPH_PIN, LOW);
  3521. _delay_ms(PULSE_LENGTH);
  3522. }
  3523. delay(7.33);
  3524. for(int i=0; i < NUM_PULSES; i++) {
  3525. WRITE(PHOTOGRAPH_PIN, HIGH);
  3526. _delay_ms(PULSE_LENGTH);
  3527. WRITE(PHOTOGRAPH_PIN, LOW);
  3528. _delay_ms(PULSE_LENGTH);
  3529. }
  3530. #endif
  3531. #endif //chdk end if
  3532. }
  3533. break;
  3534. #ifdef DOGLCD
  3535. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3536. {
  3537. if (code_seen('C')) {
  3538. lcd_setcontrast( ((int)code_value())&63 );
  3539. }
  3540. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3541. SERIAL_PROTOCOL(lcd_contrast);
  3542. SERIAL_PROTOCOLLN("");
  3543. }
  3544. break;
  3545. #endif
  3546. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3547. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3548. {
  3549. float temp = .0;
  3550. if (code_seen('S')) temp=code_value();
  3551. set_extrude_min_temp(temp);
  3552. }
  3553. break;
  3554. #endif
  3555. case 303: // M303 PID autotune
  3556. {
  3557. float temp = 150.0;
  3558. int e=0;
  3559. int c=5;
  3560. if (code_seen('E')) e=code_value();
  3561. if (e<0)
  3562. temp=70;
  3563. if (code_seen('S')) temp=code_value();
  3564. if (code_seen('C')) c=code_value();
  3565. PID_autotune(temp, e, c);
  3566. }
  3567. break;
  3568. case 400: // M400 finish all moves
  3569. {
  3570. st_synchronize();
  3571. }
  3572. break;
  3573. #ifdef FILAMENT_SENSOR
  3574. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3575. {
  3576. #if (FILWIDTH_PIN > -1)
  3577. if(code_seen('N')) filament_width_nominal=code_value();
  3578. else{
  3579. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3580. SERIAL_PROTOCOLLN(filament_width_nominal);
  3581. }
  3582. #endif
  3583. }
  3584. break;
  3585. case 405: //M405 Turn on filament sensor for control
  3586. {
  3587. if(code_seen('D')) meas_delay_cm=code_value();
  3588. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3589. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3590. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3591. {
  3592. int temp_ratio = widthFil_to_size_ratio();
  3593. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3594. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3595. }
  3596. delay_index1=0;
  3597. delay_index2=0;
  3598. }
  3599. filament_sensor = true ;
  3600. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3601. //SERIAL_PROTOCOL(filament_width_meas);
  3602. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3603. //SERIAL_PROTOCOL(extrudemultiply);
  3604. }
  3605. break;
  3606. case 406: //M406 Turn off filament sensor for control
  3607. {
  3608. filament_sensor = false ;
  3609. }
  3610. break;
  3611. case 407: //M407 Display measured filament diameter
  3612. {
  3613. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3614. SERIAL_PROTOCOLLN(filament_width_meas);
  3615. }
  3616. break;
  3617. #endif
  3618. case 500: // M500 Store settings in EEPROM
  3619. {
  3620. Config_StoreSettings();
  3621. }
  3622. break;
  3623. case 501: // M501 Read settings from EEPROM
  3624. {
  3625. Config_RetrieveSettings();
  3626. }
  3627. break;
  3628. case 502: // M502 Revert to default settings
  3629. {
  3630. Config_ResetDefault();
  3631. }
  3632. break;
  3633. case 503: // M503 print settings currently in memory
  3634. {
  3635. Config_PrintSettings();
  3636. }
  3637. break;
  3638. case 509: //M509 Force language selection
  3639. {
  3640. lcd_force_language_selection();
  3641. SERIAL_ECHO_START;
  3642. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3643. }
  3644. break;
  3645. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3646. case 540:
  3647. {
  3648. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3649. }
  3650. break;
  3651. #endif
  3652. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3653. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3654. {
  3655. float value;
  3656. if (code_seen('Z'))
  3657. {
  3658. value = code_value();
  3659. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3660. {
  3661. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3662. SERIAL_ECHO_START;
  3663. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3664. SERIAL_PROTOCOLLN("");
  3665. }
  3666. else
  3667. {
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3670. SERIAL_ECHORPGM(MSG_Z_MIN);
  3671. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3672. SERIAL_ECHORPGM(MSG_Z_MAX);
  3673. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3674. SERIAL_PROTOCOLLN("");
  3675. }
  3676. }
  3677. else
  3678. {
  3679. SERIAL_ECHO_START;
  3680. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3681. SERIAL_ECHO(-zprobe_zoffset);
  3682. SERIAL_PROTOCOLLN("");
  3683. }
  3684. break;
  3685. }
  3686. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3687. #ifdef FILAMENTCHANGEENABLE
  3688. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3689. {
  3690. st_synchronize();
  3691. feedmultiplyBckp=feedmultiply;
  3692. int8_t TooLowZ = 0;
  3693. float target[4];
  3694. float lastpos[4];
  3695. target[X_AXIS]=current_position[X_AXIS];
  3696. target[Y_AXIS]=current_position[Y_AXIS];
  3697. target[Z_AXIS]=current_position[Z_AXIS];
  3698. target[E_AXIS]=current_position[E_AXIS];
  3699. lastpos[X_AXIS]=current_position[X_AXIS];
  3700. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3701. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3702. lastpos[E_AXIS]=current_position[E_AXIS];
  3703. //Restract extruder
  3704. if(code_seen('E'))
  3705. {
  3706. target[E_AXIS]+= code_value();
  3707. }
  3708. else
  3709. {
  3710. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3711. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3712. #endif
  3713. }
  3714. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3715. //Lift Z
  3716. if(code_seen('Z'))
  3717. {
  3718. target[Z_AXIS]+= code_value();
  3719. }
  3720. else
  3721. {
  3722. #ifdef FILAMENTCHANGE_ZADD
  3723. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3724. if(target[Z_AXIS] < 10){
  3725. target[Z_AXIS]+= 10 ;
  3726. TooLowZ = 1;
  3727. }else{
  3728. TooLowZ = 0;
  3729. }
  3730. #endif
  3731. }
  3732. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3733. //Move XY to side
  3734. if(code_seen('X'))
  3735. {
  3736. target[X_AXIS]+= code_value();
  3737. }
  3738. else
  3739. {
  3740. #ifdef FILAMENTCHANGE_XPOS
  3741. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3742. #endif
  3743. }
  3744. if(code_seen('Y'))
  3745. {
  3746. target[Y_AXIS]= code_value();
  3747. }
  3748. else
  3749. {
  3750. #ifdef FILAMENTCHANGE_YPOS
  3751. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3752. #endif
  3753. }
  3754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3755. // Unload filament
  3756. if(code_seen('L'))
  3757. {
  3758. target[E_AXIS]+= code_value();
  3759. }
  3760. else
  3761. {
  3762. #ifdef FILAMENTCHANGE_FINALRETRACT
  3763. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3764. #endif
  3765. }
  3766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3767. //finish moves
  3768. st_synchronize();
  3769. //disable extruder steppers so filament can be removed
  3770. disable_e0();
  3771. disable_e1();
  3772. disable_e2();
  3773. delay(100);
  3774. //Wait for user to insert filament
  3775. uint8_t cnt=0;
  3776. int counterBeep = 0;
  3777. lcd_wait_interact();
  3778. while(!lcd_clicked()){
  3779. cnt++;
  3780. manage_heater();
  3781. manage_inactivity(true);
  3782. if(cnt==0)
  3783. {
  3784. #if BEEPER > 0
  3785. if (counterBeep== 500){
  3786. counterBeep = 0;
  3787. }
  3788. SET_OUTPUT(BEEPER);
  3789. if (counterBeep== 0){
  3790. WRITE(BEEPER,HIGH);
  3791. }
  3792. if (counterBeep== 20){
  3793. WRITE(BEEPER,LOW);
  3794. }
  3795. counterBeep++;
  3796. #else
  3797. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3798. lcd_buzz(1000/6,100);
  3799. #else
  3800. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3801. #endif
  3802. #endif
  3803. }
  3804. }
  3805. //Filament inserted
  3806. WRITE(BEEPER,LOW);
  3807. //Feed the filament to the end of nozzle quickly
  3808. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3809. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3810. //Extrude some filament
  3811. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3812. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3813. //Wait for user to check the state
  3814. lcd_change_fil_state = 0;
  3815. lcd_loading_filament();
  3816. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3817. lcd_change_fil_state = 0;
  3818. lcd_alright();
  3819. switch(lcd_change_fil_state){
  3820. // Filament failed to load so load it again
  3821. case 2:
  3822. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3824. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3826. lcd_loading_filament();
  3827. break;
  3828. // Filament loaded properly but color is not clear
  3829. case 3:
  3830. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3832. lcd_loading_color();
  3833. break;
  3834. // Everything good
  3835. default:
  3836. lcd_change_success();
  3837. break;
  3838. }
  3839. }
  3840. //Not let's go back to print
  3841. //Feed a little of filament to stabilize pressure
  3842. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3844. //Retract
  3845. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3846. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3847. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3848. //Move XY back
  3849. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3850. //Move Z back
  3851. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3852. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3853. //Unretract
  3854. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3855. //Set E position to original
  3856. plan_set_e_position(lastpos[E_AXIS]);
  3857. //Recover feed rate
  3858. feedmultiply=feedmultiplyBckp;
  3859. char cmd[9];
  3860. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3861. enquecommand(cmd);
  3862. }
  3863. break;
  3864. #endif //FILAMENTCHANGEENABLE
  3865. case 907: // M907 Set digital trimpot motor current using axis codes.
  3866. {
  3867. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3868. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3869. if(code_seen('B')) digipot_current(4,code_value());
  3870. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3871. #endif
  3872. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3873. if(code_seen('X')) digipot_current(0, code_value());
  3874. #endif
  3875. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3876. if(code_seen('Z')) digipot_current(1, code_value());
  3877. #endif
  3878. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3879. if(code_seen('E')) digipot_current(2, code_value());
  3880. #endif
  3881. #ifdef DIGIPOT_I2C
  3882. // this one uses actual amps in floating point
  3883. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3884. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3885. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3886. #endif
  3887. }
  3888. break;
  3889. case 908: // M908 Control digital trimpot directly.
  3890. {
  3891. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3892. uint8_t channel,current;
  3893. if(code_seen('P')) channel=code_value();
  3894. if(code_seen('S')) current=code_value();
  3895. digitalPotWrite(channel, current);
  3896. #endif
  3897. }
  3898. break;
  3899. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3900. {
  3901. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3902. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3903. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3904. if(code_seen('B')) microstep_mode(4,code_value());
  3905. microstep_readings();
  3906. #endif
  3907. }
  3908. break;
  3909. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3910. {
  3911. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3912. if(code_seen('S')) switch((int)code_value())
  3913. {
  3914. case 1:
  3915. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3916. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3917. break;
  3918. case 2:
  3919. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3920. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3921. break;
  3922. }
  3923. microstep_readings();
  3924. #endif
  3925. }
  3926. break;
  3927. case 999: // M999: Restart after being stopped
  3928. Stopped = false;
  3929. lcd_reset_alert_level();
  3930. gcode_LastN = Stopped_gcode_LastN;
  3931. FlushSerialRequestResend();
  3932. break;
  3933. }
  3934. } // end if(code_seen('M')) (end of M codes)
  3935. else if(code_seen('T'))
  3936. {
  3937. tmp_extruder = code_value();
  3938. if(tmp_extruder >= EXTRUDERS) {
  3939. SERIAL_ECHO_START;
  3940. SERIAL_ECHO("T");
  3941. SERIAL_ECHO(tmp_extruder);
  3942. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3943. }
  3944. else {
  3945. boolean make_move = false;
  3946. if(code_seen('F')) {
  3947. make_move = true;
  3948. next_feedrate = code_value();
  3949. if(next_feedrate > 0.0) {
  3950. feedrate = next_feedrate;
  3951. }
  3952. }
  3953. #if EXTRUDERS > 1
  3954. if(tmp_extruder != active_extruder) {
  3955. // Save current position to return to after applying extruder offset
  3956. memcpy(destination, current_position, sizeof(destination));
  3957. // Offset extruder (only by XY)
  3958. int i;
  3959. for(i = 0; i < 2; i++) {
  3960. current_position[i] = current_position[i] -
  3961. extruder_offset[i][active_extruder] +
  3962. extruder_offset[i][tmp_extruder];
  3963. }
  3964. // Set the new active extruder and position
  3965. active_extruder = tmp_extruder;
  3966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3967. // Move to the old position if 'F' was in the parameters
  3968. if(make_move && Stopped == false) {
  3969. prepare_move();
  3970. }
  3971. }
  3972. #endif
  3973. SERIAL_ECHO_START;
  3974. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3975. SERIAL_PROTOCOLLN((int)active_extruder);
  3976. }
  3977. } // end if(code_seen('T')) (end of T codes)
  3978. else
  3979. {
  3980. SERIAL_ECHO_START;
  3981. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3982. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3983. SERIAL_ECHOLNPGM("\"");
  3984. }
  3985. ClearToSend();
  3986. }
  3987. void FlushSerialRequestResend()
  3988. {
  3989. //char cmdbuffer[bufindr][100]="Resend:";
  3990. MYSERIAL.flush();
  3991. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3992. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3993. ClearToSend();
  3994. }
  3995. // Confirm the execution of a command, if sent from a serial line.
  3996. // Execution of a command from a SD card will not be confirmed.
  3997. void ClearToSend()
  3998. {
  3999. previous_millis_cmd = millis();
  4000. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4001. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4002. }
  4003. void get_coordinates()
  4004. {
  4005. bool seen[4]={false,false,false,false};
  4006. for(int8_t i=0; i < NUM_AXIS; i++) {
  4007. if(code_seen(axis_codes[i]))
  4008. {
  4009. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4010. seen[i]=true;
  4011. }
  4012. else destination[i] = current_position[i]; //Are these else lines really needed?
  4013. }
  4014. if(code_seen('F')) {
  4015. next_feedrate = code_value();
  4016. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4017. }
  4018. }
  4019. void get_arc_coordinates()
  4020. {
  4021. #ifdef SF_ARC_FIX
  4022. bool relative_mode_backup = relative_mode;
  4023. relative_mode = true;
  4024. #endif
  4025. get_coordinates();
  4026. #ifdef SF_ARC_FIX
  4027. relative_mode=relative_mode_backup;
  4028. #endif
  4029. if(code_seen('I')) {
  4030. offset[0] = code_value();
  4031. }
  4032. else {
  4033. offset[0] = 0.0;
  4034. }
  4035. if(code_seen('J')) {
  4036. offset[1] = code_value();
  4037. }
  4038. else {
  4039. offset[1] = 0.0;
  4040. }
  4041. }
  4042. void clamp_to_software_endstops(float target[3])
  4043. {
  4044. world2machine_clamp(target[0], target[1]);
  4045. // Clamp the Z coordinate.
  4046. if (min_software_endstops) {
  4047. float negative_z_offset = 0;
  4048. #ifdef ENABLE_AUTO_BED_LEVELING
  4049. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4050. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4051. #endif
  4052. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4053. }
  4054. if (max_software_endstops) {
  4055. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4056. }
  4057. }
  4058. #ifdef MESH_BED_LEVELING
  4059. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4060. float dx = x - current_position[X_AXIS];
  4061. float dy = y - current_position[Y_AXIS];
  4062. float dz = z - current_position[Z_AXIS];
  4063. int n_segments = 0;
  4064. if (mbl.active) {
  4065. float len = abs(dx) + abs(dy) + abs(dz);
  4066. if (len > 0)
  4067. n_segments = int(floor(len / 30.f));
  4068. }
  4069. if (n_segments > 1) {
  4070. float de = e - current_position[E_AXIS];
  4071. for (int i = 1; i < n_segments; ++ i) {
  4072. float t = float(i) / float(n_segments);
  4073. plan_buffer_line(
  4074. current_position[X_AXIS] + t * dx,
  4075. current_position[Y_AXIS] + t * dy,
  4076. current_position[Z_AXIS] + t * dz,
  4077. current_position[E_AXIS] + t * de,
  4078. feed_rate, extruder);
  4079. }
  4080. }
  4081. // The rest of the path.
  4082. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4083. set_current_to_destination();
  4084. }
  4085. #endif // MESH_BED_LEVELING
  4086. void prepare_move()
  4087. {
  4088. clamp_to_software_endstops(destination);
  4089. previous_millis_cmd = millis();
  4090. // Do not use feedmultiply for E or Z only moves
  4091. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4092. #ifdef MESH_BED_LEVELING
  4093. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4094. #else
  4095. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4096. #endif
  4097. }
  4098. else {
  4099. #ifdef MESH_BED_LEVELING
  4100. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4101. #else
  4102. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4103. #endif
  4104. }
  4105. for(int8_t i=0; i < NUM_AXIS; i++) {
  4106. current_position[i] = destination[i];
  4107. }
  4108. }
  4109. void prepare_arc_move(char isclockwise) {
  4110. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4111. // Trace the arc
  4112. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4113. // As far as the parser is concerned, the position is now == target. In reality the
  4114. // motion control system might still be processing the action and the real tool position
  4115. // in any intermediate location.
  4116. for(int8_t i=0; i < NUM_AXIS; i++) {
  4117. current_position[i] = destination[i];
  4118. }
  4119. previous_millis_cmd = millis();
  4120. }
  4121. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4122. #if defined(FAN_PIN)
  4123. #if CONTROLLERFAN_PIN == FAN_PIN
  4124. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4125. #endif
  4126. #endif
  4127. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4128. unsigned long lastMotorCheck = 0;
  4129. void controllerFan()
  4130. {
  4131. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4132. {
  4133. lastMotorCheck = millis();
  4134. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4135. #if EXTRUDERS > 2
  4136. || !READ(E2_ENABLE_PIN)
  4137. #endif
  4138. #if EXTRUDER > 1
  4139. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4140. || !READ(X2_ENABLE_PIN)
  4141. #endif
  4142. || !READ(E1_ENABLE_PIN)
  4143. #endif
  4144. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4145. {
  4146. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4147. }
  4148. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4149. {
  4150. digitalWrite(CONTROLLERFAN_PIN, 0);
  4151. analogWrite(CONTROLLERFAN_PIN, 0);
  4152. }
  4153. else
  4154. {
  4155. // allows digital or PWM fan output to be used (see M42 handling)
  4156. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4157. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4158. }
  4159. }
  4160. }
  4161. #endif
  4162. #ifdef TEMP_STAT_LEDS
  4163. static bool blue_led = false;
  4164. static bool red_led = false;
  4165. static uint32_t stat_update = 0;
  4166. void handle_status_leds(void) {
  4167. float max_temp = 0.0;
  4168. if(millis() > stat_update) {
  4169. stat_update += 500; // Update every 0.5s
  4170. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4171. max_temp = max(max_temp, degHotend(cur_extruder));
  4172. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4173. }
  4174. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4175. max_temp = max(max_temp, degTargetBed());
  4176. max_temp = max(max_temp, degBed());
  4177. #endif
  4178. if((max_temp > 55.0) && (red_led == false)) {
  4179. digitalWrite(STAT_LED_RED, 1);
  4180. digitalWrite(STAT_LED_BLUE, 0);
  4181. red_led = true;
  4182. blue_led = false;
  4183. }
  4184. if((max_temp < 54.0) && (blue_led == false)) {
  4185. digitalWrite(STAT_LED_RED, 0);
  4186. digitalWrite(STAT_LED_BLUE, 1);
  4187. red_led = false;
  4188. blue_led = true;
  4189. }
  4190. }
  4191. }
  4192. #endif
  4193. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4194. {
  4195. #if defined(KILL_PIN) && KILL_PIN > -1
  4196. static int killCount = 0; // make the inactivity button a bit less responsive
  4197. const int KILL_DELAY = 10000;
  4198. #endif
  4199. if(buflen < (BUFSIZE-1))
  4200. get_command();
  4201. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4202. if(max_inactive_time)
  4203. kill();
  4204. if(stepper_inactive_time) {
  4205. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4206. {
  4207. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4208. disable_x();
  4209. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4210. disable_y();
  4211. disable_z();
  4212. disable_e0();
  4213. disable_e1();
  4214. disable_e2();
  4215. }
  4216. }
  4217. }
  4218. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4219. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4220. {
  4221. chdkActive = false;
  4222. WRITE(CHDK, LOW);
  4223. }
  4224. #endif
  4225. #if defined(KILL_PIN) && KILL_PIN > -1
  4226. // Check if the kill button was pressed and wait just in case it was an accidental
  4227. // key kill key press
  4228. // -------------------------------------------------------------------------------
  4229. if( 0 == READ(KILL_PIN) )
  4230. {
  4231. killCount++;
  4232. }
  4233. else if (killCount > 0)
  4234. {
  4235. killCount--;
  4236. }
  4237. // Exceeded threshold and we can confirm that it was not accidental
  4238. // KILL the machine
  4239. // ----------------------------------------------------------------
  4240. if ( killCount >= KILL_DELAY)
  4241. {
  4242. kill();
  4243. }
  4244. #endif
  4245. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4246. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4247. #endif
  4248. #ifdef EXTRUDER_RUNOUT_PREVENT
  4249. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4250. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4251. {
  4252. bool oldstatus=READ(E0_ENABLE_PIN);
  4253. enable_e0();
  4254. float oldepos=current_position[E_AXIS];
  4255. float oldedes=destination[E_AXIS];
  4256. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4257. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4258. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4259. current_position[E_AXIS]=oldepos;
  4260. destination[E_AXIS]=oldedes;
  4261. plan_set_e_position(oldepos);
  4262. previous_millis_cmd=millis();
  4263. st_synchronize();
  4264. WRITE(E0_ENABLE_PIN,oldstatus);
  4265. }
  4266. #endif
  4267. #ifdef TEMP_STAT_LEDS
  4268. handle_status_leds();
  4269. #endif
  4270. check_axes_activity();
  4271. }
  4272. void kill(const char *full_screen_message)
  4273. {
  4274. cli(); // Stop interrupts
  4275. disable_heater();
  4276. disable_x();
  4277. // SERIAL_ECHOLNPGM("kill - disable Y");
  4278. disable_y();
  4279. disable_z();
  4280. disable_e0();
  4281. disable_e1();
  4282. disable_e2();
  4283. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4284. pinMode(PS_ON_PIN,INPUT);
  4285. #endif
  4286. SERIAL_ERROR_START;
  4287. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4288. if (full_screen_message != NULL) {
  4289. SERIAL_ERRORLNRPGM(full_screen_message);
  4290. lcd_display_message_fullscreen_P(full_screen_message);
  4291. } else {
  4292. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4293. }
  4294. // FMC small patch to update the LCD before ending
  4295. sei(); // enable interrupts
  4296. for ( int i=5; i--; lcd_update())
  4297. {
  4298. delay(200);
  4299. }
  4300. cli(); // disable interrupts
  4301. suicide();
  4302. while(1) { /* Intentionally left empty */ } // Wait for reset
  4303. }
  4304. void Stop()
  4305. {
  4306. disable_heater();
  4307. if(Stopped == false) {
  4308. Stopped = true;
  4309. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4310. SERIAL_ERROR_START;
  4311. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4312. LCD_MESSAGERPGM(MSG_STOPPED);
  4313. }
  4314. }
  4315. bool IsStopped() { return Stopped; };
  4316. #ifdef FAST_PWM_FAN
  4317. void setPwmFrequency(uint8_t pin, int val)
  4318. {
  4319. val &= 0x07;
  4320. switch(digitalPinToTimer(pin))
  4321. {
  4322. #if defined(TCCR0A)
  4323. case TIMER0A:
  4324. case TIMER0B:
  4325. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4326. // TCCR0B |= val;
  4327. break;
  4328. #endif
  4329. #if defined(TCCR1A)
  4330. case TIMER1A:
  4331. case TIMER1B:
  4332. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4333. // TCCR1B |= val;
  4334. break;
  4335. #endif
  4336. #if defined(TCCR2)
  4337. case TIMER2:
  4338. case TIMER2:
  4339. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4340. TCCR2 |= val;
  4341. break;
  4342. #endif
  4343. #if defined(TCCR2A)
  4344. case TIMER2A:
  4345. case TIMER2B:
  4346. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4347. TCCR2B |= val;
  4348. break;
  4349. #endif
  4350. #if defined(TCCR3A)
  4351. case TIMER3A:
  4352. case TIMER3B:
  4353. case TIMER3C:
  4354. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4355. TCCR3B |= val;
  4356. break;
  4357. #endif
  4358. #if defined(TCCR4A)
  4359. case TIMER4A:
  4360. case TIMER4B:
  4361. case TIMER4C:
  4362. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4363. TCCR4B |= val;
  4364. break;
  4365. #endif
  4366. #if defined(TCCR5A)
  4367. case TIMER5A:
  4368. case TIMER5B:
  4369. case TIMER5C:
  4370. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4371. TCCR5B |= val;
  4372. break;
  4373. #endif
  4374. }
  4375. }
  4376. #endif //FAST_PWM_FAN
  4377. bool setTargetedHotend(int code){
  4378. tmp_extruder = active_extruder;
  4379. if(code_seen('T')) {
  4380. tmp_extruder = code_value();
  4381. if(tmp_extruder >= EXTRUDERS) {
  4382. SERIAL_ECHO_START;
  4383. switch(code){
  4384. case 104:
  4385. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4386. break;
  4387. case 105:
  4388. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4389. break;
  4390. case 109:
  4391. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4392. break;
  4393. case 218:
  4394. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4395. break;
  4396. case 221:
  4397. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4398. break;
  4399. }
  4400. SERIAL_ECHOLN(tmp_extruder);
  4401. return true;
  4402. }
  4403. }
  4404. return false;
  4405. }
  4406. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4407. {
  4408. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4409. {
  4410. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4411. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4412. }
  4413. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4414. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4415. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4416. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4417. total_filament_used = 0;
  4418. }
  4419. float calculate_volumetric_multiplier(float diameter) {
  4420. float area = .0;
  4421. float radius = .0;
  4422. radius = diameter * .5;
  4423. if (! volumetric_enabled || radius == 0) {
  4424. area = 1;
  4425. }
  4426. else {
  4427. area = M_PI * pow(radius, 2);
  4428. }
  4429. return 1.0 / area;
  4430. }
  4431. void calculate_volumetric_multipliers() {
  4432. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4433. #if EXTRUDERS > 1
  4434. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4435. #if EXTRUDERS > 2
  4436. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4437. #endif
  4438. #endif
  4439. }
  4440. void delay_keep_alive(int ms)
  4441. {
  4442. for (;;) {
  4443. manage_heater();
  4444. // Manage inactivity, but don't disable steppers on timeout.
  4445. manage_inactivity(true);
  4446. lcd_update();
  4447. if (ms == 0)
  4448. break;
  4449. else if (ms >= 50) {
  4450. delay(50);
  4451. ms -= 50;
  4452. } else {
  4453. delay(ms);
  4454. ms = 0;
  4455. }
  4456. }
  4457. }