temperature.cpp 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. //===========================================================================
  36. //=============================public variables============================
  37. //===========================================================================
  38. int target_temperature[EXTRUDERS] = { 0 };
  39. int target_temperature_bed = 0;
  40. int current_temperature_raw[EXTRUDERS] = { 0 };
  41. float current_temperature[EXTRUDERS] = { 0.0 };
  42. #ifdef PINDA_THERMISTOR
  43. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  44. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  45. float current_temperature_pinda = 0.0;
  46. #endif //PINDA_THERMISTOR
  47. #ifdef AMBIENT_THERMISTOR
  48. int current_temperature_raw_ambient = 0 ;
  49. float current_temperature_ambient = 0.0;
  50. #endif //AMBIENT_THERMISTOR
  51. #ifdef VOLT_PWR_PIN
  52. int current_voltage_raw_pwr = 0;
  53. #endif
  54. #ifdef VOLT_BED_PIN
  55. int current_voltage_raw_bed = 0;
  56. #endif
  57. int current_temperature_bed_raw = 0;
  58. float current_temperature_bed = 0.0;
  59. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  60. int redundant_temperature_raw = 0;
  61. float redundant_temperature = 0.0;
  62. #endif
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. uint8_t fanSpeedBckp = 255;
  123. bool fan_measuring = false;
  124. #endif
  125. #if EXTRUDERS > 3
  126. # error Unsupported number of extruders
  127. #elif EXTRUDERS > 2
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  129. #elif EXTRUDERS > 1
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  131. #else
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  133. #endif
  134. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  147. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  148. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  149. #else
  150. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  151. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  152. #endif
  153. static float analog2temp(int raw, uint8_t e);
  154. static float analog2tempBed(int raw);
  155. static float analog2tempAmbient(int raw);
  156. static void updateTemperaturesFromRawValues();
  157. enum TempRunawayStates
  158. {
  159. TempRunaway_INACTIVE = 0,
  160. TempRunaway_PREHEAT = 1,
  161. TempRunaway_ACTIVE = 2,
  162. };
  163. #ifdef WATCH_TEMP_PERIOD
  164. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  166. #endif //WATCH_TEMP_PERIOD
  167. #ifndef SOFT_PWM_SCALE
  168. #define SOFT_PWM_SCALE 0
  169. #endif
  170. //===========================================================================
  171. //============================= functions ============================
  172. //===========================================================================
  173. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  174. static float temp_runaway_status[4];
  175. static float temp_runaway_target[4];
  176. static float temp_runaway_timer[4];
  177. static int temp_runaway_error_counter[4];
  178. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  179. static void temp_runaway_stop(bool isPreheat, bool isBed);
  180. #endif
  181. void PID_autotune(float temp, int extruder, int ncycles)
  182. {
  183. pid_number_of_cycles = ncycles;
  184. pid_tuning_finished = false;
  185. float input = 0.0;
  186. pid_cycle=0;
  187. bool heating = true;
  188. unsigned long temp_millis = _millis();
  189. unsigned long t1=temp_millis;
  190. unsigned long t2=temp_millis;
  191. long t_high = 0;
  192. long t_low = 0;
  193. long bias, d;
  194. float Ku, Tu;
  195. float max = 0, min = 10000;
  196. uint8_t safety_check_cycles = 0;
  197. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  198. float temp_ambient;
  199. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  201. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  202. unsigned long extruder_autofan_last_check = _millis();
  203. #endif
  204. if ((extruder >= EXTRUDERS)
  205. #if (TEMP_BED_PIN <= -1)
  206. ||(extruder < 0)
  207. #endif
  208. ){
  209. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  210. pid_tuning_finished = true;
  211. pid_cycle = 0;
  212. return;
  213. }
  214. SERIAL_ECHOLN("PID Autotune start");
  215. disable_heater(); // switch off all heaters.
  216. if (extruder<0)
  217. {
  218. soft_pwm_bed = (MAX_BED_POWER)/2;
  219. timer02_set_pwm0(soft_pwm_bed << 1);
  220. bias = d = (MAX_BED_POWER)/2;
  221. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  222. }
  223. else
  224. {
  225. soft_pwm[extruder] = (PID_MAX)/2;
  226. bias = d = (PID_MAX)/2;
  227. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  228. }
  229. for(;;) {
  230. #ifdef WATCHDOG
  231. wdt_reset();
  232. #endif //WATCHDOG
  233. if(temp_meas_ready == true) { // temp sample ready
  234. updateTemperaturesFromRawValues();
  235. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  236. max=max(max,input);
  237. min=min(min,input);
  238. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  240. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  241. if(_millis() - extruder_autofan_last_check > 2500) {
  242. checkExtruderAutoFans();
  243. extruder_autofan_last_check = _millis();
  244. }
  245. #endif
  246. if(heating == true && input > temp) {
  247. if(_millis() - t2 > 5000) {
  248. heating=false;
  249. if (extruder<0)
  250. {
  251. soft_pwm_bed = (bias - d) >> 1;
  252. timer02_set_pwm0(soft_pwm_bed << 1);
  253. }
  254. else
  255. soft_pwm[extruder] = (bias - d) >> 1;
  256. t1=_millis();
  257. t_high=t1 - t2;
  258. max=temp;
  259. }
  260. }
  261. if(heating == false && input < temp) {
  262. if(_millis() - t1 > 5000) {
  263. heating=true;
  264. t2=_millis();
  265. t_low=t2 - t1;
  266. if(pid_cycle > 0) {
  267. bias += (d*(t_high - t_low))/(t_low + t_high);
  268. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  269. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  270. else d = bias;
  271. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  272. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  273. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  274. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  275. if(pid_cycle > 2) {
  276. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  277. Tu = ((float)(t_low + t_high)/1000.0);
  278. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  279. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  280. _Kp = 0.6*Ku;
  281. _Ki = 2*_Kp/Tu;
  282. _Kd = _Kp*Tu/8;
  283. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  284. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  285. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  286. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  287. /*
  288. _Kp = 0.33*Ku;
  289. _Ki = _Kp/Tu;
  290. _Kd = _Kp*Tu/3;
  291. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  292. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  293. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  294. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  295. _Kp = 0.2*Ku;
  296. _Ki = 2*_Kp/Tu;
  297. _Kd = _Kp*Tu/3;
  298. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  299. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  300. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  301. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  302. */
  303. }
  304. }
  305. if (extruder<0)
  306. {
  307. soft_pwm_bed = (bias + d) >> 1;
  308. timer02_set_pwm0(soft_pwm_bed << 1);
  309. }
  310. else
  311. soft_pwm[extruder] = (bias + d) >> 1;
  312. pid_cycle++;
  313. min=temp;
  314. }
  315. }
  316. }
  317. if(input > (temp + 20)) {
  318. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  319. pid_tuning_finished = true;
  320. pid_cycle = 0;
  321. return;
  322. }
  323. if(_millis() - temp_millis > 2000) {
  324. int p;
  325. if (extruder<0){
  326. p=soft_pwm_bed;
  327. SERIAL_PROTOCOLPGM("B:");
  328. }else{
  329. p=soft_pwm[extruder];
  330. SERIAL_PROTOCOLPGM("T:");
  331. }
  332. SERIAL_PROTOCOL(input);
  333. SERIAL_PROTOCOLPGM(" @:");
  334. SERIAL_PROTOCOLLN(p);
  335. if (safety_check_cycles == 0) { //save ambient temp
  336. temp_ambient = input;
  337. //SERIAL_ECHOPGM("Ambient T: ");
  338. //MYSERIAL.println(temp_ambient);
  339. safety_check_cycles++;
  340. }
  341. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  342. safety_check_cycles++;
  343. }
  344. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  345. safety_check_cycles++;
  346. //SERIAL_ECHOPGM("Time from beginning: ");
  347. //MYSERIAL.print(safety_check_cycles_count * 2);
  348. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  349. //MYSERIAL.println(input - temp_ambient);
  350. if (abs(input - temp_ambient) < 5.0) {
  351. temp_runaway_stop(false, (extruder<0));
  352. pid_tuning_finished = true;
  353. return;
  354. }
  355. }
  356. temp_millis = _millis();
  357. }
  358. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  359. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  360. pid_tuning_finished = true;
  361. pid_cycle = 0;
  362. return;
  363. }
  364. if(pid_cycle > ncycles) {
  365. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  366. pid_tuning_finished = true;
  367. pid_cycle = 0;
  368. return;
  369. }
  370. lcd_update(0);
  371. }
  372. }
  373. void updatePID()
  374. {
  375. #ifdef PIDTEMP
  376. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  377. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  378. }
  379. #endif
  380. #ifdef PIDTEMPBED
  381. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  382. #endif
  383. }
  384. int getHeaterPower(int heater) {
  385. if (heater<0)
  386. return soft_pwm_bed;
  387. return soft_pwm[heater];
  388. }
  389. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  391. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  392. #if defined(FAN_PIN) && FAN_PIN > -1
  393. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  394. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  395. #endif
  396. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  397. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  398. #endif
  399. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  400. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  401. #endif
  402. #endif
  403. void setExtruderAutoFanState(int pin, bool state)
  404. {
  405. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  406. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  407. pinMode(pin, OUTPUT);
  408. digitalWrite(pin, newFanSpeed);
  409. //analogWrite(pin, newFanSpeed);
  410. }
  411. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  412. void countFanSpeed()
  413. {
  414. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  415. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  417. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  418. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  419. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  420. SERIAL_ECHOLNPGM(" ");*/
  421. fan_edge_counter[0] = 0;
  422. fan_edge_counter[1] = 0;
  423. }
  424. void checkFanSpeed()
  425. {
  426. uint8_t max_print_fan_errors = 0;
  427. uint8_t max_extruder_fan_errors = 0;
  428. #ifdef FAN_SOFT_PWM
  429. max_print_fan_errors = 3; //15 seconds
  430. max_extruder_fan_errors = 2; //10seconds
  431. #else //FAN_SOFT_PWM
  432. max_print_fan_errors = 15; //15 seconds
  433. max_extruder_fan_errors = 5; //5 seconds
  434. #endif //FAN_SOFT_PWM
  435. if(fans_check_enabled != false)
  436. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  437. static unsigned char fan_speed_errors[2] = { 0,0 };
  438. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  439. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  440. else{
  441. fan_speed_errors[0] = 0;
  442. host_keepalive();
  443. }
  444. #endif
  445. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  446. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  447. else fan_speed_errors[1] = 0;
  448. #endif
  449. // drop the fan_check_error flag when both fans are ok
  450. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  451. // we may even send some info to the LCD from here
  452. fan_check_error = EFCE_OK;
  453. }
  454. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  455. fan_speed_errors[0] = 0;
  456. fanSpeedError(0); //extruder fan
  457. }
  458. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  459. fan_speed_errors[1] = 0;
  460. fanSpeedError(1); //print fan
  461. }
  462. }
  463. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  464. //! Extracted from fanSpeedError to save some space.
  465. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  466. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  467. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  468. SERIAL_ECHOLNRPGM(serialMsg);
  469. if (get_message_level() == 0) {
  470. Sound_MakeCustom(200,0,true);
  471. LCD_ALERTMESSAGERPGM(lcdMsg);
  472. }
  473. }
  474. void fanSpeedError(unsigned char _fan) {
  475. if (get_message_level() != 0 && isPrintPaused) return;
  476. //to ensure that target temp. is not set to zero in case taht we are resuming print
  477. if (card.sdprinting || is_usb_printing) {
  478. if (heating_status != 0) {
  479. lcd_print_stop();
  480. }
  481. else {
  482. fan_check_error = EFCE_DETECTED;
  483. }
  484. }
  485. else {
  486. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE); //for octoprint
  487. setTargetHotend0(0);
  488. heating_status = 0;
  489. fan_check_error = EFCE_REPORTED;
  490. }
  491. switch (_fan) {
  492. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  493. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  494. break;
  495. case 1:
  496. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  497. break;
  498. }
  499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  500. }
  501. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  502. void checkExtruderAutoFans()
  503. {
  504. uint8_t fanState = 0;
  505. // which fan pins need to be turned on?
  506. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  507. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. fanState |= 1;
  509. #endif
  510. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  511. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  512. {
  513. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  514. fanState |= 1;
  515. else
  516. fanState |= 2;
  517. }
  518. #endif
  519. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  520. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  521. {
  522. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  523. fanState |= 1;
  524. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  525. fanState |= 2;
  526. else
  527. fanState |= 4;
  528. }
  529. #endif
  530. // update extruder auto fan states
  531. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  532. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  533. #endif
  534. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  535. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  536. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  537. #endif
  538. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  539. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  540. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  541. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  542. #endif
  543. }
  544. #endif // any extruder auto fan pins set
  545. // ready for eventually parameters adjusting
  546. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  547. //void resetPID(uint8_t extruder)
  548. {
  549. }
  550. void manage_heater()
  551. {
  552. #ifdef WATCHDOG
  553. wdt_reset();
  554. #endif //WATCHDOG
  555. float pid_input;
  556. float pid_output;
  557. if(temp_meas_ready != true) //better readability
  558. return;
  559. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  560. updateTemperaturesFromRawValues();
  561. check_max_temp();
  562. check_min_temp();
  563. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  564. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  565. #endif
  566. for(int e = 0; e < EXTRUDERS; e++)
  567. {
  568. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  569. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  570. #endif
  571. #ifdef PIDTEMP
  572. pid_input = current_temperature[e];
  573. #ifndef PID_OPENLOOP
  574. if(target_temperature[e] == 0) {
  575. pid_output = 0;
  576. pid_reset[e] = true;
  577. } else {
  578. pid_error[e] = target_temperature[e] - pid_input;
  579. if(pid_reset[e]) {
  580. iState_sum[e] = 0.0;
  581. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  582. pid_reset[e] = false;
  583. }
  584. #ifndef PonM
  585. pTerm[e] = cs.Kp * pid_error[e];
  586. iState_sum[e] += pid_error[e];
  587. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  588. iTerm[e] = cs.Ki * iState_sum[e];
  589. // PID_K1 defined in Configuration.h in the PID settings
  590. #define K2 (1.0-PID_K1)
  591. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  592. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. if (pid_output > PID_MAX) {
  594. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  595. pid_output=PID_MAX;
  596. } else if (pid_output < 0) {
  597. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  598. pid_output=0;
  599. }
  600. #else // PonM ("Proportional on Measurement" method)
  601. iState_sum[e] += cs.Ki * pid_error[e];
  602. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  603. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  604. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  605. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  606. pid_output = constrain(pid_output, 0, PID_MAX);
  607. #endif // PonM
  608. }
  609. dState_last[e] = pid_input;
  610. #else
  611. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  612. #endif //PID_OPENLOOP
  613. #ifdef PID_DEBUG
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHO(" PID_DEBUG ");
  616. SERIAL_ECHO(e);
  617. SERIAL_ECHO(": Input ");
  618. SERIAL_ECHO(pid_input);
  619. SERIAL_ECHO(" Output ");
  620. SERIAL_ECHO(pid_output);
  621. SERIAL_ECHO(" pTerm ");
  622. SERIAL_ECHO(pTerm[e]);
  623. SERIAL_ECHO(" iTerm ");
  624. SERIAL_ECHO(iTerm[e]);
  625. SERIAL_ECHO(" dTerm ");
  626. SERIAL_ECHOLN(-dTerm[e]);
  627. #endif //PID_DEBUG
  628. #else /* PID off */
  629. pid_output = 0;
  630. if(current_temperature[e] < target_temperature[e]) {
  631. pid_output = PID_MAX;
  632. }
  633. #endif
  634. // Check if temperature is within the correct range
  635. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  636. {
  637. soft_pwm[e] = (int)pid_output >> 1;
  638. }
  639. else
  640. {
  641. soft_pwm[e] = 0;
  642. }
  643. #ifdef WATCH_TEMP_PERIOD
  644. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  645. {
  646. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  647. {
  648. setTargetHotend(0, e);
  649. LCD_MESSAGEPGM("Heating failed");
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHOLN("Heating failed");
  652. }else{
  653. watchmillis[e] = 0;
  654. }
  655. }
  656. #endif
  657. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  658. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  659. disable_heater();
  660. if(IsStopped() == false) {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  663. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  664. }
  665. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  666. Stop();
  667. #endif
  668. }
  669. #endif
  670. } // End extruder for loop
  671. #define FAN_CHECK_PERIOD 5000 //5s
  672. #define FAN_CHECK_DURATION 100 //100ms
  673. #ifndef DEBUG_DISABLE_FANCHECK
  674. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  675. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  676. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  677. #ifdef FAN_SOFT_PWM
  678. #ifdef FANCHECK
  679. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  680. extruder_autofan_last_check = _millis();
  681. fanSpeedBckp = fanSpeedSoftPwm;
  682. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  683. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  684. fanSpeedSoftPwm = 255;
  685. }
  686. fan_measuring = true;
  687. }
  688. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  689. countFanSpeed();
  690. checkFanSpeed();
  691. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  692. fanSpeedSoftPwm = fanSpeedBckp;
  693. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  694. extruder_autofan_last_check = _millis();
  695. fan_measuring = false;
  696. }
  697. #endif //FANCHECK
  698. checkExtruderAutoFans();
  699. #else //FAN_SOFT_PWM
  700. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  701. {
  702. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  703. countFanSpeed();
  704. checkFanSpeed();
  705. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  706. checkExtruderAutoFans();
  707. extruder_autofan_last_check = _millis();
  708. }
  709. #endif //FAN_SOFT_PWM
  710. #endif
  711. #endif //DEBUG_DISABLE_FANCHECK
  712. #ifndef PIDTEMPBED
  713. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  714. return;
  715. previous_millis_bed_heater = _millis();
  716. #endif
  717. #if TEMP_SENSOR_BED != 0
  718. #ifdef PIDTEMPBED
  719. pid_input = current_temperature_bed;
  720. #ifndef PID_OPENLOOP
  721. pid_error_bed = target_temperature_bed - pid_input;
  722. pTerm_bed = cs.bedKp * pid_error_bed;
  723. temp_iState_bed += pid_error_bed;
  724. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  725. iTerm_bed = cs.bedKi * temp_iState_bed;
  726. //PID_K1 defined in Configuration.h in the PID settings
  727. #define K2 (1.0-PID_K1)
  728. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  729. temp_dState_bed = pid_input;
  730. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  731. if (pid_output > MAX_BED_POWER) {
  732. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  733. pid_output=MAX_BED_POWER;
  734. } else if (pid_output < 0){
  735. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  736. pid_output=0;
  737. }
  738. #else
  739. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  740. #endif //PID_OPENLOOP
  741. if(current_temperature_bed < BED_MAXTEMP)
  742. {
  743. soft_pwm_bed = (int)pid_output >> 1;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. else {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. #elif !defined(BED_LIMIT_SWITCHING)
  751. // Check if temperature is within the correct range
  752. if(current_temperature_bed < BED_MAXTEMP)
  753. {
  754. if(current_temperature_bed >= target_temperature_bed)
  755. {
  756. soft_pwm_bed = 0;
  757. timer02_set_pwm0(soft_pwm_bed << 1);
  758. }
  759. else
  760. {
  761. soft_pwm_bed = MAX_BED_POWER>>1;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. }
  764. }
  765. else
  766. {
  767. soft_pwm_bed = 0;
  768. timer02_set_pwm0(soft_pwm_bed << 1);
  769. WRITE(HEATER_BED_PIN,LOW);
  770. }
  771. #else //#ifdef BED_LIMIT_SWITCHING
  772. // Check if temperature is within the correct band
  773. if(current_temperature_bed < BED_MAXTEMP)
  774. {
  775. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  776. {
  777. soft_pwm_bed = 0;
  778. timer02_set_pwm0(soft_pwm_bed << 1);
  779. }
  780. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  781. {
  782. soft_pwm_bed = MAX_BED_POWER>>1;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. }
  786. else
  787. {
  788. soft_pwm_bed = 0;
  789. timer02_set_pwm0(soft_pwm_bed << 1);
  790. WRITE(HEATER_BED_PIN,LOW);
  791. }
  792. #endif
  793. if(target_temperature_bed==0)
  794. {
  795. soft_pwm_bed = 0;
  796. timer02_set_pwm0(soft_pwm_bed << 1);
  797. }
  798. #endif
  799. host_keepalive();
  800. }
  801. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  802. // Derived from RepRap FiveD extruder::getTemperature()
  803. // For hot end temperature measurement.
  804. static float analog2temp(int raw, uint8_t e) {
  805. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  806. if(e > EXTRUDERS)
  807. #else
  808. if(e >= EXTRUDERS)
  809. #endif
  810. {
  811. SERIAL_ERROR_START;
  812. SERIAL_ERROR((int)e);
  813. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  814. kill(PSTR(""), 6);
  815. return 0.0;
  816. }
  817. #ifdef HEATER_0_USES_MAX6675
  818. if (e == 0)
  819. {
  820. return 0.25 * raw;
  821. }
  822. #endif
  823. if(heater_ttbl_map[e] != NULL)
  824. {
  825. float celsius = 0;
  826. uint8_t i;
  827. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  828. for (i=1; i<heater_ttbllen_map[e]; i++)
  829. {
  830. if (PGM_RD_W((*tt)[i][0]) > raw)
  831. {
  832. celsius = PGM_RD_W((*tt)[i-1][1]) +
  833. (raw - PGM_RD_W((*tt)[i-1][0])) *
  834. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  835. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  836. break;
  837. }
  838. }
  839. // Overflow: Set to last value in the table
  840. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  841. return celsius;
  842. }
  843. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  844. }
  845. // Derived from RepRap FiveD extruder::getTemperature()
  846. // For bed temperature measurement.
  847. static float analog2tempBed(int raw) {
  848. #ifdef BED_USES_THERMISTOR
  849. float celsius = 0;
  850. byte i;
  851. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  852. {
  853. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  854. {
  855. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  856. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  857. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  858. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  859. break;
  860. }
  861. }
  862. // Overflow: Set to last value in the table
  863. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  864. // temperature offset adjustment
  865. #ifdef BED_OFFSET
  866. float _offset = BED_OFFSET;
  867. float _offset_center = BED_OFFSET_CENTER;
  868. float _offset_start = BED_OFFSET_START;
  869. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  870. float _second_koef = (_offset / 2) / (100 - _offset_center);
  871. if (celsius >= _offset_start && celsius <= _offset_center)
  872. {
  873. celsius = celsius + (_first_koef * (celsius - _offset_start));
  874. }
  875. else if (celsius > _offset_center && celsius <= 100)
  876. {
  877. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  878. }
  879. else if (celsius > 100)
  880. {
  881. celsius = celsius + _offset;
  882. }
  883. #endif
  884. return celsius;
  885. #elif defined BED_USES_AD595
  886. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  887. #else
  888. return 0;
  889. #endif
  890. }
  891. #ifdef AMBIENT_THERMISTOR
  892. static float analog2tempAmbient(int raw)
  893. {
  894. float celsius = 0;
  895. byte i;
  896. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  897. {
  898. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  899. {
  900. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  901. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  902. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  903. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  904. break;
  905. }
  906. }
  907. // Overflow: Set to last value in the table
  908. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  909. return celsius;
  910. }
  911. #endif //AMBIENT_THERMISTOR
  912. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  913. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  914. static void updateTemperaturesFromRawValues()
  915. {
  916. for(uint8_t e=0;e<EXTRUDERS;e++)
  917. {
  918. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  919. }
  920. #ifdef PINDA_THERMISTOR
  921. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  922. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  923. #endif
  924. #ifdef AMBIENT_THERMISTOR
  925. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  926. #endif
  927. #ifdef DEBUG_HEATER_BED_SIM
  928. current_temperature_bed = target_temperature_bed;
  929. #else //DEBUG_HEATER_BED_SIM
  930. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  931. #endif //DEBUG_HEATER_BED_SIM
  932. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  933. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  934. #endif
  935. CRITICAL_SECTION_START;
  936. temp_meas_ready = false;
  937. CRITICAL_SECTION_END;
  938. }
  939. void tp_init()
  940. {
  941. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  942. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  943. MCUCR=(1<<JTD);
  944. MCUCR=(1<<JTD);
  945. #endif
  946. // Finish init of mult extruder arrays
  947. for(int e = 0; e < EXTRUDERS; e++) {
  948. // populate with the first value
  949. maxttemp[e] = maxttemp[0];
  950. #ifdef PIDTEMP
  951. iState_sum_min[e] = 0.0;
  952. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  953. #endif //PIDTEMP
  954. #ifdef PIDTEMPBED
  955. temp_iState_min_bed = 0.0;
  956. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  957. #endif //PIDTEMPBED
  958. }
  959. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  960. SET_OUTPUT(HEATER_0_PIN);
  961. #endif
  962. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  963. SET_OUTPUT(HEATER_1_PIN);
  964. #endif
  965. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  966. SET_OUTPUT(HEATER_2_PIN);
  967. #endif
  968. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  969. SET_OUTPUT(HEATER_BED_PIN);
  970. #endif
  971. #if defined(FAN_PIN) && (FAN_PIN > -1)
  972. SET_OUTPUT(FAN_PIN);
  973. #ifdef FAST_PWM_FAN
  974. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  975. #endif
  976. #ifdef FAN_SOFT_PWM
  977. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  978. #endif
  979. #endif
  980. #ifdef HEATER_0_USES_MAX6675
  981. #ifndef SDSUPPORT
  982. SET_OUTPUT(SCK_PIN);
  983. WRITE(SCK_PIN,0);
  984. SET_OUTPUT(MOSI_PIN);
  985. WRITE(MOSI_PIN,1);
  986. SET_INPUT(MISO_PIN);
  987. WRITE(MISO_PIN,1);
  988. #endif
  989. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  990. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  991. pinMode(SS_PIN, OUTPUT);
  992. digitalWrite(SS_PIN,0);
  993. pinMode(MAX6675_SS, OUTPUT);
  994. digitalWrite(MAX6675_SS,1);
  995. #endif
  996. adc_init();
  997. timer0_init();
  998. OCR2B = 128;
  999. TIMSK2 |= (1<<OCIE2B);
  1000. // Wait for temperature measurement to settle
  1001. _delay(250);
  1002. #ifdef HEATER_0_MINTEMP
  1003. minttemp[0] = HEATER_0_MINTEMP;
  1004. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1005. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1006. minttemp_raw[0] += OVERSAMPLENR;
  1007. #else
  1008. minttemp_raw[0] -= OVERSAMPLENR;
  1009. #endif
  1010. }
  1011. #endif //MINTEMP
  1012. #ifdef HEATER_0_MAXTEMP
  1013. maxttemp[0] = HEATER_0_MAXTEMP;
  1014. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1015. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1016. maxttemp_raw[0] -= OVERSAMPLENR;
  1017. #else
  1018. maxttemp_raw[0] += OVERSAMPLENR;
  1019. #endif
  1020. }
  1021. #endif //MAXTEMP
  1022. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1023. minttemp[1] = HEATER_1_MINTEMP;
  1024. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1025. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1026. minttemp_raw[1] += OVERSAMPLENR;
  1027. #else
  1028. minttemp_raw[1] -= OVERSAMPLENR;
  1029. #endif
  1030. }
  1031. #endif // MINTEMP 1
  1032. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1033. maxttemp[1] = HEATER_1_MAXTEMP;
  1034. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1035. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1036. maxttemp_raw[1] -= OVERSAMPLENR;
  1037. #else
  1038. maxttemp_raw[1] += OVERSAMPLENR;
  1039. #endif
  1040. }
  1041. #endif //MAXTEMP 1
  1042. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1043. minttemp[2] = HEATER_2_MINTEMP;
  1044. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1045. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1046. minttemp_raw[2] += OVERSAMPLENR;
  1047. #else
  1048. minttemp_raw[2] -= OVERSAMPLENR;
  1049. #endif
  1050. }
  1051. #endif //MINTEMP 2
  1052. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1053. maxttemp[2] = HEATER_2_MAXTEMP;
  1054. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1055. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1056. maxttemp_raw[2] -= OVERSAMPLENR;
  1057. #else
  1058. maxttemp_raw[2] += OVERSAMPLENR;
  1059. #endif
  1060. }
  1061. #endif //MAXTEMP 2
  1062. #ifdef BED_MINTEMP
  1063. /* No bed MINTEMP error implemented?!? */
  1064. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1065. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1066. bed_minttemp_raw += OVERSAMPLENR;
  1067. #else
  1068. bed_minttemp_raw -= OVERSAMPLENR;
  1069. #endif
  1070. }
  1071. #endif //BED_MINTEMP
  1072. #ifdef BED_MAXTEMP
  1073. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1074. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1075. bed_maxttemp_raw -= OVERSAMPLENR;
  1076. #else
  1077. bed_maxttemp_raw += OVERSAMPLENR;
  1078. #endif
  1079. }
  1080. #endif //BED_MAXTEMP
  1081. }
  1082. void setWatch()
  1083. {
  1084. #ifdef WATCH_TEMP_PERIOD
  1085. for (int e = 0; e < EXTRUDERS; e++)
  1086. {
  1087. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1088. {
  1089. watch_start_temp[e] = degHotend(e);
  1090. watchmillis[e] = _millis();
  1091. }
  1092. }
  1093. #endif
  1094. }
  1095. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1096. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1097. {
  1098. float __delta;
  1099. float __hysteresis = 0;
  1100. int __timeout = 0;
  1101. bool temp_runaway_check_active = false;
  1102. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1103. static int __preheat_counter[2] = { 0,0};
  1104. static int __preheat_errors[2] = { 0,0};
  1105. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1106. {
  1107. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1108. if (_isbed)
  1109. {
  1110. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1111. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1112. }
  1113. #endif
  1114. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1115. if (!_isbed)
  1116. {
  1117. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1118. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1119. }
  1120. #endif
  1121. temp_runaway_timer[_heater_id] = _millis();
  1122. if (_output == 0)
  1123. {
  1124. temp_runaway_check_active = false;
  1125. temp_runaway_error_counter[_heater_id] = 0;
  1126. }
  1127. if (temp_runaway_target[_heater_id] != _target_temperature)
  1128. {
  1129. if (_target_temperature > 0)
  1130. {
  1131. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1132. temp_runaway_target[_heater_id] = _target_temperature;
  1133. __preheat_start[_heater_id] = _current_temperature;
  1134. __preheat_counter[_heater_id] = 0;
  1135. }
  1136. else
  1137. {
  1138. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1139. temp_runaway_target[_heater_id] = _target_temperature;
  1140. }
  1141. }
  1142. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1143. {
  1144. __preheat_counter[_heater_id]++;
  1145. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1146. {
  1147. /*SERIAL_ECHOPGM("Heater:");
  1148. MYSERIAL.print(_heater_id);
  1149. SERIAL_ECHOPGM(" T:");
  1150. MYSERIAL.print(_current_temperature);
  1151. SERIAL_ECHOPGM(" Tstart:");
  1152. MYSERIAL.print(__preheat_start[_heater_id]);
  1153. SERIAL_ECHOPGM(" delta:");
  1154. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1155. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1156. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1157. __delta=2.0;
  1158. if(_isbed)
  1159. {
  1160. __delta=3.0;
  1161. if(_current_temperature>90.0) __delta=2.0;
  1162. if(_current_temperature>105.0) __delta=0.6;
  1163. }
  1164. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1165. __preheat_errors[_heater_id]++;
  1166. /*SERIAL_ECHOPGM(" Preheat errors:");
  1167. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1168. }
  1169. else {
  1170. //SERIAL_ECHOLNPGM("");
  1171. __preheat_errors[_heater_id] = 0;
  1172. }
  1173. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1174. {
  1175. if (farm_mode) { prusa_statistics(0); }
  1176. temp_runaway_stop(true, _isbed);
  1177. if (farm_mode) { prusa_statistics(91); }
  1178. }
  1179. __preheat_start[_heater_id] = _current_temperature;
  1180. __preheat_counter[_heater_id] = 0;
  1181. }
  1182. }
  1183. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1184. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1185. {
  1186. /*SERIAL_ECHOPGM("Heater:");
  1187. MYSERIAL.print(_heater_id);
  1188. MYSERIAL.println(" ->tempRunaway");*/
  1189. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1190. temp_runaway_check_active = false;
  1191. temp_runaway_error_counter[_heater_id] = 0;
  1192. }
  1193. if (_output > 0)
  1194. {
  1195. temp_runaway_check_active = true;
  1196. }
  1197. if (temp_runaway_check_active)
  1198. {
  1199. // we are in range
  1200. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1201. {
  1202. temp_runaway_check_active = false;
  1203. temp_runaway_error_counter[_heater_id] = 0;
  1204. }
  1205. else
  1206. {
  1207. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1208. {
  1209. temp_runaway_error_counter[_heater_id]++;
  1210. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1211. {
  1212. if (farm_mode) { prusa_statistics(0); }
  1213. temp_runaway_stop(false, _isbed);
  1214. if (farm_mode) { prusa_statistics(90); }
  1215. }
  1216. }
  1217. }
  1218. }
  1219. }
  1220. }
  1221. void temp_runaway_stop(bool isPreheat, bool isBed)
  1222. {
  1223. cancel_heatup = true;
  1224. quickStop();
  1225. if (card.sdprinting)
  1226. {
  1227. card.sdprinting = false;
  1228. card.closefile();
  1229. }
  1230. // Clean the input command queue
  1231. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1232. cmdqueue_reset();
  1233. disable_heater();
  1234. disable_x();
  1235. disable_y();
  1236. disable_e0();
  1237. disable_e1();
  1238. disable_e2();
  1239. manage_heater();
  1240. lcd_update(0);
  1241. Sound_MakeCustom(200,0,true);
  1242. if (isPreheat)
  1243. {
  1244. Stop();
  1245. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1246. SERIAL_ERROR_START;
  1247. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1248. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1249. SET_OUTPUT(FAN_PIN);
  1250. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1251. #ifdef FAN_SOFT_PWM
  1252. fanSpeedSoftPwm = 255;
  1253. #else //FAN_SOFT_PWM
  1254. analogWrite(FAN_PIN, 255);
  1255. #endif //FAN_SOFT_PWM
  1256. fanSpeed = 255;
  1257. delayMicroseconds(2000);
  1258. }
  1259. else
  1260. {
  1261. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1262. SERIAL_ERROR_START;
  1263. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1264. }
  1265. }
  1266. #endif
  1267. void disable_heater()
  1268. {
  1269. setAllTargetHotends(0);
  1270. setTargetBed(0);
  1271. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1272. target_temperature[0]=0;
  1273. soft_pwm[0]=0;
  1274. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1275. WRITE(HEATER_0_PIN,LOW);
  1276. #endif
  1277. #endif
  1278. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1279. target_temperature[1]=0;
  1280. soft_pwm[1]=0;
  1281. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1282. WRITE(HEATER_1_PIN,LOW);
  1283. #endif
  1284. #endif
  1285. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1286. target_temperature[2]=0;
  1287. soft_pwm[2]=0;
  1288. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1289. WRITE(HEATER_2_PIN,LOW);
  1290. #endif
  1291. #endif
  1292. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1293. target_temperature_bed=0;
  1294. soft_pwm_bed=0;
  1295. timer02_set_pwm0(soft_pwm_bed << 1);
  1296. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1297. //WRITE(HEATER_BED_PIN,LOW);
  1298. #endif
  1299. #endif
  1300. }
  1301. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1302. //! than raw const char * of the messages themselves.
  1303. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1304. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1305. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1306. //! remember the last alert message sent to the LCD
  1307. //! to prevent flicker and improve speed
  1308. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1309. void max_temp_error(uint8_t e) {
  1310. disable_heater();
  1311. if(IsStopped() == false) {
  1312. SERIAL_ERROR_START;
  1313. SERIAL_ERRORLN((int)e);
  1314. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1315. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1316. }
  1317. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1318. Stop();
  1319. #endif
  1320. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1321. SET_OUTPUT(FAN_PIN);
  1322. SET_OUTPUT(BEEPER);
  1323. WRITE(FAN_PIN, 1);
  1324. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1325. WRITE(BEEPER, 1);
  1326. // fanSpeed will consumed by the check_axes_activity() routine.
  1327. fanSpeed=255;
  1328. if (farm_mode) { prusa_statistics(93); }
  1329. }
  1330. void min_temp_error(uint8_t e) {
  1331. #ifdef DEBUG_DISABLE_MINTEMP
  1332. return;
  1333. #endif
  1334. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1335. disable_heater();
  1336. static const char err[] PROGMEM = "Err: MINTEMP";
  1337. if(IsStopped() == false) {
  1338. SERIAL_ERROR_START;
  1339. SERIAL_ERRORLN((int)e);
  1340. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1341. lcd_setalertstatuspgm(err);
  1342. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1343. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1344. // we are already stopped due to some error, only update the status message without flickering
  1345. lcd_updatestatuspgm(err);
  1346. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1347. }
  1348. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1349. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1350. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1351. // lcd_print_stop();
  1352. // }
  1353. Stop();
  1354. #endif
  1355. if (farm_mode) { prusa_statistics(92); }
  1356. }
  1357. void bed_max_temp_error(void) {
  1358. #if HEATER_BED_PIN > -1
  1359. //WRITE(HEATER_BED_PIN, 0);
  1360. #endif
  1361. if(IsStopped() == false) {
  1362. SERIAL_ERROR_START;
  1363. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1364. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1365. }
  1366. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1367. Stop();
  1368. #endif
  1369. }
  1370. void bed_min_temp_error(void) {
  1371. #ifdef DEBUG_DISABLE_MINTEMP
  1372. return;
  1373. #endif
  1374. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1375. #if HEATER_BED_PIN > -1
  1376. //WRITE(HEATER_BED_PIN, 0);
  1377. #endif
  1378. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1379. if(IsStopped() == false) {
  1380. SERIAL_ERROR_START;
  1381. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1382. lcd_setalertstatuspgm(err);
  1383. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1384. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1385. // we are already stopped due to some error, only update the status message without flickering
  1386. lcd_updatestatuspgm(err);
  1387. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1388. }
  1389. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1390. Stop();
  1391. #endif
  1392. }
  1393. #ifdef HEATER_0_USES_MAX6675
  1394. #define MAX6675_HEAT_INTERVAL 250
  1395. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1396. int max6675_temp = 2000;
  1397. int read_max6675()
  1398. {
  1399. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1400. return max6675_temp;
  1401. max6675_previous_millis = _millis();
  1402. max6675_temp = 0;
  1403. #ifdef PRR
  1404. PRR &= ~(1<<PRSPI);
  1405. #elif defined PRR0
  1406. PRR0 &= ~(1<<PRSPI);
  1407. #endif
  1408. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1409. // enable TT_MAX6675
  1410. WRITE(MAX6675_SS, 0);
  1411. // ensure 100ns delay - a bit extra is fine
  1412. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1413. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1414. // read MSB
  1415. SPDR = 0;
  1416. for (;(SPSR & (1<<SPIF)) == 0;);
  1417. max6675_temp = SPDR;
  1418. max6675_temp <<= 8;
  1419. // read LSB
  1420. SPDR = 0;
  1421. for (;(SPSR & (1<<SPIF)) == 0;);
  1422. max6675_temp |= SPDR;
  1423. // disable TT_MAX6675
  1424. WRITE(MAX6675_SS, 1);
  1425. if (max6675_temp & 4)
  1426. {
  1427. // thermocouple open
  1428. max6675_temp = 2000;
  1429. }
  1430. else
  1431. {
  1432. max6675_temp = max6675_temp >> 3;
  1433. }
  1434. return max6675_temp;
  1435. }
  1436. #endif
  1437. extern "C" {
  1438. void adc_ready(void) //callback from adc when sampling finished
  1439. {
  1440. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1441. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1442. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1443. #ifdef VOLT_PWR_PIN
  1444. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1445. #endif
  1446. #ifdef AMBIENT_THERMISTOR
  1447. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1448. #endif //AMBIENT_THERMISTOR
  1449. #ifdef VOLT_BED_PIN
  1450. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1451. #endif
  1452. temp_meas_ready = true;
  1453. }
  1454. } // extern "C"
  1455. // Timer2 (originaly timer0) is shared with millies
  1456. #ifdef SYSTEM_TIMER_2
  1457. ISR(TIMER2_COMPB_vect)
  1458. #else //SYSTEM_TIMER_2
  1459. ISR(TIMER0_COMPB_vect)
  1460. #endif //SYSTEM_TIMER_2
  1461. {
  1462. static bool _lock = false;
  1463. if (_lock) return;
  1464. _lock = true;
  1465. asm("sei");
  1466. if (!temp_meas_ready) adc_cycle();
  1467. lcd_buttons_update();
  1468. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1469. static uint8_t soft_pwm_0;
  1470. #ifdef SLOW_PWM_HEATERS
  1471. static unsigned char slow_pwm_count = 0;
  1472. static unsigned char state_heater_0 = 0;
  1473. static unsigned char state_timer_heater_0 = 0;
  1474. #endif
  1475. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1476. static unsigned char soft_pwm_1;
  1477. #ifdef SLOW_PWM_HEATERS
  1478. static unsigned char state_heater_1 = 0;
  1479. static unsigned char state_timer_heater_1 = 0;
  1480. #endif
  1481. #endif
  1482. #if EXTRUDERS > 2
  1483. static unsigned char soft_pwm_2;
  1484. #ifdef SLOW_PWM_HEATERS
  1485. static unsigned char state_heater_2 = 0;
  1486. static unsigned char state_timer_heater_2 = 0;
  1487. #endif
  1488. #endif
  1489. #if HEATER_BED_PIN > -1
  1490. // @@DR static unsigned char soft_pwm_b;
  1491. #ifdef SLOW_PWM_HEATERS
  1492. static unsigned char state_heater_b = 0;
  1493. static unsigned char state_timer_heater_b = 0;
  1494. #endif
  1495. #endif
  1496. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1497. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1498. #endif
  1499. #ifndef SLOW_PWM_HEATERS
  1500. /*
  1501. * standard PWM modulation
  1502. */
  1503. if (pwm_count == 0)
  1504. {
  1505. soft_pwm_0 = soft_pwm[0];
  1506. if(soft_pwm_0 > 0)
  1507. {
  1508. WRITE(HEATER_0_PIN,1);
  1509. #ifdef HEATERS_PARALLEL
  1510. WRITE(HEATER_1_PIN,1);
  1511. #endif
  1512. } else WRITE(HEATER_0_PIN,0);
  1513. #if EXTRUDERS > 1
  1514. soft_pwm_1 = soft_pwm[1];
  1515. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1516. #endif
  1517. #if EXTRUDERS > 2
  1518. soft_pwm_2 = soft_pwm[2];
  1519. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1520. #endif
  1521. }
  1522. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1523. #if 0 // @@DR vypnuto pro hw pwm bedu
  1524. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1525. // teoreticky by se tato cast uz vubec nemusela poustet
  1526. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1527. {
  1528. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1529. # ifndef SYSTEM_TIMER_2
  1530. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1531. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1532. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1533. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1534. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1535. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1536. # endif //SYSTEM_TIMER_2
  1537. }
  1538. #endif
  1539. #endif
  1540. #ifdef FAN_SOFT_PWM
  1541. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1542. {
  1543. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1544. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1545. }
  1546. #endif
  1547. if(soft_pwm_0 < pwm_count)
  1548. {
  1549. WRITE(HEATER_0_PIN,0);
  1550. #ifdef HEATERS_PARALLEL
  1551. WRITE(HEATER_1_PIN,0);
  1552. #endif
  1553. }
  1554. #if EXTRUDERS > 1
  1555. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1556. #endif
  1557. #if EXTRUDERS > 2
  1558. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1559. #endif
  1560. #if 0 // @@DR
  1561. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1562. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1563. //WRITE(HEATER_BED_PIN,0);
  1564. }
  1565. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1566. #endif
  1567. #endif
  1568. #ifdef FAN_SOFT_PWM
  1569. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1570. #endif
  1571. pwm_count += (1 << SOFT_PWM_SCALE);
  1572. pwm_count &= 0x7f;
  1573. #else //ifndef SLOW_PWM_HEATERS
  1574. /*
  1575. * SLOW PWM HEATERS
  1576. *
  1577. * for heaters drived by relay
  1578. */
  1579. #ifndef MIN_STATE_TIME
  1580. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1581. #endif
  1582. if (slow_pwm_count == 0) {
  1583. // EXTRUDER 0
  1584. soft_pwm_0 = soft_pwm[0];
  1585. if (soft_pwm_0 > 0) {
  1586. // turn ON heather only if the minimum time is up
  1587. if (state_timer_heater_0 == 0) {
  1588. // if change state set timer
  1589. if (state_heater_0 == 0) {
  1590. state_timer_heater_0 = MIN_STATE_TIME;
  1591. }
  1592. state_heater_0 = 1;
  1593. WRITE(HEATER_0_PIN, 1);
  1594. #ifdef HEATERS_PARALLEL
  1595. WRITE(HEATER_1_PIN, 1);
  1596. #endif
  1597. }
  1598. } else {
  1599. // turn OFF heather only if the minimum time is up
  1600. if (state_timer_heater_0 == 0) {
  1601. // if change state set timer
  1602. if (state_heater_0 == 1) {
  1603. state_timer_heater_0 = MIN_STATE_TIME;
  1604. }
  1605. state_heater_0 = 0;
  1606. WRITE(HEATER_0_PIN, 0);
  1607. #ifdef HEATERS_PARALLEL
  1608. WRITE(HEATER_1_PIN, 0);
  1609. #endif
  1610. }
  1611. }
  1612. #if EXTRUDERS > 1
  1613. // EXTRUDER 1
  1614. soft_pwm_1 = soft_pwm[1];
  1615. if (soft_pwm_1 > 0) {
  1616. // turn ON heather only if the minimum time is up
  1617. if (state_timer_heater_1 == 0) {
  1618. // if change state set timer
  1619. if (state_heater_1 == 0) {
  1620. state_timer_heater_1 = MIN_STATE_TIME;
  1621. }
  1622. state_heater_1 = 1;
  1623. WRITE(HEATER_1_PIN, 1);
  1624. }
  1625. } else {
  1626. // turn OFF heather only if the minimum time is up
  1627. if (state_timer_heater_1 == 0) {
  1628. // if change state set timer
  1629. if (state_heater_1 == 1) {
  1630. state_timer_heater_1 = MIN_STATE_TIME;
  1631. }
  1632. state_heater_1 = 0;
  1633. WRITE(HEATER_1_PIN, 0);
  1634. }
  1635. }
  1636. #endif
  1637. #if EXTRUDERS > 2
  1638. // EXTRUDER 2
  1639. soft_pwm_2 = soft_pwm[2];
  1640. if (soft_pwm_2 > 0) {
  1641. // turn ON heather only if the minimum time is up
  1642. if (state_timer_heater_2 == 0) {
  1643. // if change state set timer
  1644. if (state_heater_2 == 0) {
  1645. state_timer_heater_2 = MIN_STATE_TIME;
  1646. }
  1647. state_heater_2 = 1;
  1648. WRITE(HEATER_2_PIN, 1);
  1649. }
  1650. } else {
  1651. // turn OFF heather only if the minimum time is up
  1652. if (state_timer_heater_2 == 0) {
  1653. // if change state set timer
  1654. if (state_heater_2 == 1) {
  1655. state_timer_heater_2 = MIN_STATE_TIME;
  1656. }
  1657. state_heater_2 = 0;
  1658. WRITE(HEATER_2_PIN, 0);
  1659. }
  1660. }
  1661. #endif
  1662. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1663. // BED
  1664. soft_pwm_b = soft_pwm_bed;
  1665. if (soft_pwm_b > 0) {
  1666. // turn ON heather only if the minimum time is up
  1667. if (state_timer_heater_b == 0) {
  1668. // if change state set timer
  1669. if (state_heater_b == 0) {
  1670. state_timer_heater_b = MIN_STATE_TIME;
  1671. }
  1672. state_heater_b = 1;
  1673. //WRITE(HEATER_BED_PIN, 1);
  1674. }
  1675. } else {
  1676. // turn OFF heather only if the minimum time is up
  1677. if (state_timer_heater_b == 0) {
  1678. // if change state set timer
  1679. if (state_heater_b == 1) {
  1680. state_timer_heater_b = MIN_STATE_TIME;
  1681. }
  1682. state_heater_b = 0;
  1683. WRITE(HEATER_BED_PIN, 0);
  1684. }
  1685. }
  1686. #endif
  1687. } // if (slow_pwm_count == 0)
  1688. // EXTRUDER 0
  1689. if (soft_pwm_0 < slow_pwm_count) {
  1690. // turn OFF heather only if the minimum time is up
  1691. if (state_timer_heater_0 == 0) {
  1692. // if change state set timer
  1693. if (state_heater_0 == 1) {
  1694. state_timer_heater_0 = MIN_STATE_TIME;
  1695. }
  1696. state_heater_0 = 0;
  1697. WRITE(HEATER_0_PIN, 0);
  1698. #ifdef HEATERS_PARALLEL
  1699. WRITE(HEATER_1_PIN, 0);
  1700. #endif
  1701. }
  1702. }
  1703. #if EXTRUDERS > 1
  1704. // EXTRUDER 1
  1705. if (soft_pwm_1 < slow_pwm_count) {
  1706. // turn OFF heather only if the minimum time is up
  1707. if (state_timer_heater_1 == 0) {
  1708. // if change state set timer
  1709. if (state_heater_1 == 1) {
  1710. state_timer_heater_1 = MIN_STATE_TIME;
  1711. }
  1712. state_heater_1 = 0;
  1713. WRITE(HEATER_1_PIN, 0);
  1714. }
  1715. }
  1716. #endif
  1717. #if EXTRUDERS > 2
  1718. // EXTRUDER 2
  1719. if (soft_pwm_2 < slow_pwm_count) {
  1720. // turn OFF heather only if the minimum time is up
  1721. if (state_timer_heater_2 == 0) {
  1722. // if change state set timer
  1723. if (state_heater_2 == 1) {
  1724. state_timer_heater_2 = MIN_STATE_TIME;
  1725. }
  1726. state_heater_2 = 0;
  1727. WRITE(HEATER_2_PIN, 0);
  1728. }
  1729. }
  1730. #endif
  1731. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1732. // BED
  1733. if (soft_pwm_b < slow_pwm_count) {
  1734. // turn OFF heather only if the minimum time is up
  1735. if (state_timer_heater_b == 0) {
  1736. // if change state set timer
  1737. if (state_heater_b == 1) {
  1738. state_timer_heater_b = MIN_STATE_TIME;
  1739. }
  1740. state_heater_b = 0;
  1741. WRITE(HEATER_BED_PIN, 0);
  1742. }
  1743. }
  1744. #endif
  1745. #ifdef FAN_SOFT_PWM
  1746. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1747. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1748. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1749. }
  1750. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1751. #endif
  1752. pwm_count += (1 << SOFT_PWM_SCALE);
  1753. pwm_count &= 0x7f;
  1754. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1755. if ((pwm_count % 64) == 0) {
  1756. slow_pwm_count++;
  1757. slow_pwm_count &= 0x7f;
  1758. // Extruder 0
  1759. if (state_timer_heater_0 > 0) {
  1760. state_timer_heater_0--;
  1761. }
  1762. #if EXTRUDERS > 1
  1763. // Extruder 1
  1764. if (state_timer_heater_1 > 0)
  1765. state_timer_heater_1--;
  1766. #endif
  1767. #if EXTRUDERS > 2
  1768. // Extruder 2
  1769. if (state_timer_heater_2 > 0)
  1770. state_timer_heater_2--;
  1771. #endif
  1772. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1773. // Bed
  1774. if (state_timer_heater_b > 0)
  1775. state_timer_heater_b--;
  1776. #endif
  1777. } //if ((pwm_count % 64) == 0) {
  1778. #endif //ifndef SLOW_PWM_HEATERS
  1779. #ifdef BABYSTEPPING
  1780. for(uint8_t axis=0;axis<3;axis++)
  1781. {
  1782. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1783. if(curTodo>0)
  1784. {
  1785. asm("cli");
  1786. babystep(axis,/*fwd*/true);
  1787. babystepsTodo[axis]--; //less to do next time
  1788. asm("sei");
  1789. }
  1790. else
  1791. if(curTodo<0)
  1792. {
  1793. asm("cli");
  1794. babystep(axis,/*fwd*/false);
  1795. babystepsTodo[axis]++; //less to do next time
  1796. asm("sei");
  1797. }
  1798. }
  1799. #endif //BABYSTEPPING
  1800. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1801. check_fans();
  1802. #endif //(defined(TACH_0))
  1803. _lock = false;
  1804. }
  1805. void check_max_temp()
  1806. {
  1807. //heater
  1808. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1809. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1810. #else
  1811. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1812. #endif
  1813. max_temp_error(0);
  1814. }
  1815. //bed
  1816. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1817. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1818. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1819. #else
  1820. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1821. #endif
  1822. target_temperature_bed = 0;
  1823. bed_max_temp_error();
  1824. }
  1825. #endif
  1826. }
  1827. //! number of repeating the same state with consecutive step() calls
  1828. //! used to slow down text switching
  1829. struct alert_automaton_mintemp {
  1830. private:
  1831. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1832. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1833. States state = States::Init;
  1834. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1835. void substep(States next_state){
  1836. if( repeat == 0 ){
  1837. state = next_state; // advance to the next state
  1838. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1839. } else {
  1840. --repeat;
  1841. }
  1842. }
  1843. public:
  1844. //! brief state automaton step routine
  1845. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1846. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1847. void step(float current_temp, float mintemp){
  1848. static const char m2[] PROGMEM = "MINTEMP fixed";
  1849. static const char m1[] PROGMEM = "Please restart";
  1850. switch(state){
  1851. case States::Init: // initial state - check hysteresis
  1852. if( current_temp > mintemp ){
  1853. state = States::TempAboveMintemp;
  1854. }
  1855. // otherwise keep the Err MINTEMP alert message on the display,
  1856. // i.e. do not transfer to state 1
  1857. break;
  1858. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1859. lcd_setalertstatuspgm(m2);
  1860. substep(States::ShowMintemp);
  1861. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1862. break;
  1863. case States::ShowPleaseRestart: // displaying "Please restart"
  1864. lcd_updatestatuspgm(m1);
  1865. substep(States::ShowMintemp);
  1866. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1867. break;
  1868. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1869. lcd_updatestatuspgm(m2);
  1870. substep(States::ShowPleaseRestart);
  1871. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1872. break;
  1873. }
  1874. }
  1875. };
  1876. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1877. void check_min_temp_heater0()
  1878. {
  1879. //heater
  1880. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1881. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1882. #else
  1883. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1884. #endif
  1885. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1886. min_temp_error(0);
  1887. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1888. // no recovery, just force the user to restart the printer
  1889. // which is a safer variant than just continuing printing
  1890. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1891. // we shall signalize, that MINTEMP has been fixed
  1892. // Code notice: normally the alert_automaton instance would have been placed here
  1893. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1894. // due to stupid compiler that takes 16 more bytes.
  1895. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1896. }
  1897. }
  1898. void check_min_temp_bed()
  1899. {
  1900. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1901. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1902. #else
  1903. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1904. #endif
  1905. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1906. bed_min_temp_error();
  1907. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1908. // no recovery, just force the user to restart the printer
  1909. // which is a safer variant than just continuing printing
  1910. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1911. }
  1912. }
  1913. void check_min_temp()
  1914. {
  1915. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1916. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1917. #ifdef AMBIENT_THERMISTOR
  1918. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1919. { // ambient temperature is low
  1920. #endif //AMBIENT_THERMISTOR
  1921. // *** 'common' part of code for MK2.5 & MK3
  1922. // * nozzle checking
  1923. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1924. { // ~ nozzle heating is on
  1925. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1926. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1927. {
  1928. bCheckingOnHeater=true; // not necessary
  1929. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1930. }
  1931. }
  1932. else { // ~ nozzle heating is off
  1933. oTimer4minTempHeater.start();
  1934. bCheckingOnHeater=false;
  1935. }
  1936. // * bed checking
  1937. if(target_temperature_bed>BED_MINTEMP)
  1938. { // ~ bed heating is on
  1939. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1940. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1941. {
  1942. bCheckingOnBed=true; // not necessary
  1943. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1944. }
  1945. }
  1946. else { // ~ bed heating is off
  1947. oTimer4minTempBed.start();
  1948. bCheckingOnBed=false;
  1949. }
  1950. // *** end of 'common' part
  1951. #ifdef AMBIENT_THERMISTOR
  1952. }
  1953. else { // ambient temperature is standard
  1954. check_min_temp_heater0();
  1955. check_min_temp_bed();
  1956. }
  1957. #endif //AMBIENT_THERMISTOR
  1958. }
  1959. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1960. void check_fans() {
  1961. #ifdef FAN_SOFT_PWM
  1962. if (READ(TACH_0) != fan_state[0]) {
  1963. if(fan_measuring) fan_edge_counter[0] ++;
  1964. fan_state[0] = !fan_state[0];
  1965. }
  1966. #else //FAN_SOFT_PWM
  1967. if (READ(TACH_0) != fan_state[0]) {
  1968. fan_edge_counter[0] ++;
  1969. fan_state[0] = !fan_state[0];
  1970. }
  1971. #endif
  1972. //if (READ(TACH_1) != fan_state[1]) {
  1973. // fan_edge_counter[1] ++;
  1974. // fan_state[1] = !fan_state[1];
  1975. //}
  1976. }
  1977. #endif //TACH_0
  1978. #ifdef PIDTEMP
  1979. // Apply the scale factors to the PID values
  1980. float scalePID_i(float i)
  1981. {
  1982. return i*PID_dT;
  1983. }
  1984. float unscalePID_i(float i)
  1985. {
  1986. return i/PID_dT;
  1987. }
  1988. float scalePID_d(float d)
  1989. {
  1990. return d/PID_dT;
  1991. }
  1992. float unscalePID_d(float d)
  1993. {
  1994. return d*PID_dT;
  1995. }
  1996. #endif //PIDTEMP