mmu2.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044
  1. #include "mmu2.h"
  2. #include "mmu2_error_converter.h"
  3. #include "mmu2_fsensor.h"
  4. #include "mmu2_log.h"
  5. #include "mmu2_power.h"
  6. #include "mmu2_progress_converter.h"
  7. #include "mmu2_reporting.h"
  8. #include "Marlin.h"
  9. #include "language.h"
  10. #include "messages.h"
  11. #include "sound.h"
  12. #include "stepper.h"
  13. #include "strlen_cx.h"
  14. #include "temperature.h"
  15. #include "ultralcd.h"
  16. #include "cardreader.h" // for IS_SD_PRINTING
  17. #include "SpoolJoin.h"
  18. // As of FW 3.12 we only support building the FW with only one extruder, all the multi-extruder infrastructure will be removed.
  19. // Saves at least 800B of code size
  20. static_assert(EXTRUDERS==1);
  21. // Settings for filament load / unload from the LCD menu.
  22. // This is for Prusa MK3-style extruders. Customize for your hardware.
  23. #define MMU2_FILAMENTCHANGE_EJECT_FEED 80.0
  24. #define NOZZLE_PARK_XY_FEEDRATE 50
  25. #define NOZZLE_PARK_Z_FEEDRATE 15
  26. // Nominal distance from the extruder gear to the nozzle tip is 87mm
  27. // However, some slipping may occur and we need separate distances for
  28. // LoadToNozzle and ToolChange.
  29. // - +5mm seemed good for LoadToNozzle,
  30. // - but too much (made blobs) for a ToolChange
  31. static constexpr float MMU2_LOAD_TO_NOZZLE_LENGTH = 87.0F + 5.0F;
  32. // As discussed with our PrusaSlicer profile specialist
  33. // - ToolChange shall not try to push filament into the very tip of the nozzle
  34. // to have some space for additional G-code to tune the extruded filament length
  35. // in the profile
  36. // Beware - this value is used to initialize the MMU logic layer - it will be sent to the MMU upon line up (written into its 8bit register 0x0b)
  37. // However - in the G-code we can get a request to set the extra load distance at runtime to something else (M708 A0xb Xsomething).
  38. // The printer intercepts such a call and sets its extra load distance to match the new value as well.
  39. static constexpr uint8_t MMU2_TOOL_CHANGE_LOAD_LENGTH = 5; // mm
  40. static constexpr uint8_t MMU2_EXTRUDER_PTFE_LENGTH = 42.3f; // mm
  41. static constexpr uint8_t MMU2_EXTRUDER_HEATBREAK_LENGTH = 17.7f; // mm
  42. static constexpr float MMU2_LOAD_TO_NOZZLE_FEED_RATE = 20.0F; // mm/s
  43. static constexpr float MMU2_UNLOAD_TO_FINDA_FEED_RATE = 120.0F; // mm/s
  44. // The first the MMU does is initialise its axis. Meanwhile the E-motor will unload 20mm of filament in approx. 1 second.
  45. static constexpr float MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH = 20.0f; // mm
  46. static constexpr float MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE = 20.0f; // mm/s
  47. static constexpr uint8_t MMU2_NO_TOOL = 99;
  48. static constexpr uint32_t MMU_BAUD = 115200;
  49. struct E_Step {
  50. float extrude; ///< extrude distance in mm
  51. float feedRate; ///< feed rate in mm/s
  52. };
  53. static constexpr E_Step ramming_sequence[] PROGMEM = {
  54. { 0.2816F, 1339.0F / 60.F},
  55. { 0.3051F, 1451.0F / 60.F},
  56. { 0.3453F, 1642.0F / 60.F},
  57. { 0.3990F, 1897.0F / 60.F},
  58. { 0.4761F, 2264.0F / 60.F},
  59. { 0.5767F, 2742.0F / 60.F},
  60. { 0.5691F, 3220.0F / 60.F},
  61. { 0.1081F, 3220.0F / 60.F},
  62. { 0.7644F, 3635.0F / 60.F},
  63. { 0.8248F, 3921.0F / 60.F},
  64. { 0.8483F, 4033.0F / 60.F},
  65. { -15.0F, 6000.0F / 60.F},
  66. { -24.5F, 1200.0F / 60.F},
  67. { -7.0F, 600.0F / 60.F},
  68. { -3.5F, 360.0F / 60.F},
  69. { 20.0F, 454.0F / 60.F},
  70. { -20.0F, 303.0F / 60.F},
  71. { -35.0F, 2000.0F / 60.F},
  72. };
  73. static constexpr E_Step load_to_nozzle_sequence[] PROGMEM = {
  74. { 10.0F, 810.0F / 60.F}, // feed rate = 13.5mm/s - Load fast until filament reach end of nozzle
  75. { 25.0F, 198.0F / 60.F}, // feed rate = 3.3mm/s - Load slower once filament is out of the nozzle
  76. };
  77. namespace MMU2 {
  78. void execute_extruder_sequence(const E_Step *sequence, int steps);
  79. template<typename F>
  80. void waitForHotendTargetTemp(uint16_t delay, F f){
  81. while (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
  82. f();
  83. delay_keep_alive(delay);
  84. }
  85. }
  86. void WaitForHotendTargetTempBeep(){
  87. waitForHotendTargetTemp(3000, []{ Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); } );
  88. }
  89. MMU2 mmu2;
  90. MMU2::MMU2()
  91. : is_mmu_error_monitor_active(false)
  92. , logic(&mmu2Serial, MMU2_TOOL_CHANGE_LOAD_LENGTH)
  93. , extruder(MMU2_NO_TOOL)
  94. , tool_change_extruder(MMU2_NO_TOOL)
  95. , resume_position()
  96. , resume_hotend_temp(0)
  97. , logicStepLastStatus(StepStatus::Finished)
  98. , state(xState::Stopped)
  99. , mmu_print_saved(SavedState::None)
  100. , loadFilamentStarted(false)
  101. , unloadFilamentStarted(false)
  102. , loadingToNozzle(false)
  103. , inAutoRetry(false)
  104. , retryAttempts(MAX_RETRIES)
  105. , toolchange_counter(0)
  106. , tmcFailures(0)
  107. {
  108. }
  109. void MMU2::Start() {
  110. #ifdef MMU_HWRESET
  111. WRITE(MMU_RST_PIN, 1);
  112. SET_OUTPUT(MMU_RST_PIN); // setup reset pin
  113. #endif //MMU_HWRESET
  114. mmu2Serial.begin(MMU_BAUD);
  115. PowerOn(); // I repurposed this to serve as our EEPROM disable toggle.
  116. Reset(ResetForm::ResetPin);
  117. mmu2Serial.flush(); // make sure the UART buffer is clear before starting communication
  118. extruder = MMU2_NO_TOOL;
  119. state = xState::Connecting;
  120. // start the communication
  121. logic.Start();
  122. ResetRetryAttempts();
  123. }
  124. void MMU2::Stop() {
  125. StopKeepPowered();
  126. PowerOff(); // This also disables the MMU in the EEPROM.
  127. }
  128. void MMU2::StopKeepPowered(){
  129. state = xState::Stopped;
  130. logic.Stop();
  131. mmu2Serial.close();
  132. }
  133. void MMU2::Reset(ResetForm level){
  134. switch (level) {
  135. case Software: ResetX0(); break;
  136. case ResetPin: TriggerResetPin(); break;
  137. case CutThePower: PowerCycle(); break;
  138. default: break;
  139. }
  140. }
  141. void MMU2::ResetX0() {
  142. logic.ResetMMU(); // Send soft reset
  143. }
  144. void MMU2::TriggerResetPin(){
  145. reset();
  146. }
  147. void MMU2::PowerCycle(){
  148. // cut the power to the MMU and after a while restore it
  149. // Sadly, MK3/S/+ cannot do this
  150. // NOTE: the below will toggle the EEPROM var. Should we
  151. // assert this function is never called in the MK3 FW? Do we even care?
  152. PowerOff();
  153. delay_keep_alive(1000);
  154. PowerOn();
  155. }
  156. void MMU2::PowerOff(){
  157. power_off();
  158. }
  159. void MMU2::PowerOn(){
  160. power_on();
  161. }
  162. bool MMU2::ReadRegister(uint8_t address){
  163. if( ! WaitForMMUReady())
  164. return false;
  165. do {
  166. logic.ReadRegister(address); // we may signal the accepted/rejected status of the response as return value of this function
  167. } while( ! manage_response(false, false) );
  168. return true;
  169. }
  170. bool MMU2::WriteRegister(uint8_t address, uint16_t data){
  171. if( ! WaitForMMUReady())
  172. return false;
  173. // special case - intercept requests of extra loading distance and perform the change even on the printer's side
  174. if( address == 0x0b ){
  175. logic.PlanExtraLoadDistance(data);
  176. }
  177. do {
  178. logic.WriteRegister(address, data); // we may signal the accepted/rejected status of the response as return value of this function
  179. } while( ! manage_response(false, false) );
  180. return true;
  181. }
  182. void MMU2::mmu_loop() {
  183. // We only leave this method if the current command was successfully completed - that's the Marlin's way of blocking operation
  184. // Atomic compare_exchange would have been the most appropriate solution here, but this gets called only in Marlin's task,
  185. // so thread safety should be kept
  186. static bool avoidRecursion = false;
  187. if (avoidRecursion)
  188. return;
  189. avoidRecursion = true;
  190. mmu_loop_inner(true);
  191. avoidRecursion = false;
  192. }
  193. void __attribute__((noinline)) MMU2::mmu_loop_inner(bool reportErrors) {
  194. logicStepLastStatus = LogicStep(reportErrors); // it looks like the mmu_loop doesn't need to be a blocking call
  195. if (is_mmu_error_monitor_active) {
  196. // Call this every iteration to keep the knob rotation responsive
  197. // This includes when mmu_loop is called within manage_response
  198. ReportErrorHook((uint16_t)lastErrorCode);
  199. }
  200. }
  201. void MMU2::CheckFINDARunout() {
  202. // Check for FINDA filament runout
  203. if (!FindaDetectsFilament() && CHECK_FSENSOR) {
  204. SERIAL_ECHOLNPGM("FINDA filament runout!");
  205. stop_and_save_print_to_ram(0, 0);
  206. restore_print_from_ram_and_continue(0);
  207. if (SpoolJoin::spooljoin.isSpoolJoinEnabled() && get_current_tool() != (uint8_t)FILAMENT_UNKNOWN){ // Can't auto if F=?
  208. enquecommand_front_P(PSTR("M600 AUTO")); // save print and run M600 command
  209. } else {
  210. enquecommand_front_P(PSTR("M600")); // save print and run M600 command
  211. }
  212. }
  213. }
  214. struct ReportingRAII {
  215. CommandInProgress cip;
  216. inline ReportingRAII(CommandInProgress cip):cip(cip){
  217. BeginReport(cip, (uint16_t)ProgressCode::EngagingIdler);
  218. }
  219. inline ~ReportingRAII(){
  220. EndReport(cip, (uint16_t)ProgressCode::OK);
  221. }
  222. };
  223. bool MMU2::WaitForMMUReady(){
  224. switch(State()){
  225. case xState::Stopped:
  226. return false;
  227. case xState::Connecting:
  228. // shall we wait until the MMU reconnects?
  229. // fire-up a fsm_dlg and show "MMU not responding"?
  230. default:
  231. return true;
  232. }
  233. }
  234. bool MMU2::RetryIfPossible(uint16_t ec){
  235. if( retryAttempts ){
  236. SERIAL_ECHOPGM("retryAttempts=");SERIAL_ECHOLN((uint16_t)retryAttempts);
  237. SetButtonResponse(ButtonOperations::Retry);
  238. // check, that Retry is actually allowed on that operation
  239. if( ButtonAvailable(ec) != NoButton ){
  240. inAutoRetry = true;
  241. SERIAL_ECHOLNPGM("RetryButtonPressed");
  242. // We don't decrement until the button is acknowledged by the MMU.
  243. //--retryAttempts; // "used" one retry attempt
  244. return true;
  245. }
  246. }
  247. inAutoRetry = false;
  248. return false;
  249. }
  250. void MMU2::ResetRetryAttempts(){
  251. SERIAL_ECHOLNPGM("ResetRetryAttempts");
  252. retryAttempts = MAX_RETRIES;
  253. }
  254. void MMU2::DecrementRetryAttempts() {
  255. if (inAutoRetry && retryAttempts) {
  256. SERIAL_ECHOLNPGM("DecrementRetryAttempts");
  257. retryAttempts--;
  258. }
  259. }
  260. bool MMU2::VerifyFilamentEnteredPTFE()
  261. {
  262. st_synchronize();
  263. if (!fsensor.getFilamentPresent()) return false;
  264. uint8_t fsensorState = 0;
  265. // MMU has finished its load, push the filament further by some defined constant length
  266. // If the filament sensor reads 0 at any moment, then report FAILURE
  267. current_position[E_AXIS] += MMU2_EXTRUDER_PTFE_LENGTH + MMU2_EXTRUDER_HEATBREAK_LENGTH - logic.ExtraLoadDistance();
  268. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  269. while(blocks_queued())
  270. {
  271. // Wait for move to finish and monitor the fsensor the entire time
  272. fsensorState |= !fsensor.getFilamentPresent();
  273. }
  274. if (fsensorState)
  275. {
  276. IncrementLoadFails();
  277. return false;
  278. } else {
  279. // else, happy printing! :)
  280. // Revert the movements
  281. current_position[E_AXIS] -= (MMU2_EXTRUDER_PTFE_LENGTH + MMU2_EXTRUDER_HEATBREAK_LENGTH - logic.ExtraLoadDistance());
  282. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  283. st_synchronize();
  284. return true;
  285. }
  286. }
  287. void MMU2::ToolChangeCommon(uint8_t slot){
  288. for(;;) { // while not successfully fed into extruder's PTFE tube
  289. for(;;) {
  290. tool_change_extruder = slot;
  291. logic.ToolChange(slot); // let the MMU pull the filament out and push a new one in
  292. if( manage_response(true, true) )
  293. break;
  294. // otherwise: failed to perform the command - unload first and then let it run again
  295. IncrementMMUFails();
  296. unload();
  297. // if we run out of retries, we must do something ... may be raise an error screen and allow the user to do something
  298. // but honestly - if the MMU restarts during every toolchange,
  299. // something else is seriously broken and stopping a print is probably our best option.
  300. }
  301. // reset current position to whatever the planner thinks it is
  302. plan_set_e_position(current_position[E_AXIS]);
  303. if (VerifyFilamentEnteredPTFE()) break;
  304. else { // Prepare a retry attempt
  305. unload(); // TODO cut filament
  306. }
  307. }
  308. extruder = slot; //filament change is finished
  309. SpoolJoin::spooljoin.setSlot(slot);
  310. // @@TODO really report onto the serial? May be for the Octoprint? Not important now
  311. // SERIAL_ECHO_START();
  312. // SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(extruder));
  313. ++toolchange_counter;
  314. }
  315. bool MMU2::tool_change(uint8_t slot) {
  316. if( ! WaitForMMUReady())
  317. return false;
  318. if (slot != extruder) {
  319. if (!IS_SD_PRINTING && !usb_timer.running()) {
  320. // If Tcodes are used manually through the serial
  321. // we need to unload manually as well
  322. unload();
  323. }
  324. ReportingRAII rep(CommandInProgress::ToolChange);
  325. FSensorBlockRunout blockRunout;
  326. st_synchronize();
  327. ToolChangeCommon(slot);
  328. }
  329. return true;
  330. }
  331. /// Handle special T?/Tx/Tc commands
  332. ///
  333. ///- T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  334. ///- Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  335. ///- Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated.
  336. bool MMU2::tool_change(char code, uint8_t slot) {
  337. if( ! WaitForMMUReady())
  338. return false;
  339. FSensorBlockRunout blockRunout;
  340. switch (code) {
  341. case '?': {
  342. waitForHotendTargetTemp(100, []{});
  343. load_filament_to_nozzle(slot);
  344. } break;
  345. case 'x': {
  346. set_extrude_min_temp(0); // Allow cold extrusion since Tx only loads to the gears not nozzle
  347. st_synchronize();
  348. ToolChangeCommon(slot); // the only difference was manage_response(false, false), but probably good enough
  349. set_extrude_min_temp(EXTRUDE_MINTEMP);
  350. } break;
  351. case 'c': {
  352. waitForHotendTargetTemp(100, []{});
  353. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  354. } break;
  355. }
  356. return true;
  357. }
  358. void MMU2::get_statistics() {
  359. logic.Statistics();
  360. }
  361. uint8_t MMU2::get_current_tool() const {
  362. return extruder == MMU2_NO_TOOL ? (uint8_t)FILAMENT_UNKNOWN : extruder;
  363. }
  364. uint8_t MMU2::get_tool_change_tool() const {
  365. return tool_change_extruder == MMU2_NO_TOOL ? (uint8_t)FILAMENT_UNKNOWN : tool_change_extruder;
  366. }
  367. bool MMU2::set_filament_type(uint8_t slot, uint8_t type) {
  368. if( ! WaitForMMUReady())
  369. return false;
  370. // @@TODO - this is not supported in the new MMU yet
  371. slot = slot; // @@TODO
  372. type = type; // @@TODO
  373. // cmd_arg = filamentType;
  374. // command(MMU_CMD_F0 + index);
  375. if( ! manage_response(false, false) ){
  376. // @@TODO failed to perform the command - retry
  377. ;
  378. } // true, true); -- Comment: how is it possible for a filament type set to fail?
  379. return true;
  380. }
  381. bool MMU2::unload() {
  382. if( ! WaitForMMUReady())
  383. return false;
  384. WaitForHotendTargetTempBeep();
  385. {
  386. FSensorBlockRunout blockRunout;
  387. ReportingRAII rep(CommandInProgress::UnloadFilament);
  388. filament_ramming();
  389. // we assume the printer managed to relieve filament tip from the gears,
  390. // so repeating that part in case of an MMU restart is not necessary
  391. for(;;) {
  392. logic.UnloadFilament();
  393. if( manage_response(false, true) )
  394. break;
  395. IncrementMMUFails();
  396. }
  397. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  398. // no active tool
  399. extruder = MMU2_NO_TOOL;
  400. tool_change_extruder = MMU2_NO_TOOL;
  401. }
  402. return true;
  403. }
  404. bool MMU2::cut_filament(uint8_t slot){
  405. if( ! WaitForMMUReady())
  406. return false;
  407. ReportingRAII rep(CommandInProgress::CutFilament);
  408. for(;;){
  409. logic.CutFilament(slot);
  410. if( manage_response(false, true) )
  411. break;
  412. IncrementMMUFails();
  413. }
  414. return true;
  415. }
  416. void FullScreenMsg(const char *pgmS, uint8_t slot){
  417. lcd_update_enable(false);
  418. lcd_clear();
  419. lcd_puts_at_P(0, 1, pgmS);
  420. lcd_print(' ');
  421. lcd_print(slot + 1);
  422. }
  423. bool MMU2::loading_test(uint8_t slot){
  424. FullScreenMsg(_T(MSG_TESTING_FILAMENT), slot);
  425. tool_change(slot);
  426. st_synchronize();
  427. unload();
  428. lcd_update_enable(true);
  429. return true;
  430. }
  431. bool MMU2::load_filament(uint8_t slot) {
  432. if( ! WaitForMMUReady())
  433. return false;
  434. FullScreenMsg(_T(MSG_LOADING_FILAMENT), slot);
  435. ReportingRAII rep(CommandInProgress::LoadFilament);
  436. for(;;) {
  437. logic.LoadFilament(slot);
  438. if( manage_response(false, false) )
  439. break;
  440. IncrementMMUFails();
  441. }
  442. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  443. lcd_update_enable(true);
  444. return true;
  445. }
  446. struct LoadingToNozzleRAII {
  447. MMU2 &mmu2;
  448. explicit inline LoadingToNozzleRAII(MMU2 &mmu2):mmu2(mmu2){
  449. mmu2.loadingToNozzle = true;
  450. }
  451. inline ~LoadingToNozzleRAII(){
  452. mmu2.loadingToNozzle = false;
  453. }
  454. };
  455. bool MMU2::load_filament_to_nozzle(uint8_t slot) {
  456. if( ! WaitForMMUReady())
  457. return false;
  458. LoadingToNozzleRAII ln(*this);
  459. WaitForHotendTargetTempBeep();
  460. FullScreenMsg(_T(MSG_LOADING_FILAMENT), slot);
  461. {
  462. // used for MMU-menu operation "Load to Nozzle"
  463. ReportingRAII rep(CommandInProgress::ToolChange);
  464. FSensorBlockRunout blockRunout;
  465. if( extruder != MMU2_NO_TOOL ){ // we already have some filament loaded - free it + shape its tip properly
  466. filament_ramming();
  467. }
  468. ToolChangeCommon(slot);
  469. // Finish loading to the nozzle with finely tuned steps.
  470. execute_extruder_sequence((const E_Step *)load_to_nozzle_sequence, sizeof(load_to_nozzle_sequence) / sizeof (load_to_nozzle_sequence[0]));
  471. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  472. }
  473. lcd_update_enable(true);
  474. return true;
  475. }
  476. bool MMU2::eject_filament(uint8_t slot, bool recover) {
  477. if( ! WaitForMMUReady())
  478. return false;
  479. ReportingRAII rep(CommandInProgress::EjectFilament);
  480. current_position[E_AXIS] -= MMU2_FILAMENTCHANGE_EJECT_FEED;
  481. plan_buffer_line_curposXYZE(2500.F / 60.F);
  482. st_synchronize();
  483. logic.EjectFilament(slot);
  484. if( ! manage_response(false, false) ){
  485. // @@TODO failed to perform the command - retry
  486. ;
  487. }
  488. if (recover) {
  489. // LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER);
  490. Sound_MakeSound(e_SOUND_TYPE_StandardPrompt);
  491. //@@TODO wait_for_user = true;
  492. //#if ENABLED(HOST_PROMPT_SUPPORT)
  493. // host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), PSTR("Continue"));
  494. //#endif
  495. //#if ENABLED(EXTENSIBLE_UI)
  496. // ExtUI::onUserConfirmRequired_P(PSTR("MMU2 Eject Recover"));
  497. //#endif
  498. //@@TODO while (wait_for_user) idle(true);
  499. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  500. // logic.Command(); //@@TODO command(MMU_CMD_R0);
  501. if( ! manage_response(false, false) ){
  502. // @@TODO failed to perform the command - retry
  503. ;
  504. }
  505. }
  506. // no active tool
  507. extruder = MMU2_NO_TOOL;
  508. tool_change_extruder = MMU2_NO_TOOL;
  509. Sound_MakeSound(e_SOUND_TYPE_StandardConfirm);
  510. // disable_E0();
  511. return true;
  512. }
  513. void MMU2::Button(uint8_t index){
  514. LogEchoEvent_P(PSTR("Button"));
  515. logic.Button(index);
  516. }
  517. void MMU2::Home(uint8_t mode){
  518. logic.Home(mode);
  519. }
  520. void MMU2::SaveAndPark(bool move_axes, bool turn_off_nozzle) {
  521. if (mmu_print_saved == SavedState::None) { // First occurrence. Save current position, park print head, disable nozzle heater.
  522. LogEchoEvent_P(PSTR("Saving and parking"));
  523. st_synchronize();
  524. resume_hotend_temp = degTargetHotend(active_extruder);
  525. if (move_axes){
  526. mmu_print_saved |= SavedState::ParkExtruder;
  527. // save current pos
  528. for(uint8_t i = 0; i < 3; ++i){
  529. resume_position.xyz[i] = current_position[i];
  530. }
  531. // lift Z
  532. raise_z(MMU_ERR_Z_PAUSE_LIFT);
  533. // move XY aside
  534. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])
  535. {
  536. current_position[X_AXIS] = MMU_ERR_X_PAUSE_POS;
  537. current_position[Y_AXIS] = MMU_ERR_Y_PAUSE_POS;
  538. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  539. st_synchronize();
  540. }
  541. }
  542. if (turn_off_nozzle){
  543. mmu_print_saved |= SavedState::CooldownPending;
  544. LogEchoEvent_P(PSTR("Heater cooldown pending"));
  545. // This just sets the flag that we should timeout and shut off the nozzle in 30 minutes...
  546. //setAllTargetHotends(0);
  547. }
  548. }
  549. // keep the motors powered forever (until some other strategy is chosen)
  550. // @@TODO do we need that in 8bit?
  551. // gcode.reset_stepper_timeout();
  552. }
  553. void MMU2::ResumeHotendTemp() {
  554. if ((mmu_print_saved & SavedState::CooldownPending))
  555. {
  556. // Clear the "pending" flag if we haven't cooled yet.
  557. mmu_print_saved &= ~(SavedState::CooldownPending);
  558. LogEchoEvent_P(PSTR("Cooldown flag cleared"));
  559. }
  560. if ((mmu_print_saved & SavedState::Cooldown) && resume_hotend_temp) {
  561. LogEchoEvent_P(PSTR("Resuming Temp"));
  562. MMU2_ECHO_MSGRPGM(PSTR("Restoring hotend temperature "));
  563. SERIAL_ECHOLN(resume_hotend_temp);
  564. mmu_print_saved &= ~(SavedState::Cooldown);
  565. setTargetHotend(resume_hotend_temp, active_extruder);
  566. lcd_display_message_fullscreen_P(_i("MMU Retry: Restoring temperature...")); ////MSG_MMU_RESTORE_TEMP c=20 r=4
  567. //@todo better report the event and let the GUI do its work somewhere else
  568. ReportErrorHookSensorLineRender();
  569. waitForHotendTargetTemp(100, []{
  570. manage_inactivity(true);
  571. mmu2.mmu_loop_inner(false);
  572. ReportErrorHookDynamicRender();
  573. });
  574. lcd_update_enable(true); // temporary hack to stop this locking the printer...
  575. LogEchoEvent_P(PSTR("Hotend temperature reached"));
  576. lcd_clear();
  577. }
  578. }
  579. void MMU2::ResumeUnpark(){
  580. if (mmu_print_saved & SavedState::ParkExtruder) {
  581. LogEchoEvent_P(PSTR("Resuming XYZ"));
  582. current_position[X_AXIS] = resume_position.xyz[X_AXIS];
  583. current_position[Y_AXIS] = resume_position.xyz[Y_AXIS];
  584. plan_buffer_line_curposXYZE(NOZZLE_PARK_XY_FEEDRATE);
  585. st_synchronize();
  586. current_position[Z_AXIS] = resume_position.xyz[Z_AXIS];
  587. plan_buffer_line_curposXYZE(NOZZLE_PARK_Z_FEEDRATE);
  588. st_synchronize();
  589. mmu_print_saved &= ~(SavedState::ParkExtruder);
  590. }
  591. }
  592. void MMU2::CheckUserInput(){
  593. auto btn = ButtonPressed((uint16_t)lastErrorCode);
  594. // Was a button pressed on the MMU itself instead of the LCD?
  595. if (btn == Buttons::NoButton && lastButton != Buttons::NoButton){
  596. btn = lastButton;
  597. lastButton = Buttons::NoButton; // Clear it.
  598. }
  599. switch (btn) {
  600. case Left:
  601. case Middle:
  602. case Right:
  603. SERIAL_ECHOPGM("CheckUserInput-btnLMR ");
  604. SERIAL_ECHOLN(btn);
  605. ResumeHotendTemp(); // Recover the hotend temp before we attempt to do anything else...
  606. Button(btn);
  607. break;
  608. case RestartMMU:
  609. Reset(ResetPin); // we cannot do power cycle on the MK3
  610. // ... but mmu2_power.cpp knows this and triggers a soft-reset instead.
  611. break;
  612. case DisableMMU:
  613. Stop(); // Poweroff handles updating the EEPROM shutoff.
  614. break;
  615. case StopPrint:
  616. // @@TODO not sure if we shall handle this high level operation at this spot
  617. break;
  618. default:
  619. break;
  620. }
  621. }
  622. /// Originally, this was used to wait for response and deal with timeout if necessary.
  623. /// The new protocol implementation enables much nicer and intense reporting, so this method will boil down
  624. /// just to verify the result of an issued command (which was basically the original idea)
  625. ///
  626. /// It is closely related to mmu_loop() (which corresponds to our ProtocolLogic::Step()), which does NOT perform any blocking wait for a command to finish.
  627. /// But - in case of an error, the command is not yet finished, but we must react accordingly - move the printhead elsewhere, stop heating, eat a cat or so.
  628. /// That's what's being done here...
  629. bool MMU2::manage_response(const bool move_axes, const bool turn_off_nozzle) {
  630. mmu_print_saved = SavedState::None;
  631. KEEPALIVE_STATE(IN_PROCESS);
  632. LongTimer nozzleTimeout;
  633. for (;;) {
  634. // in our new implementation, we know the exact state of the MMU at any moment, we do not have to wait for a timeout
  635. // So in this case we shall decide if the operation is:
  636. // - still running -> wait normally in idle()
  637. // - failed -> then do the safety moves on the printer like before
  638. // - finished ok -> proceed with reading other commands
  639. manage_heater();
  640. manage_inactivity(true); // calls LogicStep() and remembers its return status
  641. lcd_update(0);
  642. if (mmu_print_saved & SavedState::CooldownPending){
  643. if (!nozzleTimeout.running()){
  644. nozzleTimeout.start();
  645. LogEchoEvent_P(PSTR("Cooling Timeout started"));
  646. } else if (nozzleTimeout.expired(DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul)){ // mins->msec. TODO: do we use the global or have our own independent timeout
  647. mmu_print_saved &= ~(SavedState::CooldownPending);
  648. mmu_print_saved |= SavedState::Cooldown;
  649. setAllTargetHotends(0);
  650. LogEchoEvent_P(PSTR("Heater cooldown"));
  651. }
  652. } else if (nozzleTimeout.running()) {
  653. nozzleTimeout.stop();
  654. LogEchoEvent_P(PSTR("Cooling timer stopped"));
  655. }
  656. switch (logicStepLastStatus) {
  657. case Finished:
  658. // command/operation completed, let Marlin continue its work
  659. // the E may have some more moves to finish - wait for them
  660. ResumeUnpark(); // We can now travel back to the tower or wherever we were when we saved.
  661. ResetRetryAttempts(); // Reset the retry counter.
  662. st_synchronize();
  663. return true;
  664. case Interrupted:
  665. // now what :D ... big bad ... ramming, unload, retry the whole command originally issued
  666. return false;
  667. case VersionMismatch: // this basically means the MMU will be disabled until reconnected
  668. CheckUserInput();
  669. return true;
  670. case CommandError:
  671. // Don't proceed to the park/save if we are doing an autoretry.
  672. if (inAutoRetry){
  673. continue;
  674. }
  675. [[fallthrough]];
  676. case CommunicationTimeout:
  677. case ProtocolError:
  678. SaveAndPark(move_axes, turn_off_nozzle); // and wait for the user to resolve the problem
  679. CheckUserInput();
  680. break;
  681. case CommunicationRecovered: // @@TODO communication recovered and may be an error recovered as well
  682. // may be the logic layer can detect the change of state a respond with one "Recovered" to be handled here
  683. ResumeHotendTemp();
  684. ResumeUnpark();
  685. break;
  686. case Processing: // wait for the MMU to respond
  687. default:
  688. break;
  689. }
  690. }
  691. }
  692. StepStatus MMU2::LogicStep(bool reportErrors) {
  693. CheckUserInput(); // Process any buttons before proceeding with another MMU Query
  694. StepStatus ss = logic.Step();
  695. switch (ss) {
  696. case Finished:
  697. // At this point it is safe to trigger a runout and not interrupt the MMU protocol
  698. CheckFINDARunout();
  699. break;
  700. case Processing:
  701. OnMMUProgressMsg(logic.Progress());
  702. break;
  703. case ButtonPushed:
  704. lastButton = logic.Button();
  705. LogEchoEvent_P(PSTR("MMU Button pushed"));
  706. CheckUserInput(); // Process the button immediately
  707. break;
  708. case Interrupted:
  709. // can be silently handed over to a higher layer, no processing necessary at this spot
  710. break;
  711. default:
  712. if(reportErrors) {
  713. switch (ss)
  714. {
  715. case CommandError:
  716. ReportError(logic.Error(), ErrorSourceMMU);
  717. break;
  718. case CommunicationTimeout:
  719. state = xState::Connecting;
  720. ReportError(ErrorCode::MMU_NOT_RESPONDING, ErrorSourcePrinter);
  721. break;
  722. case ProtocolError:
  723. state = xState::Connecting;
  724. ReportError(ErrorCode::PROTOCOL_ERROR, ErrorSourcePrinter);
  725. break;
  726. case VersionMismatch:
  727. StopKeepPowered();
  728. ReportError(ErrorCode::VERSION_MISMATCH, ErrorSourcePrinter);
  729. break;
  730. default:
  731. break;
  732. }
  733. }
  734. }
  735. if( logic.Running() ){
  736. state = xState::Active;
  737. }
  738. return ss;
  739. }
  740. void MMU2::filament_ramming() {
  741. execute_extruder_sequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step));
  742. }
  743. void MMU2::execute_extruder_sequence(const E_Step *sequence, uint8_t steps) {
  744. st_synchronize();
  745. const E_Step *step = sequence;
  746. for (uint8_t i = 0; i < steps; i++) {
  747. current_position[E_AXIS] += pgm_read_float(&(step->extrude));
  748. plan_buffer_line_curposXYZE(pgm_read_float(&(step->feedRate)));
  749. st_synchronize();
  750. step++;
  751. }
  752. }
  753. void MMU2::ReportError(ErrorCode ec, ErrorSource res) {
  754. // Due to a potential lossy error reporting layers linked to this hook
  755. // we'd better report everything to make sure especially the error states
  756. // do not get lost.
  757. // - The good news here is the fact, that the MMU reports the errors repeatedly until resolved.
  758. // - The bad news is, that MMU not responding may repeatedly occur on printers not having the MMU at all.
  759. //
  760. // Not sure how to properly handle this situation, options:
  761. // - skip reporting "MMU not responding" (at least for now)
  762. // - report only changes of states (we can miss an error message)
  763. // - may be some combination of MMUAvailable + UseMMU flags and decide based on their state
  764. // Right now the filtering of MMU_NOT_RESPONDING is done in ReportErrorHook() as it is not a problem if mmu2.cpp
  765. // Depending on the Progress code, we may want to do some action when an error occurs
  766. switch (logic.Progress()){
  767. case ProgressCode::UnloadingToFinda:
  768. unloadFilamentStarted = false;
  769. break;
  770. case ProgressCode::FeedingToFSensor:
  771. // FSENSOR error during load. Make sure E-motor stops moving.
  772. loadFilamentStarted = false;
  773. break;
  774. default:
  775. break;
  776. }
  777. if( ec != lastErrorCode ){ // deduplicate: only report changes in error codes into the log
  778. lastErrorCode = ec;
  779. lastErrorSource = res;
  780. LogErrorEvent_P( _O(PrusaErrorTitle(PrusaErrorCodeIndex((uint16_t)ec))) );
  781. if( ec != ErrorCode::OK ){
  782. IncrementMMUFails();
  783. // check if it is a "power" failure - we consider TMC-related errors as power failures
  784. static constexpr uint16_t tmcMask =
  785. ( (uint16_t)ErrorCode::TMC_IOIN_MISMATCH
  786. | (uint16_t)ErrorCode::TMC_RESET
  787. | (uint16_t)ErrorCode::TMC_UNDERVOLTAGE_ON_CHARGE_PUMP
  788. | (uint16_t)ErrorCode::TMC_SHORT_TO_GROUND
  789. | (uint16_t)ErrorCode::TMC_OVER_TEMPERATURE_WARN
  790. | (uint16_t)ErrorCode::TMC_OVER_TEMPERATURE_ERROR
  791. | (uint16_t)ErrorCode::MMU_SOLDERING_NEEDS_ATTENTION ) & 0x7fffU; // skip the top bit
  792. static_assert(tmcMask == 0x7e00); // just make sure we fail compilation if any of the TMC error codes change
  793. if ((uint16_t)ec & tmcMask) { // @@TODO can be optimized to uint8_t operation
  794. // TMC-related errors are from 0x8200 higher
  795. IncrementTMCFailures();
  796. }
  797. }
  798. }
  799. if( !mmu2.RetryIfPossible((uint16_t)ec) ) {
  800. // If retry attempts are all used up
  801. // or if 'Retry' operation is not available
  802. // raise the MMU error sceen and wait for user input
  803. ReportErrorHook((uint16_t)ec);
  804. }
  805. static_assert(mmu2Magic[0] == 'M'
  806. && mmu2Magic[1] == 'M'
  807. && mmu2Magic[2] == 'U'
  808. && mmu2Magic[3] == '2'
  809. && mmu2Magic[4] == ':'
  810. && strlen_constexpr(mmu2Magic) == 5,
  811. "MMU2 logging prefix mismatch, must be updated at various spots"
  812. );
  813. }
  814. void MMU2::ReportProgress(ProgressCode pc) {
  815. ReportProgressHook((CommandInProgress)logic.CommandInProgress(), (uint16_t)pc);
  816. LogEchoEvent_P( _O(ProgressCodeToText((uint16_t)pc)) );
  817. }
  818. void MMU2::OnMMUProgressMsg(ProgressCode pc){
  819. if (pc != lastProgressCode) {
  820. OnMMUProgressMsgChanged(pc);
  821. } else {
  822. OnMMUProgressMsgSame(pc);
  823. }
  824. }
  825. void MMU2::OnMMUProgressMsgChanged(ProgressCode pc){
  826. ReportProgress(pc);
  827. lastProgressCode = pc;
  828. switch (pc) {
  829. case ProgressCode::UnloadingToFinda:
  830. if ((CommandInProgress)logic.CommandInProgress() == CommandInProgress::UnloadFilament
  831. || ((CommandInProgress)logic.CommandInProgress() == CommandInProgress::ToolChange))
  832. {
  833. // If MK3S sent U0 command, ramming sequence takes care of releasing the filament.
  834. // If Toolchange is done while printing, PrusaSlicer takes care of releasing the filament
  835. // If printing is not in progress, ToolChange will issue a U0 command.
  836. break;
  837. } else {
  838. // We're likely recovering from an MMU error
  839. st_synchronize();
  840. unloadFilamentStarted = true;
  841. current_position[E_AXIS] -= MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH;
  842. plan_buffer_line_curposXYZE(MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE);
  843. }
  844. break;
  845. case ProgressCode::FeedingToFSensor:
  846. // prepare for the movement of the E-motor
  847. st_synchronize();
  848. loadFilamentStarted = true;
  849. break;
  850. default:
  851. // do nothing yet
  852. break;
  853. }
  854. }
  855. void MMU2::OnMMUProgressMsgSame(ProgressCode pc){
  856. switch (pc) {
  857. case ProgressCode::UnloadingToFinda:
  858. if (unloadFilamentStarted && !blocks_queued()) { // Only plan a move if there is no move ongoing
  859. if (fsensor.getFilamentPresent()) {
  860. current_position[E_AXIS] -= MMU2_RETRY_UNLOAD_TO_FINDA_LENGTH;
  861. plan_buffer_line_curposXYZE(MMU2_RETRY_UNLOAD_TO_FINDA_FEED_RATE);
  862. } else {
  863. unloadFilamentStarted = false;
  864. }
  865. }
  866. break;
  867. case ProgressCode::FeedingToFSensor:
  868. if (loadFilamentStarted) {
  869. switch (WhereIsFilament()) {
  870. case FilamentState::AT_FSENSOR:
  871. // fsensor triggered, finish FeedingToExtruder state
  872. loadFilamentStarted = false;
  873. // After the MMU knows the FSENSOR is triggered it will:
  874. // 1. Push the filament by additional 30mm (see fsensorToNozzle)
  875. // 2. Disengage the idler and push another 2mm.
  876. current_position[E_AXIS] += logic.ExtraLoadDistance() + 2;
  877. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  878. break;
  879. case FilamentState::NOT_PRESENT:
  880. // fsensor not triggered, continue moving extruder
  881. if (!blocks_queued()) { // Only plan a move if there is no move ongoing
  882. current_position[E_AXIS] += 2.0f;
  883. plan_buffer_line_curposXYZE(MMU2_LOAD_TO_NOZZLE_FEED_RATE);
  884. }
  885. break;
  886. default:
  887. // Abort here?
  888. break;
  889. }
  890. }
  891. break;
  892. default:
  893. // do nothing yet
  894. break;
  895. }
  896. }
  897. } // namespace MMU2