stepper.cpp 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  66. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  67. #endif
  68. static bool old_x_min_endstop=false;
  69. static bool old_x_max_endstop=false;
  70. static bool old_y_min_endstop=false;
  71. static bool old_y_max_endstop=false;
  72. static bool old_z_min_endstop=false;
  73. static bool old_z_max_endstop=false;
  74. static bool check_endstops = true;
  75. static bool check_z_endstop = false;
  76. int8_t SilentMode;
  77. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  78. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  79. //===========================================================================
  80. //=============================functions ============================
  81. //===========================================================================
  82. #define CHECK_ENDSTOPS if(check_endstops)
  83. // intRes = intIn1 * intIn2 >> 16
  84. // uses:
  85. // r26 to store 0
  86. // r27 to store the byte 1 of the 24 bit result
  87. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  88. asm volatile ( \
  89. "clr r26 \n\t" \
  90. "mul %A1, %B2 \n\t" \
  91. "movw %A0, r0 \n\t" \
  92. "mul %A1, %A2 \n\t" \
  93. "add %A0, r1 \n\t" \
  94. "adc %B0, r26 \n\t" \
  95. "lsr r0 \n\t" \
  96. "adc %A0, r26 \n\t" \
  97. "adc %B0, r26 \n\t" \
  98. "clr r1 \n\t" \
  99. : \
  100. "=&r" (intRes) \
  101. : \
  102. "d" (charIn1), \
  103. "d" (intIn2) \
  104. : \
  105. "r26" \
  106. )
  107. // intRes = longIn1 * longIn2 >> 24
  108. // uses:
  109. // r26 to store 0
  110. // r27 to store the byte 1 of the 48bit result
  111. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  112. asm volatile ( \
  113. "clr r26 \n\t" \
  114. "mul %A1, %B2 \n\t" \
  115. "mov r27, r1 \n\t" \
  116. "mul %B1, %C2 \n\t" \
  117. "movw %A0, r0 \n\t" \
  118. "mul %C1, %C2 \n\t" \
  119. "add %B0, r0 \n\t" \
  120. "mul %C1, %B2 \n\t" \
  121. "add %A0, r0 \n\t" \
  122. "adc %B0, r1 \n\t" \
  123. "mul %A1, %C2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %B1, %B2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %C1, %A2 \n\t" \
  132. "add r27, r0 \n\t" \
  133. "adc %A0, r1 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "mul %B1, %A2 \n\t" \
  136. "add r27, r1 \n\t" \
  137. "adc %A0, r26 \n\t" \
  138. "adc %B0, r26 \n\t" \
  139. "lsr r27 \n\t" \
  140. "adc %A0, r26 \n\t" \
  141. "adc %B0, r26 \n\t" \
  142. "clr r1 \n\t" \
  143. : \
  144. "=&r" (intRes) \
  145. : \
  146. "d" (longIn1), \
  147. "d" (longIn2) \
  148. : \
  149. "r26" , "r27" \
  150. )
  151. // Some useful constants
  152. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  153. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  154. void checkHitEndstops()
  155. {
  156. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  157. SERIAL_ECHO_START;
  158. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  159. if(endstop_x_hit) {
  160. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  161. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  162. }
  163. if(endstop_y_hit) {
  164. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  165. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  166. }
  167. if(endstop_z_hit) {
  168. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  169. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  170. }
  171. SERIAL_ECHOLN("");
  172. endstop_x_hit=false;
  173. endstop_y_hit=false;
  174. endstop_z_hit=false;
  175. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  176. if (abort_on_endstop_hit)
  177. {
  178. card.sdprinting = false;
  179. card.closefile();
  180. quickStop();
  181. setTargetHotend0(0);
  182. setTargetHotend1(0);
  183. setTargetHotend2(0);
  184. }
  185. #endif
  186. }
  187. }
  188. bool endstops_hit_on_purpose()
  189. {
  190. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  191. endstop_x_hit=false;
  192. endstop_y_hit=false;
  193. endstop_z_hit=false;
  194. return hit;
  195. }
  196. bool endstop_z_hit_on_purpose()
  197. {
  198. bool hit = endstop_z_hit;
  199. endstop_z_hit=false;
  200. return hit;
  201. }
  202. bool enable_endstops(bool check)
  203. {
  204. bool old = check_endstops;
  205. check_endstops = check;
  206. return old;
  207. }
  208. bool enable_z_endstop(bool check)
  209. {
  210. bool old = check_z_endstop;
  211. check_z_endstop = check;
  212. endstop_z_hit=false;
  213. return old;
  214. }
  215. // __________________________
  216. // /| |\ _________________ ^
  217. // / | | \ /| |\ |
  218. // / | | \ / | | \ s
  219. // / | | | | | \ p
  220. // / | | | | | \ e
  221. // +-----+------------------------+---+--+---------------+----+ e
  222. // | BLOCK 1 | BLOCK 2 | d
  223. //
  224. // time ----->
  225. //
  226. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  227. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  228. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  229. // The slope of acceleration is calculated with the leib ramp alghorithm.
  230. void st_wake_up() {
  231. // TCNT1 = 0;
  232. ENABLE_STEPPER_DRIVER_INTERRUPT();
  233. }
  234. void step_wait(){
  235. for(int8_t i=0; i < 6; i++){
  236. }
  237. }
  238. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  239. unsigned short timer;
  240. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  241. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  242. step_rate = (step_rate >> 2)&0x3fff;
  243. step_loops = 4;
  244. }
  245. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  246. step_rate = (step_rate >> 1)&0x7fff;
  247. step_loops = 2;
  248. }
  249. else {
  250. step_loops = 1;
  251. }
  252. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  253. step_rate -= (F_CPU/500000); // Correct for minimal speed
  254. if(step_rate >= (8*256)){ // higher step rate
  255. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  256. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  257. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  258. MultiU16X8toH16(timer, tmp_step_rate, gain);
  259. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  260. }
  261. else { // lower step rates
  262. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  263. table_address += ((step_rate)>>1) & 0xfffc;
  264. timer = (unsigned short)pgm_read_word_near(table_address);
  265. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  266. }
  267. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  268. return timer;
  269. }
  270. // Initializes the trapezoid generator from the current block. Called whenever a new
  271. // block begins.
  272. FORCE_INLINE void trapezoid_generator_reset() {
  273. #ifdef ADVANCE
  274. advance = current_block->initial_advance;
  275. final_advance = current_block->final_advance;
  276. // Do E steps + advance steps
  277. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  278. old_advance = advance >>8;
  279. #endif
  280. deceleration_time = 0;
  281. // step_rate to timer interval
  282. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  283. // make a note of the number of step loops required at nominal speed
  284. step_loops_nominal = step_loops;
  285. acc_step_rate = current_block->initial_rate;
  286. acceleration_time = calc_timer(acc_step_rate);
  287. OCR1A = acceleration_time;
  288. // SERIAL_ECHO_START;
  289. // SERIAL_ECHOPGM("advance :");
  290. // SERIAL_ECHO(current_block->advance/256.0);
  291. // SERIAL_ECHOPGM("advance rate :");
  292. // SERIAL_ECHO(current_block->advance_rate/256.0);
  293. // SERIAL_ECHOPGM("initial advance :");
  294. // SERIAL_ECHO(current_block->initial_advance/256.0);
  295. // SERIAL_ECHOPGM("final advance :");
  296. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  297. }
  298. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  299. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  300. ISR(TIMER1_COMPA_vect)
  301. {
  302. // If there is no current block, attempt to pop one from the buffer
  303. if (current_block == NULL) {
  304. // Anything in the buffer?
  305. current_block = plan_get_current_block();
  306. if (current_block != NULL) {
  307. // The busy flag is set by the plan_get_current_block() call.
  308. // current_block->busy = true;
  309. trapezoid_generator_reset();
  310. counter_x = -(current_block->step_event_count >> 1);
  311. counter_y = counter_x;
  312. counter_z = counter_x;
  313. counter_e = counter_x;
  314. step_events_completed = 0;
  315. #ifdef Z_LATE_ENABLE
  316. if(current_block->steps_z > 0) {
  317. enable_z();
  318. OCR1A = 2000; //1ms wait
  319. return;
  320. }
  321. #endif
  322. // #ifdef ADVANCE
  323. // e_steps[current_block->active_extruder] = 0;
  324. // #endif
  325. }
  326. else {
  327. OCR1A=2000; // 1kHz.
  328. }
  329. }
  330. if (current_block != NULL) {
  331. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  332. out_bits = current_block->direction_bits;
  333. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  334. if((out_bits & (1<<X_AXIS))!=0){
  335. WRITE(X_DIR_PIN, INVERT_X_DIR);
  336. count_direction[X_AXIS]=-1;
  337. }
  338. else{
  339. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  340. count_direction[X_AXIS]=1;
  341. }
  342. if((out_bits & (1<<Y_AXIS))!=0){
  343. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  344. #ifdef Y_DUAL_STEPPER_DRIVERS
  345. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  346. #endif
  347. count_direction[Y_AXIS]=-1;
  348. }
  349. else{
  350. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  351. #ifdef Y_DUAL_STEPPER_DRIVERS
  352. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  353. #endif
  354. count_direction[Y_AXIS]=1;
  355. }
  356. // Set direction en check limit switches
  357. #ifndef COREXY
  358. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  359. #else
  360. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  361. #endif
  362. CHECK_ENDSTOPS
  363. {
  364. {
  365. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  366. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  367. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  368. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  369. endstop_x_hit=true;
  370. step_events_completed = current_block->step_event_count;
  371. }
  372. old_x_min_endstop = x_min_endstop;
  373. #endif
  374. }
  375. }
  376. }
  377. else { // +direction
  378. CHECK_ENDSTOPS
  379. {
  380. {
  381. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  382. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  383. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  384. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  385. endstop_x_hit=true;
  386. step_events_completed = current_block->step_event_count;
  387. }
  388. old_x_max_endstop = x_max_endstop;
  389. #endif
  390. }
  391. }
  392. }
  393. #ifndef COREXY
  394. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  395. #else
  396. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  397. #endif
  398. CHECK_ENDSTOPS
  399. {
  400. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  401. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  402. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  403. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  404. endstop_y_hit=true;
  405. step_events_completed = current_block->step_event_count;
  406. }
  407. old_y_min_endstop = y_min_endstop;
  408. #endif
  409. }
  410. }
  411. else { // +direction
  412. CHECK_ENDSTOPS
  413. {
  414. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  415. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  416. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  417. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  418. endstop_y_hit=true;
  419. step_events_completed = current_block->step_event_count;
  420. }
  421. old_y_max_endstop = y_max_endstop;
  422. #endif
  423. }
  424. }
  425. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  426. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  427. #ifdef Z_DUAL_STEPPER_DRIVERS
  428. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  429. #endif
  430. count_direction[Z_AXIS]=-1;
  431. if(check_endstops && ! check_z_endstop)
  432. {
  433. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  434. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  435. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  436. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  437. endstop_z_hit=true;
  438. step_events_completed = current_block->step_event_count;
  439. }
  440. old_z_min_endstop = z_min_endstop;
  441. #endif
  442. }
  443. }
  444. else { // +direction
  445. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  446. #ifdef Z_DUAL_STEPPER_DRIVERS
  447. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  448. #endif
  449. count_direction[Z_AXIS]=1;
  450. CHECK_ENDSTOPS
  451. {
  452. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  453. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  454. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  455. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  456. endstop_z_hit=true;
  457. step_events_completed = current_block->step_event_count;
  458. }
  459. old_z_max_endstop = z_max_endstop;
  460. #endif
  461. }
  462. }
  463. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  464. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  465. if(check_z_endstop) {
  466. // Check the Z min end-stop no matter what.
  467. // Good for searching for the center of an induction target.
  468. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  469. if(z_min_endstop && old_z_min_endstop) {
  470. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  471. endstop_z_hit=true;
  472. step_events_completed = current_block->step_event_count;
  473. }
  474. old_z_min_endstop = z_min_endstop;
  475. }
  476. #endif
  477. #ifndef ADVANCE
  478. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  479. REV_E_DIR();
  480. count_direction[E_AXIS]=-1;
  481. }
  482. else { // +direction
  483. NORM_E_DIR();
  484. count_direction[E_AXIS]=1;
  485. }
  486. #endif //!ADVANCE
  487. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  488. #ifndef AT90USB
  489. MSerial.checkRx(); // Check for serial chars.
  490. #endif
  491. #ifdef ADVANCE
  492. counter_e += current_block->steps_e;
  493. if (counter_e > 0) {
  494. counter_e -= current_block->step_event_count;
  495. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  496. e_steps[current_block->active_extruder]--;
  497. }
  498. else {
  499. e_steps[current_block->active_extruder]++;
  500. }
  501. }
  502. #endif //ADVANCE
  503. counter_x += current_block->steps_x;
  504. if (counter_x > 0) {
  505. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  506. counter_x -= current_block->step_event_count;
  507. count_position[X_AXIS]+=count_direction[X_AXIS];
  508. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  509. }
  510. counter_y += current_block->steps_y;
  511. if (counter_y > 0) {
  512. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  513. #ifdef Y_DUAL_STEPPER_DRIVERS
  514. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  515. #endif
  516. counter_y -= current_block->step_event_count;
  517. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  518. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  519. #ifdef Y_DUAL_STEPPER_DRIVERS
  520. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  521. #endif
  522. }
  523. counter_z += current_block->steps_z;
  524. if (counter_z > 0) {
  525. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  526. #ifdef Z_DUAL_STEPPER_DRIVERS
  527. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  528. #endif
  529. counter_z -= current_block->step_event_count;
  530. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  531. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  532. #ifdef Z_DUAL_STEPPER_DRIVERS
  533. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  534. #endif
  535. }
  536. #ifndef ADVANCE
  537. counter_e += current_block->steps_e;
  538. if (counter_e > 0) {
  539. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  540. counter_e -= current_block->step_event_count;
  541. count_position[E_AXIS]+=count_direction[E_AXIS];
  542. WRITE_E_STEP(INVERT_E_STEP_PIN);
  543. }
  544. #endif //!ADVANCE
  545. step_events_completed += 1;
  546. if(step_events_completed >= current_block->step_event_count) break;
  547. }
  548. // Calculare new timer value
  549. unsigned short timer;
  550. unsigned short step_rate;
  551. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  552. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  553. acc_step_rate += current_block->initial_rate;
  554. // upper limit
  555. if(acc_step_rate > current_block->nominal_rate)
  556. acc_step_rate = current_block->nominal_rate;
  557. // step_rate to timer interval
  558. timer = calc_timer(acc_step_rate);
  559. OCR1A = timer;
  560. acceleration_time += timer;
  561. #ifdef ADVANCE
  562. for(int8_t i=0; i < step_loops; i++) {
  563. advance += advance_rate;
  564. }
  565. //if(advance > current_block->advance) advance = current_block->advance;
  566. // Do E steps + advance steps
  567. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  568. old_advance = advance >>8;
  569. #endif // ADVANCE
  570. }
  571. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  572. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  573. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  574. step_rate = current_block->final_rate;
  575. }
  576. else {
  577. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  578. }
  579. // lower limit
  580. if(step_rate < current_block->final_rate)
  581. step_rate = current_block->final_rate;
  582. // step_rate to timer interval
  583. timer = calc_timer(step_rate);
  584. OCR1A = timer;
  585. deceleration_time += timer;
  586. #ifdef ADVANCE
  587. for(int8_t i=0; i < step_loops; i++) {
  588. advance -= advance_rate;
  589. }
  590. if(advance < final_advance) advance = final_advance;
  591. // Do E steps + advance steps
  592. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  593. old_advance = advance >>8;
  594. #endif //ADVANCE
  595. }
  596. else {
  597. OCR1A = OCR1A_nominal;
  598. // ensure we're running at the correct step rate, even if we just came off an acceleration
  599. step_loops = step_loops_nominal;
  600. }
  601. // If current block is finished, reset pointer
  602. if (step_events_completed >= current_block->step_event_count) {
  603. current_block = NULL;
  604. plan_discard_current_block();
  605. }
  606. }
  607. }
  608. #ifdef ADVANCE
  609. unsigned char old_OCR0A;
  610. // Timer interrupt for E. e_steps is set in the main routine;
  611. // Timer 0 is shared with millies
  612. ISR(TIMER0_COMPA_vect)
  613. {
  614. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  615. OCR0A = old_OCR0A;
  616. // Set E direction (Depends on E direction + advance)
  617. for(unsigned char i=0; i<4;i++) {
  618. if (e_steps[0] != 0) {
  619. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  620. if (e_steps[0] < 0) {
  621. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  622. e_steps[0]++;
  623. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  624. }
  625. else if (e_steps[0] > 0) {
  626. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  627. e_steps[0]--;
  628. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  629. }
  630. }
  631. #if EXTRUDERS > 1
  632. if (e_steps[1] != 0) {
  633. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  634. if (e_steps[1] < 0) {
  635. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  636. e_steps[1]++;
  637. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  638. }
  639. else if (e_steps[1] > 0) {
  640. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  641. e_steps[1]--;
  642. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  643. }
  644. }
  645. #endif
  646. #if EXTRUDERS > 2
  647. if (e_steps[2] != 0) {
  648. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  649. if (e_steps[2] < 0) {
  650. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  651. e_steps[2]++;
  652. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  653. }
  654. else if (e_steps[2] > 0) {
  655. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  656. e_steps[2]--;
  657. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  658. }
  659. }
  660. #endif
  661. }
  662. }
  663. #endif // ADVANCE
  664. void st_init()
  665. {
  666. digipot_init(); //Initialize Digipot Motor Current
  667. microstep_init(); //Initialize Microstepping Pins
  668. //Initialize Dir Pins
  669. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  670. SET_OUTPUT(X_DIR_PIN);
  671. #endif
  672. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  673. SET_OUTPUT(X2_DIR_PIN);
  674. #endif
  675. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  676. SET_OUTPUT(Y_DIR_PIN);
  677. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  678. SET_OUTPUT(Y2_DIR_PIN);
  679. #endif
  680. #endif
  681. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  682. SET_OUTPUT(Z_DIR_PIN);
  683. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  684. SET_OUTPUT(Z2_DIR_PIN);
  685. #endif
  686. #endif
  687. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  688. SET_OUTPUT(E0_DIR_PIN);
  689. #endif
  690. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  691. SET_OUTPUT(E1_DIR_PIN);
  692. #endif
  693. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  694. SET_OUTPUT(E2_DIR_PIN);
  695. #endif
  696. //Initialize Enable Pins - steppers default to disabled.
  697. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  698. SET_OUTPUT(X_ENABLE_PIN);
  699. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  700. #endif
  701. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  702. SET_OUTPUT(X2_ENABLE_PIN);
  703. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  704. #endif
  705. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  706. SET_OUTPUT(Y_ENABLE_PIN);
  707. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  708. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  709. SET_OUTPUT(Y2_ENABLE_PIN);
  710. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  711. #endif
  712. #endif
  713. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  714. SET_OUTPUT(Z_ENABLE_PIN);
  715. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  716. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  717. SET_OUTPUT(Z2_ENABLE_PIN);
  718. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  719. #endif
  720. #endif
  721. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  722. SET_OUTPUT(E0_ENABLE_PIN);
  723. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  724. #endif
  725. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  726. SET_OUTPUT(E1_ENABLE_PIN);
  727. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  728. #endif
  729. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  730. SET_OUTPUT(E2_ENABLE_PIN);
  731. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  732. #endif
  733. //endstops and pullups
  734. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  735. SET_INPUT(X_MIN_PIN);
  736. #ifdef ENDSTOPPULLUP_XMIN
  737. WRITE(X_MIN_PIN,HIGH);
  738. #endif
  739. #endif
  740. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  741. SET_INPUT(Y_MIN_PIN);
  742. #ifdef ENDSTOPPULLUP_YMIN
  743. WRITE(Y_MIN_PIN,HIGH);
  744. #endif
  745. #endif
  746. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  747. SET_INPUT(Z_MIN_PIN);
  748. #ifdef ENDSTOPPULLUP_ZMIN
  749. WRITE(Z_MIN_PIN,HIGH);
  750. #endif
  751. #endif
  752. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  753. SET_INPUT(X_MAX_PIN);
  754. #ifdef ENDSTOPPULLUP_XMAX
  755. WRITE(X_MAX_PIN,HIGH);
  756. #endif
  757. #endif
  758. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  759. SET_INPUT(Y_MAX_PIN);
  760. #ifdef ENDSTOPPULLUP_YMAX
  761. WRITE(Y_MAX_PIN,HIGH);
  762. #endif
  763. #endif
  764. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  765. SET_INPUT(Z_MAX_PIN);
  766. #ifdef ENDSTOPPULLUP_ZMAX
  767. WRITE(Z_MAX_PIN,HIGH);
  768. #endif
  769. #endif
  770. //Initialize Step Pins
  771. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  772. SET_OUTPUT(X_STEP_PIN);
  773. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  774. disable_x();
  775. #endif
  776. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  777. SET_OUTPUT(X2_STEP_PIN);
  778. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  779. disable_x();
  780. #endif
  781. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  782. SET_OUTPUT(Y_STEP_PIN);
  783. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  784. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  785. SET_OUTPUT(Y2_STEP_PIN);
  786. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  787. #endif
  788. disable_y();
  789. #endif
  790. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  791. SET_OUTPUT(Z_STEP_PIN);
  792. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  793. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  794. SET_OUTPUT(Z2_STEP_PIN);
  795. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  796. #endif
  797. disable_z();
  798. #endif
  799. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  800. SET_OUTPUT(E0_STEP_PIN);
  801. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  802. disable_e0();
  803. #endif
  804. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  805. SET_OUTPUT(E1_STEP_PIN);
  806. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  807. disable_e1();
  808. #endif
  809. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  810. SET_OUTPUT(E2_STEP_PIN);
  811. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  812. disable_e2();
  813. #endif
  814. // waveform generation = 0100 = CTC
  815. TCCR1B &= ~(1<<WGM13);
  816. TCCR1B |= (1<<WGM12);
  817. TCCR1A &= ~(1<<WGM11);
  818. TCCR1A &= ~(1<<WGM10);
  819. // output mode = 00 (disconnected)
  820. TCCR1A &= ~(3<<COM1A0);
  821. TCCR1A &= ~(3<<COM1B0);
  822. // Set the timer pre-scaler
  823. // Generally we use a divider of 8, resulting in a 2MHz timer
  824. // frequency on a 16MHz MCU. If you are going to change this, be
  825. // sure to regenerate speed_lookuptable.h with
  826. // create_speed_lookuptable.py
  827. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  828. OCR1A = 0x4000;
  829. TCNT1 = 0;
  830. ENABLE_STEPPER_DRIVER_INTERRUPT();
  831. #ifdef ADVANCE
  832. #if defined(TCCR0A) && defined(WGM01)
  833. TCCR0A &= ~(1<<WGM01);
  834. TCCR0A &= ~(1<<WGM00);
  835. #endif
  836. e_steps[0] = 0;
  837. e_steps[1] = 0;
  838. e_steps[2] = 0;
  839. TIMSK0 |= (1<<OCIE0A);
  840. #endif //ADVANCE
  841. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  842. sei();
  843. }
  844. // Block until all buffered steps are executed
  845. void st_synchronize()
  846. {
  847. while( blocks_queued()) {
  848. manage_heater();
  849. // Vojtech: Don't disable motors inside the planner!
  850. manage_inactivity(true);
  851. lcd_update();
  852. }
  853. }
  854. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  855. {
  856. CRITICAL_SECTION_START;
  857. count_position[X_AXIS] = x;
  858. count_position[Y_AXIS] = y;
  859. count_position[Z_AXIS] = z;
  860. count_position[E_AXIS] = e;
  861. CRITICAL_SECTION_END;
  862. }
  863. void st_set_e_position(const long &e)
  864. {
  865. CRITICAL_SECTION_START;
  866. count_position[E_AXIS] = e;
  867. CRITICAL_SECTION_END;
  868. }
  869. long st_get_position(uint8_t axis)
  870. {
  871. long count_pos;
  872. CRITICAL_SECTION_START;
  873. count_pos = count_position[axis];
  874. CRITICAL_SECTION_END;
  875. return count_pos;
  876. }
  877. float st_get_position_mm(uint8_t axis)
  878. {
  879. float steper_position_in_steps = st_get_position(axis);
  880. return steper_position_in_steps / axis_steps_per_unit[axis];
  881. }
  882. void finishAndDisableSteppers()
  883. {
  884. st_synchronize();
  885. disable_x();
  886. disable_y();
  887. disable_z();
  888. disable_e0();
  889. disable_e1();
  890. disable_e2();
  891. }
  892. void quickStop()
  893. {
  894. DISABLE_STEPPER_DRIVER_INTERRUPT();
  895. while (blocks_queued()) plan_discard_current_block();
  896. current_block = NULL;
  897. ENABLE_STEPPER_DRIVER_INTERRUPT();
  898. }
  899. #ifdef BABYSTEPPING
  900. void babystep(const uint8_t axis,const bool direction)
  901. {
  902. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  903. //store initial pin states
  904. switch(axis)
  905. {
  906. case X_AXIS:
  907. {
  908. enable_x();
  909. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  910. //setup new step
  911. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  912. //perform step
  913. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  914. {
  915. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  916. }
  917. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  918. //get old pin state back.
  919. WRITE(X_DIR_PIN,old_x_dir_pin);
  920. }
  921. break;
  922. case Y_AXIS:
  923. {
  924. enable_y();
  925. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  926. //setup new step
  927. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  928. //perform step
  929. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  930. {
  931. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  932. }
  933. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  934. //get old pin state back.
  935. WRITE(Y_DIR_PIN,old_y_dir_pin);
  936. }
  937. break;
  938. case Z_AXIS:
  939. {
  940. enable_z();
  941. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  942. //setup new step
  943. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  944. #ifdef Z_DUAL_STEPPER_DRIVERS
  945. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  946. #endif
  947. //perform step
  948. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  949. #ifdef Z_DUAL_STEPPER_DRIVERS
  950. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  951. #endif
  952. //wait a tiny bit
  953. {
  954. float x=1./float(axis+1); //absolutely useless
  955. }
  956. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  957. #ifdef Z_DUAL_STEPPER_DRIVERS
  958. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  959. #endif
  960. //get old pin state back.
  961. WRITE(Z_DIR_PIN,old_z_dir_pin);
  962. #ifdef Z_DUAL_STEPPER_DRIVERS
  963. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  964. #endif
  965. }
  966. break;
  967. default: break;
  968. }
  969. }
  970. #endif //BABYSTEPPING
  971. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  972. {
  973. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  974. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  975. SPI.transfer(address); // send in the address and value via SPI:
  976. SPI.transfer(value);
  977. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  978. //delay(10);
  979. #endif
  980. }
  981. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  982. {
  983. do
  984. {
  985. *value = eeprom_read_byte((unsigned char*)pos);
  986. pos++;
  987. value++;
  988. }while(--size);
  989. }
  990. void digipot_init() //Initialize Digipot Motor Current
  991. {
  992. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  993. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  994. if(SilentMode == 0){
  995. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  996. }else{
  997. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  998. }
  999. SPI.begin();
  1000. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1001. for(int i=0;i<=4;i++)
  1002. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1003. digipot_current(i,digipot_motor_current[i]);
  1004. #endif
  1005. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1006. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1007. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1008. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1009. if(SilentMode == 0){
  1010. motor_current_setting[0] = motor_current_setting_loud[0];
  1011. motor_current_setting[1] = motor_current_setting_loud[1];
  1012. motor_current_setting[2] = motor_current_setting_loud[2];
  1013. }else{
  1014. motor_current_setting[0] = motor_current_setting_silent[0];
  1015. motor_current_setting[1] = motor_current_setting_silent[1];
  1016. motor_current_setting[2] = motor_current_setting_silent[2];
  1017. }
  1018. digipot_current(0, motor_current_setting[0]);
  1019. digipot_current(1, motor_current_setting[1]);
  1020. digipot_current(2, motor_current_setting[2]);
  1021. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1022. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1023. #endif
  1024. }
  1025. void digipot_current(uint8_t driver, int current)
  1026. {
  1027. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1028. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1029. digitalPotWrite(digipot_ch[driver], current);
  1030. #endif
  1031. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1032. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1033. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1034. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1035. #endif
  1036. }
  1037. void microstep_init()
  1038. {
  1039. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1040. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1041. pinMode(E1_MS1_PIN,OUTPUT);
  1042. pinMode(E1_MS2_PIN,OUTPUT);
  1043. #endif
  1044. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1045. pinMode(X_MS1_PIN,OUTPUT);
  1046. pinMode(X_MS2_PIN,OUTPUT);
  1047. pinMode(Y_MS1_PIN,OUTPUT);
  1048. pinMode(Y_MS2_PIN,OUTPUT);
  1049. pinMode(Z_MS1_PIN,OUTPUT);
  1050. pinMode(Z_MS2_PIN,OUTPUT);
  1051. pinMode(E0_MS1_PIN,OUTPUT);
  1052. pinMode(E0_MS2_PIN,OUTPUT);
  1053. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1054. #endif
  1055. }
  1056. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1057. {
  1058. if(ms1 > -1) switch(driver)
  1059. {
  1060. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1061. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1062. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1063. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1064. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1065. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1066. #endif
  1067. }
  1068. if(ms2 > -1) switch(driver)
  1069. {
  1070. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1071. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1072. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1073. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1074. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1075. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1076. #endif
  1077. }
  1078. }
  1079. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1080. {
  1081. switch(stepping_mode)
  1082. {
  1083. case 1: microstep_ms(driver,MICROSTEP1); break;
  1084. case 2: microstep_ms(driver,MICROSTEP2); break;
  1085. case 4: microstep_ms(driver,MICROSTEP4); break;
  1086. case 8: microstep_ms(driver,MICROSTEP8); break;
  1087. case 16: microstep_ms(driver,MICROSTEP16); break;
  1088. }
  1089. }
  1090. void microstep_readings()
  1091. {
  1092. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1093. SERIAL_PROTOCOLPGM("X: ");
  1094. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1095. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1096. SERIAL_PROTOCOLPGM("Y: ");
  1097. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1098. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1099. SERIAL_PROTOCOLPGM("Z: ");
  1100. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1101. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1102. SERIAL_PROTOCOLPGM("E0: ");
  1103. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1104. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1105. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1106. SERIAL_PROTOCOLPGM("E1: ");
  1107. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1108. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1109. #endif
  1110. }