Marlin_main.cpp 298 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M92 - Set axis_steps_per_unit - same syntax as G92
  170. // M104 - Set extruder target temp
  171. // M105 - Read current temp
  172. // M106 - Fan on
  173. // M107 - Fan off
  174. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  175. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  176. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  177. // M112 - Emergency stop
  178. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  179. // M114 - Output current position to serial port
  180. // M115 - Capabilities string
  181. // M117 - display message
  182. // M119 - Output Endstop status to serial port
  183. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  184. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  185. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M140 - Set bed target temp
  188. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  189. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  190. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  191. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  192. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  193. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  194. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  195. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  196. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  197. // M206 - set additional homing offset
  198. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  199. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  200. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  201. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  202. // M220 S<factor in percent>- set speed factor override percentage
  203. // M221 S<factor in percent>- set extrude factor override percentage
  204. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  205. // M240 - Trigger a camera to take a photograph
  206. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  207. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  208. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. // M301 - Set PID parameters P I and D
  210. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  211. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  212. // M304 - Set bed PID parameters P I and D
  213. // M400 - Finish all moves
  214. // M401 - Lower z-probe if present
  215. // M402 - Raise z-probe if present
  216. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  217. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  218. // M406 - Turn off Filament Sensor extrusion control
  219. // M407 - Displays measured filament diameter
  220. // M500 - stores parameters in EEPROM
  221. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. // M503 - print the current settings (from memory not from EEPROM)
  224. // M509 - force language selection on next restart
  225. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. // M860 - Wait for PINDA thermistor to reach target temperature.
  229. // M861 - Set / Read PINDA temperature compensation offsets
  230. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  231. // M907 - Set digital trimpot motor current using axis codes.
  232. // M908 - Control digital trimpot directly.
  233. // M350 - Set microstepping mode.
  234. // M351 - Toggle MS1 MS2 pins directly.
  235. // M928 - Start SD logging (M928 filename.g) - ended by M29
  236. // M999 - Restart after being stopped by error
  237. //Stepper Movement Variables
  238. //===========================================================================
  239. //=============================imported variables============================
  240. //===========================================================================
  241. //===========================================================================
  242. //=============================public variables=============================
  243. //===========================================================================
  244. #ifdef SDSUPPORT
  245. CardReader card;
  246. #endif
  247. unsigned long PingTime = millis();
  248. unsigned long NcTime;
  249. union Data
  250. {
  251. byte b[2];
  252. int value;
  253. };
  254. float homing_feedrate[] = HOMING_FEEDRATE;
  255. // Currently only the extruder axis may be switched to a relative mode.
  256. // Other axes are always absolute or relative based on the common relative_mode flag.
  257. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  258. int feedmultiply=100; //100->1 200->2
  259. int saved_feedmultiply;
  260. int extrudemultiply=100; //100->1 200->2
  261. int extruder_multiply[EXTRUDERS] = {100
  262. #if EXTRUDERS > 1
  263. , 100
  264. #if EXTRUDERS > 2
  265. , 100
  266. #endif
  267. #endif
  268. };
  269. int bowden_length[4] = {385, 385, 385, 385};
  270. bool is_usb_printing = false;
  271. bool homing_flag = false;
  272. bool temp_cal_active = false;
  273. unsigned long kicktime = millis()+100000;
  274. unsigned int usb_printing_counter;
  275. int lcd_change_fil_state = 0;
  276. int feedmultiplyBckp = 100;
  277. float HotendTempBckp = 0;
  278. int fanSpeedBckp = 0;
  279. float pause_lastpos[4];
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. static LongTimer safetyTimer;
  284. static LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. //unsigned char lang_selected = 0;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. float add_homing[3]={0,0,0};
  324. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  325. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  326. bool axis_known_position[3] = {false, false, false};
  327. float zprobe_zoffset;
  328. // Extruder offset
  329. #if EXTRUDERS > 1
  330. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  331. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  332. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  333. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  334. #endif
  335. };
  336. #endif
  337. uint8_t active_extruder = 0;
  338. int fanSpeed=0;
  339. #ifdef FWRETRACT
  340. bool autoretract_enabled=false;
  341. bool retracted[EXTRUDERS]={false
  342. #if EXTRUDERS > 1
  343. , false
  344. #if EXTRUDERS > 2
  345. , false
  346. #endif
  347. #endif
  348. };
  349. bool retracted_swap[EXTRUDERS]={false
  350. #if EXTRUDERS > 1
  351. , false
  352. #if EXTRUDERS > 2
  353. , false
  354. #endif
  355. #endif
  356. };
  357. float retract_length = RETRACT_LENGTH;
  358. float retract_length_swap = RETRACT_LENGTH_SWAP;
  359. float retract_feedrate = RETRACT_FEEDRATE;
  360. float retract_zlift = RETRACT_ZLIFT;
  361. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  362. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  363. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  364. #endif
  365. #ifdef ULTIPANEL
  366. #ifdef PS_DEFAULT_OFF
  367. bool powersupply = false;
  368. #else
  369. bool powersupply = true;
  370. #endif
  371. #endif
  372. bool cancel_heatup = false ;
  373. #ifdef HOST_KEEPALIVE_FEATURE
  374. int busy_state = NOT_BUSY;
  375. static long prev_busy_signal_ms = -1;
  376. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  377. #else
  378. #define host_keepalive();
  379. #define KEEPALIVE_STATE(n);
  380. #endif
  381. const char errormagic[] PROGMEM = "Error:";
  382. const char echomagic[] PROGMEM = "echo:";
  383. bool no_response = false;
  384. uint8_t important_status;
  385. uint8_t saved_filament_type;
  386. // save/restore printing
  387. bool saved_printing = false;
  388. // storing estimated time to end of print counted by slicer
  389. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  390. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  391. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  392. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  393. //===========================================================================
  394. //=============================Private Variables=============================
  395. //===========================================================================
  396. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  397. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  398. static float delta[3] = {0.0, 0.0, 0.0};
  399. // For tracing an arc
  400. static float offset[3] = {0.0, 0.0, 0.0};
  401. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  402. // Determines Absolute or Relative Coordinates.
  403. // Also there is bool axis_relative_modes[] per axis flag.
  404. static bool relative_mode = false;
  405. #ifndef _DISABLE_M42_M226
  406. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  407. #endif //_DISABLE_M42_M226
  408. //static float tt = 0;
  409. //static float bt = 0;
  410. //Inactivity shutdown variables
  411. static unsigned long previous_millis_cmd = 0;
  412. unsigned long max_inactive_time = 0;
  413. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  414. unsigned long starttime=0;
  415. unsigned long stoptime=0;
  416. unsigned long _usb_timer = 0;
  417. static uint8_t tmp_extruder;
  418. bool extruder_under_pressure = true;
  419. bool Stopped=false;
  420. #if NUM_SERVOS > 0
  421. Servo servos[NUM_SERVOS];
  422. #endif
  423. bool CooldownNoWait = true;
  424. bool target_direction;
  425. //Insert variables if CHDK is defined
  426. #ifdef CHDK
  427. unsigned long chdkHigh = 0;
  428. boolean chdkActive = false;
  429. #endif
  430. // save/restore printing
  431. static uint32_t saved_sdpos = 0;
  432. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  433. static float saved_pos[4] = { 0, 0, 0, 0 };
  434. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  435. static float saved_feedrate2 = 0;
  436. static uint8_t saved_active_extruder = 0;
  437. static bool saved_extruder_under_pressure = false;
  438. //===========================================================================
  439. //=============================Routines======================================
  440. //===========================================================================
  441. void get_arc_coordinates();
  442. bool setTargetedHotend(int code);
  443. void serial_echopair_P(const char *s_P, float v)
  444. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  445. void serial_echopair_P(const char *s_P, double v)
  446. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char *s_P, unsigned long v)
  448. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. #ifdef SDSUPPORT
  450. #include "SdFatUtil.h"
  451. int freeMemory() { return SdFatUtil::FreeRam(); }
  452. #else
  453. extern "C" {
  454. extern unsigned int __bss_end;
  455. extern unsigned int __heap_start;
  456. extern void *__brkval;
  457. int freeMemory() {
  458. int free_memory;
  459. if ((int)__brkval == 0)
  460. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  461. else
  462. free_memory = ((int)&free_memory) - ((int)__brkval);
  463. return free_memory;
  464. }
  465. }
  466. #endif //!SDSUPPORT
  467. void setup_killpin()
  468. {
  469. #if defined(KILL_PIN) && KILL_PIN > -1
  470. SET_INPUT(KILL_PIN);
  471. WRITE(KILL_PIN,HIGH);
  472. #endif
  473. }
  474. // Set home pin
  475. void setup_homepin(void)
  476. {
  477. #if defined(HOME_PIN) && HOME_PIN > -1
  478. SET_INPUT(HOME_PIN);
  479. WRITE(HOME_PIN,HIGH);
  480. #endif
  481. }
  482. void setup_photpin()
  483. {
  484. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  485. SET_OUTPUT(PHOTOGRAPH_PIN);
  486. WRITE(PHOTOGRAPH_PIN, LOW);
  487. #endif
  488. }
  489. void setup_powerhold()
  490. {
  491. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  492. SET_OUTPUT(SUICIDE_PIN);
  493. WRITE(SUICIDE_PIN, HIGH);
  494. #endif
  495. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  496. SET_OUTPUT(PS_ON_PIN);
  497. #if defined(PS_DEFAULT_OFF)
  498. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  499. #else
  500. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  501. #endif
  502. #endif
  503. }
  504. void suicide()
  505. {
  506. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  507. SET_OUTPUT(SUICIDE_PIN);
  508. WRITE(SUICIDE_PIN, LOW);
  509. #endif
  510. }
  511. void servo_init()
  512. {
  513. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  514. servos[0].attach(SERVO0_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  517. servos[1].attach(SERVO1_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  520. servos[2].attach(SERVO2_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  523. servos[3].attach(SERVO3_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 5)
  526. #error "TODO: enter initalisation code for more servos"
  527. #endif
  528. }
  529. static void lcd_language_menu();
  530. void stop_and_save_print_to_ram(float z_move, float e_move);
  531. void restore_print_from_ram_and_continue(float e_move);
  532. bool fans_check_enabled = true;
  533. bool filament_autoload_enabled = true;
  534. #ifdef TMC2130
  535. extern int8_t CrashDetectMenu;
  536. void crashdet_enable()
  537. {
  538. // MYSERIAL.println("crashdet_enable");
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. // MYSERIAL.println("crashdet_disable");
  546. tmc2130_sg_stop_on_crash = false;
  547. tmc2130_sg_crash = 0;
  548. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  549. CrashDetectMenu = 0;
  550. }
  551. void crashdet_stop_and_save_print()
  552. {
  553. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  554. }
  555. void crashdet_restore_print_and_continue()
  556. {
  557. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  558. // babystep_apply();
  559. }
  560. void crashdet_stop_and_save_print2()
  561. {
  562. cli();
  563. planner_abort_hard(); //abort printing
  564. cmdqueue_reset(); //empty cmdqueue
  565. card.sdprinting = false;
  566. card.closefile();
  567. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  568. st_reset_timer();
  569. sei();
  570. }
  571. void crashdet_detected(uint8_t mask)
  572. {
  573. // printf("CRASH_DETECTED");
  574. /* while (!is_buffer_empty())
  575. {
  576. process_commands();
  577. cmdqueue_pop_front();
  578. }*/
  579. st_synchronize();
  580. static uint8_t crashDet_counter = 0;
  581. bool automatic_recovery_after_crash = true;
  582. bool yesno;
  583. if (crashDet_counter++ == 0) {
  584. crashDetTimer.start();
  585. }
  586. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  591. automatic_recovery_after_crash = false;
  592. crashDetTimer.stop();
  593. crashDet_counter = 0;
  594. }
  595. else {
  596. crashDetTimer.start();
  597. }
  598. lcd_update_enable(true);
  599. lcd_implementation_clear();
  600. lcd_update(2);
  601. if (mask & X_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  605. }
  606. if (mask & Y_AXIS_MASK)
  607. {
  608. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  609. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  610. }
  611. lcd_update_enable(true);
  612. lcd_update(2);
  613. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  614. gcode_G28(true, true, false, false); //home X and Y
  615. st_synchronize();
  616. if(automatic_recovery_after_crash)
  617. yesno = true;
  618. else
  619. yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  620. lcd_update_enable(true);
  621. if (yesno)
  622. {
  623. enquecommand_P(PSTR("CRASH_RECOVER"));
  624. }
  625. else
  626. {
  627. enquecommand_P(PSTR("CRASH_CANCEL"));
  628. }
  629. }
  630. void crashdet_recover()
  631. {
  632. crashdet_restore_print_and_continue();
  633. tmc2130_sg_stop_on_crash = true;
  634. }
  635. void crashdet_cancel()
  636. {
  637. tmc2130_sg_stop_on_crash = true;
  638. if (saved_printing_type == PRINTING_TYPE_SD) {
  639. lcd_print_stop();
  640. }else if(saved_printing_type == PRINTING_TYPE_USB){
  641. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  642. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  643. }
  644. }
  645. #endif //TMC2130
  646. void failstats_reset_print()
  647. {
  648. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  652. }
  653. #ifdef MESH_BED_LEVELING
  654. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  655. #endif
  656. // Factory reset function
  657. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  658. // Level input parameter sets depth of reset
  659. // Quiet parameter masks all waitings for user interact.
  660. int er_progress = 0;
  661. void factory_reset(char level, bool quiet)
  662. {
  663. lcd_implementation_clear();
  664. int cursor_pos = 0;
  665. switch (level) {
  666. // Level 0: Language reset
  667. case 0:
  668. WRITE(BEEPER, HIGH);
  669. _delay_ms(100);
  670. WRITE(BEEPER, LOW);
  671. lcd_force_language_selection();
  672. break;
  673. //Level 1: Reset statistics
  674. case 1:
  675. WRITE(BEEPER, HIGH);
  676. _delay_ms(100);
  677. WRITE(BEEPER, LOW);
  678. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  679. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  688. lcd_menu_statistics();
  689. break;
  690. // Level 2: Prepare for shipping
  691. case 2:
  692. //lcd_printPGM(PSTR("Factory RESET"));
  693. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  694. // Force language selection at the next boot up.
  695. lcd_force_language_selection();
  696. // Force the "Follow calibration flow" message at the next boot up.
  697. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  698. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  699. farm_no = 0;
  700. //*** MaR::180501_01
  701. farm_mode = false;
  702. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  703. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  704. WRITE(BEEPER, HIGH);
  705. _delay_ms(100);
  706. WRITE(BEEPER, LOW);
  707. //_delay_ms(2000);
  708. break;
  709. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  710. case 3:
  711. lcd_printPGM(PSTR("Factory RESET"));
  712. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  713. WRITE(BEEPER, HIGH);
  714. _delay_ms(100);
  715. WRITE(BEEPER, LOW);
  716. er_progress = 0;
  717. lcd_print_at_PGM(3, 3, PSTR(" "));
  718. lcd_implementation_print_at(3, 3, er_progress);
  719. // Erase EEPROM
  720. for (int i = 0; i < 4096; i++) {
  721. eeprom_write_byte((uint8_t*)i, 0xFF);
  722. if (i % 41 == 0) {
  723. er_progress++;
  724. lcd_print_at_PGM(3, 3, PSTR(" "));
  725. lcd_implementation_print_at(3, 3, er_progress);
  726. lcd_printPGM(PSTR("%"));
  727. }
  728. }
  729. break;
  730. case 4:
  731. bowden_menu();
  732. break;
  733. default:
  734. break;
  735. }
  736. }
  737. #include "LiquidCrystal_Prusa.h"
  738. extern LiquidCrystal_Prusa lcd;
  739. FILE _lcdout = {0};
  740. int lcd_putchar(char c, FILE *stream)
  741. {
  742. lcd.write(c);
  743. return 0;
  744. }
  745. FILE _uartout = {0};
  746. int uart_putchar(char c, FILE *stream)
  747. {
  748. MYSERIAL.write(c);
  749. return 0;
  750. }
  751. void lcd_splash()
  752. {
  753. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  754. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  755. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  756. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  757. }
  758. void factory_reset()
  759. {
  760. KEEPALIVE_STATE(PAUSED_FOR_USER);
  761. if (!READ(BTN_ENC))
  762. {
  763. _delay_ms(1000);
  764. if (!READ(BTN_ENC))
  765. {
  766. lcd_implementation_clear();
  767. lcd_printPGM(PSTR("Factory RESET"));
  768. SET_OUTPUT(BEEPER);
  769. WRITE(BEEPER, HIGH);
  770. while (!READ(BTN_ENC));
  771. WRITE(BEEPER, LOW);
  772. _delay_ms(2000);
  773. char level = reset_menu();
  774. factory_reset(level, false);
  775. switch (level) {
  776. case 0: _delay_ms(0); break;
  777. case 1: _delay_ms(0); break;
  778. case 2: _delay_ms(0); break;
  779. case 3: _delay_ms(0); break;
  780. }
  781. // _delay_ms(100);
  782. /*
  783. #ifdef MESH_BED_LEVELING
  784. _delay_ms(2000);
  785. if (!READ(BTN_ENC))
  786. {
  787. WRITE(BEEPER, HIGH);
  788. _delay_ms(100);
  789. WRITE(BEEPER, LOW);
  790. _delay_ms(200);
  791. WRITE(BEEPER, HIGH);
  792. _delay_ms(100);
  793. WRITE(BEEPER, LOW);
  794. int _z = 0;
  795. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  796. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  797. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  798. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  799. }
  800. else
  801. {
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. }
  806. #endif // mesh */
  807. }
  808. }
  809. else
  810. {
  811. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  812. }
  813. KEEPALIVE_STATE(IN_HANDLER);
  814. }
  815. void show_fw_version_warnings() {
  816. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  817. switch (FW_DEV_VERSION) {
  818. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  819. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  820. case(FW_VERSION_DEVEL):
  821. case(FW_VERSION_DEBUG):
  822. lcd_update_enable(false);
  823. lcd_implementation_clear();
  824. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  825. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  826. #else
  827. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  828. #endif
  829. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  830. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  831. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  832. lcd_wait_for_click();
  833. break;
  834. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  835. }
  836. lcd_update_enable(true);
  837. }
  838. uint8_t check_printer_version()
  839. {
  840. uint8_t version_changed = 0;
  841. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  842. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  843. if (printer_type != PRINTER_TYPE) {
  844. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  845. else version_changed |= 0b10;
  846. }
  847. if (motherboard != MOTHERBOARD) {
  848. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  849. else version_changed |= 0b01;
  850. }
  851. return version_changed;
  852. }
  853. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  854. {
  855. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  856. }
  857. #include "bootapp.h"
  858. void __test()
  859. {
  860. cli();
  861. boot_app_magic = 0x55aa55aa;
  862. boot_app_flags = BOOT_APP_FLG_USER0;
  863. boot_reserved = 0x00;
  864. wdt_enable(WDTO_15MS);
  865. while(1);
  866. }
  867. #ifdef W25X20CL
  868. void upgrade_sec_lang_from_external_flash()
  869. {
  870. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  871. {
  872. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  873. boot_reserved++;
  874. if (boot_reserved < 4)
  875. {
  876. _delay_ms(1000);
  877. cli();
  878. wdt_enable(WDTO_15MS);
  879. while(1);
  880. }
  881. }
  882. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  883. }
  884. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  885. {
  886. lang_table_header_t header;
  887. uint8_t count = 0;
  888. uint32_t addr = 0x00000;
  889. while (1)
  890. {
  891. printf_P(_n("LANGTABLE%d:"), count);
  892. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  893. if (header.magic != LANG_MAGIC)
  894. {
  895. printf_P(_n("NG!\n"));
  896. break;
  897. }
  898. printf_P(_n("OK\n"));
  899. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  900. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  901. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  902. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  903. printf_P(_n(" _lt_code = 0x%04x\n"), header.code);
  904. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  905. addr += header.size;
  906. codes[count] = header.code;
  907. count ++;
  908. }
  909. return count;
  910. }
  911. void list_sec_lang_from_external_flash()
  912. {
  913. uint16_t codes[8];
  914. uint8_t count = lang_xflash_enum_codes(codes);
  915. printf_P(_n("XFlash lang count = %hhd\n"), count);
  916. }
  917. #endif //W25X20CL
  918. // "Setup" function is called by the Arduino framework on startup.
  919. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  920. // are initialized by the main() routine provided by the Arduino framework.
  921. void setup()
  922. {
  923. #ifdef NEW_SPI
  924. spi_init();
  925. #endif //NEW_SPI
  926. lcd_init();
  927. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  928. upgrade_sec_lang_from_external_flash();
  929. lcd_splash();
  930. setup_killpin();
  931. setup_powerhold();
  932. //*** MaR::180501_02b
  933. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  934. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  935. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  936. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  937. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  938. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  939. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  940. if (farm_mode)
  941. {
  942. no_response = true; //we need confirmation by recieving PRUSA thx
  943. important_status = 8;
  944. prusa_statistics(8);
  945. selectedSerialPort = 1;
  946. }
  947. MYSERIAL.begin(BAUDRATE);
  948. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  949. stdout = uartout;
  950. SERIAL_PROTOCOLLNPGM("start");
  951. SERIAL_ECHO_START;
  952. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  953. #if 0
  954. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  955. for (int i = 0; i < 4096; ++i) {
  956. int b = eeprom_read_byte((unsigned char*)i);
  957. if (b != 255) {
  958. SERIAL_ECHO(i);
  959. SERIAL_ECHO(":");
  960. SERIAL_ECHO(b);
  961. SERIAL_ECHOLN("");
  962. }
  963. }
  964. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  965. #endif
  966. // Check startup - does nothing if bootloader sets MCUSR to 0
  967. byte mcu = MCUSR;
  968. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  969. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  970. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  971. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  972. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  973. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  974. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  975. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  976. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  977. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  978. MCUSR = 0;
  979. //SERIAL_ECHORPGM(MSG_MARLIN);
  980. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  981. #ifdef STRING_VERSION_CONFIG_H
  982. #ifdef STRING_CONFIG_H_AUTHOR
  983. SERIAL_ECHO_START;
  984. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  985. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  986. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  987. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  988. SERIAL_ECHOPGM("Compiled: ");
  989. SERIAL_ECHOLNPGM(__DATE__);
  990. #endif
  991. #endif
  992. SERIAL_ECHO_START;
  993. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  994. SERIAL_ECHO(freeMemory());
  995. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  996. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  997. //lcd_update_enable(false); // why do we need this?? - andre
  998. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  999. bool previous_settings_retrieved = false;
  1000. uint8_t hw_changed = check_printer_version();
  1001. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1002. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1003. }
  1004. else { //printer version was changed so use default settings
  1005. Config_ResetDefault();
  1006. }
  1007. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1008. tp_init(); // Initialize temperature loop
  1009. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1010. plan_init(); // Initialize planner;
  1011. factory_reset();
  1012. #ifdef TMC2130
  1013. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1014. if (silentMode == 0xff) silentMode = 0;
  1015. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1016. tmc2130_mode = TMC2130_MODE_NORMAL;
  1017. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1018. if (crashdet && !farm_mode)
  1019. {
  1020. crashdet_enable();
  1021. MYSERIAL.println("CrashDetect ENABLED!");
  1022. }
  1023. else
  1024. {
  1025. crashdet_disable();
  1026. MYSERIAL.println("CrashDetect DISABLED");
  1027. }
  1028. #ifdef TMC2130_LINEARITY_CORRECTION
  1029. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1030. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1031. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1032. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1033. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1034. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1035. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1036. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1037. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1038. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1039. #endif //TMC2130_LINEARITY_CORRECTION
  1040. #ifdef TMC2130_VARIABLE_RESOLUTION
  1041. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1042. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1043. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1044. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1045. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1046. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1047. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1048. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1049. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1050. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1051. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1052. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1053. #else //TMC2130_VARIABLE_RESOLUTION
  1054. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1055. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1056. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1057. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1058. #endif //TMC2130_VARIABLE_RESOLUTION
  1059. #endif //TMC2130
  1060. st_init(); // Initialize stepper, this enables interrupts!
  1061. #ifdef TMC2130
  1062. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1063. tmc2130_init();
  1064. #endif //TMC2130
  1065. setup_photpin();
  1066. servo_init();
  1067. // Reset the machine correction matrix.
  1068. // It does not make sense to load the correction matrix until the machine is homed.
  1069. world2machine_reset();
  1070. #ifdef PAT9125
  1071. fsensor_init();
  1072. #endif //PAT9125
  1073. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1074. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1075. #endif
  1076. setup_homepin();
  1077. #ifdef TMC2130
  1078. if (1) {
  1079. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1080. // try to run to zero phase before powering the Z motor.
  1081. // Move in negative direction
  1082. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1083. // Round the current micro-micro steps to micro steps.
  1084. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1085. // Until the phase counter is reset to zero.
  1086. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1087. delay(2);
  1088. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1089. delay(2);
  1090. }
  1091. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1092. }
  1093. #endif //TMC2130
  1094. #if defined(Z_AXIS_ALWAYS_ON)
  1095. enable_z();
  1096. #endif
  1097. //*** MaR::180501_02
  1098. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1099. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1100. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1101. if (farm_no == 0xFFFF) farm_no = 0;
  1102. if (farm_mode)
  1103. {
  1104. prusa_statistics(8);
  1105. }
  1106. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1107. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1108. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1109. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1110. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1111. // where all the EEPROM entries are set to 0x0ff.
  1112. // Once a firmware boots up, it forces at least a language selection, which changes
  1113. // EEPROM_LANG to number lower than 0x0ff.
  1114. // 1) Set a high power mode.
  1115. #ifdef TMC2130
  1116. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1117. tmc2130_mode = TMC2130_MODE_NORMAL;
  1118. #endif //TMC2130
  1119. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1120. }
  1121. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1122. // but this times out if a blocking dialog is shown in setup().
  1123. card.initsd();
  1124. #ifdef DEBUG_SD_SPEED_TEST
  1125. if (card.cardOK)
  1126. {
  1127. uint8_t* buff = (uint8_t*)block_buffer;
  1128. uint32_t block = 0;
  1129. uint32_t sumr = 0;
  1130. uint32_t sumw = 0;
  1131. for (int i = 0; i < 1024; i++)
  1132. {
  1133. uint32_t u = micros();
  1134. bool res = card.card.readBlock(i, buff);
  1135. u = micros() - u;
  1136. if (res)
  1137. {
  1138. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1139. sumr += u;
  1140. u = micros();
  1141. res = card.card.writeBlock(i, buff);
  1142. u = micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumw += u;
  1147. }
  1148. else
  1149. {
  1150. printf_P(PSTR("writeBlock %4d error\n"), i);
  1151. break;
  1152. }
  1153. }
  1154. else
  1155. {
  1156. printf_P(PSTR("readBlock %4d error\n"), i);
  1157. break;
  1158. }
  1159. }
  1160. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1161. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1162. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1163. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1164. }
  1165. else
  1166. printf_P(PSTR("Card NG!\n"));
  1167. #endif //DEBUG_SD_SPEED_TEST
  1168. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1169. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1170. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1171. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1172. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1173. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1174. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1175. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1176. #ifdef SNMM
  1177. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1178. int _z = BOWDEN_LENGTH;
  1179. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1180. }
  1181. #endif
  1182. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1183. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1184. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1185. spi_setup(TMC2130_SPCR, TMC2130_SPSR);
  1186. puts_P(_n("w25x20cl init: "));
  1187. if (w25x20cl_ini())
  1188. {
  1189. uint8_t uid[8]; // 64bit unique id
  1190. w25x20cl_rd_uid(uid);
  1191. puts_P(_n("OK, UID="));
  1192. for (uint8_t i = 0; i < 8; i ++)
  1193. printf_P(PSTR("%02hhx"), uid[i]);
  1194. putchar('\n');
  1195. list_sec_lang_from_external_flash();
  1196. }
  1197. else
  1198. puts_P(_n("NG!\n"));
  1199. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1200. if (lang_selected >= LANG_NUM)
  1201. {
  1202. // lcd_mylang();
  1203. lang_selected = 0;
  1204. }
  1205. lang_select(lang_selected);
  1206. uint16_t sec_lang_code = lang_get_code(1);
  1207. printf_P(_n("SEC_LANG_CODE=0x%04x (%c%c)\n"), sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1208. #ifdef DEBUG_SEC_LANG
  1209. lang_print_sec_lang(uartout);
  1210. #endif //DEBUG_SEC_LANG
  1211. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1212. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1213. temp_cal_active = false;
  1214. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1216. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1217. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1218. int16_t z_shift = 0;
  1219. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1220. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1221. temp_cal_active = false;
  1222. }
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1224. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1225. }
  1226. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1227. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1228. }
  1229. check_babystep(); //checking if Z babystep is in allowed range
  1230. #ifdef UVLO_SUPPORT
  1231. setup_uvlo_interrupt();
  1232. #endif //UVLO_SUPPORT
  1233. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1234. setup_fan_interrupt();
  1235. #endif //DEBUG_DISABLE_FANCHECK
  1236. #ifdef PAT9125
  1237. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1238. fsensor_setup_interrupt();
  1239. #endif //DEBUG_DISABLE_FSENSORCHECK
  1240. #endif //PAT9125
  1241. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1242. #ifndef DEBUG_DISABLE_STARTMSGS
  1243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1244. show_fw_version_warnings();
  1245. switch (hw_changed) {
  1246. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1247. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1248. case(0b01):
  1249. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1250. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1251. break;
  1252. case(0b10):
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1254. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1255. break;
  1256. case(0b11):
  1257. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1258. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1259. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1260. break;
  1261. default: break; //no change, show no message
  1262. }
  1263. if (!previous_settings_retrieved) {
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1265. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1268. lcd_wizard(0);
  1269. }
  1270. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1271. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1272. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1273. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1274. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1275. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1276. // Show the message.
  1277. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1278. }
  1279. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1280. // Show the message.
  1281. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1282. lcd_update_enable(true);
  1283. }
  1284. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1285. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1286. lcd_update_enable(true);
  1287. }
  1288. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1291. }
  1292. }
  1293. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1294. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1295. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1296. update_current_firmware_version_to_eeprom();
  1297. lcd_selftest();
  1298. }
  1299. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1300. KEEPALIVE_STATE(IN_PROCESS);
  1301. #endif //DEBUG_DISABLE_STARTMSGS
  1302. lcd_update_enable(true);
  1303. lcd_implementation_clear();
  1304. lcd_update(2);
  1305. // Store the currently running firmware into an eeprom,
  1306. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1307. update_current_firmware_version_to_eeprom();
  1308. #ifdef TMC2130
  1309. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1310. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1311. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1312. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1313. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1314. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1315. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1316. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1317. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1318. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1319. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1320. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1321. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1322. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1323. #endif //TMC2130
  1324. #ifdef UVLO_SUPPORT
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1326. /*
  1327. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1328. else {
  1329. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1330. lcd_update_enable(true);
  1331. lcd_update(2);
  1332. lcd_setstatuspgm(_T(WELCOME_MSG));
  1333. }
  1334. */
  1335. manage_heater(); // Update temperatures
  1336. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1337. MYSERIAL.println("Power panic detected!");
  1338. MYSERIAL.print("Current bed temp:");
  1339. MYSERIAL.println(degBed());
  1340. MYSERIAL.print("Saved bed temp:");
  1341. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1342. #endif
  1343. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1344. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1345. MYSERIAL.println("Automatic recovery!");
  1346. #endif
  1347. recover_print(1);
  1348. }
  1349. else{
  1350. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1351. MYSERIAL.println("Normal recovery!");
  1352. #endif
  1353. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1354. else {
  1355. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1356. lcd_update_enable(true);
  1357. lcd_update(2);
  1358. lcd_setstatuspgm(_T(WELCOME_MSG));
  1359. }
  1360. }
  1361. }
  1362. #endif //UVLO_SUPPORT
  1363. KEEPALIVE_STATE(NOT_BUSY);
  1364. #ifdef WATCHDOG
  1365. wdt_enable(WDTO_4S);
  1366. #endif //WATCHDOG
  1367. }
  1368. #ifdef PAT9125
  1369. void fsensor_init() {
  1370. int pat9125 = pat9125_init();
  1371. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1372. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1373. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1374. if (!pat9125)
  1375. {
  1376. fsensor = 0; //disable sensor
  1377. fsensor_not_responding = true;
  1378. }
  1379. else {
  1380. fsensor_not_responding = false;
  1381. }
  1382. puts_P(PSTR("FSensor "));
  1383. if (fsensor)
  1384. {
  1385. puts_P(PSTR("ENABLED\n"));
  1386. fsensor_enable();
  1387. }
  1388. else
  1389. {
  1390. puts_P(PSTR("DISABLED\n"));
  1391. fsensor_disable();
  1392. }
  1393. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1394. filament_autoload_enabled = false;
  1395. fsensor_disable();
  1396. #endif //DEBUG_DISABLE_FSENSORCHECK
  1397. }
  1398. #endif //PAT9125
  1399. void trace();
  1400. #define CHUNK_SIZE 64 // bytes
  1401. #define SAFETY_MARGIN 1
  1402. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1403. int chunkHead = 0;
  1404. int serial_read_stream() {
  1405. setTargetHotend(0, 0);
  1406. setTargetBed(0);
  1407. lcd_implementation_clear();
  1408. lcd_printPGM(PSTR(" Upload in progress"));
  1409. // first wait for how many bytes we will receive
  1410. uint32_t bytesToReceive;
  1411. // receive the four bytes
  1412. char bytesToReceiveBuffer[4];
  1413. for (int i=0; i<4; i++) {
  1414. int data;
  1415. while ((data = MYSERIAL.read()) == -1) {};
  1416. bytesToReceiveBuffer[i] = data;
  1417. }
  1418. // make it a uint32
  1419. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1420. // we're ready, notify the sender
  1421. MYSERIAL.write('+');
  1422. // lock in the routine
  1423. uint32_t receivedBytes = 0;
  1424. while (prusa_sd_card_upload) {
  1425. int i;
  1426. for (i=0; i<CHUNK_SIZE; i++) {
  1427. int data;
  1428. // check if we're not done
  1429. if (receivedBytes == bytesToReceive) {
  1430. break;
  1431. }
  1432. // read the next byte
  1433. while ((data = MYSERIAL.read()) == -1) {};
  1434. receivedBytes++;
  1435. // save it to the chunk
  1436. chunk[i] = data;
  1437. }
  1438. // write the chunk to SD
  1439. card.write_command_no_newline(&chunk[0]);
  1440. // notify the sender we're ready for more data
  1441. MYSERIAL.write('+');
  1442. // for safety
  1443. manage_heater();
  1444. // check if we're done
  1445. if(receivedBytes == bytesToReceive) {
  1446. trace(); // beep
  1447. card.closefile();
  1448. prusa_sd_card_upload = false;
  1449. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1450. return 0;
  1451. }
  1452. }
  1453. }
  1454. #ifdef HOST_KEEPALIVE_FEATURE
  1455. /**
  1456. * Output a "busy" message at regular intervals
  1457. * while the machine is not accepting commands.
  1458. */
  1459. void host_keepalive() {
  1460. if (farm_mode) return;
  1461. long ms = millis();
  1462. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1463. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1464. switch (busy_state) {
  1465. case IN_HANDLER:
  1466. case IN_PROCESS:
  1467. SERIAL_ECHO_START;
  1468. SERIAL_ECHOLNPGM("busy: processing");
  1469. break;
  1470. case PAUSED_FOR_USER:
  1471. SERIAL_ECHO_START;
  1472. SERIAL_ECHOLNPGM("busy: paused for user");
  1473. break;
  1474. case PAUSED_FOR_INPUT:
  1475. SERIAL_ECHO_START;
  1476. SERIAL_ECHOLNPGM("busy: paused for input");
  1477. break;
  1478. default:
  1479. break;
  1480. }
  1481. }
  1482. prev_busy_signal_ms = ms;
  1483. }
  1484. #endif
  1485. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1486. // Before loop(), the setup() function is called by the main() routine.
  1487. void loop()
  1488. {
  1489. KEEPALIVE_STATE(NOT_BUSY);
  1490. bool stack_integrity = true;
  1491. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1492. {
  1493. is_usb_printing = true;
  1494. usb_printing_counter--;
  1495. _usb_timer = millis();
  1496. }
  1497. if (usb_printing_counter == 0)
  1498. {
  1499. is_usb_printing = false;
  1500. }
  1501. if (prusa_sd_card_upload)
  1502. {
  1503. //we read byte-by byte
  1504. serial_read_stream();
  1505. } else
  1506. {
  1507. get_command();
  1508. #ifdef SDSUPPORT
  1509. card.checkautostart(false);
  1510. #endif
  1511. if(buflen)
  1512. {
  1513. cmdbuffer_front_already_processed = false;
  1514. #ifdef SDSUPPORT
  1515. if(card.saving)
  1516. {
  1517. // Saving a G-code file onto an SD-card is in progress.
  1518. // Saving starts with M28, saving until M29 is seen.
  1519. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1520. card.write_command(CMDBUFFER_CURRENT_STRING);
  1521. if(card.logging)
  1522. process_commands();
  1523. else
  1524. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1525. } else {
  1526. card.closefile();
  1527. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1528. }
  1529. } else {
  1530. process_commands();
  1531. }
  1532. #else
  1533. process_commands();
  1534. #endif //SDSUPPORT
  1535. if (! cmdbuffer_front_already_processed && buflen)
  1536. {
  1537. // ptr points to the start of the block currently being processed.
  1538. // The first character in the block is the block type.
  1539. char *ptr = cmdbuffer + bufindr;
  1540. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1541. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1542. union {
  1543. struct {
  1544. char lo;
  1545. char hi;
  1546. } lohi;
  1547. uint16_t value;
  1548. } sdlen;
  1549. sdlen.value = 0;
  1550. {
  1551. // This block locks the interrupts globally for 3.25 us,
  1552. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1553. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1554. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1555. cli();
  1556. // Reset the command to something, which will be ignored by the power panic routine,
  1557. // so this buffer length will not be counted twice.
  1558. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1559. // Extract the current buffer length.
  1560. sdlen.lohi.lo = *ptr ++;
  1561. sdlen.lohi.hi = *ptr;
  1562. // and pass it to the planner queue.
  1563. planner_add_sd_length(sdlen.value);
  1564. sei();
  1565. }
  1566. }
  1567. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1568. cli();
  1569. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1570. // and one for each command to previous block in the planner queue.
  1571. planner_add_sd_length(1);
  1572. sei();
  1573. }
  1574. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1575. // this block's SD card length will not be counted twice as its command type has been replaced
  1576. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1577. cmdqueue_pop_front();
  1578. }
  1579. host_keepalive();
  1580. }
  1581. }
  1582. //check heater every n milliseconds
  1583. manage_heater();
  1584. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1585. checkHitEndstops();
  1586. lcd_update();
  1587. #ifdef PAT9125
  1588. fsensor_update();
  1589. #endif //PAT9125
  1590. #ifdef TMC2130
  1591. tmc2130_check_overtemp();
  1592. if (tmc2130_sg_crash)
  1593. {
  1594. uint8_t crash = tmc2130_sg_crash;
  1595. tmc2130_sg_crash = 0;
  1596. // crashdet_stop_and_save_print();
  1597. switch (crash)
  1598. {
  1599. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1600. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1601. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1602. }
  1603. }
  1604. #endif //TMC2130
  1605. }
  1606. #define DEFINE_PGM_READ_ANY(type, reader) \
  1607. static inline type pgm_read_any(const type *p) \
  1608. { return pgm_read_##reader##_near(p); }
  1609. DEFINE_PGM_READ_ANY(float, float);
  1610. DEFINE_PGM_READ_ANY(signed char, byte);
  1611. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1612. static const PROGMEM type array##_P[3] = \
  1613. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1614. static inline type array(int axis) \
  1615. { return pgm_read_any(&array##_P[axis]); } \
  1616. type array##_ext(int axis) \
  1617. { return pgm_read_any(&array##_P[axis]); }
  1618. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1619. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1620. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1621. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1622. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1623. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1624. static void axis_is_at_home(int axis) {
  1625. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1626. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1627. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1628. }
  1629. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1630. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1631. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1632. saved_feedrate = feedrate;
  1633. saved_feedmultiply = feedmultiply;
  1634. feedmultiply = 100;
  1635. previous_millis_cmd = millis();
  1636. enable_endstops(enable_endstops_now);
  1637. }
  1638. static void clean_up_after_endstop_move() {
  1639. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1640. enable_endstops(false);
  1641. #endif
  1642. feedrate = saved_feedrate;
  1643. feedmultiply = saved_feedmultiply;
  1644. previous_millis_cmd = millis();
  1645. }
  1646. #ifdef ENABLE_AUTO_BED_LEVELING
  1647. #ifdef AUTO_BED_LEVELING_GRID
  1648. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1649. {
  1650. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1651. planeNormal.debug("planeNormal");
  1652. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1653. //bedLevel.debug("bedLevel");
  1654. //plan_bed_level_matrix.debug("bed level before");
  1655. //vector_3 uncorrected_position = plan_get_position_mm();
  1656. //uncorrected_position.debug("position before");
  1657. vector_3 corrected_position = plan_get_position();
  1658. // corrected_position.debug("position after");
  1659. current_position[X_AXIS] = corrected_position.x;
  1660. current_position[Y_AXIS] = corrected_position.y;
  1661. current_position[Z_AXIS] = corrected_position.z;
  1662. // put the bed at 0 so we don't go below it.
  1663. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1664. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1665. }
  1666. #else // not AUTO_BED_LEVELING_GRID
  1667. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1668. plan_bed_level_matrix.set_to_identity();
  1669. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1670. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1671. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1672. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1673. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1674. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1675. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1676. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1677. vector_3 corrected_position = plan_get_position();
  1678. current_position[X_AXIS] = corrected_position.x;
  1679. current_position[Y_AXIS] = corrected_position.y;
  1680. current_position[Z_AXIS] = corrected_position.z;
  1681. // put the bed at 0 so we don't go below it.
  1682. current_position[Z_AXIS] = zprobe_zoffset;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. #endif // AUTO_BED_LEVELING_GRID
  1686. static void run_z_probe() {
  1687. plan_bed_level_matrix.set_to_identity();
  1688. feedrate = homing_feedrate[Z_AXIS];
  1689. // move down until you find the bed
  1690. float zPosition = -10;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. // we have to let the planner know where we are right now as it is not where we said to go.
  1694. zPosition = st_get_position_mm(Z_AXIS);
  1695. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1696. // move up the retract distance
  1697. zPosition += home_retract_mm(Z_AXIS);
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. // move back down slowly to find bed
  1701. feedrate = homing_feedrate[Z_AXIS]/4;
  1702. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1704. st_synchronize();
  1705. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1706. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1707. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1708. }
  1709. static void do_blocking_move_to(float x, float y, float z) {
  1710. float oldFeedRate = feedrate;
  1711. feedrate = homing_feedrate[Z_AXIS];
  1712. current_position[Z_AXIS] = z;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1714. st_synchronize();
  1715. feedrate = XY_TRAVEL_SPEED;
  1716. current_position[X_AXIS] = x;
  1717. current_position[Y_AXIS] = y;
  1718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1719. st_synchronize();
  1720. feedrate = oldFeedRate;
  1721. }
  1722. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1723. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1724. }
  1725. /// Probe bed height at position (x,y), returns the measured z value
  1726. static float probe_pt(float x, float y, float z_before) {
  1727. // move to right place
  1728. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1729. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1730. run_z_probe();
  1731. float measured_z = current_position[Z_AXIS];
  1732. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1733. SERIAL_PROTOCOLPGM(" x: ");
  1734. SERIAL_PROTOCOL(x);
  1735. SERIAL_PROTOCOLPGM(" y: ");
  1736. SERIAL_PROTOCOL(y);
  1737. SERIAL_PROTOCOLPGM(" z: ");
  1738. SERIAL_PROTOCOL(measured_z);
  1739. SERIAL_PROTOCOLPGM("\n");
  1740. return measured_z;
  1741. }
  1742. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1743. #ifdef LIN_ADVANCE
  1744. /**
  1745. * M900: Set and/or Get advance K factor and WH/D ratio
  1746. *
  1747. * K<factor> Set advance K factor
  1748. * R<ratio> Set ratio directly (overrides WH/D)
  1749. * W<width> H<height> D<diam> Set ratio from WH/D
  1750. */
  1751. inline void gcode_M900() {
  1752. st_synchronize();
  1753. const float newK = code_seen('K') ? code_value_float() : -1;
  1754. if (newK >= 0) extruder_advance_k = newK;
  1755. float newR = code_seen('R') ? code_value_float() : -1;
  1756. if (newR < 0) {
  1757. const float newD = code_seen('D') ? code_value_float() : -1,
  1758. newW = code_seen('W') ? code_value_float() : -1,
  1759. newH = code_seen('H') ? code_value_float() : -1;
  1760. if (newD >= 0 && newW >= 0 && newH >= 0)
  1761. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1762. }
  1763. if (newR >= 0) advance_ed_ratio = newR;
  1764. SERIAL_ECHO_START;
  1765. SERIAL_ECHOPGM("Advance K=");
  1766. SERIAL_ECHOLN(extruder_advance_k);
  1767. SERIAL_ECHOPGM(" E/D=");
  1768. const float ratio = advance_ed_ratio;
  1769. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1770. }
  1771. #endif // LIN_ADVANCE
  1772. bool check_commands() {
  1773. bool end_command_found = false;
  1774. while (buflen)
  1775. {
  1776. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1777. if (!cmdbuffer_front_already_processed)
  1778. cmdqueue_pop_front();
  1779. cmdbuffer_front_already_processed = false;
  1780. }
  1781. return end_command_found;
  1782. }
  1783. #ifdef TMC2130
  1784. bool calibrate_z_auto()
  1785. {
  1786. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1787. lcd_implementation_clear();
  1788. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1789. bool endstops_enabled = enable_endstops(true);
  1790. int axis_up_dir = -home_dir(Z_AXIS);
  1791. tmc2130_home_enter(Z_AXIS_MASK);
  1792. current_position[Z_AXIS] = 0;
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. set_destination_to_current();
  1795. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1796. feedrate = homing_feedrate[Z_AXIS];
  1797. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. // current_position[axis] = 0;
  1800. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1801. tmc2130_home_exit();
  1802. enable_endstops(false);
  1803. current_position[Z_AXIS] = 0;
  1804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1805. set_destination_to_current();
  1806. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1807. feedrate = homing_feedrate[Z_AXIS] / 2;
  1808. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1809. st_synchronize();
  1810. enable_endstops(endstops_enabled);
  1811. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. return true;
  1814. }
  1815. #endif //TMC2130
  1816. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1817. {
  1818. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1819. #define HOMEAXIS_DO(LETTER) \
  1820. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1821. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1822. {
  1823. int axis_home_dir = home_dir(axis);
  1824. feedrate = homing_feedrate[axis];
  1825. #ifdef TMC2130
  1826. tmc2130_home_enter(X_AXIS_MASK << axis);
  1827. #endif //TMC2130
  1828. // Move right a bit, so that the print head does not touch the left end position,
  1829. // and the following left movement has a chance to achieve the required velocity
  1830. // for the stall guard to work.
  1831. current_position[axis] = 0;
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. set_destination_to_current();
  1834. // destination[axis] = 11.f;
  1835. destination[axis] = 3.f;
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. // Move left away from the possible collision with the collision detection disabled.
  1839. endstops_hit_on_purpose();
  1840. enable_endstops(false);
  1841. current_position[axis] = 0;
  1842. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1843. destination[axis] = - 1.;
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. // Now continue to move up to the left end stop with the collision detection enabled.
  1847. enable_endstops(true);
  1848. destination[axis] = - 1.1 * max_length(axis);
  1849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1850. st_synchronize();
  1851. for (uint8_t i = 0; i < cnt; i++)
  1852. {
  1853. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1854. endstops_hit_on_purpose();
  1855. enable_endstops(false);
  1856. current_position[axis] = 0;
  1857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. destination[axis] = 10.f;
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. endstops_hit_on_purpose();
  1862. // Now move left up to the collision, this time with a repeatable velocity.
  1863. enable_endstops(true);
  1864. destination[axis] = - 11.f;
  1865. #ifdef TMC2130
  1866. feedrate = homing_feedrate[axis];
  1867. #else //TMC2130
  1868. feedrate = homing_feedrate[axis] / 2;
  1869. #endif //TMC2130
  1870. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1871. st_synchronize();
  1872. #ifdef TMC2130
  1873. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1874. if (pstep) pstep[i] = mscnt >> 4;
  1875. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1876. #endif //TMC2130
  1877. }
  1878. endstops_hit_on_purpose();
  1879. enable_endstops(false);
  1880. #ifdef TMC2130
  1881. uint8_t orig = tmc2130_home_origin[axis];
  1882. uint8_t back = tmc2130_home_bsteps[axis];
  1883. if (tmc2130_home_enabled && (orig <= 63))
  1884. {
  1885. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1886. if (back > 0)
  1887. tmc2130_do_steps(axis, back, 1, 1000);
  1888. }
  1889. else
  1890. tmc2130_do_steps(axis, 8, 2, 1000);
  1891. tmc2130_home_exit();
  1892. #endif //TMC2130
  1893. axis_is_at_home(axis);
  1894. axis_known_position[axis] = true;
  1895. // Move from minimum
  1896. #ifdef TMC2130
  1897. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1898. #else //TMC2130
  1899. float dist = 0.01f * 64;
  1900. #endif //TMC2130
  1901. current_position[axis] -= dist;
  1902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1903. current_position[axis] += dist;
  1904. destination[axis] = current_position[axis];
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1906. st_synchronize();
  1907. feedrate = 0.0;
  1908. }
  1909. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1910. {
  1911. #ifdef TMC2130
  1912. FORCE_HIGH_POWER_START;
  1913. #endif
  1914. int axis_home_dir = home_dir(axis);
  1915. current_position[axis] = 0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1918. feedrate = homing_feedrate[axis];
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. #ifdef TMC2130
  1922. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1923. FORCE_HIGH_POWER_END;
  1924. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1925. return;
  1926. }
  1927. #endif //TMC2130
  1928. current_position[axis] = 0;
  1929. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1930. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1932. st_synchronize();
  1933. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1934. feedrate = homing_feedrate[axis]/2 ;
  1935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1936. st_synchronize();
  1937. #ifdef TMC2130
  1938. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1939. FORCE_HIGH_POWER_END;
  1940. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1941. return;
  1942. }
  1943. #endif //TMC2130
  1944. axis_is_at_home(axis);
  1945. destination[axis] = current_position[axis];
  1946. feedrate = 0.0;
  1947. endstops_hit_on_purpose();
  1948. axis_known_position[axis] = true;
  1949. #ifdef TMC2130
  1950. FORCE_HIGH_POWER_END;
  1951. #endif
  1952. }
  1953. enable_endstops(endstops_enabled);
  1954. }
  1955. /**/
  1956. void home_xy()
  1957. {
  1958. set_destination_to_current();
  1959. homeaxis(X_AXIS);
  1960. homeaxis(Y_AXIS);
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. endstops_hit_on_purpose();
  1963. }
  1964. void refresh_cmd_timeout(void)
  1965. {
  1966. previous_millis_cmd = millis();
  1967. }
  1968. #ifdef FWRETRACT
  1969. void retract(bool retracting, bool swapretract = false) {
  1970. if(retracting && !retracted[active_extruder]) {
  1971. destination[X_AXIS]=current_position[X_AXIS];
  1972. destination[Y_AXIS]=current_position[Y_AXIS];
  1973. destination[Z_AXIS]=current_position[Z_AXIS];
  1974. destination[E_AXIS]=current_position[E_AXIS];
  1975. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1976. plan_set_e_position(current_position[E_AXIS]);
  1977. float oldFeedrate = feedrate;
  1978. feedrate=retract_feedrate*60;
  1979. retracted[active_extruder]=true;
  1980. prepare_move();
  1981. current_position[Z_AXIS]-=retract_zlift;
  1982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1983. prepare_move();
  1984. feedrate = oldFeedrate;
  1985. } else if(!retracting && retracted[active_extruder]) {
  1986. destination[X_AXIS]=current_position[X_AXIS];
  1987. destination[Y_AXIS]=current_position[Y_AXIS];
  1988. destination[Z_AXIS]=current_position[Z_AXIS];
  1989. destination[E_AXIS]=current_position[E_AXIS];
  1990. current_position[Z_AXIS]+=retract_zlift;
  1991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1992. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1993. plan_set_e_position(current_position[E_AXIS]);
  1994. float oldFeedrate = feedrate;
  1995. feedrate=retract_recover_feedrate*60;
  1996. retracted[active_extruder]=false;
  1997. prepare_move();
  1998. feedrate = oldFeedrate;
  1999. }
  2000. } //retract
  2001. #endif //FWRETRACT
  2002. void trace() {
  2003. tone(BEEPER, 440);
  2004. delay(25);
  2005. noTone(BEEPER);
  2006. delay(20);
  2007. }
  2008. /*
  2009. void ramming() {
  2010. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2011. if (current_temperature[0] < 230) {
  2012. //PLA
  2013. max_feedrate[E_AXIS] = 50;
  2014. //current_position[E_AXIS] -= 8;
  2015. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2016. //current_position[E_AXIS] += 8;
  2017. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2018. current_position[E_AXIS] += 5.4;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2020. current_position[E_AXIS] += 3.2;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2022. current_position[E_AXIS] += 3;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2024. st_synchronize();
  2025. max_feedrate[E_AXIS] = 80;
  2026. current_position[E_AXIS] -= 82;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2028. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2029. current_position[E_AXIS] -= 20;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2031. current_position[E_AXIS] += 5;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2033. current_position[E_AXIS] += 5;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2035. current_position[E_AXIS] -= 10;
  2036. st_synchronize();
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2038. current_position[E_AXIS] += 10;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2040. current_position[E_AXIS] -= 10;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2042. current_position[E_AXIS] += 10;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2044. current_position[E_AXIS] -= 10;
  2045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2046. st_synchronize();
  2047. }
  2048. else {
  2049. //ABS
  2050. max_feedrate[E_AXIS] = 50;
  2051. //current_position[E_AXIS] -= 8;
  2052. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2053. //current_position[E_AXIS] += 8;
  2054. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2055. current_position[E_AXIS] += 3.1;
  2056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2057. current_position[E_AXIS] += 3.1;
  2058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2059. current_position[E_AXIS] += 4;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2061. st_synchronize();
  2062. //current_position[X_AXIS] += 23; //delay
  2063. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2064. //current_position[X_AXIS] -= 23; //delay
  2065. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2066. delay(4700);
  2067. max_feedrate[E_AXIS] = 80;
  2068. current_position[E_AXIS] -= 92;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2070. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2071. current_position[E_AXIS] -= 5;
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2073. current_position[E_AXIS] += 5;
  2074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2075. current_position[E_AXIS] -= 5;
  2076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2077. st_synchronize();
  2078. current_position[E_AXIS] += 5;
  2079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2080. current_position[E_AXIS] -= 5;
  2081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2082. current_position[E_AXIS] += 5;
  2083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2084. current_position[E_AXIS] -= 5;
  2085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2086. st_synchronize();
  2087. }
  2088. }
  2089. */
  2090. #ifdef TMC2130
  2091. void force_high_power_mode(bool start_high_power_section) {
  2092. uint8_t silent;
  2093. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2094. if (silent == 1) {
  2095. //we are in silent mode, set to normal mode to enable crash detection
  2096. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2097. st_synchronize();
  2098. cli();
  2099. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2100. tmc2130_init();
  2101. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2102. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2103. st_reset_timer();
  2104. sei();
  2105. }
  2106. }
  2107. #endif //TMC2130
  2108. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2109. st_synchronize();
  2110. #if 0
  2111. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2112. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2113. #endif
  2114. // Flag for the display update routine and to disable the print cancelation during homing.
  2115. homing_flag = true;
  2116. // Either all X,Y,Z codes are present, or none of them.
  2117. bool home_all_axes = home_x == home_y && home_x == home_z;
  2118. if (home_all_axes)
  2119. // No X/Y/Z code provided means to home all axes.
  2120. home_x = home_y = home_z = true;
  2121. #ifdef ENABLE_AUTO_BED_LEVELING
  2122. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2123. #endif //ENABLE_AUTO_BED_LEVELING
  2124. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2125. // the planner will not perform any adjustments in the XY plane.
  2126. // Wait for the motors to stop and update the current position with the absolute values.
  2127. world2machine_revert_to_uncorrected();
  2128. // For mesh bed leveling deactivate the matrix temporarily.
  2129. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2130. // in a single axis only.
  2131. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2132. #ifdef MESH_BED_LEVELING
  2133. uint8_t mbl_was_active = mbl.active;
  2134. mbl.active = 0;
  2135. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2136. #endif
  2137. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2138. // consumed during the first movements following this statement.
  2139. if (home_z)
  2140. babystep_undo();
  2141. saved_feedrate = feedrate;
  2142. saved_feedmultiply = feedmultiply;
  2143. feedmultiply = 100;
  2144. previous_millis_cmd = millis();
  2145. enable_endstops(true);
  2146. memcpy(destination, current_position, sizeof(destination));
  2147. feedrate = 0.0;
  2148. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2149. if(home_z)
  2150. homeaxis(Z_AXIS);
  2151. #endif
  2152. #ifdef QUICK_HOME
  2153. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2154. if(home_x && home_y) //first diagonal move
  2155. {
  2156. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2157. int x_axis_home_dir = home_dir(X_AXIS);
  2158. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2159. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2160. feedrate = homing_feedrate[X_AXIS];
  2161. if(homing_feedrate[Y_AXIS]<feedrate)
  2162. feedrate = homing_feedrate[Y_AXIS];
  2163. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2164. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2165. } else {
  2166. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2167. }
  2168. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2169. st_synchronize();
  2170. axis_is_at_home(X_AXIS);
  2171. axis_is_at_home(Y_AXIS);
  2172. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2173. destination[X_AXIS] = current_position[X_AXIS];
  2174. destination[Y_AXIS] = current_position[Y_AXIS];
  2175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2176. feedrate = 0.0;
  2177. st_synchronize();
  2178. endstops_hit_on_purpose();
  2179. current_position[X_AXIS] = destination[X_AXIS];
  2180. current_position[Y_AXIS] = destination[Y_AXIS];
  2181. current_position[Z_AXIS] = destination[Z_AXIS];
  2182. }
  2183. #endif /* QUICK_HOME */
  2184. #ifdef TMC2130
  2185. if(home_x)
  2186. {
  2187. if (!calib)
  2188. homeaxis(X_AXIS);
  2189. else
  2190. tmc2130_home_calibrate(X_AXIS);
  2191. }
  2192. if(home_y)
  2193. {
  2194. if (!calib)
  2195. homeaxis(Y_AXIS);
  2196. else
  2197. tmc2130_home_calibrate(Y_AXIS);
  2198. }
  2199. #endif //TMC2130
  2200. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2201. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2202. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2203. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2204. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2205. #ifndef Z_SAFE_HOMING
  2206. if(home_z) {
  2207. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2208. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2209. feedrate = max_feedrate[Z_AXIS];
  2210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2211. st_synchronize();
  2212. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2214. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2215. {
  2216. homeaxis(X_AXIS);
  2217. homeaxis(Y_AXIS);
  2218. }
  2219. // 1st mesh bed leveling measurement point, corrected.
  2220. world2machine_initialize();
  2221. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2222. world2machine_reset();
  2223. if (destination[Y_AXIS] < Y_MIN_POS)
  2224. destination[Y_AXIS] = Y_MIN_POS;
  2225. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2226. feedrate = homing_feedrate[Z_AXIS]/10;
  2227. current_position[Z_AXIS] = 0;
  2228. enable_endstops(false);
  2229. #ifdef DEBUG_BUILD
  2230. SERIAL_ECHOLNPGM("plan_set_position()");
  2231. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2232. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2233. #endif
  2234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2235. #ifdef DEBUG_BUILD
  2236. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2237. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2238. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2239. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2240. #endif
  2241. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2242. st_synchronize();
  2243. current_position[X_AXIS] = destination[X_AXIS];
  2244. current_position[Y_AXIS] = destination[Y_AXIS];
  2245. enable_endstops(true);
  2246. endstops_hit_on_purpose();
  2247. homeaxis(Z_AXIS);
  2248. #else // MESH_BED_LEVELING
  2249. homeaxis(Z_AXIS);
  2250. #endif // MESH_BED_LEVELING
  2251. }
  2252. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2253. if(home_all_axes) {
  2254. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2255. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2256. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2257. feedrate = XY_TRAVEL_SPEED/60;
  2258. current_position[Z_AXIS] = 0;
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2261. st_synchronize();
  2262. current_position[X_AXIS] = destination[X_AXIS];
  2263. current_position[Y_AXIS] = destination[Y_AXIS];
  2264. homeaxis(Z_AXIS);
  2265. }
  2266. // Let's see if X and Y are homed and probe is inside bed area.
  2267. if(home_z) {
  2268. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2269. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2270. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2271. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2272. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2273. current_position[Z_AXIS] = 0;
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2276. feedrate = max_feedrate[Z_AXIS];
  2277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2278. st_synchronize();
  2279. homeaxis(Z_AXIS);
  2280. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2281. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2282. SERIAL_ECHO_START;
  2283. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2284. } else {
  2285. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2286. SERIAL_ECHO_START;
  2287. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2288. }
  2289. }
  2290. #endif // Z_SAFE_HOMING
  2291. #endif // Z_HOME_DIR < 0
  2292. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2293. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2294. #ifdef ENABLE_AUTO_BED_LEVELING
  2295. if(home_z)
  2296. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2297. #endif
  2298. // Set the planner and stepper routine positions.
  2299. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2300. // contains the machine coordinates.
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2303. enable_endstops(false);
  2304. #endif
  2305. feedrate = saved_feedrate;
  2306. feedmultiply = saved_feedmultiply;
  2307. previous_millis_cmd = millis();
  2308. endstops_hit_on_purpose();
  2309. #ifndef MESH_BED_LEVELING
  2310. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2311. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2312. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2313. lcd_adjust_z();
  2314. #endif
  2315. // Load the machine correction matrix
  2316. world2machine_initialize();
  2317. // and correct the current_position XY axes to match the transformed coordinate system.
  2318. world2machine_update_current();
  2319. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2320. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2321. {
  2322. if (! home_z && mbl_was_active) {
  2323. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2324. mbl.active = true;
  2325. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2326. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2327. }
  2328. }
  2329. else
  2330. {
  2331. st_synchronize();
  2332. homing_flag = false;
  2333. // Push the commands to the front of the message queue in the reverse order!
  2334. // There shall be always enough space reserved for these commands.
  2335. enquecommand_front_P((PSTR("G80")));
  2336. //goto case_G80;
  2337. }
  2338. #endif
  2339. if (farm_mode) { prusa_statistics(20); };
  2340. homing_flag = false;
  2341. #if 0
  2342. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2343. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2344. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2345. #endif
  2346. }
  2347. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2348. {
  2349. bool final_result = false;
  2350. #ifdef TMC2130
  2351. FORCE_HIGH_POWER_START;
  2352. #endif // TMC2130
  2353. // Only Z calibration?
  2354. if (!onlyZ)
  2355. {
  2356. setTargetBed(0);
  2357. setTargetHotend(0, 0);
  2358. setTargetHotend(0, 1);
  2359. setTargetHotend(0, 2);
  2360. adjust_bed_reset(); //reset bed level correction
  2361. }
  2362. // Disable the default update procedure of the display. We will do a modal dialog.
  2363. lcd_update_enable(false);
  2364. // Let the planner use the uncorrected coordinates.
  2365. mbl.reset();
  2366. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2367. // the planner will not perform any adjustments in the XY plane.
  2368. // Wait for the motors to stop and update the current position with the absolute values.
  2369. world2machine_revert_to_uncorrected();
  2370. // Reset the baby step value applied without moving the axes.
  2371. babystep_reset();
  2372. // Mark all axes as in a need for homing.
  2373. memset(axis_known_position, 0, sizeof(axis_known_position));
  2374. // Home in the XY plane.
  2375. //set_destination_to_current();
  2376. setup_for_endstop_move();
  2377. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2378. home_xy();
  2379. enable_endstops(false);
  2380. current_position[X_AXIS] += 5;
  2381. current_position[Y_AXIS] += 5;
  2382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2383. st_synchronize();
  2384. // Let the user move the Z axes up to the end stoppers.
  2385. #ifdef TMC2130
  2386. if (calibrate_z_auto())
  2387. {
  2388. #else //TMC2130
  2389. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2390. {
  2391. #endif //TMC2130
  2392. refresh_cmd_timeout();
  2393. #ifndef STEEL_SHEET
  2394. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2395. {
  2396. lcd_wait_for_cool_down();
  2397. }
  2398. #endif //STEEL_SHEET
  2399. if(!onlyZ)
  2400. {
  2401. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2402. #ifdef STEEL_SHEET
  2403. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2404. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2405. #endif //STEEL_SHEET
  2406. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2407. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2408. KEEPALIVE_STATE(IN_HANDLER);
  2409. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2410. lcd_implementation_print_at(0, 2, 1);
  2411. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2412. }
  2413. // Move the print head close to the bed.
  2414. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2415. bool endstops_enabled = enable_endstops(true);
  2416. #ifdef TMC2130
  2417. tmc2130_home_enter(Z_AXIS_MASK);
  2418. #endif //TMC2130
  2419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2420. st_synchronize();
  2421. #ifdef TMC2130
  2422. tmc2130_home_exit();
  2423. #endif //TMC2130
  2424. enable_endstops(endstops_enabled);
  2425. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2426. {
  2427. int8_t verbosity_level = 0;
  2428. if (code_seen('V'))
  2429. {
  2430. // Just 'V' without a number counts as V1.
  2431. char c = strchr_pointer[1];
  2432. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2433. }
  2434. if (onlyZ)
  2435. {
  2436. clean_up_after_endstop_move();
  2437. // Z only calibration.
  2438. // Load the machine correction matrix
  2439. world2machine_initialize();
  2440. // and correct the current_position to match the transformed coordinate system.
  2441. world2machine_update_current();
  2442. //FIXME
  2443. bool result = sample_mesh_and_store_reference();
  2444. if (result)
  2445. {
  2446. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2447. // Shipped, the nozzle height has been set already. The user can start printing now.
  2448. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2449. final_result = true;
  2450. // babystep_apply();
  2451. }
  2452. }
  2453. else
  2454. {
  2455. // Reset the baby step value and the baby step applied flag.
  2456. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2457. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2458. // Complete XYZ calibration.
  2459. uint8_t point_too_far_mask = 0;
  2460. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2461. clean_up_after_endstop_move();
  2462. // Print head up.
  2463. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2465. st_synchronize();
  2466. //#ifndef NEW_XYZCAL
  2467. if (result >= 0)
  2468. {
  2469. #ifdef HEATBED_V2
  2470. sample_z();
  2471. #else //HEATBED_V2
  2472. point_too_far_mask = 0;
  2473. // Second half: The fine adjustment.
  2474. // Let the planner use the uncorrected coordinates.
  2475. mbl.reset();
  2476. world2machine_reset();
  2477. // Home in the XY plane.
  2478. setup_for_endstop_move();
  2479. home_xy();
  2480. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2481. clean_up_after_endstop_move();
  2482. // Print head up.
  2483. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2485. st_synchronize();
  2486. // if (result >= 0) babystep_apply();
  2487. #endif //HEATBED_V2
  2488. }
  2489. //#endif //NEW_XYZCAL
  2490. lcd_update_enable(true);
  2491. lcd_update(2);
  2492. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2493. if (result >= 0)
  2494. {
  2495. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2496. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2497. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2498. final_result = true;
  2499. }
  2500. }
  2501. #ifdef TMC2130
  2502. tmc2130_home_exit();
  2503. #endif
  2504. }
  2505. else
  2506. {
  2507. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2508. final_result = false;
  2509. }
  2510. }
  2511. else
  2512. {
  2513. // Timeouted.
  2514. }
  2515. lcd_update_enable(true);
  2516. #ifdef TMC2130
  2517. FORCE_HIGH_POWER_END;
  2518. #endif // TMC2130
  2519. return final_result;
  2520. }
  2521. void gcode_M114()
  2522. {
  2523. SERIAL_PROTOCOLPGM("X:");
  2524. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2525. SERIAL_PROTOCOLPGM(" Y:");
  2526. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2527. SERIAL_PROTOCOLPGM(" Z:");
  2528. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2529. SERIAL_PROTOCOLPGM(" E:");
  2530. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2531. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2532. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2533. SERIAL_PROTOCOLPGM(" Y:");
  2534. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2535. SERIAL_PROTOCOLPGM(" Z:");
  2536. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2537. SERIAL_PROTOCOLPGM(" E:");
  2538. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2539. SERIAL_PROTOCOLLN("");
  2540. }
  2541. void gcode_M701()
  2542. {
  2543. #ifdef SNMM
  2544. extr_adj(snmm_extruder);//loads current extruder
  2545. #else
  2546. enable_z();
  2547. custom_message = true;
  2548. custom_message_type = 2;
  2549. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2550. current_position[E_AXIS] += 70;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2552. current_position[E_AXIS] += 25;
  2553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2554. st_synchronize();
  2555. tone(BEEPER, 500);
  2556. delay_keep_alive(50);
  2557. noTone(BEEPER);
  2558. if (!farm_mode && loading_flag) {
  2559. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2560. while (!clean) {
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. current_position[E_AXIS] += 25;
  2564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2565. st_synchronize();
  2566. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2567. }
  2568. }
  2569. lcd_update_enable(true);
  2570. lcd_update(2);
  2571. lcd_setstatuspgm(_T(WELCOME_MSG));
  2572. disable_z();
  2573. loading_flag = false;
  2574. custom_message = false;
  2575. custom_message_type = 0;
  2576. #endif
  2577. }
  2578. /**
  2579. * @brief Get serial number from 32U2 processor
  2580. *
  2581. * Typical format of S/N is:CZPX0917X003XC13518
  2582. *
  2583. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2584. *
  2585. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2586. * reply is transmitted to serial port 1 character by character.
  2587. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2588. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2589. * in any case.
  2590. */
  2591. static void gcode_PRUSA_SN()
  2592. {
  2593. if (farm_mode) {
  2594. selectedSerialPort = 0;
  2595. MSerial.write(";S");
  2596. int numbersRead = 0;
  2597. ShortTimer timeout;
  2598. timeout.start();
  2599. while (numbersRead < 19) {
  2600. while (MSerial.available() > 0) {
  2601. uint8_t serial_char = MSerial.read();
  2602. selectedSerialPort = 1;
  2603. MSerial.write(serial_char);
  2604. numbersRead++;
  2605. selectedSerialPort = 0;
  2606. }
  2607. if (timeout.expired(100u)) break;
  2608. }
  2609. selectedSerialPort = 1;
  2610. MSerial.write('\n');
  2611. #if 0
  2612. for (int b = 0; b < 3; b++) {
  2613. tone(BEEPER, 110);
  2614. delay(50);
  2615. noTone(BEEPER);
  2616. delay(50);
  2617. }
  2618. #endif
  2619. } else {
  2620. MYSERIAL.println("Not in farm mode.");
  2621. }
  2622. }
  2623. void process_commands()
  2624. {
  2625. if (!buflen) return; //empty command
  2626. #ifdef FILAMENT_RUNOUT_SUPPORT
  2627. SET_INPUT(FR_SENS);
  2628. #endif
  2629. #ifdef CMDBUFFER_DEBUG
  2630. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2631. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2632. SERIAL_ECHOLNPGM("");
  2633. SERIAL_ECHOPGM("In cmdqueue: ");
  2634. SERIAL_ECHO(buflen);
  2635. SERIAL_ECHOLNPGM("");
  2636. #endif /* CMDBUFFER_DEBUG */
  2637. unsigned long codenum; //throw away variable
  2638. char *starpos = NULL;
  2639. #ifdef ENABLE_AUTO_BED_LEVELING
  2640. float x_tmp, y_tmp, z_tmp, real_z;
  2641. #endif
  2642. // PRUSA GCODES
  2643. KEEPALIVE_STATE(IN_HANDLER);
  2644. #ifdef SNMM
  2645. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2646. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2647. int8_t SilentMode;
  2648. #endif
  2649. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2650. starpos = (strchr(strchr_pointer + 5, '*'));
  2651. if (starpos != NULL)
  2652. *(starpos) = '\0';
  2653. lcd_setstatus(strchr_pointer + 5);
  2654. }
  2655. #ifdef TMC2130
  2656. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2657. {
  2658. if(code_seen("CRASH_DETECTED"))
  2659. {
  2660. uint8_t mask = 0;
  2661. if (code_seen("X")) mask |= X_AXIS_MASK;
  2662. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2663. crashdet_detected(mask);
  2664. }
  2665. else if(code_seen("CRASH_RECOVER"))
  2666. crashdet_recover();
  2667. else if(code_seen("CRASH_CANCEL"))
  2668. crashdet_cancel();
  2669. }
  2670. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2671. {
  2672. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2673. {
  2674. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2675. tmc2130_set_wave(E_AXIS, 247, fac);
  2676. }
  2677. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2678. {
  2679. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2680. uint16_t res = tmc2130_get_res(E_AXIS);
  2681. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2682. }
  2683. }
  2684. #endif //TMC2130
  2685. else if(code_seen("PRUSA")){
  2686. if (code_seen("Ping")) { //PRUSA Ping
  2687. if (farm_mode) {
  2688. PingTime = millis();
  2689. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2690. }
  2691. }
  2692. else if (code_seen("PRN")) {
  2693. MYSERIAL.println(status_number);
  2694. }else if (code_seen("FAN")) {
  2695. MYSERIAL.print("E0:");
  2696. MYSERIAL.print(60*fan_speed[0]);
  2697. MYSERIAL.println(" RPM");
  2698. MYSERIAL.print("PRN0:");
  2699. MYSERIAL.print(60*fan_speed[1]);
  2700. MYSERIAL.println(" RPM");
  2701. }else if (code_seen("fn")) {
  2702. if (farm_mode) {
  2703. MYSERIAL.println(farm_no);
  2704. }
  2705. else {
  2706. MYSERIAL.println("Not in farm mode.");
  2707. }
  2708. }
  2709. else if (code_seen("thx")) {
  2710. no_response = false;
  2711. }else if (code_seen("fv")) {
  2712. // get file version
  2713. #ifdef SDSUPPORT
  2714. card.openFile(strchr_pointer + 3,true);
  2715. while (true) {
  2716. uint16_t readByte = card.get();
  2717. MYSERIAL.write(readByte);
  2718. if (readByte=='\n') {
  2719. break;
  2720. }
  2721. }
  2722. card.closefile();
  2723. #endif // SDSUPPORT
  2724. } else if (code_seen("M28")) {
  2725. trace();
  2726. prusa_sd_card_upload = true;
  2727. card.openFile(strchr_pointer+4,false);
  2728. } else if (code_seen("SN")) {
  2729. gcode_PRUSA_SN();
  2730. } else if(code_seen("Fir")){
  2731. SERIAL_PROTOCOLLN(FW_VERSION);
  2732. } else if(code_seen("Rev")){
  2733. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2734. } else if(code_seen("Lang")) {
  2735. lcd_force_language_selection();
  2736. } else if(code_seen("Lz")) {
  2737. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2738. } else if (code_seen("SERIAL LOW")) {
  2739. MYSERIAL.println("SERIAL LOW");
  2740. MYSERIAL.begin(BAUDRATE);
  2741. return;
  2742. } else if (code_seen("SERIAL HIGH")) {
  2743. MYSERIAL.println("SERIAL HIGH");
  2744. MYSERIAL.begin(1152000);
  2745. return;
  2746. } else if(code_seen("Beat")) {
  2747. // Kick farm link timer
  2748. kicktime = millis();
  2749. } else if(code_seen("FR")) {
  2750. // Factory full reset
  2751. factory_reset(0,true);
  2752. }
  2753. //else if (code_seen('Cal')) {
  2754. // lcd_calibration();
  2755. // }
  2756. }
  2757. else if (code_seen('^')) {
  2758. // nothing, this is a version line
  2759. } else if(code_seen('G'))
  2760. {
  2761. switch((int)code_value())
  2762. {
  2763. case 0: // G0 -> G1
  2764. case 1: // G1
  2765. if(Stopped == false) {
  2766. #ifdef FILAMENT_RUNOUT_SUPPORT
  2767. if(READ(FR_SENS)){
  2768. feedmultiplyBckp=feedmultiply;
  2769. float target[4];
  2770. float lastpos[4];
  2771. target[X_AXIS]=current_position[X_AXIS];
  2772. target[Y_AXIS]=current_position[Y_AXIS];
  2773. target[Z_AXIS]=current_position[Z_AXIS];
  2774. target[E_AXIS]=current_position[E_AXIS];
  2775. lastpos[X_AXIS]=current_position[X_AXIS];
  2776. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2777. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2778. lastpos[E_AXIS]=current_position[E_AXIS];
  2779. //retract by E
  2780. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2781. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2782. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2783. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2784. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2785. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2786. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2787. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2789. //finish moves
  2790. st_synchronize();
  2791. //disable extruder steppers so filament can be removed
  2792. disable_e0();
  2793. disable_e1();
  2794. disable_e2();
  2795. delay(100);
  2796. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2797. uint8_t cnt=0;
  2798. int counterBeep = 0;
  2799. lcd_wait_interact();
  2800. while(!lcd_clicked()){
  2801. cnt++;
  2802. manage_heater();
  2803. manage_inactivity(true);
  2804. //lcd_update();
  2805. if(cnt==0)
  2806. {
  2807. #if BEEPER > 0
  2808. if (counterBeep== 500){
  2809. counterBeep = 0;
  2810. }
  2811. SET_OUTPUT(BEEPER);
  2812. if (counterBeep== 0){
  2813. WRITE(BEEPER,HIGH);
  2814. }
  2815. if (counterBeep== 20){
  2816. WRITE(BEEPER,LOW);
  2817. }
  2818. counterBeep++;
  2819. #else
  2820. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2821. lcd_buzz(1000/6,100);
  2822. #else
  2823. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2824. #endif
  2825. #endif
  2826. }
  2827. }
  2828. WRITE(BEEPER,LOW);
  2829. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2831. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2833. lcd_change_fil_state = 0;
  2834. lcd_loading_filament();
  2835. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2836. lcd_change_fil_state = 0;
  2837. lcd_alright();
  2838. switch(lcd_change_fil_state){
  2839. case 2:
  2840. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2841. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2842. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2844. lcd_loading_filament();
  2845. break;
  2846. case 3:
  2847. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2848. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2849. lcd_loading_color();
  2850. break;
  2851. default:
  2852. lcd_change_success();
  2853. break;
  2854. }
  2855. }
  2856. target[E_AXIS]+= 5;
  2857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2858. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2859. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2860. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2861. //plan_set_e_position(current_position[E_AXIS]);
  2862. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2863. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2864. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2865. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2866. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2867. plan_set_e_position(lastpos[E_AXIS]);
  2868. feedmultiply=feedmultiplyBckp;
  2869. char cmd[9];
  2870. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2871. enquecommand(cmd);
  2872. }
  2873. #endif
  2874. get_coordinates(); // For X Y Z E F
  2875. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2876. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2877. }
  2878. #ifdef FWRETRACT
  2879. if(autoretract_enabled)
  2880. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2881. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2882. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2883. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2884. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2885. retract(!retracted[active_extruder]);
  2886. return;
  2887. }
  2888. }
  2889. #endif //FWRETRACT
  2890. prepare_move();
  2891. //ClearToSend();
  2892. }
  2893. break;
  2894. case 2: // G2 - CW ARC
  2895. if(Stopped == false) {
  2896. get_arc_coordinates();
  2897. prepare_arc_move(true);
  2898. }
  2899. break;
  2900. case 3: // G3 - CCW ARC
  2901. if(Stopped == false) {
  2902. get_arc_coordinates();
  2903. prepare_arc_move(false);
  2904. }
  2905. break;
  2906. case 4: // G4 dwell
  2907. codenum = 0;
  2908. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2909. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2910. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2911. st_synchronize();
  2912. codenum += millis(); // keep track of when we started waiting
  2913. previous_millis_cmd = millis();
  2914. while(millis() < codenum) {
  2915. manage_heater();
  2916. manage_inactivity();
  2917. lcd_update();
  2918. }
  2919. break;
  2920. #ifdef FWRETRACT
  2921. case 10: // G10 retract
  2922. #if EXTRUDERS > 1
  2923. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2924. retract(true,retracted_swap[active_extruder]);
  2925. #else
  2926. retract(true);
  2927. #endif
  2928. break;
  2929. case 11: // G11 retract_recover
  2930. #if EXTRUDERS > 1
  2931. retract(false,retracted_swap[active_extruder]);
  2932. #else
  2933. retract(false);
  2934. #endif
  2935. break;
  2936. #endif //FWRETRACT
  2937. case 28: //G28 Home all Axis one at a time
  2938. {
  2939. // Which axes should be homed?
  2940. bool home_x = code_seen(axis_codes[X_AXIS]);
  2941. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2942. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2943. // calibrate?
  2944. bool calib = code_seen('C');
  2945. gcode_G28(home_x, home_y, home_z, calib);
  2946. break;
  2947. }
  2948. #ifdef ENABLE_AUTO_BED_LEVELING
  2949. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2950. {
  2951. #if Z_MIN_PIN == -1
  2952. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2953. #endif
  2954. // Prevent user from running a G29 without first homing in X and Y
  2955. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2956. {
  2957. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2958. SERIAL_ECHO_START;
  2959. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2960. break; // abort G29, since we don't know where we are
  2961. }
  2962. st_synchronize();
  2963. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2964. //vector_3 corrected_position = plan_get_position_mm();
  2965. //corrected_position.debug("position before G29");
  2966. plan_bed_level_matrix.set_to_identity();
  2967. vector_3 uncorrected_position = plan_get_position();
  2968. //uncorrected_position.debug("position durring G29");
  2969. current_position[X_AXIS] = uncorrected_position.x;
  2970. current_position[Y_AXIS] = uncorrected_position.y;
  2971. current_position[Z_AXIS] = uncorrected_position.z;
  2972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2973. setup_for_endstop_move();
  2974. feedrate = homing_feedrate[Z_AXIS];
  2975. #ifdef AUTO_BED_LEVELING_GRID
  2976. // probe at the points of a lattice grid
  2977. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2978. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2979. // solve the plane equation ax + by + d = z
  2980. // A is the matrix with rows [x y 1] for all the probed points
  2981. // B is the vector of the Z positions
  2982. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2983. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2984. // "A" matrix of the linear system of equations
  2985. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2986. // "B" vector of Z points
  2987. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2988. int probePointCounter = 0;
  2989. bool zig = true;
  2990. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2991. {
  2992. int xProbe, xInc;
  2993. if (zig)
  2994. {
  2995. xProbe = LEFT_PROBE_BED_POSITION;
  2996. //xEnd = RIGHT_PROBE_BED_POSITION;
  2997. xInc = xGridSpacing;
  2998. zig = false;
  2999. } else // zag
  3000. {
  3001. xProbe = RIGHT_PROBE_BED_POSITION;
  3002. //xEnd = LEFT_PROBE_BED_POSITION;
  3003. xInc = -xGridSpacing;
  3004. zig = true;
  3005. }
  3006. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3007. {
  3008. float z_before;
  3009. if (probePointCounter == 0)
  3010. {
  3011. // raise before probing
  3012. z_before = Z_RAISE_BEFORE_PROBING;
  3013. } else
  3014. {
  3015. // raise extruder
  3016. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3017. }
  3018. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3019. eqnBVector[probePointCounter] = measured_z;
  3020. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3021. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3022. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3023. probePointCounter++;
  3024. xProbe += xInc;
  3025. }
  3026. }
  3027. clean_up_after_endstop_move();
  3028. // solve lsq problem
  3029. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3030. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3031. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3032. SERIAL_PROTOCOLPGM(" b: ");
  3033. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3034. SERIAL_PROTOCOLPGM(" d: ");
  3035. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3036. set_bed_level_equation_lsq(plane_equation_coefficients);
  3037. free(plane_equation_coefficients);
  3038. #else // AUTO_BED_LEVELING_GRID not defined
  3039. // Probe at 3 arbitrary points
  3040. // probe 1
  3041. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3042. // probe 2
  3043. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3044. // probe 3
  3045. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3046. clean_up_after_endstop_move();
  3047. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3048. #endif // AUTO_BED_LEVELING_GRID
  3049. st_synchronize();
  3050. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3051. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3052. // When the bed is uneven, this height must be corrected.
  3053. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3054. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3055. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3056. z_tmp = current_position[Z_AXIS];
  3057. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3058. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3059. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3060. }
  3061. break;
  3062. #ifndef Z_PROBE_SLED
  3063. case 30: // G30 Single Z Probe
  3064. {
  3065. st_synchronize();
  3066. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3067. setup_for_endstop_move();
  3068. feedrate = homing_feedrate[Z_AXIS];
  3069. run_z_probe();
  3070. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3071. SERIAL_PROTOCOLPGM(" X: ");
  3072. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3073. SERIAL_PROTOCOLPGM(" Y: ");
  3074. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3075. SERIAL_PROTOCOLPGM(" Z: ");
  3076. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3077. SERIAL_PROTOCOLPGM("\n");
  3078. clean_up_after_endstop_move();
  3079. }
  3080. break;
  3081. #else
  3082. case 31: // dock the sled
  3083. dock_sled(true);
  3084. break;
  3085. case 32: // undock the sled
  3086. dock_sled(false);
  3087. break;
  3088. #endif // Z_PROBE_SLED
  3089. #endif // ENABLE_AUTO_BED_LEVELING
  3090. #ifdef MESH_BED_LEVELING
  3091. case 30: // G30 Single Z Probe
  3092. {
  3093. st_synchronize();
  3094. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3095. setup_for_endstop_move();
  3096. feedrate = homing_feedrate[Z_AXIS];
  3097. find_bed_induction_sensor_point_z(-10.f, 3);
  3098. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3099. SERIAL_PROTOCOLPGM(" X: ");
  3100. MYSERIAL.print(current_position[X_AXIS], 5);
  3101. SERIAL_PROTOCOLPGM(" Y: ");
  3102. MYSERIAL.print(current_position[Y_AXIS], 5);
  3103. SERIAL_PROTOCOLPGM(" Z: ");
  3104. MYSERIAL.print(current_position[Z_AXIS], 5);
  3105. SERIAL_PROTOCOLPGM("\n");
  3106. clean_up_after_endstop_move();
  3107. }
  3108. break;
  3109. case 75:
  3110. {
  3111. for (int i = 40; i <= 110; i++) {
  3112. MYSERIAL.print(i);
  3113. MYSERIAL.print(" ");
  3114. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3115. }
  3116. }
  3117. break;
  3118. case 76: //PINDA probe temperature calibration
  3119. {
  3120. #ifdef PINDA_THERMISTOR
  3121. if (true)
  3122. {
  3123. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3124. //we need to know accurate position of first calibration point
  3125. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3126. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3127. break;
  3128. }
  3129. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3130. {
  3131. // We don't know where we are! HOME!
  3132. // Push the commands to the front of the message queue in the reverse order!
  3133. // There shall be always enough space reserved for these commands.
  3134. repeatcommand_front(); // repeat G76 with all its parameters
  3135. enquecommand_front_P((PSTR("G28 W0")));
  3136. break;
  3137. }
  3138. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3139. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3140. if (result)
  3141. {
  3142. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3144. current_position[Z_AXIS] = 50;
  3145. current_position[Y_AXIS] = 180;
  3146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3147. st_synchronize();
  3148. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3149. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3150. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3152. st_synchronize();
  3153. gcode_G28(false, false, true, false);
  3154. }
  3155. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3156. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3157. current_position[Z_AXIS] = 100;
  3158. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3159. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3160. lcd_temp_cal_show_result(false);
  3161. break;
  3162. }
  3163. }
  3164. lcd_update_enable(true);
  3165. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3166. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3167. float zero_z;
  3168. int z_shift = 0; //unit: steps
  3169. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3170. if (start_temp < 35) start_temp = 35;
  3171. if (start_temp < current_temperature_pinda) start_temp += 5;
  3172. SERIAL_ECHOPGM("start temperature: ");
  3173. MYSERIAL.println(start_temp);
  3174. // setTargetHotend(200, 0);
  3175. setTargetBed(70 + (start_temp - 30));
  3176. custom_message = true;
  3177. custom_message_type = 4;
  3178. custom_message_state = 1;
  3179. custom_message = _T(MSG_TEMP_CALIBRATION);
  3180. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3182. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3183. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3185. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3187. st_synchronize();
  3188. while (current_temperature_pinda < start_temp)
  3189. {
  3190. delay_keep_alive(1000);
  3191. serialecho_temperatures();
  3192. }
  3193. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3194. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3195. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3196. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3197. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3199. st_synchronize();
  3200. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3201. if (find_z_result == false) {
  3202. lcd_temp_cal_show_result(find_z_result);
  3203. break;
  3204. }
  3205. zero_z = current_position[Z_AXIS];
  3206. //current_position[Z_AXIS]
  3207. SERIAL_ECHOLNPGM("");
  3208. SERIAL_ECHOPGM("ZERO: ");
  3209. MYSERIAL.print(current_position[Z_AXIS]);
  3210. SERIAL_ECHOLNPGM("");
  3211. int i = -1; for (; i < 5; i++)
  3212. {
  3213. float temp = (40 + i * 5);
  3214. SERIAL_ECHOPGM("Step: ");
  3215. MYSERIAL.print(i + 2);
  3216. SERIAL_ECHOLNPGM("/6 (skipped)");
  3217. SERIAL_ECHOPGM("PINDA temperature: ");
  3218. MYSERIAL.print((40 + i*5));
  3219. SERIAL_ECHOPGM(" Z shift (mm):");
  3220. MYSERIAL.print(0);
  3221. SERIAL_ECHOLNPGM("");
  3222. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3223. if (start_temp <= temp) break;
  3224. }
  3225. for (i++; i < 5; i++)
  3226. {
  3227. float temp = (40 + i * 5);
  3228. SERIAL_ECHOPGM("Step: ");
  3229. MYSERIAL.print(i + 2);
  3230. SERIAL_ECHOLNPGM("/6");
  3231. custom_message_state = i + 2;
  3232. setTargetBed(50 + 10 * (temp - 30) / 5);
  3233. // setTargetHotend(255, 0);
  3234. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3236. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3237. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3239. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3241. st_synchronize();
  3242. while (current_temperature_pinda < temp)
  3243. {
  3244. delay_keep_alive(1000);
  3245. serialecho_temperatures();
  3246. }
  3247. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3248. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3249. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3250. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3252. st_synchronize();
  3253. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3254. if (find_z_result == false) {
  3255. lcd_temp_cal_show_result(find_z_result);
  3256. break;
  3257. }
  3258. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3259. SERIAL_ECHOLNPGM("");
  3260. SERIAL_ECHOPGM("PINDA temperature: ");
  3261. MYSERIAL.print(current_temperature_pinda);
  3262. SERIAL_ECHOPGM(" Z shift (mm):");
  3263. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3264. SERIAL_ECHOLNPGM("");
  3265. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3266. }
  3267. lcd_temp_cal_show_result(true);
  3268. break;
  3269. }
  3270. #endif //PINDA_THERMISTOR
  3271. setTargetBed(PINDA_MIN_T);
  3272. float zero_z;
  3273. int z_shift = 0; //unit: steps
  3274. int t_c; // temperature
  3275. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3276. // We don't know where we are! HOME!
  3277. // Push the commands to the front of the message queue in the reverse order!
  3278. // There shall be always enough space reserved for these commands.
  3279. repeatcommand_front(); // repeat G76 with all its parameters
  3280. enquecommand_front_P((PSTR("G28 W0")));
  3281. break;
  3282. }
  3283. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3284. custom_message = true;
  3285. custom_message_type = 4;
  3286. custom_message_state = 1;
  3287. custom_message = _T(MSG_TEMP_CALIBRATION);
  3288. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3289. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3290. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3292. st_synchronize();
  3293. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3294. delay_keep_alive(1000);
  3295. serialecho_temperatures();
  3296. }
  3297. //enquecommand_P(PSTR("M190 S50"));
  3298. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3299. delay_keep_alive(1000);
  3300. serialecho_temperatures();
  3301. }
  3302. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3303. current_position[Z_AXIS] = 5;
  3304. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3305. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3306. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3308. st_synchronize();
  3309. find_bed_induction_sensor_point_z(-1.f);
  3310. zero_z = current_position[Z_AXIS];
  3311. //current_position[Z_AXIS]
  3312. SERIAL_ECHOLNPGM("");
  3313. SERIAL_ECHOPGM("ZERO: ");
  3314. MYSERIAL.print(current_position[Z_AXIS]);
  3315. SERIAL_ECHOLNPGM("");
  3316. for (int i = 0; i<5; i++) {
  3317. SERIAL_ECHOPGM("Step: ");
  3318. MYSERIAL.print(i+2);
  3319. SERIAL_ECHOLNPGM("/6");
  3320. custom_message_state = i + 2;
  3321. t_c = 60 + i * 10;
  3322. setTargetBed(t_c);
  3323. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3324. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3325. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3327. st_synchronize();
  3328. while (degBed() < t_c) {
  3329. delay_keep_alive(1000);
  3330. serialecho_temperatures();
  3331. }
  3332. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3333. delay_keep_alive(1000);
  3334. serialecho_temperatures();
  3335. }
  3336. current_position[Z_AXIS] = 5;
  3337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3338. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3339. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3341. st_synchronize();
  3342. find_bed_induction_sensor_point_z(-1.f);
  3343. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3344. SERIAL_ECHOLNPGM("");
  3345. SERIAL_ECHOPGM("Temperature: ");
  3346. MYSERIAL.print(t_c);
  3347. SERIAL_ECHOPGM(" Z shift (mm):");
  3348. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3349. SERIAL_ECHOLNPGM("");
  3350. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3351. }
  3352. custom_message_type = 0;
  3353. custom_message = false;
  3354. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3355. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3356. disable_x();
  3357. disable_y();
  3358. disable_z();
  3359. disable_e0();
  3360. disable_e1();
  3361. disable_e2();
  3362. setTargetBed(0); //set bed target temperature back to 0
  3363. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3364. temp_cal_active = true;
  3365. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3366. lcd_update_enable(true);
  3367. lcd_update(2);
  3368. }
  3369. break;
  3370. #ifdef DIS
  3371. case 77:
  3372. {
  3373. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3374. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3375. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3376. float dimension_x = 40;
  3377. float dimension_y = 40;
  3378. int points_x = 40;
  3379. int points_y = 40;
  3380. float offset_x = 74;
  3381. float offset_y = 33;
  3382. if (code_seen('X')) dimension_x = code_value();
  3383. if (code_seen('Y')) dimension_y = code_value();
  3384. if (code_seen('XP')) points_x = code_value();
  3385. if (code_seen('YP')) points_y = code_value();
  3386. if (code_seen('XO')) offset_x = code_value();
  3387. if (code_seen('YO')) offset_y = code_value();
  3388. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3389. } break;
  3390. #endif
  3391. case 79: {
  3392. for (int i = 255; i > 0; i = i - 5) {
  3393. fanSpeed = i;
  3394. //delay_keep_alive(2000);
  3395. for (int j = 0; j < 100; j++) {
  3396. delay_keep_alive(100);
  3397. }
  3398. fan_speed[1];
  3399. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3400. }
  3401. }break;
  3402. /**
  3403. * G80: Mesh-based Z probe, probes a grid and produces a
  3404. * mesh to compensate for variable bed height
  3405. *
  3406. * The S0 report the points as below
  3407. *
  3408. * +----> X-axis
  3409. * |
  3410. * |
  3411. * v Y-axis
  3412. *
  3413. */
  3414. case 80:
  3415. #ifdef MK1BP
  3416. break;
  3417. #endif //MK1BP
  3418. case_G80:
  3419. {
  3420. mesh_bed_leveling_flag = true;
  3421. int8_t verbosity_level = 0;
  3422. static bool run = false;
  3423. if (code_seen('V')) {
  3424. // Just 'V' without a number counts as V1.
  3425. char c = strchr_pointer[1];
  3426. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3427. }
  3428. // Firstly check if we know where we are
  3429. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3430. // We don't know where we are! HOME!
  3431. // Push the commands to the front of the message queue in the reverse order!
  3432. // There shall be always enough space reserved for these commands.
  3433. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3434. repeatcommand_front(); // repeat G80 with all its parameters
  3435. enquecommand_front_P((PSTR("G28 W0")));
  3436. }
  3437. else {
  3438. mesh_bed_leveling_flag = false;
  3439. }
  3440. break;
  3441. }
  3442. bool temp_comp_start = true;
  3443. #ifdef PINDA_THERMISTOR
  3444. temp_comp_start = false;
  3445. #endif //PINDA_THERMISTOR
  3446. if (temp_comp_start)
  3447. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3448. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3449. temp_compensation_start();
  3450. run = true;
  3451. repeatcommand_front(); // repeat G80 with all its parameters
  3452. enquecommand_front_P((PSTR("G28 W0")));
  3453. }
  3454. else {
  3455. mesh_bed_leveling_flag = false;
  3456. }
  3457. break;
  3458. }
  3459. run = false;
  3460. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3461. mesh_bed_leveling_flag = false;
  3462. break;
  3463. }
  3464. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3465. bool custom_message_old = custom_message;
  3466. unsigned int custom_message_type_old = custom_message_type;
  3467. unsigned int custom_message_state_old = custom_message_state;
  3468. custom_message = true;
  3469. custom_message_type = 1;
  3470. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3471. lcd_update(1);
  3472. mbl.reset(); //reset mesh bed leveling
  3473. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3474. // consumed during the first movements following this statement.
  3475. babystep_undo();
  3476. // Cycle through all points and probe them
  3477. // First move up. During this first movement, the babystepping will be reverted.
  3478. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3480. // The move to the first calibration point.
  3481. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3482. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3483. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3484. #ifdef SUPPORT_VERBOSITY
  3485. if (verbosity_level >= 1) {
  3486. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3487. }
  3488. #endif //SUPPORT_VERBOSITY
  3489. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3491. // Wait until the move is finished.
  3492. st_synchronize();
  3493. int mesh_point = 0; //index number of calibration point
  3494. int ix = 0;
  3495. int iy = 0;
  3496. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3497. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3498. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3499. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3500. #ifdef SUPPORT_VERBOSITY
  3501. if (verbosity_level >= 1) {
  3502. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3503. }
  3504. #endif // SUPPORT_VERBOSITY
  3505. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3506. const char *kill_message = NULL;
  3507. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3508. // Get coords of a measuring point.
  3509. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3510. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3511. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3512. float z0 = 0.f;
  3513. if (has_z && mesh_point > 0) {
  3514. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3515. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3516. //#if 0
  3517. #ifdef SUPPORT_VERBOSITY
  3518. if (verbosity_level >= 1) {
  3519. SERIAL_ECHOLNPGM("");
  3520. SERIAL_ECHOPGM("Bed leveling, point: ");
  3521. MYSERIAL.print(mesh_point);
  3522. SERIAL_ECHOPGM(", calibration z: ");
  3523. MYSERIAL.print(z0, 5);
  3524. SERIAL_ECHOLNPGM("");
  3525. }
  3526. #endif // SUPPORT_VERBOSITY
  3527. //#endif
  3528. }
  3529. // Move Z up to MESH_HOME_Z_SEARCH.
  3530. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3532. st_synchronize();
  3533. // Move to XY position of the sensor point.
  3534. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3535. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3536. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3537. #ifdef SUPPORT_VERBOSITY
  3538. if (verbosity_level >= 1) {
  3539. SERIAL_PROTOCOL(mesh_point);
  3540. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3541. }
  3542. #endif // SUPPORT_VERBOSITY
  3543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3544. st_synchronize();
  3545. // Go down until endstop is hit
  3546. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3547. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3548. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3549. break;
  3550. }
  3551. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3552. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3553. break;
  3554. }
  3555. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3556. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3557. break;
  3558. }
  3559. #ifdef SUPPORT_VERBOSITY
  3560. if (verbosity_level >= 10) {
  3561. SERIAL_ECHOPGM("X: ");
  3562. MYSERIAL.print(current_position[X_AXIS], 5);
  3563. SERIAL_ECHOLNPGM("");
  3564. SERIAL_ECHOPGM("Y: ");
  3565. MYSERIAL.print(current_position[Y_AXIS], 5);
  3566. SERIAL_PROTOCOLPGM("\n");
  3567. }
  3568. #endif // SUPPORT_VERBOSITY
  3569. float offset_z = 0;
  3570. #ifdef PINDA_THERMISTOR
  3571. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3572. #endif //PINDA_THERMISTOR
  3573. // #ifdef SUPPORT_VERBOSITY
  3574. /* if (verbosity_level >= 1)
  3575. {
  3576. SERIAL_ECHOPGM("mesh bed leveling: ");
  3577. MYSERIAL.print(current_position[Z_AXIS], 5);
  3578. SERIAL_ECHOPGM(" offset: ");
  3579. MYSERIAL.print(offset_z, 5);
  3580. SERIAL_ECHOLNPGM("");
  3581. }*/
  3582. // #endif // SUPPORT_VERBOSITY
  3583. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3584. custom_message_state--;
  3585. mesh_point++;
  3586. lcd_update(1);
  3587. }
  3588. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3589. #ifdef SUPPORT_VERBOSITY
  3590. if (verbosity_level >= 20) {
  3591. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3592. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3593. MYSERIAL.print(current_position[Z_AXIS], 5);
  3594. }
  3595. #endif // SUPPORT_VERBOSITY
  3596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3597. st_synchronize();
  3598. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3599. kill(kill_message);
  3600. SERIAL_ECHOLNPGM("killed");
  3601. }
  3602. clean_up_after_endstop_move();
  3603. // SERIAL_ECHOLNPGM("clean up finished ");
  3604. bool apply_temp_comp = true;
  3605. #ifdef PINDA_THERMISTOR
  3606. apply_temp_comp = false;
  3607. #endif
  3608. if (apply_temp_comp)
  3609. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3610. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3611. // SERIAL_ECHOLNPGM("babystep applied");
  3612. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3613. #ifdef SUPPORT_VERBOSITY
  3614. if (verbosity_level >= 1) {
  3615. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3616. }
  3617. #endif // SUPPORT_VERBOSITY
  3618. for (uint8_t i = 0; i < 4; ++i) {
  3619. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3620. long correction = 0;
  3621. if (code_seen(codes[i]))
  3622. correction = code_value_long();
  3623. else if (eeprom_bed_correction_valid) {
  3624. unsigned char *addr = (i < 2) ?
  3625. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3626. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3627. correction = eeprom_read_int8(addr);
  3628. }
  3629. if (correction == 0)
  3630. continue;
  3631. float offset = float(correction) * 0.001f;
  3632. if (fabs(offset) > 0.101f) {
  3633. SERIAL_ERROR_START;
  3634. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3635. SERIAL_ECHO(offset);
  3636. SERIAL_ECHOLNPGM(" microns");
  3637. }
  3638. else {
  3639. switch (i) {
  3640. case 0:
  3641. for (uint8_t row = 0; row < 3; ++row) {
  3642. mbl.z_values[row][1] += 0.5f * offset;
  3643. mbl.z_values[row][0] += offset;
  3644. }
  3645. break;
  3646. case 1:
  3647. for (uint8_t row = 0; row < 3; ++row) {
  3648. mbl.z_values[row][1] += 0.5f * offset;
  3649. mbl.z_values[row][2] += offset;
  3650. }
  3651. break;
  3652. case 2:
  3653. for (uint8_t col = 0; col < 3; ++col) {
  3654. mbl.z_values[1][col] += 0.5f * offset;
  3655. mbl.z_values[0][col] += offset;
  3656. }
  3657. break;
  3658. case 3:
  3659. for (uint8_t col = 0; col < 3; ++col) {
  3660. mbl.z_values[1][col] += 0.5f * offset;
  3661. mbl.z_values[2][col] += offset;
  3662. }
  3663. break;
  3664. }
  3665. }
  3666. }
  3667. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3668. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3669. // SERIAL_ECHOLNPGM("Upsample finished");
  3670. mbl.active = 1; //activate mesh bed leveling
  3671. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3672. go_home_with_z_lift();
  3673. // SERIAL_ECHOLNPGM("Go home finished");
  3674. //unretract (after PINDA preheat retraction)
  3675. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3676. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3678. }
  3679. KEEPALIVE_STATE(NOT_BUSY);
  3680. // Restore custom message state
  3681. custom_message = custom_message_old;
  3682. custom_message_type = custom_message_type_old;
  3683. custom_message_state = custom_message_state_old;
  3684. mesh_bed_leveling_flag = false;
  3685. mesh_bed_run_from_menu = false;
  3686. lcd_update(2);
  3687. }
  3688. break;
  3689. /**
  3690. * G81: Print mesh bed leveling status and bed profile if activated
  3691. */
  3692. case 81:
  3693. if (mbl.active) {
  3694. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3695. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3696. SERIAL_PROTOCOLPGM(",");
  3697. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3698. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3699. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3700. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3701. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3702. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3703. SERIAL_PROTOCOLPGM(" ");
  3704. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3705. }
  3706. SERIAL_PROTOCOLPGM("\n");
  3707. }
  3708. }
  3709. else
  3710. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3711. break;
  3712. #if 0
  3713. /**
  3714. * G82: Single Z probe at current location
  3715. *
  3716. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3717. *
  3718. */
  3719. case 82:
  3720. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3721. setup_for_endstop_move();
  3722. find_bed_induction_sensor_point_z();
  3723. clean_up_after_endstop_move();
  3724. SERIAL_PROTOCOLPGM("Bed found at: ");
  3725. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3726. SERIAL_PROTOCOLPGM("\n");
  3727. break;
  3728. /**
  3729. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3730. */
  3731. case 83:
  3732. {
  3733. int babystepz = code_seen('S') ? code_value() : 0;
  3734. int BabyPosition = code_seen('P') ? code_value() : 0;
  3735. if (babystepz != 0) {
  3736. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3737. // Is the axis indexed starting with zero or one?
  3738. if (BabyPosition > 4) {
  3739. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3740. }else{
  3741. // Save it to the eeprom
  3742. babystepLoadZ = babystepz;
  3743. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3744. // adjust the Z
  3745. babystepsTodoZadd(babystepLoadZ);
  3746. }
  3747. }
  3748. }
  3749. break;
  3750. /**
  3751. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3752. */
  3753. case 84:
  3754. babystepsTodoZsubtract(babystepLoadZ);
  3755. // babystepLoadZ = 0;
  3756. break;
  3757. /**
  3758. * G85: Prusa3D specific: Pick best babystep
  3759. */
  3760. case 85:
  3761. lcd_pick_babystep();
  3762. break;
  3763. #endif
  3764. /**
  3765. * G86: Prusa3D specific: Disable babystep correction after home.
  3766. * This G-code will be performed at the start of a calibration script.
  3767. */
  3768. case 86:
  3769. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3770. break;
  3771. /**
  3772. * G87: Prusa3D specific: Enable babystep correction after home
  3773. * This G-code will be performed at the end of a calibration script.
  3774. */
  3775. case 87:
  3776. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3777. break;
  3778. /**
  3779. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3780. */
  3781. case 88:
  3782. break;
  3783. #endif // ENABLE_MESH_BED_LEVELING
  3784. case 90: // G90
  3785. relative_mode = false;
  3786. break;
  3787. case 91: // G91
  3788. relative_mode = true;
  3789. break;
  3790. case 92: // G92
  3791. if(!code_seen(axis_codes[E_AXIS]))
  3792. st_synchronize();
  3793. for(int8_t i=0; i < NUM_AXIS; i++) {
  3794. if(code_seen(axis_codes[i])) {
  3795. if(i == E_AXIS) {
  3796. current_position[i] = code_value();
  3797. plan_set_e_position(current_position[E_AXIS]);
  3798. }
  3799. else {
  3800. current_position[i] = code_value()+add_homing[i];
  3801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3802. }
  3803. }
  3804. }
  3805. break;
  3806. case 98: // G98 (activate farm mode)
  3807. farm_mode = 1;
  3808. PingTime = millis();
  3809. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3810. SilentModeMenu = SILENT_MODE_OFF;
  3811. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3812. break;
  3813. case 99: // G99 (deactivate farm mode)
  3814. farm_mode = 0;
  3815. lcd_printer_connected();
  3816. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3817. lcd_update(2);
  3818. break;
  3819. default:
  3820. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3821. }
  3822. } // end if(code_seen('G'))
  3823. else if(code_seen('M'))
  3824. {
  3825. int index;
  3826. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3827. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3828. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3829. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3830. } else
  3831. switch((int)code_value())
  3832. {
  3833. #ifdef ULTIPANEL
  3834. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3835. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3836. {
  3837. char *src = strchr_pointer + 2;
  3838. codenum = 0;
  3839. bool hasP = false, hasS = false;
  3840. if (code_seen('P')) {
  3841. codenum = code_value(); // milliseconds to wait
  3842. hasP = codenum > 0;
  3843. }
  3844. if (code_seen('S')) {
  3845. codenum = code_value() * 1000; // seconds to wait
  3846. hasS = codenum > 0;
  3847. }
  3848. starpos = strchr(src, '*');
  3849. if (starpos != NULL) *(starpos) = '\0';
  3850. while (*src == ' ') ++src;
  3851. if (!hasP && !hasS && *src != '\0') {
  3852. lcd_setstatus(src);
  3853. } else {
  3854. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3855. }
  3856. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3857. st_synchronize();
  3858. previous_millis_cmd = millis();
  3859. if (codenum > 0){
  3860. codenum += millis(); // keep track of when we started waiting
  3861. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3862. while(millis() < codenum && !lcd_clicked()){
  3863. manage_heater();
  3864. manage_inactivity(true);
  3865. lcd_update();
  3866. }
  3867. KEEPALIVE_STATE(IN_HANDLER);
  3868. lcd_ignore_click(false);
  3869. }else{
  3870. if (!lcd_detected())
  3871. break;
  3872. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3873. while(!lcd_clicked()){
  3874. manage_heater();
  3875. manage_inactivity(true);
  3876. lcd_update();
  3877. }
  3878. KEEPALIVE_STATE(IN_HANDLER);
  3879. }
  3880. if (IS_SD_PRINTING)
  3881. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3882. else
  3883. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3884. }
  3885. break;
  3886. #endif
  3887. case 17:
  3888. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3889. enable_x();
  3890. enable_y();
  3891. enable_z();
  3892. enable_e0();
  3893. enable_e1();
  3894. enable_e2();
  3895. break;
  3896. #ifdef SDSUPPORT
  3897. case 20: // M20 - list SD card
  3898. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3899. card.ls();
  3900. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3901. break;
  3902. case 21: // M21 - init SD card
  3903. card.initsd();
  3904. break;
  3905. case 22: //M22 - release SD card
  3906. card.release();
  3907. break;
  3908. case 23: //M23 - Select file
  3909. starpos = (strchr(strchr_pointer + 4,'*'));
  3910. if(starpos!=NULL)
  3911. *(starpos)='\0';
  3912. card.openFile(strchr_pointer + 4,true);
  3913. break;
  3914. case 24: //M24 - Start SD print
  3915. if (!card.paused)
  3916. failstats_reset_print();
  3917. card.startFileprint();
  3918. starttime=millis();
  3919. break;
  3920. case 25: //M25 - Pause SD print
  3921. card.pauseSDPrint();
  3922. break;
  3923. case 26: //M26 - Set SD index
  3924. if(card.cardOK && code_seen('S')) {
  3925. card.setIndex(code_value_long());
  3926. }
  3927. break;
  3928. case 27: //M27 - Get SD status
  3929. card.getStatus();
  3930. break;
  3931. case 28: //M28 - Start SD write
  3932. starpos = (strchr(strchr_pointer + 4,'*'));
  3933. if(starpos != NULL){
  3934. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3935. strchr_pointer = strchr(npos,' ') + 1;
  3936. *(starpos) = '\0';
  3937. }
  3938. card.openFile(strchr_pointer+4,false);
  3939. break;
  3940. case 29: //M29 - Stop SD write
  3941. //processed in write to file routine above
  3942. //card,saving = false;
  3943. break;
  3944. case 30: //M30 <filename> Delete File
  3945. if (card.cardOK){
  3946. card.closefile();
  3947. starpos = (strchr(strchr_pointer + 4,'*'));
  3948. if(starpos != NULL){
  3949. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3950. strchr_pointer = strchr(npos,' ') + 1;
  3951. *(starpos) = '\0';
  3952. }
  3953. card.removeFile(strchr_pointer + 4);
  3954. }
  3955. break;
  3956. case 32: //M32 - Select file and start SD print
  3957. {
  3958. if(card.sdprinting) {
  3959. st_synchronize();
  3960. }
  3961. starpos = (strchr(strchr_pointer + 4,'*'));
  3962. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3963. if(namestartpos==NULL)
  3964. {
  3965. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3966. }
  3967. else
  3968. namestartpos++; //to skip the '!'
  3969. if(starpos!=NULL)
  3970. *(starpos)='\0';
  3971. bool call_procedure=(code_seen('P'));
  3972. if(strchr_pointer>namestartpos)
  3973. call_procedure=false; //false alert, 'P' found within filename
  3974. if( card.cardOK )
  3975. {
  3976. card.openFile(namestartpos,true,!call_procedure);
  3977. if(code_seen('S'))
  3978. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3979. card.setIndex(code_value_long());
  3980. card.startFileprint();
  3981. if(!call_procedure)
  3982. starttime=millis(); //procedure calls count as normal print time.
  3983. }
  3984. } break;
  3985. case 928: //M928 - Start SD write
  3986. starpos = (strchr(strchr_pointer + 5,'*'));
  3987. if(starpos != NULL){
  3988. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3989. strchr_pointer = strchr(npos,' ') + 1;
  3990. *(starpos) = '\0';
  3991. }
  3992. card.openLogFile(strchr_pointer+5);
  3993. break;
  3994. #endif //SDSUPPORT
  3995. case 31: //M31 take time since the start of the SD print or an M109 command
  3996. {
  3997. stoptime=millis();
  3998. char time[30];
  3999. unsigned long t=(stoptime-starttime)/1000;
  4000. int sec,min;
  4001. min=t/60;
  4002. sec=t%60;
  4003. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4004. SERIAL_ECHO_START;
  4005. SERIAL_ECHOLN(time);
  4006. lcd_setstatus(time);
  4007. autotempShutdown();
  4008. }
  4009. break;
  4010. #ifndef _DISABLE_M42_M226
  4011. case 42: //M42 -Change pin status via gcode
  4012. if (code_seen('S'))
  4013. {
  4014. int pin_status = code_value();
  4015. int pin_number = LED_PIN;
  4016. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4017. pin_number = code_value();
  4018. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4019. {
  4020. if (sensitive_pins[i] == pin_number)
  4021. {
  4022. pin_number = -1;
  4023. break;
  4024. }
  4025. }
  4026. #if defined(FAN_PIN) && FAN_PIN > -1
  4027. if (pin_number == FAN_PIN)
  4028. fanSpeed = pin_status;
  4029. #endif
  4030. if (pin_number > -1)
  4031. {
  4032. pinMode(pin_number, OUTPUT);
  4033. digitalWrite(pin_number, pin_status);
  4034. analogWrite(pin_number, pin_status);
  4035. }
  4036. }
  4037. break;
  4038. #endif //_DISABLE_M42_M226
  4039. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4040. // Reset the baby step value and the baby step applied flag.
  4041. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4042. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4043. // Reset the skew and offset in both RAM and EEPROM.
  4044. reset_bed_offset_and_skew();
  4045. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4046. // the planner will not perform any adjustments in the XY plane.
  4047. // Wait for the motors to stop and update the current position with the absolute values.
  4048. world2machine_revert_to_uncorrected();
  4049. break;
  4050. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4051. {
  4052. int8_t verbosity_level = 0;
  4053. bool only_Z = code_seen('Z');
  4054. #ifdef SUPPORT_VERBOSITY
  4055. if (code_seen('V'))
  4056. {
  4057. // Just 'V' without a number counts as V1.
  4058. char c = strchr_pointer[1];
  4059. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4060. }
  4061. #endif //SUPPORT_VERBOSITY
  4062. gcode_M45(only_Z, verbosity_level);
  4063. }
  4064. break;
  4065. /*
  4066. case 46:
  4067. {
  4068. // M46: Prusa3D: Show the assigned IP address.
  4069. uint8_t ip[4];
  4070. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4071. if (hasIP) {
  4072. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4073. SERIAL_ECHO(int(ip[0]));
  4074. SERIAL_ECHOPGM(".");
  4075. SERIAL_ECHO(int(ip[1]));
  4076. SERIAL_ECHOPGM(".");
  4077. SERIAL_ECHO(int(ip[2]));
  4078. SERIAL_ECHOPGM(".");
  4079. SERIAL_ECHO(int(ip[3]));
  4080. SERIAL_ECHOLNPGM("");
  4081. } else {
  4082. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4083. }
  4084. break;
  4085. }
  4086. */
  4087. case 47:
  4088. // M47: Prusa3D: Show end stops dialog on the display.
  4089. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4090. lcd_diag_show_end_stops();
  4091. KEEPALIVE_STATE(IN_HANDLER);
  4092. break;
  4093. #if 0
  4094. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4095. {
  4096. // Disable the default update procedure of the display. We will do a modal dialog.
  4097. lcd_update_enable(false);
  4098. // Let the planner use the uncorrected coordinates.
  4099. mbl.reset();
  4100. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4101. // the planner will not perform any adjustments in the XY plane.
  4102. // Wait for the motors to stop and update the current position with the absolute values.
  4103. world2machine_revert_to_uncorrected();
  4104. // Move the print head close to the bed.
  4105. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4107. st_synchronize();
  4108. // Home in the XY plane.
  4109. set_destination_to_current();
  4110. setup_for_endstop_move();
  4111. home_xy();
  4112. int8_t verbosity_level = 0;
  4113. if (code_seen('V')) {
  4114. // Just 'V' without a number counts as V1.
  4115. char c = strchr_pointer[1];
  4116. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4117. }
  4118. bool success = scan_bed_induction_points(verbosity_level);
  4119. clean_up_after_endstop_move();
  4120. // Print head up.
  4121. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4123. st_synchronize();
  4124. lcd_update_enable(true);
  4125. break;
  4126. }
  4127. #endif
  4128. // M48 Z-Probe repeatability measurement function.
  4129. //
  4130. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4131. //
  4132. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4133. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4134. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4135. // regenerated.
  4136. //
  4137. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4138. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4139. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4140. //
  4141. #ifdef ENABLE_AUTO_BED_LEVELING
  4142. #ifdef Z_PROBE_REPEATABILITY_TEST
  4143. case 48: // M48 Z-Probe repeatability
  4144. {
  4145. #if Z_MIN_PIN == -1
  4146. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4147. #endif
  4148. double sum=0.0;
  4149. double mean=0.0;
  4150. double sigma=0.0;
  4151. double sample_set[50];
  4152. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4153. double X_current, Y_current, Z_current;
  4154. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4155. if (code_seen('V') || code_seen('v')) {
  4156. verbose_level = code_value();
  4157. if (verbose_level<0 || verbose_level>4 ) {
  4158. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4159. goto Sigma_Exit;
  4160. }
  4161. }
  4162. if (verbose_level > 0) {
  4163. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4164. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4165. }
  4166. if (code_seen('n')) {
  4167. n_samples = code_value();
  4168. if (n_samples<4 || n_samples>50 ) {
  4169. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4170. goto Sigma_Exit;
  4171. }
  4172. }
  4173. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4174. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4175. Z_current = st_get_position_mm(Z_AXIS);
  4176. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4177. ext_position = st_get_position_mm(E_AXIS);
  4178. if (code_seen('X') || code_seen('x') ) {
  4179. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4180. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4181. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4182. goto Sigma_Exit;
  4183. }
  4184. }
  4185. if (code_seen('Y') || code_seen('y') ) {
  4186. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4187. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4188. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4189. goto Sigma_Exit;
  4190. }
  4191. }
  4192. if (code_seen('L') || code_seen('l') ) {
  4193. n_legs = code_value();
  4194. if ( n_legs==1 )
  4195. n_legs = 2;
  4196. if ( n_legs<0 || n_legs>15 ) {
  4197. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4198. goto Sigma_Exit;
  4199. }
  4200. }
  4201. //
  4202. // Do all the preliminary setup work. First raise the probe.
  4203. //
  4204. st_synchronize();
  4205. plan_bed_level_matrix.set_to_identity();
  4206. plan_buffer_line( X_current, Y_current, Z_start_location,
  4207. ext_position,
  4208. homing_feedrate[Z_AXIS]/60,
  4209. active_extruder);
  4210. st_synchronize();
  4211. //
  4212. // Now get everything to the specified probe point So we can safely do a probe to
  4213. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4214. // use that as a starting point for each probe.
  4215. //
  4216. if (verbose_level > 2)
  4217. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4218. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4219. ext_position,
  4220. homing_feedrate[X_AXIS]/60,
  4221. active_extruder);
  4222. st_synchronize();
  4223. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4224. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4225. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4226. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4227. //
  4228. // OK, do the inital probe to get us close to the bed.
  4229. // Then retrace the right amount and use that in subsequent probes
  4230. //
  4231. setup_for_endstop_move();
  4232. run_z_probe();
  4233. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4234. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4235. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4236. ext_position,
  4237. homing_feedrate[X_AXIS]/60,
  4238. active_extruder);
  4239. st_synchronize();
  4240. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4241. for( n=0; n<n_samples; n++) {
  4242. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4243. if ( n_legs) {
  4244. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4245. int rotational_direction, l;
  4246. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4247. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4248. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4249. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4250. //SERIAL_ECHOPAIR(" theta: ",theta);
  4251. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4252. //SERIAL_PROTOCOLLNPGM("");
  4253. for( l=0; l<n_legs-1; l++) {
  4254. if (rotational_direction==1)
  4255. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4256. else
  4257. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4258. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4259. if ( radius<0.0 )
  4260. radius = -radius;
  4261. X_current = X_probe_location + cos(theta) * radius;
  4262. Y_current = Y_probe_location + sin(theta) * radius;
  4263. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4264. X_current = X_MIN_POS;
  4265. if ( X_current>X_MAX_POS)
  4266. X_current = X_MAX_POS;
  4267. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4268. Y_current = Y_MIN_POS;
  4269. if ( Y_current>Y_MAX_POS)
  4270. Y_current = Y_MAX_POS;
  4271. if (verbose_level>3 ) {
  4272. SERIAL_ECHOPAIR("x: ", X_current);
  4273. SERIAL_ECHOPAIR("y: ", Y_current);
  4274. SERIAL_PROTOCOLLNPGM("");
  4275. }
  4276. do_blocking_move_to( X_current, Y_current, Z_current );
  4277. }
  4278. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4279. }
  4280. setup_for_endstop_move();
  4281. run_z_probe();
  4282. sample_set[n] = current_position[Z_AXIS];
  4283. //
  4284. // Get the current mean for the data points we have so far
  4285. //
  4286. sum=0.0;
  4287. for( j=0; j<=n; j++) {
  4288. sum = sum + sample_set[j];
  4289. }
  4290. mean = sum / (double (n+1));
  4291. //
  4292. // Now, use that mean to calculate the standard deviation for the
  4293. // data points we have so far
  4294. //
  4295. sum=0.0;
  4296. for( j=0; j<=n; j++) {
  4297. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4298. }
  4299. sigma = sqrt( sum / (double (n+1)) );
  4300. if (verbose_level > 1) {
  4301. SERIAL_PROTOCOL(n+1);
  4302. SERIAL_PROTOCOL(" of ");
  4303. SERIAL_PROTOCOL(n_samples);
  4304. SERIAL_PROTOCOLPGM(" z: ");
  4305. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4306. }
  4307. if (verbose_level > 2) {
  4308. SERIAL_PROTOCOL(" mean: ");
  4309. SERIAL_PROTOCOL_F(mean,6);
  4310. SERIAL_PROTOCOL(" sigma: ");
  4311. SERIAL_PROTOCOL_F(sigma,6);
  4312. }
  4313. if (verbose_level > 0)
  4314. SERIAL_PROTOCOLPGM("\n");
  4315. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4316. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4317. st_synchronize();
  4318. }
  4319. delay(1000);
  4320. clean_up_after_endstop_move();
  4321. // enable_endstops(true);
  4322. if (verbose_level > 0) {
  4323. SERIAL_PROTOCOLPGM("Mean: ");
  4324. SERIAL_PROTOCOL_F(mean, 6);
  4325. SERIAL_PROTOCOLPGM("\n");
  4326. }
  4327. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4328. SERIAL_PROTOCOL_F(sigma, 6);
  4329. SERIAL_PROTOCOLPGM("\n\n");
  4330. Sigma_Exit:
  4331. break;
  4332. }
  4333. #endif // Z_PROBE_REPEATABILITY_TEST
  4334. #endif // ENABLE_AUTO_BED_LEVELING
  4335. case 73: //M73 show percent done and time remaining
  4336. if(code_seen('P')) print_percent_done_normal = code_value();
  4337. if(code_seen('R')) print_time_remaining_normal = code_value();
  4338. if(code_seen('Q')) print_percent_done_silent = code_value();
  4339. if(code_seen('S')) print_time_remaining_silent = code_value();
  4340. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  4341. MYSERIAL.print(int(print_percent_done_normal));
  4342. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4343. MYSERIAL.println(print_time_remaining_normal);
  4344. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  4345. MYSERIAL.print(int(print_percent_done_silent));
  4346. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4347. MYSERIAL.println(print_time_remaining_silent);
  4348. break;
  4349. case 104: // M104
  4350. if(setTargetedHotend(104)){
  4351. break;
  4352. }
  4353. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4354. setWatch();
  4355. break;
  4356. case 112: // M112 -Emergency Stop
  4357. kill("", 3);
  4358. break;
  4359. case 140: // M140 set bed temp
  4360. if (code_seen('S')) setTargetBed(code_value());
  4361. break;
  4362. case 105 : // M105
  4363. if(setTargetedHotend(105)){
  4364. break;
  4365. }
  4366. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4367. SERIAL_PROTOCOLPGM("ok T:");
  4368. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4369. SERIAL_PROTOCOLPGM(" /");
  4370. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4371. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4372. SERIAL_PROTOCOLPGM(" B:");
  4373. SERIAL_PROTOCOL_F(degBed(),1);
  4374. SERIAL_PROTOCOLPGM(" /");
  4375. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4376. #endif //TEMP_BED_PIN
  4377. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4378. SERIAL_PROTOCOLPGM(" T");
  4379. SERIAL_PROTOCOL(cur_extruder);
  4380. SERIAL_PROTOCOLPGM(":");
  4381. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4382. SERIAL_PROTOCOLPGM(" /");
  4383. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4384. }
  4385. #else
  4386. SERIAL_ERROR_START;
  4387. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4388. #endif
  4389. SERIAL_PROTOCOLPGM(" @:");
  4390. #ifdef EXTRUDER_WATTS
  4391. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4392. SERIAL_PROTOCOLPGM("W");
  4393. #else
  4394. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4395. #endif
  4396. SERIAL_PROTOCOLPGM(" B@:");
  4397. #ifdef BED_WATTS
  4398. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4399. SERIAL_PROTOCOLPGM("W");
  4400. #else
  4401. SERIAL_PROTOCOL(getHeaterPower(-1));
  4402. #endif
  4403. #ifdef PINDA_THERMISTOR
  4404. SERIAL_PROTOCOLPGM(" P:");
  4405. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4406. #endif //PINDA_THERMISTOR
  4407. #ifdef AMBIENT_THERMISTOR
  4408. SERIAL_PROTOCOLPGM(" A:");
  4409. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4410. #endif //AMBIENT_THERMISTOR
  4411. #ifdef SHOW_TEMP_ADC_VALUES
  4412. {float raw = 0.0;
  4413. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4414. SERIAL_PROTOCOLPGM(" ADC B:");
  4415. SERIAL_PROTOCOL_F(degBed(),1);
  4416. SERIAL_PROTOCOLPGM("C->");
  4417. raw = rawBedTemp();
  4418. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4419. SERIAL_PROTOCOLPGM(" Rb->");
  4420. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4421. SERIAL_PROTOCOLPGM(" Rxb->");
  4422. SERIAL_PROTOCOL_F(raw, 5);
  4423. #endif
  4424. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4425. SERIAL_PROTOCOLPGM(" T");
  4426. SERIAL_PROTOCOL(cur_extruder);
  4427. SERIAL_PROTOCOLPGM(":");
  4428. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4429. SERIAL_PROTOCOLPGM("C->");
  4430. raw = rawHotendTemp(cur_extruder);
  4431. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4432. SERIAL_PROTOCOLPGM(" Rt");
  4433. SERIAL_PROTOCOL(cur_extruder);
  4434. SERIAL_PROTOCOLPGM("->");
  4435. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4436. SERIAL_PROTOCOLPGM(" Rx");
  4437. SERIAL_PROTOCOL(cur_extruder);
  4438. SERIAL_PROTOCOLPGM("->");
  4439. SERIAL_PROTOCOL_F(raw, 5);
  4440. }}
  4441. #endif
  4442. SERIAL_PROTOCOLLN("");
  4443. KEEPALIVE_STATE(NOT_BUSY);
  4444. return;
  4445. break;
  4446. case 109:
  4447. {// M109 - Wait for extruder heater to reach target.
  4448. if(setTargetedHotend(109)){
  4449. break;
  4450. }
  4451. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4452. heating_status = 1;
  4453. if (farm_mode) { prusa_statistics(1); };
  4454. #ifdef AUTOTEMP
  4455. autotemp_enabled=false;
  4456. #endif
  4457. if (code_seen('S')) {
  4458. setTargetHotend(code_value(), tmp_extruder);
  4459. CooldownNoWait = true;
  4460. } else if (code_seen('R')) {
  4461. setTargetHotend(code_value(), tmp_extruder);
  4462. CooldownNoWait = false;
  4463. }
  4464. #ifdef AUTOTEMP
  4465. if (code_seen('S')) autotemp_min=code_value();
  4466. if (code_seen('B')) autotemp_max=code_value();
  4467. if (code_seen('F'))
  4468. {
  4469. autotemp_factor=code_value();
  4470. autotemp_enabled=true;
  4471. }
  4472. #endif
  4473. setWatch();
  4474. codenum = millis();
  4475. /* See if we are heating up or cooling down */
  4476. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4477. KEEPALIVE_STATE(NOT_BUSY);
  4478. cancel_heatup = false;
  4479. wait_for_heater(codenum); //loops until target temperature is reached
  4480. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4481. KEEPALIVE_STATE(IN_HANDLER);
  4482. heating_status = 2;
  4483. if (farm_mode) { prusa_statistics(2); };
  4484. //starttime=millis();
  4485. previous_millis_cmd = millis();
  4486. }
  4487. break;
  4488. case 190: // M190 - Wait for bed heater to reach target.
  4489. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4490. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4491. heating_status = 3;
  4492. if (farm_mode) { prusa_statistics(1); };
  4493. if (code_seen('S'))
  4494. {
  4495. setTargetBed(code_value());
  4496. CooldownNoWait = true;
  4497. }
  4498. else if (code_seen('R'))
  4499. {
  4500. setTargetBed(code_value());
  4501. CooldownNoWait = false;
  4502. }
  4503. codenum = millis();
  4504. cancel_heatup = false;
  4505. target_direction = isHeatingBed(); // true if heating, false if cooling
  4506. KEEPALIVE_STATE(NOT_BUSY);
  4507. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4508. {
  4509. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4510. {
  4511. if (!farm_mode) {
  4512. float tt = degHotend(active_extruder);
  4513. SERIAL_PROTOCOLPGM("T:");
  4514. SERIAL_PROTOCOL(tt);
  4515. SERIAL_PROTOCOLPGM(" E:");
  4516. SERIAL_PROTOCOL((int)active_extruder);
  4517. SERIAL_PROTOCOLPGM(" B:");
  4518. SERIAL_PROTOCOL_F(degBed(), 1);
  4519. SERIAL_PROTOCOLLN("");
  4520. }
  4521. codenum = millis();
  4522. }
  4523. manage_heater();
  4524. manage_inactivity();
  4525. lcd_update();
  4526. }
  4527. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4528. KEEPALIVE_STATE(IN_HANDLER);
  4529. heating_status = 4;
  4530. previous_millis_cmd = millis();
  4531. #endif
  4532. break;
  4533. #if defined(FAN_PIN) && FAN_PIN > -1
  4534. case 106: //M106 Fan On
  4535. if (code_seen('S')){
  4536. fanSpeed=constrain(code_value(),0,255);
  4537. }
  4538. else {
  4539. fanSpeed=255;
  4540. }
  4541. break;
  4542. case 107: //M107 Fan Off
  4543. fanSpeed = 0;
  4544. break;
  4545. #endif //FAN_PIN
  4546. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4547. case 80: // M80 - Turn on Power Supply
  4548. SET_OUTPUT(PS_ON_PIN); //GND
  4549. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4550. // If you have a switch on suicide pin, this is useful
  4551. // if you want to start another print with suicide feature after
  4552. // a print without suicide...
  4553. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4554. SET_OUTPUT(SUICIDE_PIN);
  4555. WRITE(SUICIDE_PIN, HIGH);
  4556. #endif
  4557. #ifdef ULTIPANEL
  4558. powersupply = true;
  4559. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4560. lcd_update();
  4561. #endif
  4562. break;
  4563. #endif
  4564. case 81: // M81 - Turn off Power Supply
  4565. disable_heater();
  4566. st_synchronize();
  4567. disable_e0();
  4568. disable_e1();
  4569. disable_e2();
  4570. finishAndDisableSteppers();
  4571. fanSpeed = 0;
  4572. delay(1000); // Wait a little before to switch off
  4573. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4574. st_synchronize();
  4575. suicide();
  4576. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4577. SET_OUTPUT(PS_ON_PIN);
  4578. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4579. #endif
  4580. #ifdef ULTIPANEL
  4581. powersupply = false;
  4582. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4583. /*
  4584. MACHNAME = "Prusa i3"
  4585. MSGOFF = "Vypnuto"
  4586. "Prusai3"" ""vypnuto""."
  4587. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4588. */
  4589. lcd_update();
  4590. #endif
  4591. break;
  4592. case 82:
  4593. axis_relative_modes[3] = false;
  4594. break;
  4595. case 83:
  4596. axis_relative_modes[3] = true;
  4597. break;
  4598. case 18: //compatibility
  4599. case 84: // M84
  4600. if(code_seen('S')){
  4601. stepper_inactive_time = code_value() * 1000;
  4602. }
  4603. else
  4604. {
  4605. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4606. if(all_axis)
  4607. {
  4608. st_synchronize();
  4609. disable_e0();
  4610. disable_e1();
  4611. disable_e2();
  4612. finishAndDisableSteppers();
  4613. }
  4614. else
  4615. {
  4616. st_synchronize();
  4617. if (code_seen('X')) disable_x();
  4618. if (code_seen('Y')) disable_y();
  4619. if (code_seen('Z')) disable_z();
  4620. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4621. if (code_seen('E')) {
  4622. disable_e0();
  4623. disable_e1();
  4624. disable_e2();
  4625. }
  4626. #endif
  4627. }
  4628. }
  4629. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4630. print_time_remaining_init();
  4631. snmm_filaments_used = 0;
  4632. break;
  4633. case 85: // M85
  4634. if(code_seen('S')) {
  4635. max_inactive_time = code_value() * 1000;
  4636. }
  4637. break;
  4638. case 92: // M92
  4639. for(int8_t i=0; i < NUM_AXIS; i++)
  4640. {
  4641. if(code_seen(axis_codes[i]))
  4642. {
  4643. if(i == 3) { // E
  4644. float value = code_value();
  4645. if(value < 20.0) {
  4646. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4647. max_jerk[E_AXIS] *= factor;
  4648. max_feedrate[i] *= factor;
  4649. axis_steps_per_sqr_second[i] *= factor;
  4650. }
  4651. axis_steps_per_unit[i] = value;
  4652. }
  4653. else {
  4654. axis_steps_per_unit[i] = code_value();
  4655. }
  4656. }
  4657. }
  4658. break;
  4659. case 110: // M110 - reset line pos
  4660. if (code_seen('N'))
  4661. gcode_LastN = code_value_long();
  4662. break;
  4663. #ifdef HOST_KEEPALIVE_FEATURE
  4664. case 113: // M113 - Get or set Host Keepalive interval
  4665. if (code_seen('S')) {
  4666. host_keepalive_interval = (uint8_t)code_value_short();
  4667. // NOMORE(host_keepalive_interval, 60);
  4668. }
  4669. else {
  4670. SERIAL_ECHO_START;
  4671. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4672. SERIAL_PROTOCOLLN("");
  4673. }
  4674. break;
  4675. #endif
  4676. case 115: // M115
  4677. if (code_seen('V')) {
  4678. // Report the Prusa version number.
  4679. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4680. } else if (code_seen('U')) {
  4681. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4682. // pause the print and ask the user to upgrade the firmware.
  4683. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4684. } else {
  4685. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4686. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4687. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4688. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4689. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4690. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4691. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4692. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4693. SERIAL_ECHOPGM(" UUID:");
  4694. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4695. }
  4696. break;
  4697. /* case 117: // M117 display message
  4698. starpos = (strchr(strchr_pointer + 5,'*'));
  4699. if(starpos!=NULL)
  4700. *(starpos)='\0';
  4701. lcd_setstatus(strchr_pointer + 5);
  4702. break;*/
  4703. case 114: // M114
  4704. gcode_M114();
  4705. break;
  4706. case 120: // M120
  4707. enable_endstops(false) ;
  4708. break;
  4709. case 121: // M121
  4710. enable_endstops(true) ;
  4711. break;
  4712. case 119: // M119
  4713. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4714. SERIAL_PROTOCOLLN("");
  4715. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4716. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4717. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4718. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4719. }else{
  4720. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4721. }
  4722. SERIAL_PROTOCOLLN("");
  4723. #endif
  4724. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4725. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4726. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4727. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4728. }else{
  4729. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4730. }
  4731. SERIAL_PROTOCOLLN("");
  4732. #endif
  4733. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4734. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4735. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4736. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4737. }else{
  4738. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4739. }
  4740. SERIAL_PROTOCOLLN("");
  4741. #endif
  4742. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4743. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4744. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4745. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4746. }else{
  4747. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4748. }
  4749. SERIAL_PROTOCOLLN("");
  4750. #endif
  4751. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4752. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4753. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4754. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4755. }else{
  4756. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4757. }
  4758. SERIAL_PROTOCOLLN("");
  4759. #endif
  4760. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4761. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4762. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4763. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4764. }else{
  4765. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4766. }
  4767. SERIAL_PROTOCOLLN("");
  4768. #endif
  4769. break;
  4770. //TODO: update for all axis, use for loop
  4771. #ifdef BLINKM
  4772. case 150: // M150
  4773. {
  4774. byte red;
  4775. byte grn;
  4776. byte blu;
  4777. if(code_seen('R')) red = code_value();
  4778. if(code_seen('U')) grn = code_value();
  4779. if(code_seen('B')) blu = code_value();
  4780. SendColors(red,grn,blu);
  4781. }
  4782. break;
  4783. #endif //BLINKM
  4784. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4785. {
  4786. tmp_extruder = active_extruder;
  4787. if(code_seen('T')) {
  4788. tmp_extruder = code_value();
  4789. if(tmp_extruder >= EXTRUDERS) {
  4790. SERIAL_ECHO_START;
  4791. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4792. break;
  4793. }
  4794. }
  4795. float area = .0;
  4796. if(code_seen('D')) {
  4797. float diameter = (float)code_value();
  4798. if (diameter == 0.0) {
  4799. // setting any extruder filament size disables volumetric on the assumption that
  4800. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4801. // for all extruders
  4802. volumetric_enabled = false;
  4803. } else {
  4804. filament_size[tmp_extruder] = (float)code_value();
  4805. // make sure all extruders have some sane value for the filament size
  4806. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4807. #if EXTRUDERS > 1
  4808. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4809. #if EXTRUDERS > 2
  4810. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4811. #endif
  4812. #endif
  4813. volumetric_enabled = true;
  4814. }
  4815. } else {
  4816. //reserved for setting filament diameter via UFID or filament measuring device
  4817. break;
  4818. }
  4819. calculate_extruder_multipliers();
  4820. }
  4821. break;
  4822. case 201: // M201
  4823. for(int8_t i=0; i < NUM_AXIS; i++)
  4824. {
  4825. if(code_seen(axis_codes[i]))
  4826. {
  4827. max_acceleration_units_per_sq_second[i] = code_value();
  4828. }
  4829. }
  4830. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4831. reset_acceleration_rates();
  4832. break;
  4833. #if 0 // Not used for Sprinter/grbl gen6
  4834. case 202: // M202
  4835. for(int8_t i=0; i < NUM_AXIS; i++) {
  4836. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4837. }
  4838. break;
  4839. #endif
  4840. case 203: // M203 max feedrate mm/sec
  4841. for(int8_t i=0; i < NUM_AXIS; i++) {
  4842. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4843. }
  4844. break;
  4845. case 204: // M204 acclereration S normal moves T filmanent only moves
  4846. {
  4847. if(code_seen('S')) acceleration = code_value() ;
  4848. if(code_seen('T')) retract_acceleration = code_value() ;
  4849. }
  4850. break;
  4851. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4852. {
  4853. if(code_seen('S')) minimumfeedrate = code_value();
  4854. if(code_seen('T')) mintravelfeedrate = code_value();
  4855. if(code_seen('B')) minsegmenttime = code_value() ;
  4856. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4857. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4858. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4859. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4860. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4861. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4862. }
  4863. break;
  4864. case 206: // M206 additional homing offset
  4865. for(int8_t i=0; i < 3; i++)
  4866. {
  4867. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4868. }
  4869. break;
  4870. #ifdef FWRETRACT
  4871. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4872. {
  4873. if(code_seen('S'))
  4874. {
  4875. retract_length = code_value() ;
  4876. }
  4877. if(code_seen('F'))
  4878. {
  4879. retract_feedrate = code_value()/60 ;
  4880. }
  4881. if(code_seen('Z'))
  4882. {
  4883. retract_zlift = code_value() ;
  4884. }
  4885. }break;
  4886. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4887. {
  4888. if(code_seen('S'))
  4889. {
  4890. retract_recover_length = code_value() ;
  4891. }
  4892. if(code_seen('F'))
  4893. {
  4894. retract_recover_feedrate = code_value()/60 ;
  4895. }
  4896. }break;
  4897. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4898. {
  4899. if(code_seen('S'))
  4900. {
  4901. int t= code_value() ;
  4902. switch(t)
  4903. {
  4904. case 0:
  4905. {
  4906. autoretract_enabled=false;
  4907. retracted[0]=false;
  4908. #if EXTRUDERS > 1
  4909. retracted[1]=false;
  4910. #endif
  4911. #if EXTRUDERS > 2
  4912. retracted[2]=false;
  4913. #endif
  4914. }break;
  4915. case 1:
  4916. {
  4917. autoretract_enabled=true;
  4918. retracted[0]=false;
  4919. #if EXTRUDERS > 1
  4920. retracted[1]=false;
  4921. #endif
  4922. #if EXTRUDERS > 2
  4923. retracted[2]=false;
  4924. #endif
  4925. }break;
  4926. default:
  4927. SERIAL_ECHO_START;
  4928. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4929. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4930. SERIAL_ECHOLNPGM("\"(1)");
  4931. }
  4932. }
  4933. }break;
  4934. #endif // FWRETRACT
  4935. #if EXTRUDERS > 1
  4936. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4937. {
  4938. if(setTargetedHotend(218)){
  4939. break;
  4940. }
  4941. if(code_seen('X'))
  4942. {
  4943. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4944. }
  4945. if(code_seen('Y'))
  4946. {
  4947. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4948. }
  4949. SERIAL_ECHO_START;
  4950. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4951. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4952. {
  4953. SERIAL_ECHO(" ");
  4954. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4955. SERIAL_ECHO(",");
  4956. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4957. }
  4958. SERIAL_ECHOLN("");
  4959. }break;
  4960. #endif
  4961. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4962. {
  4963. if(code_seen('S'))
  4964. {
  4965. feedmultiply = code_value() ;
  4966. }
  4967. }
  4968. break;
  4969. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4970. {
  4971. if(code_seen('S'))
  4972. {
  4973. int tmp_code = code_value();
  4974. if (code_seen('T'))
  4975. {
  4976. if(setTargetedHotend(221)){
  4977. break;
  4978. }
  4979. extruder_multiply[tmp_extruder] = tmp_code;
  4980. }
  4981. else
  4982. {
  4983. extrudemultiply = tmp_code ;
  4984. }
  4985. }
  4986. calculate_extruder_multipliers();
  4987. }
  4988. break;
  4989. #ifndef _DISABLE_M42_M226
  4990. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4991. {
  4992. if(code_seen('P')){
  4993. int pin_number = code_value(); // pin number
  4994. int pin_state = -1; // required pin state - default is inverted
  4995. if(code_seen('S')) pin_state = code_value(); // required pin state
  4996. if(pin_state >= -1 && pin_state <= 1){
  4997. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4998. {
  4999. if (sensitive_pins[i] == pin_number)
  5000. {
  5001. pin_number = -1;
  5002. break;
  5003. }
  5004. }
  5005. if (pin_number > -1)
  5006. {
  5007. int target = LOW;
  5008. st_synchronize();
  5009. pinMode(pin_number, INPUT);
  5010. switch(pin_state){
  5011. case 1:
  5012. target = HIGH;
  5013. break;
  5014. case 0:
  5015. target = LOW;
  5016. break;
  5017. case -1:
  5018. target = !digitalRead(pin_number);
  5019. break;
  5020. }
  5021. while(digitalRead(pin_number) != target){
  5022. manage_heater();
  5023. manage_inactivity();
  5024. lcd_update();
  5025. }
  5026. }
  5027. }
  5028. }
  5029. }
  5030. break;
  5031. #endif //_DISABLE_M42_M226
  5032. #if NUM_SERVOS > 0
  5033. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5034. {
  5035. int servo_index = -1;
  5036. int servo_position = 0;
  5037. if (code_seen('P'))
  5038. servo_index = code_value();
  5039. if (code_seen('S')) {
  5040. servo_position = code_value();
  5041. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5042. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5043. servos[servo_index].attach(0);
  5044. #endif
  5045. servos[servo_index].write(servo_position);
  5046. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5047. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5048. servos[servo_index].detach();
  5049. #endif
  5050. }
  5051. else {
  5052. SERIAL_ECHO_START;
  5053. SERIAL_ECHO("Servo ");
  5054. SERIAL_ECHO(servo_index);
  5055. SERIAL_ECHOLN(" out of range");
  5056. }
  5057. }
  5058. else if (servo_index >= 0) {
  5059. SERIAL_PROTOCOL(_T(MSG_OK));
  5060. SERIAL_PROTOCOL(" Servo ");
  5061. SERIAL_PROTOCOL(servo_index);
  5062. SERIAL_PROTOCOL(": ");
  5063. SERIAL_PROTOCOL(servos[servo_index].read());
  5064. SERIAL_PROTOCOLLN("");
  5065. }
  5066. }
  5067. break;
  5068. #endif // NUM_SERVOS > 0
  5069. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5070. case 300: // M300
  5071. {
  5072. int beepS = code_seen('S') ? code_value() : 110;
  5073. int beepP = code_seen('P') ? code_value() : 1000;
  5074. if (beepS > 0)
  5075. {
  5076. #if BEEPER > 0
  5077. tone(BEEPER, beepS);
  5078. delay(beepP);
  5079. noTone(BEEPER);
  5080. #elif defined(ULTRALCD)
  5081. lcd_buzz(beepS, beepP);
  5082. #elif defined(LCD_USE_I2C_BUZZER)
  5083. lcd_buzz(beepP, beepS);
  5084. #endif
  5085. }
  5086. else
  5087. {
  5088. delay(beepP);
  5089. }
  5090. }
  5091. break;
  5092. #endif // M300
  5093. #ifdef PIDTEMP
  5094. case 301: // M301
  5095. {
  5096. if(code_seen('P')) Kp = code_value();
  5097. if(code_seen('I')) Ki = scalePID_i(code_value());
  5098. if(code_seen('D')) Kd = scalePID_d(code_value());
  5099. #ifdef PID_ADD_EXTRUSION_RATE
  5100. if(code_seen('C')) Kc = code_value();
  5101. #endif
  5102. updatePID();
  5103. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5104. SERIAL_PROTOCOL(" p:");
  5105. SERIAL_PROTOCOL(Kp);
  5106. SERIAL_PROTOCOL(" i:");
  5107. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5108. SERIAL_PROTOCOL(" d:");
  5109. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5110. #ifdef PID_ADD_EXTRUSION_RATE
  5111. SERIAL_PROTOCOL(" c:");
  5112. //Kc does not have scaling applied above, or in resetting defaults
  5113. SERIAL_PROTOCOL(Kc);
  5114. #endif
  5115. SERIAL_PROTOCOLLN("");
  5116. }
  5117. break;
  5118. #endif //PIDTEMP
  5119. #ifdef PIDTEMPBED
  5120. case 304: // M304
  5121. {
  5122. if(code_seen('P')) bedKp = code_value();
  5123. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5124. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5125. updatePID();
  5126. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5127. SERIAL_PROTOCOL(" p:");
  5128. SERIAL_PROTOCOL(bedKp);
  5129. SERIAL_PROTOCOL(" i:");
  5130. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5131. SERIAL_PROTOCOL(" d:");
  5132. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5133. SERIAL_PROTOCOLLN("");
  5134. }
  5135. break;
  5136. #endif //PIDTEMP
  5137. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5138. {
  5139. #ifdef CHDK
  5140. SET_OUTPUT(CHDK);
  5141. WRITE(CHDK, HIGH);
  5142. chdkHigh = millis();
  5143. chdkActive = true;
  5144. #else
  5145. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5146. const uint8_t NUM_PULSES=16;
  5147. const float PULSE_LENGTH=0.01524;
  5148. for(int i=0; i < NUM_PULSES; i++) {
  5149. WRITE(PHOTOGRAPH_PIN, HIGH);
  5150. _delay_ms(PULSE_LENGTH);
  5151. WRITE(PHOTOGRAPH_PIN, LOW);
  5152. _delay_ms(PULSE_LENGTH);
  5153. }
  5154. delay(7.33);
  5155. for(int i=0; i < NUM_PULSES; i++) {
  5156. WRITE(PHOTOGRAPH_PIN, HIGH);
  5157. _delay_ms(PULSE_LENGTH);
  5158. WRITE(PHOTOGRAPH_PIN, LOW);
  5159. _delay_ms(PULSE_LENGTH);
  5160. }
  5161. #endif
  5162. #endif //chdk end if
  5163. }
  5164. break;
  5165. #ifdef DOGLCD
  5166. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5167. {
  5168. if (code_seen('C')) {
  5169. lcd_setcontrast( ((int)code_value())&63 );
  5170. }
  5171. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5172. SERIAL_PROTOCOL(lcd_contrast);
  5173. SERIAL_PROTOCOLLN("");
  5174. }
  5175. break;
  5176. #endif
  5177. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5178. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5179. {
  5180. float temp = .0;
  5181. if (code_seen('S')) temp=code_value();
  5182. set_extrude_min_temp(temp);
  5183. }
  5184. break;
  5185. #endif
  5186. case 303: // M303 PID autotune
  5187. {
  5188. float temp = 150.0;
  5189. int e=0;
  5190. int c=5;
  5191. if (code_seen('E')) e=code_value();
  5192. if (e<0)
  5193. temp=70;
  5194. if (code_seen('S')) temp=code_value();
  5195. if (code_seen('C')) c=code_value();
  5196. PID_autotune(temp, e, c);
  5197. }
  5198. break;
  5199. case 400: // M400 finish all moves
  5200. {
  5201. st_synchronize();
  5202. }
  5203. break;
  5204. case 500: // M500 Store settings in EEPROM
  5205. {
  5206. Config_StoreSettings(EEPROM_OFFSET);
  5207. }
  5208. break;
  5209. case 501: // M501 Read settings from EEPROM
  5210. {
  5211. Config_RetrieveSettings(EEPROM_OFFSET);
  5212. }
  5213. break;
  5214. case 502: // M502 Revert to default settings
  5215. {
  5216. Config_ResetDefault();
  5217. }
  5218. break;
  5219. case 503: // M503 print settings currently in memory
  5220. {
  5221. Config_PrintSettings();
  5222. }
  5223. break;
  5224. case 509: //M509 Force language selection
  5225. {
  5226. lcd_force_language_selection();
  5227. SERIAL_ECHO_START;
  5228. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5229. }
  5230. break;
  5231. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5232. case 540:
  5233. {
  5234. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5235. }
  5236. break;
  5237. #endif
  5238. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5239. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5240. {
  5241. float value;
  5242. if (code_seen('Z'))
  5243. {
  5244. value = code_value();
  5245. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5246. {
  5247. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5248. SERIAL_ECHO_START;
  5249. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5250. SERIAL_PROTOCOLLN("");
  5251. }
  5252. else
  5253. {
  5254. SERIAL_ECHO_START;
  5255. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5256. SERIAL_ECHORPGM(MSG_Z_MIN);
  5257. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5258. SERIAL_ECHORPGM(MSG_Z_MAX);
  5259. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5260. SERIAL_PROTOCOLLN("");
  5261. }
  5262. }
  5263. else
  5264. {
  5265. SERIAL_ECHO_START;
  5266. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5267. SERIAL_ECHO(-zprobe_zoffset);
  5268. SERIAL_PROTOCOLLN("");
  5269. }
  5270. break;
  5271. }
  5272. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5273. #ifdef FILAMENTCHANGEENABLE
  5274. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5275. {
  5276. #ifdef PAT9125
  5277. bool old_fsensor_enabled = fsensor_enabled;
  5278. fsensor_enabled = false; //temporary solution for unexpected restarting
  5279. #endif //PAT9125
  5280. st_synchronize();
  5281. float target[4];
  5282. float lastpos[4];
  5283. if (farm_mode)
  5284. {
  5285. prusa_statistics(22);
  5286. }
  5287. feedmultiplyBckp=feedmultiply;
  5288. int8_t TooLowZ = 0;
  5289. float HotendTempBckp = degTargetHotend(active_extruder);
  5290. int fanSpeedBckp = fanSpeed;
  5291. target[X_AXIS]=current_position[X_AXIS];
  5292. target[Y_AXIS]=current_position[Y_AXIS];
  5293. target[Z_AXIS]=current_position[Z_AXIS];
  5294. target[E_AXIS]=current_position[E_AXIS];
  5295. lastpos[X_AXIS]=current_position[X_AXIS];
  5296. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5297. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5298. lastpos[E_AXIS]=current_position[E_AXIS];
  5299. //Restract extruder
  5300. if(code_seen('E'))
  5301. {
  5302. target[E_AXIS]+= code_value();
  5303. }
  5304. else
  5305. {
  5306. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5307. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5308. #endif
  5309. }
  5310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5311. //Lift Z
  5312. if(code_seen('Z'))
  5313. {
  5314. target[Z_AXIS]+= code_value();
  5315. }
  5316. else
  5317. {
  5318. #ifdef FILAMENTCHANGE_ZADD
  5319. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5320. if(target[Z_AXIS] < 10){
  5321. target[Z_AXIS]+= 10 ;
  5322. TooLowZ = 1;
  5323. }else{
  5324. TooLowZ = 0;
  5325. }
  5326. #endif
  5327. }
  5328. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5329. //Move XY to side
  5330. if(code_seen('X'))
  5331. {
  5332. target[X_AXIS]+= code_value();
  5333. }
  5334. else
  5335. {
  5336. #ifdef FILAMENTCHANGE_XPOS
  5337. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5338. #endif
  5339. }
  5340. if(code_seen('Y'))
  5341. {
  5342. target[Y_AXIS]= code_value();
  5343. }
  5344. else
  5345. {
  5346. #ifdef FILAMENTCHANGE_YPOS
  5347. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5348. #endif
  5349. }
  5350. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5351. st_synchronize();
  5352. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5353. uint8_t cnt = 0;
  5354. int counterBeep = 0;
  5355. fanSpeed = 0;
  5356. unsigned long waiting_start_time = millis();
  5357. uint8_t wait_for_user_state = 0;
  5358. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5359. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5360. //cnt++;
  5361. manage_heater();
  5362. manage_inactivity(true);
  5363. /*#ifdef SNMM
  5364. target[E_AXIS] += 0.002;
  5365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5366. #endif // SNMM*/
  5367. //if (cnt == 0)
  5368. {
  5369. #if BEEPER > 0
  5370. if (counterBeep == 500) {
  5371. counterBeep = 0;
  5372. }
  5373. SET_OUTPUT(BEEPER);
  5374. if (counterBeep == 0) {
  5375. WRITE(BEEPER, HIGH);
  5376. }
  5377. if (counterBeep == 20) {
  5378. WRITE(BEEPER, LOW);
  5379. }
  5380. counterBeep++;
  5381. #else
  5382. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5383. lcd_buzz(1000 / 6, 100);
  5384. #else
  5385. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5386. #endif
  5387. #endif
  5388. }
  5389. switch (wait_for_user_state) {
  5390. case 0:
  5391. delay_keep_alive(4);
  5392. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5393. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5394. wait_for_user_state = 1;
  5395. setTargetHotend(0, 0);
  5396. setTargetHotend(0, 1);
  5397. setTargetHotend(0, 2);
  5398. st_synchronize();
  5399. disable_e0();
  5400. disable_e1();
  5401. disable_e2();
  5402. }
  5403. break;
  5404. case 1:
  5405. delay_keep_alive(4);
  5406. if (lcd_clicked()) {
  5407. setTargetHotend(HotendTempBckp, active_extruder);
  5408. lcd_wait_for_heater();
  5409. wait_for_user_state = 2;
  5410. }
  5411. break;
  5412. case 2:
  5413. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5414. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5415. waiting_start_time = millis();
  5416. wait_for_user_state = 0;
  5417. }
  5418. else {
  5419. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5420. lcd.setCursor(1, 4);
  5421. lcd.print(ftostr3(degHotend(active_extruder)));
  5422. }
  5423. break;
  5424. }
  5425. }
  5426. WRITE(BEEPER, LOW);
  5427. lcd_change_fil_state = 0;
  5428. // Unload filament
  5429. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5430. KEEPALIVE_STATE(IN_HANDLER);
  5431. custom_message = true;
  5432. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5433. if (code_seen('L'))
  5434. {
  5435. target[E_AXIS] += code_value();
  5436. }
  5437. else
  5438. {
  5439. #ifdef SNMM
  5440. #else
  5441. #ifdef FILAMENTCHANGE_FINALRETRACT
  5442. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5443. #endif
  5444. #endif // SNMM
  5445. }
  5446. #ifdef SNMM
  5447. target[E_AXIS] += 12;
  5448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5449. target[E_AXIS] += 6;
  5450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5451. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5453. st_synchronize();
  5454. target[E_AXIS] += (FIL_COOLING);
  5455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5456. target[E_AXIS] += (FIL_COOLING*-1);
  5457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5458. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5460. st_synchronize();
  5461. #else
  5462. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5463. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5464. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5465. st_synchronize();
  5466. #ifdef TMC2130
  5467. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5468. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5469. #else
  5470. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5471. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5472. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5473. #endif //TMC2130
  5474. target[E_AXIS] -= 45;
  5475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5476. st_synchronize();
  5477. target[E_AXIS] -= 15;
  5478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5479. st_synchronize();
  5480. target[E_AXIS] -= 20;
  5481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5482. st_synchronize();
  5483. #ifdef TMC2130
  5484. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5485. #else
  5486. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5487. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5488. else st_current_set(2, tmp_motor_loud[2]);
  5489. #endif //TMC2130
  5490. #endif // SNMM
  5491. //finish moves
  5492. st_synchronize();
  5493. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5494. //disable extruder steppers so filament can be removed
  5495. disable_e0();
  5496. disable_e1();
  5497. disable_e2();
  5498. delay(100);
  5499. WRITE(BEEPER, HIGH);
  5500. counterBeep = 0;
  5501. while(!lcd_clicked() && (counterBeep < 50)) {
  5502. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5503. delay_keep_alive(100);
  5504. counterBeep++;
  5505. }
  5506. WRITE(BEEPER, LOW);
  5507. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5508. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5509. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5510. //lcd_return_to_status();
  5511. lcd_update_enable(true);
  5512. //Wait for user to insert filament
  5513. lcd_wait_interact();
  5514. //load_filament_time = millis();
  5515. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5516. #ifdef PAT9125
  5517. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5518. #endif //PAT9125
  5519. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5520. while(!lcd_clicked())
  5521. {
  5522. manage_heater();
  5523. manage_inactivity(true);
  5524. #ifdef PAT9125
  5525. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5526. {
  5527. tone(BEEPER, 1000);
  5528. delay_keep_alive(50);
  5529. noTone(BEEPER);
  5530. break;
  5531. }
  5532. #endif //PAT9125
  5533. /*#ifdef SNMM
  5534. target[E_AXIS] += 0.002;
  5535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5536. #endif // SNMM*/
  5537. }
  5538. #ifdef PAT9125
  5539. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5540. #endif //PAT9125
  5541. //WRITE(BEEPER, LOW);
  5542. KEEPALIVE_STATE(IN_HANDLER);
  5543. #ifdef SNMM
  5544. display_loading();
  5545. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5546. do {
  5547. target[E_AXIS] += 0.002;
  5548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5549. delay_keep_alive(2);
  5550. } while (!lcd_clicked());
  5551. KEEPALIVE_STATE(IN_HANDLER);
  5552. /*if (millis() - load_filament_time > 2) {
  5553. load_filament_time = millis();
  5554. target[E_AXIS] += 0.001;
  5555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5556. }*/
  5557. //Filament inserted
  5558. //Feed the filament to the end of nozzle quickly
  5559. st_synchronize();
  5560. target[E_AXIS] += bowden_length[snmm_extruder];
  5561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5562. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5563. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5564. target[E_AXIS] += 40;
  5565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5566. target[E_AXIS] += 10;
  5567. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5568. #else
  5569. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5571. #endif // SNMM
  5572. //Extrude some filament
  5573. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5575. //Wait for user to check the state
  5576. lcd_change_fil_state = 0;
  5577. lcd_loading_filament();
  5578. tone(BEEPER, 500);
  5579. delay_keep_alive(50);
  5580. noTone(BEEPER);
  5581. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5582. lcd_change_fil_state = 0;
  5583. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5584. lcd_alright();
  5585. KEEPALIVE_STATE(IN_HANDLER);
  5586. switch(lcd_change_fil_state){
  5587. // Filament failed to load so load it again
  5588. case 2:
  5589. #ifdef SNMM
  5590. display_loading();
  5591. do {
  5592. target[E_AXIS] += 0.002;
  5593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5594. delay_keep_alive(2);
  5595. } while (!lcd_clicked());
  5596. st_synchronize();
  5597. target[E_AXIS] += bowden_length[snmm_extruder];
  5598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5599. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5601. target[E_AXIS] += 40;
  5602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5603. target[E_AXIS] += 10;
  5604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5605. #else
  5606. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5608. #endif
  5609. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5611. lcd_loading_filament();
  5612. break;
  5613. // Filament loaded properly but color is not clear
  5614. case 3:
  5615. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5617. lcd_loading_color();
  5618. break;
  5619. // Everything good
  5620. default:
  5621. lcd_change_success();
  5622. lcd_update_enable(true);
  5623. break;
  5624. }
  5625. }
  5626. //Not let's go back to print
  5627. fanSpeed = fanSpeedBckp;
  5628. //Feed a little of filament to stabilize pressure
  5629. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5630. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5631. //Retract
  5632. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5634. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5635. //Move XY back
  5636. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5637. //Move Z back
  5638. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5639. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5640. //Unretract
  5641. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5642. //Set E position to original
  5643. plan_set_e_position(lastpos[E_AXIS]);
  5644. //Recover feed rate
  5645. feedmultiply=feedmultiplyBckp;
  5646. char cmd[9];
  5647. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5648. enquecommand(cmd);
  5649. lcd_setstatuspgm(_T(WELCOME_MSG));
  5650. custom_message = false;
  5651. custom_message_type = 0;
  5652. #ifdef PAT9125
  5653. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5654. if (fsensor_M600)
  5655. {
  5656. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5657. st_synchronize();
  5658. while (!is_buffer_empty())
  5659. {
  5660. process_commands();
  5661. cmdqueue_pop_front();
  5662. }
  5663. fsensor_enable();
  5664. fsensor_restore_print_and_continue();
  5665. }
  5666. #endif //PAT9125
  5667. }
  5668. break;
  5669. #endif //FILAMENTCHANGEENABLE
  5670. case 601: {
  5671. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5672. }
  5673. break;
  5674. case 602: {
  5675. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5676. }
  5677. break;
  5678. #ifdef PINDA_THERMISTOR
  5679. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5680. {
  5681. int set_target_pinda = 0;
  5682. if (code_seen('S')) {
  5683. set_target_pinda = code_value();
  5684. }
  5685. else {
  5686. break;
  5687. }
  5688. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5689. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5690. SERIAL_PROTOCOL(set_target_pinda);
  5691. SERIAL_PROTOCOLLN("");
  5692. codenum = millis();
  5693. cancel_heatup = false;
  5694. bool is_pinda_cooling = false;
  5695. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5696. is_pinda_cooling = true;
  5697. }
  5698. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5699. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5700. {
  5701. SERIAL_PROTOCOLPGM("P:");
  5702. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5703. SERIAL_PROTOCOLPGM("/");
  5704. SERIAL_PROTOCOL(set_target_pinda);
  5705. SERIAL_PROTOCOLLN("");
  5706. codenum = millis();
  5707. }
  5708. manage_heater();
  5709. manage_inactivity();
  5710. lcd_update();
  5711. }
  5712. LCD_MESSAGERPGM(_T(MSG_OK));
  5713. break;
  5714. }
  5715. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5716. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5717. uint8_t cal_status = calibration_status_pinda();
  5718. int16_t usteps = 0;
  5719. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5720. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5721. for (uint8_t i = 0; i < 6; i++)
  5722. {
  5723. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5724. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5725. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5726. SERIAL_PROTOCOLPGM(", ");
  5727. SERIAL_PROTOCOL(35 + (i * 5));
  5728. SERIAL_PROTOCOLPGM(", ");
  5729. SERIAL_PROTOCOL(usteps);
  5730. SERIAL_PROTOCOLPGM(", ");
  5731. SERIAL_PROTOCOL(mm * 1000);
  5732. SERIAL_PROTOCOLLN("");
  5733. }
  5734. }
  5735. else if (code_seen('!')) { // ! - Set factory default values
  5736. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5737. int16_t z_shift = 8; //40C - 20um - 8usteps
  5738. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5739. z_shift = 24; //45C - 60um - 24usteps
  5740. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5741. z_shift = 48; //50C - 120um - 48usteps
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5743. z_shift = 80; //55C - 200um - 80usteps
  5744. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5745. z_shift = 120; //60C - 300um - 120usteps
  5746. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5747. SERIAL_PROTOCOLLN("factory restored");
  5748. }
  5749. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5750. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5751. int16_t z_shift = 0;
  5752. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5753. SERIAL_PROTOCOLLN("zerorized");
  5754. }
  5755. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5756. int16_t usteps = code_value();
  5757. if (code_seen('I')) {
  5758. byte index = code_value();
  5759. if ((index >= 0) && (index < 5)) {
  5760. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5761. SERIAL_PROTOCOLLN("OK");
  5762. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5763. for (uint8_t i = 0; i < 6; i++)
  5764. {
  5765. usteps = 0;
  5766. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5767. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5768. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5769. SERIAL_PROTOCOLPGM(", ");
  5770. SERIAL_PROTOCOL(35 + (i * 5));
  5771. SERIAL_PROTOCOLPGM(", ");
  5772. SERIAL_PROTOCOL(usteps);
  5773. SERIAL_PROTOCOLPGM(", ");
  5774. SERIAL_PROTOCOL(mm * 1000);
  5775. SERIAL_PROTOCOLLN("");
  5776. }
  5777. }
  5778. }
  5779. }
  5780. else {
  5781. SERIAL_PROTOCOLPGM("no valid command");
  5782. }
  5783. break;
  5784. #endif //PINDA_THERMISTOR
  5785. #ifdef LIN_ADVANCE
  5786. case 900: // M900: Set LIN_ADVANCE options.
  5787. gcode_M900();
  5788. break;
  5789. #endif
  5790. case 907: // M907 Set digital trimpot motor current using axis codes.
  5791. {
  5792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5793. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5794. if(code_seen('B')) st_current_set(4,code_value());
  5795. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5796. #endif
  5797. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5798. if(code_seen('X')) st_current_set(0, code_value());
  5799. #endif
  5800. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5801. if(code_seen('Z')) st_current_set(1, code_value());
  5802. #endif
  5803. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5804. if(code_seen('E')) st_current_set(2, code_value());
  5805. #endif
  5806. }
  5807. break;
  5808. case 908: // M908 Control digital trimpot directly.
  5809. {
  5810. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5811. uint8_t channel,current;
  5812. if(code_seen('P')) channel=code_value();
  5813. if(code_seen('S')) current=code_value();
  5814. digitalPotWrite(channel, current);
  5815. #endif
  5816. }
  5817. break;
  5818. #ifdef TMC2130
  5819. case 910: // M910 TMC2130 init
  5820. {
  5821. tmc2130_init();
  5822. }
  5823. break;
  5824. case 911: // M911 Set TMC2130 holding currents
  5825. {
  5826. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5827. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5828. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5829. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5830. }
  5831. break;
  5832. case 912: // M912 Set TMC2130 running currents
  5833. {
  5834. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5835. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5836. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5837. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5838. }
  5839. break;
  5840. case 913: // M913 Print TMC2130 currents
  5841. {
  5842. tmc2130_print_currents();
  5843. }
  5844. break;
  5845. case 914: // M914 Set normal mode
  5846. {
  5847. tmc2130_mode = TMC2130_MODE_NORMAL;
  5848. tmc2130_init();
  5849. }
  5850. break;
  5851. case 915: // M915 Set silent mode
  5852. {
  5853. tmc2130_mode = TMC2130_MODE_SILENT;
  5854. tmc2130_init();
  5855. }
  5856. break;
  5857. case 916: // M916 Set sg_thrs
  5858. {
  5859. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5860. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5861. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5862. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5863. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5864. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5865. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5866. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5867. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5868. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5869. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5870. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5871. }
  5872. break;
  5873. case 917: // M917 Set TMC2130 pwm_ampl
  5874. {
  5875. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5876. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5877. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5878. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5879. }
  5880. break;
  5881. case 918: // M918 Set TMC2130 pwm_grad
  5882. {
  5883. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5884. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5885. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5886. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5887. }
  5888. break;
  5889. #endif //TMC2130
  5890. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5891. {
  5892. #ifdef TMC2130
  5893. if(code_seen('E'))
  5894. {
  5895. uint16_t res_new = code_value();
  5896. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5897. {
  5898. st_synchronize();
  5899. uint8_t axis = E_AXIS;
  5900. uint16_t res = tmc2130_get_res(axis);
  5901. tmc2130_set_res(axis, res_new);
  5902. if (res_new > res)
  5903. {
  5904. uint16_t fac = (res_new / res);
  5905. axis_steps_per_unit[axis] *= fac;
  5906. position[E_AXIS] *= fac;
  5907. }
  5908. else
  5909. {
  5910. uint16_t fac = (res / res_new);
  5911. axis_steps_per_unit[axis] /= fac;
  5912. position[E_AXIS] /= fac;
  5913. }
  5914. }
  5915. }
  5916. #else //TMC2130
  5917. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5918. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5919. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5920. if(code_seen('B')) microstep_mode(4,code_value());
  5921. microstep_readings();
  5922. #endif
  5923. #endif //TMC2130
  5924. }
  5925. break;
  5926. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5927. {
  5928. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5929. if(code_seen('S')) switch((int)code_value())
  5930. {
  5931. case 1:
  5932. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5933. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5934. break;
  5935. case 2:
  5936. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5937. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5938. break;
  5939. }
  5940. microstep_readings();
  5941. #endif
  5942. }
  5943. break;
  5944. case 701: //M701: load filament
  5945. {
  5946. gcode_M701();
  5947. }
  5948. break;
  5949. case 702:
  5950. {
  5951. #ifdef SNMM
  5952. if (code_seen('U')) {
  5953. extr_unload_used(); //unload all filaments which were used in current print
  5954. }
  5955. else if (code_seen('C')) {
  5956. extr_unload(); //unload just current filament
  5957. }
  5958. else {
  5959. extr_unload_all(); //unload all filaments
  5960. }
  5961. #else
  5962. #ifdef PAT9125
  5963. bool old_fsensor_enabled = fsensor_enabled;
  5964. fsensor_enabled = false;
  5965. #endif //PAT9125
  5966. custom_message = true;
  5967. custom_message_type = 2;
  5968. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5969. // extr_unload2();
  5970. current_position[E_AXIS] -= 45;
  5971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5972. st_synchronize();
  5973. current_position[E_AXIS] -= 15;
  5974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5975. st_synchronize();
  5976. current_position[E_AXIS] -= 20;
  5977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5978. st_synchronize();
  5979. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5980. //disable extruder steppers so filament can be removed
  5981. disable_e0();
  5982. disable_e1();
  5983. disable_e2();
  5984. delay(100);
  5985. WRITE(BEEPER, HIGH);
  5986. uint8_t counterBeep = 0;
  5987. while (!lcd_clicked() && (counterBeep < 50)) {
  5988. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5989. delay_keep_alive(100);
  5990. counterBeep++;
  5991. }
  5992. WRITE(BEEPER, LOW);
  5993. st_synchronize();
  5994. while (lcd_clicked()) delay_keep_alive(100);
  5995. lcd_update_enable(true);
  5996. lcd_setstatuspgm(_T(WELCOME_MSG));
  5997. custom_message = false;
  5998. custom_message_type = 0;
  5999. #ifdef PAT9125
  6000. fsensor_enabled = old_fsensor_enabled;
  6001. #endif //PAT9125
  6002. #endif
  6003. }
  6004. break;
  6005. case 999: // M999: Restart after being stopped
  6006. Stopped = false;
  6007. lcd_reset_alert_level();
  6008. gcode_LastN = Stopped_gcode_LastN;
  6009. FlushSerialRequestResend();
  6010. break;
  6011. default:
  6012. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6013. }
  6014. } // end if(code_seen('M')) (end of M codes)
  6015. else if(code_seen('T'))
  6016. {
  6017. int index;
  6018. st_synchronize();
  6019. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6020. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6021. SERIAL_ECHOLNPGM("Invalid T code.");
  6022. }
  6023. else {
  6024. if (*(strchr_pointer + index) == '?') {
  6025. tmp_extruder = choose_extruder_menu();
  6026. }
  6027. else {
  6028. tmp_extruder = code_value();
  6029. }
  6030. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6031. #ifdef SNMM
  6032. #ifdef LIN_ADVANCE
  6033. if (snmm_extruder != tmp_extruder)
  6034. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6035. #endif
  6036. snmm_extruder = tmp_extruder;
  6037. delay(100);
  6038. disable_e0();
  6039. disable_e1();
  6040. disable_e2();
  6041. pinMode(E_MUX0_PIN, OUTPUT);
  6042. pinMode(E_MUX1_PIN, OUTPUT);
  6043. delay(100);
  6044. SERIAL_ECHO_START;
  6045. SERIAL_ECHO("T:");
  6046. SERIAL_ECHOLN((int)tmp_extruder);
  6047. switch (tmp_extruder) {
  6048. case 1:
  6049. WRITE(E_MUX0_PIN, HIGH);
  6050. WRITE(E_MUX1_PIN, LOW);
  6051. break;
  6052. case 2:
  6053. WRITE(E_MUX0_PIN, LOW);
  6054. WRITE(E_MUX1_PIN, HIGH);
  6055. break;
  6056. case 3:
  6057. WRITE(E_MUX0_PIN, HIGH);
  6058. WRITE(E_MUX1_PIN, HIGH);
  6059. break;
  6060. default:
  6061. WRITE(E_MUX0_PIN, LOW);
  6062. WRITE(E_MUX1_PIN, LOW);
  6063. break;
  6064. }
  6065. delay(100);
  6066. #else
  6067. if (tmp_extruder >= EXTRUDERS) {
  6068. SERIAL_ECHO_START;
  6069. SERIAL_ECHOPGM("T");
  6070. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6071. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6072. }
  6073. else {
  6074. boolean make_move = false;
  6075. if (code_seen('F')) {
  6076. make_move = true;
  6077. next_feedrate = code_value();
  6078. if (next_feedrate > 0.0) {
  6079. feedrate = next_feedrate;
  6080. }
  6081. }
  6082. #if EXTRUDERS > 1
  6083. if (tmp_extruder != active_extruder) {
  6084. // Save current position to return to after applying extruder offset
  6085. memcpy(destination, current_position, sizeof(destination));
  6086. // Offset extruder (only by XY)
  6087. int i;
  6088. for (i = 0; i < 2; i++) {
  6089. current_position[i] = current_position[i] -
  6090. extruder_offset[i][active_extruder] +
  6091. extruder_offset[i][tmp_extruder];
  6092. }
  6093. // Set the new active extruder and position
  6094. active_extruder = tmp_extruder;
  6095. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6096. // Move to the old position if 'F' was in the parameters
  6097. if (make_move && Stopped == false) {
  6098. prepare_move();
  6099. }
  6100. }
  6101. #endif
  6102. SERIAL_ECHO_START;
  6103. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6104. SERIAL_PROTOCOLLN((int)active_extruder);
  6105. }
  6106. #endif
  6107. }
  6108. } // end if(code_seen('T')) (end of T codes)
  6109. #ifdef DEBUG_DCODES
  6110. else if (code_seen('D')) // D codes (debug)
  6111. {
  6112. switch((int)code_value())
  6113. {
  6114. case -1: // D-1 - Endless loop
  6115. dcode__1(); break;
  6116. case 0: // D0 - Reset
  6117. dcode_0(); break;
  6118. case 1: // D1 - Clear EEPROM
  6119. dcode_1(); break;
  6120. case 2: // D2 - Read/Write RAM
  6121. dcode_2(); break;
  6122. case 3: // D3 - Read/Write EEPROM
  6123. dcode_3(); break;
  6124. case 4: // D4 - Read/Write PIN
  6125. dcode_4(); break;
  6126. case 5: // D5 - Read/Write FLASH
  6127. // dcode_5(); break;
  6128. break;
  6129. case 6: // D6 - Read/Write external FLASH
  6130. dcode_6(); break;
  6131. case 7: // D7 - Read/Write Bootloader
  6132. dcode_7(); break;
  6133. case 8: // D8 - Read/Write PINDA
  6134. dcode_8(); break;
  6135. case 9: // D9 - Read/Write ADC
  6136. dcode_9(); break;
  6137. case 10: // D10 - XYZ calibration = OK
  6138. dcode_10(); break;
  6139. #ifdef TMC2130
  6140. case 2130: // D9125 - TMC2130
  6141. dcode_2130(); break;
  6142. #endif //TMC2130
  6143. #ifdef PAT9125
  6144. case 9125: // D9125 - PAT9125
  6145. dcode_9125(); break;
  6146. #endif //PAT9125
  6147. }
  6148. }
  6149. #endif //DEBUG_DCODES
  6150. else
  6151. {
  6152. SERIAL_ECHO_START;
  6153. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6154. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6155. SERIAL_ECHOLNPGM("\"(2)");
  6156. }
  6157. KEEPALIVE_STATE(NOT_BUSY);
  6158. ClearToSend();
  6159. }
  6160. void FlushSerialRequestResend()
  6161. {
  6162. //char cmdbuffer[bufindr][100]="Resend:";
  6163. MYSERIAL.flush();
  6164. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6165. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6166. previous_millis_cmd = millis();
  6167. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6168. }
  6169. // Confirm the execution of a command, if sent from a serial line.
  6170. // Execution of a command from a SD card will not be confirmed.
  6171. void ClearToSend()
  6172. {
  6173. previous_millis_cmd = millis();
  6174. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6175. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6176. }
  6177. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6178. void update_currents() {
  6179. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6180. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6181. float tmp_motor[3];
  6182. //SERIAL_ECHOLNPGM("Currents updated: ");
  6183. if (destination[Z_AXIS] < Z_SILENT) {
  6184. //SERIAL_ECHOLNPGM("LOW");
  6185. for (uint8_t i = 0; i < 3; i++) {
  6186. st_current_set(i, current_low[i]);
  6187. /*MYSERIAL.print(int(i));
  6188. SERIAL_ECHOPGM(": ");
  6189. MYSERIAL.println(current_low[i]);*/
  6190. }
  6191. }
  6192. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6193. //SERIAL_ECHOLNPGM("HIGH");
  6194. for (uint8_t i = 0; i < 3; i++) {
  6195. st_current_set(i, current_high[i]);
  6196. /*MYSERIAL.print(int(i));
  6197. SERIAL_ECHOPGM(": ");
  6198. MYSERIAL.println(current_high[i]);*/
  6199. }
  6200. }
  6201. else {
  6202. for (uint8_t i = 0; i < 3; i++) {
  6203. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6204. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6205. st_current_set(i, tmp_motor[i]);
  6206. /*MYSERIAL.print(int(i));
  6207. SERIAL_ECHOPGM(": ");
  6208. MYSERIAL.println(tmp_motor[i]);*/
  6209. }
  6210. }
  6211. }
  6212. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6213. void get_coordinates()
  6214. {
  6215. bool seen[4]={false,false,false,false};
  6216. for(int8_t i=0; i < NUM_AXIS; i++) {
  6217. if(code_seen(axis_codes[i]))
  6218. {
  6219. bool relative = axis_relative_modes[i] || relative_mode;
  6220. destination[i] = (float)code_value();
  6221. if (i == E_AXIS) {
  6222. float emult = extruder_multiplier[active_extruder];
  6223. if (emult != 1.) {
  6224. if (! relative) {
  6225. destination[i] -= current_position[i];
  6226. relative = true;
  6227. }
  6228. destination[i] *= emult;
  6229. }
  6230. }
  6231. if (relative)
  6232. destination[i] += current_position[i];
  6233. seen[i]=true;
  6234. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6235. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6236. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6237. }
  6238. else destination[i] = current_position[i]; //Are these else lines really needed?
  6239. }
  6240. if(code_seen('F')) {
  6241. next_feedrate = code_value();
  6242. #ifdef MAX_SILENT_FEEDRATE
  6243. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6244. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6245. #endif //MAX_SILENT_FEEDRATE
  6246. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6247. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6248. {
  6249. // float e_max_speed =
  6250. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6251. }
  6252. }
  6253. }
  6254. void get_arc_coordinates()
  6255. {
  6256. #ifdef SF_ARC_FIX
  6257. bool relative_mode_backup = relative_mode;
  6258. relative_mode = true;
  6259. #endif
  6260. get_coordinates();
  6261. #ifdef SF_ARC_FIX
  6262. relative_mode=relative_mode_backup;
  6263. #endif
  6264. if(code_seen('I')) {
  6265. offset[0] = code_value();
  6266. }
  6267. else {
  6268. offset[0] = 0.0;
  6269. }
  6270. if(code_seen('J')) {
  6271. offset[1] = code_value();
  6272. }
  6273. else {
  6274. offset[1] = 0.0;
  6275. }
  6276. }
  6277. void clamp_to_software_endstops(float target[3])
  6278. {
  6279. #ifdef DEBUG_DISABLE_SWLIMITS
  6280. return;
  6281. #endif //DEBUG_DISABLE_SWLIMITS
  6282. world2machine_clamp(target[0], target[1]);
  6283. // Clamp the Z coordinate.
  6284. if (min_software_endstops) {
  6285. float negative_z_offset = 0;
  6286. #ifdef ENABLE_AUTO_BED_LEVELING
  6287. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6288. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6289. #endif
  6290. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6291. }
  6292. if (max_software_endstops) {
  6293. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6294. }
  6295. }
  6296. #ifdef MESH_BED_LEVELING
  6297. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6298. float dx = x - current_position[X_AXIS];
  6299. float dy = y - current_position[Y_AXIS];
  6300. float dz = z - current_position[Z_AXIS];
  6301. int n_segments = 0;
  6302. if (mbl.active) {
  6303. float len = abs(dx) + abs(dy);
  6304. if (len > 0)
  6305. // Split to 3cm segments or shorter.
  6306. n_segments = int(ceil(len / 30.f));
  6307. }
  6308. if (n_segments > 1) {
  6309. float de = e - current_position[E_AXIS];
  6310. for (int i = 1; i < n_segments; ++ i) {
  6311. float t = float(i) / float(n_segments);
  6312. plan_buffer_line(
  6313. current_position[X_AXIS] + t * dx,
  6314. current_position[Y_AXIS] + t * dy,
  6315. current_position[Z_AXIS] + t * dz,
  6316. current_position[E_AXIS] + t * de,
  6317. feed_rate, extruder);
  6318. }
  6319. }
  6320. // The rest of the path.
  6321. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6322. current_position[X_AXIS] = x;
  6323. current_position[Y_AXIS] = y;
  6324. current_position[Z_AXIS] = z;
  6325. current_position[E_AXIS] = e;
  6326. }
  6327. #endif // MESH_BED_LEVELING
  6328. void prepare_move()
  6329. {
  6330. clamp_to_software_endstops(destination);
  6331. previous_millis_cmd = millis();
  6332. // Do not use feedmultiply for E or Z only moves
  6333. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6335. }
  6336. else {
  6337. #ifdef MESH_BED_LEVELING
  6338. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6339. #else
  6340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6341. #endif
  6342. }
  6343. for(int8_t i=0; i < NUM_AXIS; i++) {
  6344. current_position[i] = destination[i];
  6345. }
  6346. }
  6347. void prepare_arc_move(char isclockwise) {
  6348. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6349. // Trace the arc
  6350. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6351. // As far as the parser is concerned, the position is now == target. In reality the
  6352. // motion control system might still be processing the action and the real tool position
  6353. // in any intermediate location.
  6354. for(int8_t i=0; i < NUM_AXIS; i++) {
  6355. current_position[i] = destination[i];
  6356. }
  6357. previous_millis_cmd = millis();
  6358. }
  6359. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6360. #if defined(FAN_PIN)
  6361. #if CONTROLLERFAN_PIN == FAN_PIN
  6362. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6363. #endif
  6364. #endif
  6365. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6366. unsigned long lastMotorCheck = 0;
  6367. void controllerFan()
  6368. {
  6369. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6370. {
  6371. lastMotorCheck = millis();
  6372. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6373. #if EXTRUDERS > 2
  6374. || !READ(E2_ENABLE_PIN)
  6375. #endif
  6376. #if EXTRUDER > 1
  6377. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6378. || !READ(X2_ENABLE_PIN)
  6379. #endif
  6380. || !READ(E1_ENABLE_PIN)
  6381. #endif
  6382. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6383. {
  6384. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6385. }
  6386. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6387. {
  6388. digitalWrite(CONTROLLERFAN_PIN, 0);
  6389. analogWrite(CONTROLLERFAN_PIN, 0);
  6390. }
  6391. else
  6392. {
  6393. // allows digital or PWM fan output to be used (see M42 handling)
  6394. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6395. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6396. }
  6397. }
  6398. }
  6399. #endif
  6400. #ifdef TEMP_STAT_LEDS
  6401. static bool blue_led = false;
  6402. static bool red_led = false;
  6403. static uint32_t stat_update = 0;
  6404. void handle_status_leds(void) {
  6405. float max_temp = 0.0;
  6406. if(millis() > stat_update) {
  6407. stat_update += 500; // Update every 0.5s
  6408. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6409. max_temp = max(max_temp, degHotend(cur_extruder));
  6410. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6411. }
  6412. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6413. max_temp = max(max_temp, degTargetBed());
  6414. max_temp = max(max_temp, degBed());
  6415. #endif
  6416. if((max_temp > 55.0) && (red_led == false)) {
  6417. digitalWrite(STAT_LED_RED, 1);
  6418. digitalWrite(STAT_LED_BLUE, 0);
  6419. red_led = true;
  6420. blue_led = false;
  6421. }
  6422. if((max_temp < 54.0) && (blue_led == false)) {
  6423. digitalWrite(STAT_LED_RED, 0);
  6424. digitalWrite(STAT_LED_BLUE, 1);
  6425. red_led = false;
  6426. blue_led = true;
  6427. }
  6428. }
  6429. }
  6430. #endif
  6431. #ifdef SAFETYTIMER
  6432. /**
  6433. * @brief Turn off heating after 30 minutes of inactivity
  6434. *
  6435. * Full screen blocking notification message is shown after heater turning off.
  6436. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6437. * damage print.
  6438. */
  6439. static void handleSafetyTimer()
  6440. {
  6441. #if (EXTRUDERS > 1)
  6442. #error Implemented only for one extruder.
  6443. #endif //(EXTRUDERS > 1)
  6444. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6445. {
  6446. safetyTimer.stop();
  6447. }
  6448. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6449. {
  6450. safetyTimer.start();
  6451. }
  6452. else if (safetyTimer.expired(1800000ul)) //30 min
  6453. {
  6454. setTargetBed(0);
  6455. setTargetHotend(0, 0);
  6456. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6457. }
  6458. }
  6459. #endif //SAFETYTIMER
  6460. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6461. {
  6462. #ifdef PAT9125
  6463. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6464. {
  6465. if (fsensor_autoload_enabled)
  6466. {
  6467. if (fsensor_check_autoload())
  6468. {
  6469. if (degHotend0() > EXTRUDE_MINTEMP)
  6470. {
  6471. fsensor_autoload_check_stop();
  6472. tone(BEEPER, 1000);
  6473. delay_keep_alive(50);
  6474. noTone(BEEPER);
  6475. loading_flag = true;
  6476. enquecommand_front_P((PSTR("M701")));
  6477. }
  6478. else
  6479. {
  6480. lcd_update_enable(false);
  6481. lcd_implementation_clear();
  6482. lcd.setCursor(0, 0);
  6483. lcd_printPGM(_T(MSG_ERROR));
  6484. lcd.setCursor(0, 2);
  6485. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6486. delay(2000);
  6487. lcd_implementation_clear();
  6488. lcd_update_enable(true);
  6489. }
  6490. }
  6491. }
  6492. else
  6493. fsensor_autoload_check_start();
  6494. }
  6495. else
  6496. if (fsensor_autoload_enabled)
  6497. fsensor_autoload_check_stop();
  6498. #endif //PAT9125
  6499. #ifdef SAFETYTIMER
  6500. handleSafetyTimer();
  6501. #endif //SAFETYTIMER
  6502. #if defined(KILL_PIN) && KILL_PIN > -1
  6503. static int killCount = 0; // make the inactivity button a bit less responsive
  6504. const int KILL_DELAY = 10000;
  6505. #endif
  6506. if(buflen < (BUFSIZE-1)){
  6507. get_command();
  6508. }
  6509. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6510. if(max_inactive_time)
  6511. kill("", 4);
  6512. if(stepper_inactive_time) {
  6513. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6514. {
  6515. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6516. disable_x();
  6517. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6518. disable_y();
  6519. disable_z();
  6520. disable_e0();
  6521. disable_e1();
  6522. disable_e2();
  6523. }
  6524. }
  6525. }
  6526. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6527. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6528. {
  6529. chdkActive = false;
  6530. WRITE(CHDK, LOW);
  6531. }
  6532. #endif
  6533. #if defined(KILL_PIN) && KILL_PIN > -1
  6534. // Check if the kill button was pressed and wait just in case it was an accidental
  6535. // key kill key press
  6536. // -------------------------------------------------------------------------------
  6537. if( 0 == READ(KILL_PIN) )
  6538. {
  6539. killCount++;
  6540. }
  6541. else if (killCount > 0)
  6542. {
  6543. killCount--;
  6544. }
  6545. // Exceeded threshold and we can confirm that it was not accidental
  6546. // KILL the machine
  6547. // ----------------------------------------------------------------
  6548. if ( killCount >= KILL_DELAY)
  6549. {
  6550. kill("", 5);
  6551. }
  6552. #endif
  6553. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6554. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6555. #endif
  6556. #ifdef EXTRUDER_RUNOUT_PREVENT
  6557. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6558. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6559. {
  6560. bool oldstatus=READ(E0_ENABLE_PIN);
  6561. enable_e0();
  6562. float oldepos=current_position[E_AXIS];
  6563. float oldedes=destination[E_AXIS];
  6564. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6565. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6566. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6567. current_position[E_AXIS]=oldepos;
  6568. destination[E_AXIS]=oldedes;
  6569. plan_set_e_position(oldepos);
  6570. previous_millis_cmd=millis();
  6571. st_synchronize();
  6572. WRITE(E0_ENABLE_PIN,oldstatus);
  6573. }
  6574. #endif
  6575. #ifdef TEMP_STAT_LEDS
  6576. handle_status_leds();
  6577. #endif
  6578. check_axes_activity();
  6579. }
  6580. void kill(const char *full_screen_message, unsigned char id)
  6581. {
  6582. SERIAL_ECHOPGM("KILL: ");
  6583. MYSERIAL.println(int(id));
  6584. //return;
  6585. cli(); // Stop interrupts
  6586. disable_heater();
  6587. disable_x();
  6588. // SERIAL_ECHOLNPGM("kill - disable Y");
  6589. disable_y();
  6590. disable_z();
  6591. disable_e0();
  6592. disable_e1();
  6593. disable_e2();
  6594. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6595. pinMode(PS_ON_PIN,INPUT);
  6596. #endif
  6597. SERIAL_ERROR_START;
  6598. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6599. if (full_screen_message != NULL) {
  6600. SERIAL_ERRORLNRPGM(full_screen_message);
  6601. lcd_display_message_fullscreen_P(full_screen_message);
  6602. } else {
  6603. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6604. }
  6605. // FMC small patch to update the LCD before ending
  6606. sei(); // enable interrupts
  6607. for ( int i=5; i--; lcd_update())
  6608. {
  6609. delay(200);
  6610. }
  6611. cli(); // disable interrupts
  6612. suicide();
  6613. while(1)
  6614. {
  6615. #ifdef WATCHDOG
  6616. wdt_reset();
  6617. #endif //WATCHDOG
  6618. /* Intentionally left empty */
  6619. } // Wait for reset
  6620. }
  6621. void Stop()
  6622. {
  6623. disable_heater();
  6624. if(Stopped == false) {
  6625. Stopped = true;
  6626. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6627. SERIAL_ERROR_START;
  6628. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6629. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6630. }
  6631. }
  6632. bool IsStopped() { return Stopped; };
  6633. #ifdef FAST_PWM_FAN
  6634. void setPwmFrequency(uint8_t pin, int val)
  6635. {
  6636. val &= 0x07;
  6637. switch(digitalPinToTimer(pin))
  6638. {
  6639. #if defined(TCCR0A)
  6640. case TIMER0A:
  6641. case TIMER0B:
  6642. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6643. // TCCR0B |= val;
  6644. break;
  6645. #endif
  6646. #if defined(TCCR1A)
  6647. case TIMER1A:
  6648. case TIMER1B:
  6649. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6650. // TCCR1B |= val;
  6651. break;
  6652. #endif
  6653. #if defined(TCCR2)
  6654. case TIMER2:
  6655. case TIMER2:
  6656. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6657. TCCR2 |= val;
  6658. break;
  6659. #endif
  6660. #if defined(TCCR2A)
  6661. case TIMER2A:
  6662. case TIMER2B:
  6663. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6664. TCCR2B |= val;
  6665. break;
  6666. #endif
  6667. #if defined(TCCR3A)
  6668. case TIMER3A:
  6669. case TIMER3B:
  6670. case TIMER3C:
  6671. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6672. TCCR3B |= val;
  6673. break;
  6674. #endif
  6675. #if defined(TCCR4A)
  6676. case TIMER4A:
  6677. case TIMER4B:
  6678. case TIMER4C:
  6679. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6680. TCCR4B |= val;
  6681. break;
  6682. #endif
  6683. #if defined(TCCR5A)
  6684. case TIMER5A:
  6685. case TIMER5B:
  6686. case TIMER5C:
  6687. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6688. TCCR5B |= val;
  6689. break;
  6690. #endif
  6691. }
  6692. }
  6693. #endif //FAST_PWM_FAN
  6694. bool setTargetedHotend(int code){
  6695. tmp_extruder = active_extruder;
  6696. if(code_seen('T')) {
  6697. tmp_extruder = code_value();
  6698. if(tmp_extruder >= EXTRUDERS) {
  6699. SERIAL_ECHO_START;
  6700. switch(code){
  6701. case 104:
  6702. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6703. break;
  6704. case 105:
  6705. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6706. break;
  6707. case 109:
  6708. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6709. break;
  6710. case 218:
  6711. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6712. break;
  6713. case 221:
  6714. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6715. break;
  6716. }
  6717. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6718. return true;
  6719. }
  6720. }
  6721. return false;
  6722. }
  6723. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6724. {
  6725. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6726. {
  6727. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6728. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6729. }
  6730. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6731. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6732. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6733. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6734. total_filament_used = 0;
  6735. }
  6736. float calculate_extruder_multiplier(float diameter) {
  6737. float out = 1.f;
  6738. if (volumetric_enabled && diameter > 0.f) {
  6739. float area = M_PI * diameter * diameter * 0.25;
  6740. out = 1.f / area;
  6741. }
  6742. if (extrudemultiply != 100)
  6743. out *= float(extrudemultiply) * 0.01f;
  6744. return out;
  6745. }
  6746. void calculate_extruder_multipliers() {
  6747. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6748. #if EXTRUDERS > 1
  6749. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6750. #if EXTRUDERS > 2
  6751. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6752. #endif
  6753. #endif
  6754. }
  6755. void delay_keep_alive(unsigned int ms)
  6756. {
  6757. for (;;) {
  6758. manage_heater();
  6759. // Manage inactivity, but don't disable steppers on timeout.
  6760. manage_inactivity(true);
  6761. lcd_update();
  6762. if (ms == 0)
  6763. break;
  6764. else if (ms >= 50) {
  6765. delay(50);
  6766. ms -= 50;
  6767. } else {
  6768. delay(ms);
  6769. ms = 0;
  6770. }
  6771. }
  6772. }
  6773. void wait_for_heater(long codenum) {
  6774. #ifdef TEMP_RESIDENCY_TIME
  6775. long residencyStart;
  6776. residencyStart = -1;
  6777. /* continue to loop until we have reached the target temp
  6778. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6779. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6780. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6781. #else
  6782. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6783. #endif //TEMP_RESIDENCY_TIME
  6784. if ((millis() - codenum) > 1000UL)
  6785. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6786. if (!farm_mode) {
  6787. SERIAL_PROTOCOLPGM("T:");
  6788. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6789. SERIAL_PROTOCOLPGM(" E:");
  6790. SERIAL_PROTOCOL((int)tmp_extruder);
  6791. #ifdef TEMP_RESIDENCY_TIME
  6792. SERIAL_PROTOCOLPGM(" W:");
  6793. if (residencyStart > -1)
  6794. {
  6795. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6796. SERIAL_PROTOCOLLN(codenum);
  6797. }
  6798. else
  6799. {
  6800. SERIAL_PROTOCOLLN("?");
  6801. }
  6802. }
  6803. #else
  6804. SERIAL_PROTOCOLLN("");
  6805. #endif
  6806. codenum = millis();
  6807. }
  6808. manage_heater();
  6809. manage_inactivity();
  6810. lcd_update();
  6811. #ifdef TEMP_RESIDENCY_TIME
  6812. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6813. or when current temp falls outside the hysteresis after target temp was reached */
  6814. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6815. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6816. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6817. {
  6818. residencyStart = millis();
  6819. }
  6820. #endif //TEMP_RESIDENCY_TIME
  6821. }
  6822. }
  6823. void check_babystep() {
  6824. int babystep_z;
  6825. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6826. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6827. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6828. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6829. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6830. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6831. lcd_update_enable(true);
  6832. }
  6833. }
  6834. #ifdef DIS
  6835. void d_setup()
  6836. {
  6837. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6838. pinMode(D_DATA, INPUT_PULLUP);
  6839. pinMode(D_REQUIRE, OUTPUT);
  6840. digitalWrite(D_REQUIRE, HIGH);
  6841. }
  6842. float d_ReadData()
  6843. {
  6844. int digit[13];
  6845. String mergeOutput;
  6846. float output;
  6847. digitalWrite(D_REQUIRE, HIGH);
  6848. for (int i = 0; i<13; i++)
  6849. {
  6850. for (int j = 0; j < 4; j++)
  6851. {
  6852. while (digitalRead(D_DATACLOCK) == LOW) {}
  6853. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6854. bitWrite(digit[i], j, digitalRead(D_DATA));
  6855. }
  6856. }
  6857. digitalWrite(D_REQUIRE, LOW);
  6858. mergeOutput = "";
  6859. output = 0;
  6860. for (int r = 5; r <= 10; r++) //Merge digits
  6861. {
  6862. mergeOutput += digit[r];
  6863. }
  6864. output = mergeOutput.toFloat();
  6865. if (digit[4] == 8) //Handle sign
  6866. {
  6867. output *= -1;
  6868. }
  6869. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6870. {
  6871. output /= 10;
  6872. }
  6873. return output;
  6874. }
  6875. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6876. int t1 = 0;
  6877. int t_delay = 0;
  6878. int digit[13];
  6879. int m;
  6880. char str[3];
  6881. //String mergeOutput;
  6882. char mergeOutput[15];
  6883. float output;
  6884. int mesh_point = 0; //index number of calibration point
  6885. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6886. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6887. float mesh_home_z_search = 4;
  6888. float row[x_points_num];
  6889. int ix = 0;
  6890. int iy = 0;
  6891. char* filename_wldsd = "wldsd.txt";
  6892. char data_wldsd[70];
  6893. char numb_wldsd[10];
  6894. d_setup();
  6895. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6896. // We don't know where we are! HOME!
  6897. // Push the commands to the front of the message queue in the reverse order!
  6898. // There shall be always enough space reserved for these commands.
  6899. repeatcommand_front(); // repeat G80 with all its parameters
  6900. enquecommand_front_P((PSTR("G28 W0")));
  6901. enquecommand_front_P((PSTR("G1 Z5")));
  6902. return;
  6903. }
  6904. bool custom_message_old = custom_message;
  6905. unsigned int custom_message_type_old = custom_message_type;
  6906. unsigned int custom_message_state_old = custom_message_state;
  6907. custom_message = true;
  6908. custom_message_type = 1;
  6909. custom_message_state = (x_points_num * y_points_num) + 10;
  6910. lcd_update(1);
  6911. mbl.reset();
  6912. babystep_undo();
  6913. card.openFile(filename_wldsd, false);
  6914. current_position[Z_AXIS] = mesh_home_z_search;
  6915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6916. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6917. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6918. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6919. setup_for_endstop_move(false);
  6920. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6921. SERIAL_PROTOCOL(x_points_num);
  6922. SERIAL_PROTOCOLPGM(",");
  6923. SERIAL_PROTOCOL(y_points_num);
  6924. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6925. SERIAL_PROTOCOL(mesh_home_z_search);
  6926. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6927. SERIAL_PROTOCOL(x_dimension);
  6928. SERIAL_PROTOCOLPGM(",");
  6929. SERIAL_PROTOCOL(y_dimension);
  6930. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6931. while (mesh_point != x_points_num * y_points_num) {
  6932. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6933. iy = mesh_point / x_points_num;
  6934. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6935. float z0 = 0.f;
  6936. current_position[Z_AXIS] = mesh_home_z_search;
  6937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6938. st_synchronize();
  6939. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6940. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6942. st_synchronize();
  6943. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6944. break;
  6945. card.closefile();
  6946. }
  6947. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6948. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6949. //strcat(data_wldsd, numb_wldsd);
  6950. //MYSERIAL.println(data_wldsd);
  6951. //delay(1000);
  6952. //delay(3000);
  6953. //t1 = millis();
  6954. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6955. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6956. memset(digit, 0, sizeof(digit));
  6957. //cli();
  6958. digitalWrite(D_REQUIRE, LOW);
  6959. for (int i = 0; i<13; i++)
  6960. {
  6961. //t1 = millis();
  6962. for (int j = 0; j < 4; j++)
  6963. {
  6964. while (digitalRead(D_DATACLOCK) == LOW) {}
  6965. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6966. bitWrite(digit[i], j, digitalRead(D_DATA));
  6967. }
  6968. //t_delay = (millis() - t1);
  6969. //SERIAL_PROTOCOLPGM(" ");
  6970. //SERIAL_PROTOCOL_F(t_delay, 5);
  6971. //SERIAL_PROTOCOLPGM(" ");
  6972. }
  6973. //sei();
  6974. digitalWrite(D_REQUIRE, HIGH);
  6975. mergeOutput[0] = '\0';
  6976. output = 0;
  6977. for (int r = 5; r <= 10; r++) //Merge digits
  6978. {
  6979. sprintf(str, "%d", digit[r]);
  6980. strcat(mergeOutput, str);
  6981. }
  6982. output = atof(mergeOutput);
  6983. if (digit[4] == 8) //Handle sign
  6984. {
  6985. output *= -1;
  6986. }
  6987. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6988. {
  6989. output *= 0.1;
  6990. }
  6991. //output = d_ReadData();
  6992. //row[ix] = current_position[Z_AXIS];
  6993. memset(data_wldsd, 0, sizeof(data_wldsd));
  6994. for (int i = 0; i <3; i++) {
  6995. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6996. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6997. strcat(data_wldsd, numb_wldsd);
  6998. strcat(data_wldsd, ";");
  6999. }
  7000. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7001. dtostrf(output, 8, 5, numb_wldsd);
  7002. strcat(data_wldsd, numb_wldsd);
  7003. //strcat(data_wldsd, ";");
  7004. card.write_command(data_wldsd);
  7005. //row[ix] = d_ReadData();
  7006. row[ix] = output; // current_position[Z_AXIS];
  7007. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7008. for (int i = 0; i < x_points_num; i++) {
  7009. SERIAL_PROTOCOLPGM(" ");
  7010. SERIAL_PROTOCOL_F(row[i], 5);
  7011. }
  7012. SERIAL_PROTOCOLPGM("\n");
  7013. }
  7014. custom_message_state--;
  7015. mesh_point++;
  7016. lcd_update(1);
  7017. }
  7018. card.closefile();
  7019. }
  7020. #endif
  7021. void temp_compensation_start() {
  7022. custom_message = true;
  7023. custom_message_type = 5;
  7024. custom_message_state = PINDA_HEAT_T + 1;
  7025. lcd_update(2);
  7026. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7027. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7028. }
  7029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7030. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7031. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7032. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7034. st_synchronize();
  7035. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7036. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7037. delay_keep_alive(1000);
  7038. custom_message_state = PINDA_HEAT_T - i;
  7039. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7040. else lcd_update(1);
  7041. }
  7042. custom_message_type = 0;
  7043. custom_message_state = 0;
  7044. custom_message = false;
  7045. }
  7046. void temp_compensation_apply() {
  7047. int i_add;
  7048. int compensation_value;
  7049. int z_shift = 0;
  7050. float z_shift_mm;
  7051. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7052. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7053. i_add = (target_temperature_bed - 60) / 10;
  7054. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7055. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7056. }else {
  7057. //interpolation
  7058. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7059. }
  7060. SERIAL_PROTOCOLPGM("\n");
  7061. SERIAL_PROTOCOLPGM("Z shift applied:");
  7062. MYSERIAL.print(z_shift_mm);
  7063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7064. st_synchronize();
  7065. plan_set_z_position(current_position[Z_AXIS]);
  7066. }
  7067. else {
  7068. //we have no temp compensation data
  7069. }
  7070. }
  7071. float temp_comp_interpolation(float inp_temperature) {
  7072. //cubic spline interpolation
  7073. int n, i, j, k;
  7074. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7075. int shift[10];
  7076. int temp_C[10];
  7077. n = 6; //number of measured points
  7078. shift[0] = 0;
  7079. for (i = 0; i < n; i++) {
  7080. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7081. temp_C[i] = 50 + i * 10; //temperature in C
  7082. #ifdef PINDA_THERMISTOR
  7083. temp_C[i] = 35 + i * 5; //temperature in C
  7084. #else
  7085. temp_C[i] = 50 + i * 10; //temperature in C
  7086. #endif
  7087. x[i] = (float)temp_C[i];
  7088. f[i] = (float)shift[i];
  7089. }
  7090. if (inp_temperature < x[0]) return 0;
  7091. for (i = n - 1; i>0; i--) {
  7092. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7093. h[i - 1] = x[i] - x[i - 1];
  7094. }
  7095. //*********** formation of h, s , f matrix **************
  7096. for (i = 1; i<n - 1; i++) {
  7097. m[i][i] = 2 * (h[i - 1] + h[i]);
  7098. if (i != 1) {
  7099. m[i][i - 1] = h[i - 1];
  7100. m[i - 1][i] = h[i - 1];
  7101. }
  7102. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7103. }
  7104. //*********** forward elimination **************
  7105. for (i = 1; i<n - 2; i++) {
  7106. temp = (m[i + 1][i] / m[i][i]);
  7107. for (j = 1; j <= n - 1; j++)
  7108. m[i + 1][j] -= temp*m[i][j];
  7109. }
  7110. //*********** backward substitution *********
  7111. for (i = n - 2; i>0; i--) {
  7112. sum = 0;
  7113. for (j = i; j <= n - 2; j++)
  7114. sum += m[i][j] * s[j];
  7115. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7116. }
  7117. for (i = 0; i<n - 1; i++)
  7118. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7119. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7120. b = s[i] / 2;
  7121. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7122. d = f[i];
  7123. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7124. }
  7125. return sum;
  7126. }
  7127. #ifdef PINDA_THERMISTOR
  7128. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7129. {
  7130. if (!temp_cal_active) return 0;
  7131. if (!calibration_status_pinda()) return 0;
  7132. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7133. }
  7134. #endif //PINDA_THERMISTOR
  7135. void long_pause() //long pause print
  7136. {
  7137. st_synchronize();
  7138. //save currently set parameters to global variables
  7139. saved_feedmultiply = feedmultiply;
  7140. HotendTempBckp = degTargetHotend(active_extruder);
  7141. fanSpeedBckp = fanSpeed;
  7142. start_pause_print = millis();
  7143. //save position
  7144. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7145. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7146. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7147. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7148. //retract
  7149. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7151. //lift z
  7152. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7153. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7155. //set nozzle target temperature to 0
  7156. setTargetHotend(0, 0);
  7157. setTargetHotend(0, 1);
  7158. setTargetHotend(0, 2);
  7159. //Move XY to side
  7160. current_position[X_AXIS] = X_PAUSE_POS;
  7161. current_position[Y_AXIS] = Y_PAUSE_POS;
  7162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7163. // Turn off the print fan
  7164. fanSpeed = 0;
  7165. st_synchronize();
  7166. }
  7167. void serialecho_temperatures() {
  7168. float tt = degHotend(active_extruder);
  7169. SERIAL_PROTOCOLPGM("T:");
  7170. SERIAL_PROTOCOL(tt);
  7171. SERIAL_PROTOCOLPGM(" E:");
  7172. SERIAL_PROTOCOL((int)active_extruder);
  7173. SERIAL_PROTOCOLPGM(" B:");
  7174. SERIAL_PROTOCOL_F(degBed(), 1);
  7175. SERIAL_PROTOCOLLN("");
  7176. }
  7177. extern uint32_t sdpos_atomic;
  7178. #ifdef UVLO_SUPPORT
  7179. void uvlo_()
  7180. {
  7181. unsigned long time_start = millis();
  7182. bool sd_print = card.sdprinting;
  7183. // Conserve power as soon as possible.
  7184. disable_x();
  7185. disable_y();
  7186. #ifdef TMC2130
  7187. tmc2130_set_current_h(Z_AXIS, 20);
  7188. tmc2130_set_current_r(Z_AXIS, 20);
  7189. tmc2130_set_current_h(E_AXIS, 20);
  7190. tmc2130_set_current_r(E_AXIS, 20);
  7191. #endif //TMC2130
  7192. // Indicate that the interrupt has been triggered.
  7193. // SERIAL_ECHOLNPGM("UVLO");
  7194. // Read out the current Z motor microstep counter. This will be later used
  7195. // for reaching the zero full step before powering off.
  7196. uint16_t z_microsteps = 0;
  7197. #ifdef TMC2130
  7198. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7199. #endif //TMC2130
  7200. // Calculate the file position, from which to resume this print.
  7201. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7202. {
  7203. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7204. sd_position -= sdlen_planner;
  7205. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7206. sd_position -= sdlen_cmdqueue;
  7207. if (sd_position < 0) sd_position = 0;
  7208. }
  7209. // Backup the feedrate in mm/min.
  7210. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7211. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7212. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7213. // are in action.
  7214. planner_abort_hard();
  7215. // Store the current extruder position.
  7216. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7217. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7218. // Clean the input command queue.
  7219. cmdqueue_reset();
  7220. card.sdprinting = false;
  7221. // card.closefile();
  7222. // Enable stepper driver interrupt to move Z axis.
  7223. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7224. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7225. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7226. sei();
  7227. plan_buffer_line(
  7228. current_position[X_AXIS],
  7229. current_position[Y_AXIS],
  7230. current_position[Z_AXIS],
  7231. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7232. 95, active_extruder);
  7233. st_synchronize();
  7234. disable_e0();
  7235. plan_buffer_line(
  7236. current_position[X_AXIS],
  7237. current_position[Y_AXIS],
  7238. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7239. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7240. 40, active_extruder);
  7241. st_synchronize();
  7242. disable_e0();
  7243. plan_buffer_line(
  7244. current_position[X_AXIS],
  7245. current_position[Y_AXIS],
  7246. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7247. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7248. 40, active_extruder);
  7249. st_synchronize();
  7250. disable_e0();
  7251. disable_z();
  7252. // Move Z up to the next 0th full step.
  7253. // Write the file position.
  7254. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7255. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7256. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7257. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7258. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7259. // Scale the z value to 1u resolution.
  7260. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7261. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7262. }
  7263. // Read out the current Z motor microstep counter. This will be later used
  7264. // for reaching the zero full step before powering off.
  7265. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7266. // Store the current position.
  7267. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7268. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7269. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7270. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7271. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7272. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7273. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7274. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7275. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7276. #if EXTRUDERS > 1
  7277. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7278. #if EXTRUDERS > 2
  7279. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7280. #endif
  7281. #endif
  7282. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7283. // Finaly store the "power outage" flag.
  7284. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7285. st_synchronize();
  7286. SERIAL_ECHOPGM("stps");
  7287. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7288. disable_z();
  7289. // Increment power failure counter
  7290. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7291. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7292. SERIAL_ECHOLNPGM("UVLO - end");
  7293. MYSERIAL.println(millis() - time_start);
  7294. #if 0
  7295. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7296. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7298. st_synchronize();
  7299. #endif
  7300. cli();
  7301. volatile unsigned int ppcount = 0;
  7302. SET_OUTPUT(BEEPER);
  7303. WRITE(BEEPER, HIGH);
  7304. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7305. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7306. }
  7307. WRITE(BEEPER, LOW);
  7308. while(1){
  7309. #if 1
  7310. WRITE(BEEPER, LOW);
  7311. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7312. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7313. }
  7314. #endif
  7315. };
  7316. }
  7317. #endif //UVLO_SUPPORT
  7318. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7319. void setup_fan_interrupt() {
  7320. //INT7
  7321. DDRE &= ~(1 << 7); //input pin
  7322. PORTE &= ~(1 << 7); //no internal pull-up
  7323. //start with sensing rising edge
  7324. EICRB &= ~(1 << 6);
  7325. EICRB |= (1 << 7);
  7326. //enable INT7 interrupt
  7327. EIMSK |= (1 << 7);
  7328. }
  7329. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7330. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7331. ISR(INT7_vect) {
  7332. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7333. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7334. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7335. t_fan_rising_edge = millis_nc();
  7336. }
  7337. else { //interrupt was triggered by falling edge
  7338. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7339. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7340. }
  7341. }
  7342. EICRB ^= (1 << 6); //change edge
  7343. }
  7344. #endif
  7345. #ifdef UVLO_SUPPORT
  7346. void setup_uvlo_interrupt() {
  7347. DDRE &= ~(1 << 4); //input pin
  7348. PORTE &= ~(1 << 4); //no internal pull-up
  7349. //sensing falling edge
  7350. EICRB |= (1 << 0);
  7351. EICRB &= ~(1 << 1);
  7352. //enable INT4 interrupt
  7353. EIMSK |= (1 << 4);
  7354. }
  7355. ISR(INT4_vect) {
  7356. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7357. SERIAL_ECHOLNPGM("INT4");
  7358. if (IS_SD_PRINTING) uvlo_();
  7359. }
  7360. void recover_print(uint8_t automatic) {
  7361. char cmd[30];
  7362. lcd_update_enable(true);
  7363. lcd_update(2);
  7364. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7365. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7366. // Lift the print head, so one may remove the excess priming material.
  7367. if (current_position[Z_AXIS] < 25)
  7368. enquecommand_P(PSTR("G1 Z25 F800"));
  7369. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7370. enquecommand_P(PSTR("G28 X Y"));
  7371. // Set the target bed and nozzle temperatures and wait.
  7372. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7373. enquecommand(cmd);
  7374. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7375. enquecommand(cmd);
  7376. enquecommand_P(PSTR("M83")); //E axis relative mode
  7377. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7378. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7379. if(automatic == 0){
  7380. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7381. }
  7382. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7383. // Mark the power panic status as inactive.
  7384. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7385. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7386. delay_keep_alive(1000);
  7387. }*/
  7388. SERIAL_ECHOPGM("After waiting for temp:");
  7389. SERIAL_ECHOPGM("Current position X_AXIS:");
  7390. MYSERIAL.println(current_position[X_AXIS]);
  7391. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7392. MYSERIAL.println(current_position[Y_AXIS]);
  7393. // Restart the print.
  7394. restore_print_from_eeprom();
  7395. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7396. MYSERIAL.print(current_position[Z_AXIS]);
  7397. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7398. MYSERIAL.print(current_position[E_AXIS]);
  7399. }
  7400. void recover_machine_state_after_power_panic()
  7401. {
  7402. char cmd[30];
  7403. // 1) Recover the logical cordinates at the time of the power panic.
  7404. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7405. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7406. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7407. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7408. // The current position after power panic is moved to the next closest 0th full step.
  7409. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7410. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7411. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7412. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7413. sprintf_P(cmd, PSTR("G92 E"));
  7414. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7415. enquecommand(cmd);
  7416. }
  7417. memcpy(destination, current_position, sizeof(destination));
  7418. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7419. print_world_coordinates();
  7420. // 2) Initialize the logical to physical coordinate system transformation.
  7421. world2machine_initialize();
  7422. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7423. mbl.active = false;
  7424. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7425. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7426. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7427. // Scale the z value to 10u resolution.
  7428. int16_t v;
  7429. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7430. if (v != 0)
  7431. mbl.active = true;
  7432. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7433. }
  7434. if (mbl.active)
  7435. mbl.upsample_3x3();
  7436. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7437. // print_mesh_bed_leveling_table();
  7438. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7439. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7440. babystep_load();
  7441. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7443. // 6) Power up the motors, mark their positions as known.
  7444. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7445. axis_known_position[X_AXIS] = true; enable_x();
  7446. axis_known_position[Y_AXIS] = true; enable_y();
  7447. axis_known_position[Z_AXIS] = true; enable_z();
  7448. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7449. print_physical_coordinates();
  7450. // 7) Recover the target temperatures.
  7451. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7452. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7453. // 8) Recover extruder multipilers
  7454. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7455. #if EXTRUDERS > 1
  7456. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7457. #if EXTRUDERS > 2
  7458. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7459. #endif
  7460. #endif
  7461. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7462. }
  7463. void restore_print_from_eeprom() {
  7464. float x_rec, y_rec, z_pos;
  7465. int feedrate_rec;
  7466. uint8_t fan_speed_rec;
  7467. char cmd[30];
  7468. char* c;
  7469. char filename[13];
  7470. uint8_t depth = 0;
  7471. char dir_name[9];
  7472. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7473. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7474. SERIAL_ECHOPGM("Feedrate:");
  7475. MYSERIAL.println(feedrate_rec);
  7476. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7477. MYSERIAL.println(int(depth));
  7478. for (int i = 0; i < depth; i++) {
  7479. for (int j = 0; j < 8; j++) {
  7480. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7481. }
  7482. dir_name[8] = '\0';
  7483. MYSERIAL.println(dir_name);
  7484. card.chdir(dir_name);
  7485. }
  7486. for (int i = 0; i < 8; i++) {
  7487. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7488. }
  7489. filename[8] = '\0';
  7490. MYSERIAL.print(filename);
  7491. strcat_P(filename, PSTR(".gco"));
  7492. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7493. for (c = &cmd[4]; *c; c++)
  7494. *c = tolower(*c);
  7495. enquecommand(cmd);
  7496. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7497. SERIAL_ECHOPGM("Position read from eeprom:");
  7498. MYSERIAL.println(position);
  7499. // E axis relative mode.
  7500. enquecommand_P(PSTR("M83"));
  7501. // Move to the XY print position in logical coordinates, where the print has been killed.
  7502. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7503. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7504. strcat_P(cmd, PSTR(" F2000"));
  7505. enquecommand(cmd);
  7506. // Move the Z axis down to the print, in logical coordinates.
  7507. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7508. enquecommand(cmd);
  7509. // Unretract.
  7510. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7511. // Set the feedrate saved at the power panic.
  7512. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7513. enquecommand(cmd);
  7514. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7515. {
  7516. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7517. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7518. }
  7519. // Set the fan speed saved at the power panic.
  7520. strcpy_P(cmd, PSTR("M106 S"));
  7521. strcat(cmd, itostr3(int(fan_speed_rec)));
  7522. enquecommand(cmd);
  7523. // Set a position in the file.
  7524. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7525. enquecommand(cmd);
  7526. // Start SD print.
  7527. enquecommand_P(PSTR("M24"));
  7528. }
  7529. #endif //UVLO_SUPPORT
  7530. ////////////////////////////////////////////////////////////////////////////////
  7531. // save/restore printing
  7532. void stop_and_save_print_to_ram(float z_move, float e_move)
  7533. {
  7534. if (saved_printing) return;
  7535. unsigned char nplanner_blocks;
  7536. unsigned char nlines;
  7537. uint16_t sdlen_planner;
  7538. uint16_t sdlen_cmdqueue;
  7539. cli();
  7540. if (card.sdprinting) {
  7541. nplanner_blocks = number_of_blocks();
  7542. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7543. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7544. saved_sdpos -= sdlen_planner;
  7545. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7546. saved_sdpos -= sdlen_cmdqueue;
  7547. saved_printing_type = PRINTING_TYPE_SD;
  7548. }
  7549. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7550. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7551. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7552. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7553. saved_sdpos -= nlines;
  7554. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7555. saved_printing_type = PRINTING_TYPE_USB;
  7556. }
  7557. else {
  7558. //not sd printing nor usb printing
  7559. }
  7560. #if 0
  7561. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7562. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7563. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7564. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7565. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7566. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7567. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7568. {
  7569. card.setIndex(saved_sdpos);
  7570. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7571. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7572. MYSERIAL.print(char(card.get()));
  7573. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7574. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7575. MYSERIAL.print(char(card.get()));
  7576. SERIAL_ECHOLNPGM("End of command buffer");
  7577. }
  7578. {
  7579. // Print the content of the planner buffer, line by line:
  7580. card.setIndex(saved_sdpos);
  7581. int8_t iline = 0;
  7582. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7583. SERIAL_ECHOPGM("Planner line (from file): ");
  7584. MYSERIAL.print(int(iline), DEC);
  7585. SERIAL_ECHOPGM(", length: ");
  7586. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7587. SERIAL_ECHOPGM(", steps: (");
  7588. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7589. SERIAL_ECHOPGM(",");
  7590. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7591. SERIAL_ECHOPGM(",");
  7592. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7593. SERIAL_ECHOPGM(",");
  7594. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7595. SERIAL_ECHOPGM("), events: ");
  7596. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7597. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7598. MYSERIAL.print(char(card.get()));
  7599. }
  7600. }
  7601. {
  7602. // Print the content of the command buffer, line by line:
  7603. int8_t iline = 0;
  7604. union {
  7605. struct {
  7606. char lo;
  7607. char hi;
  7608. } lohi;
  7609. uint16_t value;
  7610. } sdlen_single;
  7611. int _bufindr = bufindr;
  7612. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7613. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7614. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7615. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7616. }
  7617. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7618. MYSERIAL.print(int(iline), DEC);
  7619. SERIAL_ECHOPGM(", type: ");
  7620. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7621. SERIAL_ECHOPGM(", len: ");
  7622. MYSERIAL.println(sdlen_single.value, DEC);
  7623. // Print the content of the buffer line.
  7624. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7625. SERIAL_ECHOPGM("Buffer line (from file): ");
  7626. MYSERIAL.print(int(iline), DEC);
  7627. MYSERIAL.println(int(iline), DEC);
  7628. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7629. MYSERIAL.print(char(card.get()));
  7630. if (-- _buflen == 0)
  7631. break;
  7632. // First skip the current command ID and iterate up to the end of the string.
  7633. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7634. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7635. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7636. // If the end of the buffer was empty,
  7637. if (_bufindr == sizeof(cmdbuffer)) {
  7638. // skip to the start and find the nonzero command.
  7639. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7640. }
  7641. }
  7642. }
  7643. #endif
  7644. #if 0
  7645. saved_feedrate2 = feedrate; //save feedrate
  7646. #else
  7647. // Try to deduce the feedrate from the first block of the planner.
  7648. // Speed is in mm/min.
  7649. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7650. #endif
  7651. planner_abort_hard(); //abort printing
  7652. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7653. saved_active_extruder = active_extruder; //save active_extruder
  7654. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7655. cmdqueue_reset(); //empty cmdqueue
  7656. card.sdprinting = false;
  7657. // card.closefile();
  7658. saved_printing = true;
  7659. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7660. st_reset_timer();
  7661. sei();
  7662. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7663. #if 1
  7664. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7665. char buf[48];
  7666. // First unretract (relative extrusion)
  7667. strcpy_P(buf, PSTR("G1 E"));
  7668. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7669. strcat_P(buf, PSTR(" F"));
  7670. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7671. enquecommand(buf, false);
  7672. // Then lift Z axis
  7673. strcpy_P(buf, PSTR("G1 Z"));
  7674. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7675. strcat_P(buf, PSTR(" F"));
  7676. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7677. // At this point the command queue is empty.
  7678. enquecommand(buf, false);
  7679. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7680. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7681. repeatcommand_front();
  7682. #else
  7683. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7684. st_synchronize(); //wait moving
  7685. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7686. memcpy(destination, current_position, sizeof(destination));
  7687. #endif
  7688. }
  7689. }
  7690. void restore_print_from_ram_and_continue(float e_move)
  7691. {
  7692. if (!saved_printing) return;
  7693. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7694. // current_position[axis] = st_get_position_mm(axis);
  7695. active_extruder = saved_active_extruder; //restore active_extruder
  7696. feedrate = saved_feedrate2; //restore feedrate
  7697. float e = saved_pos[E_AXIS] - e_move;
  7698. plan_set_e_position(e);
  7699. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7700. st_synchronize();
  7701. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7702. memcpy(destination, current_position, sizeof(destination));
  7703. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7704. card.setIndex(saved_sdpos);
  7705. sdpos_atomic = saved_sdpos;
  7706. card.sdprinting = true;
  7707. }
  7708. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7709. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7710. FlushSerialRequestResend();
  7711. }
  7712. else {
  7713. //not sd printing nor usb printing
  7714. }
  7715. saved_printing = false;
  7716. }
  7717. void print_world_coordinates()
  7718. {
  7719. SERIAL_ECHOPGM("world coordinates: (");
  7720. MYSERIAL.print(current_position[X_AXIS], 3);
  7721. SERIAL_ECHOPGM(", ");
  7722. MYSERIAL.print(current_position[Y_AXIS], 3);
  7723. SERIAL_ECHOPGM(", ");
  7724. MYSERIAL.print(current_position[Z_AXIS], 3);
  7725. SERIAL_ECHOLNPGM(")");
  7726. }
  7727. void print_physical_coordinates()
  7728. {
  7729. SERIAL_ECHOPGM("physical coordinates: (");
  7730. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7731. SERIAL_ECHOPGM(", ");
  7732. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7733. SERIAL_ECHOPGM(", ");
  7734. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7735. SERIAL_ECHOLNPGM(")");
  7736. }
  7737. void print_mesh_bed_leveling_table()
  7738. {
  7739. SERIAL_ECHOPGM("mesh bed leveling: ");
  7740. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7741. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7742. MYSERIAL.print(mbl.z_values[y][x], 3);
  7743. SERIAL_ECHOPGM(" ");
  7744. }
  7745. SERIAL_ECHOLNPGM("");
  7746. }
  7747. uint16_t print_time_remaining() {
  7748. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7749. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7750. else print_t = print_time_remaining_silent;
  7751. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7752. return print_t;
  7753. }
  7754. uint8_t print_percent_done() {
  7755. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7756. uint8_t percent_done = 0;
  7757. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7758. percent_done = print_percent_done_normal;
  7759. }
  7760. else if (print_percent_done_silent <= 100) {
  7761. percent_done = print_percent_done_silent;
  7762. }
  7763. else {
  7764. percent_done = card.percentDone();
  7765. }
  7766. return percent_done;
  7767. }
  7768. static void print_time_remaining_init() {
  7769. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7770. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7771. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7772. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7773. }
  7774. #define FIL_LOAD_LENGTH 60