Marlin_main.cpp 337 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. #ifdef SDSUPPORT
  320. #include "SdFatUtil.h"
  321. int freeMemory() { return SdFatUtil::FreeRam(); }
  322. #else
  323. extern "C" {
  324. extern unsigned int __bss_end;
  325. extern unsigned int __heap_start;
  326. extern void *__brkval;
  327. int freeMemory() {
  328. int free_memory;
  329. if ((int)__brkval == 0)
  330. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  331. else
  332. free_memory = ((int)&free_memory) - ((int)__brkval);
  333. return free_memory;
  334. }
  335. }
  336. #endif //!SDSUPPORT
  337. void setup_killpin()
  338. {
  339. #if defined(KILL_PIN) && KILL_PIN > -1
  340. SET_INPUT(KILL_PIN);
  341. WRITE(KILL_PIN,HIGH);
  342. #endif
  343. }
  344. // Set home pin
  345. void setup_homepin(void)
  346. {
  347. #if defined(HOME_PIN) && HOME_PIN > -1
  348. SET_INPUT(HOME_PIN);
  349. WRITE(HOME_PIN,HIGH);
  350. #endif
  351. }
  352. void setup_photpin()
  353. {
  354. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  355. SET_OUTPUT(PHOTOGRAPH_PIN);
  356. WRITE(PHOTOGRAPH_PIN, LOW);
  357. #endif
  358. }
  359. void setup_powerhold()
  360. {
  361. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  362. SET_OUTPUT(SUICIDE_PIN);
  363. WRITE(SUICIDE_PIN, HIGH);
  364. #endif
  365. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  366. SET_OUTPUT(PS_ON_PIN);
  367. #if defined(PS_DEFAULT_OFF)
  368. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  369. #else
  370. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  371. #endif
  372. #endif
  373. }
  374. void suicide()
  375. {
  376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  377. SET_OUTPUT(SUICIDE_PIN);
  378. WRITE(SUICIDE_PIN, LOW);
  379. #endif
  380. }
  381. void servo_init()
  382. {
  383. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  384. servos[0].attach(SERVO0_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  387. servos[1].attach(SERVO1_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  390. servos[2].attach(SERVO2_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  393. servos[3].attach(SERVO3_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 5)
  396. #error "TODO: enter initalisation code for more servos"
  397. #endif
  398. }
  399. bool fans_check_enabled = true;
  400. #ifdef TMC2130
  401. extern int8_t CrashDetectMenu;
  402. void crashdet_enable()
  403. {
  404. tmc2130_sg_stop_on_crash = true;
  405. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  406. CrashDetectMenu = 1;
  407. }
  408. void crashdet_disable()
  409. {
  410. tmc2130_sg_stop_on_crash = false;
  411. tmc2130_sg_crash = 0;
  412. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  413. CrashDetectMenu = 0;
  414. }
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  529. WRITE(BEEPER, HIGH);
  530. _delay_ms(100);
  531. WRITE(BEEPER, LOW);
  532. lang_reset();
  533. break;
  534. //Level 1: Reset statistics
  535. case 1:
  536. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  537. WRITE(BEEPER, HIGH);
  538. _delay_ms(100);
  539. WRITE(BEEPER, LOW);
  540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  554. lcd_menu_statistics();
  555. break;
  556. // Level 2: Prepare for shipping
  557. case 2:
  558. //lcd_puts_P(PSTR("Factory RESET"));
  559. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  560. // Force language selection at the next boot up.
  561. lang_reset();
  562. // Force the "Follow calibration flow" message at the next boot up.
  563. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  564. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  565. farm_no = 0;
  566. farm_mode = false;
  567. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  568. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  569. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  570. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  579. #ifdef FILAMENT_SENSOR
  580. fsensor_enable();
  581. fsensor_autoload_set(true);
  582. #endif //FILAMENT_SENSOR
  583. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  584. WRITE(BEEPER, HIGH);
  585. _delay_ms(100);
  586. WRITE(BEEPER, LOW);
  587. //_delay_ms(2000);
  588. break;
  589. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  590. case 3:
  591. lcd_puts_P(PSTR("Factory RESET"));
  592. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  593. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  594. WRITE(BEEPER, HIGH);
  595. _delay_ms(100);
  596. WRITE(BEEPER, LOW);
  597. er_progress = 0;
  598. lcd_puts_at_P(3, 3, PSTR(" "));
  599. lcd_set_cursor(3, 3);
  600. lcd_print(er_progress);
  601. // Erase EEPROM
  602. for (int i = 0; i < 4096; i++) {
  603. eeprom_update_byte((uint8_t*)i, 0xFF);
  604. if (i % 41 == 0) {
  605. er_progress++;
  606. lcd_puts_at_P(3, 3, PSTR(" "));
  607. lcd_set_cursor(3, 3);
  608. lcd_print(er_progress);
  609. lcd_puts_P(PSTR("%"));
  610. }
  611. }
  612. break;
  613. case 4:
  614. bowden_menu();
  615. break;
  616. default:
  617. break;
  618. }
  619. }
  620. extern "C" {
  621. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  622. }
  623. int uart_putchar(char c, FILE *)
  624. {
  625. MYSERIAL.write(c);
  626. return 0;
  627. }
  628. void lcd_splash()
  629. {
  630. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  631. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  632. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  633. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  634. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  635. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  636. }
  637. void factory_reset()
  638. {
  639. KEEPALIVE_STATE(PAUSED_FOR_USER);
  640. if (!READ(BTN_ENC))
  641. {
  642. _delay_ms(1000);
  643. if (!READ(BTN_ENC))
  644. {
  645. lcd_clear();
  646. lcd_puts_P(PSTR("Factory RESET"));
  647. SET_OUTPUT(BEEPER);
  648. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  649. WRITE(BEEPER, HIGH);
  650. while (!READ(BTN_ENC));
  651. WRITE(BEEPER, LOW);
  652. _delay_ms(2000);
  653. char level = reset_menu();
  654. factory_reset(level);
  655. switch (level) {
  656. case 0: _delay_ms(0); break;
  657. case 1: _delay_ms(0); break;
  658. case 2: _delay_ms(0); break;
  659. case 3: _delay_ms(0); break;
  660. }
  661. }
  662. }
  663. KEEPALIVE_STATE(IN_HANDLER);
  664. }
  665. void show_fw_version_warnings() {
  666. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  667. switch (FW_DEV_VERSION) {
  668. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  669. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  670. case(FW_VERSION_DEVEL):
  671. case(FW_VERSION_DEBUG):
  672. lcd_update_enable(false);
  673. lcd_clear();
  674. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  675. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  676. #else
  677. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  678. #endif
  679. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  680. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  681. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  682. lcd_wait_for_click();
  683. break;
  684. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  685. }
  686. lcd_update_enable(true);
  687. }
  688. //! @brief try to check if firmware is on right type of printer
  689. static void check_if_fw_is_on_right_printer(){
  690. #ifdef FILAMENT_SENSOR
  691. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  692. #ifdef IR_SENSOR
  693. swi2c_init();
  694. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  695. if (pat9125_detected){
  696. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  697. #endif //IR_SENSOR
  698. #ifdef PAT9125
  699. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  700. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  701. if (ir_detected){
  702. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  703. #endif //PAT9125
  704. }
  705. #endif //FILAMENT_SENSOR
  706. }
  707. uint8_t check_printer_version()
  708. {
  709. uint8_t version_changed = 0;
  710. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  711. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  712. if (printer_type != PRINTER_TYPE) {
  713. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  714. else version_changed |= 0b10;
  715. }
  716. if (motherboard != MOTHERBOARD) {
  717. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  718. else version_changed |= 0b01;
  719. }
  720. return version_changed;
  721. }
  722. #ifdef BOOTAPP
  723. #include "bootapp.h" //bootloader support
  724. #endif //BOOTAPP
  725. #if (LANG_MODE != 0) //secondary language support
  726. #ifdef W25X20CL
  727. // language update from external flash
  728. #define LANGBOOT_BLOCKSIZE 0x1000u
  729. #define LANGBOOT_RAMBUFFER 0x0800
  730. void update_sec_lang_from_external_flash()
  731. {
  732. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  733. {
  734. uint8_t lang = boot_reserved >> 4;
  735. uint8_t state = boot_reserved & 0xf;
  736. lang_table_header_t header;
  737. uint32_t src_addr;
  738. if (lang_get_header(lang, &header, &src_addr))
  739. {
  740. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  741. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  742. _delay(100);
  743. boot_reserved = (state + 1) | (lang << 4);
  744. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  745. {
  746. cli();
  747. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  748. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  749. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  750. if (state == 0)
  751. {
  752. //TODO - check header integrity
  753. }
  754. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  755. }
  756. else
  757. {
  758. //TODO - check sec lang data integrity
  759. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  760. }
  761. }
  762. }
  763. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  764. }
  765. #ifdef DEBUG_W25X20CL
  766. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  767. {
  768. lang_table_header_t header;
  769. uint8_t count = 0;
  770. uint32_t addr = 0x00000;
  771. while (1)
  772. {
  773. printf_P(_n("LANGTABLE%d:"), count);
  774. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  775. if (header.magic != LANG_MAGIC)
  776. {
  777. printf_P(_n("NG!\n"));
  778. break;
  779. }
  780. printf_P(_n("OK\n"));
  781. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  782. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  783. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  784. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  785. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  786. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  787. addr += header.size;
  788. codes[count] = header.code;
  789. count ++;
  790. }
  791. return count;
  792. }
  793. void list_sec_lang_from_external_flash()
  794. {
  795. uint16_t codes[8];
  796. uint8_t count = lang_xflash_enum_codes(codes);
  797. printf_P(_n("XFlash lang count = %hhd\n"), count);
  798. }
  799. #endif //DEBUG_W25X20CL
  800. #endif //W25X20CL
  801. #endif //(LANG_MODE != 0)
  802. static void w25x20cl_err_msg()
  803. {
  804. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  805. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  806. }
  807. // "Setup" function is called by the Arduino framework on startup.
  808. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  809. // are initialized by the main() routine provided by the Arduino framework.
  810. void setup()
  811. {
  812. mmu_init();
  813. ultralcd_init();
  814. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  815. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  816. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  817. spi_init();
  818. lcd_splash();
  819. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  820. #ifdef W25X20CL
  821. bool w25x20cl_success = w25x20cl_init();
  822. if (w25x20cl_success)
  823. {
  824. optiboot_w25x20cl_enter();
  825. #if (LANG_MODE != 0) //secondary language support
  826. update_sec_lang_from_external_flash();
  827. #endif //(LANG_MODE != 0)
  828. }
  829. else
  830. {
  831. w25x20cl_err_msg();
  832. }
  833. #else
  834. const bool w25x20cl_success = true;
  835. #endif //W25X20CL
  836. setup_killpin();
  837. setup_powerhold();
  838. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  839. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  840. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  841. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  842. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  843. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  844. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  845. if (farm_mode)
  846. {
  847. no_response = true; //we need confirmation by recieving PRUSA thx
  848. important_status = 8;
  849. prusa_statistics(8);
  850. selectedSerialPort = 1;
  851. #ifdef TMC2130
  852. //increased extruder current (PFW363)
  853. tmc2130_current_h[E_AXIS] = 36;
  854. tmc2130_current_r[E_AXIS] = 36;
  855. #endif //TMC2130
  856. #ifdef FILAMENT_SENSOR
  857. //disabled filament autoload (PFW360)
  858. fsensor_autoload_set(false);
  859. #endif //FILAMENT_SENSOR
  860. // ~ FanCheck -> on
  861. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  862. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  863. }
  864. MYSERIAL.begin(BAUDRATE);
  865. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  866. #ifndef W25X20CL
  867. SERIAL_PROTOCOLLNPGM("start");
  868. #endif //W25X20CL
  869. stdout = uartout;
  870. SERIAL_ECHO_START;
  871. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  872. #ifdef DEBUG_SEC_LANG
  873. lang_table_header_t header;
  874. uint32_t src_addr = 0x00000;
  875. if (lang_get_header(1, &header, &src_addr))
  876. {
  877. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  878. #define LT_PRINT_TEST 2
  879. // flash usage
  880. // total p.test
  881. //0 252718 t+c text code
  882. //1 253142 424 170 254
  883. //2 253040 322 164 158
  884. //3 253248 530 135 395
  885. #if (LT_PRINT_TEST==1) //not optimized printf
  886. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  887. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  888. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  889. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  890. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  891. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  892. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  893. #elif (LT_PRINT_TEST==2) //optimized printf
  894. printf_P(
  895. _n(
  896. " _src_addr = 0x%08lx\n"
  897. " _lt_magic = 0x%08lx %S\n"
  898. " _lt_size = 0x%04x (%d)\n"
  899. " _lt_count = 0x%04x (%d)\n"
  900. " _lt_chsum = 0x%04x\n"
  901. " _lt_code = 0x%04x (%c%c)\n"
  902. " _lt_resv1 = 0x%08lx\n"
  903. ),
  904. src_addr,
  905. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  906. header.size, header.size,
  907. header.count, header.count,
  908. header.checksum,
  909. header.code, header.code >> 8, header.code & 0xff,
  910. header.signature
  911. );
  912. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  913. MYSERIAL.print(" _src_addr = 0x");
  914. MYSERIAL.println(src_addr, 16);
  915. MYSERIAL.print(" _lt_magic = 0x");
  916. MYSERIAL.print(header.magic, 16);
  917. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  918. MYSERIAL.print(" _lt_size = 0x");
  919. MYSERIAL.print(header.size, 16);
  920. MYSERIAL.print(" (");
  921. MYSERIAL.print(header.size, 10);
  922. MYSERIAL.println(")");
  923. MYSERIAL.print(" _lt_count = 0x");
  924. MYSERIAL.print(header.count, 16);
  925. MYSERIAL.print(" (");
  926. MYSERIAL.print(header.count, 10);
  927. MYSERIAL.println(")");
  928. MYSERIAL.print(" _lt_chsum = 0x");
  929. MYSERIAL.println(header.checksum, 16);
  930. MYSERIAL.print(" _lt_code = 0x");
  931. MYSERIAL.print(header.code, 16);
  932. MYSERIAL.print(" (");
  933. MYSERIAL.print((char)(header.code >> 8), 0);
  934. MYSERIAL.print((char)(header.code & 0xff), 0);
  935. MYSERIAL.println(")");
  936. MYSERIAL.print(" _lt_resv1 = 0x");
  937. MYSERIAL.println(header.signature, 16);
  938. #endif //(LT_PRINT_TEST==)
  939. #undef LT_PRINT_TEST
  940. #if 0
  941. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  942. for (uint16_t i = 0; i < 1024; i++)
  943. {
  944. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  945. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  946. if ((i % 16) == 15) putchar('\n');
  947. }
  948. #endif
  949. uint16_t sum = 0;
  950. for (uint16_t i = 0; i < header.size; i++)
  951. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  952. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  953. sum -= header.checksum; //subtract checksum
  954. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  955. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  956. if (sum == header.checksum)
  957. printf_P(_n("Checksum OK\n"), sum);
  958. else
  959. printf_P(_n("Checksum NG\n"), sum);
  960. }
  961. else
  962. printf_P(_n("lang_get_header failed!\n"));
  963. #if 0
  964. for (uint16_t i = 0; i < 1024*10; i++)
  965. {
  966. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  967. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  968. if ((i % 16) == 15) putchar('\n');
  969. }
  970. #endif
  971. #if 0
  972. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  973. for (int i = 0; i < 4096; ++i) {
  974. int b = eeprom_read_byte((unsigned char*)i);
  975. if (b != 255) {
  976. SERIAL_ECHO(i);
  977. SERIAL_ECHO(":");
  978. SERIAL_ECHO(b);
  979. SERIAL_ECHOLN("");
  980. }
  981. }
  982. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  983. #endif
  984. #endif //DEBUG_SEC_LANG
  985. // Check startup - does nothing if bootloader sets MCUSR to 0
  986. byte mcu = MCUSR;
  987. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  988. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  989. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  990. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  991. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  992. if (mcu & 1) puts_P(MSG_POWERUP);
  993. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  994. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  995. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  996. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  997. MCUSR = 0;
  998. //SERIAL_ECHORPGM(MSG_MARLIN);
  999. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1000. #ifdef STRING_VERSION_CONFIG_H
  1001. #ifdef STRING_CONFIG_H_AUTHOR
  1002. SERIAL_ECHO_START;
  1003. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1004. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1005. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1006. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1007. SERIAL_ECHOPGM("Compiled: ");
  1008. SERIAL_ECHOLNPGM(__DATE__);
  1009. #endif
  1010. #endif
  1011. SERIAL_ECHO_START;
  1012. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1013. SERIAL_ECHO(freeMemory());
  1014. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1015. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1016. //lcd_update_enable(false); // why do we need this?? - andre
  1017. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1018. bool previous_settings_retrieved = false;
  1019. uint8_t hw_changed = check_printer_version();
  1020. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1021. previous_settings_retrieved = Config_RetrieveSettings();
  1022. }
  1023. else { //printer version was changed so use default settings
  1024. Config_ResetDefault();
  1025. }
  1026. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1027. tp_init(); // Initialize temperature loop
  1028. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1029. else
  1030. {
  1031. w25x20cl_err_msg();
  1032. printf_P(_n("W25X20CL not responding.\n"));
  1033. }
  1034. plan_init(); // Initialize planner;
  1035. factory_reset();
  1036. lcd_encoder_diff=0;
  1037. #ifdef TMC2130
  1038. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1039. if (silentMode == 0xff) silentMode = 0;
  1040. tmc2130_mode = TMC2130_MODE_NORMAL;
  1041. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1042. if (crashdet && !farm_mode)
  1043. {
  1044. crashdet_enable();
  1045. puts_P(_N("CrashDetect ENABLED!"));
  1046. }
  1047. else
  1048. {
  1049. crashdet_disable();
  1050. puts_P(_N("CrashDetect DISABLED"));
  1051. }
  1052. #ifdef TMC2130_LINEARITY_CORRECTION
  1053. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1055. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1056. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1057. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1058. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1059. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1060. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1061. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1062. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1063. #endif //TMC2130_LINEARITY_CORRECTION
  1064. #ifdef TMC2130_VARIABLE_RESOLUTION
  1065. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1066. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1067. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1068. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1069. #else //TMC2130_VARIABLE_RESOLUTION
  1070. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1071. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1072. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1073. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1074. #endif //TMC2130_VARIABLE_RESOLUTION
  1075. #endif //TMC2130
  1076. st_init(); // Initialize stepper, this enables interrupts!
  1077. #ifdef UVLO_SUPPORT
  1078. setup_uvlo_interrupt();
  1079. #endif //UVLO_SUPPORT
  1080. #ifdef TMC2130
  1081. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1082. update_mode_profile();
  1083. tmc2130_init();
  1084. #endif //TMC2130
  1085. setup_photpin();
  1086. servo_init();
  1087. // Reset the machine correction matrix.
  1088. // It does not make sense to load the correction matrix until the machine is homed.
  1089. world2machine_reset();
  1090. #ifdef FILAMENT_SENSOR
  1091. fsensor_init();
  1092. #endif //FILAMENT_SENSOR
  1093. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1094. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1095. #endif
  1096. setup_homepin();
  1097. #ifdef TMC2130
  1098. if (1) {
  1099. // try to run to zero phase before powering the Z motor.
  1100. // Move in negative direction
  1101. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1102. // Round the current micro-micro steps to micro steps.
  1103. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1104. // Until the phase counter is reset to zero.
  1105. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1106. _delay(2);
  1107. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1108. _delay(2);
  1109. }
  1110. }
  1111. #endif //TMC2130
  1112. #if defined(Z_AXIS_ALWAYS_ON)
  1113. enable_z();
  1114. #endif
  1115. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1116. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1117. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1118. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1119. if (farm_mode)
  1120. {
  1121. prusa_statistics(8);
  1122. }
  1123. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1124. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1125. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1126. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1127. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1128. // where all the EEPROM entries are set to 0x0ff.
  1129. // Once a firmware boots up, it forces at least a language selection, which changes
  1130. // EEPROM_LANG to number lower than 0x0ff.
  1131. // 1) Set a high power mode.
  1132. #ifdef TMC2130
  1133. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1134. tmc2130_mode = TMC2130_MODE_NORMAL;
  1135. #endif //TMC2130
  1136. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1137. }
  1138. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1139. // but this times out if a blocking dialog is shown in setup().
  1140. card.initsd();
  1141. #ifdef DEBUG_SD_SPEED_TEST
  1142. if (card.cardOK)
  1143. {
  1144. uint8_t* buff = (uint8_t*)block_buffer;
  1145. uint32_t block = 0;
  1146. uint32_t sumr = 0;
  1147. uint32_t sumw = 0;
  1148. for (int i = 0; i < 1024; i++)
  1149. {
  1150. uint32_t u = _micros();
  1151. bool res = card.card.readBlock(i, buff);
  1152. u = _micros() - u;
  1153. if (res)
  1154. {
  1155. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1156. sumr += u;
  1157. u = _micros();
  1158. res = card.card.writeBlock(i, buff);
  1159. u = _micros() - u;
  1160. if (res)
  1161. {
  1162. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1163. sumw += u;
  1164. }
  1165. else
  1166. {
  1167. printf_P(PSTR("writeBlock %4d error\n"), i);
  1168. break;
  1169. }
  1170. }
  1171. else
  1172. {
  1173. printf_P(PSTR("readBlock %4d error\n"), i);
  1174. break;
  1175. }
  1176. }
  1177. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1178. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1179. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1180. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1181. }
  1182. else
  1183. printf_P(PSTR("Card NG!\n"));
  1184. #endif //DEBUG_SD_SPEED_TEST
  1185. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1188. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1189. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1190. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1191. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1192. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1193. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1194. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1195. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1196. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1197. #ifdef SNMM
  1198. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1199. int _z = BOWDEN_LENGTH;
  1200. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1201. }
  1202. #endif
  1203. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1204. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1205. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1206. #if (LANG_MODE != 0) //secondary language support
  1207. #ifdef DEBUG_W25X20CL
  1208. W25X20CL_SPI_ENTER();
  1209. uint8_t uid[8]; // 64bit unique id
  1210. w25x20cl_rd_uid(uid);
  1211. puts_P(_n("W25X20CL UID="));
  1212. for (uint8_t i = 0; i < 8; i ++)
  1213. printf_P(PSTR("%02hhx"), uid[i]);
  1214. putchar('\n');
  1215. list_sec_lang_from_external_flash();
  1216. #endif //DEBUG_W25X20CL
  1217. // lang_reset();
  1218. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1219. lcd_language();
  1220. #ifdef DEBUG_SEC_LANG
  1221. uint16_t sec_lang_code = lang_get_code(1);
  1222. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1223. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1224. lang_print_sec_lang(uartout);
  1225. #endif //DEBUG_SEC_LANG
  1226. #endif //(LANG_MODE != 0)
  1227. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1228. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1229. temp_cal_active = false;
  1230. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1232. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1233. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1234. int16_t z_shift = 0;
  1235. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1236. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1237. temp_cal_active = false;
  1238. }
  1239. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1240. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1241. }
  1242. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1243. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1244. }
  1245. //mbl_mode_init();
  1246. mbl_settings_init();
  1247. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1248. if (SilentModeMenu_MMU == 255) {
  1249. SilentModeMenu_MMU = 1;
  1250. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1251. }
  1252. check_babystep(); //checking if Z babystep is in allowed range
  1253. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1254. setup_fan_interrupt();
  1255. #endif //DEBUG_DISABLE_FANCHECK
  1256. #ifdef PAT9125
  1257. fsensor_setup_interrupt();
  1258. #endif //PAT9125
  1259. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1260. #ifndef DEBUG_DISABLE_STARTMSGS
  1261. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1262. check_if_fw_is_on_right_printer();
  1263. show_fw_version_warnings();
  1264. switch (hw_changed) {
  1265. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1266. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1267. case(0b01):
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1269. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1270. break;
  1271. case(0b10):
  1272. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1273. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1274. break;
  1275. case(0b11):
  1276. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1277. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1278. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1279. break;
  1280. default: break; //no change, show no message
  1281. }
  1282. if (!previous_settings_retrieved) {
  1283. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1284. Config_StoreSettings();
  1285. }
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1287. lcd_wizard(WizState::Run);
  1288. }
  1289. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1290. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1291. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1292. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1293. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1294. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1295. // Show the message.
  1296. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1297. }
  1298. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1299. // Show the message.
  1300. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1301. lcd_update_enable(true);
  1302. }
  1303. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1304. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1305. lcd_update_enable(true);
  1306. }
  1307. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1308. // Show the message.
  1309. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1310. }
  1311. }
  1312. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1313. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1314. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1315. update_current_firmware_version_to_eeprom();
  1316. lcd_selftest();
  1317. }
  1318. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1319. KEEPALIVE_STATE(IN_PROCESS);
  1320. #endif //DEBUG_DISABLE_STARTMSGS
  1321. lcd_update_enable(true);
  1322. lcd_clear();
  1323. lcd_update(2);
  1324. // Store the currently running firmware into an eeprom,
  1325. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1326. update_current_firmware_version_to_eeprom();
  1327. #ifdef TMC2130
  1328. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1329. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1330. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1331. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1332. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1333. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1334. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1335. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1336. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1337. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1338. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1339. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1340. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1341. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1342. #endif //TMC2130
  1343. #ifdef UVLO_SUPPORT
  1344. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1345. /*
  1346. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(_T(WELCOME_MSG));
  1352. }
  1353. */
  1354. manage_heater(); // Update temperatures
  1355. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1356. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1357. #endif
  1358. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Automatic recovery!"));
  1361. #endif
  1362. recover_print(1);
  1363. }
  1364. else{
  1365. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1366. puts_P(_N("Normal recovery!"));
  1367. #endif
  1368. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1369. else {
  1370. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1371. lcd_update_enable(true);
  1372. lcd_update(2);
  1373. lcd_setstatuspgm(_T(WELCOME_MSG));
  1374. }
  1375. }
  1376. }
  1377. #endif //UVLO_SUPPORT
  1378. fCheckModeInit();
  1379. fSetMmuMode(mmu_enabled);
  1380. KEEPALIVE_STATE(NOT_BUSY);
  1381. #ifdef WATCHDOG
  1382. wdt_enable(WDTO_4S);
  1383. #endif //WATCHDOG
  1384. }
  1385. void trace();
  1386. #define CHUNK_SIZE 64 // bytes
  1387. #define SAFETY_MARGIN 1
  1388. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1389. int chunkHead = 0;
  1390. void serial_read_stream() {
  1391. setAllTargetHotends(0);
  1392. setTargetBed(0);
  1393. lcd_clear();
  1394. lcd_puts_P(PSTR(" Upload in progress"));
  1395. // first wait for how many bytes we will receive
  1396. uint32_t bytesToReceive;
  1397. // receive the four bytes
  1398. char bytesToReceiveBuffer[4];
  1399. for (int i=0; i<4; i++) {
  1400. int data;
  1401. while ((data = MYSERIAL.read()) == -1) {};
  1402. bytesToReceiveBuffer[i] = data;
  1403. }
  1404. // make it a uint32
  1405. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1406. // we're ready, notify the sender
  1407. MYSERIAL.write('+');
  1408. // lock in the routine
  1409. uint32_t receivedBytes = 0;
  1410. while (prusa_sd_card_upload) {
  1411. int i;
  1412. for (i=0; i<CHUNK_SIZE; i++) {
  1413. int data;
  1414. // check if we're not done
  1415. if (receivedBytes == bytesToReceive) {
  1416. break;
  1417. }
  1418. // read the next byte
  1419. while ((data = MYSERIAL.read()) == -1) {};
  1420. receivedBytes++;
  1421. // save it to the chunk
  1422. chunk[i] = data;
  1423. }
  1424. // write the chunk to SD
  1425. card.write_command_no_newline(&chunk[0]);
  1426. // notify the sender we're ready for more data
  1427. MYSERIAL.write('+');
  1428. // for safety
  1429. manage_heater();
  1430. // check if we're done
  1431. if(receivedBytes == bytesToReceive) {
  1432. trace(); // beep
  1433. card.closefile();
  1434. prusa_sd_card_upload = false;
  1435. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1436. }
  1437. }
  1438. }
  1439. /**
  1440. * Output a "busy" message at regular intervals
  1441. * while the machine is not accepting commands.
  1442. */
  1443. void host_keepalive() {
  1444. #ifndef HOST_KEEPALIVE_FEATURE
  1445. return;
  1446. #endif //HOST_KEEPALIVE_FEATURE
  1447. if (farm_mode) return;
  1448. long ms = _millis();
  1449. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1450. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1451. switch (busy_state) {
  1452. case IN_HANDLER:
  1453. case IN_PROCESS:
  1454. SERIAL_ECHO_START;
  1455. SERIAL_ECHOLNPGM("busy: processing");
  1456. break;
  1457. case PAUSED_FOR_USER:
  1458. SERIAL_ECHO_START;
  1459. SERIAL_ECHOLNPGM("busy: paused for user");
  1460. break;
  1461. case PAUSED_FOR_INPUT:
  1462. SERIAL_ECHO_START;
  1463. SERIAL_ECHOLNPGM("busy: paused for input");
  1464. break;
  1465. default:
  1466. break;
  1467. }
  1468. }
  1469. prev_busy_signal_ms = ms;
  1470. }
  1471. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1472. // Before loop(), the setup() function is called by the main() routine.
  1473. void loop()
  1474. {
  1475. KEEPALIVE_STATE(NOT_BUSY);
  1476. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1477. {
  1478. is_usb_printing = true;
  1479. usb_printing_counter--;
  1480. _usb_timer = _millis();
  1481. }
  1482. if (usb_printing_counter == 0)
  1483. {
  1484. is_usb_printing = false;
  1485. }
  1486. if (prusa_sd_card_upload)
  1487. {
  1488. //we read byte-by byte
  1489. serial_read_stream();
  1490. } else
  1491. {
  1492. get_command();
  1493. #ifdef SDSUPPORT
  1494. card.checkautostart(false);
  1495. #endif
  1496. if(buflen)
  1497. {
  1498. cmdbuffer_front_already_processed = false;
  1499. #ifdef SDSUPPORT
  1500. if(card.saving)
  1501. {
  1502. // Saving a G-code file onto an SD-card is in progress.
  1503. // Saving starts with M28, saving until M29 is seen.
  1504. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1505. card.write_command(CMDBUFFER_CURRENT_STRING);
  1506. if(card.logging)
  1507. process_commands();
  1508. else
  1509. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1510. } else {
  1511. card.closefile();
  1512. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1513. }
  1514. } else {
  1515. process_commands();
  1516. }
  1517. #else
  1518. process_commands();
  1519. #endif //SDSUPPORT
  1520. if (! cmdbuffer_front_already_processed && buflen)
  1521. {
  1522. // ptr points to the start of the block currently being processed.
  1523. // The first character in the block is the block type.
  1524. char *ptr = cmdbuffer + bufindr;
  1525. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1526. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1527. union {
  1528. struct {
  1529. char lo;
  1530. char hi;
  1531. } lohi;
  1532. uint16_t value;
  1533. } sdlen;
  1534. sdlen.value = 0;
  1535. {
  1536. // This block locks the interrupts globally for 3.25 us,
  1537. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1538. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1539. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1540. cli();
  1541. // Reset the command to something, which will be ignored by the power panic routine,
  1542. // so this buffer length will not be counted twice.
  1543. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1544. // Extract the current buffer length.
  1545. sdlen.lohi.lo = *ptr ++;
  1546. sdlen.lohi.hi = *ptr;
  1547. // and pass it to the planner queue.
  1548. planner_add_sd_length(sdlen.value);
  1549. sei();
  1550. }
  1551. }
  1552. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1553. cli();
  1554. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1555. // and one for each command to previous block in the planner queue.
  1556. planner_add_sd_length(1);
  1557. sei();
  1558. }
  1559. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1560. // this block's SD card length will not be counted twice as its command type has been replaced
  1561. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1562. cmdqueue_pop_front();
  1563. }
  1564. host_keepalive();
  1565. }
  1566. }
  1567. //check heater every n milliseconds
  1568. manage_heater();
  1569. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1570. checkHitEndstops();
  1571. lcd_update(0);
  1572. #ifdef TMC2130
  1573. tmc2130_check_overtemp();
  1574. if (tmc2130_sg_crash)
  1575. {
  1576. uint8_t crash = tmc2130_sg_crash;
  1577. tmc2130_sg_crash = 0;
  1578. // crashdet_stop_and_save_print();
  1579. switch (crash)
  1580. {
  1581. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1582. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1583. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1584. }
  1585. }
  1586. #endif //TMC2130
  1587. mmu_loop();
  1588. }
  1589. #define DEFINE_PGM_READ_ANY(type, reader) \
  1590. static inline type pgm_read_any(const type *p) \
  1591. { return pgm_read_##reader##_near(p); }
  1592. DEFINE_PGM_READ_ANY(float, float);
  1593. DEFINE_PGM_READ_ANY(signed char, byte);
  1594. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1595. static const PROGMEM type array##_P[3] = \
  1596. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1597. static inline type array(int axis) \
  1598. { return pgm_read_any(&array##_P[axis]); } \
  1599. type array##_ext(int axis) \
  1600. { return pgm_read_any(&array##_P[axis]); }
  1601. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1602. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1603. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1604. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1605. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1606. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1607. static void axis_is_at_home(int axis) {
  1608. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1609. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1610. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1611. }
  1612. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1613. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1614. //! @return original feedmultiply
  1615. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1616. saved_feedrate = feedrate;
  1617. int l_feedmultiply = feedmultiply;
  1618. feedmultiply = 100;
  1619. previous_millis_cmd = _millis();
  1620. enable_endstops(enable_endstops_now);
  1621. return l_feedmultiply;
  1622. }
  1623. //! @param original_feedmultiply feedmultiply to restore
  1624. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1625. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1626. enable_endstops(false);
  1627. #endif
  1628. feedrate = saved_feedrate;
  1629. feedmultiply = original_feedmultiply;
  1630. previous_millis_cmd = _millis();
  1631. }
  1632. #ifdef ENABLE_AUTO_BED_LEVELING
  1633. #ifdef AUTO_BED_LEVELING_GRID
  1634. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1635. {
  1636. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1637. planeNormal.debug("planeNormal");
  1638. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1639. //bedLevel.debug("bedLevel");
  1640. //plan_bed_level_matrix.debug("bed level before");
  1641. //vector_3 uncorrected_position = plan_get_position_mm();
  1642. //uncorrected_position.debug("position before");
  1643. vector_3 corrected_position = plan_get_position();
  1644. // corrected_position.debug("position after");
  1645. current_position[X_AXIS] = corrected_position.x;
  1646. current_position[Y_AXIS] = corrected_position.y;
  1647. current_position[Z_AXIS] = corrected_position.z;
  1648. // put the bed at 0 so we don't go below it.
  1649. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1651. }
  1652. #else // not AUTO_BED_LEVELING_GRID
  1653. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1654. plan_bed_level_matrix.set_to_identity();
  1655. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1656. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1657. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1658. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1659. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1660. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1661. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1662. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1663. vector_3 corrected_position = plan_get_position();
  1664. current_position[X_AXIS] = corrected_position.x;
  1665. current_position[Y_AXIS] = corrected_position.y;
  1666. current_position[Z_AXIS] = corrected_position.z;
  1667. // put the bed at 0 so we don't go below it.
  1668. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1670. }
  1671. #endif // AUTO_BED_LEVELING_GRID
  1672. static void run_z_probe() {
  1673. plan_bed_level_matrix.set_to_identity();
  1674. feedrate = homing_feedrate[Z_AXIS];
  1675. // move down until you find the bed
  1676. float zPosition = -10;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. // we have to let the planner know where we are right now as it is not where we said to go.
  1680. zPosition = st_get_position_mm(Z_AXIS);
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1682. // move up the retract distance
  1683. zPosition += home_retract_mm(Z_AXIS);
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. // move back down slowly to find bed
  1687. feedrate = homing_feedrate[Z_AXIS]/4;
  1688. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1692. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1693. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1694. }
  1695. static void do_blocking_move_to(float x, float y, float z) {
  1696. float oldFeedRate = feedrate;
  1697. feedrate = homing_feedrate[Z_AXIS];
  1698. current_position[Z_AXIS] = z;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. feedrate = XY_TRAVEL_SPEED;
  1702. current_position[X_AXIS] = x;
  1703. current_position[Y_AXIS] = y;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1705. st_synchronize();
  1706. feedrate = oldFeedRate;
  1707. }
  1708. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1709. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1710. }
  1711. /// Probe bed height at position (x,y), returns the measured z value
  1712. static float probe_pt(float x, float y, float z_before) {
  1713. // move to right place
  1714. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1715. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1716. run_z_probe();
  1717. float measured_z = current_position[Z_AXIS];
  1718. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1719. SERIAL_PROTOCOLPGM(" x: ");
  1720. SERIAL_PROTOCOL(x);
  1721. SERIAL_PROTOCOLPGM(" y: ");
  1722. SERIAL_PROTOCOL(y);
  1723. SERIAL_PROTOCOLPGM(" z: ");
  1724. SERIAL_PROTOCOL(measured_z);
  1725. SERIAL_PROTOCOLPGM("\n");
  1726. return measured_z;
  1727. }
  1728. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1729. #ifdef LIN_ADVANCE
  1730. /**
  1731. * M900: Set and/or Get advance K factor and WH/D ratio
  1732. *
  1733. * K<factor> Set advance K factor
  1734. * R<ratio> Set ratio directly (overrides WH/D)
  1735. * W<width> H<height> D<diam> Set ratio from WH/D
  1736. */
  1737. inline void gcode_M900() {
  1738. st_synchronize();
  1739. const float newK = code_seen('K') ? code_value_float() : -1;
  1740. if (newK >= 0) extruder_advance_k = newK;
  1741. float newR = code_seen('R') ? code_value_float() : -1;
  1742. if (newR < 0) {
  1743. const float newD = code_seen('D') ? code_value_float() : -1,
  1744. newW = code_seen('W') ? code_value_float() : -1,
  1745. newH = code_seen('H') ? code_value_float() : -1;
  1746. if (newD >= 0 && newW >= 0 && newH >= 0)
  1747. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1748. }
  1749. if (newR >= 0) advance_ed_ratio = newR;
  1750. SERIAL_ECHO_START;
  1751. SERIAL_ECHOPGM("Advance K=");
  1752. SERIAL_ECHOLN(extruder_advance_k);
  1753. SERIAL_ECHOPGM(" E/D=");
  1754. const float ratio = advance_ed_ratio;
  1755. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1756. }
  1757. #endif // LIN_ADVANCE
  1758. bool check_commands() {
  1759. bool end_command_found = false;
  1760. while (buflen)
  1761. {
  1762. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1763. if (!cmdbuffer_front_already_processed)
  1764. cmdqueue_pop_front();
  1765. cmdbuffer_front_already_processed = false;
  1766. }
  1767. return end_command_found;
  1768. }
  1769. #ifdef TMC2130
  1770. bool calibrate_z_auto()
  1771. {
  1772. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1773. lcd_clear();
  1774. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1775. bool endstops_enabled = enable_endstops(true);
  1776. int axis_up_dir = -home_dir(Z_AXIS);
  1777. tmc2130_home_enter(Z_AXIS_MASK);
  1778. current_position[Z_AXIS] = 0;
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. set_destination_to_current();
  1781. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1782. feedrate = homing_feedrate[Z_AXIS];
  1783. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1784. st_synchronize();
  1785. // current_position[axis] = 0;
  1786. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. tmc2130_home_exit();
  1788. enable_endstops(false);
  1789. current_position[Z_AXIS] = 0;
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. set_destination_to_current();
  1792. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1793. feedrate = homing_feedrate[Z_AXIS] / 2;
  1794. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1795. st_synchronize();
  1796. enable_endstops(endstops_enabled);
  1797. if (PRINTER_TYPE == PRINTER_MK3) {
  1798. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1799. }
  1800. else {
  1801. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1802. }
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1804. return true;
  1805. }
  1806. #endif //TMC2130
  1807. #ifdef TMC2130
  1808. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1809. #else
  1810. void homeaxis(int axis, uint8_t cnt)
  1811. #endif //TMC2130
  1812. {
  1813. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1814. #define HOMEAXIS_DO(LETTER) \
  1815. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1816. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1817. {
  1818. int axis_home_dir = home_dir(axis);
  1819. feedrate = homing_feedrate[axis];
  1820. #ifdef TMC2130
  1821. tmc2130_home_enter(X_AXIS_MASK << axis);
  1822. #endif //TMC2130
  1823. // Move away a bit, so that the print head does not touch the end position,
  1824. // and the following movement to endstop has a chance to achieve the required velocity
  1825. // for the stall guard to work.
  1826. current_position[axis] = 0;
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. set_destination_to_current();
  1829. // destination[axis] = 11.f;
  1830. destination[axis] = -3.f * axis_home_dir;
  1831. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1834. endstops_hit_on_purpose();
  1835. enable_endstops(false);
  1836. current_position[axis] = 0;
  1837. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1838. destination[axis] = 1. * axis_home_dir;
  1839. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1840. st_synchronize();
  1841. // Now continue to move up to the left end stop with the collision detection enabled.
  1842. enable_endstops(true);
  1843. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. for (uint8_t i = 0; i < cnt; i++)
  1847. {
  1848. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1849. endstops_hit_on_purpose();
  1850. enable_endstops(false);
  1851. current_position[axis] = 0;
  1852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1853. destination[axis] = -10.f * axis_home_dir;
  1854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. endstops_hit_on_purpose();
  1857. // Now move left up to the collision, this time with a repeatable velocity.
  1858. enable_endstops(true);
  1859. destination[axis] = 11.f * axis_home_dir;
  1860. #ifdef TMC2130
  1861. feedrate = homing_feedrate[axis];
  1862. #else //TMC2130
  1863. feedrate = homing_feedrate[axis] / 2;
  1864. #endif //TMC2130
  1865. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1866. st_synchronize();
  1867. #ifdef TMC2130
  1868. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1869. if (pstep) pstep[i] = mscnt >> 4;
  1870. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1871. #endif //TMC2130
  1872. }
  1873. endstops_hit_on_purpose();
  1874. enable_endstops(false);
  1875. #ifdef TMC2130
  1876. uint8_t orig = tmc2130_home_origin[axis];
  1877. uint8_t back = tmc2130_home_bsteps[axis];
  1878. if (tmc2130_home_enabled && (orig <= 63))
  1879. {
  1880. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1881. if (back > 0)
  1882. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1883. }
  1884. else
  1885. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1886. tmc2130_home_exit();
  1887. #endif //TMC2130
  1888. axis_is_at_home(axis);
  1889. axis_known_position[axis] = true;
  1890. // Move from minimum
  1891. #ifdef TMC2130
  1892. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1893. #else //TMC2130
  1894. float dist = - axis_home_dir * 0.01f * 64;
  1895. #endif //TMC2130
  1896. current_position[axis] -= dist;
  1897. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1898. current_position[axis] += dist;
  1899. destination[axis] = current_position[axis];
  1900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1901. st_synchronize();
  1902. feedrate = 0.0;
  1903. }
  1904. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1905. {
  1906. #ifdef TMC2130
  1907. FORCE_HIGH_POWER_START;
  1908. #endif
  1909. int axis_home_dir = home_dir(axis);
  1910. current_position[axis] = 0;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1913. feedrate = homing_feedrate[axis];
  1914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1915. st_synchronize();
  1916. #ifdef TMC2130
  1917. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1918. FORCE_HIGH_POWER_END;
  1919. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1920. return;
  1921. }
  1922. #endif //TMC2130
  1923. current_position[axis] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1927. st_synchronize();
  1928. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1929. feedrate = homing_feedrate[axis]/2 ;
  1930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1931. st_synchronize();
  1932. #ifdef TMC2130
  1933. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1934. FORCE_HIGH_POWER_END;
  1935. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1936. return;
  1937. }
  1938. #endif //TMC2130
  1939. axis_is_at_home(axis);
  1940. destination[axis] = current_position[axis];
  1941. feedrate = 0.0;
  1942. endstops_hit_on_purpose();
  1943. axis_known_position[axis] = true;
  1944. #ifdef TMC2130
  1945. FORCE_HIGH_POWER_END;
  1946. #endif
  1947. }
  1948. enable_endstops(endstops_enabled);
  1949. }
  1950. /**/
  1951. void home_xy()
  1952. {
  1953. set_destination_to_current();
  1954. homeaxis(X_AXIS);
  1955. homeaxis(Y_AXIS);
  1956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1957. endstops_hit_on_purpose();
  1958. }
  1959. void refresh_cmd_timeout(void)
  1960. {
  1961. previous_millis_cmd = _millis();
  1962. }
  1963. #ifdef FWRETRACT
  1964. void retract(bool retracting, bool swapretract = false) {
  1965. if(retracting && !retracted[active_extruder]) {
  1966. destination[X_AXIS]=current_position[X_AXIS];
  1967. destination[Y_AXIS]=current_position[Y_AXIS];
  1968. destination[Z_AXIS]=current_position[Z_AXIS];
  1969. destination[E_AXIS]=current_position[E_AXIS];
  1970. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1971. plan_set_e_position(current_position[E_AXIS]);
  1972. float oldFeedrate = feedrate;
  1973. feedrate=cs.retract_feedrate*60;
  1974. retracted[active_extruder]=true;
  1975. prepare_move();
  1976. current_position[Z_AXIS]-=cs.retract_zlift;
  1977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1978. prepare_move();
  1979. feedrate = oldFeedrate;
  1980. } else if(!retracting && retracted[active_extruder]) {
  1981. destination[X_AXIS]=current_position[X_AXIS];
  1982. destination[Y_AXIS]=current_position[Y_AXIS];
  1983. destination[Z_AXIS]=current_position[Z_AXIS];
  1984. destination[E_AXIS]=current_position[E_AXIS];
  1985. current_position[Z_AXIS]+=cs.retract_zlift;
  1986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1987. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1988. plan_set_e_position(current_position[E_AXIS]);
  1989. float oldFeedrate = feedrate;
  1990. feedrate=cs.retract_recover_feedrate*60;
  1991. retracted[active_extruder]=false;
  1992. prepare_move();
  1993. feedrate = oldFeedrate;
  1994. }
  1995. } //retract
  1996. #endif //FWRETRACT
  1997. void trace() {
  1998. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1999. _tone(BEEPER, 440);
  2000. _delay(25);
  2001. _noTone(BEEPER);
  2002. _delay(20);
  2003. }
  2004. /*
  2005. void ramming() {
  2006. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2007. if (current_temperature[0] < 230) {
  2008. //PLA
  2009. max_feedrate[E_AXIS] = 50;
  2010. //current_position[E_AXIS] -= 8;
  2011. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2012. //current_position[E_AXIS] += 8;
  2013. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2014. current_position[E_AXIS] += 5.4;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2016. current_position[E_AXIS] += 3.2;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2018. current_position[E_AXIS] += 3;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2020. st_synchronize();
  2021. max_feedrate[E_AXIS] = 80;
  2022. current_position[E_AXIS] -= 82;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2024. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2025. current_position[E_AXIS] -= 20;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2027. current_position[E_AXIS] += 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2029. current_position[E_AXIS] += 5;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2031. current_position[E_AXIS] -= 10;
  2032. st_synchronize();
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2034. current_position[E_AXIS] += 10;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2036. current_position[E_AXIS] -= 10;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2038. current_position[E_AXIS] += 10;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2040. current_position[E_AXIS] -= 10;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2042. st_synchronize();
  2043. }
  2044. else {
  2045. //ABS
  2046. max_feedrate[E_AXIS] = 50;
  2047. //current_position[E_AXIS] -= 8;
  2048. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2049. //current_position[E_AXIS] += 8;
  2050. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2051. current_position[E_AXIS] += 3.1;
  2052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2053. current_position[E_AXIS] += 3.1;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2055. current_position[E_AXIS] += 4;
  2056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2057. st_synchronize();
  2058. //current_position[X_AXIS] += 23; //delay
  2059. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2060. //current_position[X_AXIS] -= 23; //delay
  2061. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2062. _delay(4700);
  2063. max_feedrate[E_AXIS] = 80;
  2064. current_position[E_AXIS] -= 92;
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2066. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2067. current_position[E_AXIS] -= 5;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2069. current_position[E_AXIS] += 5;
  2070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2071. current_position[E_AXIS] -= 5;
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2073. st_synchronize();
  2074. current_position[E_AXIS] += 5;
  2075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2076. current_position[E_AXIS] -= 5;
  2077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2078. current_position[E_AXIS] += 5;
  2079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2080. current_position[E_AXIS] -= 5;
  2081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2082. st_synchronize();
  2083. }
  2084. }
  2085. */
  2086. #ifdef TMC2130
  2087. void force_high_power_mode(bool start_high_power_section) {
  2088. uint8_t silent;
  2089. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2090. if (silent == 1) {
  2091. //we are in silent mode, set to normal mode to enable crash detection
  2092. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2093. st_synchronize();
  2094. cli();
  2095. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2096. update_mode_profile();
  2097. tmc2130_init();
  2098. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2099. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2100. st_reset_timer();
  2101. sei();
  2102. }
  2103. }
  2104. #endif //TMC2130
  2105. #ifdef TMC2130
  2106. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2107. #else
  2108. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2109. #endif //TMC2130
  2110. {
  2111. st_synchronize();
  2112. #if 0
  2113. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2114. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2115. #endif
  2116. // Flag for the display update routine and to disable the print cancelation during homing.
  2117. homing_flag = true;
  2118. // Which axes should be homed?
  2119. bool home_x = home_x_axis;
  2120. bool home_y = home_y_axis;
  2121. bool home_z = home_z_axis;
  2122. // Either all X,Y,Z codes are present, or none of them.
  2123. bool home_all_axes = home_x == home_y && home_x == home_z;
  2124. if (home_all_axes)
  2125. // No X/Y/Z code provided means to home all axes.
  2126. home_x = home_y = home_z = true;
  2127. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2128. if (home_all_axes) {
  2129. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2130. feedrate = homing_feedrate[Z_AXIS];
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2132. st_synchronize();
  2133. }
  2134. #ifdef ENABLE_AUTO_BED_LEVELING
  2135. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2136. #endif //ENABLE_AUTO_BED_LEVELING
  2137. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2138. // the planner will not perform any adjustments in the XY plane.
  2139. // Wait for the motors to stop and update the current position with the absolute values.
  2140. world2machine_revert_to_uncorrected();
  2141. // For mesh bed leveling deactivate the matrix temporarily.
  2142. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2143. // in a single axis only.
  2144. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2145. #ifdef MESH_BED_LEVELING
  2146. uint8_t mbl_was_active = mbl.active;
  2147. mbl.active = 0;
  2148. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2149. #endif
  2150. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2151. // consumed during the first movements following this statement.
  2152. if (home_z)
  2153. babystep_undo();
  2154. saved_feedrate = feedrate;
  2155. int l_feedmultiply = feedmultiply;
  2156. feedmultiply = 100;
  2157. previous_millis_cmd = _millis();
  2158. enable_endstops(true);
  2159. memcpy(destination, current_position, sizeof(destination));
  2160. feedrate = 0.0;
  2161. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2162. if(home_z)
  2163. homeaxis(Z_AXIS);
  2164. #endif
  2165. #ifdef QUICK_HOME
  2166. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2167. if(home_x && home_y) //first diagonal move
  2168. {
  2169. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2170. int x_axis_home_dir = home_dir(X_AXIS);
  2171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2172. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2173. feedrate = homing_feedrate[X_AXIS];
  2174. if(homing_feedrate[Y_AXIS]<feedrate)
  2175. feedrate = homing_feedrate[Y_AXIS];
  2176. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2177. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2178. } else {
  2179. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2180. }
  2181. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2182. st_synchronize();
  2183. axis_is_at_home(X_AXIS);
  2184. axis_is_at_home(Y_AXIS);
  2185. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2186. destination[X_AXIS] = current_position[X_AXIS];
  2187. destination[Y_AXIS] = current_position[Y_AXIS];
  2188. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2189. feedrate = 0.0;
  2190. st_synchronize();
  2191. endstops_hit_on_purpose();
  2192. current_position[X_AXIS] = destination[X_AXIS];
  2193. current_position[Y_AXIS] = destination[Y_AXIS];
  2194. current_position[Z_AXIS] = destination[Z_AXIS];
  2195. }
  2196. #endif /* QUICK_HOME */
  2197. #ifdef TMC2130
  2198. if(home_x)
  2199. {
  2200. if (!calib)
  2201. homeaxis(X_AXIS);
  2202. else
  2203. tmc2130_home_calibrate(X_AXIS);
  2204. }
  2205. if(home_y)
  2206. {
  2207. if (!calib)
  2208. homeaxis(Y_AXIS);
  2209. else
  2210. tmc2130_home_calibrate(Y_AXIS);
  2211. }
  2212. #else //TMC2130
  2213. if(home_x) homeaxis(X_AXIS);
  2214. if(home_y) homeaxis(Y_AXIS);
  2215. #endif //TMC2130
  2216. if(home_x_axis && home_x_value != 0)
  2217. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2218. if(home_y_axis && home_y_value != 0)
  2219. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2220. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2221. #ifndef Z_SAFE_HOMING
  2222. if(home_z) {
  2223. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2224. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2225. feedrate = max_feedrate[Z_AXIS];
  2226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2227. st_synchronize();
  2228. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2229. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2230. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2231. {
  2232. homeaxis(X_AXIS);
  2233. homeaxis(Y_AXIS);
  2234. }
  2235. // 1st mesh bed leveling measurement point, corrected.
  2236. world2machine_initialize();
  2237. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2238. world2machine_reset();
  2239. if (destination[Y_AXIS] < Y_MIN_POS)
  2240. destination[Y_AXIS] = Y_MIN_POS;
  2241. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2242. feedrate = homing_feedrate[Z_AXIS]/10;
  2243. current_position[Z_AXIS] = 0;
  2244. enable_endstops(false);
  2245. #ifdef DEBUG_BUILD
  2246. SERIAL_ECHOLNPGM("plan_set_position()");
  2247. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2248. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2249. #endif
  2250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2251. #ifdef DEBUG_BUILD
  2252. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2253. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2254. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2255. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2256. #endif
  2257. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2258. st_synchronize();
  2259. current_position[X_AXIS] = destination[X_AXIS];
  2260. current_position[Y_AXIS] = destination[Y_AXIS];
  2261. enable_endstops(true);
  2262. endstops_hit_on_purpose();
  2263. homeaxis(Z_AXIS);
  2264. #else // MESH_BED_LEVELING
  2265. homeaxis(Z_AXIS);
  2266. #endif // MESH_BED_LEVELING
  2267. }
  2268. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2269. if(home_all_axes) {
  2270. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2271. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2272. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2273. feedrate = XY_TRAVEL_SPEED/60;
  2274. current_position[Z_AXIS] = 0;
  2275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2277. st_synchronize();
  2278. current_position[X_AXIS] = destination[X_AXIS];
  2279. current_position[Y_AXIS] = destination[Y_AXIS];
  2280. homeaxis(Z_AXIS);
  2281. }
  2282. // Let's see if X and Y are homed and probe is inside bed area.
  2283. if(home_z) {
  2284. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2285. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2286. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2287. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2288. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2289. current_position[Z_AXIS] = 0;
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2292. feedrate = max_feedrate[Z_AXIS];
  2293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2294. st_synchronize();
  2295. homeaxis(Z_AXIS);
  2296. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2297. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2298. SERIAL_ECHO_START;
  2299. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2300. } else {
  2301. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2302. SERIAL_ECHO_START;
  2303. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2304. }
  2305. }
  2306. #endif // Z_SAFE_HOMING
  2307. #endif // Z_HOME_DIR < 0
  2308. if(home_z_axis && home_z_value != 0)
  2309. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2310. #ifdef ENABLE_AUTO_BED_LEVELING
  2311. if(home_z)
  2312. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2313. #endif
  2314. // Set the planner and stepper routine positions.
  2315. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2316. // contains the machine coordinates.
  2317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2318. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2319. enable_endstops(false);
  2320. #endif
  2321. feedrate = saved_feedrate;
  2322. feedmultiply = l_feedmultiply;
  2323. previous_millis_cmd = _millis();
  2324. endstops_hit_on_purpose();
  2325. #ifndef MESH_BED_LEVELING
  2326. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2327. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2328. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2329. lcd_adjust_z();
  2330. #endif
  2331. // Load the machine correction matrix
  2332. world2machine_initialize();
  2333. // and correct the current_position XY axes to match the transformed coordinate system.
  2334. world2machine_update_current();
  2335. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2336. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2337. {
  2338. if (! home_z && mbl_was_active) {
  2339. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2340. mbl.active = true;
  2341. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2342. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2343. }
  2344. }
  2345. else
  2346. {
  2347. st_synchronize();
  2348. homing_flag = false;
  2349. }
  2350. #endif
  2351. if (farm_mode) { prusa_statistics(20); };
  2352. homing_flag = false;
  2353. #if 0
  2354. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2355. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2356. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2357. #endif
  2358. }
  2359. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2360. {
  2361. #ifdef TMC2130
  2362. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2363. #else
  2364. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2365. #endif //TMC2130
  2366. }
  2367. void adjust_bed_reset()
  2368. {
  2369. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2370. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2371. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2372. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2373. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2374. }
  2375. //! @brief Calibrate XYZ
  2376. //! @param onlyZ if true, calibrate only Z axis
  2377. //! @param verbosity_level
  2378. //! @retval true Succeeded
  2379. //! @retval false Failed
  2380. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2381. {
  2382. bool final_result = false;
  2383. #ifdef TMC2130
  2384. FORCE_HIGH_POWER_START;
  2385. #endif // TMC2130
  2386. // Only Z calibration?
  2387. if (!onlyZ)
  2388. {
  2389. setTargetBed(0);
  2390. setAllTargetHotends(0);
  2391. adjust_bed_reset(); //reset bed level correction
  2392. }
  2393. // Disable the default update procedure of the display. We will do a modal dialog.
  2394. lcd_update_enable(false);
  2395. // Let the planner use the uncorrected coordinates.
  2396. mbl.reset();
  2397. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2398. // the planner will not perform any adjustments in the XY plane.
  2399. // Wait for the motors to stop and update the current position with the absolute values.
  2400. world2machine_revert_to_uncorrected();
  2401. // Reset the baby step value applied without moving the axes.
  2402. babystep_reset();
  2403. // Mark all axes as in a need for homing.
  2404. memset(axis_known_position, 0, sizeof(axis_known_position));
  2405. // Home in the XY plane.
  2406. //set_destination_to_current();
  2407. int l_feedmultiply = setup_for_endstop_move();
  2408. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2409. home_xy();
  2410. enable_endstops(false);
  2411. current_position[X_AXIS] += 5;
  2412. current_position[Y_AXIS] += 5;
  2413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2414. st_synchronize();
  2415. // Let the user move the Z axes up to the end stoppers.
  2416. #ifdef TMC2130
  2417. if (calibrate_z_auto())
  2418. {
  2419. #else //TMC2130
  2420. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2421. {
  2422. #endif //TMC2130
  2423. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2424. if(onlyZ){
  2425. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2426. lcd_set_cursor(0, 3);
  2427. lcd_print(1);
  2428. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2429. }else{
  2430. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2431. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2432. lcd_set_cursor(0, 2);
  2433. lcd_print(1);
  2434. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2435. }
  2436. refresh_cmd_timeout();
  2437. #ifndef STEEL_SHEET
  2438. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2439. {
  2440. lcd_wait_for_cool_down();
  2441. }
  2442. #endif //STEEL_SHEET
  2443. if(!onlyZ)
  2444. {
  2445. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2446. #ifdef STEEL_SHEET
  2447. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2448. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2449. #endif //STEEL_SHEET
  2450. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2451. KEEPALIVE_STATE(IN_HANDLER);
  2452. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2453. lcd_set_cursor(0, 2);
  2454. lcd_print(1);
  2455. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2456. }
  2457. bool endstops_enabled = enable_endstops(false);
  2458. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2460. st_synchronize();
  2461. // Move the print head close to the bed.
  2462. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2463. enable_endstops(true);
  2464. #ifdef TMC2130
  2465. tmc2130_home_enter(Z_AXIS_MASK);
  2466. #endif //TMC2130
  2467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2468. st_synchronize();
  2469. #ifdef TMC2130
  2470. tmc2130_home_exit();
  2471. #endif //TMC2130
  2472. enable_endstops(endstops_enabled);
  2473. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2474. {
  2475. if (onlyZ)
  2476. {
  2477. clean_up_after_endstop_move(l_feedmultiply);
  2478. // Z only calibration.
  2479. // Load the machine correction matrix
  2480. world2machine_initialize();
  2481. // and correct the current_position to match the transformed coordinate system.
  2482. world2machine_update_current();
  2483. //FIXME
  2484. bool result = sample_mesh_and_store_reference();
  2485. if (result)
  2486. {
  2487. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2488. // Shipped, the nozzle height has been set already. The user can start printing now.
  2489. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2490. final_result = true;
  2491. // babystep_apply();
  2492. }
  2493. }
  2494. else
  2495. {
  2496. // Reset the baby step value and the baby step applied flag.
  2497. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2498. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2499. // Complete XYZ calibration.
  2500. uint8_t point_too_far_mask = 0;
  2501. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2502. clean_up_after_endstop_move(l_feedmultiply);
  2503. // Print head up.
  2504. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2506. st_synchronize();
  2507. //#ifndef NEW_XYZCAL
  2508. if (result >= 0)
  2509. {
  2510. #ifdef HEATBED_V2
  2511. sample_z();
  2512. #else //HEATBED_V2
  2513. point_too_far_mask = 0;
  2514. // Second half: The fine adjustment.
  2515. // Let the planner use the uncorrected coordinates.
  2516. mbl.reset();
  2517. world2machine_reset();
  2518. // Home in the XY plane.
  2519. int l_feedmultiply = setup_for_endstop_move();
  2520. home_xy();
  2521. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2522. clean_up_after_endstop_move(l_feedmultiply);
  2523. // Print head up.
  2524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2526. st_synchronize();
  2527. // if (result >= 0) babystep_apply();
  2528. #endif //HEATBED_V2
  2529. }
  2530. //#endif //NEW_XYZCAL
  2531. lcd_update_enable(true);
  2532. lcd_update(2);
  2533. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2534. if (result >= 0)
  2535. {
  2536. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2537. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2538. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2539. final_result = true;
  2540. }
  2541. }
  2542. #ifdef TMC2130
  2543. tmc2130_home_exit();
  2544. #endif
  2545. }
  2546. else
  2547. {
  2548. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2549. final_result = false;
  2550. }
  2551. }
  2552. else
  2553. {
  2554. // Timeouted.
  2555. }
  2556. lcd_update_enable(true);
  2557. #ifdef TMC2130
  2558. FORCE_HIGH_POWER_END;
  2559. #endif // TMC2130
  2560. return final_result;
  2561. }
  2562. void gcode_M114()
  2563. {
  2564. SERIAL_PROTOCOLPGM("X:");
  2565. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" Y:");
  2567. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" Z:");
  2569. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2570. SERIAL_PROTOCOLPGM(" E:");
  2571. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2572. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2573. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2574. SERIAL_PROTOCOLPGM(" Y:");
  2575. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2576. SERIAL_PROTOCOLPGM(" Z:");
  2577. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2578. SERIAL_PROTOCOLPGM(" E:");
  2579. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2580. SERIAL_PROTOCOLLN("");
  2581. }
  2582. //! extracted code to compute z_shift for M600 in case of filament change operation
  2583. //! requested from fsensors.
  2584. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2585. //! unlike the previous implementation, which was adding 25mm even when the head was
  2586. //! printing at e.g. 24mm height.
  2587. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2588. //! the printout.
  2589. //! This function is templated to enable fast change of computation data type.
  2590. //! @return new z_shift value
  2591. template<typename T>
  2592. static T gcode_M600_filament_change_z_shift()
  2593. {
  2594. #ifdef FILAMENTCHANGE_ZADD
  2595. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2596. // avoid floating point arithmetics when not necessary - results in shorter code
  2597. T ztmp = T( current_position[Z_AXIS] );
  2598. T z_shift = 0;
  2599. if(ztmp < T(25)){
  2600. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2601. }
  2602. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2603. #else
  2604. return T(0);
  2605. #endif
  2606. }
  2607. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2608. {
  2609. st_synchronize();
  2610. float lastpos[4];
  2611. if (farm_mode)
  2612. {
  2613. prusa_statistics(22);
  2614. }
  2615. //First backup current position and settings
  2616. int feedmultiplyBckp = feedmultiply;
  2617. float HotendTempBckp = degTargetHotend(active_extruder);
  2618. int fanSpeedBckp = fanSpeed;
  2619. lastpos[X_AXIS] = current_position[X_AXIS];
  2620. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2621. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2622. lastpos[E_AXIS] = current_position[E_AXIS];
  2623. //Retract E
  2624. current_position[E_AXIS] += e_shift;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2626. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2627. st_synchronize();
  2628. //Lift Z
  2629. current_position[Z_AXIS] += z_shift;
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2631. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2632. st_synchronize();
  2633. //Move XY to side
  2634. current_position[X_AXIS] = x_position;
  2635. current_position[Y_AXIS] = y_position;
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2637. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2638. st_synchronize();
  2639. //Beep, manage nozzle heater and wait for user to start unload filament
  2640. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2641. lcd_change_fil_state = 0;
  2642. // Unload filament
  2643. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2644. else unload_filament(); //unload filament for single material (used also in M702)
  2645. //finish moves
  2646. st_synchronize();
  2647. if (!mmu_enabled)
  2648. {
  2649. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2650. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2651. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2652. if (lcd_change_fil_state == 0)
  2653. {
  2654. lcd_clear();
  2655. lcd_set_cursor(0, 2);
  2656. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2657. current_position[X_AXIS] -= 100;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2659. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2660. st_synchronize();
  2661. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2662. }
  2663. }
  2664. if (mmu_enabled)
  2665. {
  2666. if (!automatic) {
  2667. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2668. mmu_M600_wait_and_beep();
  2669. if (saved_printing) {
  2670. lcd_clear();
  2671. lcd_set_cursor(0, 2);
  2672. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2673. mmu_command(MmuCmd::R0);
  2674. manage_response(false, false);
  2675. }
  2676. }
  2677. mmu_M600_load_filament(automatic, HotendTempBckp);
  2678. }
  2679. else
  2680. M600_load_filament();
  2681. if (!automatic) M600_check_state(HotendTempBckp);
  2682. lcd_update_enable(true);
  2683. //Not let's go back to print
  2684. fanSpeed = fanSpeedBckp;
  2685. //Feed a little of filament to stabilize pressure
  2686. if (!automatic)
  2687. {
  2688. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2690. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2691. }
  2692. //Move XY back
  2693. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2694. FILAMENTCHANGE_XYFEED, active_extruder);
  2695. st_synchronize();
  2696. //Move Z back
  2697. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2698. FILAMENTCHANGE_ZFEED, active_extruder);
  2699. st_synchronize();
  2700. //Set E position to original
  2701. plan_set_e_position(lastpos[E_AXIS]);
  2702. memcpy(current_position, lastpos, sizeof(lastpos));
  2703. memcpy(destination, current_position, sizeof(current_position));
  2704. //Recover feed rate
  2705. feedmultiply = feedmultiplyBckp;
  2706. char cmd[9];
  2707. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2708. enquecommand(cmd);
  2709. #ifdef IR_SENSOR
  2710. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2711. fsensor_check_autoload();
  2712. #endif //IR_SENSOR
  2713. lcd_setstatuspgm(_T(WELCOME_MSG));
  2714. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2715. }
  2716. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2717. //!
  2718. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2719. //! during extruding (loading) filament.
  2720. void marlin_rise_z(void)
  2721. {
  2722. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2723. }
  2724. void gcode_M701()
  2725. {
  2726. printf_P(PSTR("gcode_M701 begin\n"));
  2727. if (mmu_enabled)
  2728. {
  2729. extr_adj(tmp_extruder);//loads current extruder
  2730. mmu_extruder = tmp_extruder;
  2731. }
  2732. else
  2733. {
  2734. enable_z();
  2735. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2736. #ifdef FSENSOR_QUALITY
  2737. fsensor_oq_meassure_start(40);
  2738. #endif //FSENSOR_QUALITY
  2739. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2740. current_position[E_AXIS] += 40;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2742. st_synchronize();
  2743. marlin_rise_z();
  2744. current_position[E_AXIS] += 30;
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2746. load_filament_final_feed(); //slow sequence
  2747. st_synchronize();
  2748. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2749. delay_keep_alive(50);
  2750. _noTone(BEEPER);
  2751. if (!farm_mode && loading_flag) {
  2752. lcd_load_filament_color_check();
  2753. }
  2754. lcd_update_enable(true);
  2755. lcd_update(2);
  2756. lcd_setstatuspgm(_T(WELCOME_MSG));
  2757. disable_z();
  2758. loading_flag = false;
  2759. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2760. #ifdef FSENSOR_QUALITY
  2761. fsensor_oq_meassure_stop();
  2762. if (!fsensor_oq_result())
  2763. {
  2764. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2765. lcd_update_enable(true);
  2766. lcd_update(2);
  2767. if (disable)
  2768. fsensor_disable();
  2769. }
  2770. #endif //FSENSOR_QUALITY
  2771. }
  2772. }
  2773. /**
  2774. * @brief Get serial number from 32U2 processor
  2775. *
  2776. * Typical format of S/N is:CZPX0917X003XC13518
  2777. *
  2778. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2779. *
  2780. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2781. * reply is transmitted to serial port 1 character by character.
  2782. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2783. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2784. * in any case.
  2785. */
  2786. static void gcode_PRUSA_SN()
  2787. {
  2788. if (farm_mode) {
  2789. selectedSerialPort = 0;
  2790. putchar(';');
  2791. putchar('S');
  2792. int numbersRead = 0;
  2793. ShortTimer timeout;
  2794. timeout.start();
  2795. while (numbersRead < 19) {
  2796. while (MSerial.available() > 0) {
  2797. uint8_t serial_char = MSerial.read();
  2798. selectedSerialPort = 1;
  2799. putchar(serial_char);
  2800. numbersRead++;
  2801. selectedSerialPort = 0;
  2802. }
  2803. if (timeout.expired(100u)) break;
  2804. }
  2805. selectedSerialPort = 1;
  2806. putchar('\n');
  2807. #if 0
  2808. for (int b = 0; b < 3; b++) {
  2809. _tone(BEEPER, 110);
  2810. _delay(50);
  2811. _noTone(BEEPER);
  2812. _delay(50);
  2813. }
  2814. #endif
  2815. } else {
  2816. puts_P(_N("Not in farm mode."));
  2817. }
  2818. }
  2819. #ifdef BACKLASH_X
  2820. extern uint8_t st_backlash_x;
  2821. #endif //BACKLASH_X
  2822. #ifdef BACKLASH_Y
  2823. extern uint8_t st_backlash_y;
  2824. #endif //BACKLASH_Y
  2825. //! @brief Parse and process commands
  2826. //!
  2827. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2828. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2829. //!
  2830. //! Implemented Codes
  2831. //! -------------------
  2832. //!
  2833. //!@n PRUSA CODES
  2834. //!@n P F - Returns FW versions
  2835. //!@n P R - Returns revision of printer
  2836. //!
  2837. //!@n G0 -> G1
  2838. //!@n G1 - Coordinated Movement X Y Z E
  2839. //!@n G2 - CW ARC
  2840. //!@n G3 - CCW ARC
  2841. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2842. //!@n G10 - retract filament according to settings of M207
  2843. //!@n G11 - retract recover filament according to settings of M208
  2844. //!@n G28 - Home all Axis
  2845. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2846. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2847. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2848. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2849. //!@n G80 - Automatic mesh bed leveling
  2850. //!@n G81 - Print bed profile
  2851. //!@n G90 - Use Absolute Coordinates
  2852. //!@n G91 - Use Relative Coordinates
  2853. //!@n G92 - Set current position to coordinates given
  2854. //!
  2855. //!@n M Codes
  2856. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2857. //!@n M1 - Same as M0
  2858. //!@n M17 - Enable/Power all stepper motors
  2859. //!@n M18 - Disable all stepper motors; same as M84
  2860. //!@n M20 - List SD card
  2861. //!@n M21 - Init SD card
  2862. //!@n M22 - Release SD card
  2863. //!@n M23 - Select SD file (M23 filename.g)
  2864. //!@n M24 - Start/resume SD print
  2865. //!@n M25 - Pause SD print
  2866. //!@n M26 - Set SD position in bytes (M26 S12345)
  2867. //!@n M27 - Report SD print status
  2868. //!@n M28 - Start SD write (M28 filename.g)
  2869. //!@n M29 - Stop SD write
  2870. //!@n M30 - Delete file from SD (M30 filename.g)
  2871. //!@n M31 - Output time since last M109 or SD card start to serial
  2872. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2873. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2874. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2875. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2876. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2877. //!@n M73 - Show percent done and print time remaining
  2878. //!@n M80 - Turn on Power Supply
  2879. //!@n M81 - Turn off Power Supply
  2880. //!@n M82 - Set E codes absolute (default)
  2881. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2882. //!@n M84 - Disable steppers until next move,
  2883. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2884. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2885. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2886. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2887. //!@n M104 - Set extruder target temp
  2888. //!@n M105 - Read current temp
  2889. //!@n M106 - Fan on
  2890. //!@n M107 - Fan off
  2891. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2892. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2893. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2894. //!@n M112 - Emergency stop
  2895. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2896. //!@n M114 - Output current position to serial port
  2897. //!@n M115 - Capabilities string
  2898. //!@n M117 - display message
  2899. //!@n M119 - Output Endstop status to serial port
  2900. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2901. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2902. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2903. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2904. //!@n M140 - Set bed target temp
  2905. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2906. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2907. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2908. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2909. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2910. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2911. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2912. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2913. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2914. //!@n M206 - set additional homing offset
  2915. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2916. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2917. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2918. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2919. //!@n M220 S<factor in percent>- set speed factor override percentage
  2920. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2921. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2922. //!@n M240 - Trigger a camera to take a photograph
  2923. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2924. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2925. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2926. //!@n M301 - Set PID parameters P I and D
  2927. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2928. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2929. //!@n M304 - Set bed PID parameters P I and D
  2930. //!@n M400 - Finish all moves
  2931. //!@n M401 - Lower z-probe if present
  2932. //!@n M402 - Raise z-probe if present
  2933. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2934. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2935. //!@n M406 - Turn off Filament Sensor extrusion control
  2936. //!@n M407 - Displays measured filament diameter
  2937. //!@n M500 - stores parameters in EEPROM
  2938. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2939. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2940. //!@n M503 - print the current settings (from memory not from EEPROM)
  2941. //!@n M509 - force language selection on next restart
  2942. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2943. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2944. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2945. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2946. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2947. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2948. //!@n M907 - Set digital trimpot motor current using axis codes.
  2949. //!@n M908 - Control digital trimpot directly.
  2950. //!@n M350 - Set microstepping mode.
  2951. //!@n M351 - Toggle MS1 MS2 pins directly.
  2952. //!
  2953. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2954. //!@n M999 - Restart after being stopped by error
  2955. void process_commands()
  2956. {
  2957. #ifdef FANCHECK
  2958. if (fan_check_error){
  2959. if( fan_check_error == EFCE_DETECTED ){
  2960. fan_check_error = EFCE_REPORTED;
  2961. lcd_pause_print();
  2962. } // otherwise it has already been reported, so just ignore further processing
  2963. return;
  2964. }
  2965. #endif
  2966. if (!buflen) return; //empty command
  2967. #ifdef FILAMENT_RUNOUT_SUPPORT
  2968. SET_INPUT(FR_SENS);
  2969. #endif
  2970. #ifdef CMDBUFFER_DEBUG
  2971. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2972. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2973. SERIAL_ECHOLNPGM("");
  2974. SERIAL_ECHOPGM("In cmdqueue: ");
  2975. SERIAL_ECHO(buflen);
  2976. SERIAL_ECHOLNPGM("");
  2977. #endif /* CMDBUFFER_DEBUG */
  2978. unsigned long codenum; //throw away variable
  2979. char *starpos = NULL;
  2980. #ifdef ENABLE_AUTO_BED_LEVELING
  2981. float x_tmp, y_tmp, z_tmp, real_z;
  2982. #endif
  2983. // PRUSA GCODES
  2984. KEEPALIVE_STATE(IN_HANDLER);
  2985. #ifdef SNMM
  2986. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2987. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2988. int8_t SilentMode;
  2989. #endif
  2990. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2991. starpos = (strchr(strchr_pointer + 5, '*'));
  2992. if (starpos != NULL)
  2993. *(starpos) = '\0';
  2994. lcd_setstatus(strchr_pointer + 5);
  2995. }
  2996. #ifdef TMC2130
  2997. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2998. {
  2999. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  3000. {
  3001. uint8_t mask = 0;
  3002. if (code_seen('X')) mask |= X_AXIS_MASK;
  3003. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3004. crashdet_detected(mask);
  3005. }
  3006. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  3007. crashdet_recover();
  3008. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  3009. crashdet_cancel();
  3010. }
  3011. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3012. {
  3013. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  3014. {
  3015. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3016. axis = (axis == 'E')?3:(axis - 'X');
  3017. if (axis < 4)
  3018. {
  3019. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3020. tmc2130_set_wave(axis, 247, fac);
  3021. }
  3022. }
  3023. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3024. {
  3025. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3026. axis = (axis == 'E')?3:(axis - 'X');
  3027. if (axis < 4)
  3028. {
  3029. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3030. uint16_t res = tmc2130_get_res(axis);
  3031. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3032. }
  3033. }
  3034. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3035. {
  3036. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3037. axis = (axis == 'E')?3:(axis - 'X');
  3038. if (axis < 4)
  3039. {
  3040. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3041. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3042. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3043. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3044. char* str_end = 0;
  3045. if (CMDBUFFER_CURRENT_STRING[14])
  3046. {
  3047. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3048. if (str_end && *str_end)
  3049. {
  3050. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3051. if (str_end && *str_end)
  3052. {
  3053. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3054. if (str_end && *str_end)
  3055. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3056. }
  3057. }
  3058. }
  3059. tmc2130_chopper_config[axis].toff = chop0;
  3060. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3061. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3062. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3063. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3064. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3065. }
  3066. }
  3067. }
  3068. #ifdef BACKLASH_X
  3069. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3070. {
  3071. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3072. st_backlash_x = bl;
  3073. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3074. }
  3075. #endif //BACKLASH_X
  3076. #ifdef BACKLASH_Y
  3077. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3078. {
  3079. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3080. st_backlash_y = bl;
  3081. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3082. }
  3083. #endif //BACKLASH_Y
  3084. #endif //TMC2130
  3085. else if(code_seen("PRUSA")){
  3086. if (code_seen("Ping")) { //! PRUSA Ping
  3087. if (farm_mode) {
  3088. PingTime = _millis();
  3089. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3090. }
  3091. }
  3092. else if (code_seen("PRN")) { //! PRUSA PRN
  3093. printf_P(_N("%d"), status_number);
  3094. }else if (code_seen("FAN")) { //! PRUSA FAN
  3095. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3096. }else if (code_seen("fn")) { //! PRUSA fn
  3097. if (farm_mode) {
  3098. printf_P(_N("%d"), farm_no);
  3099. }
  3100. else {
  3101. puts_P(_N("Not in farm mode."));
  3102. }
  3103. }
  3104. else if (code_seen("thx")) //! PRUSA thx
  3105. {
  3106. no_response = false;
  3107. }
  3108. else if (code_seen("uvlo")) //! PRUSA uvlo
  3109. {
  3110. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3111. enquecommand_P(PSTR("M24"));
  3112. }
  3113. #ifdef FILAMENT_SENSOR
  3114. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3115. {
  3116. fsensor_restore_print_and_continue();
  3117. }
  3118. #endif //FILAMENT_SENSOR
  3119. else if (code_seen("MMURES")) //! PRUSA MMURES
  3120. {
  3121. mmu_reset();
  3122. }
  3123. else if (code_seen("RESET")) { //! PRUSA RESET
  3124. // careful!
  3125. if (farm_mode) {
  3126. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3127. boot_app_magic = BOOT_APP_MAGIC;
  3128. boot_app_flags = BOOT_APP_FLG_RUN;
  3129. wdt_enable(WDTO_15MS);
  3130. cli();
  3131. while(1);
  3132. #else //WATCHDOG
  3133. asm volatile("jmp 0x3E000");
  3134. #endif //WATCHDOG
  3135. }
  3136. else {
  3137. MYSERIAL.println("Not in farm mode.");
  3138. }
  3139. }else if (code_seen("fv")) { //! PRUSA fv
  3140. // get file version
  3141. #ifdef SDSUPPORT
  3142. card.openFile(strchr_pointer + 3,true);
  3143. while (true) {
  3144. uint16_t readByte = card.get();
  3145. MYSERIAL.write(readByte);
  3146. if (readByte=='\n') {
  3147. break;
  3148. }
  3149. }
  3150. card.closefile();
  3151. #endif // SDSUPPORT
  3152. } else if (code_seen("M28")) { //! PRUSA M28
  3153. trace();
  3154. prusa_sd_card_upload = true;
  3155. card.openFile(strchr_pointer+4,false);
  3156. } else if (code_seen("SN")) { //! PRUSA SN
  3157. gcode_PRUSA_SN();
  3158. } else if(code_seen("Fir")){ //! PRUSA Fir
  3159. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3160. } else if(code_seen("Rev")){ //! PRUSA Rev
  3161. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3162. } else if(code_seen("Lang")) { //! PRUSA Lang
  3163. lang_reset();
  3164. } else if(code_seen("Lz")) { //! PRUSA Lz
  3165. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3166. } else if(code_seen("Beat")) { //! PRUSA Beat
  3167. // Kick farm link timer
  3168. kicktime = _millis();
  3169. } else if(code_seen("FR")) { //! PRUSA FR
  3170. // Factory full reset
  3171. factory_reset(0);
  3172. //-//
  3173. /*
  3174. } else if(code_seen("rrr")) {
  3175. MYSERIAL.println("=== checking ===");
  3176. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3177. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3178. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3179. MYSERIAL.println(farm_mode,DEC);
  3180. MYSERIAL.println(eCheckMode,DEC);
  3181. } else if(code_seen("www")) {
  3182. MYSERIAL.println("=== @ FF ===");
  3183. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3184. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3185. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3186. */
  3187. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3188. uint16_t nDiameter;
  3189. if(code_seen('D'))
  3190. {
  3191. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3192. nozzle_diameter_check(nDiameter);
  3193. }
  3194. else if(code_seen("set") && farm_mode)
  3195. {
  3196. strchr_pointer++; // skip 1st char (~ 's')
  3197. strchr_pointer++; // skip 2nd char (~ 'e')
  3198. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3199. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3200. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3201. }
  3202. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3203. //-// !!! SupportMenu
  3204. /*
  3205. // musi byt PRED "PRUSA model"
  3206. } else if (code_seen("smodel")) { //! PRUSA smodel
  3207. size_t nOffset;
  3208. // ! -> "l"
  3209. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3210. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3211. if(*(strchr_pointer+1+nOffset))
  3212. printer_smodel_check(strchr_pointer);
  3213. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3214. } else if (code_seen("model")) { //! PRUSA model
  3215. uint16_t nPrinterModel;
  3216. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3217. nPrinterModel=(uint16_t)code_value_long();
  3218. if(nPrinterModel!=0)
  3219. printer_model_check(nPrinterModel);
  3220. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3221. } else if (code_seen("version")) { //! PRUSA version
  3222. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3223. while(*strchr_pointer==' ') // skip leading spaces
  3224. strchr_pointer++;
  3225. if(*strchr_pointer!=0)
  3226. fw_version_check(strchr_pointer);
  3227. else SERIAL_PROTOCOLLN(FW_VERSION);
  3228. } else if (code_seen("gcode")) { //! PRUSA gcode
  3229. uint16_t nGcodeLevel;
  3230. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3231. nGcodeLevel=(uint16_t)code_value_long();
  3232. if(nGcodeLevel!=0)
  3233. gcode_level_check(nGcodeLevel);
  3234. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3235. */
  3236. }
  3237. //else if (code_seen('Cal')) {
  3238. // lcd_calibration();
  3239. // }
  3240. }
  3241. else if (code_seen('^')) {
  3242. // nothing, this is a version line
  3243. } else if(code_seen('G'))
  3244. {
  3245. gcode_in_progress = (int)code_value();
  3246. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3247. switch (gcode_in_progress)
  3248. {
  3249. case 0: // G0 -> G1
  3250. case 1: // G1
  3251. if(Stopped == false) {
  3252. #ifdef FILAMENT_RUNOUT_SUPPORT
  3253. if(READ(FR_SENS)){
  3254. int feedmultiplyBckp=feedmultiply;
  3255. float target[4];
  3256. float lastpos[4];
  3257. target[X_AXIS]=current_position[X_AXIS];
  3258. target[Y_AXIS]=current_position[Y_AXIS];
  3259. target[Z_AXIS]=current_position[Z_AXIS];
  3260. target[E_AXIS]=current_position[E_AXIS];
  3261. lastpos[X_AXIS]=current_position[X_AXIS];
  3262. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3263. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3264. lastpos[E_AXIS]=current_position[E_AXIS];
  3265. //retract by E
  3266. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3267. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3268. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3269. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3270. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3271. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3273. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3275. //finish moves
  3276. st_synchronize();
  3277. //disable extruder steppers so filament can be removed
  3278. disable_e0();
  3279. disable_e1();
  3280. disable_e2();
  3281. _delay(100);
  3282. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3283. uint8_t cnt=0;
  3284. int counterBeep = 0;
  3285. lcd_wait_interact();
  3286. while(!lcd_clicked()){
  3287. cnt++;
  3288. manage_heater();
  3289. manage_inactivity(true);
  3290. //lcd_update(0);
  3291. if(cnt==0)
  3292. {
  3293. #if BEEPER > 0
  3294. if (counterBeep== 500){
  3295. counterBeep = 0;
  3296. }
  3297. SET_OUTPUT(BEEPER);
  3298. if (counterBeep== 0){
  3299. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3300. WRITE(BEEPER,HIGH);
  3301. }
  3302. if (counterBeep== 20){
  3303. WRITE(BEEPER,LOW);
  3304. }
  3305. counterBeep++;
  3306. #else
  3307. #endif
  3308. }
  3309. }
  3310. WRITE(BEEPER,LOW);
  3311. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3313. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3315. lcd_change_fil_state = 0;
  3316. lcd_loading_filament();
  3317. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3318. lcd_change_fil_state = 0;
  3319. lcd_alright();
  3320. switch(lcd_change_fil_state){
  3321. case 2:
  3322. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3324. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3325. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3326. lcd_loading_filament();
  3327. break;
  3328. case 3:
  3329. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3330. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3331. lcd_loading_color();
  3332. break;
  3333. default:
  3334. lcd_change_success();
  3335. break;
  3336. }
  3337. }
  3338. target[E_AXIS]+= 5;
  3339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3340. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3341. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3342. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3343. //plan_set_e_position(current_position[E_AXIS]);
  3344. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3345. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3346. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3347. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3348. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3349. plan_set_e_position(lastpos[E_AXIS]);
  3350. feedmultiply=feedmultiplyBckp;
  3351. char cmd[9];
  3352. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3353. enquecommand(cmd);
  3354. }
  3355. #endif
  3356. get_coordinates(); // For X Y Z E F
  3357. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3358. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3359. }
  3360. #ifdef FWRETRACT
  3361. if(cs.autoretract_enabled)
  3362. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3363. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3364. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3365. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3366. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3367. retract(!retracted[active_extruder]);
  3368. return;
  3369. }
  3370. }
  3371. #endif //FWRETRACT
  3372. prepare_move();
  3373. //ClearToSend();
  3374. }
  3375. break;
  3376. case 2: // G2 - CW ARC
  3377. if(Stopped == false) {
  3378. get_arc_coordinates();
  3379. prepare_arc_move(true);
  3380. }
  3381. break;
  3382. case 3: // G3 - CCW ARC
  3383. if(Stopped == false) {
  3384. get_arc_coordinates();
  3385. prepare_arc_move(false);
  3386. }
  3387. break;
  3388. case 4: // G4 dwell
  3389. codenum = 0;
  3390. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3391. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3392. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3393. st_synchronize();
  3394. codenum += _millis(); // keep track of when we started waiting
  3395. previous_millis_cmd = _millis();
  3396. while(_millis() < codenum) {
  3397. manage_heater();
  3398. manage_inactivity();
  3399. lcd_update(0);
  3400. }
  3401. break;
  3402. #ifdef FWRETRACT
  3403. case 10: // G10 retract
  3404. #if EXTRUDERS > 1
  3405. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3406. retract(true,retracted_swap[active_extruder]);
  3407. #else
  3408. retract(true);
  3409. #endif
  3410. break;
  3411. case 11: // G11 retract_recover
  3412. #if EXTRUDERS > 1
  3413. retract(false,retracted_swap[active_extruder]);
  3414. #else
  3415. retract(false);
  3416. #endif
  3417. break;
  3418. #endif //FWRETRACT
  3419. case 28: //G28 Home all Axis one at a time
  3420. {
  3421. long home_x_value = 0;
  3422. long home_y_value = 0;
  3423. long home_z_value = 0;
  3424. // Which axes should be homed?
  3425. bool home_x = code_seen(axis_codes[X_AXIS]);
  3426. home_x_value = code_value_long();
  3427. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3428. home_y_value = code_value_long();
  3429. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3430. home_z_value = code_value_long();
  3431. bool without_mbl = code_seen('W');
  3432. // calibrate?
  3433. #ifdef TMC2130
  3434. bool calib = code_seen('C');
  3435. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3436. #else
  3437. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3438. #endif //TMC2130
  3439. if ((home_x || home_y || without_mbl || home_z) == false) {
  3440. // Push the commands to the front of the message queue in the reverse order!
  3441. // There shall be always enough space reserved for these commands.
  3442. goto case_G80;
  3443. }
  3444. break;
  3445. }
  3446. #ifdef ENABLE_AUTO_BED_LEVELING
  3447. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3448. {
  3449. #if Z_MIN_PIN == -1
  3450. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3451. #endif
  3452. // Prevent user from running a G29 without first homing in X and Y
  3453. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3454. {
  3455. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3456. SERIAL_ECHO_START;
  3457. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3458. break; // abort G29, since we don't know where we are
  3459. }
  3460. st_synchronize();
  3461. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3462. //vector_3 corrected_position = plan_get_position_mm();
  3463. //corrected_position.debug("position before G29");
  3464. plan_bed_level_matrix.set_to_identity();
  3465. vector_3 uncorrected_position = plan_get_position();
  3466. //uncorrected_position.debug("position durring G29");
  3467. current_position[X_AXIS] = uncorrected_position.x;
  3468. current_position[Y_AXIS] = uncorrected_position.y;
  3469. current_position[Z_AXIS] = uncorrected_position.z;
  3470. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3471. int l_feedmultiply = setup_for_endstop_move();
  3472. feedrate = homing_feedrate[Z_AXIS];
  3473. #ifdef AUTO_BED_LEVELING_GRID
  3474. // probe at the points of a lattice grid
  3475. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3476. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3477. // solve the plane equation ax + by + d = z
  3478. // A is the matrix with rows [x y 1] for all the probed points
  3479. // B is the vector of the Z positions
  3480. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3481. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3482. // "A" matrix of the linear system of equations
  3483. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3484. // "B" vector of Z points
  3485. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3486. int probePointCounter = 0;
  3487. bool zig = true;
  3488. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3489. {
  3490. int xProbe, xInc;
  3491. if (zig)
  3492. {
  3493. xProbe = LEFT_PROBE_BED_POSITION;
  3494. //xEnd = RIGHT_PROBE_BED_POSITION;
  3495. xInc = xGridSpacing;
  3496. zig = false;
  3497. } else // zag
  3498. {
  3499. xProbe = RIGHT_PROBE_BED_POSITION;
  3500. //xEnd = LEFT_PROBE_BED_POSITION;
  3501. xInc = -xGridSpacing;
  3502. zig = true;
  3503. }
  3504. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3505. {
  3506. float z_before;
  3507. if (probePointCounter == 0)
  3508. {
  3509. // raise before probing
  3510. z_before = Z_RAISE_BEFORE_PROBING;
  3511. } else
  3512. {
  3513. // raise extruder
  3514. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3515. }
  3516. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3517. eqnBVector[probePointCounter] = measured_z;
  3518. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3519. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3520. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3521. probePointCounter++;
  3522. xProbe += xInc;
  3523. }
  3524. }
  3525. clean_up_after_endstop_move(l_feedmultiply);
  3526. // solve lsq problem
  3527. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3528. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3529. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3530. SERIAL_PROTOCOLPGM(" b: ");
  3531. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3532. SERIAL_PROTOCOLPGM(" d: ");
  3533. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3534. set_bed_level_equation_lsq(plane_equation_coefficients);
  3535. free(plane_equation_coefficients);
  3536. #else // AUTO_BED_LEVELING_GRID not defined
  3537. // Probe at 3 arbitrary points
  3538. // probe 1
  3539. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3540. // probe 2
  3541. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3542. // probe 3
  3543. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3544. clean_up_after_endstop_move(l_feedmultiply);
  3545. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3546. #endif // AUTO_BED_LEVELING_GRID
  3547. st_synchronize();
  3548. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3549. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3550. // When the bed is uneven, this height must be corrected.
  3551. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3552. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3553. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3554. z_tmp = current_position[Z_AXIS];
  3555. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3556. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3558. }
  3559. break;
  3560. #ifndef Z_PROBE_SLED
  3561. case 30: // G30 Single Z Probe
  3562. {
  3563. st_synchronize();
  3564. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3565. int l_feedmultiply = setup_for_endstop_move();
  3566. feedrate = homing_feedrate[Z_AXIS];
  3567. run_z_probe();
  3568. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3569. SERIAL_PROTOCOLPGM(" X: ");
  3570. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3571. SERIAL_PROTOCOLPGM(" Y: ");
  3572. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3573. SERIAL_PROTOCOLPGM(" Z: ");
  3574. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3575. SERIAL_PROTOCOLPGM("\n");
  3576. clean_up_after_endstop_move(l_feedmultiply);
  3577. }
  3578. break;
  3579. #else
  3580. case 31: // dock the sled
  3581. dock_sled(true);
  3582. break;
  3583. case 32: // undock the sled
  3584. dock_sled(false);
  3585. break;
  3586. #endif // Z_PROBE_SLED
  3587. #endif // ENABLE_AUTO_BED_LEVELING
  3588. #ifdef MESH_BED_LEVELING
  3589. case 30: // G30 Single Z Probe
  3590. {
  3591. st_synchronize();
  3592. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3593. int l_feedmultiply = setup_for_endstop_move();
  3594. feedrate = homing_feedrate[Z_AXIS];
  3595. find_bed_induction_sensor_point_z(-10.f, 3);
  3596. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3597. clean_up_after_endstop_move(l_feedmultiply);
  3598. }
  3599. break;
  3600. case 75:
  3601. {
  3602. for (int i = 40; i <= 110; i++)
  3603. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3604. }
  3605. break;
  3606. case 76: //! G76 - PINDA probe temperature calibration
  3607. {
  3608. #ifdef PINDA_THERMISTOR
  3609. if (true)
  3610. {
  3611. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3612. //we need to know accurate position of first calibration point
  3613. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3614. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3615. break;
  3616. }
  3617. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3618. {
  3619. // We don't know where we are! HOME!
  3620. // Push the commands to the front of the message queue in the reverse order!
  3621. // There shall be always enough space reserved for these commands.
  3622. repeatcommand_front(); // repeat G76 with all its parameters
  3623. enquecommand_front_P((PSTR("G28 W0")));
  3624. break;
  3625. }
  3626. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3627. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3628. if (result)
  3629. {
  3630. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3632. current_position[Z_AXIS] = 50;
  3633. current_position[Y_AXIS] = 180;
  3634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3635. st_synchronize();
  3636. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3637. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3638. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3640. st_synchronize();
  3641. gcode_G28(false, false, true);
  3642. }
  3643. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3644. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3645. current_position[Z_AXIS] = 100;
  3646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3647. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3648. lcd_temp_cal_show_result(false);
  3649. break;
  3650. }
  3651. }
  3652. lcd_update_enable(true);
  3653. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3654. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3655. float zero_z;
  3656. int z_shift = 0; //unit: steps
  3657. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3658. if (start_temp < 35) start_temp = 35;
  3659. if (start_temp < current_temperature_pinda) start_temp += 5;
  3660. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3661. // setTargetHotend(200, 0);
  3662. setTargetBed(70 + (start_temp - 30));
  3663. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3664. custom_message_state = 1;
  3665. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3666. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3668. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3669. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3671. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3673. st_synchronize();
  3674. while (current_temperature_pinda < start_temp)
  3675. {
  3676. delay_keep_alive(1000);
  3677. serialecho_temperatures();
  3678. }
  3679. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3680. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3682. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3683. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3685. st_synchronize();
  3686. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3687. if (find_z_result == false) {
  3688. lcd_temp_cal_show_result(find_z_result);
  3689. break;
  3690. }
  3691. zero_z = current_position[Z_AXIS];
  3692. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3693. int i = -1; for (; i < 5; i++)
  3694. {
  3695. float temp = (40 + i * 5);
  3696. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3697. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3698. if (start_temp <= temp) break;
  3699. }
  3700. for (i++; i < 5; i++)
  3701. {
  3702. float temp = (40 + i * 5);
  3703. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3704. custom_message_state = i + 2;
  3705. setTargetBed(50 + 10 * (temp - 30) / 5);
  3706. // setTargetHotend(255, 0);
  3707. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3709. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3710. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3712. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3714. st_synchronize();
  3715. while (current_temperature_pinda < temp)
  3716. {
  3717. delay_keep_alive(1000);
  3718. serialecho_temperatures();
  3719. }
  3720. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3722. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3723. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3725. st_synchronize();
  3726. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3727. if (find_z_result == false) {
  3728. lcd_temp_cal_show_result(find_z_result);
  3729. break;
  3730. }
  3731. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3732. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3733. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3734. }
  3735. lcd_temp_cal_show_result(true);
  3736. break;
  3737. }
  3738. #endif //PINDA_THERMISTOR
  3739. setTargetBed(PINDA_MIN_T);
  3740. float zero_z;
  3741. int z_shift = 0; //unit: steps
  3742. int t_c; // temperature
  3743. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3744. // We don't know where we are! HOME!
  3745. // Push the commands to the front of the message queue in the reverse order!
  3746. // There shall be always enough space reserved for these commands.
  3747. repeatcommand_front(); // repeat G76 with all its parameters
  3748. enquecommand_front_P((PSTR("G28 W0")));
  3749. break;
  3750. }
  3751. puts_P(_N("PINDA probe calibration start"));
  3752. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3753. custom_message_state = 1;
  3754. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3755. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3756. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3757. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3759. st_synchronize();
  3760. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3761. delay_keep_alive(1000);
  3762. serialecho_temperatures();
  3763. }
  3764. //enquecommand_P(PSTR("M190 S50"));
  3765. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3766. delay_keep_alive(1000);
  3767. serialecho_temperatures();
  3768. }
  3769. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3770. current_position[Z_AXIS] = 5;
  3771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3772. current_position[X_AXIS] = BED_X0;
  3773. current_position[Y_AXIS] = BED_Y0;
  3774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3775. st_synchronize();
  3776. find_bed_induction_sensor_point_z(-1.f);
  3777. zero_z = current_position[Z_AXIS];
  3778. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3779. for (int i = 0; i<5; i++) {
  3780. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3781. custom_message_state = i + 2;
  3782. t_c = 60 + i * 10;
  3783. setTargetBed(t_c);
  3784. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3785. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3786. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3788. st_synchronize();
  3789. while (degBed() < t_c) {
  3790. delay_keep_alive(1000);
  3791. serialecho_temperatures();
  3792. }
  3793. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3794. delay_keep_alive(1000);
  3795. serialecho_temperatures();
  3796. }
  3797. current_position[Z_AXIS] = 5;
  3798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3799. current_position[X_AXIS] = BED_X0;
  3800. current_position[Y_AXIS] = BED_Y0;
  3801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3802. st_synchronize();
  3803. find_bed_induction_sensor_point_z(-1.f);
  3804. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3805. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3806. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3807. }
  3808. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3809. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3810. puts_P(_N("Temperature calibration done."));
  3811. disable_x();
  3812. disable_y();
  3813. disable_z();
  3814. disable_e0();
  3815. disable_e1();
  3816. disable_e2();
  3817. setTargetBed(0); //set bed target temperature back to 0
  3818. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3819. temp_cal_active = true;
  3820. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3821. lcd_update_enable(true);
  3822. lcd_update(2);
  3823. }
  3824. break;
  3825. /**
  3826. * G80: Mesh-based Z probe, probes a grid and produces a
  3827. * mesh to compensate for variable bed height
  3828. *
  3829. * The S0 report the points as below
  3830. * @code{.unparsed}
  3831. * +----> X-axis
  3832. * |
  3833. * |
  3834. * v Y-axis
  3835. * @endcode
  3836. */
  3837. case 80:
  3838. #ifdef MK1BP
  3839. break;
  3840. #endif //MK1BP
  3841. case_G80:
  3842. {
  3843. mesh_bed_leveling_flag = true;
  3844. static bool run = false;
  3845. #ifdef SUPPORT_VERBOSITY
  3846. int8_t verbosity_level = 0;
  3847. if (code_seen('V')) {
  3848. // Just 'V' without a number counts as V1.
  3849. char c = strchr_pointer[1];
  3850. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3851. }
  3852. #endif //SUPPORT_VERBOSITY
  3853. // Firstly check if we know where we are
  3854. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3855. // We don't know where we are! HOME!
  3856. // Push the commands to the front of the message queue in the reverse order!
  3857. // There shall be always enough space reserved for these commands.
  3858. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3859. repeatcommand_front(); // repeat G80 with all its parameters
  3860. enquecommand_front_P((PSTR("G28 W0")));
  3861. }
  3862. else {
  3863. mesh_bed_leveling_flag = false;
  3864. }
  3865. break;
  3866. }
  3867. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3868. if (code_seen('N')) {
  3869. nMeasPoints = code_value_uint8();
  3870. if (nMeasPoints != 7) {
  3871. nMeasPoints = 3;
  3872. }
  3873. }
  3874. else {
  3875. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3876. }
  3877. uint8_t nProbeRetry = 3;
  3878. if (code_seen('R')) {
  3879. nProbeRetry = code_value_uint8();
  3880. if (nProbeRetry > 10) {
  3881. nProbeRetry = 10;
  3882. }
  3883. }
  3884. else {
  3885. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3886. }
  3887. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3888. bool temp_comp_start = true;
  3889. #ifdef PINDA_THERMISTOR
  3890. temp_comp_start = false;
  3891. #endif //PINDA_THERMISTOR
  3892. if (temp_comp_start)
  3893. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3894. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3895. temp_compensation_start();
  3896. run = true;
  3897. repeatcommand_front(); // repeat G80 with all its parameters
  3898. enquecommand_front_P((PSTR("G28 W0")));
  3899. }
  3900. else {
  3901. mesh_bed_leveling_flag = false;
  3902. }
  3903. break;
  3904. }
  3905. run = false;
  3906. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3907. mesh_bed_leveling_flag = false;
  3908. break;
  3909. }
  3910. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3911. unsigned int custom_message_type_old = custom_message_type;
  3912. unsigned int custom_message_state_old = custom_message_state;
  3913. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3914. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3915. lcd_update(1);
  3916. mbl.reset(); //reset mesh bed leveling
  3917. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3918. // consumed during the first movements following this statement.
  3919. babystep_undo();
  3920. // Cycle through all points and probe them
  3921. // First move up. During this first movement, the babystepping will be reverted.
  3922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3924. // The move to the first calibration point.
  3925. current_position[X_AXIS] = BED_X0;
  3926. current_position[Y_AXIS] = BED_Y0;
  3927. #ifdef SUPPORT_VERBOSITY
  3928. if (verbosity_level >= 1)
  3929. {
  3930. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3931. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3932. }
  3933. #else //SUPPORT_VERBOSITY
  3934. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3935. #endif //SUPPORT_VERBOSITY
  3936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3937. // Wait until the move is finished.
  3938. st_synchronize();
  3939. uint8_t mesh_point = 0; //index number of calibration point
  3940. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3941. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3942. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3943. #ifdef SUPPORT_VERBOSITY
  3944. if (verbosity_level >= 1) {
  3945. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3946. }
  3947. #endif // SUPPORT_VERBOSITY
  3948. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3949. const char *kill_message = NULL;
  3950. while (mesh_point != nMeasPoints * nMeasPoints) {
  3951. // Get coords of a measuring point.
  3952. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3953. uint8_t iy = mesh_point / nMeasPoints;
  3954. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3955. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3956. custom_message_state--;
  3957. mesh_point++;
  3958. continue; //skip
  3959. }*/
  3960. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3961. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3962. {
  3963. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3964. }
  3965. float z0 = 0.f;
  3966. if (has_z && (mesh_point > 0)) {
  3967. uint16_t z_offset_u = 0;
  3968. if (nMeasPoints == 7) {
  3969. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3970. }
  3971. else {
  3972. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3973. }
  3974. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3975. #ifdef SUPPORT_VERBOSITY
  3976. if (verbosity_level >= 1) {
  3977. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3978. }
  3979. #endif // SUPPORT_VERBOSITY
  3980. }
  3981. // Move Z up to MESH_HOME_Z_SEARCH.
  3982. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3983. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3984. float init_z_bckp = current_position[Z_AXIS];
  3985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3986. st_synchronize();
  3987. // Move to XY position of the sensor point.
  3988. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3989. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3990. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3991. #ifdef SUPPORT_VERBOSITY
  3992. if (verbosity_level >= 1) {
  3993. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3994. SERIAL_PROTOCOL(mesh_point);
  3995. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3996. }
  3997. #else //SUPPORT_VERBOSITY
  3998. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3999. #endif // SUPPORT_VERBOSITY
  4000. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  4002. st_synchronize();
  4003. // Go down until endstop is hit
  4004. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4005. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4006. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4007. break;
  4008. }
  4009. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4010. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4011. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4013. st_synchronize();
  4014. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4015. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4016. break;
  4017. }
  4018. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4019. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4020. break;
  4021. }
  4022. }
  4023. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4024. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4025. break;
  4026. }
  4027. #ifdef SUPPORT_VERBOSITY
  4028. if (verbosity_level >= 10) {
  4029. SERIAL_ECHOPGM("X: ");
  4030. MYSERIAL.print(current_position[X_AXIS], 5);
  4031. SERIAL_ECHOLNPGM("");
  4032. SERIAL_ECHOPGM("Y: ");
  4033. MYSERIAL.print(current_position[Y_AXIS], 5);
  4034. SERIAL_PROTOCOLPGM("\n");
  4035. }
  4036. #endif // SUPPORT_VERBOSITY
  4037. float offset_z = 0;
  4038. #ifdef PINDA_THERMISTOR
  4039. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4040. #endif //PINDA_THERMISTOR
  4041. // #ifdef SUPPORT_VERBOSITY
  4042. /* if (verbosity_level >= 1)
  4043. {
  4044. SERIAL_ECHOPGM("mesh bed leveling: ");
  4045. MYSERIAL.print(current_position[Z_AXIS], 5);
  4046. SERIAL_ECHOPGM(" offset: ");
  4047. MYSERIAL.print(offset_z, 5);
  4048. SERIAL_ECHOLNPGM("");
  4049. }*/
  4050. // #endif // SUPPORT_VERBOSITY
  4051. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4052. custom_message_state--;
  4053. mesh_point++;
  4054. lcd_update(1);
  4055. }
  4056. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4057. #ifdef SUPPORT_VERBOSITY
  4058. if (verbosity_level >= 20) {
  4059. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4060. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4061. MYSERIAL.print(current_position[Z_AXIS], 5);
  4062. }
  4063. #endif // SUPPORT_VERBOSITY
  4064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4065. st_synchronize();
  4066. if (mesh_point != nMeasPoints * nMeasPoints) {
  4067. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4068. bool bState;
  4069. do { // repeat until Z-leveling o.k.
  4070. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4071. #ifdef TMC2130
  4072. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4073. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4074. #else // TMC2130
  4075. lcd_wait_for_click_delay(0); // ~ no timeout
  4076. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4077. #endif // TMC2130
  4078. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4079. bState=enable_z_endstop(false);
  4080. current_position[Z_AXIS] -= 1;
  4081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4082. st_synchronize();
  4083. enable_z_endstop(true);
  4084. #ifdef TMC2130
  4085. tmc2130_home_enter(Z_AXIS_MASK);
  4086. #endif // TMC2130
  4087. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4089. st_synchronize();
  4090. #ifdef TMC2130
  4091. tmc2130_home_exit();
  4092. #endif // TMC2130
  4093. enable_z_endstop(bState);
  4094. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4095. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4096. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  4097. lcd_update_enable(true); // display / status-line recovery
  4098. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4099. repeatcommand_front(); // re-run (i.e. of "G80")
  4100. break;
  4101. }
  4102. clean_up_after_endstop_move(l_feedmultiply);
  4103. // SERIAL_ECHOLNPGM("clean up finished ");
  4104. bool apply_temp_comp = true;
  4105. #ifdef PINDA_THERMISTOR
  4106. apply_temp_comp = false;
  4107. #endif
  4108. if (apply_temp_comp)
  4109. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4110. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4111. // SERIAL_ECHOLNPGM("babystep applied");
  4112. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4113. #ifdef SUPPORT_VERBOSITY
  4114. if (verbosity_level >= 1) {
  4115. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4116. }
  4117. #endif // SUPPORT_VERBOSITY
  4118. for (uint8_t i = 0; i < 4; ++i) {
  4119. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4120. long correction = 0;
  4121. if (code_seen(codes[i]))
  4122. correction = code_value_long();
  4123. else if (eeprom_bed_correction_valid) {
  4124. unsigned char *addr = (i < 2) ?
  4125. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4126. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4127. correction = eeprom_read_int8(addr);
  4128. }
  4129. if (correction == 0)
  4130. continue;
  4131. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4132. SERIAL_ERROR_START;
  4133. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4134. SERIAL_ECHO(correction);
  4135. SERIAL_ECHOLNPGM(" microns");
  4136. }
  4137. else {
  4138. float offset = float(correction) * 0.001f;
  4139. switch (i) {
  4140. case 0:
  4141. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4142. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4143. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4144. }
  4145. }
  4146. break;
  4147. case 1:
  4148. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4149. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4150. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4151. }
  4152. }
  4153. break;
  4154. case 2:
  4155. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4156. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4157. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4158. }
  4159. }
  4160. break;
  4161. case 3:
  4162. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4163. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4164. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4165. }
  4166. }
  4167. break;
  4168. }
  4169. }
  4170. }
  4171. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4172. if (nMeasPoints == 3) {
  4173. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4174. }
  4175. /*
  4176. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4177. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4178. SERIAL_PROTOCOLPGM(",");
  4179. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4180. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4181. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4182. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4183. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4184. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4185. SERIAL_PROTOCOLPGM(" ");
  4186. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4187. }
  4188. SERIAL_PROTOCOLPGM("\n");
  4189. }
  4190. */
  4191. if (nMeasPoints == 7 && magnet_elimination) {
  4192. mbl_interpolation(nMeasPoints);
  4193. }
  4194. /*
  4195. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4196. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4197. SERIAL_PROTOCOLPGM(",");
  4198. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4199. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4200. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4201. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4202. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4203. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4204. SERIAL_PROTOCOLPGM(" ");
  4205. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4206. }
  4207. SERIAL_PROTOCOLPGM("\n");
  4208. }
  4209. */
  4210. // SERIAL_ECHOLNPGM("Upsample finished");
  4211. mbl.active = 1; //activate mesh bed leveling
  4212. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4213. go_home_with_z_lift();
  4214. // SERIAL_ECHOLNPGM("Go home finished");
  4215. //unretract (after PINDA preheat retraction)
  4216. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4217. current_position[E_AXIS] += default_retraction;
  4218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4219. }
  4220. KEEPALIVE_STATE(NOT_BUSY);
  4221. // Restore custom message state
  4222. lcd_setstatuspgm(_T(WELCOME_MSG));
  4223. custom_message_type = custom_message_type_old;
  4224. custom_message_state = custom_message_state_old;
  4225. mesh_bed_leveling_flag = false;
  4226. mesh_bed_run_from_menu = false;
  4227. lcd_update(2);
  4228. }
  4229. break;
  4230. /**
  4231. * G81: Print mesh bed leveling status and bed profile if activated
  4232. */
  4233. case 81:
  4234. if (mbl.active) {
  4235. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4236. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4237. SERIAL_PROTOCOLPGM(",");
  4238. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4239. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4240. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4241. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4242. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4243. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4244. SERIAL_PROTOCOLPGM(" ");
  4245. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4246. }
  4247. SERIAL_PROTOCOLPGM("\n");
  4248. }
  4249. }
  4250. else
  4251. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4252. break;
  4253. #if 0
  4254. /**
  4255. * G82: Single Z probe at current location
  4256. *
  4257. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4258. *
  4259. */
  4260. case 82:
  4261. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4262. int l_feedmultiply = setup_for_endstop_move();
  4263. find_bed_induction_sensor_point_z();
  4264. clean_up_after_endstop_move(l_feedmultiply);
  4265. SERIAL_PROTOCOLPGM("Bed found at: ");
  4266. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4267. SERIAL_PROTOCOLPGM("\n");
  4268. break;
  4269. /**
  4270. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4271. */
  4272. case 83:
  4273. {
  4274. int babystepz = code_seen('S') ? code_value() : 0;
  4275. int BabyPosition = code_seen('P') ? code_value() : 0;
  4276. if (babystepz != 0) {
  4277. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4278. // Is the axis indexed starting with zero or one?
  4279. if (BabyPosition > 4) {
  4280. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4281. }else{
  4282. // Save it to the eeprom
  4283. babystepLoadZ = babystepz;
  4284. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4285. // adjust the Z
  4286. babystepsTodoZadd(babystepLoadZ);
  4287. }
  4288. }
  4289. }
  4290. break;
  4291. /**
  4292. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4293. */
  4294. case 84:
  4295. babystepsTodoZsubtract(babystepLoadZ);
  4296. // babystepLoadZ = 0;
  4297. break;
  4298. /**
  4299. * G85: Prusa3D specific: Pick best babystep
  4300. */
  4301. case 85:
  4302. lcd_pick_babystep();
  4303. break;
  4304. #endif
  4305. /**
  4306. * G86: Prusa3D specific: Disable babystep correction after home.
  4307. * This G-code will be performed at the start of a calibration script.
  4308. */
  4309. case 86:
  4310. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4311. break;
  4312. /**
  4313. * G87: Prusa3D specific: Enable babystep correction after home
  4314. * This G-code will be performed at the end of a calibration script.
  4315. */
  4316. case 87:
  4317. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4318. break;
  4319. /**
  4320. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4321. */
  4322. case 88:
  4323. break;
  4324. #endif // ENABLE_MESH_BED_LEVELING
  4325. case 90: // G90
  4326. relative_mode = false;
  4327. break;
  4328. case 91: // G91
  4329. relative_mode = true;
  4330. break;
  4331. case 92: // G92
  4332. if(!code_seen(axis_codes[E_AXIS]))
  4333. st_synchronize();
  4334. for(int8_t i=0; i < NUM_AXIS; i++) {
  4335. if(code_seen(axis_codes[i])) {
  4336. if(i == E_AXIS) {
  4337. current_position[i] = code_value();
  4338. plan_set_e_position(current_position[E_AXIS]);
  4339. }
  4340. else {
  4341. current_position[i] = code_value()+cs.add_homing[i];
  4342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4343. }
  4344. }
  4345. }
  4346. break;
  4347. case 98: //! G98 (activate farm mode)
  4348. farm_mode = 1;
  4349. PingTime = _millis();
  4350. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4351. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4352. SilentModeMenu = SILENT_MODE_OFF;
  4353. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4354. fCheckModeInit(); // alternatively invoke printer reset
  4355. break;
  4356. case 99: //! G99 (deactivate farm mode)
  4357. farm_mode = 0;
  4358. lcd_printer_connected();
  4359. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4360. lcd_update(2);
  4361. fCheckModeInit(); // alternatively invoke printer reset
  4362. break;
  4363. default:
  4364. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4365. }
  4366. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4367. gcode_in_progress = 0;
  4368. } // end if(code_seen('G'))
  4369. else if(code_seen('M'))
  4370. {
  4371. int index;
  4372. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4373. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4374. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4375. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4376. } else
  4377. {
  4378. mcode_in_progress = (int)code_value();
  4379. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4380. switch(mcode_in_progress)
  4381. {
  4382. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4383. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4384. {
  4385. char *src = strchr_pointer + 2;
  4386. codenum = 0;
  4387. bool hasP = false, hasS = false;
  4388. if (code_seen('P')) {
  4389. codenum = code_value(); // milliseconds to wait
  4390. hasP = codenum > 0;
  4391. }
  4392. if (code_seen('S')) {
  4393. codenum = code_value() * 1000; // seconds to wait
  4394. hasS = codenum > 0;
  4395. }
  4396. starpos = strchr(src, '*');
  4397. if (starpos != NULL) *(starpos) = '\0';
  4398. while (*src == ' ') ++src;
  4399. if (!hasP && !hasS && *src != '\0') {
  4400. lcd_setstatus(src);
  4401. } else {
  4402. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4403. }
  4404. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4405. st_synchronize();
  4406. previous_millis_cmd = _millis();
  4407. if (codenum > 0){
  4408. codenum += _millis(); // keep track of when we started waiting
  4409. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4410. while(_millis() < codenum && !lcd_clicked()){
  4411. manage_heater();
  4412. manage_inactivity(true);
  4413. lcd_update(0);
  4414. }
  4415. KEEPALIVE_STATE(IN_HANDLER);
  4416. lcd_ignore_click(false);
  4417. }else{
  4418. marlin_wait_for_click();
  4419. }
  4420. if (IS_SD_PRINTING)
  4421. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4422. else
  4423. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4424. }
  4425. break;
  4426. case 17:
  4427. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4428. enable_x();
  4429. enable_y();
  4430. enable_z();
  4431. enable_e0();
  4432. enable_e1();
  4433. enable_e2();
  4434. break;
  4435. #ifdef SDSUPPORT
  4436. case 20: // M20 - list SD card
  4437. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4438. card.ls();
  4439. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4440. break;
  4441. case 21: // M21 - init SD card
  4442. card.initsd();
  4443. break;
  4444. case 22: //M22 - release SD card
  4445. card.release();
  4446. break;
  4447. case 23: //M23 - Select file
  4448. starpos = (strchr(strchr_pointer + 4,'*'));
  4449. if(starpos!=NULL)
  4450. *(starpos)='\0';
  4451. card.openFile(strchr_pointer + 4,true);
  4452. break;
  4453. case 24: //M24 - Start SD print
  4454. if (!card.paused)
  4455. failstats_reset_print();
  4456. card.startFileprint();
  4457. starttime=_millis();
  4458. break;
  4459. case 25: //M25 - Pause SD print
  4460. card.pauseSDPrint();
  4461. break;
  4462. case 26: //M26 - Set SD index
  4463. if(card.cardOK && code_seen('S')) {
  4464. card.setIndex(code_value_long());
  4465. }
  4466. break;
  4467. case 27: //M27 - Get SD status
  4468. card.getStatus();
  4469. break;
  4470. case 28: //M28 - Start SD write
  4471. starpos = (strchr(strchr_pointer + 4,'*'));
  4472. if(starpos != NULL){
  4473. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4474. strchr_pointer = strchr(npos,' ') + 1;
  4475. *(starpos) = '\0';
  4476. }
  4477. card.openFile(strchr_pointer+4,false);
  4478. break;
  4479. case 29: //M29 - Stop SD write
  4480. //processed in write to file routine above
  4481. //card,saving = false;
  4482. break;
  4483. case 30: //M30 <filename> Delete File
  4484. if (card.cardOK){
  4485. card.closefile();
  4486. starpos = (strchr(strchr_pointer + 4,'*'));
  4487. if(starpos != NULL){
  4488. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4489. strchr_pointer = strchr(npos,' ') + 1;
  4490. *(starpos) = '\0';
  4491. }
  4492. card.removeFile(strchr_pointer + 4);
  4493. }
  4494. break;
  4495. case 32: //M32 - Select file and start SD print
  4496. {
  4497. if(card.sdprinting) {
  4498. st_synchronize();
  4499. }
  4500. starpos = (strchr(strchr_pointer + 4,'*'));
  4501. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4502. if(namestartpos==NULL)
  4503. {
  4504. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4505. }
  4506. else
  4507. namestartpos++; //to skip the '!'
  4508. if(starpos!=NULL)
  4509. *(starpos)='\0';
  4510. bool call_procedure=(code_seen('P'));
  4511. if(strchr_pointer>namestartpos)
  4512. call_procedure=false; //false alert, 'P' found within filename
  4513. if( card.cardOK )
  4514. {
  4515. card.openFile(namestartpos,true,!call_procedure);
  4516. if(code_seen('S'))
  4517. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4518. card.setIndex(code_value_long());
  4519. card.startFileprint();
  4520. if(!call_procedure)
  4521. starttime=_millis(); //procedure calls count as normal print time.
  4522. }
  4523. } break;
  4524. case 928: //M928 - Start SD write
  4525. starpos = (strchr(strchr_pointer + 5,'*'));
  4526. if(starpos != NULL){
  4527. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4528. strchr_pointer = strchr(npos,' ') + 1;
  4529. *(starpos) = '\0';
  4530. }
  4531. card.openLogFile(strchr_pointer+5);
  4532. break;
  4533. #endif //SDSUPPORT
  4534. case 31: //M31 take time since the start of the SD print or an M109 command
  4535. {
  4536. stoptime=_millis();
  4537. char time[30];
  4538. unsigned long t=(stoptime-starttime)/1000;
  4539. int sec,min;
  4540. min=t/60;
  4541. sec=t%60;
  4542. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4543. SERIAL_ECHO_START;
  4544. SERIAL_ECHOLN(time);
  4545. lcd_setstatus(time);
  4546. autotempShutdown();
  4547. }
  4548. break;
  4549. case 42: //M42 -Change pin status via gcode
  4550. if (code_seen('S'))
  4551. {
  4552. int pin_status = code_value();
  4553. int pin_number = LED_PIN;
  4554. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4555. pin_number = code_value();
  4556. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4557. {
  4558. if (sensitive_pins[i] == pin_number)
  4559. {
  4560. pin_number = -1;
  4561. break;
  4562. }
  4563. }
  4564. #if defined(FAN_PIN) && FAN_PIN > -1
  4565. if (pin_number == FAN_PIN)
  4566. fanSpeed = pin_status;
  4567. #endif
  4568. if (pin_number > -1)
  4569. {
  4570. pinMode(pin_number, OUTPUT);
  4571. digitalWrite(pin_number, pin_status);
  4572. analogWrite(pin_number, pin_status);
  4573. }
  4574. }
  4575. break;
  4576. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4577. // Reset the baby step value and the baby step applied flag.
  4578. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4579. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4580. // Reset the skew and offset in both RAM and EEPROM.
  4581. reset_bed_offset_and_skew();
  4582. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4583. // the planner will not perform any adjustments in the XY plane.
  4584. // Wait for the motors to stop and update the current position with the absolute values.
  4585. world2machine_revert_to_uncorrected();
  4586. break;
  4587. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4588. {
  4589. int8_t verbosity_level = 0;
  4590. bool only_Z = code_seen('Z');
  4591. #ifdef SUPPORT_VERBOSITY
  4592. if (code_seen('V'))
  4593. {
  4594. // Just 'V' without a number counts as V1.
  4595. char c = strchr_pointer[1];
  4596. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4597. }
  4598. #endif //SUPPORT_VERBOSITY
  4599. gcode_M45(only_Z, verbosity_level);
  4600. }
  4601. break;
  4602. /*
  4603. case 46:
  4604. {
  4605. // M46: Prusa3D: Show the assigned IP address.
  4606. uint8_t ip[4];
  4607. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4608. if (hasIP) {
  4609. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4610. SERIAL_ECHO(int(ip[0]));
  4611. SERIAL_ECHOPGM(".");
  4612. SERIAL_ECHO(int(ip[1]));
  4613. SERIAL_ECHOPGM(".");
  4614. SERIAL_ECHO(int(ip[2]));
  4615. SERIAL_ECHOPGM(".");
  4616. SERIAL_ECHO(int(ip[3]));
  4617. SERIAL_ECHOLNPGM("");
  4618. } else {
  4619. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4620. }
  4621. break;
  4622. }
  4623. */
  4624. case 47:
  4625. //! M47: Prusa3D: Show end stops dialog on the display.
  4626. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4627. lcd_diag_show_end_stops();
  4628. KEEPALIVE_STATE(IN_HANDLER);
  4629. break;
  4630. #if 0
  4631. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4632. {
  4633. // Disable the default update procedure of the display. We will do a modal dialog.
  4634. lcd_update_enable(false);
  4635. // Let the planner use the uncorrected coordinates.
  4636. mbl.reset();
  4637. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4638. // the planner will not perform any adjustments in the XY plane.
  4639. // Wait for the motors to stop and update the current position with the absolute values.
  4640. world2machine_revert_to_uncorrected();
  4641. // Move the print head close to the bed.
  4642. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4644. st_synchronize();
  4645. // Home in the XY plane.
  4646. set_destination_to_current();
  4647. int l_feedmultiply = setup_for_endstop_move();
  4648. home_xy();
  4649. int8_t verbosity_level = 0;
  4650. if (code_seen('V')) {
  4651. // Just 'V' without a number counts as V1.
  4652. char c = strchr_pointer[1];
  4653. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4654. }
  4655. bool success = scan_bed_induction_points(verbosity_level);
  4656. clean_up_after_endstop_move(l_feedmultiply);
  4657. // Print head up.
  4658. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4660. st_synchronize();
  4661. lcd_update_enable(true);
  4662. break;
  4663. }
  4664. #endif
  4665. #ifdef ENABLE_AUTO_BED_LEVELING
  4666. #ifdef Z_PROBE_REPEATABILITY_TEST
  4667. //! M48 Z-Probe repeatability measurement function.
  4668. //!
  4669. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4670. //!
  4671. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4672. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4673. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4674. //! regenerated.
  4675. //!
  4676. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4677. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4678. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4679. //!
  4680. case 48: // M48 Z-Probe repeatability
  4681. {
  4682. #if Z_MIN_PIN == -1
  4683. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4684. #endif
  4685. double sum=0.0;
  4686. double mean=0.0;
  4687. double sigma=0.0;
  4688. double sample_set[50];
  4689. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4690. double X_current, Y_current, Z_current;
  4691. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4692. if (code_seen('V') || code_seen('v')) {
  4693. verbose_level = code_value();
  4694. if (verbose_level<0 || verbose_level>4 ) {
  4695. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4696. goto Sigma_Exit;
  4697. }
  4698. }
  4699. if (verbose_level > 0) {
  4700. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4701. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4702. }
  4703. if (code_seen('n')) {
  4704. n_samples = code_value();
  4705. if (n_samples<4 || n_samples>50 ) {
  4706. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4707. goto Sigma_Exit;
  4708. }
  4709. }
  4710. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4711. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4712. Z_current = st_get_position_mm(Z_AXIS);
  4713. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4714. ext_position = st_get_position_mm(E_AXIS);
  4715. if (code_seen('X') || code_seen('x') ) {
  4716. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4717. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4718. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4719. goto Sigma_Exit;
  4720. }
  4721. }
  4722. if (code_seen('Y') || code_seen('y') ) {
  4723. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4724. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4725. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4726. goto Sigma_Exit;
  4727. }
  4728. }
  4729. if (code_seen('L') || code_seen('l') ) {
  4730. n_legs = code_value();
  4731. if ( n_legs==1 )
  4732. n_legs = 2;
  4733. if ( n_legs<0 || n_legs>15 ) {
  4734. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4735. goto Sigma_Exit;
  4736. }
  4737. }
  4738. //
  4739. // Do all the preliminary setup work. First raise the probe.
  4740. //
  4741. st_synchronize();
  4742. plan_bed_level_matrix.set_to_identity();
  4743. plan_buffer_line( X_current, Y_current, Z_start_location,
  4744. ext_position,
  4745. homing_feedrate[Z_AXIS]/60,
  4746. active_extruder);
  4747. st_synchronize();
  4748. //
  4749. // Now get everything to the specified probe point So we can safely do a probe to
  4750. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4751. // use that as a starting point for each probe.
  4752. //
  4753. if (verbose_level > 2)
  4754. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4755. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4756. ext_position,
  4757. homing_feedrate[X_AXIS]/60,
  4758. active_extruder);
  4759. st_synchronize();
  4760. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4761. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4762. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4763. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4764. //
  4765. // OK, do the inital probe to get us close to the bed.
  4766. // Then retrace the right amount and use that in subsequent probes
  4767. //
  4768. int l_feedmultiply = setup_for_endstop_move();
  4769. run_z_probe();
  4770. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4771. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4772. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4773. ext_position,
  4774. homing_feedrate[X_AXIS]/60,
  4775. active_extruder);
  4776. st_synchronize();
  4777. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4778. for( n=0; n<n_samples; n++) {
  4779. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4780. if ( n_legs) {
  4781. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4782. int rotational_direction, l;
  4783. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4784. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4785. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4786. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4787. //SERIAL_ECHOPAIR(" theta: ",theta);
  4788. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4789. //SERIAL_PROTOCOLLNPGM("");
  4790. for( l=0; l<n_legs-1; l++) {
  4791. if (rotational_direction==1)
  4792. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4793. else
  4794. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4795. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4796. if ( radius<0.0 )
  4797. radius = -radius;
  4798. X_current = X_probe_location + cos(theta) * radius;
  4799. Y_current = Y_probe_location + sin(theta) * radius;
  4800. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4801. X_current = X_MIN_POS;
  4802. if ( X_current>X_MAX_POS)
  4803. X_current = X_MAX_POS;
  4804. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4805. Y_current = Y_MIN_POS;
  4806. if ( Y_current>Y_MAX_POS)
  4807. Y_current = Y_MAX_POS;
  4808. if (verbose_level>3 ) {
  4809. SERIAL_ECHOPAIR("x: ", X_current);
  4810. SERIAL_ECHOPAIR("y: ", Y_current);
  4811. SERIAL_PROTOCOLLNPGM("");
  4812. }
  4813. do_blocking_move_to( X_current, Y_current, Z_current );
  4814. }
  4815. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4816. }
  4817. int l_feedmultiply = setup_for_endstop_move();
  4818. run_z_probe();
  4819. sample_set[n] = current_position[Z_AXIS];
  4820. //
  4821. // Get the current mean for the data points we have so far
  4822. //
  4823. sum=0.0;
  4824. for( j=0; j<=n; j++) {
  4825. sum = sum + sample_set[j];
  4826. }
  4827. mean = sum / (double (n+1));
  4828. //
  4829. // Now, use that mean to calculate the standard deviation for the
  4830. // data points we have so far
  4831. //
  4832. sum=0.0;
  4833. for( j=0; j<=n; j++) {
  4834. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4835. }
  4836. sigma = sqrt( sum / (double (n+1)) );
  4837. if (verbose_level > 1) {
  4838. SERIAL_PROTOCOL(n+1);
  4839. SERIAL_PROTOCOL(" of ");
  4840. SERIAL_PROTOCOL(n_samples);
  4841. SERIAL_PROTOCOLPGM(" z: ");
  4842. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4843. }
  4844. if (verbose_level > 2) {
  4845. SERIAL_PROTOCOL(" mean: ");
  4846. SERIAL_PROTOCOL_F(mean,6);
  4847. SERIAL_PROTOCOL(" sigma: ");
  4848. SERIAL_PROTOCOL_F(sigma,6);
  4849. }
  4850. if (verbose_level > 0)
  4851. SERIAL_PROTOCOLPGM("\n");
  4852. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4853. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4854. st_synchronize();
  4855. }
  4856. _delay(1000);
  4857. clean_up_after_endstop_move(l_feedmultiply);
  4858. // enable_endstops(true);
  4859. if (verbose_level > 0) {
  4860. SERIAL_PROTOCOLPGM("Mean: ");
  4861. SERIAL_PROTOCOL_F(mean, 6);
  4862. SERIAL_PROTOCOLPGM("\n");
  4863. }
  4864. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4865. SERIAL_PROTOCOL_F(sigma, 6);
  4866. SERIAL_PROTOCOLPGM("\n\n");
  4867. Sigma_Exit:
  4868. break;
  4869. }
  4870. #endif // Z_PROBE_REPEATABILITY_TEST
  4871. #endif // ENABLE_AUTO_BED_LEVELING
  4872. case 73: //M73 show percent done and time remaining
  4873. if(code_seen('P')) print_percent_done_normal = code_value();
  4874. if(code_seen('R')) print_time_remaining_normal = code_value();
  4875. if(code_seen('Q')) print_percent_done_silent = code_value();
  4876. if(code_seen('S')) print_time_remaining_silent = code_value();
  4877. {
  4878. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4879. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4880. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4881. }
  4882. break;
  4883. case 104: // M104
  4884. {
  4885. uint8_t extruder;
  4886. if(setTargetedHotend(104,extruder)){
  4887. break;
  4888. }
  4889. if (code_seen('S'))
  4890. {
  4891. setTargetHotendSafe(code_value(), extruder);
  4892. }
  4893. setWatch();
  4894. break;
  4895. }
  4896. case 112: // M112 -Emergency Stop
  4897. kill(_n(""), 3);
  4898. break;
  4899. case 140: // M140 set bed temp
  4900. if (code_seen('S')) setTargetBed(code_value());
  4901. break;
  4902. case 105 : // M105
  4903. {
  4904. uint8_t extruder;
  4905. if(setTargetedHotend(105, extruder)){
  4906. break;
  4907. }
  4908. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4909. SERIAL_PROTOCOLPGM("ok T:");
  4910. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4911. SERIAL_PROTOCOLPGM(" /");
  4912. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4913. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4914. SERIAL_PROTOCOLPGM(" B:");
  4915. SERIAL_PROTOCOL_F(degBed(),1);
  4916. SERIAL_PROTOCOLPGM(" /");
  4917. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4918. #endif //TEMP_BED_PIN
  4919. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4920. SERIAL_PROTOCOLPGM(" T");
  4921. SERIAL_PROTOCOL(cur_extruder);
  4922. SERIAL_PROTOCOLPGM(":");
  4923. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4924. SERIAL_PROTOCOLPGM(" /");
  4925. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4926. }
  4927. #else
  4928. SERIAL_ERROR_START;
  4929. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4930. #endif
  4931. SERIAL_PROTOCOLPGM(" @:");
  4932. #ifdef EXTRUDER_WATTS
  4933. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4934. SERIAL_PROTOCOLPGM("W");
  4935. #else
  4936. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4937. #endif
  4938. SERIAL_PROTOCOLPGM(" B@:");
  4939. #ifdef BED_WATTS
  4940. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4941. SERIAL_PROTOCOLPGM("W");
  4942. #else
  4943. SERIAL_PROTOCOL(getHeaterPower(-1));
  4944. #endif
  4945. #ifdef PINDA_THERMISTOR
  4946. SERIAL_PROTOCOLPGM(" P:");
  4947. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4948. #endif //PINDA_THERMISTOR
  4949. #ifdef AMBIENT_THERMISTOR
  4950. SERIAL_PROTOCOLPGM(" A:");
  4951. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4952. #endif //AMBIENT_THERMISTOR
  4953. #ifdef SHOW_TEMP_ADC_VALUES
  4954. {float raw = 0.0;
  4955. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4956. SERIAL_PROTOCOLPGM(" ADC B:");
  4957. SERIAL_PROTOCOL_F(degBed(),1);
  4958. SERIAL_PROTOCOLPGM("C->");
  4959. raw = rawBedTemp();
  4960. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4961. SERIAL_PROTOCOLPGM(" Rb->");
  4962. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4963. SERIAL_PROTOCOLPGM(" Rxb->");
  4964. SERIAL_PROTOCOL_F(raw, 5);
  4965. #endif
  4966. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4967. SERIAL_PROTOCOLPGM(" T");
  4968. SERIAL_PROTOCOL(cur_extruder);
  4969. SERIAL_PROTOCOLPGM(":");
  4970. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4971. SERIAL_PROTOCOLPGM("C->");
  4972. raw = rawHotendTemp(cur_extruder);
  4973. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4974. SERIAL_PROTOCOLPGM(" Rt");
  4975. SERIAL_PROTOCOL(cur_extruder);
  4976. SERIAL_PROTOCOLPGM("->");
  4977. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4978. SERIAL_PROTOCOLPGM(" Rx");
  4979. SERIAL_PROTOCOL(cur_extruder);
  4980. SERIAL_PROTOCOLPGM("->");
  4981. SERIAL_PROTOCOL_F(raw, 5);
  4982. }}
  4983. #endif
  4984. SERIAL_PROTOCOLLN("");
  4985. KEEPALIVE_STATE(NOT_BUSY);
  4986. return;
  4987. break;
  4988. }
  4989. case 109:
  4990. {// M109 - Wait for extruder heater to reach target.
  4991. uint8_t extruder;
  4992. if(setTargetedHotend(109, extruder)){
  4993. break;
  4994. }
  4995. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4996. heating_status = 1;
  4997. if (farm_mode) { prusa_statistics(1); };
  4998. #ifdef AUTOTEMP
  4999. autotemp_enabled=false;
  5000. #endif
  5001. if (code_seen('S')) {
  5002. setTargetHotendSafe(code_value(), extruder);
  5003. CooldownNoWait = true;
  5004. } else if (code_seen('R')) {
  5005. setTargetHotendSafe(code_value(), extruder);
  5006. CooldownNoWait = false;
  5007. }
  5008. #ifdef AUTOTEMP
  5009. if (code_seen('S')) autotemp_min=code_value();
  5010. if (code_seen('B')) autotemp_max=code_value();
  5011. if (code_seen('F'))
  5012. {
  5013. autotemp_factor=code_value();
  5014. autotemp_enabled=true;
  5015. }
  5016. #endif
  5017. setWatch();
  5018. codenum = _millis();
  5019. /* See if we are heating up or cooling down */
  5020. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5021. KEEPALIVE_STATE(NOT_BUSY);
  5022. cancel_heatup = false;
  5023. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5024. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5025. KEEPALIVE_STATE(IN_HANDLER);
  5026. heating_status = 2;
  5027. if (farm_mode) { prusa_statistics(2); };
  5028. //starttime=_millis();
  5029. previous_millis_cmd = _millis();
  5030. }
  5031. break;
  5032. case 190: // M190 - Wait for bed heater to reach target.
  5033. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5034. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5035. heating_status = 3;
  5036. if (farm_mode) { prusa_statistics(1); };
  5037. if (code_seen('S'))
  5038. {
  5039. setTargetBed(code_value());
  5040. CooldownNoWait = true;
  5041. }
  5042. else if (code_seen('R'))
  5043. {
  5044. setTargetBed(code_value());
  5045. CooldownNoWait = false;
  5046. }
  5047. codenum = _millis();
  5048. cancel_heatup = false;
  5049. target_direction = isHeatingBed(); // true if heating, false if cooling
  5050. KEEPALIVE_STATE(NOT_BUSY);
  5051. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5052. {
  5053. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5054. {
  5055. if (!farm_mode) {
  5056. float tt = degHotend(active_extruder);
  5057. SERIAL_PROTOCOLPGM("T:");
  5058. SERIAL_PROTOCOL(tt);
  5059. SERIAL_PROTOCOLPGM(" E:");
  5060. SERIAL_PROTOCOL((int)active_extruder);
  5061. SERIAL_PROTOCOLPGM(" B:");
  5062. SERIAL_PROTOCOL_F(degBed(), 1);
  5063. SERIAL_PROTOCOLLN("");
  5064. }
  5065. codenum = _millis();
  5066. }
  5067. manage_heater();
  5068. manage_inactivity();
  5069. lcd_update(0);
  5070. }
  5071. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5072. KEEPALIVE_STATE(IN_HANDLER);
  5073. heating_status = 4;
  5074. previous_millis_cmd = _millis();
  5075. #endif
  5076. break;
  5077. #if defined(FAN_PIN) && FAN_PIN > -1
  5078. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5079. if (code_seen('S')){
  5080. fanSpeed=constrain(code_value(),0,255);
  5081. }
  5082. else {
  5083. fanSpeed=255;
  5084. }
  5085. break;
  5086. case 107: //M107 Fan Off
  5087. fanSpeed = 0;
  5088. break;
  5089. #endif //FAN_PIN
  5090. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5091. case 80: // M80 - Turn on Power Supply
  5092. SET_OUTPUT(PS_ON_PIN); //GND
  5093. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5094. // If you have a switch on suicide pin, this is useful
  5095. // if you want to start another print with suicide feature after
  5096. // a print without suicide...
  5097. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5098. SET_OUTPUT(SUICIDE_PIN);
  5099. WRITE(SUICIDE_PIN, HIGH);
  5100. #endif
  5101. powersupply = true;
  5102. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5103. lcd_update(0);
  5104. break;
  5105. #endif
  5106. case 81: // M81 - Turn off Power Supply
  5107. disable_heater();
  5108. st_synchronize();
  5109. disable_e0();
  5110. disable_e1();
  5111. disable_e2();
  5112. finishAndDisableSteppers();
  5113. fanSpeed = 0;
  5114. _delay(1000); // Wait a little before to switch off
  5115. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5116. st_synchronize();
  5117. suicide();
  5118. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5119. SET_OUTPUT(PS_ON_PIN);
  5120. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5121. #endif
  5122. powersupply = false;
  5123. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5124. lcd_update(0);
  5125. break;
  5126. case 82:
  5127. axis_relative_modes[3] = false;
  5128. break;
  5129. case 83:
  5130. axis_relative_modes[3] = true;
  5131. break;
  5132. case 18: //compatibility
  5133. case 84: // M84
  5134. if(code_seen('S')){
  5135. stepper_inactive_time = code_value() * 1000;
  5136. }
  5137. else
  5138. {
  5139. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5140. if(all_axis)
  5141. {
  5142. st_synchronize();
  5143. disable_e0();
  5144. disable_e1();
  5145. disable_e2();
  5146. finishAndDisableSteppers();
  5147. }
  5148. else
  5149. {
  5150. st_synchronize();
  5151. if (code_seen('X')) disable_x();
  5152. if (code_seen('Y')) disable_y();
  5153. if (code_seen('Z')) disable_z();
  5154. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5155. if (code_seen('E')) {
  5156. disable_e0();
  5157. disable_e1();
  5158. disable_e2();
  5159. }
  5160. #endif
  5161. }
  5162. }
  5163. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5164. print_time_remaining_init();
  5165. snmm_filaments_used = 0;
  5166. break;
  5167. case 85: // M85
  5168. if(code_seen('S')) {
  5169. max_inactive_time = code_value() * 1000;
  5170. }
  5171. break;
  5172. #ifdef SAFETYTIMER
  5173. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5174. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5175. if (code_seen('S')) {
  5176. safetytimer_inactive_time = code_value() * 1000;
  5177. safetyTimer.start();
  5178. }
  5179. break;
  5180. #endif
  5181. case 92: // M92
  5182. for(int8_t i=0; i < NUM_AXIS; i++)
  5183. {
  5184. if(code_seen(axis_codes[i]))
  5185. {
  5186. if(i == 3) { // E
  5187. float value = code_value();
  5188. if(value < 20.0) {
  5189. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5190. cs.max_jerk[E_AXIS] *= factor;
  5191. max_feedrate[i] *= factor;
  5192. axis_steps_per_sqr_second[i] *= factor;
  5193. }
  5194. cs.axis_steps_per_unit[i] = value;
  5195. }
  5196. else {
  5197. cs.axis_steps_per_unit[i] = code_value();
  5198. }
  5199. }
  5200. }
  5201. break;
  5202. case 110: //! M110 N<line number> - reset line pos
  5203. if (code_seen('N'))
  5204. gcode_LastN = code_value_long();
  5205. break;
  5206. case 113: // M113 - Get or set Host Keepalive interval
  5207. if (code_seen('S')) {
  5208. host_keepalive_interval = (uint8_t)code_value_short();
  5209. // NOMORE(host_keepalive_interval, 60);
  5210. }
  5211. else {
  5212. SERIAL_ECHO_START;
  5213. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5214. SERIAL_PROTOCOLLN("");
  5215. }
  5216. break;
  5217. case 115: // M115
  5218. if (code_seen('V')) {
  5219. // Report the Prusa version number.
  5220. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5221. } else if (code_seen('U')) {
  5222. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5223. // pause the print and ask the user to upgrade the firmware.
  5224. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5225. } else {
  5226. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5227. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5228. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5229. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5230. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5231. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5232. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5233. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5234. SERIAL_ECHOPGM(" UUID:");
  5235. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5236. }
  5237. break;
  5238. /* case 117: // M117 display message
  5239. starpos = (strchr(strchr_pointer + 5,'*'));
  5240. if(starpos!=NULL)
  5241. *(starpos)='\0';
  5242. lcd_setstatus(strchr_pointer + 5);
  5243. break;*/
  5244. case 114: // M114
  5245. gcode_M114();
  5246. break;
  5247. case 120: //! M120 - Disable endstops
  5248. enable_endstops(false) ;
  5249. break;
  5250. case 121: //! M121 - Enable endstops
  5251. enable_endstops(true) ;
  5252. break;
  5253. case 119: // M119
  5254. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5255. SERIAL_PROTOCOLLN("");
  5256. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5257. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5258. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5259. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5260. }else{
  5261. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5262. }
  5263. SERIAL_PROTOCOLLN("");
  5264. #endif
  5265. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5266. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5267. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5268. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5269. }else{
  5270. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5271. }
  5272. SERIAL_PROTOCOLLN("");
  5273. #endif
  5274. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5275. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5276. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5277. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5278. }else{
  5279. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5280. }
  5281. SERIAL_PROTOCOLLN("");
  5282. #endif
  5283. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5284. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5285. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5286. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5287. }else{
  5288. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5289. }
  5290. SERIAL_PROTOCOLLN("");
  5291. #endif
  5292. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5293. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5294. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5295. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5296. }else{
  5297. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5298. }
  5299. SERIAL_PROTOCOLLN("");
  5300. #endif
  5301. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5302. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5303. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5304. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5305. }else{
  5306. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5307. }
  5308. SERIAL_PROTOCOLLN("");
  5309. #endif
  5310. break;
  5311. //TODO: update for all axis, use for loop
  5312. #ifdef BLINKM
  5313. case 150: // M150
  5314. {
  5315. byte red;
  5316. byte grn;
  5317. byte blu;
  5318. if(code_seen('R')) red = code_value();
  5319. if(code_seen('U')) grn = code_value();
  5320. if(code_seen('B')) blu = code_value();
  5321. SendColors(red,grn,blu);
  5322. }
  5323. break;
  5324. #endif //BLINKM
  5325. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5326. {
  5327. uint8_t extruder = active_extruder;
  5328. if(code_seen('T')) {
  5329. extruder = code_value();
  5330. if(extruder >= EXTRUDERS) {
  5331. SERIAL_ECHO_START;
  5332. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5333. break;
  5334. }
  5335. }
  5336. if(code_seen('D')) {
  5337. float diameter = (float)code_value();
  5338. if (diameter == 0.0) {
  5339. // setting any extruder filament size disables volumetric on the assumption that
  5340. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5341. // for all extruders
  5342. cs.volumetric_enabled = false;
  5343. } else {
  5344. cs.filament_size[extruder] = (float)code_value();
  5345. // make sure all extruders have some sane value for the filament size
  5346. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5347. #if EXTRUDERS > 1
  5348. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5349. #if EXTRUDERS > 2
  5350. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5351. #endif
  5352. #endif
  5353. cs.volumetric_enabled = true;
  5354. }
  5355. } else {
  5356. //reserved for setting filament diameter via UFID or filament measuring device
  5357. break;
  5358. }
  5359. calculate_extruder_multipliers();
  5360. }
  5361. break;
  5362. case 201: // M201
  5363. for (int8_t i = 0; i < NUM_AXIS; i++)
  5364. {
  5365. if (code_seen(axis_codes[i]))
  5366. {
  5367. unsigned long val = code_value();
  5368. #ifdef TMC2130
  5369. unsigned long val_silent = val;
  5370. if ((i == X_AXIS) || (i == Y_AXIS))
  5371. {
  5372. if (val > NORMAL_MAX_ACCEL_XY)
  5373. val = NORMAL_MAX_ACCEL_XY;
  5374. if (val_silent > SILENT_MAX_ACCEL_XY)
  5375. val_silent = SILENT_MAX_ACCEL_XY;
  5376. }
  5377. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5378. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5379. #else //TMC2130
  5380. max_acceleration_units_per_sq_second[i] = val;
  5381. #endif //TMC2130
  5382. }
  5383. }
  5384. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5385. reset_acceleration_rates();
  5386. break;
  5387. #if 0 // Not used for Sprinter/grbl gen6
  5388. case 202: // M202
  5389. for(int8_t i=0; i < NUM_AXIS; i++) {
  5390. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5391. }
  5392. break;
  5393. #endif
  5394. case 203: // M203 max feedrate mm/sec
  5395. for (int8_t i = 0; i < NUM_AXIS; i++)
  5396. {
  5397. if (code_seen(axis_codes[i]))
  5398. {
  5399. float val = code_value();
  5400. #ifdef TMC2130
  5401. float val_silent = val;
  5402. if ((i == X_AXIS) || (i == Y_AXIS))
  5403. {
  5404. if (val > NORMAL_MAX_FEEDRATE_XY)
  5405. val = NORMAL_MAX_FEEDRATE_XY;
  5406. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5407. val_silent = SILENT_MAX_FEEDRATE_XY;
  5408. }
  5409. cs.max_feedrate_normal[i] = val;
  5410. cs.max_feedrate_silent[i] = val_silent;
  5411. #else //TMC2130
  5412. max_feedrate[i] = val;
  5413. #endif //TMC2130
  5414. }
  5415. }
  5416. break;
  5417. case 204:
  5418. //! M204 acclereration settings.
  5419. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5420. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5421. {
  5422. if(code_seen('S')) {
  5423. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5424. // and it is also generated by Slic3r to control acceleration per extrusion type
  5425. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5426. cs.acceleration = code_value();
  5427. // Interpret the T value as retract acceleration in the old Marlin format.
  5428. if(code_seen('T'))
  5429. cs.retract_acceleration = code_value();
  5430. } else {
  5431. // New acceleration format, compatible with the upstream Marlin.
  5432. if(code_seen('P'))
  5433. cs.acceleration = code_value();
  5434. if(code_seen('R'))
  5435. cs.retract_acceleration = code_value();
  5436. if(code_seen('T')) {
  5437. // Interpret the T value as the travel acceleration in the new Marlin format.
  5438. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5439. // travel_acceleration = code_value();
  5440. }
  5441. }
  5442. }
  5443. break;
  5444. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5445. {
  5446. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5447. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5448. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5449. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5450. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5451. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5452. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5453. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5454. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5455. }
  5456. break;
  5457. case 206: // M206 additional homing offset
  5458. for(int8_t i=0; i < 3; i++)
  5459. {
  5460. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5461. }
  5462. break;
  5463. #ifdef FWRETRACT
  5464. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5465. {
  5466. if(code_seen('S'))
  5467. {
  5468. cs.retract_length = code_value() ;
  5469. }
  5470. if(code_seen('F'))
  5471. {
  5472. cs.retract_feedrate = code_value()/60 ;
  5473. }
  5474. if(code_seen('Z'))
  5475. {
  5476. cs.retract_zlift = code_value() ;
  5477. }
  5478. }break;
  5479. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5480. {
  5481. if(code_seen('S'))
  5482. {
  5483. cs.retract_recover_length = code_value() ;
  5484. }
  5485. if(code_seen('F'))
  5486. {
  5487. cs.retract_recover_feedrate = code_value()/60 ;
  5488. }
  5489. }break;
  5490. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5491. {
  5492. if(code_seen('S'))
  5493. {
  5494. int t= code_value() ;
  5495. switch(t)
  5496. {
  5497. case 0:
  5498. {
  5499. cs.autoretract_enabled=false;
  5500. retracted[0]=false;
  5501. #if EXTRUDERS > 1
  5502. retracted[1]=false;
  5503. #endif
  5504. #if EXTRUDERS > 2
  5505. retracted[2]=false;
  5506. #endif
  5507. }break;
  5508. case 1:
  5509. {
  5510. cs.autoretract_enabled=true;
  5511. retracted[0]=false;
  5512. #if EXTRUDERS > 1
  5513. retracted[1]=false;
  5514. #endif
  5515. #if EXTRUDERS > 2
  5516. retracted[2]=false;
  5517. #endif
  5518. }break;
  5519. default:
  5520. SERIAL_ECHO_START;
  5521. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5522. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5523. SERIAL_ECHOLNPGM("\"(1)");
  5524. }
  5525. }
  5526. }break;
  5527. #endif // FWRETRACT
  5528. #if EXTRUDERS > 1
  5529. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5530. {
  5531. uint8_t extruder;
  5532. if(setTargetedHotend(218, extruder)){
  5533. break;
  5534. }
  5535. if(code_seen('X'))
  5536. {
  5537. extruder_offset[X_AXIS][extruder] = code_value();
  5538. }
  5539. if(code_seen('Y'))
  5540. {
  5541. extruder_offset[Y_AXIS][extruder] = code_value();
  5542. }
  5543. SERIAL_ECHO_START;
  5544. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5545. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5546. {
  5547. SERIAL_ECHO(" ");
  5548. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5549. SERIAL_ECHO(",");
  5550. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5551. }
  5552. SERIAL_ECHOLN("");
  5553. }break;
  5554. #endif
  5555. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5556. {
  5557. if (code_seen('B')) //backup current speed factor
  5558. {
  5559. saved_feedmultiply_mm = feedmultiply;
  5560. }
  5561. if(code_seen('S'))
  5562. {
  5563. feedmultiply = code_value() ;
  5564. }
  5565. if (code_seen('R')) { //restore previous feedmultiply
  5566. feedmultiply = saved_feedmultiply_mm;
  5567. }
  5568. }
  5569. break;
  5570. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5571. {
  5572. if(code_seen('S'))
  5573. {
  5574. int tmp_code = code_value();
  5575. if (code_seen('T'))
  5576. {
  5577. uint8_t extruder;
  5578. if(setTargetedHotend(221, extruder)){
  5579. break;
  5580. }
  5581. extruder_multiply[extruder] = tmp_code;
  5582. }
  5583. else
  5584. {
  5585. extrudemultiply = tmp_code ;
  5586. }
  5587. }
  5588. calculate_extruder_multipliers();
  5589. }
  5590. break;
  5591. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5592. {
  5593. if(code_seen('P')){
  5594. int pin_number = code_value(); // pin number
  5595. int pin_state = -1; // required pin state - default is inverted
  5596. if(code_seen('S')) pin_state = code_value(); // required pin state
  5597. if(pin_state >= -1 && pin_state <= 1){
  5598. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5599. {
  5600. if (sensitive_pins[i] == pin_number)
  5601. {
  5602. pin_number = -1;
  5603. break;
  5604. }
  5605. }
  5606. if (pin_number > -1)
  5607. {
  5608. int target = LOW;
  5609. st_synchronize();
  5610. pinMode(pin_number, INPUT);
  5611. switch(pin_state){
  5612. case 1:
  5613. target = HIGH;
  5614. break;
  5615. case 0:
  5616. target = LOW;
  5617. break;
  5618. case -1:
  5619. target = !digitalRead(pin_number);
  5620. break;
  5621. }
  5622. while(digitalRead(pin_number) != target){
  5623. manage_heater();
  5624. manage_inactivity();
  5625. lcd_update(0);
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. break;
  5632. #if NUM_SERVOS > 0
  5633. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5634. {
  5635. int servo_index = -1;
  5636. int servo_position = 0;
  5637. if (code_seen('P'))
  5638. servo_index = code_value();
  5639. if (code_seen('S')) {
  5640. servo_position = code_value();
  5641. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5642. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5643. servos[servo_index].attach(0);
  5644. #endif
  5645. servos[servo_index].write(servo_position);
  5646. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5647. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5648. servos[servo_index].detach();
  5649. #endif
  5650. }
  5651. else {
  5652. SERIAL_ECHO_START;
  5653. SERIAL_ECHO("Servo ");
  5654. SERIAL_ECHO(servo_index);
  5655. SERIAL_ECHOLN(" out of range");
  5656. }
  5657. }
  5658. else if (servo_index >= 0) {
  5659. SERIAL_PROTOCOL(MSG_OK);
  5660. SERIAL_PROTOCOL(" Servo ");
  5661. SERIAL_PROTOCOL(servo_index);
  5662. SERIAL_PROTOCOL(": ");
  5663. SERIAL_PROTOCOL(servos[servo_index].read());
  5664. SERIAL_PROTOCOLLN("");
  5665. }
  5666. }
  5667. break;
  5668. #endif // NUM_SERVOS > 0
  5669. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5670. case 300: // M300
  5671. {
  5672. int beepS = code_seen('S') ? code_value() : 110;
  5673. int beepP = code_seen('P') ? code_value() : 1000;
  5674. if (beepS > 0)
  5675. {
  5676. #if BEEPER > 0
  5677. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5678. _tone(BEEPER, beepS);
  5679. _delay(beepP);
  5680. _noTone(BEEPER);
  5681. #endif
  5682. }
  5683. else
  5684. {
  5685. _delay(beepP);
  5686. }
  5687. }
  5688. break;
  5689. #endif // M300
  5690. #ifdef PIDTEMP
  5691. case 301: // M301
  5692. {
  5693. if(code_seen('P')) cs.Kp = code_value();
  5694. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5695. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5696. #ifdef PID_ADD_EXTRUSION_RATE
  5697. if(code_seen('C')) Kc = code_value();
  5698. #endif
  5699. updatePID();
  5700. SERIAL_PROTOCOLRPGM(MSG_OK);
  5701. SERIAL_PROTOCOL(" p:");
  5702. SERIAL_PROTOCOL(cs.Kp);
  5703. SERIAL_PROTOCOL(" i:");
  5704. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5705. SERIAL_PROTOCOL(" d:");
  5706. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5707. #ifdef PID_ADD_EXTRUSION_RATE
  5708. SERIAL_PROTOCOL(" c:");
  5709. //Kc does not have scaling applied above, or in resetting defaults
  5710. SERIAL_PROTOCOL(Kc);
  5711. #endif
  5712. SERIAL_PROTOCOLLN("");
  5713. }
  5714. break;
  5715. #endif //PIDTEMP
  5716. #ifdef PIDTEMPBED
  5717. case 304: // M304
  5718. {
  5719. if(code_seen('P')) cs.bedKp = code_value();
  5720. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5721. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5722. updatePID();
  5723. SERIAL_PROTOCOLRPGM(MSG_OK);
  5724. SERIAL_PROTOCOL(" p:");
  5725. SERIAL_PROTOCOL(cs.bedKp);
  5726. SERIAL_PROTOCOL(" i:");
  5727. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5728. SERIAL_PROTOCOL(" d:");
  5729. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5730. SERIAL_PROTOCOLLN("");
  5731. }
  5732. break;
  5733. #endif //PIDTEMP
  5734. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5735. {
  5736. #ifdef CHDK
  5737. SET_OUTPUT(CHDK);
  5738. WRITE(CHDK, HIGH);
  5739. chdkHigh = _millis();
  5740. chdkActive = true;
  5741. #else
  5742. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5743. const uint8_t NUM_PULSES=16;
  5744. const float PULSE_LENGTH=0.01524;
  5745. for(int i=0; i < NUM_PULSES; i++) {
  5746. WRITE(PHOTOGRAPH_PIN, HIGH);
  5747. _delay_ms(PULSE_LENGTH);
  5748. WRITE(PHOTOGRAPH_PIN, LOW);
  5749. _delay_ms(PULSE_LENGTH);
  5750. }
  5751. _delay(7.33);
  5752. for(int i=0; i < NUM_PULSES; i++) {
  5753. WRITE(PHOTOGRAPH_PIN, HIGH);
  5754. _delay_ms(PULSE_LENGTH);
  5755. WRITE(PHOTOGRAPH_PIN, LOW);
  5756. _delay_ms(PULSE_LENGTH);
  5757. }
  5758. #endif
  5759. #endif //chdk end if
  5760. }
  5761. break;
  5762. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5763. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5764. {
  5765. float temp = .0;
  5766. if (code_seen('S')) temp=code_value();
  5767. set_extrude_min_temp(temp);
  5768. }
  5769. break;
  5770. #endif
  5771. case 303: // M303 PID autotune
  5772. {
  5773. float temp = 150.0;
  5774. int e=0;
  5775. int c=5;
  5776. if (code_seen('E')) e=code_value();
  5777. if (e<0)
  5778. temp=70;
  5779. if (code_seen('S')) temp=code_value();
  5780. if (code_seen('C')) c=code_value();
  5781. PID_autotune(temp, e, c);
  5782. }
  5783. break;
  5784. case 400: // M400 finish all moves
  5785. {
  5786. st_synchronize();
  5787. }
  5788. break;
  5789. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5790. {
  5791. //! currently three different materials are needed (default, flex and PVA)
  5792. //! add storing this information for different load/unload profiles etc. in the future
  5793. //!firmware does not wait for "ok" from mmu
  5794. if (mmu_enabled)
  5795. {
  5796. uint8_t extruder = 255;
  5797. uint8_t filament = FILAMENT_UNDEFINED;
  5798. if(code_seen('E')) extruder = code_value();
  5799. if(code_seen('F')) filament = code_value();
  5800. mmu_set_filament_type(extruder, filament);
  5801. }
  5802. }
  5803. break;
  5804. case 500: // M500 Store settings in EEPROM
  5805. {
  5806. Config_StoreSettings();
  5807. }
  5808. break;
  5809. case 501: // M501 Read settings from EEPROM
  5810. {
  5811. Config_RetrieveSettings();
  5812. }
  5813. break;
  5814. case 502: // M502 Revert to default settings
  5815. {
  5816. Config_ResetDefault();
  5817. }
  5818. break;
  5819. case 503: // M503 print settings currently in memory
  5820. {
  5821. Config_PrintSettings();
  5822. }
  5823. break;
  5824. case 509: //M509 Force language selection
  5825. {
  5826. lang_reset();
  5827. SERIAL_ECHO_START;
  5828. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5829. }
  5830. break;
  5831. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5832. case 540:
  5833. {
  5834. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5835. }
  5836. break;
  5837. #endif
  5838. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5839. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5840. {
  5841. float value;
  5842. if (code_seen('Z'))
  5843. {
  5844. value = code_value();
  5845. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5846. {
  5847. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5848. SERIAL_ECHO_START;
  5849. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5850. SERIAL_PROTOCOLLN("");
  5851. }
  5852. else
  5853. {
  5854. SERIAL_ECHO_START;
  5855. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5856. SERIAL_ECHORPGM(MSG_Z_MIN);
  5857. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5858. SERIAL_ECHORPGM(MSG_Z_MAX);
  5859. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5860. SERIAL_PROTOCOLLN("");
  5861. }
  5862. }
  5863. else
  5864. {
  5865. SERIAL_ECHO_START;
  5866. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5867. SERIAL_ECHO(-cs.zprobe_zoffset);
  5868. SERIAL_PROTOCOLLN("");
  5869. }
  5870. break;
  5871. }
  5872. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5873. #ifdef FILAMENTCHANGEENABLE
  5874. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5875. {
  5876. st_synchronize();
  5877. float x_position = current_position[X_AXIS];
  5878. float y_position = current_position[Y_AXIS];
  5879. float z_shift = 0; // is it necessary to be a float?
  5880. float e_shift_init = 0;
  5881. float e_shift_late = 0;
  5882. bool automatic = false;
  5883. //Retract extruder
  5884. if(code_seen('E'))
  5885. {
  5886. e_shift_init = code_value();
  5887. }
  5888. else
  5889. {
  5890. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5891. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5892. #endif
  5893. }
  5894. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5895. if (code_seen('L'))
  5896. {
  5897. e_shift_late = code_value();
  5898. }
  5899. else
  5900. {
  5901. #ifdef FILAMENTCHANGE_FINALRETRACT
  5902. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5903. #endif
  5904. }
  5905. //Lift Z
  5906. if(code_seen('Z'))
  5907. {
  5908. z_shift = code_value();
  5909. }
  5910. else
  5911. {
  5912. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5913. }
  5914. //Move XY to side
  5915. if(code_seen('X'))
  5916. {
  5917. x_position = code_value();
  5918. }
  5919. else
  5920. {
  5921. #ifdef FILAMENTCHANGE_XPOS
  5922. x_position = FILAMENTCHANGE_XPOS;
  5923. #endif
  5924. }
  5925. if(code_seen('Y'))
  5926. {
  5927. y_position = code_value();
  5928. }
  5929. else
  5930. {
  5931. #ifdef FILAMENTCHANGE_YPOS
  5932. y_position = FILAMENTCHANGE_YPOS ;
  5933. #endif
  5934. }
  5935. if (mmu_enabled && code_seen("AUTO"))
  5936. automatic = true;
  5937. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5938. }
  5939. break;
  5940. #endif //FILAMENTCHANGEENABLE
  5941. case 601: //! M601 - Pause print
  5942. {
  5943. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5944. lcd_pause_print();
  5945. }
  5946. break;
  5947. case 602: { //! M602 - Resume print
  5948. lcd_resume_print();
  5949. }
  5950. break;
  5951. #ifdef PINDA_THERMISTOR
  5952. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5953. {
  5954. int set_target_pinda = 0;
  5955. if (code_seen('S')) {
  5956. set_target_pinda = code_value();
  5957. }
  5958. else {
  5959. break;
  5960. }
  5961. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5962. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5963. SERIAL_PROTOCOL(set_target_pinda);
  5964. SERIAL_PROTOCOLLN("");
  5965. codenum = _millis();
  5966. cancel_heatup = false;
  5967. bool is_pinda_cooling = false;
  5968. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5969. is_pinda_cooling = true;
  5970. }
  5971. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5972. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5973. {
  5974. SERIAL_PROTOCOLPGM("P:");
  5975. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5976. SERIAL_PROTOCOLPGM("/");
  5977. SERIAL_PROTOCOL(set_target_pinda);
  5978. SERIAL_PROTOCOLLN("");
  5979. codenum = _millis();
  5980. }
  5981. manage_heater();
  5982. manage_inactivity();
  5983. lcd_update(0);
  5984. }
  5985. LCD_MESSAGERPGM(MSG_OK);
  5986. break;
  5987. }
  5988. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5989. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5990. uint8_t cal_status = calibration_status_pinda();
  5991. int16_t usteps = 0;
  5992. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5993. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5994. for (uint8_t i = 0; i < 6; i++)
  5995. {
  5996. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5997. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5998. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5999. SERIAL_PROTOCOLPGM(", ");
  6000. SERIAL_PROTOCOL(35 + (i * 5));
  6001. SERIAL_PROTOCOLPGM(", ");
  6002. SERIAL_PROTOCOL(usteps);
  6003. SERIAL_PROTOCOLPGM(", ");
  6004. SERIAL_PROTOCOL(mm * 1000);
  6005. SERIAL_PROTOCOLLN("");
  6006. }
  6007. }
  6008. else if (code_seen('!')) { // ! - Set factory default values
  6009. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6010. int16_t z_shift = 8; //40C - 20um - 8usteps
  6011. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6012. z_shift = 24; //45C - 60um - 24usteps
  6013. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6014. z_shift = 48; //50C - 120um - 48usteps
  6015. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6016. z_shift = 80; //55C - 200um - 80usteps
  6017. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6018. z_shift = 120; //60C - 300um - 120usteps
  6019. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6020. SERIAL_PROTOCOLLN("factory restored");
  6021. }
  6022. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6023. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6024. int16_t z_shift = 0;
  6025. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6026. SERIAL_PROTOCOLLN("zerorized");
  6027. }
  6028. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6029. int16_t usteps = code_value();
  6030. if (code_seen('I')) {
  6031. uint8_t index = code_value();
  6032. if (index < 5) {
  6033. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6034. SERIAL_PROTOCOLLN("OK");
  6035. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6036. for (uint8_t i = 0; i < 6; i++)
  6037. {
  6038. usteps = 0;
  6039. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6040. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6041. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6042. SERIAL_PROTOCOLPGM(", ");
  6043. SERIAL_PROTOCOL(35 + (i * 5));
  6044. SERIAL_PROTOCOLPGM(", ");
  6045. SERIAL_PROTOCOL(usteps);
  6046. SERIAL_PROTOCOLPGM(", ");
  6047. SERIAL_PROTOCOL(mm * 1000);
  6048. SERIAL_PROTOCOLLN("");
  6049. }
  6050. }
  6051. }
  6052. }
  6053. else {
  6054. SERIAL_PROTOCOLPGM("no valid command");
  6055. }
  6056. break;
  6057. #endif //PINDA_THERMISTOR
  6058. case 862: // M862: print checking
  6059. float nDummy;
  6060. uint8_t nCommand;
  6061. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6062. switch((ClPrintChecking)nCommand)
  6063. {
  6064. case ClPrintChecking::_Nozzle: // ~ .1
  6065. uint16_t nDiameter;
  6066. if(code_seen('P'))
  6067. {
  6068. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6069. nozzle_diameter_check(nDiameter);
  6070. }
  6071. /*
  6072. else if(code_seen('S')&&farm_mode)
  6073. {
  6074. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6075. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6076. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6077. }
  6078. */
  6079. else if(code_seen('Q'))
  6080. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6081. break;
  6082. case ClPrintChecking::_Model: // ~ .2
  6083. if(code_seen('P'))
  6084. {
  6085. uint16_t nPrinterModel;
  6086. nPrinterModel=(uint16_t)code_value_long();
  6087. printer_model_check(nPrinterModel);
  6088. }
  6089. else if(code_seen('Q'))
  6090. SERIAL_PROTOCOLLN(nPrinterType);
  6091. break;
  6092. case ClPrintChecking::_Smodel: // ~ .3
  6093. if(code_seen('P'))
  6094. printer_smodel_check(strchr_pointer);
  6095. else if(code_seen('Q'))
  6096. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6097. break;
  6098. case ClPrintChecking::_Version: // ~ .4
  6099. if(code_seen('P'))
  6100. fw_version_check(++strchr_pointer);
  6101. else if(code_seen('Q'))
  6102. SERIAL_PROTOCOLLN(FW_VERSION);
  6103. break;
  6104. case ClPrintChecking::_Gcode: // ~ .5
  6105. if(code_seen('P'))
  6106. {
  6107. uint16_t nGcodeLevel;
  6108. nGcodeLevel=(uint16_t)code_value_long();
  6109. gcode_level_check(nGcodeLevel);
  6110. }
  6111. else if(code_seen('Q'))
  6112. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6113. break;
  6114. }
  6115. break;
  6116. #ifdef LIN_ADVANCE
  6117. case 900: // M900: Set LIN_ADVANCE options.
  6118. gcode_M900();
  6119. break;
  6120. #endif
  6121. case 907: // M907 Set digital trimpot motor current using axis codes.
  6122. {
  6123. #ifdef TMC2130
  6124. for (int i = 0; i < NUM_AXIS; i++)
  6125. if(code_seen(axis_codes[i]))
  6126. {
  6127. long cur_mA = code_value_long();
  6128. uint8_t val = tmc2130_cur2val(cur_mA);
  6129. tmc2130_set_current_h(i, val);
  6130. tmc2130_set_current_r(i, val);
  6131. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6132. }
  6133. #else //TMC2130
  6134. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6135. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6136. if(code_seen('B')) st_current_set(4,code_value());
  6137. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6138. #endif
  6139. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6140. if(code_seen('X')) st_current_set(0, code_value());
  6141. #endif
  6142. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6143. if(code_seen('Z')) st_current_set(1, code_value());
  6144. #endif
  6145. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6146. if(code_seen('E')) st_current_set(2, code_value());
  6147. #endif
  6148. #endif //TMC2130
  6149. }
  6150. break;
  6151. case 908: // M908 Control digital trimpot directly.
  6152. {
  6153. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6154. uint8_t channel,current;
  6155. if(code_seen('P')) channel=code_value();
  6156. if(code_seen('S')) current=code_value();
  6157. digitalPotWrite(channel, current);
  6158. #endif
  6159. }
  6160. break;
  6161. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6162. case 910: //! M910 - TMC2130 init
  6163. {
  6164. tmc2130_init();
  6165. }
  6166. break;
  6167. case 911: //! M911 - Set TMC2130 holding currents
  6168. {
  6169. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6170. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6171. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6172. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6173. }
  6174. break;
  6175. case 912: //! M912 - Set TMC2130 running currents
  6176. {
  6177. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6178. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6179. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6180. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6181. }
  6182. break;
  6183. case 913: //! M913 - Print TMC2130 currents
  6184. {
  6185. tmc2130_print_currents();
  6186. }
  6187. break;
  6188. case 914: //! M914 - Set normal mode
  6189. {
  6190. tmc2130_mode = TMC2130_MODE_NORMAL;
  6191. update_mode_profile();
  6192. tmc2130_init();
  6193. }
  6194. break;
  6195. case 915: //! M915 - Set silent mode
  6196. {
  6197. tmc2130_mode = TMC2130_MODE_SILENT;
  6198. update_mode_profile();
  6199. tmc2130_init();
  6200. }
  6201. break;
  6202. case 916: //! M916 - Set sg_thrs
  6203. {
  6204. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6205. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6206. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6207. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6208. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6209. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6210. }
  6211. break;
  6212. case 917: //! M917 - Set TMC2130 pwm_ampl
  6213. {
  6214. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6215. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6216. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6217. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6218. }
  6219. break;
  6220. case 918: //! M918 - Set TMC2130 pwm_grad
  6221. {
  6222. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6223. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6224. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6225. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6226. }
  6227. break;
  6228. #endif //TMC2130_SERVICE_CODES_M910_M918
  6229. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6230. {
  6231. #ifdef TMC2130
  6232. if(code_seen('E'))
  6233. {
  6234. uint16_t res_new = code_value();
  6235. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6236. {
  6237. st_synchronize();
  6238. uint8_t axis = E_AXIS;
  6239. uint16_t res = tmc2130_get_res(axis);
  6240. tmc2130_set_res(axis, res_new);
  6241. cs.axis_ustep_resolution[axis] = res_new;
  6242. if (res_new > res)
  6243. {
  6244. uint16_t fac = (res_new / res);
  6245. cs.axis_steps_per_unit[axis] *= fac;
  6246. position[E_AXIS] *= fac;
  6247. }
  6248. else
  6249. {
  6250. uint16_t fac = (res / res_new);
  6251. cs.axis_steps_per_unit[axis] /= fac;
  6252. position[E_AXIS] /= fac;
  6253. }
  6254. }
  6255. }
  6256. #else //TMC2130
  6257. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6258. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6259. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6260. if(code_seen('B')) microstep_mode(4,code_value());
  6261. microstep_readings();
  6262. #endif
  6263. #endif //TMC2130
  6264. }
  6265. break;
  6266. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6267. {
  6268. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6269. if(code_seen('S')) switch((int)code_value())
  6270. {
  6271. case 1:
  6272. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6273. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6274. break;
  6275. case 2:
  6276. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6277. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6278. break;
  6279. }
  6280. microstep_readings();
  6281. #endif
  6282. }
  6283. break;
  6284. case 701: //! M701 - load filament
  6285. {
  6286. if (mmu_enabled && code_seen('E'))
  6287. tmp_extruder = code_value();
  6288. gcode_M701();
  6289. }
  6290. break;
  6291. case 702: //! M702 [U C] -
  6292. {
  6293. #ifdef SNMM
  6294. if (code_seen('U'))
  6295. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6296. else if (code_seen('C'))
  6297. extr_unload(); //! if "C" unload just current filament
  6298. else
  6299. extr_unload_all(); //! otherwise unload all filaments
  6300. #else
  6301. if (code_seen('C')) {
  6302. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6303. }
  6304. else {
  6305. if(mmu_enabled) extr_unload(); //! unload current filament
  6306. else unload_filament();
  6307. }
  6308. #endif //SNMM
  6309. }
  6310. break;
  6311. case 999: // M999: Restart after being stopped
  6312. Stopped = false;
  6313. lcd_reset_alert_level();
  6314. gcode_LastN = Stopped_gcode_LastN;
  6315. FlushSerialRequestResend();
  6316. break;
  6317. default:
  6318. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6319. }
  6320. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6321. mcode_in_progress = 0;
  6322. }
  6323. }
  6324. // end if(code_seen('M')) (end of M codes)
  6325. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6326. //! select filament in case of MMU_V2
  6327. //! if extruder is "?", open menu to let the user select extruder/filament
  6328. //!
  6329. //! For MMU_V2:
  6330. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6331. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6332. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6333. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6334. else if(code_seen('T'))
  6335. {
  6336. int index;
  6337. bool load_to_nozzle = false;
  6338. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6339. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6340. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6341. SERIAL_ECHOLNPGM("Invalid T code.");
  6342. }
  6343. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6344. if (mmu_enabled)
  6345. {
  6346. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6347. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6348. {
  6349. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6350. }
  6351. else
  6352. {
  6353. st_synchronize();
  6354. mmu_command(MmuCmd::T0 + tmp_extruder);
  6355. manage_response(true, true, MMU_TCODE_MOVE);
  6356. }
  6357. }
  6358. }
  6359. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6360. if (mmu_enabled)
  6361. {
  6362. st_synchronize();
  6363. mmu_continue_loading(is_usb_printing);
  6364. mmu_extruder = tmp_extruder; //filament change is finished
  6365. mmu_load_to_nozzle();
  6366. }
  6367. }
  6368. else {
  6369. if (*(strchr_pointer + index) == '?')
  6370. {
  6371. if(mmu_enabled)
  6372. {
  6373. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6374. load_to_nozzle = true;
  6375. } else
  6376. {
  6377. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6378. }
  6379. }
  6380. else {
  6381. tmp_extruder = code_value();
  6382. if (mmu_enabled && lcd_autoDepleteEnabled())
  6383. {
  6384. tmp_extruder = ad_getAlternative(tmp_extruder);
  6385. }
  6386. }
  6387. st_synchronize();
  6388. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6389. if (mmu_enabled)
  6390. {
  6391. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6392. {
  6393. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6394. }
  6395. else
  6396. {
  6397. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6398. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6399. {
  6400. mmu_command(MmuCmd::K0 + tmp_extruder);
  6401. manage_response(true, true, MMU_UNLOAD_MOVE);
  6402. }
  6403. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6404. mmu_command(MmuCmd::T0 + tmp_extruder);
  6405. manage_response(true, true, MMU_TCODE_MOVE);
  6406. mmu_continue_loading(is_usb_printing);
  6407. mmu_extruder = tmp_extruder; //filament change is finished
  6408. if (load_to_nozzle)// for single material usage with mmu
  6409. {
  6410. mmu_load_to_nozzle();
  6411. }
  6412. }
  6413. }
  6414. else
  6415. {
  6416. #ifdef SNMM
  6417. #ifdef LIN_ADVANCE
  6418. if (mmu_extruder != tmp_extruder)
  6419. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6420. #endif
  6421. mmu_extruder = tmp_extruder;
  6422. _delay(100);
  6423. disable_e0();
  6424. disable_e1();
  6425. disable_e2();
  6426. pinMode(E_MUX0_PIN, OUTPUT);
  6427. pinMode(E_MUX1_PIN, OUTPUT);
  6428. _delay(100);
  6429. SERIAL_ECHO_START;
  6430. SERIAL_ECHO("T:");
  6431. SERIAL_ECHOLN((int)tmp_extruder);
  6432. switch (tmp_extruder) {
  6433. case 1:
  6434. WRITE(E_MUX0_PIN, HIGH);
  6435. WRITE(E_MUX1_PIN, LOW);
  6436. break;
  6437. case 2:
  6438. WRITE(E_MUX0_PIN, LOW);
  6439. WRITE(E_MUX1_PIN, HIGH);
  6440. break;
  6441. case 3:
  6442. WRITE(E_MUX0_PIN, HIGH);
  6443. WRITE(E_MUX1_PIN, HIGH);
  6444. break;
  6445. default:
  6446. WRITE(E_MUX0_PIN, LOW);
  6447. WRITE(E_MUX1_PIN, LOW);
  6448. break;
  6449. }
  6450. _delay(100);
  6451. #else //SNMM
  6452. if (tmp_extruder >= EXTRUDERS) {
  6453. SERIAL_ECHO_START;
  6454. SERIAL_ECHOPGM("T");
  6455. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6456. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6457. }
  6458. else {
  6459. #if EXTRUDERS > 1
  6460. boolean make_move = false;
  6461. #endif
  6462. if (code_seen('F')) {
  6463. #if EXTRUDERS > 1
  6464. make_move = true;
  6465. #endif
  6466. next_feedrate = code_value();
  6467. if (next_feedrate > 0.0) {
  6468. feedrate = next_feedrate;
  6469. }
  6470. }
  6471. #if EXTRUDERS > 1
  6472. if (tmp_extruder != active_extruder) {
  6473. // Save current position to return to after applying extruder offset
  6474. memcpy(destination, current_position, sizeof(destination));
  6475. // Offset extruder (only by XY)
  6476. int i;
  6477. for (i = 0; i < 2; i++) {
  6478. current_position[i] = current_position[i] -
  6479. extruder_offset[i][active_extruder] +
  6480. extruder_offset[i][tmp_extruder];
  6481. }
  6482. // Set the new active extruder and position
  6483. active_extruder = tmp_extruder;
  6484. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6485. // Move to the old position if 'F' was in the parameters
  6486. if (make_move && Stopped == false) {
  6487. prepare_move();
  6488. }
  6489. }
  6490. #endif
  6491. SERIAL_ECHO_START;
  6492. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6493. SERIAL_PROTOCOLLN((int)active_extruder);
  6494. }
  6495. #endif //SNMM
  6496. }
  6497. }
  6498. } // end if(code_seen('T')) (end of T codes)
  6499. else if (code_seen('D')) // D codes (debug)
  6500. {
  6501. switch((int)code_value())
  6502. {
  6503. case -1: //! D-1 - Endless loop
  6504. dcode__1(); break;
  6505. #ifdef DEBUG_DCODES
  6506. case 0: //! D0 - Reset
  6507. dcode_0(); break;
  6508. case 1: //! D1 - Clear EEPROM
  6509. dcode_1(); break;
  6510. case 2: //! D2 - Read/Write RAM
  6511. dcode_2(); break;
  6512. #endif //DEBUG_DCODES
  6513. #ifdef DEBUG_DCODE3
  6514. case 3: //! D3 - Read/Write EEPROM
  6515. dcode_3(); break;
  6516. #endif //DEBUG_DCODE3
  6517. #ifdef DEBUG_DCODES
  6518. case 4: //! D4 - Read/Write PIN
  6519. dcode_4(); break;
  6520. #endif //DEBUG_DCODES
  6521. #ifdef DEBUG_DCODE5
  6522. case 5: // D5 - Read/Write FLASH
  6523. dcode_5(); break;
  6524. break;
  6525. #endif //DEBUG_DCODE5
  6526. #ifdef DEBUG_DCODES
  6527. case 6: // D6 - Read/Write external FLASH
  6528. dcode_6(); break;
  6529. case 7: //! D7 - Read/Write Bootloader
  6530. dcode_7(); break;
  6531. case 8: //! D8 - Read/Write PINDA
  6532. dcode_8(); break;
  6533. case 9: //! D9 - Read/Write ADC
  6534. dcode_9(); break;
  6535. case 10: //! D10 - XYZ calibration = OK
  6536. dcode_10(); break;
  6537. #endif //DEBUG_DCODES
  6538. #ifdef HEATBED_ANALYSIS
  6539. case 80:
  6540. {
  6541. float dimension_x = 40;
  6542. float dimension_y = 40;
  6543. int points_x = 40;
  6544. int points_y = 40;
  6545. float offset_x = 74;
  6546. float offset_y = 33;
  6547. if (code_seen('E')) dimension_x = code_value();
  6548. if (code_seen('F')) dimension_y = code_value();
  6549. if (code_seen('G')) {points_x = code_value(); }
  6550. if (code_seen('H')) {points_y = code_value(); }
  6551. if (code_seen('I')) {offset_x = code_value(); }
  6552. if (code_seen('J')) {offset_y = code_value(); }
  6553. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6554. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6555. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6556. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6557. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6558. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6559. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6560. }break;
  6561. case 81:
  6562. {
  6563. float dimension_x = 40;
  6564. float dimension_y = 40;
  6565. int points_x = 40;
  6566. int points_y = 40;
  6567. float offset_x = 74;
  6568. float offset_y = 33;
  6569. if (code_seen('E')) dimension_x = code_value();
  6570. if (code_seen('F')) dimension_y = code_value();
  6571. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6572. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6573. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6574. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6575. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6576. } break;
  6577. #endif //HEATBED_ANALYSIS
  6578. #ifdef DEBUG_DCODES
  6579. case 106: //D106 print measured fan speed for different pwm values
  6580. {
  6581. for (int i = 255; i > 0; i = i - 5) {
  6582. fanSpeed = i;
  6583. //delay_keep_alive(2000);
  6584. for (int j = 0; j < 100; j++) {
  6585. delay_keep_alive(100);
  6586. }
  6587. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6588. }
  6589. }break;
  6590. #ifdef TMC2130
  6591. case 2130: //! D2130 - TMC2130
  6592. dcode_2130(); break;
  6593. #endif //TMC2130
  6594. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6595. case 9125: //! D9125 - FILAMENT_SENSOR
  6596. dcode_9125(); break;
  6597. #endif //FILAMENT_SENSOR
  6598. #endif //DEBUG_DCODES
  6599. }
  6600. }
  6601. else
  6602. {
  6603. SERIAL_ECHO_START;
  6604. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6605. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6606. SERIAL_ECHOLNPGM("\"(2)");
  6607. }
  6608. KEEPALIVE_STATE(NOT_BUSY);
  6609. ClearToSend();
  6610. }
  6611. void FlushSerialRequestResend()
  6612. {
  6613. //char cmdbuffer[bufindr][100]="Resend:";
  6614. MYSERIAL.flush();
  6615. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6616. }
  6617. // Confirm the execution of a command, if sent from a serial line.
  6618. // Execution of a command from a SD card will not be confirmed.
  6619. void ClearToSend()
  6620. {
  6621. previous_millis_cmd = _millis();
  6622. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6623. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6624. }
  6625. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6626. void update_currents() {
  6627. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6628. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6629. float tmp_motor[3];
  6630. //SERIAL_ECHOLNPGM("Currents updated: ");
  6631. if (destination[Z_AXIS] < Z_SILENT) {
  6632. //SERIAL_ECHOLNPGM("LOW");
  6633. for (uint8_t i = 0; i < 3; i++) {
  6634. st_current_set(i, current_low[i]);
  6635. /*MYSERIAL.print(int(i));
  6636. SERIAL_ECHOPGM(": ");
  6637. MYSERIAL.println(current_low[i]);*/
  6638. }
  6639. }
  6640. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6641. //SERIAL_ECHOLNPGM("HIGH");
  6642. for (uint8_t i = 0; i < 3; i++) {
  6643. st_current_set(i, current_high[i]);
  6644. /*MYSERIAL.print(int(i));
  6645. SERIAL_ECHOPGM(": ");
  6646. MYSERIAL.println(current_high[i]);*/
  6647. }
  6648. }
  6649. else {
  6650. for (uint8_t i = 0; i < 3; i++) {
  6651. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6652. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6653. st_current_set(i, tmp_motor[i]);
  6654. /*MYSERIAL.print(int(i));
  6655. SERIAL_ECHOPGM(": ");
  6656. MYSERIAL.println(tmp_motor[i]);*/
  6657. }
  6658. }
  6659. }
  6660. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6661. void get_coordinates()
  6662. {
  6663. bool seen[4]={false,false,false,false};
  6664. for(int8_t i=0; i < NUM_AXIS; i++) {
  6665. if(code_seen(axis_codes[i]))
  6666. {
  6667. bool relative = axis_relative_modes[i] || relative_mode;
  6668. destination[i] = (float)code_value();
  6669. if (i == E_AXIS) {
  6670. float emult = extruder_multiplier[active_extruder];
  6671. if (emult != 1.) {
  6672. if (! relative) {
  6673. destination[i] -= current_position[i];
  6674. relative = true;
  6675. }
  6676. destination[i] *= emult;
  6677. }
  6678. }
  6679. if (relative)
  6680. destination[i] += current_position[i];
  6681. seen[i]=true;
  6682. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6683. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6684. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6685. }
  6686. else destination[i] = current_position[i]; //Are these else lines really needed?
  6687. }
  6688. if(code_seen('F')) {
  6689. next_feedrate = code_value();
  6690. #ifdef MAX_SILENT_FEEDRATE
  6691. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6692. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6693. #endif //MAX_SILENT_FEEDRATE
  6694. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6695. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6696. {
  6697. // float e_max_speed =
  6698. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6699. }
  6700. }
  6701. }
  6702. void get_arc_coordinates()
  6703. {
  6704. #ifdef SF_ARC_FIX
  6705. bool relative_mode_backup = relative_mode;
  6706. relative_mode = true;
  6707. #endif
  6708. get_coordinates();
  6709. #ifdef SF_ARC_FIX
  6710. relative_mode=relative_mode_backup;
  6711. #endif
  6712. if(code_seen('I')) {
  6713. offset[0] = code_value();
  6714. }
  6715. else {
  6716. offset[0] = 0.0;
  6717. }
  6718. if(code_seen('J')) {
  6719. offset[1] = code_value();
  6720. }
  6721. else {
  6722. offset[1] = 0.0;
  6723. }
  6724. }
  6725. void clamp_to_software_endstops(float target[3])
  6726. {
  6727. #ifdef DEBUG_DISABLE_SWLIMITS
  6728. return;
  6729. #endif //DEBUG_DISABLE_SWLIMITS
  6730. world2machine_clamp(target[0], target[1]);
  6731. // Clamp the Z coordinate.
  6732. if (min_software_endstops) {
  6733. float negative_z_offset = 0;
  6734. #ifdef ENABLE_AUTO_BED_LEVELING
  6735. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6736. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6737. #endif
  6738. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6739. }
  6740. if (max_software_endstops) {
  6741. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6742. }
  6743. }
  6744. #ifdef MESH_BED_LEVELING
  6745. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6746. float dx = x - current_position[X_AXIS];
  6747. float dy = y - current_position[Y_AXIS];
  6748. float dz = z - current_position[Z_AXIS];
  6749. int n_segments = 0;
  6750. if (mbl.active) {
  6751. float len = abs(dx) + abs(dy);
  6752. if (len > 0)
  6753. // Split to 3cm segments or shorter.
  6754. n_segments = int(ceil(len / 30.f));
  6755. }
  6756. if (n_segments > 1) {
  6757. float de = e - current_position[E_AXIS];
  6758. for (int i = 1; i < n_segments; ++ i) {
  6759. float t = float(i) / float(n_segments);
  6760. if (saved_printing || (mbl.active == false)) return;
  6761. plan_buffer_line(
  6762. current_position[X_AXIS] + t * dx,
  6763. current_position[Y_AXIS] + t * dy,
  6764. current_position[Z_AXIS] + t * dz,
  6765. current_position[E_AXIS] + t * de,
  6766. feed_rate, extruder);
  6767. }
  6768. }
  6769. // The rest of the path.
  6770. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6771. current_position[X_AXIS] = x;
  6772. current_position[Y_AXIS] = y;
  6773. current_position[Z_AXIS] = z;
  6774. current_position[E_AXIS] = e;
  6775. }
  6776. #endif // MESH_BED_LEVELING
  6777. void prepare_move()
  6778. {
  6779. clamp_to_software_endstops(destination);
  6780. previous_millis_cmd = _millis();
  6781. // Do not use feedmultiply for E or Z only moves
  6782. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6783. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6784. }
  6785. else {
  6786. #ifdef MESH_BED_LEVELING
  6787. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6788. #else
  6789. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6790. #endif
  6791. }
  6792. for(int8_t i=0; i < NUM_AXIS; i++) {
  6793. current_position[i] = destination[i];
  6794. }
  6795. }
  6796. void prepare_arc_move(char isclockwise) {
  6797. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6798. // Trace the arc
  6799. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6800. // As far as the parser is concerned, the position is now == target. In reality the
  6801. // motion control system might still be processing the action and the real tool position
  6802. // in any intermediate location.
  6803. for(int8_t i=0; i < NUM_AXIS; i++) {
  6804. current_position[i] = destination[i];
  6805. }
  6806. previous_millis_cmd = _millis();
  6807. }
  6808. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6809. #if defined(FAN_PIN)
  6810. #if CONTROLLERFAN_PIN == FAN_PIN
  6811. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6812. #endif
  6813. #endif
  6814. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6815. unsigned long lastMotorCheck = 0;
  6816. void controllerFan()
  6817. {
  6818. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6819. {
  6820. lastMotorCheck = _millis();
  6821. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6822. #if EXTRUDERS > 2
  6823. || !READ(E2_ENABLE_PIN)
  6824. #endif
  6825. #if EXTRUDER > 1
  6826. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6827. || !READ(X2_ENABLE_PIN)
  6828. #endif
  6829. || !READ(E1_ENABLE_PIN)
  6830. #endif
  6831. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6832. {
  6833. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6834. }
  6835. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6836. {
  6837. digitalWrite(CONTROLLERFAN_PIN, 0);
  6838. analogWrite(CONTROLLERFAN_PIN, 0);
  6839. }
  6840. else
  6841. {
  6842. // allows digital or PWM fan output to be used (see M42 handling)
  6843. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6844. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6845. }
  6846. }
  6847. }
  6848. #endif
  6849. #ifdef TEMP_STAT_LEDS
  6850. static bool blue_led = false;
  6851. static bool red_led = false;
  6852. static uint32_t stat_update = 0;
  6853. void handle_status_leds(void) {
  6854. float max_temp = 0.0;
  6855. if(_millis() > stat_update) {
  6856. stat_update += 500; // Update every 0.5s
  6857. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6858. max_temp = max(max_temp, degHotend(cur_extruder));
  6859. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6860. }
  6861. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6862. max_temp = max(max_temp, degTargetBed());
  6863. max_temp = max(max_temp, degBed());
  6864. #endif
  6865. if((max_temp > 55.0) && (red_led == false)) {
  6866. digitalWrite(STAT_LED_RED, 1);
  6867. digitalWrite(STAT_LED_BLUE, 0);
  6868. red_led = true;
  6869. blue_led = false;
  6870. }
  6871. if((max_temp < 54.0) && (blue_led == false)) {
  6872. digitalWrite(STAT_LED_RED, 0);
  6873. digitalWrite(STAT_LED_BLUE, 1);
  6874. red_led = false;
  6875. blue_led = true;
  6876. }
  6877. }
  6878. }
  6879. #endif
  6880. #ifdef SAFETYTIMER
  6881. /**
  6882. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6883. *
  6884. * Full screen blocking notification message is shown after heater turning off.
  6885. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6886. * damage print.
  6887. *
  6888. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6889. */
  6890. static void handleSafetyTimer()
  6891. {
  6892. #if (EXTRUDERS > 1)
  6893. #error Implemented only for one extruder.
  6894. #endif //(EXTRUDERS > 1)
  6895. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6896. {
  6897. safetyTimer.stop();
  6898. }
  6899. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6900. {
  6901. safetyTimer.start();
  6902. }
  6903. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6904. {
  6905. setTargetBed(0);
  6906. setAllTargetHotends(0);
  6907. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6908. }
  6909. }
  6910. #endif //SAFETYTIMER
  6911. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6912. {
  6913. bool bInhibitFlag;
  6914. #ifdef FILAMENT_SENSOR
  6915. if (mmu_enabled == false)
  6916. {
  6917. //-// if (mcode_in_progress != 600) //M600 not in progress
  6918. #ifdef PAT9125
  6919. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6920. #endif // PAT9125
  6921. #ifdef IR_SENSOR
  6922. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6923. #endif // IR_SENSOR
  6924. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6925. {
  6926. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6927. {
  6928. if (fsensor_check_autoload())
  6929. {
  6930. #ifdef PAT9125
  6931. fsensor_autoload_check_stop();
  6932. #endif //PAT9125
  6933. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6934. if(0)
  6935. {
  6936. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6937. _tone(BEEPER, 1000);
  6938. delay_keep_alive(50);
  6939. _noTone(BEEPER);
  6940. loading_flag = true;
  6941. enquecommand_front_P((PSTR("M701")));
  6942. }
  6943. else
  6944. {
  6945. /*
  6946. lcd_update_enable(false);
  6947. show_preheat_nozzle_warning();
  6948. lcd_update_enable(true);
  6949. */
  6950. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6951. bFilamentFirstRun=false;
  6952. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6953. {
  6954. bFilamentPreheatState=true;
  6955. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6956. menu_submenu(mFilamentItemForce);
  6957. }
  6958. else
  6959. {
  6960. menu_submenu(mFilamentMenu);
  6961. lcd_timeoutToStatus.start();
  6962. }
  6963. }
  6964. }
  6965. }
  6966. else
  6967. {
  6968. #ifdef PAT9125
  6969. fsensor_autoload_check_stop();
  6970. #endif //PAT9125
  6971. fsensor_update();
  6972. }
  6973. }
  6974. }
  6975. #endif //FILAMENT_SENSOR
  6976. #ifdef SAFETYTIMER
  6977. handleSafetyTimer();
  6978. #endif //SAFETYTIMER
  6979. #if defined(KILL_PIN) && KILL_PIN > -1
  6980. static int killCount = 0; // make the inactivity button a bit less responsive
  6981. const int KILL_DELAY = 10000;
  6982. #endif
  6983. if(buflen < (BUFSIZE-1)){
  6984. get_command();
  6985. }
  6986. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6987. if(max_inactive_time)
  6988. kill(_n(""), 4);
  6989. if(stepper_inactive_time) {
  6990. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6991. {
  6992. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6993. disable_x();
  6994. disable_y();
  6995. disable_z();
  6996. disable_e0();
  6997. disable_e1();
  6998. disable_e2();
  6999. }
  7000. }
  7001. }
  7002. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7003. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7004. {
  7005. chdkActive = false;
  7006. WRITE(CHDK, LOW);
  7007. }
  7008. #endif
  7009. #if defined(KILL_PIN) && KILL_PIN > -1
  7010. // Check if the kill button was pressed and wait just in case it was an accidental
  7011. // key kill key press
  7012. // -------------------------------------------------------------------------------
  7013. if( 0 == READ(KILL_PIN) )
  7014. {
  7015. killCount++;
  7016. }
  7017. else if (killCount > 0)
  7018. {
  7019. killCount--;
  7020. }
  7021. // Exceeded threshold and we can confirm that it was not accidental
  7022. // KILL the machine
  7023. // ----------------------------------------------------------------
  7024. if ( killCount >= KILL_DELAY)
  7025. {
  7026. kill("", 5);
  7027. }
  7028. #endif
  7029. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7030. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7031. #endif
  7032. #ifdef EXTRUDER_RUNOUT_PREVENT
  7033. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7034. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7035. {
  7036. bool oldstatus=READ(E0_ENABLE_PIN);
  7037. enable_e0();
  7038. float oldepos=current_position[E_AXIS];
  7039. float oldedes=destination[E_AXIS];
  7040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7041. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7042. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7043. current_position[E_AXIS]=oldepos;
  7044. destination[E_AXIS]=oldedes;
  7045. plan_set_e_position(oldepos);
  7046. previous_millis_cmd=_millis();
  7047. st_synchronize();
  7048. WRITE(E0_ENABLE_PIN,oldstatus);
  7049. }
  7050. #endif
  7051. #ifdef TEMP_STAT_LEDS
  7052. handle_status_leds();
  7053. #endif
  7054. check_axes_activity();
  7055. mmu_loop();
  7056. }
  7057. void kill(const char *full_screen_message, unsigned char id)
  7058. {
  7059. printf_P(_N("KILL: %d\n"), id);
  7060. //return;
  7061. cli(); // Stop interrupts
  7062. disable_heater();
  7063. disable_x();
  7064. // SERIAL_ECHOLNPGM("kill - disable Y");
  7065. disable_y();
  7066. disable_z();
  7067. disable_e0();
  7068. disable_e1();
  7069. disable_e2();
  7070. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7071. pinMode(PS_ON_PIN,INPUT);
  7072. #endif
  7073. SERIAL_ERROR_START;
  7074. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7075. if (full_screen_message != NULL) {
  7076. SERIAL_ERRORLNRPGM(full_screen_message);
  7077. lcd_display_message_fullscreen_P(full_screen_message);
  7078. } else {
  7079. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7080. }
  7081. // FMC small patch to update the LCD before ending
  7082. sei(); // enable interrupts
  7083. for ( int i=5; i--; lcd_update(0))
  7084. {
  7085. _delay(200);
  7086. }
  7087. cli(); // disable interrupts
  7088. suicide();
  7089. while(1)
  7090. {
  7091. #ifdef WATCHDOG
  7092. wdt_reset();
  7093. #endif //WATCHDOG
  7094. /* Intentionally left empty */
  7095. } // Wait for reset
  7096. }
  7097. void Stop()
  7098. {
  7099. disable_heater();
  7100. if(Stopped == false) {
  7101. Stopped = true;
  7102. lcd_print_stop();
  7103. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7104. SERIAL_ERROR_START;
  7105. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7106. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7107. }
  7108. }
  7109. bool IsStopped() { return Stopped; };
  7110. #ifdef FAST_PWM_FAN
  7111. void setPwmFrequency(uint8_t pin, int val)
  7112. {
  7113. val &= 0x07;
  7114. switch(digitalPinToTimer(pin))
  7115. {
  7116. #if defined(TCCR0A)
  7117. case TIMER0A:
  7118. case TIMER0B:
  7119. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7120. // TCCR0B |= val;
  7121. break;
  7122. #endif
  7123. #if defined(TCCR1A)
  7124. case TIMER1A:
  7125. case TIMER1B:
  7126. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7127. // TCCR1B |= val;
  7128. break;
  7129. #endif
  7130. #if defined(TCCR2)
  7131. case TIMER2:
  7132. case TIMER2:
  7133. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7134. TCCR2 |= val;
  7135. break;
  7136. #endif
  7137. #if defined(TCCR2A)
  7138. case TIMER2A:
  7139. case TIMER2B:
  7140. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7141. TCCR2B |= val;
  7142. break;
  7143. #endif
  7144. #if defined(TCCR3A)
  7145. case TIMER3A:
  7146. case TIMER3B:
  7147. case TIMER3C:
  7148. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7149. TCCR3B |= val;
  7150. break;
  7151. #endif
  7152. #if defined(TCCR4A)
  7153. case TIMER4A:
  7154. case TIMER4B:
  7155. case TIMER4C:
  7156. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7157. TCCR4B |= val;
  7158. break;
  7159. #endif
  7160. #if defined(TCCR5A)
  7161. case TIMER5A:
  7162. case TIMER5B:
  7163. case TIMER5C:
  7164. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7165. TCCR5B |= val;
  7166. break;
  7167. #endif
  7168. }
  7169. }
  7170. #endif //FAST_PWM_FAN
  7171. //! @brief Get and validate extruder number
  7172. //!
  7173. //! If it is not specified, active_extruder is returned in parameter extruder.
  7174. //! @param [in] code M code number
  7175. //! @param [out] extruder
  7176. //! @return error
  7177. //! @retval true Invalid extruder specified in T code
  7178. //! @retval false Valid extruder specified in T code, or not specifiead
  7179. bool setTargetedHotend(int code, uint8_t &extruder)
  7180. {
  7181. extruder = active_extruder;
  7182. if(code_seen('T')) {
  7183. extruder = code_value();
  7184. if(extruder >= EXTRUDERS) {
  7185. SERIAL_ECHO_START;
  7186. switch(code){
  7187. case 104:
  7188. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7189. break;
  7190. case 105:
  7191. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7192. break;
  7193. case 109:
  7194. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7195. break;
  7196. case 218:
  7197. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7198. break;
  7199. case 221:
  7200. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7201. break;
  7202. }
  7203. SERIAL_PROTOCOLLN((int)extruder);
  7204. return true;
  7205. }
  7206. }
  7207. return false;
  7208. }
  7209. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7210. {
  7211. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7212. {
  7213. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7214. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7215. }
  7216. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7217. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7218. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7219. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7220. total_filament_used = 0;
  7221. }
  7222. float calculate_extruder_multiplier(float diameter) {
  7223. float out = 1.f;
  7224. if (cs.volumetric_enabled && diameter > 0.f) {
  7225. float area = M_PI * diameter * diameter * 0.25;
  7226. out = 1.f / area;
  7227. }
  7228. if (extrudemultiply != 100)
  7229. out *= float(extrudemultiply) * 0.01f;
  7230. return out;
  7231. }
  7232. void calculate_extruder_multipliers() {
  7233. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7234. #if EXTRUDERS > 1
  7235. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7236. #if EXTRUDERS > 2
  7237. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7238. #endif
  7239. #endif
  7240. }
  7241. void delay_keep_alive(unsigned int ms)
  7242. {
  7243. for (;;) {
  7244. manage_heater();
  7245. // Manage inactivity, but don't disable steppers on timeout.
  7246. manage_inactivity(true);
  7247. lcd_update(0);
  7248. if (ms == 0)
  7249. break;
  7250. else if (ms >= 50) {
  7251. _delay(50);
  7252. ms -= 50;
  7253. } else {
  7254. _delay(ms);
  7255. ms = 0;
  7256. }
  7257. }
  7258. }
  7259. static void wait_for_heater(long codenum, uint8_t extruder) {
  7260. #ifdef TEMP_RESIDENCY_TIME
  7261. long residencyStart;
  7262. residencyStart = -1;
  7263. /* continue to loop until we have reached the target temp
  7264. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7265. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7266. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7267. #else
  7268. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7269. #endif //TEMP_RESIDENCY_TIME
  7270. if ((_millis() - codenum) > 1000UL)
  7271. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7272. if (!farm_mode) {
  7273. SERIAL_PROTOCOLPGM("T:");
  7274. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7275. SERIAL_PROTOCOLPGM(" E:");
  7276. SERIAL_PROTOCOL((int)extruder);
  7277. #ifdef TEMP_RESIDENCY_TIME
  7278. SERIAL_PROTOCOLPGM(" W:");
  7279. if (residencyStart > -1)
  7280. {
  7281. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7282. SERIAL_PROTOCOLLN(codenum);
  7283. }
  7284. else
  7285. {
  7286. SERIAL_PROTOCOLLN("?");
  7287. }
  7288. }
  7289. #else
  7290. SERIAL_PROTOCOLLN("");
  7291. #endif
  7292. codenum = _millis();
  7293. }
  7294. manage_heater();
  7295. manage_inactivity(true); //do not disable steppers
  7296. lcd_update(0);
  7297. #ifdef TEMP_RESIDENCY_TIME
  7298. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7299. or when current temp falls outside the hysteresis after target temp was reached */
  7300. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7301. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7302. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7303. {
  7304. residencyStart = _millis();
  7305. }
  7306. #endif //TEMP_RESIDENCY_TIME
  7307. }
  7308. }
  7309. void check_babystep()
  7310. {
  7311. int babystep_z;
  7312. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7313. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7314. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7315. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7316. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7317. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7318. lcd_update_enable(true);
  7319. }
  7320. }
  7321. #ifdef HEATBED_ANALYSIS
  7322. void d_setup()
  7323. {
  7324. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7325. pinMode(D_DATA, INPUT_PULLUP);
  7326. pinMode(D_REQUIRE, OUTPUT);
  7327. digitalWrite(D_REQUIRE, HIGH);
  7328. }
  7329. float d_ReadData()
  7330. {
  7331. int digit[13];
  7332. String mergeOutput;
  7333. float output;
  7334. digitalWrite(D_REQUIRE, HIGH);
  7335. for (int i = 0; i<13; i++)
  7336. {
  7337. for (int j = 0; j < 4; j++)
  7338. {
  7339. while (digitalRead(D_DATACLOCK) == LOW) {}
  7340. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7341. bitWrite(digit[i], j, digitalRead(D_DATA));
  7342. }
  7343. }
  7344. digitalWrite(D_REQUIRE, LOW);
  7345. mergeOutput = "";
  7346. output = 0;
  7347. for (int r = 5; r <= 10; r++) //Merge digits
  7348. {
  7349. mergeOutput += digit[r];
  7350. }
  7351. output = mergeOutput.toFloat();
  7352. if (digit[4] == 8) //Handle sign
  7353. {
  7354. output *= -1;
  7355. }
  7356. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7357. {
  7358. output /= 10;
  7359. }
  7360. return output;
  7361. }
  7362. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7363. int t1 = 0;
  7364. int t_delay = 0;
  7365. int digit[13];
  7366. int m;
  7367. char str[3];
  7368. //String mergeOutput;
  7369. char mergeOutput[15];
  7370. float output;
  7371. int mesh_point = 0; //index number of calibration point
  7372. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7373. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7374. float mesh_home_z_search = 4;
  7375. float measure_z_heigth = 0.2f;
  7376. float row[x_points_num];
  7377. int ix = 0;
  7378. int iy = 0;
  7379. const char* filename_wldsd = "mesh.txt";
  7380. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7381. char numb_wldsd[8]; // (" -A.BCD" + null)
  7382. #ifdef MICROMETER_LOGGING
  7383. d_setup();
  7384. #endif //MICROMETER_LOGGING
  7385. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7386. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7387. unsigned int custom_message_type_old = custom_message_type;
  7388. unsigned int custom_message_state_old = custom_message_state;
  7389. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7390. custom_message_state = (x_points_num * y_points_num) + 10;
  7391. lcd_update(1);
  7392. //mbl.reset();
  7393. babystep_undo();
  7394. card.openFile(filename_wldsd, false);
  7395. /*destination[Z_AXIS] = mesh_home_z_search;
  7396. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7397. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7398. for(int8_t i=0; i < NUM_AXIS; i++) {
  7399. current_position[i] = destination[i];
  7400. }
  7401. st_synchronize();
  7402. */
  7403. destination[Z_AXIS] = measure_z_heigth;
  7404. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7405. for(int8_t i=0; i < NUM_AXIS; i++) {
  7406. current_position[i] = destination[i];
  7407. }
  7408. st_synchronize();
  7409. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7410. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7411. SERIAL_PROTOCOL(x_points_num);
  7412. SERIAL_PROTOCOLPGM(",");
  7413. SERIAL_PROTOCOL(y_points_num);
  7414. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7415. SERIAL_PROTOCOL(mesh_home_z_search);
  7416. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7417. SERIAL_PROTOCOL(x_dimension);
  7418. SERIAL_PROTOCOLPGM(",");
  7419. SERIAL_PROTOCOL(y_dimension);
  7420. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7421. while (mesh_point != x_points_num * y_points_num) {
  7422. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7423. iy = mesh_point / x_points_num;
  7424. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7425. float z0 = 0.f;
  7426. /*destination[Z_AXIS] = mesh_home_z_search;
  7427. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7428. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7429. for(int8_t i=0; i < NUM_AXIS; i++) {
  7430. current_position[i] = destination[i];
  7431. }
  7432. st_synchronize();*/
  7433. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7434. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7435. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7436. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7437. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7438. for(int8_t i=0; i < NUM_AXIS; i++) {
  7439. current_position[i] = destination[i];
  7440. }
  7441. st_synchronize();
  7442. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7443. delay_keep_alive(1000);
  7444. #ifdef MICROMETER_LOGGING
  7445. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7446. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7447. //strcat(data_wldsd, numb_wldsd);
  7448. //MYSERIAL.println(data_wldsd);
  7449. //delay(1000);
  7450. //delay(3000);
  7451. //t1 = millis();
  7452. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7453. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7454. memset(digit, 0, sizeof(digit));
  7455. //cli();
  7456. digitalWrite(D_REQUIRE, LOW);
  7457. for (int i = 0; i<13; i++)
  7458. {
  7459. //t1 = millis();
  7460. for (int j = 0; j < 4; j++)
  7461. {
  7462. while (digitalRead(D_DATACLOCK) == LOW) {}
  7463. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7464. //printf_P(PSTR("Done %d\n"), j);
  7465. bitWrite(digit[i], j, digitalRead(D_DATA));
  7466. }
  7467. //t_delay = (millis() - t1);
  7468. //SERIAL_PROTOCOLPGM(" ");
  7469. //SERIAL_PROTOCOL_F(t_delay, 5);
  7470. //SERIAL_PROTOCOLPGM(" ");
  7471. }
  7472. //sei();
  7473. digitalWrite(D_REQUIRE, HIGH);
  7474. mergeOutput[0] = '\0';
  7475. output = 0;
  7476. for (int r = 5; r <= 10; r++) //Merge digits
  7477. {
  7478. sprintf(str, "%d", digit[r]);
  7479. strcat(mergeOutput, str);
  7480. }
  7481. output = atof(mergeOutput);
  7482. if (digit[4] == 8) //Handle sign
  7483. {
  7484. output *= -1;
  7485. }
  7486. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7487. {
  7488. output *= 0.1;
  7489. }
  7490. //output = d_ReadData();
  7491. //row[ix] = current_position[Z_AXIS];
  7492. //row[ix] = d_ReadData();
  7493. row[ix] = output;
  7494. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7495. memset(data_wldsd, 0, sizeof(data_wldsd));
  7496. for (int i = 0; i < x_points_num; i++) {
  7497. SERIAL_PROTOCOLPGM(" ");
  7498. SERIAL_PROTOCOL_F(row[i], 5);
  7499. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7500. dtostrf(row[i], 7, 3, numb_wldsd);
  7501. strcat(data_wldsd, numb_wldsd);
  7502. }
  7503. card.write_command(data_wldsd);
  7504. SERIAL_PROTOCOLPGM("\n");
  7505. }
  7506. custom_message_state--;
  7507. mesh_point++;
  7508. lcd_update(1);
  7509. }
  7510. #endif //MICROMETER_LOGGING
  7511. card.closefile();
  7512. //clean_up_after_endstop_move(l_feedmultiply);
  7513. }
  7514. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7515. int t1 = 0;
  7516. int t_delay = 0;
  7517. int digit[13];
  7518. int m;
  7519. char str[3];
  7520. //String mergeOutput;
  7521. char mergeOutput[15];
  7522. float output;
  7523. int mesh_point = 0; //index number of calibration point
  7524. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7525. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7526. float mesh_home_z_search = 4;
  7527. float row[x_points_num];
  7528. int ix = 0;
  7529. int iy = 0;
  7530. const char* filename_wldsd = "wldsd.txt";
  7531. char data_wldsd[70];
  7532. char numb_wldsd[10];
  7533. d_setup();
  7534. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7535. // We don't know where we are! HOME!
  7536. // Push the commands to the front of the message queue in the reverse order!
  7537. // There shall be always enough space reserved for these commands.
  7538. repeatcommand_front(); // repeat G80 with all its parameters
  7539. enquecommand_front_P((PSTR("G28 W0")));
  7540. enquecommand_front_P((PSTR("G1 Z5")));
  7541. return;
  7542. }
  7543. unsigned int custom_message_type_old = custom_message_type;
  7544. unsigned int custom_message_state_old = custom_message_state;
  7545. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7546. custom_message_state = (x_points_num * y_points_num) + 10;
  7547. lcd_update(1);
  7548. mbl.reset();
  7549. babystep_undo();
  7550. card.openFile(filename_wldsd, false);
  7551. current_position[Z_AXIS] = mesh_home_z_search;
  7552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7553. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7554. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7555. int l_feedmultiply = setup_for_endstop_move(false);
  7556. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7557. SERIAL_PROTOCOL(x_points_num);
  7558. SERIAL_PROTOCOLPGM(",");
  7559. SERIAL_PROTOCOL(y_points_num);
  7560. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7561. SERIAL_PROTOCOL(mesh_home_z_search);
  7562. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7563. SERIAL_PROTOCOL(x_dimension);
  7564. SERIAL_PROTOCOLPGM(",");
  7565. SERIAL_PROTOCOL(y_dimension);
  7566. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7567. while (mesh_point != x_points_num * y_points_num) {
  7568. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7569. iy = mesh_point / x_points_num;
  7570. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7571. float z0 = 0.f;
  7572. current_position[Z_AXIS] = mesh_home_z_search;
  7573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7574. st_synchronize();
  7575. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7576. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7578. st_synchronize();
  7579. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7580. break;
  7581. card.closefile();
  7582. }
  7583. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7584. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7585. //strcat(data_wldsd, numb_wldsd);
  7586. //MYSERIAL.println(data_wldsd);
  7587. //_delay(1000);
  7588. //_delay(3000);
  7589. //t1 = _millis();
  7590. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7591. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7592. memset(digit, 0, sizeof(digit));
  7593. //cli();
  7594. digitalWrite(D_REQUIRE, LOW);
  7595. for (int i = 0; i<13; i++)
  7596. {
  7597. //t1 = _millis();
  7598. for (int j = 0; j < 4; j++)
  7599. {
  7600. while (digitalRead(D_DATACLOCK) == LOW) {}
  7601. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7602. bitWrite(digit[i], j, digitalRead(D_DATA));
  7603. }
  7604. //t_delay = (_millis() - t1);
  7605. //SERIAL_PROTOCOLPGM(" ");
  7606. //SERIAL_PROTOCOL_F(t_delay, 5);
  7607. //SERIAL_PROTOCOLPGM(" ");
  7608. }
  7609. //sei();
  7610. digitalWrite(D_REQUIRE, HIGH);
  7611. mergeOutput[0] = '\0';
  7612. output = 0;
  7613. for (int r = 5; r <= 10; r++) //Merge digits
  7614. {
  7615. sprintf(str, "%d", digit[r]);
  7616. strcat(mergeOutput, str);
  7617. }
  7618. output = atof(mergeOutput);
  7619. if (digit[4] == 8) //Handle sign
  7620. {
  7621. output *= -1;
  7622. }
  7623. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7624. {
  7625. output *= 0.1;
  7626. }
  7627. //output = d_ReadData();
  7628. //row[ix] = current_position[Z_AXIS];
  7629. memset(data_wldsd, 0, sizeof(data_wldsd));
  7630. for (int i = 0; i <3; i++) {
  7631. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7632. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7633. strcat(data_wldsd, numb_wldsd);
  7634. strcat(data_wldsd, ";");
  7635. }
  7636. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7637. dtostrf(output, 8, 5, numb_wldsd);
  7638. strcat(data_wldsd, numb_wldsd);
  7639. //strcat(data_wldsd, ";");
  7640. card.write_command(data_wldsd);
  7641. //row[ix] = d_ReadData();
  7642. row[ix] = output; // current_position[Z_AXIS];
  7643. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7644. for (int i = 0; i < x_points_num; i++) {
  7645. SERIAL_PROTOCOLPGM(" ");
  7646. SERIAL_PROTOCOL_F(row[i], 5);
  7647. }
  7648. SERIAL_PROTOCOLPGM("\n");
  7649. }
  7650. custom_message_state--;
  7651. mesh_point++;
  7652. lcd_update(1);
  7653. }
  7654. card.closefile();
  7655. clean_up_after_endstop_move(l_feedmultiply);
  7656. }
  7657. #endif //HEATBED_ANALYSIS
  7658. void temp_compensation_start() {
  7659. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7660. custom_message_state = PINDA_HEAT_T + 1;
  7661. lcd_update(2);
  7662. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7663. current_position[E_AXIS] -= default_retraction;
  7664. }
  7665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7666. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7667. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7668. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7670. st_synchronize();
  7671. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7672. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7673. delay_keep_alive(1000);
  7674. custom_message_state = PINDA_HEAT_T - i;
  7675. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7676. else lcd_update(1);
  7677. }
  7678. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7679. custom_message_state = 0;
  7680. }
  7681. void temp_compensation_apply() {
  7682. int i_add;
  7683. int z_shift = 0;
  7684. float z_shift_mm;
  7685. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7686. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7687. i_add = (target_temperature_bed - 60) / 10;
  7688. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7689. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7690. }else {
  7691. //interpolation
  7692. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7693. }
  7694. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7696. st_synchronize();
  7697. plan_set_z_position(current_position[Z_AXIS]);
  7698. }
  7699. else {
  7700. //we have no temp compensation data
  7701. }
  7702. }
  7703. float temp_comp_interpolation(float inp_temperature) {
  7704. //cubic spline interpolation
  7705. int n, i, j;
  7706. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7707. int shift[10];
  7708. int temp_C[10];
  7709. n = 6; //number of measured points
  7710. shift[0] = 0;
  7711. for (i = 0; i < n; i++) {
  7712. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7713. temp_C[i] = 50 + i * 10; //temperature in C
  7714. #ifdef PINDA_THERMISTOR
  7715. temp_C[i] = 35 + i * 5; //temperature in C
  7716. #else
  7717. temp_C[i] = 50 + i * 10; //temperature in C
  7718. #endif
  7719. x[i] = (float)temp_C[i];
  7720. f[i] = (float)shift[i];
  7721. }
  7722. if (inp_temperature < x[0]) return 0;
  7723. for (i = n - 1; i>0; i--) {
  7724. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7725. h[i - 1] = x[i] - x[i - 1];
  7726. }
  7727. //*********** formation of h, s , f matrix **************
  7728. for (i = 1; i<n - 1; i++) {
  7729. m[i][i] = 2 * (h[i - 1] + h[i]);
  7730. if (i != 1) {
  7731. m[i][i - 1] = h[i - 1];
  7732. m[i - 1][i] = h[i - 1];
  7733. }
  7734. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7735. }
  7736. //*********** forward elimination **************
  7737. for (i = 1; i<n - 2; i++) {
  7738. temp = (m[i + 1][i] / m[i][i]);
  7739. for (j = 1; j <= n - 1; j++)
  7740. m[i + 1][j] -= temp*m[i][j];
  7741. }
  7742. //*********** backward substitution *********
  7743. for (i = n - 2; i>0; i--) {
  7744. sum = 0;
  7745. for (j = i; j <= n - 2; j++)
  7746. sum += m[i][j] * s[j];
  7747. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7748. }
  7749. for (i = 0; i<n - 1; i++)
  7750. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7751. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7752. b = s[i] / 2;
  7753. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7754. d = f[i];
  7755. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7756. }
  7757. return sum;
  7758. }
  7759. #ifdef PINDA_THERMISTOR
  7760. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7761. {
  7762. if (!temp_cal_active) return 0;
  7763. if (!calibration_status_pinda()) return 0;
  7764. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7765. }
  7766. #endif //PINDA_THERMISTOR
  7767. void long_pause() //long pause print
  7768. {
  7769. st_synchronize();
  7770. start_pause_print = _millis();
  7771. //retract
  7772. current_position[E_AXIS] -= default_retraction;
  7773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7774. //lift z
  7775. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7776. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7778. //Move XY to side
  7779. current_position[X_AXIS] = X_PAUSE_POS;
  7780. current_position[Y_AXIS] = Y_PAUSE_POS;
  7781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7782. // Turn off the print fan
  7783. fanSpeed = 0;
  7784. st_synchronize();
  7785. }
  7786. void serialecho_temperatures() {
  7787. float tt = degHotend(active_extruder);
  7788. SERIAL_PROTOCOLPGM("T:");
  7789. SERIAL_PROTOCOL(tt);
  7790. SERIAL_PROTOCOLPGM(" E:");
  7791. SERIAL_PROTOCOL((int)active_extruder);
  7792. SERIAL_PROTOCOLPGM(" B:");
  7793. SERIAL_PROTOCOL_F(degBed(), 1);
  7794. SERIAL_PROTOCOLLN("");
  7795. }
  7796. extern uint32_t sdpos_atomic;
  7797. #ifdef UVLO_SUPPORT
  7798. void uvlo_()
  7799. {
  7800. unsigned long time_start = _millis();
  7801. bool sd_print = card.sdprinting;
  7802. // Conserve power as soon as possible.
  7803. disable_x();
  7804. disable_y();
  7805. #ifdef TMC2130
  7806. tmc2130_set_current_h(Z_AXIS, 20);
  7807. tmc2130_set_current_r(Z_AXIS, 20);
  7808. tmc2130_set_current_h(E_AXIS, 20);
  7809. tmc2130_set_current_r(E_AXIS, 20);
  7810. #endif //TMC2130
  7811. // Indicate that the interrupt has been triggered.
  7812. // SERIAL_ECHOLNPGM("UVLO");
  7813. // Read out the current Z motor microstep counter. This will be later used
  7814. // for reaching the zero full step before powering off.
  7815. uint16_t z_microsteps = 0;
  7816. #ifdef TMC2130
  7817. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7818. #endif //TMC2130
  7819. // Calculate the file position, from which to resume this print.
  7820. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7821. {
  7822. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7823. sd_position -= sdlen_planner;
  7824. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7825. sd_position -= sdlen_cmdqueue;
  7826. if (sd_position < 0) sd_position = 0;
  7827. }
  7828. // Backup the feedrate in mm/min.
  7829. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7830. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7831. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7832. // are in action.
  7833. planner_abort_hard();
  7834. // Store the current extruder position.
  7835. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7836. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7837. // Clean the input command queue.
  7838. cmdqueue_reset();
  7839. card.sdprinting = false;
  7840. // card.closefile();
  7841. // Enable stepper driver interrupt to move Z axis.
  7842. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7843. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7844. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7845. sei();
  7846. plan_buffer_line(
  7847. current_position[X_AXIS],
  7848. current_position[Y_AXIS],
  7849. current_position[Z_AXIS],
  7850. current_position[E_AXIS] - default_retraction,
  7851. 95, active_extruder);
  7852. st_synchronize();
  7853. disable_e0();
  7854. plan_buffer_line(
  7855. current_position[X_AXIS],
  7856. current_position[Y_AXIS],
  7857. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7858. current_position[E_AXIS] - default_retraction,
  7859. 40, active_extruder);
  7860. st_synchronize();
  7861. disable_e0();
  7862. plan_buffer_line(
  7863. current_position[X_AXIS],
  7864. current_position[Y_AXIS],
  7865. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7866. current_position[E_AXIS] - default_retraction,
  7867. 40, active_extruder);
  7868. st_synchronize();
  7869. disable_e0();
  7870. disable_z();
  7871. // Move Z up to the next 0th full step.
  7872. // Write the file position.
  7873. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7874. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7875. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7876. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7877. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7878. // Scale the z value to 1u resolution.
  7879. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7880. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7881. }
  7882. // Read out the current Z motor microstep counter. This will be later used
  7883. // for reaching the zero full step before powering off.
  7884. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7885. // Store the current position.
  7886. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7887. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7888. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7889. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7890. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7891. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7892. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7893. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7894. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7895. #if EXTRUDERS > 1
  7896. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7897. #if EXTRUDERS > 2
  7898. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7899. #endif
  7900. #endif
  7901. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7902. // Finaly store the "power outage" flag.
  7903. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7904. st_synchronize();
  7905. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7906. disable_z();
  7907. // Increment power failure counter
  7908. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7909. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7910. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7911. #if 0
  7912. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7913. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7915. st_synchronize();
  7916. #endif
  7917. wdt_enable(WDTO_500MS);
  7918. WRITE(BEEPER,HIGH);
  7919. while(1)
  7920. ;
  7921. }
  7922. void uvlo_tiny()
  7923. {
  7924. uint16_t z_microsteps=0;
  7925. // Conserve power as soon as possible.
  7926. disable_x();
  7927. disable_y();
  7928. disable_e0();
  7929. #ifdef TMC2130
  7930. tmc2130_set_current_h(Z_AXIS, 20);
  7931. tmc2130_set_current_r(Z_AXIS, 20);
  7932. #endif //TMC2130
  7933. // Read out the current Z motor microstep counter
  7934. #ifdef TMC2130
  7935. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7936. #endif //TMC2130
  7937. planner_abort_hard();
  7938. disable_z();
  7939. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7940. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7941. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7942. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7943. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7944. }
  7945. //after multiple power panics current Z axis is unknow
  7946. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7947. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7948. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7949. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7950. }
  7951. // Finaly store the "power outage" flag.
  7952. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7953. // Increment power failure counter
  7954. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7955. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7956. wdt_enable(WDTO_500MS);
  7957. WRITE(BEEPER,HIGH);
  7958. while(1)
  7959. ;
  7960. }
  7961. #endif //UVLO_SUPPORT
  7962. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7963. void setup_fan_interrupt() {
  7964. //INT7
  7965. DDRE &= ~(1 << 7); //input pin
  7966. PORTE &= ~(1 << 7); //no internal pull-up
  7967. //start with sensing rising edge
  7968. EICRB &= ~(1 << 6);
  7969. EICRB |= (1 << 7);
  7970. //enable INT7 interrupt
  7971. EIMSK |= (1 << 7);
  7972. }
  7973. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7974. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7975. ISR(INT7_vect) {
  7976. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7977. #ifdef FAN_SOFT_PWM
  7978. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7979. #else //FAN_SOFT_PWM
  7980. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7981. #endif //FAN_SOFT_PWM
  7982. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7983. t_fan_rising_edge = millis_nc();
  7984. }
  7985. else { //interrupt was triggered by falling edge
  7986. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7987. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7988. }
  7989. }
  7990. EICRB ^= (1 << 6); //change edge
  7991. }
  7992. #endif
  7993. #ifdef UVLO_SUPPORT
  7994. void setup_uvlo_interrupt() {
  7995. DDRE &= ~(1 << 4); //input pin
  7996. PORTE &= ~(1 << 4); //no internal pull-up
  7997. //sensing falling edge
  7998. EICRB |= (1 << 0);
  7999. EICRB &= ~(1 << 1);
  8000. //enable INT4 interrupt
  8001. EIMSK |= (1 << 4);
  8002. }
  8003. ISR(INT4_vect) {
  8004. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8005. SERIAL_ECHOLNPGM("INT4");
  8006. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8007. //Don't change || to && because in some case the printer can be moving although IS_SD_PRINTING is zero
  8008. if((IS_SD_PRINTING ) || (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8009. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8010. }
  8011. void recover_print(uint8_t automatic) {
  8012. char cmd[30];
  8013. lcd_update_enable(true);
  8014. lcd_update(2);
  8015. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8016. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8017. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8018. // Lift the print head, so one may remove the excess priming material.
  8019. if(!bTiny&&(current_position[Z_AXIS]<25))
  8020. enquecommand_P(PSTR("G1 Z25 F800"));
  8021. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8022. enquecommand_P(PSTR("G28 X Y"));
  8023. // Set the target bed and nozzle temperatures and wait.
  8024. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8025. enquecommand(cmd);
  8026. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8027. enquecommand(cmd);
  8028. enquecommand_P(PSTR("M83")); //E axis relative mode
  8029. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8030. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8031. if(automatic == 0){
  8032. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8033. }
  8034. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8035. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8036. // Restart the print.
  8037. restore_print_from_eeprom();
  8038. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8039. }
  8040. void recover_machine_state_after_power_panic(bool bTiny)
  8041. {
  8042. char cmd[30];
  8043. // 1) Recover the logical cordinates at the time of the power panic.
  8044. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8045. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8046. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8047. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8048. mbl.active = false;
  8049. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8050. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8051. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8052. // Scale the z value to 10u resolution.
  8053. int16_t v;
  8054. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8055. if (v != 0)
  8056. mbl.active = true;
  8057. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8058. }
  8059. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8060. // The current position after power panic is moved to the next closest 0th full step.
  8061. if(bTiny){
  8062. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8063. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8064. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8065. //after multiple power panics the print is slightly in the air so get it little bit down.
  8066. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8067. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8068. }
  8069. else{
  8070. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8071. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8072. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8073. }
  8074. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8075. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8076. sprintf_P(cmd, PSTR("G92 E"));
  8077. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8078. enquecommand(cmd);
  8079. }
  8080. memcpy(destination, current_position, sizeof(destination));
  8081. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8082. print_world_coordinates();
  8083. // 3) Initialize the logical to physical coordinate system transformation.
  8084. world2machine_initialize();
  8085. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8086. // print_mesh_bed_leveling_table();
  8087. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8088. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8089. babystep_load();
  8090. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8092. // 6) Power up the motors, mark their positions as known.
  8093. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8094. axis_known_position[X_AXIS] = true; enable_x();
  8095. axis_known_position[Y_AXIS] = true; enable_y();
  8096. axis_known_position[Z_AXIS] = true; enable_z();
  8097. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8098. print_physical_coordinates();
  8099. // 7) Recover the target temperatures.
  8100. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8101. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8102. // 8) Recover extruder multipilers
  8103. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8104. #if EXTRUDERS > 1
  8105. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8106. #if EXTRUDERS > 2
  8107. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8108. #endif
  8109. #endif
  8110. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8111. }
  8112. void restore_print_from_eeprom() {
  8113. int feedrate_rec;
  8114. uint8_t fan_speed_rec;
  8115. char cmd[30];
  8116. char filename[13];
  8117. uint8_t depth = 0;
  8118. char dir_name[9];
  8119. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8120. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8121. SERIAL_ECHOPGM("Feedrate:");
  8122. MYSERIAL.println(feedrate_rec);
  8123. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8124. MYSERIAL.println(int(depth));
  8125. for (int i = 0; i < depth; i++) {
  8126. for (int j = 0; j < 8; j++) {
  8127. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8128. }
  8129. dir_name[8] = '\0';
  8130. MYSERIAL.println(dir_name);
  8131. strcpy(dir_names[i], dir_name);
  8132. card.chdir(dir_name);
  8133. }
  8134. for (int i = 0; i < 8; i++) {
  8135. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8136. }
  8137. filename[8] = '\0';
  8138. MYSERIAL.print(filename);
  8139. strcat_P(filename, PSTR(".gco"));
  8140. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8141. enquecommand(cmd);
  8142. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8143. SERIAL_ECHOPGM("Position read from eeprom:");
  8144. MYSERIAL.println(position);
  8145. // E axis relative mode.
  8146. enquecommand_P(PSTR("M83"));
  8147. // Move to the XY print position in logical coordinates, where the print has been killed.
  8148. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8149. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8150. strcat_P(cmd, PSTR(" F2000"));
  8151. enquecommand(cmd);
  8152. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8153. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8154. // Move the Z axis down to the print, in logical coordinates.
  8155. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8156. enquecommand(cmd);
  8157. // Unretract.
  8158. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8159. // Set the feedrate saved at the power panic.
  8160. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8161. enquecommand(cmd);
  8162. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8163. {
  8164. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8165. }
  8166. // Set the fan speed saved at the power panic.
  8167. strcpy_P(cmd, PSTR("M106 S"));
  8168. strcat(cmd, itostr3(int(fan_speed_rec)));
  8169. enquecommand(cmd);
  8170. // Set a position in the file.
  8171. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8172. enquecommand(cmd);
  8173. enquecommand_P(PSTR("G4 S0"));
  8174. enquecommand_P(PSTR("PRUSA uvlo"));
  8175. }
  8176. #endif //UVLO_SUPPORT
  8177. //! @brief Immediately stop print moves
  8178. //!
  8179. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8180. //! If printing from sd card, position in file is saved.
  8181. //! If printing from USB, line number is saved.
  8182. //!
  8183. //! @param z_move
  8184. //! @param e_move
  8185. void stop_and_save_print_to_ram(float z_move, float e_move)
  8186. {
  8187. if (saved_printing) return;
  8188. #if 0
  8189. unsigned char nplanner_blocks;
  8190. #endif
  8191. unsigned char nlines;
  8192. uint16_t sdlen_planner;
  8193. uint16_t sdlen_cmdqueue;
  8194. cli();
  8195. if (card.sdprinting) {
  8196. #if 0
  8197. nplanner_blocks = number_of_blocks();
  8198. #endif
  8199. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8200. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8201. saved_sdpos -= sdlen_planner;
  8202. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8203. saved_sdpos -= sdlen_cmdqueue;
  8204. saved_printing_type = PRINTING_TYPE_SD;
  8205. }
  8206. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8207. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8208. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8209. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8210. saved_sdpos -= nlines;
  8211. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8212. saved_printing_type = PRINTING_TYPE_USB;
  8213. }
  8214. else {
  8215. saved_printing_type = PRINTING_TYPE_NONE;
  8216. //not sd printing nor usb printing
  8217. }
  8218. #if 0
  8219. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8220. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8221. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8222. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8223. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8224. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8225. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8226. {
  8227. card.setIndex(saved_sdpos);
  8228. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8229. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8230. MYSERIAL.print(char(card.get()));
  8231. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8232. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8233. MYSERIAL.print(char(card.get()));
  8234. SERIAL_ECHOLNPGM("End of command buffer");
  8235. }
  8236. {
  8237. // Print the content of the planner buffer, line by line:
  8238. card.setIndex(saved_sdpos);
  8239. int8_t iline = 0;
  8240. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8241. SERIAL_ECHOPGM("Planner line (from file): ");
  8242. MYSERIAL.print(int(iline), DEC);
  8243. SERIAL_ECHOPGM(", length: ");
  8244. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8245. SERIAL_ECHOPGM(", steps: (");
  8246. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8247. SERIAL_ECHOPGM(",");
  8248. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8249. SERIAL_ECHOPGM(",");
  8250. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8251. SERIAL_ECHOPGM(",");
  8252. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8253. SERIAL_ECHOPGM("), events: ");
  8254. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8255. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8256. MYSERIAL.print(char(card.get()));
  8257. }
  8258. }
  8259. {
  8260. // Print the content of the command buffer, line by line:
  8261. int8_t iline = 0;
  8262. union {
  8263. struct {
  8264. char lo;
  8265. char hi;
  8266. } lohi;
  8267. uint16_t value;
  8268. } sdlen_single;
  8269. int _bufindr = bufindr;
  8270. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8271. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8272. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8273. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8274. }
  8275. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8276. MYSERIAL.print(int(iline), DEC);
  8277. SERIAL_ECHOPGM(", type: ");
  8278. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8279. SERIAL_ECHOPGM(", len: ");
  8280. MYSERIAL.println(sdlen_single.value, DEC);
  8281. // Print the content of the buffer line.
  8282. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8283. SERIAL_ECHOPGM("Buffer line (from file): ");
  8284. MYSERIAL.println(int(iline), DEC);
  8285. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8286. MYSERIAL.print(char(card.get()));
  8287. if (-- _buflen == 0)
  8288. break;
  8289. // First skip the current command ID and iterate up to the end of the string.
  8290. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8291. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8292. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8293. // If the end of the buffer was empty,
  8294. if (_bufindr == sizeof(cmdbuffer)) {
  8295. // skip to the start and find the nonzero command.
  8296. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8297. }
  8298. }
  8299. }
  8300. #endif
  8301. #if 0
  8302. saved_feedrate2 = feedrate; //save feedrate
  8303. #else
  8304. // Try to deduce the feedrate from the first block of the planner.
  8305. // Speed is in mm/min.
  8306. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8307. #endif
  8308. planner_abort_hard(); //abort printing
  8309. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8310. saved_active_extruder = active_extruder; //save active_extruder
  8311. saved_extruder_temperature = degTargetHotend(active_extruder);
  8312. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8313. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8314. saved_fanSpeed = fanSpeed;
  8315. cmdqueue_reset(); //empty cmdqueue
  8316. card.sdprinting = false;
  8317. // card.closefile();
  8318. saved_printing = true;
  8319. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8320. st_reset_timer();
  8321. sei();
  8322. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8323. #if 1
  8324. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8325. char buf[48];
  8326. // First unretract (relative extrusion)
  8327. if(!saved_extruder_relative_mode){
  8328. enquecommand(PSTR("M83"), true);
  8329. }
  8330. //retract 45mm/s
  8331. // A single sprintf may not be faster, but is definitely 20B shorter
  8332. // than a sequence of commands building the string piece by piece
  8333. // A snprintf would have been a safer call, but since it is not used
  8334. // in the whole program, its implementation would bring more bytes to the total size
  8335. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8336. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8337. enquecommand(buf, false);
  8338. // Then lift Z axis
  8339. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8340. // At this point the command queue is empty.
  8341. enquecommand(buf, false);
  8342. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8343. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8344. repeatcommand_front();
  8345. #else
  8346. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8347. st_synchronize(); //wait moving
  8348. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8349. memcpy(destination, current_position, sizeof(destination));
  8350. #endif
  8351. }
  8352. }
  8353. //! @brief Restore print from ram
  8354. //!
  8355. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8356. //! waits for extruder temperature restore, then restores position and continues
  8357. //! print moves.
  8358. //! Internaly lcd_update() is called by wait_for_heater().
  8359. //!
  8360. //! @param e_move
  8361. void restore_print_from_ram_and_continue(float e_move)
  8362. {
  8363. if (!saved_printing) return;
  8364. #ifdef FANCHECK
  8365. // Do not allow resume printing if fans are still not ok
  8366. if( fan_check_error != EFCE_OK )return;
  8367. #endif
  8368. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8369. // current_position[axis] = st_get_position_mm(axis);
  8370. active_extruder = saved_active_extruder; //restore active_extruder
  8371. if (saved_extruder_temperature) {
  8372. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8373. heating_status = 1;
  8374. wait_for_heater(_millis(), saved_active_extruder);
  8375. heating_status = 2;
  8376. }
  8377. feedrate = saved_feedrate2; //restore feedrate
  8378. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8379. fanSpeed = saved_fanSpeed;
  8380. float e = saved_pos[E_AXIS] - e_move;
  8381. plan_set_e_position(e);
  8382. //first move print head in XY to the saved position:
  8383. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8384. st_synchronize();
  8385. //then move Z
  8386. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8387. st_synchronize();
  8388. //and finaly unretract (35mm/s)
  8389. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8390. st_synchronize();
  8391. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8392. memcpy(destination, current_position, sizeof(destination));
  8393. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8394. card.setIndex(saved_sdpos);
  8395. sdpos_atomic = saved_sdpos;
  8396. card.sdprinting = true;
  8397. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8398. }
  8399. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8400. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8401. serial_count = 0;
  8402. FlushSerialRequestResend();
  8403. }
  8404. else {
  8405. //not sd printing nor usb printing
  8406. }
  8407. lcd_setstatuspgm(_T(WELCOME_MSG));
  8408. saved_printing = false;
  8409. }
  8410. void print_world_coordinates()
  8411. {
  8412. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8413. }
  8414. void print_physical_coordinates()
  8415. {
  8416. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8417. }
  8418. void print_mesh_bed_leveling_table()
  8419. {
  8420. SERIAL_ECHOPGM("mesh bed leveling: ");
  8421. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8422. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8423. MYSERIAL.print(mbl.z_values[y][x], 3);
  8424. SERIAL_ECHOPGM(" ");
  8425. }
  8426. SERIAL_ECHOLNPGM("");
  8427. }
  8428. uint16_t print_time_remaining() {
  8429. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8430. #ifdef TMC2130
  8431. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8432. else print_t = print_time_remaining_silent;
  8433. #else
  8434. print_t = print_time_remaining_normal;
  8435. #endif //TMC2130
  8436. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8437. return print_t;
  8438. }
  8439. uint8_t calc_percent_done()
  8440. {
  8441. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8442. uint8_t percent_done = 0;
  8443. #ifdef TMC2130
  8444. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8445. percent_done = print_percent_done_normal;
  8446. }
  8447. else if (print_percent_done_silent <= 100) {
  8448. percent_done = print_percent_done_silent;
  8449. }
  8450. #else
  8451. if (print_percent_done_normal <= 100) {
  8452. percent_done = print_percent_done_normal;
  8453. }
  8454. #endif //TMC2130
  8455. else {
  8456. percent_done = card.percentDone();
  8457. }
  8458. return percent_done;
  8459. }
  8460. static void print_time_remaining_init()
  8461. {
  8462. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8463. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8464. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8465. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8466. }
  8467. void load_filament_final_feed()
  8468. {
  8469. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8471. }
  8472. //! @brief Wait for user to check the state
  8473. //! @par nozzle_temp nozzle temperature to load filament
  8474. void M600_check_state(float nozzle_temp)
  8475. {
  8476. lcd_change_fil_state = 0;
  8477. while (lcd_change_fil_state != 1)
  8478. {
  8479. lcd_change_fil_state = 0;
  8480. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8481. lcd_alright();
  8482. KEEPALIVE_STATE(IN_HANDLER);
  8483. switch(lcd_change_fil_state)
  8484. {
  8485. // Filament failed to load so load it again
  8486. case 2:
  8487. if (mmu_enabled)
  8488. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8489. else
  8490. M600_load_filament_movements();
  8491. break;
  8492. // Filament loaded properly but color is not clear
  8493. case 3:
  8494. st_synchronize();
  8495. load_filament_final_feed();
  8496. lcd_loading_color();
  8497. st_synchronize();
  8498. break;
  8499. // Everything good
  8500. default:
  8501. lcd_change_success();
  8502. break;
  8503. }
  8504. }
  8505. }
  8506. //! @brief Wait for user action
  8507. //!
  8508. //! Beep, manage nozzle heater and wait for user to start unload filament
  8509. //! If times out, active extruder temperature is set to 0.
  8510. //!
  8511. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8512. void M600_wait_for_user(float HotendTempBckp) {
  8513. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8514. int counterBeep = 0;
  8515. unsigned long waiting_start_time = _millis();
  8516. uint8_t wait_for_user_state = 0;
  8517. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8518. bool bFirst=true;
  8519. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8520. manage_heater();
  8521. manage_inactivity(true);
  8522. #if BEEPER > 0
  8523. if (counterBeep == 500) {
  8524. counterBeep = 0;
  8525. }
  8526. SET_OUTPUT(BEEPER);
  8527. if (counterBeep == 0) {
  8528. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8529. {
  8530. bFirst=false;
  8531. WRITE(BEEPER, HIGH);
  8532. }
  8533. }
  8534. if (counterBeep == 20) {
  8535. WRITE(BEEPER, LOW);
  8536. }
  8537. counterBeep++;
  8538. #endif //BEEPER > 0
  8539. switch (wait_for_user_state) {
  8540. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8541. delay_keep_alive(4);
  8542. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8543. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8544. wait_for_user_state = 1;
  8545. setAllTargetHotends(0);
  8546. st_synchronize();
  8547. disable_e0();
  8548. disable_e1();
  8549. disable_e2();
  8550. }
  8551. break;
  8552. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8553. delay_keep_alive(4);
  8554. if (lcd_clicked()) {
  8555. setTargetHotend(HotendTempBckp, active_extruder);
  8556. lcd_wait_for_heater();
  8557. wait_for_user_state = 2;
  8558. }
  8559. break;
  8560. case 2: //waiting for nozzle to reach target temperature
  8561. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8562. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8563. waiting_start_time = _millis();
  8564. wait_for_user_state = 0;
  8565. }
  8566. else {
  8567. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8568. lcd_set_cursor(1, 4);
  8569. lcd_print(ftostr3(degHotend(active_extruder)));
  8570. }
  8571. break;
  8572. }
  8573. }
  8574. WRITE(BEEPER, LOW);
  8575. }
  8576. void M600_load_filament_movements()
  8577. {
  8578. #ifdef SNMM
  8579. display_loading();
  8580. do
  8581. {
  8582. current_position[E_AXIS] += 0.002;
  8583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8584. delay_keep_alive(2);
  8585. }
  8586. while (!lcd_clicked());
  8587. st_synchronize();
  8588. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8590. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8592. current_position[E_AXIS] += 40;
  8593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8594. current_position[E_AXIS] += 10;
  8595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8596. #else
  8597. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8599. #endif
  8600. load_filament_final_feed();
  8601. lcd_loading_filament();
  8602. st_synchronize();
  8603. }
  8604. void M600_load_filament() {
  8605. //load filament for single material and SNMM
  8606. lcd_wait_interact();
  8607. //load_filament_time = _millis();
  8608. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8609. #ifdef PAT9125
  8610. fsensor_autoload_check_start();
  8611. #endif //PAT9125
  8612. while(!lcd_clicked())
  8613. {
  8614. manage_heater();
  8615. manage_inactivity(true);
  8616. #ifdef FILAMENT_SENSOR
  8617. if (fsensor_check_autoload())
  8618. {
  8619. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8620. _tone(BEEPER, 1000);
  8621. delay_keep_alive(50);
  8622. _noTone(BEEPER);
  8623. break;
  8624. }
  8625. #endif //FILAMENT_SENSOR
  8626. }
  8627. #ifdef PAT9125
  8628. fsensor_autoload_check_stop();
  8629. #endif //PAT9125
  8630. KEEPALIVE_STATE(IN_HANDLER);
  8631. #ifdef FSENSOR_QUALITY
  8632. fsensor_oq_meassure_start(70);
  8633. #endif //FSENSOR_QUALITY
  8634. M600_load_filament_movements();
  8635. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8636. _tone(BEEPER, 500);
  8637. delay_keep_alive(50);
  8638. _noTone(BEEPER);
  8639. #ifdef FSENSOR_QUALITY
  8640. fsensor_oq_meassure_stop();
  8641. if (!fsensor_oq_result())
  8642. {
  8643. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8644. lcd_update_enable(true);
  8645. lcd_update(2);
  8646. if (disable)
  8647. fsensor_disable();
  8648. }
  8649. #endif //FSENSOR_QUALITY
  8650. lcd_update_enable(false);
  8651. }
  8652. //! @brief Wait for click
  8653. //!
  8654. //! Set
  8655. void marlin_wait_for_click()
  8656. {
  8657. int8_t busy_state_backup = busy_state;
  8658. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8659. lcd_consume_click();
  8660. while(!lcd_clicked())
  8661. {
  8662. manage_heater();
  8663. manage_inactivity(true);
  8664. lcd_update(0);
  8665. }
  8666. KEEPALIVE_STATE(busy_state_backup);
  8667. }
  8668. #define FIL_LOAD_LENGTH 60