temperature.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "planner.h"
  20. #ifdef PID_ADD_EXTRUSION_RATE
  21. #include "stepper.h"
  22. #endif
  23. // public functions
  24. void tp_init(); //initialize the heating
  25. void manage_heater(); //it is critical that this is called periodically.
  26. #ifdef FILAMENT_SENSOR
  27. // For converting raw Filament Width to milimeters
  28. float analog2widthFil();
  29. // For converting raw Filament Width to an extrusion ratio
  30. int widthFil_to_size_ratio();
  31. #endif
  32. // low level conversion routines
  33. // do not use these routines and variables outside of temperature.cpp
  34. extern int target_temperature[EXTRUDERS];
  35. extern float current_temperature[EXTRUDERS];
  36. #ifdef SHOW_TEMP_ADC_VALUES
  37. extern int current_temperature_raw[EXTRUDERS];
  38. extern int current_temperature_bed_raw;
  39. #endif
  40. extern int target_temperature_bed;
  41. extern float current_temperature_bed;
  42. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  43. extern float redundant_temperature;
  44. #endif
  45. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  46. extern unsigned char soft_pwm_bed;
  47. #endif
  48. #ifdef PIDTEMP
  49. extern float Kp,Ki,Kd,Kc;
  50. float scalePID_i(float i);
  51. float scalePID_d(float d);
  52. float unscalePID_i(float i);
  53. float unscalePID_d(float d);
  54. #endif
  55. #ifdef PIDTEMPBED
  56. extern float bedKp,bedKi,bedKd;
  57. #endif
  58. #ifdef BABYSTEPPING
  59. extern volatile int babystepsTodo[3];
  60. #endif
  61. inline void babystepsTodoZadd(int n)
  62. {
  63. if (n != 0) {
  64. CRITICAL_SECTION_START
  65. babystepsTodo[Z_AXIS] += n;
  66. CRITICAL_SECTION_END
  67. }
  68. }
  69. inline void babystepsTodoZsubtract(int n)
  70. {
  71. if (n != 0) {
  72. CRITICAL_SECTION_START
  73. babystepsTodo[Z_AXIS] -= n;
  74. CRITICAL_SECTION_END
  75. }
  76. }
  77. //high level conversion routines, for use outside of temperature.cpp
  78. //inline so that there is no performance decrease.
  79. //deg=degreeCelsius
  80. FORCE_INLINE float degHotend(uint8_t extruder) {
  81. return current_temperature[extruder];
  82. };
  83. #ifdef SHOW_TEMP_ADC_VALUES
  84. FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
  85. return current_temperature_raw[extruder];
  86. };
  87. FORCE_INLINE float rawBedTemp() {
  88. return current_temperature_bed_raw;
  89. };
  90. #endif
  91. FORCE_INLINE float degBed() {
  92. return current_temperature_bed;
  93. };
  94. FORCE_INLINE float degTargetHotend(uint8_t extruder) {
  95. return target_temperature[extruder];
  96. };
  97. FORCE_INLINE float degTargetBed() {
  98. return target_temperature_bed;
  99. };
  100. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
  101. target_temperature[extruder] = celsius;
  102. };
  103. FORCE_INLINE void setTargetBed(const float &celsius) {
  104. target_temperature_bed = celsius;
  105. };
  106. FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
  107. return target_temperature[extruder] > current_temperature[extruder];
  108. };
  109. FORCE_INLINE bool isHeatingBed() {
  110. return target_temperature_bed > current_temperature_bed;
  111. };
  112. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
  113. return target_temperature[extruder] < current_temperature[extruder];
  114. };
  115. FORCE_INLINE bool isCoolingBed() {
  116. return target_temperature_bed < current_temperature_bed;
  117. };
  118. #define degHotend0() degHotend(0)
  119. #define degTargetHotend0() degTargetHotend(0)
  120. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  121. #define isHeatingHotend0() isHeatingHotend(0)
  122. #define isCoolingHotend0() isCoolingHotend(0)
  123. #if EXTRUDERS > 1
  124. #define degHotend1() degHotend(1)
  125. #define degTargetHotend1() degTargetHotend(1)
  126. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  127. #define isHeatingHotend1() isHeatingHotend(1)
  128. #define isCoolingHotend1() isCoolingHotend(1)
  129. #else
  130. #define setTargetHotend1(_celsius) do{}while(0)
  131. #endif
  132. #if EXTRUDERS > 2
  133. #define degHotend2() degHotend(2)
  134. #define degTargetHotend2() degTargetHotend(2)
  135. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  136. #define isHeatingHotend2() isHeatingHotend(2)
  137. #define isCoolingHotend2() isCoolingHotend(2)
  138. #else
  139. #define setTargetHotend2(_celsius) do{}while(0)
  140. #endif
  141. #if EXTRUDERS > 3
  142. #error Invalid number of extruders
  143. #endif
  144. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  145. static float temp_runaway_status[4];
  146. static float temp_runaway_target[4];
  147. static float temp_runaway_timer[4];
  148. static int temp_runaway_error_counter[4];
  149. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  150. void temp_runaway_stop();
  151. #endif
  152. int getHeaterPower(int heater);
  153. void disable_heater();
  154. void setWatch();
  155. void updatePID();
  156. FORCE_INLINE void autotempShutdown(){
  157. #ifdef AUTOTEMP
  158. if(autotemp_enabled)
  159. {
  160. autotemp_enabled=false;
  161. if(degTargetHotend(active_extruder)>autotemp_min)
  162. setTargetHotend(0,active_extruder);
  163. }
  164. #endif
  165. }
  166. void PID_autotune(float temp, int extruder, int ncycles);
  167. void setExtruderAutoFanState(int pin, bool state);
  168. void checkExtruderAutoFans();
  169. #endif