Marlin_main.cpp 178 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. float homing_feedrate[] = HOMING_FEEDRATE;
  199. // Currently only the extruder axis may be switched to a relative mode.
  200. // Other axes are always absolute or relative based on the common relative_mode flag.
  201. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  202. int feedmultiply=100; //100->1 200->2
  203. int saved_feedmultiply;
  204. int extrudemultiply=100; //100->1 200->2
  205. int extruder_multiply[EXTRUDERS] = {100
  206. #if EXTRUDERS > 1
  207. , 100
  208. #if EXTRUDERS > 2
  209. , 100
  210. #endif
  211. #endif
  212. };
  213. bool is_usb_printing = false;
  214. unsigned int usb_printing_counter;
  215. int lcd_change_fil_state = 0;
  216. int feedmultiplyBckp = 100;
  217. unsigned char lang_selected = 0;
  218. unsigned long total_filament_used;
  219. unsigned int heating_status;
  220. unsigned int heating_status_counter;
  221. bool custom_message;
  222. unsigned int custom_message_type;
  223. unsigned int custom_message_state;
  224. bool volumetric_enabled = false;
  225. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  226. #if EXTRUDERS > 1
  227. , DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 2
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #endif
  231. #endif
  232. };
  233. float volumetric_multiplier[EXTRUDERS] = {1.0
  234. #if EXTRUDERS > 1
  235. , 1.0
  236. #if EXTRUDERS > 2
  237. , 1.0
  238. #endif
  239. #endif
  240. };
  241. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  242. float add_homing[3]={0,0,0};
  243. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  244. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  245. bool axis_known_position[3] = {false, false, false};
  246. float zprobe_zoffset;
  247. // Extruder offset
  248. #if EXTRUDERS > 1
  249. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  250. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  251. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed=0;
  258. #ifdef FWRETRACT
  259. bool autoretract_enabled=false;
  260. bool retracted[EXTRUDERS]={false
  261. #if EXTRUDERS > 1
  262. , false
  263. #if EXTRUDERS > 2
  264. , false
  265. #endif
  266. #endif
  267. };
  268. bool retracted_swap[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. float retract_length = RETRACT_LENGTH;
  277. float retract_length_swap = RETRACT_LENGTH_SWAP;
  278. float retract_feedrate = RETRACT_FEEDRATE;
  279. float retract_zlift = RETRACT_ZLIFT;
  280. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  281. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  282. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  283. #endif
  284. #ifdef ULTIPANEL
  285. #ifdef PS_DEFAULT_OFF
  286. bool powersupply = false;
  287. #else
  288. bool powersupply = true;
  289. #endif
  290. #endif
  291. bool cancel_heatup = false ;
  292. #ifdef FILAMENT_SENSOR
  293. //Variables for Filament Sensor input
  294. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  295. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  296. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  297. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  298. int delay_index1=0; //index into ring buffer
  299. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  300. float delay_dist=0; //delay distance counter
  301. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  302. #endif
  303. const char errormagic[] PROGMEM = "Error:";
  304. const char echomagic[] PROGMEM = "echo:";
  305. //===========================================================================
  306. //=============================Private Variables=============================
  307. //===========================================================================
  308. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  309. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  310. static float delta[3] = {0.0, 0.0, 0.0};
  311. // For tracing an arc
  312. static float offset[3] = {0.0, 0.0, 0.0};
  313. static bool home_all_axis = true;
  314. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  315. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  316. // Determines Absolute or Relative Coordinates.
  317. // Also there is bool axis_relative_modes[] per axis flag.
  318. static bool relative_mode = false;
  319. // String circular buffer. Commands may be pushed to the buffer from both sides:
  320. // Chained commands will be pushed to the front, interactive (from LCD menu)
  321. // and printing commands (from serial line or from SD card) are pushed to the tail.
  322. // First character of each entry indicates the type of the entry:
  323. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  324. // Command in cmdbuffer was sent over USB.
  325. #define CMDBUFFER_CURRENT_TYPE_USB 1
  326. // Command in cmdbuffer was read from SDCARD.
  327. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  328. // Command in cmdbuffer was generated by the UI.
  329. #define CMDBUFFER_CURRENT_TYPE_UI 3
  330. // Command in cmdbuffer was generated by another G-code.
  331. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  332. // How much space to reserve for the chained commands
  333. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  334. // which are pushed to the front of the queue?
  335. // Maximum 5 commands of max length 20 + null terminator.
  336. #define CMDBUFFER_RESERVE_FRONT (5*21)
  337. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  338. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  339. // Head of the circular buffer, where to read.
  340. static int bufindr = 0;
  341. // Tail of the buffer, where to write.
  342. static int bufindw = 0;
  343. // Number of lines in cmdbuffer.
  344. static int buflen = 0;
  345. // Flag for processing the current command inside the main Arduino loop().
  346. // If a new command was pushed to the front of a command buffer while
  347. // processing another command, this replaces the command on the top.
  348. // Therefore don't remove the command from the queue in the loop() function.
  349. static bool cmdbuffer_front_already_processed = false;
  350. // Type of a command, which is to be executed right now.
  351. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  352. // String of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  354. // Enable debugging of the command buffer.
  355. // Debugging information will be sent to serial line.
  356. // #define CMDBUFFER_DEBUG
  357. static int serial_count = 0;
  358. static boolean comment_mode = false;
  359. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  360. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  361. //static float tt = 0;
  362. //static float bt = 0;
  363. //Inactivity shutdown variables
  364. static unsigned long previous_millis_cmd = 0;
  365. unsigned long max_inactive_time = 0;
  366. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  367. unsigned long starttime=0;
  368. unsigned long stoptime=0;
  369. unsigned long _usb_timer = 0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. // Pop the currently processed command from the queue.
  412. // It is expected, that there is at least one command in the queue.
  413. bool cmdqueue_pop_front()
  414. {
  415. if (buflen > 0) {
  416. #ifdef CMDBUFFER_DEBUG
  417. SERIAL_ECHOPGM("Dequeing ");
  418. SERIAL_ECHO(cmdbuffer+bufindr+1);
  419. SERIAL_ECHOLNPGM("");
  420. SERIAL_ECHOPGM("Old indices: buflen ");
  421. SERIAL_ECHO(buflen);
  422. SERIAL_ECHOPGM(", bufindr ");
  423. SERIAL_ECHO(bufindr);
  424. SERIAL_ECHOPGM(", bufindw ");
  425. SERIAL_ECHO(bufindw);
  426. SERIAL_ECHOPGM(", serial_count ");
  427. SERIAL_ECHO(serial_count);
  428. SERIAL_ECHOPGM(", bufsize ");
  429. SERIAL_ECHO(sizeof(cmdbuffer));
  430. SERIAL_ECHOLNPGM("");
  431. #endif /* CMDBUFFER_DEBUG */
  432. if (-- buflen == 0) {
  433. // Empty buffer.
  434. if (serial_count == 0)
  435. // No serial communication is pending. Reset both pointers to zero.
  436. bufindw = 0;
  437. bufindr = bufindw;
  438. } else {
  439. // There is at least one ready line in the buffer.
  440. // First skip the current command ID and iterate up to the end of the string.
  441. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  442. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  443. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  444. // If the end of the buffer was empty,
  445. if (bufindr == sizeof(cmdbuffer)) {
  446. // skip to the start and find the nonzero command.
  447. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  448. }
  449. #ifdef CMDBUFFER_DEBUG
  450. SERIAL_ECHOPGM("New indices: buflen ");
  451. SERIAL_ECHO(buflen);
  452. SERIAL_ECHOPGM(", bufindr ");
  453. SERIAL_ECHO(bufindr);
  454. SERIAL_ECHOPGM(", bufindw ");
  455. SERIAL_ECHO(bufindw);
  456. SERIAL_ECHOPGM(", serial_count ");
  457. SERIAL_ECHO(serial_count);
  458. SERIAL_ECHOPGM(" new command on the top: ");
  459. SERIAL_ECHO(cmdbuffer+bufindr+1);
  460. SERIAL_ECHOLNPGM("");
  461. #endif /* CMDBUFFER_DEBUG */
  462. }
  463. return true;
  464. }
  465. return false;
  466. }
  467. void cmdqueue_reset()
  468. {
  469. while (cmdqueue_pop_front()) ;
  470. }
  471. // How long a string could be pushed to the front of the command queue?
  472. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  473. // len_asked does not contain the zero terminator size.
  474. bool cmdqueue_could_enqueue_front(int len_asked)
  475. {
  476. // MAX_CMD_SIZE has to accommodate the zero terminator.
  477. if (len_asked >= MAX_CMD_SIZE)
  478. return false;
  479. // Remove the currently processed command from the queue.
  480. if (! cmdbuffer_front_already_processed) {
  481. cmdqueue_pop_front();
  482. cmdbuffer_front_already_processed = true;
  483. }
  484. if (bufindr == bufindw && buflen > 0)
  485. // Full buffer.
  486. return false;
  487. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  488. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  489. if (bufindw < bufindr) {
  490. int bufindr_new = bufindr - len_asked - 2;
  491. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  492. if (endw <= bufindr_new) {
  493. bufindr = bufindr_new;
  494. return true;
  495. }
  496. } else {
  497. // Otherwise the free space is split between the start and end.
  498. if (len_asked + 2 <= bufindr) {
  499. // Could fit at the start.
  500. bufindr -= len_asked + 2;
  501. return true;
  502. }
  503. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  504. if (endw <= bufindr_new) {
  505. memset(cmdbuffer, 0, bufindr);
  506. bufindr = bufindr_new;
  507. return true;
  508. }
  509. }
  510. return false;
  511. }
  512. // Could one enqueue a command of lenthg len_asked into the buffer,
  513. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  514. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  515. // len_asked does not contain the zero terminator size.
  516. bool cmdqueue_could_enqueue_back(int len_asked)
  517. {
  518. // MAX_CMD_SIZE has to accommodate the zero terminator.
  519. if (len_asked >= MAX_CMD_SIZE)
  520. return false;
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. if (serial_count > 0) {
  525. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  526. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  527. // serial data.
  528. // How much memory to reserve for the commands pushed to the front?
  529. // End of the queue, when pushing to the end.
  530. int endw = bufindw + len_asked + 2;
  531. if (bufindw < bufindr)
  532. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  533. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  534. // Otherwise the free space is split between the start and end.
  535. if (// Could one fit to the end, including the reserve?
  536. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  537. // Could one fit to the end, and the reserve to the start?
  538. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  539. return true;
  540. // Could one fit both to the start?
  541. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  542. // Mark the rest of the buffer as used.
  543. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  544. // and point to the start.
  545. bufindw = 0;
  546. return true;
  547. }
  548. } else {
  549. // How much memory to reserve for the commands pushed to the front?
  550. // End of the queue, when pushing to the end.
  551. int endw = bufindw + len_asked + 2;
  552. if (bufindw < bufindr)
  553. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  554. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  555. // Otherwise the free space is split between the start and end.
  556. if (// Could one fit to the end, including the reserve?
  557. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  558. // Could one fit to the end, and the reserve to the start?
  559. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  560. return true;
  561. // Could one fit both to the start?
  562. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  563. // Mark the rest of the buffer as used.
  564. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  565. // and point to the start.
  566. bufindw = 0;
  567. return true;
  568. }
  569. }
  570. return false;
  571. }
  572. #ifdef CMDBUFFER_DEBUG
  573. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  574. {
  575. SERIAL_ECHOPGM("Entry nr: ");
  576. SERIAL_ECHO(nr);
  577. SERIAL_ECHOPGM(", type: ");
  578. SERIAL_ECHO(int(*p));
  579. SERIAL_ECHOPGM(", cmd: ");
  580. SERIAL_ECHO(p+1);
  581. SERIAL_ECHOLNPGM("");
  582. }
  583. static void cmdqueue_dump_to_serial()
  584. {
  585. if (buflen == 0) {
  586. SERIAL_ECHOLNPGM("The command buffer is empty.");
  587. } else {
  588. SERIAL_ECHOPGM("Content of the buffer: entries ");
  589. SERIAL_ECHO(buflen);
  590. SERIAL_ECHOPGM(", indr ");
  591. SERIAL_ECHO(bufindr);
  592. SERIAL_ECHOPGM(", indw ");
  593. SERIAL_ECHO(bufindw);
  594. SERIAL_ECHOLNPGM("");
  595. int nr = 0;
  596. if (bufindr < bufindw) {
  597. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  598. cmdqueue_dump_to_serial_single_line(nr, p);
  599. // Skip the command.
  600. for (++p; *p != 0; ++ p);
  601. // Skip the gaps.
  602. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  603. }
  604. } else {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  611. }
  612. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  613. cmdqueue_dump_to_serial_single_line(nr, p);
  614. // Skip the command.
  615. for (++p; *p != 0; ++ p);
  616. // Skip the gaps.
  617. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  618. }
  619. }
  620. SERIAL_ECHOLNPGM("End of the buffer.");
  621. }
  622. }
  623. #endif /* CMDBUFFER_DEBUG */
  624. //adds an command to the main command buffer
  625. //thats really done in a non-safe way.
  626. //needs overworking someday
  627. // Currently the maximum length of a command piped through this function is around 20 characters
  628. void enquecommand(const char *cmd, bool from_progmem)
  629. {
  630. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  631. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  632. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  633. if (cmdqueue_could_enqueue_back(len)) {
  634. // This is dangerous if a mixing of serial and this happens
  635. // This may easily be tested: If serial_count > 0, we have a problem.
  636. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  637. if (from_progmem)
  638. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  639. else
  640. strcpy(cmdbuffer + bufindw + 1, cmd);
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_Enqueing);
  643. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  644. SERIAL_ECHOLNPGM("\"");
  645. bufindw += len + 2;
  646. if (bufindw == sizeof(cmdbuffer))
  647. bufindw = 0;
  648. ++ buflen;
  649. #ifdef CMDBUFFER_DEBUG
  650. cmdqueue_dump_to_serial();
  651. #endif /* CMDBUFFER_DEBUG */
  652. } else {
  653. SERIAL_ERROR_START;
  654. SERIAL_ECHORPGM(MSG_Enqueing);
  655. if (from_progmem)
  656. SERIAL_PROTOCOLRPGM(cmd);
  657. else
  658. SERIAL_ECHO(cmd);
  659. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. }
  664. }
  665. void enquecommand_front(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  669. if (cmdqueue_could_enqueue_front(len)) {
  670. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  671. if (from_progmem)
  672. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  673. else
  674. strcpy(cmdbuffer + bufindr + 1, cmd);
  675. ++ buflen;
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPGM("Enqueing to the front: \"");
  678. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  679. SERIAL_ECHOLNPGM("\"");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ERROR_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. // Mark the command at the top of the command queue as new.
  697. // Therefore it will not be removed from the queue.
  698. void repeatcommand_front()
  699. {
  700. cmdbuffer_front_already_processed = true;
  701. }
  702. void setup_killpin()
  703. {
  704. #if defined(KILL_PIN) && KILL_PIN > -1
  705. SET_INPUT(KILL_PIN);
  706. WRITE(KILL_PIN,HIGH);
  707. #endif
  708. }
  709. // Set home pin
  710. void setup_homepin(void)
  711. {
  712. #if defined(HOME_PIN) && HOME_PIN > -1
  713. SET_INPUT(HOME_PIN);
  714. WRITE(HOME_PIN,HIGH);
  715. #endif
  716. }
  717. void setup_photpin()
  718. {
  719. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  720. SET_OUTPUT(PHOTOGRAPH_PIN);
  721. WRITE(PHOTOGRAPH_PIN, LOW);
  722. #endif
  723. }
  724. void setup_powerhold()
  725. {
  726. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  727. SET_OUTPUT(SUICIDE_PIN);
  728. WRITE(SUICIDE_PIN, HIGH);
  729. #endif
  730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  731. SET_OUTPUT(PS_ON_PIN);
  732. #if defined(PS_DEFAULT_OFF)
  733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  734. #else
  735. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  736. #endif
  737. #endif
  738. }
  739. void suicide()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, LOW);
  744. #endif
  745. }
  746. void servo_init()
  747. {
  748. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  749. servos[0].attach(SERVO0_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  752. servos[1].attach(SERVO1_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  755. servos[2].attach(SERVO2_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  758. servos[3].attach(SERVO3_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 5)
  761. #error "TODO: enter initalisation code for more servos"
  762. #endif
  763. }
  764. static void lcd_language_menu();
  765. #ifdef MESH_BED_LEVELING
  766. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  767. #endif
  768. // "Setup" function is called by the Arduino framework on startup.
  769. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  770. // are initialized by the main() routine provided by the Arduino framework.
  771. void setup()
  772. {
  773. setup_killpin();
  774. setup_powerhold();
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++ i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  798. MCUSR=0;
  799. //SERIAL_ECHORPGM(MSG_MARLIN);
  800. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  801. #ifdef STRING_VERSION_CONFIG_H
  802. #ifdef STRING_CONFIG_H_AUTHOR
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  805. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  806. SERIAL_ECHORPGM(MSG_AUTHOR);
  807. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  808. SERIAL_ECHOPGM("Compiled: ");
  809. SERIAL_ECHOLNPGM(__DATE__);
  810. #endif
  811. #endif
  812. SERIAL_ECHO_START;
  813. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  814. SERIAL_ECHO(freeMemory());
  815. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  816. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  817. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  818. Config_RetrieveSettings();
  819. tp_init(); // Initialize temperature loop
  820. plan_init(); // Initialize planner;
  821. watchdog_init();
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. lcd_init();
  829. if (!READ(BTN_ENC))
  830. {
  831. _delay_ms(1000);
  832. if (!READ(BTN_ENC))
  833. {
  834. SET_OUTPUT(BEEPER);
  835. WRITE(BEEPER, HIGH);
  836. lcd_force_language_selection();
  837. farm_no = 0;
  838. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  839. farm_mode = false;
  840. while (!READ(BTN_ENC));
  841. WRITE(BEEPER, LOW);
  842. #ifdef MESH_BED_LEVELING
  843. _delay_ms(2000);
  844. if (!READ(BTN_ENC))
  845. {
  846. WRITE(BEEPER, HIGH);
  847. _delay_ms(100);
  848. WRITE(BEEPER, LOW);
  849. _delay_ms(200);
  850. WRITE(BEEPER, HIGH);
  851. _delay_ms(100);
  852. WRITE(BEEPER, LOW);
  853. int _z = 0;
  854. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  855. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  856. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  857. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  858. }
  859. else
  860. {
  861. WRITE(BEEPER, HIGH);
  862. _delay_ms(100);
  863. WRITE(BEEPER, LOW);
  864. }
  865. #endif // mesh
  866. }
  867. }
  868. else
  869. {
  870. _delay_ms(1000); // wait 1sec to display the splash screen
  871. }
  872. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  873. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  874. #endif
  875. #ifdef DIGIPOT_I2C
  876. digipot_i2c_init();
  877. #endif
  878. setup_homepin();
  879. #if defined(Z_AXIS_ALWAYS_ON)
  880. enable_z();
  881. #endif
  882. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  883. if (farm_no > 0)
  884. {
  885. farm_mode = true;
  886. farm_no = farm_no;
  887. prusa_statistics(8);
  888. }
  889. else
  890. {
  891. farm_mode = false;
  892. farm_no = 0;
  893. }
  894. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  895. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  896. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  897. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  898. // where all the EEPROM entries are set to 0x0ff.
  899. // Once a firmware boots up, it forces at least a language selection, which changes
  900. // EEPROM_LANG to number lower than 0x0ff.
  901. // 1) Set a high power mode.
  902. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  903. }
  904. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  905. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  906. // is being written into the EEPROM, so the update procedure will be triggered only once.
  907. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  908. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  909. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  910. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  911. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  912. // Get the selected laugnage index before display update.
  913. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  914. if (lang_selected >= LANG_NUM)
  915. lang_selected = LANG_ID_DEFAULT; // Czech language
  916. // Show the message.
  917. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  918. lcd_update_enable(true);
  919. lcd_implementation_clear();
  920. }
  921. // Store the currently running firmware into an eeprom,
  922. // so the next time the firmware gets updated, it will know from which version it has been updated.
  923. update_current_firmware_version_to_eeprom();
  924. }
  925. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  926. // Before loop(), the setup() function is called by the main() routine.
  927. void loop()
  928. {
  929. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  930. {
  931. is_usb_printing = true;
  932. usb_printing_counter--;
  933. _usb_timer = millis();
  934. }
  935. if (usb_printing_counter == 0)
  936. {
  937. is_usb_printing = false;
  938. }
  939. get_command();
  940. #ifdef SDSUPPORT
  941. card.checkautostart(false);
  942. #endif
  943. if(buflen)
  944. {
  945. #ifdef SDSUPPORT
  946. if(card.saving)
  947. {
  948. // Saving a G-code file onto an SD-card is in progress.
  949. // Saving starts with M28, saving until M29 is seen.
  950. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  951. card.write_command(CMDBUFFER_CURRENT_STRING);
  952. if(card.logging)
  953. process_commands();
  954. else
  955. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  956. } else {
  957. card.closefile();
  958. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  959. }
  960. } else {
  961. process_commands();
  962. }
  963. #else
  964. process_commands();
  965. #endif //SDSUPPORT
  966. if (! cmdbuffer_front_already_processed)
  967. cmdqueue_pop_front();
  968. cmdbuffer_front_already_processed = false;
  969. }
  970. //check heater every n milliseconds
  971. manage_heater();
  972. manage_inactivity();
  973. checkHitEndstops();
  974. lcd_update();
  975. }
  976. void get_command()
  977. {
  978. // Test and reserve space for the new command string.
  979. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  980. return;
  981. while (MYSERIAL.available() > 0) {
  982. char serial_char = MYSERIAL.read();
  983. if (serial_char < 0)
  984. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  985. // and Marlin does not support such file names anyway.
  986. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  987. // to a hang-up of the print process from an SD card.
  988. continue;
  989. if(serial_char == '\n' ||
  990. serial_char == '\r' ||
  991. (serial_char == ':' && comment_mode == false) ||
  992. serial_count >= (MAX_CMD_SIZE - 1) )
  993. {
  994. if(!serial_count) { //if empty line
  995. comment_mode = false; //for new command
  996. return;
  997. }
  998. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  999. if(!comment_mode){
  1000. comment_mode = false; //for new command
  1001. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1002. {
  1003. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1004. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1005. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1006. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1007. // M110 - set current line number.
  1008. // Line numbers not sent in succession.
  1009. SERIAL_ERROR_START;
  1010. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1011. SERIAL_ERRORLN(gcode_LastN);
  1012. //Serial.println(gcode_N);
  1013. FlushSerialRequestResend();
  1014. serial_count = 0;
  1015. return;
  1016. }
  1017. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1018. {
  1019. byte checksum = 0;
  1020. char *p = cmdbuffer+bufindw+1;
  1021. while (p != strchr_pointer)
  1022. checksum = checksum^(*p++);
  1023. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1024. SERIAL_ERROR_START;
  1025. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1026. SERIAL_ERRORLN(gcode_LastN);
  1027. FlushSerialRequestResend();
  1028. serial_count = 0;
  1029. return;
  1030. }
  1031. // If no errors, remove the checksum and continue parsing.
  1032. *strchr_pointer = 0;
  1033. }
  1034. else
  1035. {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1038. SERIAL_ERRORLN(gcode_LastN);
  1039. FlushSerialRequestResend();
  1040. serial_count = 0;
  1041. return;
  1042. }
  1043. gcode_LastN = gcode_N;
  1044. //if no errors, continue parsing
  1045. } // end of 'N' command
  1046. else // if we don't receive 'N' but still see '*'
  1047. {
  1048. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1049. {
  1050. SERIAL_ERROR_START;
  1051. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1052. SERIAL_ERRORLN(gcode_LastN);
  1053. serial_count = 0;
  1054. return;
  1055. }
  1056. } // end of '*' command
  1057. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1058. if (! IS_SD_PRINTING) {
  1059. usb_printing_counter = 10;
  1060. is_usb_printing = true;
  1061. }
  1062. if (Stopped == true) {
  1063. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1064. if (gcode >= 0 && gcode <= 3) {
  1065. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1066. LCD_MESSAGERPGM(MSG_STOPPED);
  1067. }
  1068. }
  1069. } // end of 'G' command
  1070. //If command was e-stop process now
  1071. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1072. kill();
  1073. // Store the current line into buffer, move to the next line.
  1074. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1075. #ifdef CMDBUFFER_DEBUG
  1076. SERIAL_ECHO_START;
  1077. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1078. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1079. SERIAL_ECHOLNPGM("");
  1080. #endif /* CMDBUFFER_DEBUG */
  1081. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1082. if (bufindw == sizeof(cmdbuffer))
  1083. bufindw = 0;
  1084. ++ buflen;
  1085. #ifdef CMDBUFFER_DEBUG
  1086. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1087. SERIAL_ECHO(buflen);
  1088. SERIAL_ECHOLNPGM("");
  1089. #endif /* CMDBUFFER_DEBUG */
  1090. } // end of 'not comment mode'
  1091. serial_count = 0; //clear buffer
  1092. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1093. // in the queue, as this function will reserve the memory.
  1094. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1095. return;
  1096. } // end of "end of line" processing
  1097. else {
  1098. // Not an "end of line" symbol. Store the new character into a buffer.
  1099. if(serial_char == ';') comment_mode = true;
  1100. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1101. }
  1102. } // end of serial line processing loop
  1103. #ifdef SDSUPPORT
  1104. if(!card.sdprinting || serial_count!=0){
  1105. // If there is a half filled buffer from serial line, wait until return before
  1106. // continuing with the serial line.
  1107. return;
  1108. }
  1109. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1110. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1111. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1112. static bool stop_buffering=false;
  1113. if(buflen==0) stop_buffering=false;
  1114. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1115. while( !card.eof() && !stop_buffering) {
  1116. int16_t n=card.get();
  1117. char serial_char = (char)n;
  1118. if(serial_char == '\n' ||
  1119. serial_char == '\r' ||
  1120. (serial_char == '#' && comment_mode == false) ||
  1121. (serial_char == ':' && comment_mode == false) ||
  1122. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1123. {
  1124. if(card.eof()){
  1125. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1126. stoptime=millis();
  1127. char time[30];
  1128. unsigned long t=(stoptime-starttime)/1000;
  1129. int hours, minutes;
  1130. minutes=(t/60)%60;
  1131. hours=t/60/60;
  1132. save_statistics(total_filament_used, t);
  1133. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1134. SERIAL_ECHO_START;
  1135. SERIAL_ECHOLN(time);
  1136. lcd_setstatus(time);
  1137. card.printingHasFinished();
  1138. card.checkautostart(true);
  1139. if (farm_mode)
  1140. {
  1141. prusa_statistics(6);
  1142. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1143. }
  1144. }
  1145. if(serial_char=='#')
  1146. stop_buffering=true;
  1147. if(!serial_count)
  1148. {
  1149. comment_mode = false; //for new command
  1150. return; //if empty line
  1151. }
  1152. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1153. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1154. ++ buflen;
  1155. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1156. if (bufindw == sizeof(cmdbuffer))
  1157. bufindw = 0;
  1158. comment_mode = false; //for new command
  1159. serial_count = 0; //clear buffer
  1160. // The following line will reserve buffer space if available.
  1161. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1162. return;
  1163. }
  1164. else
  1165. {
  1166. if(serial_char == ';') comment_mode = true;
  1167. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1168. }
  1169. }
  1170. #endif //SDSUPPORT
  1171. }
  1172. // Return True if a character was found
  1173. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1174. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1175. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1176. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1177. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1178. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1179. #define DEFINE_PGM_READ_ANY(type, reader) \
  1180. static inline type pgm_read_any(const type *p) \
  1181. { return pgm_read_##reader##_near(p); }
  1182. DEFINE_PGM_READ_ANY(float, float);
  1183. DEFINE_PGM_READ_ANY(signed char, byte);
  1184. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1185. static const PROGMEM type array##_P[3] = \
  1186. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1187. static inline type array(int axis) \
  1188. { return pgm_read_any(&array##_P[axis]); } \
  1189. type array##_ext(int axis) \
  1190. { return pgm_read_any(&array##_P[axis]); }
  1191. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1192. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1193. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1194. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1195. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1196. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1197. static void axis_is_at_home(int axis) {
  1198. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1199. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1200. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1201. }
  1202. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1203. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1204. static void setup_for_endstop_move() {
  1205. saved_feedrate = feedrate;
  1206. saved_feedmultiply = feedmultiply;
  1207. feedmultiply = 100;
  1208. previous_millis_cmd = millis();
  1209. enable_endstops(true);
  1210. }
  1211. static void clean_up_after_endstop_move() {
  1212. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1213. enable_endstops(false);
  1214. #endif
  1215. feedrate = saved_feedrate;
  1216. feedmultiply = saved_feedmultiply;
  1217. previous_millis_cmd = millis();
  1218. }
  1219. #ifdef ENABLE_AUTO_BED_LEVELING
  1220. #ifdef AUTO_BED_LEVELING_GRID
  1221. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1222. {
  1223. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1224. planeNormal.debug("planeNormal");
  1225. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1226. //bedLevel.debug("bedLevel");
  1227. //plan_bed_level_matrix.debug("bed level before");
  1228. //vector_3 uncorrected_position = plan_get_position_mm();
  1229. //uncorrected_position.debug("position before");
  1230. vector_3 corrected_position = plan_get_position();
  1231. // corrected_position.debug("position after");
  1232. current_position[X_AXIS] = corrected_position.x;
  1233. current_position[Y_AXIS] = corrected_position.y;
  1234. current_position[Z_AXIS] = corrected_position.z;
  1235. // put the bed at 0 so we don't go below it.
  1236. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1237. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1238. }
  1239. #else // not AUTO_BED_LEVELING_GRID
  1240. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1241. plan_bed_level_matrix.set_to_identity();
  1242. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1243. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1244. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1245. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1246. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1247. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1248. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1249. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1250. vector_3 corrected_position = plan_get_position();
  1251. current_position[X_AXIS] = corrected_position.x;
  1252. current_position[Y_AXIS] = corrected_position.y;
  1253. current_position[Z_AXIS] = corrected_position.z;
  1254. // put the bed at 0 so we don't go below it.
  1255. current_position[Z_AXIS] = zprobe_zoffset;
  1256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1257. }
  1258. #endif // AUTO_BED_LEVELING_GRID
  1259. static void run_z_probe() {
  1260. plan_bed_level_matrix.set_to_identity();
  1261. feedrate = homing_feedrate[Z_AXIS];
  1262. // move down until you find the bed
  1263. float zPosition = -10;
  1264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1265. st_synchronize();
  1266. // we have to let the planner know where we are right now as it is not where we said to go.
  1267. zPosition = st_get_position_mm(Z_AXIS);
  1268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1269. // move up the retract distance
  1270. zPosition += home_retract_mm(Z_AXIS);
  1271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1272. st_synchronize();
  1273. // move back down slowly to find bed
  1274. feedrate = homing_feedrate[Z_AXIS]/4;
  1275. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1279. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. }
  1282. static void do_blocking_move_to(float x, float y, float z) {
  1283. float oldFeedRate = feedrate;
  1284. feedrate = homing_feedrate[Z_AXIS];
  1285. current_position[Z_AXIS] = z;
  1286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1287. st_synchronize();
  1288. feedrate = XY_TRAVEL_SPEED;
  1289. current_position[X_AXIS] = x;
  1290. current_position[Y_AXIS] = y;
  1291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1292. st_synchronize();
  1293. feedrate = oldFeedRate;
  1294. }
  1295. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1296. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1297. }
  1298. /// Probe bed height at position (x,y), returns the measured z value
  1299. static float probe_pt(float x, float y, float z_before) {
  1300. // move to right place
  1301. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1302. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1303. run_z_probe();
  1304. float measured_z = current_position[Z_AXIS];
  1305. SERIAL_PROTOCOLRPGM(MSG_BED);
  1306. SERIAL_PROTOCOLPGM(" x: ");
  1307. SERIAL_PROTOCOL(x);
  1308. SERIAL_PROTOCOLPGM(" y: ");
  1309. SERIAL_PROTOCOL(y);
  1310. SERIAL_PROTOCOLPGM(" z: ");
  1311. SERIAL_PROTOCOL(measured_z);
  1312. SERIAL_PROTOCOLPGM("\n");
  1313. return measured_z;
  1314. }
  1315. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1316. void homeaxis(int axis) {
  1317. #define HOMEAXIS_DO(LETTER) \
  1318. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1319. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1320. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1321. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1322. 0) {
  1323. int axis_home_dir = home_dir(axis);
  1324. current_position[axis] = 0;
  1325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1327. feedrate = homing_feedrate[axis];
  1328. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1329. st_synchronize();
  1330. current_position[axis] = 0;
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1334. st_synchronize();
  1335. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1336. feedrate = homing_feedrate[axis]/2 ;
  1337. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1338. st_synchronize();
  1339. axis_is_at_home(axis);
  1340. destination[axis] = current_position[axis];
  1341. feedrate = 0.0;
  1342. endstops_hit_on_purpose();
  1343. axis_known_position[axis] = true;
  1344. }
  1345. }
  1346. void home_xy()
  1347. {
  1348. set_destination_to_current();
  1349. homeaxis(X_AXIS);
  1350. homeaxis(Y_AXIS);
  1351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. endstops_hit_on_purpose();
  1353. }
  1354. void refresh_cmd_timeout(void)
  1355. {
  1356. previous_millis_cmd = millis();
  1357. }
  1358. #ifdef FWRETRACT
  1359. void retract(bool retracting, bool swapretract = false) {
  1360. if(retracting && !retracted[active_extruder]) {
  1361. destination[X_AXIS]=current_position[X_AXIS];
  1362. destination[Y_AXIS]=current_position[Y_AXIS];
  1363. destination[Z_AXIS]=current_position[Z_AXIS];
  1364. destination[E_AXIS]=current_position[E_AXIS];
  1365. if (swapretract) {
  1366. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1367. } else {
  1368. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1369. }
  1370. plan_set_e_position(current_position[E_AXIS]);
  1371. float oldFeedrate = feedrate;
  1372. feedrate=retract_feedrate*60;
  1373. retracted[active_extruder]=true;
  1374. prepare_move();
  1375. current_position[Z_AXIS]-=retract_zlift;
  1376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1377. prepare_move();
  1378. feedrate = oldFeedrate;
  1379. } else if(!retracting && retracted[active_extruder]) {
  1380. destination[X_AXIS]=current_position[X_AXIS];
  1381. destination[Y_AXIS]=current_position[Y_AXIS];
  1382. destination[Z_AXIS]=current_position[Z_AXIS];
  1383. destination[E_AXIS]=current_position[E_AXIS];
  1384. current_position[Z_AXIS]+=retract_zlift;
  1385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1386. //prepare_move();
  1387. if (swapretract) {
  1388. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1389. } else {
  1390. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1391. }
  1392. plan_set_e_position(current_position[E_AXIS]);
  1393. float oldFeedrate = feedrate;
  1394. feedrate=retract_recover_feedrate*60;
  1395. retracted[active_extruder]=false;
  1396. prepare_move();
  1397. feedrate = oldFeedrate;
  1398. }
  1399. } //retract
  1400. #endif //FWRETRACT
  1401. void process_commands()
  1402. {
  1403. #ifdef FILAMENT_RUNOUT_SUPPORT
  1404. SET_INPUT(FR_SENS);
  1405. #endif
  1406. #ifdef CMDBUFFER_DEBUG
  1407. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1408. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1409. SERIAL_ECHOLNPGM("");
  1410. SERIAL_ECHOPGM("In cmdqueue: ");
  1411. SERIAL_ECHO(buflen);
  1412. SERIAL_ECHOLNPGM("");
  1413. #endif /* CMDBUFFER_DEBUG */
  1414. unsigned long codenum; //throw away variable
  1415. char *starpos = NULL;
  1416. #ifdef ENABLE_AUTO_BED_LEVELING
  1417. float x_tmp, y_tmp, z_tmp, real_z;
  1418. #endif
  1419. // PRUSA GCODES
  1420. if(code_seen("PRUSA")){
  1421. if(code_seen("Fir")){
  1422. SERIAL_PROTOCOLLN(FW_version);
  1423. } else if(code_seen("Rev")){
  1424. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1425. } else if(code_seen("Lang")) {
  1426. lcd_force_language_selection();
  1427. } else if(code_seen("Lz")) {
  1428. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1429. }
  1430. //else if (code_seen('Cal')) {
  1431. // lcd_calibration();
  1432. // }
  1433. }
  1434. else
  1435. if(code_seen('G'))
  1436. {
  1437. switch((int)code_value())
  1438. {
  1439. case 0: // G0 -> G1
  1440. case 1: // G1
  1441. if(Stopped == false) {
  1442. #ifdef FILAMENT_RUNOUT_SUPPORT
  1443. if(READ(FR_SENS)){
  1444. feedmultiplyBckp=feedmultiply;
  1445. float target[4];
  1446. float lastpos[4];
  1447. target[X_AXIS]=current_position[X_AXIS];
  1448. target[Y_AXIS]=current_position[Y_AXIS];
  1449. target[Z_AXIS]=current_position[Z_AXIS];
  1450. target[E_AXIS]=current_position[E_AXIS];
  1451. lastpos[X_AXIS]=current_position[X_AXIS];
  1452. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1453. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1454. lastpos[E_AXIS]=current_position[E_AXIS];
  1455. //retract by E
  1456. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1458. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1460. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1461. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1463. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1465. //finish moves
  1466. st_synchronize();
  1467. //disable extruder steppers so filament can be removed
  1468. disable_e0();
  1469. disable_e1();
  1470. disable_e2();
  1471. delay(100);
  1472. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1473. uint8_t cnt=0;
  1474. int counterBeep = 0;
  1475. lcd_wait_interact();
  1476. while(!lcd_clicked()){
  1477. cnt++;
  1478. manage_heater();
  1479. manage_inactivity(true);
  1480. //lcd_update();
  1481. if(cnt==0)
  1482. {
  1483. #if BEEPER > 0
  1484. if (counterBeep== 500){
  1485. counterBeep = 0;
  1486. }
  1487. SET_OUTPUT(BEEPER);
  1488. if (counterBeep== 0){
  1489. WRITE(BEEPER,HIGH);
  1490. }
  1491. if (counterBeep== 20){
  1492. WRITE(BEEPER,LOW);
  1493. }
  1494. counterBeep++;
  1495. #else
  1496. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1497. lcd_buzz(1000/6,100);
  1498. #else
  1499. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1500. #endif
  1501. #endif
  1502. }
  1503. }
  1504. WRITE(BEEPER,LOW);
  1505. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1506. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1507. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1509. lcd_change_fil_state = 0;
  1510. lcd_loading_filament();
  1511. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1512. lcd_change_fil_state = 0;
  1513. lcd_alright();
  1514. switch(lcd_change_fil_state){
  1515. case 2:
  1516. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1517. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1518. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1520. lcd_loading_filament();
  1521. break;
  1522. case 3:
  1523. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1525. lcd_loading_color();
  1526. break;
  1527. default:
  1528. lcd_change_success();
  1529. break;
  1530. }
  1531. }
  1532. target[E_AXIS]+= 5;
  1533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1534. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1536. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1537. //plan_set_e_position(current_position[E_AXIS]);
  1538. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1539. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1540. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1541. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1542. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1543. plan_set_e_position(lastpos[E_AXIS]);
  1544. feedmultiply=feedmultiplyBckp;
  1545. char cmd[9];
  1546. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1547. enquecommand(cmd);
  1548. }
  1549. #endif
  1550. get_coordinates(); // For X Y Z E F
  1551. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1552. #ifdef FWRETRACT
  1553. if(autoretract_enabled)
  1554. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1555. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1556. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1557. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1558. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1559. retract(!retracted);
  1560. return;
  1561. }
  1562. }
  1563. #endif //FWRETRACT
  1564. prepare_move();
  1565. //ClearToSend();
  1566. }
  1567. break;
  1568. case 2: // G2 - CW ARC
  1569. if(Stopped == false) {
  1570. get_arc_coordinates();
  1571. prepare_arc_move(true);
  1572. }
  1573. break;
  1574. case 3: // G3 - CCW ARC
  1575. if(Stopped == false) {
  1576. get_arc_coordinates();
  1577. prepare_arc_move(false);
  1578. }
  1579. break;
  1580. case 4: // G4 dwell
  1581. LCD_MESSAGERPGM(MSG_DWELL);
  1582. codenum = 0;
  1583. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1584. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1585. st_synchronize();
  1586. codenum += millis(); // keep track of when we started waiting
  1587. previous_millis_cmd = millis();
  1588. while(millis() < codenum) {
  1589. manage_heater();
  1590. manage_inactivity();
  1591. lcd_update();
  1592. }
  1593. break;
  1594. #ifdef FWRETRACT
  1595. case 10: // G10 retract
  1596. #if EXTRUDERS > 1
  1597. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1598. retract(true,retracted_swap[active_extruder]);
  1599. #else
  1600. retract(true);
  1601. #endif
  1602. break;
  1603. case 11: // G11 retract_recover
  1604. #if EXTRUDERS > 1
  1605. retract(false,retracted_swap[active_extruder]);
  1606. #else
  1607. retract(false);
  1608. #endif
  1609. break;
  1610. #endif //FWRETRACT
  1611. case 28: //G28 Home all Axis one at a time
  1612. #ifdef ENABLE_AUTO_BED_LEVELING
  1613. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1614. #endif //ENABLE_AUTO_BED_LEVELING
  1615. // For mesh bed leveling deactivate the matrix temporarily
  1616. #ifdef MESH_BED_LEVELING
  1617. mbl.active = 0;
  1618. #endif
  1619. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1620. // the planner will not perform any adjustments in the XY plane.
  1621. // Wait for the motors to stop and update the current position with the absolute values.
  1622. world2machine_revert_to_uncorrected();
  1623. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1624. // consumed during the first movements following this statement.
  1625. babystep_undo();
  1626. saved_feedrate = feedrate;
  1627. saved_feedmultiply = feedmultiply;
  1628. feedmultiply = 100;
  1629. previous_millis_cmd = millis();
  1630. enable_endstops(true);
  1631. for(int8_t i=0; i < NUM_AXIS; i++)
  1632. destination[i] = current_position[i];
  1633. feedrate = 0.0;
  1634. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1635. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1636. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1637. homeaxis(Z_AXIS);
  1638. }
  1639. #endif
  1640. #ifdef QUICK_HOME
  1641. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1642. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1643. {
  1644. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1645. int x_axis_home_dir = home_dir(X_AXIS);
  1646. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1647. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1648. feedrate = homing_feedrate[X_AXIS];
  1649. if(homing_feedrate[Y_AXIS]<feedrate)
  1650. feedrate = homing_feedrate[Y_AXIS];
  1651. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1652. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1653. } else {
  1654. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1655. }
  1656. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1657. st_synchronize();
  1658. axis_is_at_home(X_AXIS);
  1659. axis_is_at_home(Y_AXIS);
  1660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1661. destination[X_AXIS] = current_position[X_AXIS];
  1662. destination[Y_AXIS] = current_position[Y_AXIS];
  1663. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1664. feedrate = 0.0;
  1665. st_synchronize();
  1666. endstops_hit_on_purpose();
  1667. current_position[X_AXIS] = destination[X_AXIS];
  1668. current_position[Y_AXIS] = destination[Y_AXIS];
  1669. current_position[Z_AXIS] = destination[Z_AXIS];
  1670. }
  1671. #endif /* QUICK_HOME */
  1672. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1673. homeaxis(X_AXIS);
  1674. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1675. homeaxis(Y_AXIS);
  1676. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1677. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1678. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1679. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1680. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1681. #ifndef Z_SAFE_HOMING
  1682. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1683. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1684. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1685. feedrate = max_feedrate[Z_AXIS];
  1686. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1687. st_synchronize();
  1688. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1689. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1690. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1691. {
  1692. homeaxis(X_AXIS);
  1693. homeaxis(Y_AXIS);
  1694. }
  1695. // 1st mesh bed leveling measurement point, corrected.
  1696. world2machine_initialize();
  1697. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1698. world2machine_reset();
  1699. if (destination[Y_AXIS] < Y_MIN_POS)
  1700. destination[Y_AXIS] = Y_MIN_POS;
  1701. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1702. feedrate = homing_feedrate[Z_AXIS]/10;
  1703. current_position[Z_AXIS] = 0;
  1704. enable_endstops(false);
  1705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1706. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1707. st_synchronize();
  1708. current_position[X_AXIS] = destination[X_AXIS];
  1709. current_position[Y_AXIS] = destination[Y_AXIS];
  1710. enable_endstops(true);
  1711. endstops_hit_on_purpose();
  1712. homeaxis(Z_AXIS);
  1713. #else // MESH_BED_LEVELING
  1714. homeaxis(Z_AXIS);
  1715. #endif // MESH_BED_LEVELING
  1716. }
  1717. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1718. if(home_all_axis) {
  1719. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1720. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1721. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1722. feedrate = XY_TRAVEL_SPEED/60;
  1723. current_position[Z_AXIS] = 0;
  1724. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1726. st_synchronize();
  1727. current_position[X_AXIS] = destination[X_AXIS];
  1728. current_position[Y_AXIS] = destination[Y_AXIS];
  1729. homeaxis(Z_AXIS);
  1730. }
  1731. // Let's see if X and Y are homed and probe is inside bed area.
  1732. if(code_seen(axis_codes[Z_AXIS])) {
  1733. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1734. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1735. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1736. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1737. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1738. current_position[Z_AXIS] = 0;
  1739. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1740. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1741. feedrate = max_feedrate[Z_AXIS];
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1743. st_synchronize();
  1744. homeaxis(Z_AXIS);
  1745. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1746. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1747. SERIAL_ECHO_START;
  1748. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1749. } else {
  1750. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1751. SERIAL_ECHO_START;
  1752. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1753. }
  1754. }
  1755. #endif // Z_SAFE_HOMING
  1756. #endif // Z_HOME_DIR < 0
  1757. if(code_seen(axis_codes[Z_AXIS])) {
  1758. if(code_value_long() != 0) {
  1759. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1760. }
  1761. }
  1762. #ifdef ENABLE_AUTO_BED_LEVELING
  1763. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1764. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1765. }
  1766. #endif
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1769. enable_endstops(false);
  1770. #endif
  1771. feedrate = saved_feedrate;
  1772. feedmultiply = saved_feedmultiply;
  1773. previous_millis_cmd = millis();
  1774. endstops_hit_on_purpose();
  1775. #ifndef MESH_BED_LEVELING
  1776. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1777. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1778. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1779. lcd_adjust_z();
  1780. #endif
  1781. // Load the machine correction matrix
  1782. world2machine_initialize();
  1783. // and correct the current_position to match the transformed coordinate system.
  1784. world2machine_update_current();
  1785. #ifdef MESH_BED_LEVELING
  1786. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1787. {
  1788. }
  1789. else
  1790. {
  1791. st_synchronize();
  1792. // Push the commands to the front of the message queue in the reverse order!
  1793. // There shall be always enough space reserved for these commands.
  1794. // enquecommand_front_P((PSTR("G80")));
  1795. goto case_G80;
  1796. }
  1797. #endif
  1798. if (farm_mode) { prusa_statistics(20); };
  1799. break;
  1800. #ifdef ENABLE_AUTO_BED_LEVELING
  1801. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1802. {
  1803. #if Z_MIN_PIN == -1
  1804. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1805. #endif
  1806. // Prevent user from running a G29 without first homing in X and Y
  1807. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1808. {
  1809. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1810. SERIAL_ECHO_START;
  1811. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1812. break; // abort G29, since we don't know where we are
  1813. }
  1814. st_synchronize();
  1815. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1816. //vector_3 corrected_position = plan_get_position_mm();
  1817. //corrected_position.debug("position before G29");
  1818. plan_bed_level_matrix.set_to_identity();
  1819. vector_3 uncorrected_position = plan_get_position();
  1820. //uncorrected_position.debug("position durring G29");
  1821. current_position[X_AXIS] = uncorrected_position.x;
  1822. current_position[Y_AXIS] = uncorrected_position.y;
  1823. current_position[Z_AXIS] = uncorrected_position.z;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. setup_for_endstop_move();
  1826. feedrate = homing_feedrate[Z_AXIS];
  1827. #ifdef AUTO_BED_LEVELING_GRID
  1828. // probe at the points of a lattice grid
  1829. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1830. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1831. // solve the plane equation ax + by + d = z
  1832. // A is the matrix with rows [x y 1] for all the probed points
  1833. // B is the vector of the Z positions
  1834. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1835. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1836. // "A" matrix of the linear system of equations
  1837. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1838. // "B" vector of Z points
  1839. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1840. int probePointCounter = 0;
  1841. bool zig = true;
  1842. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1843. {
  1844. int xProbe, xInc;
  1845. if (zig)
  1846. {
  1847. xProbe = LEFT_PROBE_BED_POSITION;
  1848. //xEnd = RIGHT_PROBE_BED_POSITION;
  1849. xInc = xGridSpacing;
  1850. zig = false;
  1851. } else // zag
  1852. {
  1853. xProbe = RIGHT_PROBE_BED_POSITION;
  1854. //xEnd = LEFT_PROBE_BED_POSITION;
  1855. xInc = -xGridSpacing;
  1856. zig = true;
  1857. }
  1858. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1859. {
  1860. float z_before;
  1861. if (probePointCounter == 0)
  1862. {
  1863. // raise before probing
  1864. z_before = Z_RAISE_BEFORE_PROBING;
  1865. } else
  1866. {
  1867. // raise extruder
  1868. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1869. }
  1870. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1871. eqnBVector[probePointCounter] = measured_z;
  1872. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1873. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1874. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1875. probePointCounter++;
  1876. xProbe += xInc;
  1877. }
  1878. }
  1879. clean_up_after_endstop_move();
  1880. // solve lsq problem
  1881. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1882. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1883. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1884. SERIAL_PROTOCOLPGM(" b: ");
  1885. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1886. SERIAL_PROTOCOLPGM(" d: ");
  1887. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1888. set_bed_level_equation_lsq(plane_equation_coefficients);
  1889. free(plane_equation_coefficients);
  1890. #else // AUTO_BED_LEVELING_GRID not defined
  1891. // Probe at 3 arbitrary points
  1892. // probe 1
  1893. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1894. // probe 2
  1895. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1896. // probe 3
  1897. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1898. clean_up_after_endstop_move();
  1899. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1900. #endif // AUTO_BED_LEVELING_GRID
  1901. st_synchronize();
  1902. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1903. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1904. // When the bed is uneven, this height must be corrected.
  1905. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1906. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1907. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1908. z_tmp = current_position[Z_AXIS];
  1909. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1910. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. }
  1913. break;
  1914. #ifndef Z_PROBE_SLED
  1915. case 30: // G30 Single Z Probe
  1916. {
  1917. st_synchronize();
  1918. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1919. setup_for_endstop_move();
  1920. feedrate = homing_feedrate[Z_AXIS];
  1921. run_z_probe();
  1922. SERIAL_PROTOCOLPGM(MSG_BED);
  1923. SERIAL_PROTOCOLPGM(" X: ");
  1924. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1925. SERIAL_PROTOCOLPGM(" Y: ");
  1926. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1927. SERIAL_PROTOCOLPGM(" Z: ");
  1928. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1929. SERIAL_PROTOCOLPGM("\n");
  1930. clean_up_after_endstop_move();
  1931. }
  1932. break;
  1933. #else
  1934. case 31: // dock the sled
  1935. dock_sled(true);
  1936. break;
  1937. case 32: // undock the sled
  1938. dock_sled(false);
  1939. break;
  1940. #endif // Z_PROBE_SLED
  1941. #endif // ENABLE_AUTO_BED_LEVELING
  1942. #ifdef MESH_BED_LEVELING
  1943. case 30: // G30 Single Z Probe
  1944. {
  1945. st_synchronize();
  1946. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1947. setup_for_endstop_move();
  1948. feedrate = homing_feedrate[Z_AXIS];
  1949. find_bed_induction_sensor_point_z(-10.f, 3);
  1950. SERIAL_PROTOCOLRPGM(MSG_BED);
  1951. SERIAL_PROTOCOLPGM(" X: ");
  1952. MYSERIAL.print(current_position[X_AXIS], 5);
  1953. SERIAL_PROTOCOLPGM(" Y: ");
  1954. MYSERIAL.print(current_position[Y_AXIS], 5);
  1955. SERIAL_PROTOCOLPGM(" Z: ");
  1956. MYSERIAL.print(current_position[Z_AXIS], 5);
  1957. SERIAL_PROTOCOLPGM("\n");
  1958. clean_up_after_endstop_move();
  1959. }
  1960. break;
  1961. /**
  1962. * G80: Mesh-based Z probe, probes a grid and produces a
  1963. * mesh to compensate for variable bed height
  1964. *
  1965. * The S0 report the points as below
  1966. *
  1967. * +----> X-axis
  1968. * |
  1969. * |
  1970. * v Y-axis
  1971. *
  1972. */
  1973. case 80:
  1974. case_G80:
  1975. {
  1976. // Firstly check if we know where we are
  1977. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1978. // We don't know where we are! HOME!
  1979. // Push the commands to the front of the message queue in the reverse order!
  1980. // There shall be always enough space reserved for these commands.
  1981. repeatcommand_front(); // repeat G80 with all its parameters
  1982. enquecommand_front_P((PSTR("G28 W0")));
  1983. break;
  1984. }
  1985. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  1986. bool custom_message_old = custom_message;
  1987. unsigned int custom_message_type_old = custom_message_type;
  1988. unsigned int custom_message_state_old = custom_message_state;
  1989. custom_message = true;
  1990. custom_message_type = 1;
  1991. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1992. lcd_update(1);
  1993. mbl.reset();
  1994. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1995. // consumed during the first movements following this statement.
  1996. babystep_undo();
  1997. // Cycle through all points and probe them
  1998. // First move up. During this first movement, the babystepping will be reverted.
  1999. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2001. // The move to the first calibration point.
  2002. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2003. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2004. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2005. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2007. // Wait until the move is finished.
  2008. st_synchronize();
  2009. int mesh_point = 0;
  2010. int ix = 0;
  2011. int iy = 0;
  2012. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2013. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2014. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2015. bool has_z = is_bed_z_jitter_data_valid();
  2016. setup_for_endstop_move();
  2017. const char *kill_message = NULL;
  2018. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2019. // Get coords of a measuring point.
  2020. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2021. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2022. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2023. float z0 = 0.f;
  2024. if (has_z && mesh_point > 0) {
  2025. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2026. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2027. #if 0
  2028. SERIAL_ECHOPGM("Bed leveling, point: ");
  2029. MYSERIAL.print(mesh_point);
  2030. SERIAL_ECHOPGM(", calibration z: ");
  2031. MYSERIAL.print(z0, 5);
  2032. SERIAL_ECHOLNPGM("");
  2033. #endif
  2034. }
  2035. // Move Z to proper distance
  2036. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2038. st_synchronize();
  2039. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2040. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2041. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2042. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2043. enable_endstops(false);
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2045. st_synchronize();
  2046. // Go down until endstop is hit
  2047. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2048. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2049. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2050. break;
  2051. }
  2052. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2053. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2054. break;
  2055. }
  2056. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2057. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2058. break;
  2059. }
  2060. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2061. custom_message_state--;
  2062. mesh_point++;
  2063. lcd_update(1);
  2064. }
  2065. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2067. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2068. st_synchronize();
  2069. kill(kill_message);
  2070. }
  2071. clean_up_after_endstop_move();
  2072. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2073. babystep_apply();
  2074. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2075. for (uint8_t i = 0; i < 4; ++ i) {
  2076. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2077. long correction = 0;
  2078. if (code_seen(codes[i]))
  2079. correction = code_value_long();
  2080. else if (eeprom_bed_correction_valid) {
  2081. unsigned char *addr = (i < 2) ?
  2082. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2083. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2084. correction = eeprom_read_int8(addr);
  2085. }
  2086. if (correction == 0)
  2087. continue;
  2088. float offset = float(correction) * 0.001f;
  2089. if (fabs(offset) > 0.101f) {
  2090. SERIAL_ERROR_START;
  2091. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2092. SERIAL_ECHO(offset);
  2093. SERIAL_ECHOLNPGM(" microns");
  2094. } else {
  2095. switch (i) {
  2096. case 0:
  2097. for (uint8_t row = 0; row < 3; ++ row) {
  2098. mbl.z_values[row][1] += 0.5f * offset;
  2099. mbl.z_values[row][0] += offset;
  2100. }
  2101. break;
  2102. case 1:
  2103. for (uint8_t row = 0; row < 3; ++ row) {
  2104. mbl.z_values[row][1] += 0.5f * offset;
  2105. mbl.z_values[row][2] += offset;
  2106. }
  2107. break;
  2108. case 2:
  2109. for (uint8_t col = 0; col < 3; ++ col) {
  2110. mbl.z_values[1][col] += 0.5f * offset;
  2111. mbl.z_values[0][col] += offset;
  2112. }
  2113. break;
  2114. case 3:
  2115. for (uint8_t col = 0; col < 3; ++ col) {
  2116. mbl.z_values[1][col] += 0.5f * offset;
  2117. mbl.z_values[2][col] += offset;
  2118. }
  2119. break;
  2120. }
  2121. }
  2122. }
  2123. mbl.upsample_3x3();
  2124. mbl.active = 1;
  2125. current_position[X_AXIS] = X_MIN_POS+0.2;
  2126. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2127. current_position[Z_AXIS] = Z_MIN_POS;
  2128. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2129. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2130. st_synchronize();
  2131. // Restore custom message state
  2132. custom_message = custom_message_old;
  2133. custom_message_type = custom_message_type_old;
  2134. custom_message_state = custom_message_state_old;
  2135. lcd_update(1);
  2136. }
  2137. break;
  2138. /**
  2139. * G81: Print mesh bed leveling status and bed profile if activated
  2140. */
  2141. case 81:
  2142. if (mbl.active) {
  2143. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2144. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2145. SERIAL_PROTOCOLPGM(",");
  2146. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2147. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2148. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2149. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2150. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2151. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2152. SERIAL_PROTOCOLPGM(" ");
  2153. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2154. }
  2155. SERIAL_PROTOCOLPGM("\n");
  2156. }
  2157. }
  2158. else
  2159. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2160. break;
  2161. #if 0
  2162. /**
  2163. * G82: Single Z probe at current location
  2164. *
  2165. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2166. *
  2167. */
  2168. case 82:
  2169. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2170. setup_for_endstop_move();
  2171. find_bed_induction_sensor_point_z();
  2172. clean_up_after_endstop_move();
  2173. SERIAL_PROTOCOLPGM("Bed found at: ");
  2174. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2175. SERIAL_PROTOCOLPGM("\n");
  2176. break;
  2177. /**
  2178. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2179. */
  2180. case 83:
  2181. {
  2182. int babystepz = code_seen('S') ? code_value() : 0;
  2183. int BabyPosition = code_seen('P') ? code_value() : 0;
  2184. if (babystepz != 0) {
  2185. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2186. // Is the axis indexed starting with zero or one?
  2187. if (BabyPosition > 4) {
  2188. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2189. }else{
  2190. // Save it to the eeprom
  2191. babystepLoadZ = babystepz;
  2192. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2193. // adjust the Z
  2194. babystepsTodoZadd(babystepLoadZ);
  2195. }
  2196. }
  2197. }
  2198. break;
  2199. /**
  2200. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2201. */
  2202. case 84:
  2203. babystepsTodoZsubtract(babystepLoadZ);
  2204. // babystepLoadZ = 0;
  2205. break;
  2206. /**
  2207. * G85: Prusa3D specific: Pick best babystep
  2208. */
  2209. case 85:
  2210. lcd_pick_babystep();
  2211. break;
  2212. #endif
  2213. /**
  2214. * G86: Prusa3D specific: Disable babystep correction after home.
  2215. * This G-code will be performed at the start of a calibration script.
  2216. */
  2217. case 86:
  2218. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2219. break;
  2220. /**
  2221. * G87: Prusa3D specific: Enable babystep correction after home
  2222. * This G-code will be performed at the end of a calibration script.
  2223. */
  2224. case 87:
  2225. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2226. break;
  2227. /**
  2228. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2229. */
  2230. case 88:
  2231. break;
  2232. #endif // ENABLE_MESH_BED_LEVELING
  2233. case 90: // G90
  2234. relative_mode = false;
  2235. break;
  2236. case 91: // G91
  2237. relative_mode = true;
  2238. break;
  2239. case 92: // G92
  2240. if(!code_seen(axis_codes[E_AXIS]))
  2241. st_synchronize();
  2242. for(int8_t i=0; i < NUM_AXIS; i++) {
  2243. if(code_seen(axis_codes[i])) {
  2244. if(i == E_AXIS) {
  2245. current_position[i] = code_value();
  2246. plan_set_e_position(current_position[E_AXIS]);
  2247. }
  2248. else {
  2249. current_position[i] = code_value()+add_homing[i];
  2250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2251. }
  2252. }
  2253. }
  2254. break;
  2255. case 98:
  2256. farm_no = 21;
  2257. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2258. farm_mode = true;
  2259. break;
  2260. case 99:
  2261. farm_no = 0;
  2262. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2263. farm_mode = false;
  2264. break;
  2265. }
  2266. } // end if(code_seen('G'))
  2267. else if(code_seen('M'))
  2268. {
  2269. switch( (int)code_value() )
  2270. {
  2271. #ifdef ULTIPANEL
  2272. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2273. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2274. {
  2275. char *src = strchr_pointer + 2;
  2276. codenum = 0;
  2277. bool hasP = false, hasS = false;
  2278. if (code_seen('P')) {
  2279. codenum = code_value(); // milliseconds to wait
  2280. hasP = codenum > 0;
  2281. }
  2282. if (code_seen('S')) {
  2283. codenum = code_value() * 1000; // seconds to wait
  2284. hasS = codenum > 0;
  2285. }
  2286. starpos = strchr(src, '*');
  2287. if (starpos != NULL) *(starpos) = '\0';
  2288. while (*src == ' ') ++src;
  2289. if (!hasP && !hasS && *src != '\0') {
  2290. lcd_setstatus(src);
  2291. } else {
  2292. LCD_MESSAGERPGM(MSG_USERWAIT);
  2293. }
  2294. lcd_ignore_click();
  2295. st_synchronize();
  2296. previous_millis_cmd = millis();
  2297. if (codenum > 0){
  2298. codenum += millis(); // keep track of when we started waiting
  2299. while(millis() < codenum && !lcd_clicked()){
  2300. manage_heater();
  2301. manage_inactivity();
  2302. lcd_update();
  2303. }
  2304. lcd_ignore_click(false);
  2305. }else{
  2306. if (!lcd_detected())
  2307. break;
  2308. while(!lcd_clicked()){
  2309. manage_heater();
  2310. manage_inactivity();
  2311. lcd_update();
  2312. }
  2313. }
  2314. if (IS_SD_PRINTING)
  2315. LCD_MESSAGERPGM(MSG_RESUMING);
  2316. else
  2317. LCD_MESSAGERPGM(WELCOME_MSG);
  2318. }
  2319. break;
  2320. #endif
  2321. case 17:
  2322. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2323. enable_x();
  2324. enable_y();
  2325. enable_z();
  2326. enable_e0();
  2327. enable_e1();
  2328. enable_e2();
  2329. break;
  2330. #ifdef SDSUPPORT
  2331. case 20: // M20 - list SD card
  2332. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2333. card.ls();
  2334. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2335. break;
  2336. case 21: // M21 - init SD card
  2337. card.initsd();
  2338. break;
  2339. case 22: //M22 - release SD card
  2340. card.release();
  2341. break;
  2342. case 23: //M23 - Select file
  2343. starpos = (strchr(strchr_pointer + 4,'*'));
  2344. if(starpos!=NULL)
  2345. *(starpos)='\0';
  2346. card.openFile(strchr_pointer + 4,true);
  2347. break;
  2348. case 24: //M24 - Start SD print
  2349. card.startFileprint();
  2350. starttime=millis();
  2351. break;
  2352. case 25: //M25 - Pause SD print
  2353. card.pauseSDPrint();
  2354. break;
  2355. case 26: //M26 - Set SD index
  2356. if(card.cardOK && code_seen('S')) {
  2357. card.setIndex(code_value_long());
  2358. }
  2359. break;
  2360. case 27: //M27 - Get SD status
  2361. card.getStatus();
  2362. break;
  2363. case 28: //M28 - Start SD write
  2364. starpos = (strchr(strchr_pointer + 4,'*'));
  2365. if(starpos != NULL){
  2366. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2367. strchr_pointer = strchr(npos,' ') + 1;
  2368. *(starpos) = '\0';
  2369. }
  2370. card.openFile(strchr_pointer+4,false);
  2371. break;
  2372. case 29: //M29 - Stop SD write
  2373. //processed in write to file routine above
  2374. //card,saving = false;
  2375. break;
  2376. case 30: //M30 <filename> Delete File
  2377. if (card.cardOK){
  2378. card.closefile();
  2379. starpos = (strchr(strchr_pointer + 4,'*'));
  2380. if(starpos != NULL){
  2381. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2382. strchr_pointer = strchr(npos,' ') + 1;
  2383. *(starpos) = '\0';
  2384. }
  2385. card.removeFile(strchr_pointer + 4);
  2386. }
  2387. break;
  2388. case 32: //M32 - Select file and start SD print
  2389. {
  2390. if(card.sdprinting) {
  2391. st_synchronize();
  2392. }
  2393. starpos = (strchr(strchr_pointer + 4,'*'));
  2394. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2395. if(namestartpos==NULL)
  2396. {
  2397. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2398. }
  2399. else
  2400. namestartpos++; //to skip the '!'
  2401. if(starpos!=NULL)
  2402. *(starpos)='\0';
  2403. bool call_procedure=(code_seen('P'));
  2404. if(strchr_pointer>namestartpos)
  2405. call_procedure=false; //false alert, 'P' found within filename
  2406. if( card.cardOK )
  2407. {
  2408. card.openFile(namestartpos,true,!call_procedure);
  2409. if(code_seen('S'))
  2410. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2411. card.setIndex(code_value_long());
  2412. card.startFileprint();
  2413. if(!call_procedure)
  2414. starttime=millis(); //procedure calls count as normal print time.
  2415. }
  2416. } break;
  2417. case 928: //M928 - Start SD write
  2418. starpos = (strchr(strchr_pointer + 5,'*'));
  2419. if(starpos != NULL){
  2420. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2421. strchr_pointer = strchr(npos,' ') + 1;
  2422. *(starpos) = '\0';
  2423. }
  2424. card.openLogFile(strchr_pointer+5);
  2425. break;
  2426. #endif //SDSUPPORT
  2427. case 31: //M31 take time since the start of the SD print or an M109 command
  2428. {
  2429. stoptime=millis();
  2430. char time[30];
  2431. unsigned long t=(stoptime-starttime)/1000;
  2432. int sec,min;
  2433. min=t/60;
  2434. sec=t%60;
  2435. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2436. SERIAL_ECHO_START;
  2437. SERIAL_ECHOLN(time);
  2438. lcd_setstatus(time);
  2439. autotempShutdown();
  2440. }
  2441. break;
  2442. case 42: //M42 -Change pin status via gcode
  2443. if (code_seen('S'))
  2444. {
  2445. int pin_status = code_value();
  2446. int pin_number = LED_PIN;
  2447. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2448. pin_number = code_value();
  2449. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2450. {
  2451. if (sensitive_pins[i] == pin_number)
  2452. {
  2453. pin_number = -1;
  2454. break;
  2455. }
  2456. }
  2457. #if defined(FAN_PIN) && FAN_PIN > -1
  2458. if (pin_number == FAN_PIN)
  2459. fanSpeed = pin_status;
  2460. #endif
  2461. if (pin_number > -1)
  2462. {
  2463. pinMode(pin_number, OUTPUT);
  2464. digitalWrite(pin_number, pin_status);
  2465. analogWrite(pin_number, pin_status);
  2466. }
  2467. }
  2468. break;
  2469. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2470. // Reset the skew and offset in both RAM and EEPROM.
  2471. reset_bed_offset_and_skew();
  2472. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2473. // the planner will not perform any adjustments in the XY plane.
  2474. // Wait for the motors to stop and update the current position with the absolute values.
  2475. world2machine_revert_to_uncorrected();
  2476. break;
  2477. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2478. {
  2479. // Disable the default update procedure of the display. We will do a modal dialog.
  2480. lcd_update_enable(false);
  2481. // Let the planner use the uncorrected coordinates.
  2482. mbl.reset();
  2483. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2484. // the planner will not perform any adjustments in the XY plane.
  2485. // Wait for the motors to stop and update the current position with the absolute values.
  2486. world2machine_revert_to_uncorrected();
  2487. // Reset the baby step value applied without moving the axes.
  2488. babystep_reset();
  2489. // Mark all axes as in a need for homing.
  2490. memset(axis_known_position, 0, sizeof(axis_known_position));
  2491. // Let the user move the Z axes up to the end stoppers.
  2492. if (lcd_calibrate_z_end_stop_manual()) {
  2493. refresh_cmd_timeout();
  2494. // Move the print head close to the bed.
  2495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2497. st_synchronize();
  2498. // Home in the XY plane.
  2499. set_destination_to_current();
  2500. setup_for_endstop_move();
  2501. home_xy();
  2502. int8_t verbosity_level = 0;
  2503. if (code_seen('V')) {
  2504. // Just 'V' without a number counts as V1.
  2505. char c = strchr_pointer[1];
  2506. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2507. }
  2508. if (code_seen('Z')) {
  2509. clean_up_after_endstop_move();
  2510. // Z only calibration.
  2511. // Load the machine correction matrix
  2512. world2machine_initialize();
  2513. // and correct the current_position to match the transformed coordinate system.
  2514. world2machine_update_current();
  2515. //FIXME
  2516. bool result = sample_mesh_and_store_reference();
  2517. // if (result) babystep_apply();
  2518. } else {
  2519. // Complete XYZ calibration.
  2520. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2521. uint8_t point_too_far_mask = 0;
  2522. clean_up_after_endstop_move();
  2523. // Print head up.
  2524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2526. st_synchronize();
  2527. if (result >= 0) {
  2528. // Second half: The fine adjustment.
  2529. // Let the planner use the uncorrected coordinates.
  2530. mbl.reset();
  2531. world2machine_reset();
  2532. // Home in the XY plane.
  2533. setup_for_endstop_move();
  2534. home_xy();
  2535. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2536. clean_up_after_endstop_move();
  2537. // Print head up.
  2538. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2540. st_synchronize();
  2541. // if (result >= 0) babystep_apply();
  2542. }
  2543. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2544. }
  2545. } else {
  2546. // Timeouted.
  2547. }
  2548. lcd_update_enable(true);
  2549. lcd_implementation_clear();
  2550. // lcd_return_to_status();
  2551. lcd_update();
  2552. break;
  2553. }
  2554. /*
  2555. case 46:
  2556. {
  2557. // M46: Prusa3D: Show the assigned IP address.
  2558. uint8_t ip[4];
  2559. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2560. if (hasIP) {
  2561. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2562. SERIAL_ECHO(int(ip[0]));
  2563. SERIAL_ECHOPGM(".");
  2564. SERIAL_ECHO(int(ip[1]));
  2565. SERIAL_ECHOPGM(".");
  2566. SERIAL_ECHO(int(ip[2]));
  2567. SERIAL_ECHOPGM(".");
  2568. SERIAL_ECHO(int(ip[3]));
  2569. SERIAL_ECHOLNPGM("");
  2570. } else {
  2571. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2572. }
  2573. break;
  2574. }
  2575. */
  2576. case 47:
  2577. // M47: Prusa3D: Show end stops dialog on the display.
  2578. lcd_diag_show_end_stops();
  2579. break;
  2580. #if 0
  2581. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2582. {
  2583. // Disable the default update procedure of the display. We will do a modal dialog.
  2584. lcd_update_enable(false);
  2585. // Let the planner use the uncorrected coordinates.
  2586. mbl.reset();
  2587. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2588. // the planner will not perform any adjustments in the XY plane.
  2589. // Wait for the motors to stop and update the current position with the absolute values.
  2590. world2machine_revert_to_uncorrected();
  2591. // Move the print head close to the bed.
  2592. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2594. st_synchronize();
  2595. // Home in the XY plane.
  2596. set_destination_to_current();
  2597. setup_for_endstop_move();
  2598. home_xy();
  2599. int8_t verbosity_level = 0;
  2600. if (code_seen('V')) {
  2601. // Just 'V' without a number counts as V1.
  2602. char c = strchr_pointer[1];
  2603. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2604. }
  2605. bool success = scan_bed_induction_points(verbosity_level);
  2606. clean_up_after_endstop_move();
  2607. // Print head up.
  2608. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2610. st_synchronize();
  2611. lcd_update_enable(true);
  2612. lcd_implementation_clear();
  2613. // lcd_return_to_status();
  2614. lcd_update();
  2615. break;
  2616. }
  2617. #endif
  2618. // M48 Z-Probe repeatability measurement function.
  2619. //
  2620. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2621. //
  2622. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2623. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2624. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2625. // regenerated.
  2626. //
  2627. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2628. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2629. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2630. //
  2631. #ifdef ENABLE_AUTO_BED_LEVELING
  2632. #ifdef Z_PROBE_REPEATABILITY_TEST
  2633. case 48: // M48 Z-Probe repeatability
  2634. {
  2635. #if Z_MIN_PIN == -1
  2636. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2637. #endif
  2638. double sum=0.0;
  2639. double mean=0.0;
  2640. double sigma=0.0;
  2641. double sample_set[50];
  2642. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2643. double X_current, Y_current, Z_current;
  2644. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2645. if (code_seen('V') || code_seen('v')) {
  2646. verbose_level = code_value();
  2647. if (verbose_level<0 || verbose_level>4 ) {
  2648. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2649. goto Sigma_Exit;
  2650. }
  2651. }
  2652. if (verbose_level > 0) {
  2653. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2654. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2655. }
  2656. if (code_seen('n')) {
  2657. n_samples = code_value();
  2658. if (n_samples<4 || n_samples>50 ) {
  2659. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2660. goto Sigma_Exit;
  2661. }
  2662. }
  2663. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2664. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2665. Z_current = st_get_position_mm(Z_AXIS);
  2666. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2667. ext_position = st_get_position_mm(E_AXIS);
  2668. if (code_seen('X') || code_seen('x') ) {
  2669. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2670. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2671. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2672. goto Sigma_Exit;
  2673. }
  2674. }
  2675. if (code_seen('Y') || code_seen('y') ) {
  2676. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2677. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2678. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2679. goto Sigma_Exit;
  2680. }
  2681. }
  2682. if (code_seen('L') || code_seen('l') ) {
  2683. n_legs = code_value();
  2684. if ( n_legs==1 )
  2685. n_legs = 2;
  2686. if ( n_legs<0 || n_legs>15 ) {
  2687. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2688. goto Sigma_Exit;
  2689. }
  2690. }
  2691. //
  2692. // Do all the preliminary setup work. First raise the probe.
  2693. //
  2694. st_synchronize();
  2695. plan_bed_level_matrix.set_to_identity();
  2696. plan_buffer_line( X_current, Y_current, Z_start_location,
  2697. ext_position,
  2698. homing_feedrate[Z_AXIS]/60,
  2699. active_extruder);
  2700. st_synchronize();
  2701. //
  2702. // Now get everything to the specified probe point So we can safely do a probe to
  2703. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2704. // use that as a starting point for each probe.
  2705. //
  2706. if (verbose_level > 2)
  2707. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2708. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2709. ext_position,
  2710. homing_feedrate[X_AXIS]/60,
  2711. active_extruder);
  2712. st_synchronize();
  2713. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2714. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2715. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2716. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2717. //
  2718. // OK, do the inital probe to get us close to the bed.
  2719. // Then retrace the right amount and use that in subsequent probes
  2720. //
  2721. setup_for_endstop_move();
  2722. run_z_probe();
  2723. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2724. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2725. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2726. ext_position,
  2727. homing_feedrate[X_AXIS]/60,
  2728. active_extruder);
  2729. st_synchronize();
  2730. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2731. for( n=0; n<n_samples; n++) {
  2732. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2733. if ( n_legs) {
  2734. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2735. int rotational_direction, l;
  2736. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2737. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2738. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2739. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2740. //SERIAL_ECHOPAIR(" theta: ",theta);
  2741. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2742. //SERIAL_PROTOCOLLNPGM("");
  2743. for( l=0; l<n_legs-1; l++) {
  2744. if (rotational_direction==1)
  2745. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2746. else
  2747. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2748. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2749. if ( radius<0.0 )
  2750. radius = -radius;
  2751. X_current = X_probe_location + cos(theta) * radius;
  2752. Y_current = Y_probe_location + sin(theta) * radius;
  2753. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2754. X_current = X_MIN_POS;
  2755. if ( X_current>X_MAX_POS)
  2756. X_current = X_MAX_POS;
  2757. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2758. Y_current = Y_MIN_POS;
  2759. if ( Y_current>Y_MAX_POS)
  2760. Y_current = Y_MAX_POS;
  2761. if (verbose_level>3 ) {
  2762. SERIAL_ECHOPAIR("x: ", X_current);
  2763. SERIAL_ECHOPAIR("y: ", Y_current);
  2764. SERIAL_PROTOCOLLNPGM("");
  2765. }
  2766. do_blocking_move_to( X_current, Y_current, Z_current );
  2767. }
  2768. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2769. }
  2770. setup_for_endstop_move();
  2771. run_z_probe();
  2772. sample_set[n] = current_position[Z_AXIS];
  2773. //
  2774. // Get the current mean for the data points we have so far
  2775. //
  2776. sum=0.0;
  2777. for( j=0; j<=n; j++) {
  2778. sum = sum + sample_set[j];
  2779. }
  2780. mean = sum / (double (n+1));
  2781. //
  2782. // Now, use that mean to calculate the standard deviation for the
  2783. // data points we have so far
  2784. //
  2785. sum=0.0;
  2786. for( j=0; j<=n; j++) {
  2787. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2788. }
  2789. sigma = sqrt( sum / (double (n+1)) );
  2790. if (verbose_level > 1) {
  2791. SERIAL_PROTOCOL(n+1);
  2792. SERIAL_PROTOCOL(" of ");
  2793. SERIAL_PROTOCOL(n_samples);
  2794. SERIAL_PROTOCOLPGM(" z: ");
  2795. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2796. }
  2797. if (verbose_level > 2) {
  2798. SERIAL_PROTOCOL(" mean: ");
  2799. SERIAL_PROTOCOL_F(mean,6);
  2800. SERIAL_PROTOCOL(" sigma: ");
  2801. SERIAL_PROTOCOL_F(sigma,6);
  2802. }
  2803. if (verbose_level > 0)
  2804. SERIAL_PROTOCOLPGM("\n");
  2805. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2806. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2807. st_synchronize();
  2808. }
  2809. delay(1000);
  2810. clean_up_after_endstop_move();
  2811. // enable_endstops(true);
  2812. if (verbose_level > 0) {
  2813. SERIAL_PROTOCOLPGM("Mean: ");
  2814. SERIAL_PROTOCOL_F(mean, 6);
  2815. SERIAL_PROTOCOLPGM("\n");
  2816. }
  2817. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2818. SERIAL_PROTOCOL_F(sigma, 6);
  2819. SERIAL_PROTOCOLPGM("\n\n");
  2820. Sigma_Exit:
  2821. break;
  2822. }
  2823. #endif // Z_PROBE_REPEATABILITY_TEST
  2824. #endif // ENABLE_AUTO_BED_LEVELING
  2825. case 104: // M104
  2826. if(setTargetedHotend(104)){
  2827. break;
  2828. }
  2829. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2830. setWatch();
  2831. break;
  2832. case 112: // M112 -Emergency Stop
  2833. kill();
  2834. break;
  2835. case 140: // M140 set bed temp
  2836. if (code_seen('S')) setTargetBed(code_value());
  2837. break;
  2838. case 105 : // M105
  2839. if(setTargetedHotend(105)){
  2840. break;
  2841. }
  2842. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2843. SERIAL_PROTOCOLPGM("ok T:");
  2844. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2845. SERIAL_PROTOCOLPGM(" /");
  2846. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2847. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2848. SERIAL_PROTOCOLPGM(" B:");
  2849. SERIAL_PROTOCOL_F(degBed(),1);
  2850. SERIAL_PROTOCOLPGM(" /");
  2851. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2852. #endif //TEMP_BED_PIN
  2853. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2854. SERIAL_PROTOCOLPGM(" T");
  2855. SERIAL_PROTOCOL(cur_extruder);
  2856. SERIAL_PROTOCOLPGM(":");
  2857. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2858. SERIAL_PROTOCOLPGM(" /");
  2859. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2860. }
  2861. #else
  2862. SERIAL_ERROR_START;
  2863. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2864. #endif
  2865. SERIAL_PROTOCOLPGM(" @:");
  2866. #ifdef EXTRUDER_WATTS
  2867. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2868. SERIAL_PROTOCOLPGM("W");
  2869. #else
  2870. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2871. #endif
  2872. SERIAL_PROTOCOLPGM(" B@:");
  2873. #ifdef BED_WATTS
  2874. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2875. SERIAL_PROTOCOLPGM("W");
  2876. #else
  2877. SERIAL_PROTOCOL(getHeaterPower(-1));
  2878. #endif
  2879. #ifdef SHOW_TEMP_ADC_VALUES
  2880. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2881. SERIAL_PROTOCOLPGM(" ADC B:");
  2882. SERIAL_PROTOCOL_F(degBed(),1);
  2883. SERIAL_PROTOCOLPGM("C->");
  2884. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2885. #endif
  2886. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2887. SERIAL_PROTOCOLPGM(" T");
  2888. SERIAL_PROTOCOL(cur_extruder);
  2889. SERIAL_PROTOCOLPGM(":");
  2890. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2891. SERIAL_PROTOCOLPGM("C->");
  2892. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2893. }
  2894. #endif
  2895. SERIAL_PROTOCOLLN("");
  2896. return;
  2897. break;
  2898. case 109:
  2899. {// M109 - Wait for extruder heater to reach target.
  2900. if(setTargetedHotend(109)){
  2901. break;
  2902. }
  2903. LCD_MESSAGERPGM(MSG_HEATING);
  2904. heating_status = 1;
  2905. if (farm_mode) { prusa_statistics(1); };
  2906. #ifdef AUTOTEMP
  2907. autotemp_enabled=false;
  2908. #endif
  2909. if (code_seen('S')) {
  2910. setTargetHotend(code_value(), tmp_extruder);
  2911. CooldownNoWait = true;
  2912. } else if (code_seen('R')) {
  2913. setTargetHotend(code_value(), tmp_extruder);
  2914. CooldownNoWait = false;
  2915. }
  2916. #ifdef AUTOTEMP
  2917. if (code_seen('S')) autotemp_min=code_value();
  2918. if (code_seen('B')) autotemp_max=code_value();
  2919. if (code_seen('F'))
  2920. {
  2921. autotemp_factor=code_value();
  2922. autotemp_enabled=true;
  2923. }
  2924. #endif
  2925. setWatch();
  2926. codenum = millis();
  2927. /* See if we are heating up or cooling down */
  2928. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2929. cancel_heatup = false;
  2930. #ifdef TEMP_RESIDENCY_TIME
  2931. long residencyStart;
  2932. residencyStart = -1;
  2933. /* continue to loop until we have reached the target temp
  2934. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2935. while((!cancel_heatup)&&((residencyStart == -1) ||
  2936. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2937. #else
  2938. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2939. #endif //TEMP_RESIDENCY_TIME
  2940. if( (millis() - codenum) > 1000UL )
  2941. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2942. SERIAL_PROTOCOLPGM("T:");
  2943. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2944. SERIAL_PROTOCOLPGM(" E:");
  2945. SERIAL_PROTOCOL((int)tmp_extruder);
  2946. #ifdef TEMP_RESIDENCY_TIME
  2947. SERIAL_PROTOCOLPGM(" W:");
  2948. if(residencyStart > -1)
  2949. {
  2950. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2951. SERIAL_PROTOCOLLN( codenum );
  2952. }
  2953. else
  2954. {
  2955. SERIAL_PROTOCOLLN( "?" );
  2956. }
  2957. #else
  2958. SERIAL_PROTOCOLLN("");
  2959. #endif
  2960. codenum = millis();
  2961. }
  2962. manage_heater();
  2963. manage_inactivity();
  2964. lcd_update();
  2965. #ifdef TEMP_RESIDENCY_TIME
  2966. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2967. or when current temp falls outside the hysteresis after target temp was reached */
  2968. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2969. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2970. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2971. {
  2972. residencyStart = millis();
  2973. }
  2974. #endif //TEMP_RESIDENCY_TIME
  2975. }
  2976. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2977. heating_status = 2;
  2978. if (farm_mode) { prusa_statistics(2); };
  2979. starttime=millis();
  2980. previous_millis_cmd = millis();
  2981. }
  2982. break;
  2983. case 190: // M190 - Wait for bed heater to reach target.
  2984. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2985. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2986. heating_status = 3;
  2987. if (farm_mode) { prusa_statistics(1); };
  2988. if (code_seen('S'))
  2989. {
  2990. setTargetBed(code_value());
  2991. CooldownNoWait = true;
  2992. }
  2993. else if (code_seen('R'))
  2994. {
  2995. setTargetBed(code_value());
  2996. CooldownNoWait = false;
  2997. }
  2998. codenum = millis();
  2999. cancel_heatup = false;
  3000. target_direction = isHeatingBed(); // true if heating, false if cooling
  3001. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3002. {
  3003. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3004. {
  3005. float tt=degHotend(active_extruder);
  3006. SERIAL_PROTOCOLPGM("T:");
  3007. SERIAL_PROTOCOL(tt);
  3008. SERIAL_PROTOCOLPGM(" E:");
  3009. SERIAL_PROTOCOL((int)active_extruder);
  3010. SERIAL_PROTOCOLPGM(" B:");
  3011. SERIAL_PROTOCOL_F(degBed(),1);
  3012. SERIAL_PROTOCOLLN("");
  3013. codenum = millis();
  3014. }
  3015. manage_heater();
  3016. manage_inactivity();
  3017. lcd_update();
  3018. }
  3019. LCD_MESSAGERPGM(MSG_BED_DONE);
  3020. heating_status = 4;
  3021. previous_millis_cmd = millis();
  3022. #endif
  3023. break;
  3024. #if defined(FAN_PIN) && FAN_PIN > -1
  3025. case 106: //M106 Fan On
  3026. if (code_seen('S')){
  3027. fanSpeed=constrain(code_value(),0,255);
  3028. }
  3029. else {
  3030. fanSpeed=255;
  3031. }
  3032. break;
  3033. case 107: //M107 Fan Off
  3034. fanSpeed = 0;
  3035. break;
  3036. #endif //FAN_PIN
  3037. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3038. case 80: // M80 - Turn on Power Supply
  3039. SET_OUTPUT(PS_ON_PIN); //GND
  3040. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3041. // If you have a switch on suicide pin, this is useful
  3042. // if you want to start another print with suicide feature after
  3043. // a print without suicide...
  3044. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3045. SET_OUTPUT(SUICIDE_PIN);
  3046. WRITE(SUICIDE_PIN, HIGH);
  3047. #endif
  3048. #ifdef ULTIPANEL
  3049. powersupply = true;
  3050. LCD_MESSAGERPGM(WELCOME_MSG);
  3051. lcd_update();
  3052. #endif
  3053. break;
  3054. #endif
  3055. case 81: // M81 - Turn off Power Supply
  3056. disable_heater();
  3057. st_synchronize();
  3058. disable_e0();
  3059. disable_e1();
  3060. disable_e2();
  3061. finishAndDisableSteppers();
  3062. fanSpeed = 0;
  3063. delay(1000); // Wait a little before to switch off
  3064. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3065. st_synchronize();
  3066. suicide();
  3067. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3068. SET_OUTPUT(PS_ON_PIN);
  3069. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3070. #endif
  3071. #ifdef ULTIPANEL
  3072. powersupply = false;
  3073. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3074. /*
  3075. MACHNAME = "Prusa i3"
  3076. MSGOFF = "Vypnuto"
  3077. "Prusai3"" ""vypnuto""."
  3078. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3079. */
  3080. lcd_update();
  3081. #endif
  3082. break;
  3083. case 82:
  3084. axis_relative_modes[3] = false;
  3085. break;
  3086. case 83:
  3087. axis_relative_modes[3] = true;
  3088. break;
  3089. case 18: //compatibility
  3090. case 84: // M84
  3091. if(code_seen('S')){
  3092. stepper_inactive_time = code_value() * 1000;
  3093. }
  3094. else
  3095. {
  3096. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3097. if(all_axis)
  3098. {
  3099. st_synchronize();
  3100. disable_e0();
  3101. disable_e1();
  3102. disable_e2();
  3103. finishAndDisableSteppers();
  3104. }
  3105. else
  3106. {
  3107. st_synchronize();
  3108. if(code_seen('X')) disable_x();
  3109. if(code_seen('Y')) disable_y();
  3110. if(code_seen('Z')) disable_z();
  3111. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3112. if(code_seen('E')) {
  3113. disable_e0();
  3114. disable_e1();
  3115. disable_e2();
  3116. }
  3117. #endif
  3118. }
  3119. }
  3120. break;
  3121. case 85: // M85
  3122. if(code_seen('S')) {
  3123. max_inactive_time = code_value() * 1000;
  3124. }
  3125. break;
  3126. case 92: // M92
  3127. for(int8_t i=0; i < NUM_AXIS; i++)
  3128. {
  3129. if(code_seen(axis_codes[i]))
  3130. {
  3131. if(i == 3) { // E
  3132. float value = code_value();
  3133. if(value < 20.0) {
  3134. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3135. max_jerk[E_AXIS] *= factor;
  3136. max_feedrate[i] *= factor;
  3137. axis_steps_per_sqr_second[i] *= factor;
  3138. }
  3139. axis_steps_per_unit[i] = value;
  3140. }
  3141. else {
  3142. axis_steps_per_unit[i] = code_value();
  3143. }
  3144. }
  3145. }
  3146. break;
  3147. case 115: // M115
  3148. if (code_seen('V')) {
  3149. // Report the Prusa version number.
  3150. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3151. } else if (code_seen('U')) {
  3152. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3153. // pause the print and ask the user to upgrade the firmware.
  3154. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3155. } else {
  3156. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3157. }
  3158. break;
  3159. case 117: // M117 display message
  3160. starpos = (strchr(strchr_pointer + 5,'*'));
  3161. if(starpos!=NULL)
  3162. *(starpos)='\0';
  3163. lcd_setstatus(strchr_pointer + 5);
  3164. break;
  3165. case 114: // M114
  3166. SERIAL_PROTOCOLPGM("X:");
  3167. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3168. SERIAL_PROTOCOLPGM(" Y:");
  3169. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3170. SERIAL_PROTOCOLPGM(" Z:");
  3171. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3172. SERIAL_PROTOCOLPGM(" E:");
  3173. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3174. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3175. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3176. SERIAL_PROTOCOLPGM(" Y:");
  3177. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3178. SERIAL_PROTOCOLPGM(" Z:");
  3179. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3180. SERIAL_PROTOCOLLN("");
  3181. break;
  3182. case 120: // M120
  3183. enable_endstops(false) ;
  3184. break;
  3185. case 121: // M121
  3186. enable_endstops(true) ;
  3187. break;
  3188. case 119: // M119
  3189. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3190. SERIAL_PROTOCOLLN("");
  3191. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3192. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3193. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3194. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3195. }else{
  3196. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3197. }
  3198. SERIAL_PROTOCOLLN("");
  3199. #endif
  3200. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3201. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3202. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3203. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3204. }else{
  3205. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3206. }
  3207. SERIAL_PROTOCOLLN("");
  3208. #endif
  3209. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3210. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3211. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3212. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3213. }else{
  3214. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3215. }
  3216. SERIAL_PROTOCOLLN("");
  3217. #endif
  3218. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3219. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3220. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3221. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3222. }else{
  3223. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3224. }
  3225. SERIAL_PROTOCOLLN("");
  3226. #endif
  3227. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3228. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3229. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3230. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3231. }else{
  3232. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3233. }
  3234. SERIAL_PROTOCOLLN("");
  3235. #endif
  3236. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3237. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3238. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3239. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3240. }else{
  3241. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3242. }
  3243. SERIAL_PROTOCOLLN("");
  3244. #endif
  3245. break;
  3246. //TODO: update for all axis, use for loop
  3247. #ifdef BLINKM
  3248. case 150: // M150
  3249. {
  3250. byte red;
  3251. byte grn;
  3252. byte blu;
  3253. if(code_seen('R')) red = code_value();
  3254. if(code_seen('U')) grn = code_value();
  3255. if(code_seen('B')) blu = code_value();
  3256. SendColors(red,grn,blu);
  3257. }
  3258. break;
  3259. #endif //BLINKM
  3260. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3261. {
  3262. tmp_extruder = active_extruder;
  3263. if(code_seen('T')) {
  3264. tmp_extruder = code_value();
  3265. if(tmp_extruder >= EXTRUDERS) {
  3266. SERIAL_ECHO_START;
  3267. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3268. break;
  3269. }
  3270. }
  3271. float area = .0;
  3272. if(code_seen('D')) {
  3273. float diameter = (float)code_value();
  3274. if (diameter == 0.0) {
  3275. // setting any extruder filament size disables volumetric on the assumption that
  3276. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3277. // for all extruders
  3278. volumetric_enabled = false;
  3279. } else {
  3280. filament_size[tmp_extruder] = (float)code_value();
  3281. // make sure all extruders have some sane value for the filament size
  3282. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3283. #if EXTRUDERS > 1
  3284. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3285. #if EXTRUDERS > 2
  3286. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3287. #endif
  3288. #endif
  3289. volumetric_enabled = true;
  3290. }
  3291. } else {
  3292. //reserved for setting filament diameter via UFID or filament measuring device
  3293. break;
  3294. }
  3295. calculate_volumetric_multipliers();
  3296. }
  3297. break;
  3298. case 201: // M201
  3299. for(int8_t i=0; i < NUM_AXIS; i++)
  3300. {
  3301. if(code_seen(axis_codes[i]))
  3302. {
  3303. max_acceleration_units_per_sq_second[i] = code_value();
  3304. }
  3305. }
  3306. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3307. reset_acceleration_rates();
  3308. break;
  3309. #if 0 // Not used for Sprinter/grbl gen6
  3310. case 202: // M202
  3311. for(int8_t i=0; i < NUM_AXIS; i++) {
  3312. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3313. }
  3314. break;
  3315. #endif
  3316. case 203: // M203 max feedrate mm/sec
  3317. for(int8_t i=0; i < NUM_AXIS; i++) {
  3318. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3319. }
  3320. break;
  3321. case 204: // M204 acclereration S normal moves T filmanent only moves
  3322. {
  3323. if(code_seen('S')) acceleration = code_value() ;
  3324. if(code_seen('T')) retract_acceleration = code_value() ;
  3325. }
  3326. break;
  3327. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3328. {
  3329. if(code_seen('S')) minimumfeedrate = code_value();
  3330. if(code_seen('T')) mintravelfeedrate = code_value();
  3331. if(code_seen('B')) minsegmenttime = code_value() ;
  3332. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3333. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3334. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3335. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3336. }
  3337. break;
  3338. case 206: // M206 additional homing offset
  3339. for(int8_t i=0; i < 3; i++)
  3340. {
  3341. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3342. }
  3343. break;
  3344. #ifdef FWRETRACT
  3345. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3346. {
  3347. if(code_seen('S'))
  3348. {
  3349. retract_length = code_value() ;
  3350. }
  3351. if(code_seen('F'))
  3352. {
  3353. retract_feedrate = code_value()/60 ;
  3354. }
  3355. if(code_seen('Z'))
  3356. {
  3357. retract_zlift = code_value() ;
  3358. }
  3359. }break;
  3360. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3361. {
  3362. if(code_seen('S'))
  3363. {
  3364. retract_recover_length = code_value() ;
  3365. }
  3366. if(code_seen('F'))
  3367. {
  3368. retract_recover_feedrate = code_value()/60 ;
  3369. }
  3370. }break;
  3371. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3372. {
  3373. if(code_seen('S'))
  3374. {
  3375. int t= code_value() ;
  3376. switch(t)
  3377. {
  3378. case 0:
  3379. {
  3380. autoretract_enabled=false;
  3381. retracted[0]=false;
  3382. #if EXTRUDERS > 1
  3383. retracted[1]=false;
  3384. #endif
  3385. #if EXTRUDERS > 2
  3386. retracted[2]=false;
  3387. #endif
  3388. }break;
  3389. case 1:
  3390. {
  3391. autoretract_enabled=true;
  3392. retracted[0]=false;
  3393. #if EXTRUDERS > 1
  3394. retracted[1]=false;
  3395. #endif
  3396. #if EXTRUDERS > 2
  3397. retracted[2]=false;
  3398. #endif
  3399. }break;
  3400. default:
  3401. SERIAL_ECHO_START;
  3402. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3403. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3404. SERIAL_ECHOLNPGM("\"");
  3405. }
  3406. }
  3407. }break;
  3408. #endif // FWRETRACT
  3409. #if EXTRUDERS > 1
  3410. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3411. {
  3412. if(setTargetedHotend(218)){
  3413. break;
  3414. }
  3415. if(code_seen('X'))
  3416. {
  3417. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3418. }
  3419. if(code_seen('Y'))
  3420. {
  3421. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3422. }
  3423. SERIAL_ECHO_START;
  3424. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3425. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3426. {
  3427. SERIAL_ECHO(" ");
  3428. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3429. SERIAL_ECHO(",");
  3430. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3431. }
  3432. SERIAL_ECHOLN("");
  3433. }break;
  3434. #endif
  3435. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3436. {
  3437. if(code_seen('S'))
  3438. {
  3439. feedmultiply = code_value() ;
  3440. }
  3441. }
  3442. break;
  3443. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3444. {
  3445. if(code_seen('S'))
  3446. {
  3447. int tmp_code = code_value();
  3448. if (code_seen('T'))
  3449. {
  3450. if(setTargetedHotend(221)){
  3451. break;
  3452. }
  3453. extruder_multiply[tmp_extruder] = tmp_code;
  3454. }
  3455. else
  3456. {
  3457. extrudemultiply = tmp_code ;
  3458. }
  3459. }
  3460. }
  3461. break;
  3462. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3463. {
  3464. if(code_seen('P')){
  3465. int pin_number = code_value(); // pin number
  3466. int pin_state = -1; // required pin state - default is inverted
  3467. if(code_seen('S')) pin_state = code_value(); // required pin state
  3468. if(pin_state >= -1 && pin_state <= 1){
  3469. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3470. {
  3471. if (sensitive_pins[i] == pin_number)
  3472. {
  3473. pin_number = -1;
  3474. break;
  3475. }
  3476. }
  3477. if (pin_number > -1)
  3478. {
  3479. int target = LOW;
  3480. st_synchronize();
  3481. pinMode(pin_number, INPUT);
  3482. switch(pin_state){
  3483. case 1:
  3484. target = HIGH;
  3485. break;
  3486. case 0:
  3487. target = LOW;
  3488. break;
  3489. case -1:
  3490. target = !digitalRead(pin_number);
  3491. break;
  3492. }
  3493. while(digitalRead(pin_number) != target){
  3494. manage_heater();
  3495. manage_inactivity();
  3496. lcd_update();
  3497. }
  3498. }
  3499. }
  3500. }
  3501. }
  3502. break;
  3503. #if NUM_SERVOS > 0
  3504. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3505. {
  3506. int servo_index = -1;
  3507. int servo_position = 0;
  3508. if (code_seen('P'))
  3509. servo_index = code_value();
  3510. if (code_seen('S')) {
  3511. servo_position = code_value();
  3512. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3513. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3514. servos[servo_index].attach(0);
  3515. #endif
  3516. servos[servo_index].write(servo_position);
  3517. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3518. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3519. servos[servo_index].detach();
  3520. #endif
  3521. }
  3522. else {
  3523. SERIAL_ECHO_START;
  3524. SERIAL_ECHO("Servo ");
  3525. SERIAL_ECHO(servo_index);
  3526. SERIAL_ECHOLN(" out of range");
  3527. }
  3528. }
  3529. else if (servo_index >= 0) {
  3530. SERIAL_PROTOCOL(MSG_OK);
  3531. SERIAL_PROTOCOL(" Servo ");
  3532. SERIAL_PROTOCOL(servo_index);
  3533. SERIAL_PROTOCOL(": ");
  3534. SERIAL_PROTOCOL(servos[servo_index].read());
  3535. SERIAL_PROTOCOLLN("");
  3536. }
  3537. }
  3538. break;
  3539. #endif // NUM_SERVOS > 0
  3540. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3541. case 300: // M300
  3542. {
  3543. int beepS = code_seen('S') ? code_value() : 110;
  3544. int beepP = code_seen('P') ? code_value() : 1000;
  3545. if (beepS > 0)
  3546. {
  3547. #if BEEPER > 0
  3548. tone(BEEPER, beepS);
  3549. delay(beepP);
  3550. noTone(BEEPER);
  3551. #elif defined(ULTRALCD)
  3552. lcd_buzz(beepS, beepP);
  3553. #elif defined(LCD_USE_I2C_BUZZER)
  3554. lcd_buzz(beepP, beepS);
  3555. #endif
  3556. }
  3557. else
  3558. {
  3559. delay(beepP);
  3560. }
  3561. }
  3562. break;
  3563. #endif // M300
  3564. #ifdef PIDTEMP
  3565. case 301: // M301
  3566. {
  3567. if(code_seen('P')) Kp = code_value();
  3568. if(code_seen('I')) Ki = scalePID_i(code_value());
  3569. if(code_seen('D')) Kd = scalePID_d(code_value());
  3570. #ifdef PID_ADD_EXTRUSION_RATE
  3571. if(code_seen('C')) Kc = code_value();
  3572. #endif
  3573. updatePID();
  3574. SERIAL_PROTOCOL(MSG_OK);
  3575. SERIAL_PROTOCOL(" p:");
  3576. SERIAL_PROTOCOL(Kp);
  3577. SERIAL_PROTOCOL(" i:");
  3578. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3579. SERIAL_PROTOCOL(" d:");
  3580. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3581. #ifdef PID_ADD_EXTRUSION_RATE
  3582. SERIAL_PROTOCOL(" c:");
  3583. //Kc does not have scaling applied above, or in resetting defaults
  3584. SERIAL_PROTOCOL(Kc);
  3585. #endif
  3586. SERIAL_PROTOCOLLN("");
  3587. }
  3588. break;
  3589. #endif //PIDTEMP
  3590. #ifdef PIDTEMPBED
  3591. case 304: // M304
  3592. {
  3593. if(code_seen('P')) bedKp = code_value();
  3594. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3595. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3596. updatePID();
  3597. SERIAL_PROTOCOL(MSG_OK);
  3598. SERIAL_PROTOCOL(" p:");
  3599. SERIAL_PROTOCOL(bedKp);
  3600. SERIAL_PROTOCOL(" i:");
  3601. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3602. SERIAL_PROTOCOL(" d:");
  3603. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3604. SERIAL_PROTOCOLLN("");
  3605. }
  3606. break;
  3607. #endif //PIDTEMP
  3608. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3609. {
  3610. #ifdef CHDK
  3611. SET_OUTPUT(CHDK);
  3612. WRITE(CHDK, HIGH);
  3613. chdkHigh = millis();
  3614. chdkActive = true;
  3615. #else
  3616. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3617. const uint8_t NUM_PULSES=16;
  3618. const float PULSE_LENGTH=0.01524;
  3619. for(int i=0; i < NUM_PULSES; i++) {
  3620. WRITE(PHOTOGRAPH_PIN, HIGH);
  3621. _delay_ms(PULSE_LENGTH);
  3622. WRITE(PHOTOGRAPH_PIN, LOW);
  3623. _delay_ms(PULSE_LENGTH);
  3624. }
  3625. delay(7.33);
  3626. for(int i=0; i < NUM_PULSES; i++) {
  3627. WRITE(PHOTOGRAPH_PIN, HIGH);
  3628. _delay_ms(PULSE_LENGTH);
  3629. WRITE(PHOTOGRAPH_PIN, LOW);
  3630. _delay_ms(PULSE_LENGTH);
  3631. }
  3632. #endif
  3633. #endif //chdk end if
  3634. }
  3635. break;
  3636. #ifdef DOGLCD
  3637. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3638. {
  3639. if (code_seen('C')) {
  3640. lcd_setcontrast( ((int)code_value())&63 );
  3641. }
  3642. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3643. SERIAL_PROTOCOL(lcd_contrast);
  3644. SERIAL_PROTOCOLLN("");
  3645. }
  3646. break;
  3647. #endif
  3648. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3649. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3650. {
  3651. float temp = .0;
  3652. if (code_seen('S')) temp=code_value();
  3653. set_extrude_min_temp(temp);
  3654. }
  3655. break;
  3656. #endif
  3657. case 303: // M303 PID autotune
  3658. {
  3659. float temp = 150.0;
  3660. int e=0;
  3661. int c=5;
  3662. if (code_seen('E')) e=code_value();
  3663. if (e<0)
  3664. temp=70;
  3665. if (code_seen('S')) temp=code_value();
  3666. if (code_seen('C')) c=code_value();
  3667. PID_autotune(temp, e, c);
  3668. }
  3669. break;
  3670. case 400: // M400 finish all moves
  3671. {
  3672. st_synchronize();
  3673. }
  3674. break;
  3675. #ifdef FILAMENT_SENSOR
  3676. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3677. {
  3678. #if (FILWIDTH_PIN > -1)
  3679. if(code_seen('N')) filament_width_nominal=code_value();
  3680. else{
  3681. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3682. SERIAL_PROTOCOLLN(filament_width_nominal);
  3683. }
  3684. #endif
  3685. }
  3686. break;
  3687. case 405: //M405 Turn on filament sensor for control
  3688. {
  3689. if(code_seen('D')) meas_delay_cm=code_value();
  3690. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3691. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3692. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3693. {
  3694. int temp_ratio = widthFil_to_size_ratio();
  3695. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3696. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3697. }
  3698. delay_index1=0;
  3699. delay_index2=0;
  3700. }
  3701. filament_sensor = true ;
  3702. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3703. //SERIAL_PROTOCOL(filament_width_meas);
  3704. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3705. //SERIAL_PROTOCOL(extrudemultiply);
  3706. }
  3707. break;
  3708. case 406: //M406 Turn off filament sensor for control
  3709. {
  3710. filament_sensor = false ;
  3711. }
  3712. break;
  3713. case 407: //M407 Display measured filament diameter
  3714. {
  3715. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3716. SERIAL_PROTOCOLLN(filament_width_meas);
  3717. }
  3718. break;
  3719. #endif
  3720. case 500: // M500 Store settings in EEPROM
  3721. {
  3722. Config_StoreSettings();
  3723. }
  3724. break;
  3725. case 501: // M501 Read settings from EEPROM
  3726. {
  3727. Config_RetrieveSettings();
  3728. }
  3729. break;
  3730. case 502: // M502 Revert to default settings
  3731. {
  3732. Config_ResetDefault();
  3733. }
  3734. break;
  3735. case 503: // M503 print settings currently in memory
  3736. {
  3737. Config_PrintSettings();
  3738. }
  3739. break;
  3740. case 509: //M509 Force language selection
  3741. {
  3742. lcd_force_language_selection();
  3743. SERIAL_ECHO_START;
  3744. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3745. }
  3746. break;
  3747. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3748. case 540:
  3749. {
  3750. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3751. }
  3752. break;
  3753. #endif
  3754. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3755. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3756. {
  3757. float value;
  3758. if (code_seen('Z'))
  3759. {
  3760. value = code_value();
  3761. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3762. {
  3763. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3764. SERIAL_ECHO_START;
  3765. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3766. SERIAL_PROTOCOLLN("");
  3767. }
  3768. else
  3769. {
  3770. SERIAL_ECHO_START;
  3771. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3772. SERIAL_ECHORPGM(MSG_Z_MIN);
  3773. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3774. SERIAL_ECHORPGM(MSG_Z_MAX);
  3775. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3776. SERIAL_PROTOCOLLN("");
  3777. }
  3778. }
  3779. else
  3780. {
  3781. SERIAL_ECHO_START;
  3782. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3783. SERIAL_ECHO(-zprobe_zoffset);
  3784. SERIAL_PROTOCOLLN("");
  3785. }
  3786. break;
  3787. }
  3788. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3789. #ifdef FILAMENTCHANGEENABLE
  3790. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3791. {
  3792. st_synchronize();
  3793. feedmultiplyBckp=feedmultiply;
  3794. int8_t TooLowZ = 0;
  3795. float target[4];
  3796. float lastpos[4];
  3797. target[X_AXIS]=current_position[X_AXIS];
  3798. target[Y_AXIS]=current_position[Y_AXIS];
  3799. target[Z_AXIS]=current_position[Z_AXIS];
  3800. target[E_AXIS]=current_position[E_AXIS];
  3801. lastpos[X_AXIS]=current_position[X_AXIS];
  3802. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3803. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3804. lastpos[E_AXIS]=current_position[E_AXIS];
  3805. //Restract extruder
  3806. if(code_seen('E'))
  3807. {
  3808. target[E_AXIS]+= code_value();
  3809. }
  3810. else
  3811. {
  3812. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3813. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3814. #endif
  3815. }
  3816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3817. //Lift Z
  3818. if(code_seen('Z'))
  3819. {
  3820. target[Z_AXIS]+= code_value();
  3821. }
  3822. else
  3823. {
  3824. #ifdef FILAMENTCHANGE_ZADD
  3825. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3826. if(target[Z_AXIS] < 10){
  3827. target[Z_AXIS]+= 10 ;
  3828. TooLowZ = 1;
  3829. }else{
  3830. TooLowZ = 0;
  3831. }
  3832. #endif
  3833. }
  3834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3835. //Move XY to side
  3836. if(code_seen('X'))
  3837. {
  3838. target[X_AXIS]+= code_value();
  3839. }
  3840. else
  3841. {
  3842. #ifdef FILAMENTCHANGE_XPOS
  3843. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3844. #endif
  3845. }
  3846. if(code_seen('Y'))
  3847. {
  3848. target[Y_AXIS]= code_value();
  3849. }
  3850. else
  3851. {
  3852. #ifdef FILAMENTCHANGE_YPOS
  3853. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3854. #endif
  3855. }
  3856. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3857. // Unload filament
  3858. if(code_seen('L'))
  3859. {
  3860. target[E_AXIS]+= code_value();
  3861. }
  3862. else
  3863. {
  3864. #ifdef FILAMENTCHANGE_FINALRETRACT
  3865. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3866. #endif
  3867. }
  3868. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3869. //finish moves
  3870. st_synchronize();
  3871. //disable extruder steppers so filament can be removed
  3872. disable_e0();
  3873. disable_e1();
  3874. disable_e2();
  3875. delay(100);
  3876. //Wait for user to insert filament
  3877. uint8_t cnt=0;
  3878. int counterBeep = 0;
  3879. lcd_wait_interact();
  3880. while(!lcd_clicked()){
  3881. cnt++;
  3882. manage_heater();
  3883. manage_inactivity(true);
  3884. if(cnt==0)
  3885. {
  3886. #if BEEPER > 0
  3887. if (counterBeep== 500){
  3888. counterBeep = 0;
  3889. }
  3890. SET_OUTPUT(BEEPER);
  3891. if (counterBeep== 0){
  3892. WRITE(BEEPER,HIGH);
  3893. }
  3894. if (counterBeep== 20){
  3895. WRITE(BEEPER,LOW);
  3896. }
  3897. counterBeep++;
  3898. #else
  3899. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3900. lcd_buzz(1000/6,100);
  3901. #else
  3902. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3903. #endif
  3904. #endif
  3905. }
  3906. }
  3907. //Filament inserted
  3908. WRITE(BEEPER,LOW);
  3909. //Feed the filament to the end of nozzle quickly
  3910. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3912. //Extrude some filament
  3913. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3915. //Wait for user to check the state
  3916. lcd_change_fil_state = 0;
  3917. lcd_loading_filament();
  3918. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3919. lcd_change_fil_state = 0;
  3920. lcd_alright();
  3921. switch(lcd_change_fil_state){
  3922. // Filament failed to load so load it again
  3923. case 2:
  3924. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3926. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3928. lcd_loading_filament();
  3929. break;
  3930. // Filament loaded properly but color is not clear
  3931. case 3:
  3932. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3934. lcd_loading_color();
  3935. break;
  3936. // Everything good
  3937. default:
  3938. lcd_change_success();
  3939. break;
  3940. }
  3941. }
  3942. //Not let's go back to print
  3943. //Feed a little of filament to stabilize pressure
  3944. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3946. //Retract
  3947. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3949. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3950. //Move XY back
  3951. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3952. //Move Z back
  3953. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3954. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3955. //Unretract
  3956. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3957. //Set E position to original
  3958. plan_set_e_position(lastpos[E_AXIS]);
  3959. //Recover feed rate
  3960. feedmultiply=feedmultiplyBckp;
  3961. char cmd[9];
  3962. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3963. enquecommand(cmd);
  3964. }
  3965. break;
  3966. #endif //FILAMENTCHANGEENABLE
  3967. case 907: // M907 Set digital trimpot motor current using axis codes.
  3968. {
  3969. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3970. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3971. if(code_seen('B')) digipot_current(4,code_value());
  3972. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3973. #endif
  3974. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3975. if(code_seen('X')) digipot_current(0, code_value());
  3976. #endif
  3977. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3978. if(code_seen('Z')) digipot_current(1, code_value());
  3979. #endif
  3980. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3981. if(code_seen('E')) digipot_current(2, code_value());
  3982. #endif
  3983. #ifdef DIGIPOT_I2C
  3984. // this one uses actual amps in floating point
  3985. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3986. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3987. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3988. #endif
  3989. }
  3990. break;
  3991. case 908: // M908 Control digital trimpot directly.
  3992. {
  3993. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3994. uint8_t channel,current;
  3995. if(code_seen('P')) channel=code_value();
  3996. if(code_seen('S')) current=code_value();
  3997. digitalPotWrite(channel, current);
  3998. #endif
  3999. }
  4000. break;
  4001. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4002. {
  4003. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4004. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4005. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4006. if(code_seen('B')) microstep_mode(4,code_value());
  4007. microstep_readings();
  4008. #endif
  4009. }
  4010. break;
  4011. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4012. {
  4013. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4014. if(code_seen('S')) switch((int)code_value())
  4015. {
  4016. case 1:
  4017. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4018. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4019. break;
  4020. case 2:
  4021. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4022. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4023. break;
  4024. }
  4025. microstep_readings();
  4026. #endif
  4027. }
  4028. break;
  4029. case 999: // M999: Restart after being stopped
  4030. Stopped = false;
  4031. lcd_reset_alert_level();
  4032. gcode_LastN = Stopped_gcode_LastN;
  4033. FlushSerialRequestResend();
  4034. break;
  4035. }
  4036. } // end if(code_seen('M')) (end of M codes)
  4037. else if(code_seen('T'))
  4038. {
  4039. tmp_extruder = code_value();
  4040. if(tmp_extruder >= EXTRUDERS) {
  4041. SERIAL_ECHO_START;
  4042. SERIAL_ECHO("T");
  4043. SERIAL_ECHO(tmp_extruder);
  4044. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4045. }
  4046. else {
  4047. boolean make_move = false;
  4048. if(code_seen('F')) {
  4049. make_move = true;
  4050. next_feedrate = code_value();
  4051. if(next_feedrate > 0.0) {
  4052. feedrate = next_feedrate;
  4053. }
  4054. }
  4055. #if EXTRUDERS > 1
  4056. if(tmp_extruder != active_extruder) {
  4057. // Save current position to return to after applying extruder offset
  4058. memcpy(destination, current_position, sizeof(destination));
  4059. // Offset extruder (only by XY)
  4060. int i;
  4061. for(i = 0; i < 2; i++) {
  4062. current_position[i] = current_position[i] -
  4063. extruder_offset[i][active_extruder] +
  4064. extruder_offset[i][tmp_extruder];
  4065. }
  4066. // Set the new active extruder and position
  4067. active_extruder = tmp_extruder;
  4068. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4069. // Move to the old position if 'F' was in the parameters
  4070. if(make_move && Stopped == false) {
  4071. prepare_move();
  4072. }
  4073. }
  4074. #endif
  4075. SERIAL_ECHO_START;
  4076. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4077. SERIAL_PROTOCOLLN((int)active_extruder);
  4078. }
  4079. } // end if(code_seen('T')) (end of T codes)
  4080. else
  4081. {
  4082. SERIAL_ECHO_START;
  4083. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4084. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4085. SERIAL_ECHOLNPGM("\"");
  4086. }
  4087. ClearToSend();
  4088. }
  4089. void FlushSerialRequestResend()
  4090. {
  4091. //char cmdbuffer[bufindr][100]="Resend:";
  4092. MYSERIAL.flush();
  4093. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4094. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4095. ClearToSend();
  4096. }
  4097. // Confirm the execution of a command, if sent from a serial line.
  4098. // Execution of a command from a SD card will not be confirmed.
  4099. void ClearToSend()
  4100. {
  4101. previous_millis_cmd = millis();
  4102. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4103. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4104. }
  4105. void get_coordinates()
  4106. {
  4107. bool seen[4]={false,false,false,false};
  4108. for(int8_t i=0; i < NUM_AXIS; i++) {
  4109. if(code_seen(axis_codes[i]))
  4110. {
  4111. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4112. seen[i]=true;
  4113. }
  4114. else destination[i] = current_position[i]; //Are these else lines really needed?
  4115. }
  4116. if(code_seen('F')) {
  4117. next_feedrate = code_value();
  4118. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4119. }
  4120. }
  4121. void get_arc_coordinates()
  4122. {
  4123. #ifdef SF_ARC_FIX
  4124. bool relative_mode_backup = relative_mode;
  4125. relative_mode = true;
  4126. #endif
  4127. get_coordinates();
  4128. #ifdef SF_ARC_FIX
  4129. relative_mode=relative_mode_backup;
  4130. #endif
  4131. if(code_seen('I')) {
  4132. offset[0] = code_value();
  4133. }
  4134. else {
  4135. offset[0] = 0.0;
  4136. }
  4137. if(code_seen('J')) {
  4138. offset[1] = code_value();
  4139. }
  4140. else {
  4141. offset[1] = 0.0;
  4142. }
  4143. }
  4144. void clamp_to_software_endstops(float target[3])
  4145. {
  4146. world2machine_clamp(target[0], target[1]);
  4147. // Clamp the Z coordinate.
  4148. if (min_software_endstops) {
  4149. float negative_z_offset = 0;
  4150. #ifdef ENABLE_AUTO_BED_LEVELING
  4151. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4152. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4153. #endif
  4154. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4155. }
  4156. if (max_software_endstops) {
  4157. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4158. }
  4159. }
  4160. #ifdef MESH_BED_LEVELING
  4161. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4162. float dx = x - current_position[X_AXIS];
  4163. float dy = y - current_position[Y_AXIS];
  4164. float dz = z - current_position[Z_AXIS];
  4165. int n_segments = 0;
  4166. if (mbl.active) {
  4167. float len = abs(dx) + abs(dy);
  4168. if (len > 0)
  4169. // Split to 3cm segments or shorter.
  4170. n_segments = int(ceil(len / 30.f));
  4171. }
  4172. if (n_segments > 1) {
  4173. float de = e - current_position[E_AXIS];
  4174. for (int i = 1; i < n_segments; ++ i) {
  4175. float t = float(i) / float(n_segments);
  4176. plan_buffer_line(
  4177. current_position[X_AXIS] + t * dx,
  4178. current_position[Y_AXIS] + t * dy,
  4179. current_position[Z_AXIS] + t * dz,
  4180. current_position[E_AXIS] + t * de,
  4181. feed_rate, extruder);
  4182. }
  4183. }
  4184. // The rest of the path.
  4185. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4186. current_position[X_AXIS] = x;
  4187. current_position[Y_AXIS] = y;
  4188. current_position[Z_AXIS] = z;
  4189. current_position[E_AXIS] = e;
  4190. }
  4191. #endif // MESH_BED_LEVELING
  4192. void prepare_move()
  4193. {
  4194. clamp_to_software_endstops(destination);
  4195. previous_millis_cmd = millis();
  4196. // Do not use feedmultiply for E or Z only moves
  4197. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4198. #ifdef MESH_BED_LEVELING
  4199. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4200. #else
  4201. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4202. #endif
  4203. }
  4204. else {
  4205. #ifdef MESH_BED_LEVELING
  4206. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4207. #else
  4208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4209. #endif
  4210. }
  4211. for(int8_t i=0; i < NUM_AXIS; i++) {
  4212. current_position[i] = destination[i];
  4213. }
  4214. }
  4215. void prepare_arc_move(char isclockwise) {
  4216. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4217. // Trace the arc
  4218. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4219. // As far as the parser is concerned, the position is now == target. In reality the
  4220. // motion control system might still be processing the action and the real tool position
  4221. // in any intermediate location.
  4222. for(int8_t i=0; i < NUM_AXIS; i++) {
  4223. current_position[i] = destination[i];
  4224. }
  4225. previous_millis_cmd = millis();
  4226. }
  4227. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4228. #if defined(FAN_PIN)
  4229. #if CONTROLLERFAN_PIN == FAN_PIN
  4230. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4231. #endif
  4232. #endif
  4233. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4234. unsigned long lastMotorCheck = 0;
  4235. void controllerFan()
  4236. {
  4237. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4238. {
  4239. lastMotorCheck = millis();
  4240. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4241. #if EXTRUDERS > 2
  4242. || !READ(E2_ENABLE_PIN)
  4243. #endif
  4244. #if EXTRUDER > 1
  4245. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4246. || !READ(X2_ENABLE_PIN)
  4247. #endif
  4248. || !READ(E1_ENABLE_PIN)
  4249. #endif
  4250. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4251. {
  4252. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4253. }
  4254. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4255. {
  4256. digitalWrite(CONTROLLERFAN_PIN, 0);
  4257. analogWrite(CONTROLLERFAN_PIN, 0);
  4258. }
  4259. else
  4260. {
  4261. // allows digital or PWM fan output to be used (see M42 handling)
  4262. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4263. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4264. }
  4265. }
  4266. }
  4267. #endif
  4268. #ifdef TEMP_STAT_LEDS
  4269. static bool blue_led = false;
  4270. static bool red_led = false;
  4271. static uint32_t stat_update = 0;
  4272. void handle_status_leds(void) {
  4273. float max_temp = 0.0;
  4274. if(millis() > stat_update) {
  4275. stat_update += 500; // Update every 0.5s
  4276. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4277. max_temp = max(max_temp, degHotend(cur_extruder));
  4278. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4279. }
  4280. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4281. max_temp = max(max_temp, degTargetBed());
  4282. max_temp = max(max_temp, degBed());
  4283. #endif
  4284. if((max_temp > 55.0) && (red_led == false)) {
  4285. digitalWrite(STAT_LED_RED, 1);
  4286. digitalWrite(STAT_LED_BLUE, 0);
  4287. red_led = true;
  4288. blue_led = false;
  4289. }
  4290. if((max_temp < 54.0) && (blue_led == false)) {
  4291. digitalWrite(STAT_LED_RED, 0);
  4292. digitalWrite(STAT_LED_BLUE, 1);
  4293. red_led = false;
  4294. blue_led = true;
  4295. }
  4296. }
  4297. }
  4298. #endif
  4299. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4300. {
  4301. #if defined(KILL_PIN) && KILL_PIN > -1
  4302. static int killCount = 0; // make the inactivity button a bit less responsive
  4303. const int KILL_DELAY = 10000;
  4304. #endif
  4305. if(buflen < (BUFSIZE-1))
  4306. get_command();
  4307. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4308. if(max_inactive_time)
  4309. kill();
  4310. if(stepper_inactive_time) {
  4311. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4312. {
  4313. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4314. disable_x();
  4315. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4316. disable_y();
  4317. disable_z();
  4318. disable_e0();
  4319. disable_e1();
  4320. disable_e2();
  4321. }
  4322. }
  4323. }
  4324. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4325. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4326. {
  4327. chdkActive = false;
  4328. WRITE(CHDK, LOW);
  4329. }
  4330. #endif
  4331. #if defined(KILL_PIN) && KILL_PIN > -1
  4332. // Check if the kill button was pressed and wait just in case it was an accidental
  4333. // key kill key press
  4334. // -------------------------------------------------------------------------------
  4335. if( 0 == READ(KILL_PIN) )
  4336. {
  4337. killCount++;
  4338. }
  4339. else if (killCount > 0)
  4340. {
  4341. killCount--;
  4342. }
  4343. // Exceeded threshold and we can confirm that it was not accidental
  4344. // KILL the machine
  4345. // ----------------------------------------------------------------
  4346. if ( killCount >= KILL_DELAY)
  4347. {
  4348. kill();
  4349. }
  4350. #endif
  4351. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4352. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4353. #endif
  4354. #ifdef EXTRUDER_RUNOUT_PREVENT
  4355. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4356. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4357. {
  4358. bool oldstatus=READ(E0_ENABLE_PIN);
  4359. enable_e0();
  4360. float oldepos=current_position[E_AXIS];
  4361. float oldedes=destination[E_AXIS];
  4362. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4363. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4364. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4365. current_position[E_AXIS]=oldepos;
  4366. destination[E_AXIS]=oldedes;
  4367. plan_set_e_position(oldepos);
  4368. previous_millis_cmd=millis();
  4369. st_synchronize();
  4370. WRITE(E0_ENABLE_PIN,oldstatus);
  4371. }
  4372. #endif
  4373. #ifdef TEMP_STAT_LEDS
  4374. handle_status_leds();
  4375. #endif
  4376. check_axes_activity();
  4377. }
  4378. void kill(const char *full_screen_message)
  4379. {
  4380. cli(); // Stop interrupts
  4381. disable_heater();
  4382. disable_x();
  4383. // SERIAL_ECHOLNPGM("kill - disable Y");
  4384. disable_y();
  4385. disable_z();
  4386. disable_e0();
  4387. disable_e1();
  4388. disable_e2();
  4389. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4390. pinMode(PS_ON_PIN,INPUT);
  4391. #endif
  4392. SERIAL_ERROR_START;
  4393. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4394. if (full_screen_message != NULL) {
  4395. SERIAL_ERRORLNRPGM(full_screen_message);
  4396. lcd_display_message_fullscreen_P(full_screen_message);
  4397. } else {
  4398. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4399. }
  4400. // FMC small patch to update the LCD before ending
  4401. sei(); // enable interrupts
  4402. for ( int i=5; i--; lcd_update())
  4403. {
  4404. delay(200);
  4405. }
  4406. cli(); // disable interrupts
  4407. suicide();
  4408. while(1) { /* Intentionally left empty */ } // Wait for reset
  4409. }
  4410. void Stop()
  4411. {
  4412. disable_heater();
  4413. if(Stopped == false) {
  4414. Stopped = true;
  4415. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4416. SERIAL_ERROR_START;
  4417. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4418. LCD_MESSAGERPGM(MSG_STOPPED);
  4419. }
  4420. }
  4421. bool IsStopped() { return Stopped; };
  4422. #ifdef FAST_PWM_FAN
  4423. void setPwmFrequency(uint8_t pin, int val)
  4424. {
  4425. val &= 0x07;
  4426. switch(digitalPinToTimer(pin))
  4427. {
  4428. #if defined(TCCR0A)
  4429. case TIMER0A:
  4430. case TIMER0B:
  4431. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4432. // TCCR0B |= val;
  4433. break;
  4434. #endif
  4435. #if defined(TCCR1A)
  4436. case TIMER1A:
  4437. case TIMER1B:
  4438. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4439. // TCCR1B |= val;
  4440. break;
  4441. #endif
  4442. #if defined(TCCR2)
  4443. case TIMER2:
  4444. case TIMER2:
  4445. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4446. TCCR2 |= val;
  4447. break;
  4448. #endif
  4449. #if defined(TCCR2A)
  4450. case TIMER2A:
  4451. case TIMER2B:
  4452. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4453. TCCR2B |= val;
  4454. break;
  4455. #endif
  4456. #if defined(TCCR3A)
  4457. case TIMER3A:
  4458. case TIMER3B:
  4459. case TIMER3C:
  4460. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4461. TCCR3B |= val;
  4462. break;
  4463. #endif
  4464. #if defined(TCCR4A)
  4465. case TIMER4A:
  4466. case TIMER4B:
  4467. case TIMER4C:
  4468. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4469. TCCR4B |= val;
  4470. break;
  4471. #endif
  4472. #if defined(TCCR5A)
  4473. case TIMER5A:
  4474. case TIMER5B:
  4475. case TIMER5C:
  4476. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4477. TCCR5B |= val;
  4478. break;
  4479. #endif
  4480. }
  4481. }
  4482. #endif //FAST_PWM_FAN
  4483. bool setTargetedHotend(int code){
  4484. tmp_extruder = active_extruder;
  4485. if(code_seen('T')) {
  4486. tmp_extruder = code_value();
  4487. if(tmp_extruder >= EXTRUDERS) {
  4488. SERIAL_ECHO_START;
  4489. switch(code){
  4490. case 104:
  4491. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4492. break;
  4493. case 105:
  4494. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4495. break;
  4496. case 109:
  4497. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4498. break;
  4499. case 218:
  4500. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4501. break;
  4502. case 221:
  4503. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4504. break;
  4505. }
  4506. SERIAL_ECHOLN(tmp_extruder);
  4507. return true;
  4508. }
  4509. }
  4510. return false;
  4511. }
  4512. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4513. {
  4514. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4515. {
  4516. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4517. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4518. }
  4519. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4520. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4521. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4522. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4523. total_filament_used = 0;
  4524. }
  4525. float calculate_volumetric_multiplier(float diameter) {
  4526. float area = .0;
  4527. float radius = .0;
  4528. radius = diameter * .5;
  4529. if (! volumetric_enabled || radius == 0) {
  4530. area = 1;
  4531. }
  4532. else {
  4533. area = M_PI * pow(radius, 2);
  4534. }
  4535. return 1.0 / area;
  4536. }
  4537. void calculate_volumetric_multipliers() {
  4538. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4539. #if EXTRUDERS > 1
  4540. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4541. #if EXTRUDERS > 2
  4542. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4543. #endif
  4544. #endif
  4545. }
  4546. void delay_keep_alive(int ms)
  4547. {
  4548. for (;;) {
  4549. manage_heater();
  4550. // Manage inactivity, but don't disable steppers on timeout.
  4551. manage_inactivity(true);
  4552. lcd_update();
  4553. if (ms == 0)
  4554. break;
  4555. else if (ms >= 50) {
  4556. delay(50);
  4557. ms -= 50;
  4558. } else {
  4559. delay(ms);
  4560. ms = 0;
  4561. }
  4562. }
  4563. }