temperature.cpp 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. int current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. uint8_t fanSpeedBckp = 255;
  123. bool fan_measuring = false;
  124. #endif
  125. #if EXTRUDERS > 3
  126. # error Unsupported number of extruders
  127. #elif EXTRUDERS > 2
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  129. #elif EXTRUDERS > 1
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  131. #else
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  133. #endif
  134. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifndef SOFT_PWM_SCALE
  159. #define SOFT_PWM_SCALE 0
  160. #endif
  161. //===========================================================================
  162. //============================= functions ============================
  163. //===========================================================================
  164. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  165. static float temp_runaway_status[4];
  166. static float temp_runaway_target[4];
  167. static float temp_runaway_timer[4];
  168. static int temp_runaway_error_counter[4];
  169. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  170. static void temp_runaway_stop(bool isPreheat, bool isBed);
  171. #endif
  172. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  173. bool checkAllHotends(void)
  174. {
  175. bool result=false;
  176. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  177. return(result);
  178. }
  179. void PID_autotune(float temp, int extruder, int ncycles)
  180. {
  181. pid_number_of_cycles = ncycles;
  182. pid_tuning_finished = false;
  183. float input = 0.0;
  184. pid_cycle=0;
  185. bool heating = true;
  186. unsigned long temp_millis = _millis();
  187. unsigned long t1=temp_millis;
  188. unsigned long t2=temp_millis;
  189. long t_high = 0;
  190. long t_low = 0;
  191. long bias, d;
  192. float Ku, Tu;
  193. float max = 0, min = 10000;
  194. uint8_t safety_check_cycles = 0;
  195. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  196. float temp_ambient;
  197. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  198. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  200. unsigned long extruder_autofan_last_check = _millis();
  201. #endif
  202. if ((extruder >= EXTRUDERS)
  203. #if (TEMP_BED_PIN <= -1)
  204. ||(extruder < 0)
  205. #endif
  206. ){
  207. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  208. pid_tuning_finished = true;
  209. pid_cycle = 0;
  210. return;
  211. }
  212. SERIAL_ECHOLN("PID Autotune start");
  213. disable_heater(); // switch off all heaters.
  214. if (extruder<0)
  215. {
  216. soft_pwm_bed = (MAX_BED_POWER)/2;
  217. timer02_set_pwm0(soft_pwm_bed << 1);
  218. bias = d = (MAX_BED_POWER)/2;
  219. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  220. }
  221. else
  222. {
  223. soft_pwm[extruder] = (PID_MAX)/2;
  224. bias = d = (PID_MAX)/2;
  225. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  226. }
  227. for(;;) {
  228. #ifdef WATCHDOG
  229. wdt_reset();
  230. #endif //WATCHDOG
  231. if(temp_meas_ready == true) { // temp sample ready
  232. updateTemperaturesFromRawValues();
  233. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  234. max=max(max,input);
  235. min=min(min,input);
  236. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  237. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  239. if(_millis() - extruder_autofan_last_check > 2500) {
  240. checkExtruderAutoFans();
  241. extruder_autofan_last_check = _millis();
  242. }
  243. #endif
  244. if(heating == true && input > temp) {
  245. if(_millis() - t2 > 5000) {
  246. heating=false;
  247. if (extruder<0)
  248. {
  249. soft_pwm_bed = (bias - d) >> 1;
  250. timer02_set_pwm0(soft_pwm_bed << 1);
  251. }
  252. else
  253. soft_pwm[extruder] = (bias - d) >> 1;
  254. t1=_millis();
  255. t_high=t1 - t2;
  256. max=temp;
  257. }
  258. }
  259. if(heating == false && input < temp) {
  260. if(_millis() - t1 > 5000) {
  261. heating=true;
  262. t2=_millis();
  263. t_low=t2 - t1;
  264. if(pid_cycle > 0) {
  265. bias += (d*(t_high - t_low))/(t_low + t_high);
  266. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  267. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  268. else d = bias;
  269. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  270. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  271. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  272. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  273. if(pid_cycle > 2) {
  274. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  275. Tu = ((float)(t_low + t_high)/1000.0);
  276. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  277. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  278. _Kp = 0.6*Ku;
  279. _Ki = 2*_Kp/Tu;
  280. _Kd = _Kp*Tu/8;
  281. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  282. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  283. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  284. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  285. /*
  286. _Kp = 0.33*Ku;
  287. _Ki = _Kp/Tu;
  288. _Kd = _Kp*Tu/3;
  289. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  290. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  291. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  292. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  293. _Kp = 0.2*Ku;
  294. _Ki = 2*_Kp/Tu;
  295. _Kd = _Kp*Tu/3;
  296. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  297. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  298. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  299. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  300. */
  301. }
  302. }
  303. if (extruder<0)
  304. {
  305. soft_pwm_bed = (bias + d) >> 1;
  306. timer02_set_pwm0(soft_pwm_bed << 1);
  307. }
  308. else
  309. soft_pwm[extruder] = (bias + d) >> 1;
  310. pid_cycle++;
  311. min=temp;
  312. }
  313. }
  314. }
  315. if(input > (temp + 20)) {
  316. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  317. pid_tuning_finished = true;
  318. pid_cycle = 0;
  319. return;
  320. }
  321. if(_millis() - temp_millis > 2000) {
  322. int p;
  323. if (extruder<0){
  324. p=soft_pwm_bed;
  325. SERIAL_PROTOCOLPGM("B:");
  326. }else{
  327. p=soft_pwm[extruder];
  328. SERIAL_PROTOCOLPGM("T:");
  329. }
  330. SERIAL_PROTOCOL(input);
  331. SERIAL_PROTOCOLPGM(" @:");
  332. SERIAL_PROTOCOLLN(p);
  333. if (safety_check_cycles == 0) { //save ambient temp
  334. temp_ambient = input;
  335. //SERIAL_ECHOPGM("Ambient T: ");
  336. //MYSERIAL.println(temp_ambient);
  337. safety_check_cycles++;
  338. }
  339. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  340. safety_check_cycles++;
  341. }
  342. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  343. safety_check_cycles++;
  344. //SERIAL_ECHOPGM("Time from beginning: ");
  345. //MYSERIAL.print(safety_check_cycles_count * 2);
  346. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  347. //MYSERIAL.println(input - temp_ambient);
  348. if (abs(input - temp_ambient) < 5.0) {
  349. temp_runaway_stop(false, (extruder<0));
  350. pid_tuning_finished = true;
  351. return;
  352. }
  353. }
  354. temp_millis = _millis();
  355. }
  356. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  357. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  358. pid_tuning_finished = true;
  359. pid_cycle = 0;
  360. return;
  361. }
  362. if(pid_cycle > ncycles) {
  363. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  364. pid_tuning_finished = true;
  365. pid_cycle = 0;
  366. return;
  367. }
  368. lcd_update(0);
  369. }
  370. }
  371. void updatePID()
  372. {
  373. #ifdef PIDTEMP
  374. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  375. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  376. }
  377. #endif
  378. #ifdef PIDTEMPBED
  379. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  380. #endif
  381. }
  382. int getHeaterPower(int heater) {
  383. if (heater<0)
  384. return soft_pwm_bed;
  385. return soft_pwm[heater];
  386. }
  387. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  388. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  390. #if defined(FAN_PIN) && FAN_PIN > -1
  391. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  392. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  393. #endif
  394. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  395. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  396. #endif
  397. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  398. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  399. #endif
  400. #endif
  401. void setExtruderAutoFanState(int pin, bool state)
  402. {
  403. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  404. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  405. pinMode(pin, OUTPUT);
  406. digitalWrite(pin, newFanSpeed);
  407. //analogWrite(pin, newFanSpeed);
  408. }
  409. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  410. void countFanSpeed()
  411. {
  412. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  413. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  414. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  416. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  417. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  418. SERIAL_ECHOLNPGM(" ");*/
  419. fan_edge_counter[0] = 0;
  420. fan_edge_counter[1] = 0;
  421. }
  422. void checkFanSpeed()
  423. {
  424. uint8_t max_print_fan_errors = 0;
  425. uint8_t max_extruder_fan_errors = 0;
  426. #ifdef FAN_SOFT_PWM
  427. max_print_fan_errors = 3; //15 seconds
  428. max_extruder_fan_errors = 2; //10seconds
  429. #else //FAN_SOFT_PWM
  430. max_print_fan_errors = 15; //15 seconds
  431. max_extruder_fan_errors = 5; //5 seconds
  432. #endif //FAN_SOFT_PWM
  433. if(fans_check_enabled != false)
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  438. else{
  439. fan_speed_errors[0] = 0;
  440. host_keepalive();
  441. }
  442. #endif
  443. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  444. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  445. else fan_speed_errors[1] = 0;
  446. #endif
  447. // drop the fan_check_error flag when both fans are ok
  448. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  449. // we may even send some info to the LCD from here
  450. fan_check_error = EFCE_FIXED;
  451. }
  452. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  453. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  454. lcd_reset_alert_level(); //for another fan speed error
  455. }
  456. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  457. fan_speed_errors[0] = 0;
  458. fanSpeedError(0); //extruder fan
  459. }
  460. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  461. fan_speed_errors[1] = 0;
  462. fanSpeedError(1); //print fan
  463. }
  464. }
  465. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  466. //! Extracted from fanSpeedError to save some space.
  467. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  468. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  469. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  470. SERIAL_ECHOLNRPGM(serialMsg);
  471. if (get_message_level() == 0) {
  472. Sound_MakeCustom(200,0,true);
  473. LCD_ALERTMESSAGERPGM(lcdMsg);
  474. }
  475. }
  476. void fanSpeedError(unsigned char _fan) {
  477. if (get_message_level() != 0 && isPrintPaused) return;
  478. //to ensure that target temp. is not set to zero in case that we are resuming print
  479. if (card.sdprinting || is_usb_printing) {
  480. if (heating_status != 0) {
  481. lcd_print_stop();
  482. }
  483. else {
  484. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  485. }
  486. }
  487. else {
  488. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  489. setTargetHotend0(0);
  490. heating_status = 0;
  491. fan_check_error = EFCE_REPORTED;
  492. }
  493. switch (_fan) {
  494. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  495. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  496. break;
  497. case 1:
  498. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  499. break;
  500. }
  501. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  502. }
  503. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  504. void checkExtruderAutoFans()
  505. {
  506. uint8_t fanState = 0;
  507. // which fan pins need to be turned on?
  508. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  509. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  510. fanState |= 1;
  511. #endif
  512. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  513. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  514. {
  515. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  516. fanState |= 1;
  517. else
  518. fanState |= 2;
  519. }
  520. #endif
  521. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  522. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  523. {
  524. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  525. fanState |= 1;
  526. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  527. fanState |= 2;
  528. else
  529. fanState |= 4;
  530. }
  531. #endif
  532. // update extruder auto fan states
  533. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  534. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  535. #endif
  536. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  537. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  538. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  539. #endif
  540. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  541. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  542. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  543. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  544. #endif
  545. }
  546. #endif // any extruder auto fan pins set
  547. // ready for eventually parameters adjusting
  548. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  549. //void resetPID(uint8_t extruder)
  550. {
  551. }
  552. void manage_heater()
  553. {
  554. #ifdef WATCHDOG
  555. wdt_reset();
  556. #endif //WATCHDOG
  557. float pid_input;
  558. float pid_output;
  559. if(temp_meas_ready != true) //better readability
  560. return;
  561. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  562. updateTemperaturesFromRawValues();
  563. check_max_temp();
  564. check_min_temp();
  565. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  566. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  567. #endif
  568. for(int e = 0; e < EXTRUDERS; e++)
  569. {
  570. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  571. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  572. #endif
  573. #ifdef PIDTEMP
  574. pid_input = current_temperature[e];
  575. #ifndef PID_OPENLOOP
  576. if(target_temperature[e] == 0) {
  577. pid_output = 0;
  578. pid_reset[e] = true;
  579. } else {
  580. pid_error[e] = target_temperature[e] - pid_input;
  581. if(pid_reset[e]) {
  582. iState_sum[e] = 0.0;
  583. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  584. pid_reset[e] = false;
  585. }
  586. #ifndef PonM
  587. pTerm[e] = cs.Kp * pid_error[e];
  588. iState_sum[e] += pid_error[e];
  589. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  590. iTerm[e] = cs.Ki * iState_sum[e];
  591. // PID_K1 defined in Configuration.h in the PID settings
  592. #define K2 (1.0-PID_K1)
  593. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  594. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  595. if (pid_output > PID_MAX) {
  596. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  597. pid_output=PID_MAX;
  598. } else if (pid_output < 0) {
  599. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  600. pid_output=0;
  601. }
  602. #else // PonM ("Proportional on Measurement" method)
  603. iState_sum[e] += cs.Ki * pid_error[e];
  604. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  605. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  606. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  607. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  608. pid_output = constrain(pid_output, 0, PID_MAX);
  609. #endif // PonM
  610. }
  611. dState_last[e] = pid_input;
  612. #else
  613. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  614. #endif //PID_OPENLOOP
  615. #ifdef PID_DEBUG
  616. SERIAL_ECHO_START;
  617. SERIAL_ECHO(" PID_DEBUG ");
  618. SERIAL_ECHO(e);
  619. SERIAL_ECHO(": Input ");
  620. SERIAL_ECHO(pid_input);
  621. SERIAL_ECHO(" Output ");
  622. SERIAL_ECHO(pid_output);
  623. SERIAL_ECHO(" pTerm ");
  624. SERIAL_ECHO(pTerm[e]);
  625. SERIAL_ECHO(" iTerm ");
  626. SERIAL_ECHO(iTerm[e]);
  627. SERIAL_ECHO(" dTerm ");
  628. SERIAL_ECHOLN(-dTerm[e]);
  629. #endif //PID_DEBUG
  630. #else /* PID off */
  631. pid_output = 0;
  632. if(current_temperature[e] < target_temperature[e]) {
  633. pid_output = PID_MAX;
  634. }
  635. #endif
  636. // Check if temperature is within the correct range
  637. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  638. {
  639. soft_pwm[e] = (int)pid_output >> 1;
  640. }
  641. else
  642. {
  643. soft_pwm[e] = 0;
  644. }
  645. } // End extruder for loop
  646. #define FAN_CHECK_PERIOD 5000 //5s
  647. #define FAN_CHECK_DURATION 100 //100ms
  648. #ifndef DEBUG_DISABLE_FANCHECK
  649. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  650. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  651. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  652. #ifdef FAN_SOFT_PWM
  653. #ifdef FANCHECK
  654. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  655. extruder_autofan_last_check = _millis();
  656. fanSpeedBckp = fanSpeedSoftPwm;
  657. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  658. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  659. fanSpeedSoftPwm = 255;
  660. }
  661. fan_measuring = true;
  662. }
  663. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  664. countFanSpeed();
  665. checkFanSpeed();
  666. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  667. fanSpeedSoftPwm = fanSpeedBckp;
  668. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  669. extruder_autofan_last_check = _millis();
  670. fan_measuring = false;
  671. }
  672. #endif //FANCHECK
  673. checkExtruderAutoFans();
  674. #else //FAN_SOFT_PWM
  675. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  676. {
  677. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  678. countFanSpeed();
  679. checkFanSpeed();
  680. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  681. checkExtruderAutoFans();
  682. extruder_autofan_last_check = _millis();
  683. }
  684. #endif //FAN_SOFT_PWM
  685. #endif
  686. #endif //DEBUG_DISABLE_FANCHECK
  687. #ifndef PIDTEMPBED
  688. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  689. return;
  690. previous_millis_bed_heater = _millis();
  691. #endif
  692. #if TEMP_SENSOR_BED != 0
  693. #ifdef PIDTEMPBED
  694. pid_input = current_temperature_bed;
  695. #ifndef PID_OPENLOOP
  696. pid_error_bed = target_temperature_bed - pid_input;
  697. pTerm_bed = cs.bedKp * pid_error_bed;
  698. temp_iState_bed += pid_error_bed;
  699. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  700. iTerm_bed = cs.bedKi * temp_iState_bed;
  701. //PID_K1 defined in Configuration.h in the PID settings
  702. #define K2 (1.0-PID_K1)
  703. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  704. temp_dState_bed = pid_input;
  705. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  706. if (pid_output > MAX_BED_POWER) {
  707. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  708. pid_output=MAX_BED_POWER;
  709. } else if (pid_output < 0){
  710. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  711. pid_output=0;
  712. }
  713. #else
  714. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  715. #endif //PID_OPENLOOP
  716. if(current_temperature_bed < BED_MAXTEMP)
  717. {
  718. soft_pwm_bed = (int)pid_output >> 1;
  719. timer02_set_pwm0(soft_pwm_bed << 1);
  720. }
  721. else {
  722. soft_pwm_bed = 0;
  723. timer02_set_pwm0(soft_pwm_bed << 1);
  724. }
  725. #elif !defined(BED_LIMIT_SWITCHING)
  726. // Check if temperature is within the correct range
  727. if(current_temperature_bed < BED_MAXTEMP)
  728. {
  729. if(current_temperature_bed >= target_temperature_bed)
  730. {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. }
  734. else
  735. {
  736. soft_pwm_bed = MAX_BED_POWER>>1;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. }
  740. else
  741. {
  742. soft_pwm_bed = 0;
  743. timer02_set_pwm0(soft_pwm_bed << 1);
  744. WRITE(HEATER_BED_PIN,LOW);
  745. }
  746. #else //#ifdef BED_LIMIT_SWITCHING
  747. // Check if temperature is within the correct band
  748. if(current_temperature_bed < BED_MAXTEMP)
  749. {
  750. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. }
  755. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  756. {
  757. soft_pwm_bed = MAX_BED_POWER>>1;
  758. timer02_set_pwm0(soft_pwm_bed << 1);
  759. }
  760. }
  761. else
  762. {
  763. soft_pwm_bed = 0;
  764. timer02_set_pwm0(soft_pwm_bed << 1);
  765. WRITE(HEATER_BED_PIN,LOW);
  766. }
  767. #endif
  768. if(target_temperature_bed==0)
  769. {
  770. soft_pwm_bed = 0;
  771. timer02_set_pwm0(soft_pwm_bed << 1);
  772. }
  773. #endif
  774. host_keepalive();
  775. }
  776. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  777. // Derived from RepRap FiveD extruder::getTemperature()
  778. // For hot end temperature measurement.
  779. static float analog2temp(int raw, uint8_t e) {
  780. if(e >= EXTRUDERS)
  781. {
  782. SERIAL_ERROR_START;
  783. SERIAL_ERROR((int)e);
  784. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  785. kill(NULL, 6);
  786. return 0.0;
  787. }
  788. #ifdef HEATER_0_USES_MAX6675
  789. if (e == 0)
  790. {
  791. return 0.25 * raw;
  792. }
  793. #endif
  794. if(heater_ttbl_map[e] != NULL)
  795. {
  796. float celsius = 0;
  797. uint8_t i;
  798. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  799. for (i=1; i<heater_ttbllen_map[e]; i++)
  800. {
  801. if (PGM_RD_W((*tt)[i][0]) > raw)
  802. {
  803. celsius = PGM_RD_W((*tt)[i-1][1]) +
  804. (raw - PGM_RD_W((*tt)[i-1][0])) *
  805. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  806. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  807. break;
  808. }
  809. }
  810. // Overflow: Set to last value in the table
  811. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  812. return celsius;
  813. }
  814. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  815. }
  816. // Derived from RepRap FiveD extruder::getTemperature()
  817. // For bed temperature measurement.
  818. static float analog2tempBed(int raw) {
  819. #ifdef BED_USES_THERMISTOR
  820. float celsius = 0;
  821. byte i;
  822. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  823. {
  824. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  825. {
  826. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  827. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  828. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  829. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  830. break;
  831. }
  832. }
  833. // Overflow: Set to last value in the table
  834. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  835. // temperature offset adjustment
  836. #ifdef BED_OFFSET
  837. float _offset = BED_OFFSET;
  838. float _offset_center = BED_OFFSET_CENTER;
  839. float _offset_start = BED_OFFSET_START;
  840. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  841. float _second_koef = (_offset / 2) / (100 - _offset_center);
  842. if (celsius >= _offset_start && celsius <= _offset_center)
  843. {
  844. celsius = celsius + (_first_koef * (celsius - _offset_start));
  845. }
  846. else if (celsius > _offset_center && celsius <= 100)
  847. {
  848. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  849. }
  850. else if (celsius > 100)
  851. {
  852. celsius = celsius + _offset;
  853. }
  854. #endif
  855. return celsius;
  856. #elif defined BED_USES_AD595
  857. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  858. #else
  859. return 0;
  860. #endif
  861. }
  862. #ifdef AMBIENT_THERMISTOR
  863. static float analog2tempAmbient(int raw)
  864. {
  865. float celsius = 0;
  866. byte i;
  867. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  868. {
  869. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  870. {
  871. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  872. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  873. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  874. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  875. break;
  876. }
  877. }
  878. // Overflow: Set to last value in the table
  879. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  880. return celsius;
  881. }
  882. #endif //AMBIENT_THERMISTOR
  883. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  884. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  885. static void updateTemperaturesFromRawValues()
  886. {
  887. for(uint8_t e=0;e<EXTRUDERS;e++)
  888. {
  889. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  890. }
  891. #ifdef PINDA_THERMISTOR
  892. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  893. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  894. #endif
  895. #ifdef AMBIENT_THERMISTOR
  896. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  897. #endif
  898. #ifdef DEBUG_HEATER_BED_SIM
  899. current_temperature_bed = target_temperature_bed;
  900. #else //DEBUG_HEATER_BED_SIM
  901. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  902. #endif //DEBUG_HEATER_BED_SIM
  903. CRITICAL_SECTION_START;
  904. temp_meas_ready = false;
  905. CRITICAL_SECTION_END;
  906. }
  907. void tp_init()
  908. {
  909. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  910. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  911. MCUCR=(1<<JTD);
  912. MCUCR=(1<<JTD);
  913. #endif
  914. // Finish init of mult extruder arrays
  915. for(int e = 0; e < EXTRUDERS; e++) {
  916. // populate with the first value
  917. maxttemp[e] = maxttemp[0];
  918. #ifdef PIDTEMP
  919. iState_sum_min[e] = 0.0;
  920. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  921. #endif //PIDTEMP
  922. #ifdef PIDTEMPBED
  923. temp_iState_min_bed = 0.0;
  924. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  925. #endif //PIDTEMPBED
  926. }
  927. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  928. SET_OUTPUT(HEATER_0_PIN);
  929. #endif
  930. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  931. SET_OUTPUT(HEATER_1_PIN);
  932. #endif
  933. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  934. SET_OUTPUT(HEATER_2_PIN);
  935. #endif
  936. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  937. SET_OUTPUT(HEATER_BED_PIN);
  938. #endif
  939. #if defined(FAN_PIN) && (FAN_PIN > -1)
  940. SET_OUTPUT(FAN_PIN);
  941. #ifdef FAST_PWM_FAN
  942. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  943. #endif
  944. #ifdef FAN_SOFT_PWM
  945. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  946. #endif
  947. #endif
  948. #ifdef HEATER_0_USES_MAX6675
  949. #ifndef SDSUPPORT
  950. SET_OUTPUT(SCK_PIN);
  951. WRITE(SCK_PIN,0);
  952. SET_OUTPUT(MOSI_PIN);
  953. WRITE(MOSI_PIN,1);
  954. SET_INPUT(MISO_PIN);
  955. WRITE(MISO_PIN,1);
  956. #endif
  957. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  958. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  959. pinMode(SS_PIN, OUTPUT);
  960. digitalWrite(SS_PIN,0);
  961. pinMode(MAX6675_SS, OUTPUT);
  962. digitalWrite(MAX6675_SS,1);
  963. #endif
  964. adc_init();
  965. timer0_init();
  966. OCR2B = 128;
  967. TIMSK2 |= (1<<OCIE2B);
  968. // Wait for temperature measurement to settle
  969. _delay(250);
  970. #ifdef HEATER_0_MINTEMP
  971. minttemp[0] = HEATER_0_MINTEMP;
  972. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  973. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  974. minttemp_raw[0] += OVERSAMPLENR;
  975. #else
  976. minttemp_raw[0] -= OVERSAMPLENR;
  977. #endif
  978. }
  979. #endif //MINTEMP
  980. #ifdef HEATER_0_MAXTEMP
  981. maxttemp[0] = HEATER_0_MAXTEMP;
  982. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  983. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  984. maxttemp_raw[0] -= OVERSAMPLENR;
  985. #else
  986. maxttemp_raw[0] += OVERSAMPLENR;
  987. #endif
  988. }
  989. #endif //MAXTEMP
  990. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  991. minttemp[1] = HEATER_1_MINTEMP;
  992. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  993. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  994. minttemp_raw[1] += OVERSAMPLENR;
  995. #else
  996. minttemp_raw[1] -= OVERSAMPLENR;
  997. #endif
  998. }
  999. #endif // MINTEMP 1
  1000. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1001. maxttemp[1] = HEATER_1_MAXTEMP;
  1002. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1003. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1004. maxttemp_raw[1] -= OVERSAMPLENR;
  1005. #else
  1006. maxttemp_raw[1] += OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //MAXTEMP 1
  1010. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1011. minttemp[2] = HEATER_2_MINTEMP;
  1012. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1013. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1014. minttemp_raw[2] += OVERSAMPLENR;
  1015. #else
  1016. minttemp_raw[2] -= OVERSAMPLENR;
  1017. #endif
  1018. }
  1019. #endif //MINTEMP 2
  1020. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1021. maxttemp[2] = HEATER_2_MAXTEMP;
  1022. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1023. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1024. maxttemp_raw[2] -= OVERSAMPLENR;
  1025. #else
  1026. maxttemp_raw[2] += OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif //MAXTEMP 2
  1030. #ifdef BED_MINTEMP
  1031. /* No bed MINTEMP error implemented?!? */
  1032. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1033. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1034. bed_minttemp_raw += OVERSAMPLENR;
  1035. #else
  1036. bed_minttemp_raw -= OVERSAMPLENR;
  1037. #endif
  1038. }
  1039. #endif //BED_MINTEMP
  1040. #ifdef BED_MAXTEMP
  1041. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1042. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1043. bed_maxttemp_raw -= OVERSAMPLENR;
  1044. #else
  1045. bed_maxttemp_raw += OVERSAMPLENR;
  1046. #endif
  1047. }
  1048. #endif //BED_MAXTEMP
  1049. }
  1050. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1051. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1052. {
  1053. float __delta;
  1054. float __hysteresis = 0;
  1055. int __timeout = 0;
  1056. bool temp_runaway_check_active = false;
  1057. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1058. static int __preheat_counter[2] = { 0,0};
  1059. static int __preheat_errors[2] = { 0,0};
  1060. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1061. {
  1062. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1063. if (_isbed)
  1064. {
  1065. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1066. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1067. }
  1068. #endif
  1069. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1070. if (!_isbed)
  1071. {
  1072. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1073. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1074. }
  1075. #endif
  1076. temp_runaway_timer[_heater_id] = _millis();
  1077. if (_output == 0)
  1078. {
  1079. temp_runaway_check_active = false;
  1080. temp_runaway_error_counter[_heater_id] = 0;
  1081. }
  1082. if (temp_runaway_target[_heater_id] != _target_temperature)
  1083. {
  1084. if (_target_temperature > 0)
  1085. {
  1086. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1087. temp_runaway_target[_heater_id] = _target_temperature;
  1088. __preheat_start[_heater_id] = _current_temperature;
  1089. __preheat_counter[_heater_id] = 0;
  1090. }
  1091. else
  1092. {
  1093. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1094. temp_runaway_target[_heater_id] = _target_temperature;
  1095. }
  1096. }
  1097. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1098. {
  1099. __preheat_counter[_heater_id]++;
  1100. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1101. {
  1102. /*SERIAL_ECHOPGM("Heater:");
  1103. MYSERIAL.print(_heater_id);
  1104. SERIAL_ECHOPGM(" T:");
  1105. MYSERIAL.print(_current_temperature);
  1106. SERIAL_ECHOPGM(" Tstart:");
  1107. MYSERIAL.print(__preheat_start[_heater_id]);
  1108. SERIAL_ECHOPGM(" delta:");
  1109. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1110. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1111. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1112. __delta=2.0;
  1113. if(_isbed)
  1114. {
  1115. __delta=3.0;
  1116. if(_current_temperature>90.0) __delta=2.0;
  1117. if(_current_temperature>105.0) __delta=0.6;
  1118. }
  1119. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1120. __preheat_errors[_heater_id]++;
  1121. /*SERIAL_ECHOPGM(" Preheat errors:");
  1122. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1123. }
  1124. else {
  1125. //SERIAL_ECHOLNPGM("");
  1126. __preheat_errors[_heater_id] = 0;
  1127. }
  1128. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1129. {
  1130. if (farm_mode) { prusa_statistics(0); }
  1131. temp_runaway_stop(true, _isbed);
  1132. if (farm_mode) { prusa_statistics(91); }
  1133. }
  1134. __preheat_start[_heater_id] = _current_temperature;
  1135. __preheat_counter[_heater_id] = 0;
  1136. }
  1137. }
  1138. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1139. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1140. {
  1141. /*SERIAL_ECHOPGM("Heater:");
  1142. MYSERIAL.print(_heater_id);
  1143. MYSERIAL.println(" ->tempRunaway");*/
  1144. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1145. temp_runaway_check_active = false;
  1146. temp_runaway_error_counter[_heater_id] = 0;
  1147. }
  1148. if (_output > 0)
  1149. {
  1150. temp_runaway_check_active = true;
  1151. }
  1152. if (temp_runaway_check_active)
  1153. {
  1154. // we are in range
  1155. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1156. {
  1157. temp_runaway_check_active = false;
  1158. temp_runaway_error_counter[_heater_id] = 0;
  1159. }
  1160. else
  1161. {
  1162. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1163. {
  1164. temp_runaway_error_counter[_heater_id]++;
  1165. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1166. {
  1167. if (farm_mode) { prusa_statistics(0); }
  1168. temp_runaway_stop(false, _isbed);
  1169. if (farm_mode) { prusa_statistics(90); }
  1170. }
  1171. }
  1172. }
  1173. }
  1174. }
  1175. }
  1176. void temp_runaway_stop(bool isPreheat, bool isBed)
  1177. {
  1178. cancel_heatup = true;
  1179. quickStop();
  1180. if (card.sdprinting)
  1181. {
  1182. card.sdprinting = false;
  1183. card.closefile();
  1184. }
  1185. // Clean the input command queue
  1186. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1187. cmdqueue_reset();
  1188. disable_heater();
  1189. disable_x();
  1190. disable_y();
  1191. disable_e0();
  1192. disable_e1();
  1193. disable_e2();
  1194. manage_heater();
  1195. lcd_update(0);
  1196. Sound_MakeCustom(200,0,true);
  1197. if (isPreheat)
  1198. {
  1199. Stop();
  1200. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1201. SERIAL_ERROR_START;
  1202. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1203. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1204. SET_OUTPUT(FAN_PIN);
  1205. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1206. #ifdef FAN_SOFT_PWM
  1207. fanSpeedSoftPwm = 255;
  1208. #else //FAN_SOFT_PWM
  1209. analogWrite(FAN_PIN, 255);
  1210. #endif //FAN_SOFT_PWM
  1211. fanSpeed = 255;
  1212. delayMicroseconds(2000);
  1213. }
  1214. else
  1215. {
  1216. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1217. SERIAL_ERROR_START;
  1218. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1219. }
  1220. }
  1221. #endif
  1222. void disable_heater()
  1223. {
  1224. setAllTargetHotends(0);
  1225. setTargetBed(0);
  1226. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1227. target_temperature[0]=0;
  1228. soft_pwm[0]=0;
  1229. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1230. WRITE(HEATER_0_PIN,LOW);
  1231. #endif
  1232. #endif
  1233. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1234. target_temperature[1]=0;
  1235. soft_pwm[1]=0;
  1236. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1237. WRITE(HEATER_1_PIN,LOW);
  1238. #endif
  1239. #endif
  1240. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1241. target_temperature[2]=0;
  1242. soft_pwm[2]=0;
  1243. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1244. WRITE(HEATER_2_PIN,LOW);
  1245. #endif
  1246. #endif
  1247. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1248. target_temperature_bed=0;
  1249. soft_pwm_bed=0;
  1250. timer02_set_pwm0(soft_pwm_bed << 1);
  1251. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1252. //WRITE(HEATER_BED_PIN,LOW);
  1253. #endif
  1254. #endif
  1255. }
  1256. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1257. //! than raw const char * of the messages themselves.
  1258. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1259. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1260. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1261. //! remember the last alert message sent to the LCD
  1262. //! to prevent flicker and improve speed
  1263. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1264. void max_temp_error(uint8_t e) {
  1265. disable_heater();
  1266. if(IsStopped() == false) {
  1267. SERIAL_ERROR_START;
  1268. SERIAL_ERRORLN((int)e);
  1269. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1270. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1271. }
  1272. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1273. Stop();
  1274. #endif
  1275. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1276. SET_OUTPUT(FAN_PIN);
  1277. SET_OUTPUT(BEEPER);
  1278. WRITE(FAN_PIN, 1);
  1279. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1280. WRITE(BEEPER, 1);
  1281. // fanSpeed will consumed by the check_axes_activity() routine.
  1282. fanSpeed=255;
  1283. if (farm_mode) { prusa_statistics(93); }
  1284. }
  1285. void min_temp_error(uint8_t e) {
  1286. #ifdef DEBUG_DISABLE_MINTEMP
  1287. return;
  1288. #endif
  1289. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1290. disable_heater();
  1291. static const char err[] PROGMEM = "Err: MINTEMP";
  1292. if(IsStopped() == false) {
  1293. SERIAL_ERROR_START;
  1294. SERIAL_ERRORLN((int)e);
  1295. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1296. lcd_setalertstatuspgm(err);
  1297. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1298. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1299. // we are already stopped due to some error, only update the status message without flickering
  1300. lcd_updatestatuspgm(err);
  1301. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1302. }
  1303. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1304. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1305. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1306. // lcd_print_stop();
  1307. // }
  1308. Stop();
  1309. #endif
  1310. if (farm_mode) { prusa_statistics(92); }
  1311. }
  1312. void bed_max_temp_error(void) {
  1313. #if HEATER_BED_PIN > -1
  1314. //WRITE(HEATER_BED_PIN, 0);
  1315. #endif
  1316. if(IsStopped() == false) {
  1317. SERIAL_ERROR_START;
  1318. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1319. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1320. }
  1321. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1322. Stop();
  1323. #endif
  1324. }
  1325. void bed_min_temp_error(void) {
  1326. #ifdef DEBUG_DISABLE_MINTEMP
  1327. return;
  1328. #endif
  1329. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1330. #if HEATER_BED_PIN > -1
  1331. //WRITE(HEATER_BED_PIN, 0);
  1332. #endif
  1333. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1334. if(IsStopped() == false) {
  1335. SERIAL_ERROR_START;
  1336. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1337. lcd_setalertstatuspgm(err);
  1338. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1339. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1340. // we are already stopped due to some error, only update the status message without flickering
  1341. lcd_updatestatuspgm(err);
  1342. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1343. }
  1344. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1345. Stop();
  1346. #endif
  1347. }
  1348. #ifdef HEATER_0_USES_MAX6675
  1349. #define MAX6675_HEAT_INTERVAL 250
  1350. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1351. int max6675_temp = 2000;
  1352. int read_max6675()
  1353. {
  1354. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1355. return max6675_temp;
  1356. max6675_previous_millis = _millis();
  1357. max6675_temp = 0;
  1358. #ifdef PRR
  1359. PRR &= ~(1<<PRSPI);
  1360. #elif defined PRR0
  1361. PRR0 &= ~(1<<PRSPI);
  1362. #endif
  1363. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1364. // enable TT_MAX6675
  1365. WRITE(MAX6675_SS, 0);
  1366. // ensure 100ns delay - a bit extra is fine
  1367. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1368. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1369. // read MSB
  1370. SPDR = 0;
  1371. for (;(SPSR & (1<<SPIF)) == 0;);
  1372. max6675_temp = SPDR;
  1373. max6675_temp <<= 8;
  1374. // read LSB
  1375. SPDR = 0;
  1376. for (;(SPSR & (1<<SPIF)) == 0;);
  1377. max6675_temp |= SPDR;
  1378. // disable TT_MAX6675
  1379. WRITE(MAX6675_SS, 1);
  1380. if (max6675_temp & 4)
  1381. {
  1382. // thermocouple open
  1383. max6675_temp = 2000;
  1384. }
  1385. else
  1386. {
  1387. max6675_temp = max6675_temp >> 3;
  1388. }
  1389. return max6675_temp;
  1390. }
  1391. #endif
  1392. extern "C" {
  1393. void adc_ready(void) //callback from adc when sampling finished
  1394. {
  1395. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1396. #ifdef PINDA_THERMISTOR
  1397. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1398. #endif //PINDA_THERMISTOR
  1399. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1400. #ifdef VOLT_PWR_PIN
  1401. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1402. #endif
  1403. #ifdef AMBIENT_THERMISTOR
  1404. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1405. #endif //AMBIENT_THERMISTOR
  1406. #ifdef VOLT_BED_PIN
  1407. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1408. #endif
  1409. #ifdef IR_SENSOR_ANALOG
  1410. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1411. #endif //IR_SENSOR_ANALOG
  1412. temp_meas_ready = true;
  1413. }
  1414. } // extern "C"
  1415. // Timer2 (originaly timer0) is shared with millies
  1416. #ifdef SYSTEM_TIMER_2
  1417. ISR(TIMER2_COMPB_vect)
  1418. #else //SYSTEM_TIMER_2
  1419. ISR(TIMER0_COMPB_vect)
  1420. #endif //SYSTEM_TIMER_2
  1421. {
  1422. static bool _lock = false;
  1423. if (_lock) return;
  1424. _lock = true;
  1425. asm("sei");
  1426. if (!temp_meas_ready) adc_cycle();
  1427. lcd_buttons_update();
  1428. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1429. static uint8_t soft_pwm_0;
  1430. #ifdef SLOW_PWM_HEATERS
  1431. static unsigned char slow_pwm_count = 0;
  1432. static unsigned char state_heater_0 = 0;
  1433. static unsigned char state_timer_heater_0 = 0;
  1434. #endif
  1435. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1436. static unsigned char soft_pwm_1;
  1437. #ifdef SLOW_PWM_HEATERS
  1438. static unsigned char state_heater_1 = 0;
  1439. static unsigned char state_timer_heater_1 = 0;
  1440. #endif
  1441. #endif
  1442. #if EXTRUDERS > 2
  1443. static unsigned char soft_pwm_2;
  1444. #ifdef SLOW_PWM_HEATERS
  1445. static unsigned char state_heater_2 = 0;
  1446. static unsigned char state_timer_heater_2 = 0;
  1447. #endif
  1448. #endif
  1449. #if HEATER_BED_PIN > -1
  1450. // @@DR static unsigned char soft_pwm_b;
  1451. #ifdef SLOW_PWM_HEATERS
  1452. static unsigned char state_heater_b = 0;
  1453. static unsigned char state_timer_heater_b = 0;
  1454. #endif
  1455. #endif
  1456. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1457. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1458. #endif
  1459. #ifndef SLOW_PWM_HEATERS
  1460. /*
  1461. * standard PWM modulation
  1462. */
  1463. if (pwm_count == 0)
  1464. {
  1465. soft_pwm_0 = soft_pwm[0];
  1466. if(soft_pwm_0 > 0)
  1467. {
  1468. WRITE(HEATER_0_PIN,1);
  1469. #ifdef HEATERS_PARALLEL
  1470. WRITE(HEATER_1_PIN,1);
  1471. #endif
  1472. } else WRITE(HEATER_0_PIN,0);
  1473. #if EXTRUDERS > 1
  1474. soft_pwm_1 = soft_pwm[1];
  1475. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1476. #endif
  1477. #if EXTRUDERS > 2
  1478. soft_pwm_2 = soft_pwm[2];
  1479. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1480. #endif
  1481. }
  1482. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1483. #if 0 // @@DR vypnuto pro hw pwm bedu
  1484. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1485. // teoreticky by se tato cast uz vubec nemusela poustet
  1486. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1487. {
  1488. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1489. # ifndef SYSTEM_TIMER_2
  1490. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1491. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1492. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1493. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1494. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1495. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1496. # endif //SYSTEM_TIMER_2
  1497. }
  1498. #endif
  1499. #endif
  1500. #ifdef FAN_SOFT_PWM
  1501. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1502. {
  1503. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1504. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1505. }
  1506. #endif
  1507. if(soft_pwm_0 < pwm_count)
  1508. {
  1509. WRITE(HEATER_0_PIN,0);
  1510. #ifdef HEATERS_PARALLEL
  1511. WRITE(HEATER_1_PIN,0);
  1512. #endif
  1513. }
  1514. #if EXTRUDERS > 1
  1515. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1516. #endif
  1517. #if EXTRUDERS > 2
  1518. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1519. #endif
  1520. #if 0 // @@DR
  1521. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1522. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1523. //WRITE(HEATER_BED_PIN,0);
  1524. }
  1525. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1526. #endif
  1527. #endif
  1528. #ifdef FAN_SOFT_PWM
  1529. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1530. #endif
  1531. pwm_count += (1 << SOFT_PWM_SCALE);
  1532. pwm_count &= 0x7f;
  1533. #else //ifndef SLOW_PWM_HEATERS
  1534. /*
  1535. * SLOW PWM HEATERS
  1536. *
  1537. * for heaters drived by relay
  1538. */
  1539. #ifndef MIN_STATE_TIME
  1540. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1541. #endif
  1542. if (slow_pwm_count == 0) {
  1543. // EXTRUDER 0
  1544. soft_pwm_0 = soft_pwm[0];
  1545. if (soft_pwm_0 > 0) {
  1546. // turn ON heather only if the minimum time is up
  1547. if (state_timer_heater_0 == 0) {
  1548. // if change state set timer
  1549. if (state_heater_0 == 0) {
  1550. state_timer_heater_0 = MIN_STATE_TIME;
  1551. }
  1552. state_heater_0 = 1;
  1553. WRITE(HEATER_0_PIN, 1);
  1554. #ifdef HEATERS_PARALLEL
  1555. WRITE(HEATER_1_PIN, 1);
  1556. #endif
  1557. }
  1558. } else {
  1559. // turn OFF heather only if the minimum time is up
  1560. if (state_timer_heater_0 == 0) {
  1561. // if change state set timer
  1562. if (state_heater_0 == 1) {
  1563. state_timer_heater_0 = MIN_STATE_TIME;
  1564. }
  1565. state_heater_0 = 0;
  1566. WRITE(HEATER_0_PIN, 0);
  1567. #ifdef HEATERS_PARALLEL
  1568. WRITE(HEATER_1_PIN, 0);
  1569. #endif
  1570. }
  1571. }
  1572. #if EXTRUDERS > 1
  1573. // EXTRUDER 1
  1574. soft_pwm_1 = soft_pwm[1];
  1575. if (soft_pwm_1 > 0) {
  1576. // turn ON heather only if the minimum time is up
  1577. if (state_timer_heater_1 == 0) {
  1578. // if change state set timer
  1579. if (state_heater_1 == 0) {
  1580. state_timer_heater_1 = MIN_STATE_TIME;
  1581. }
  1582. state_heater_1 = 1;
  1583. WRITE(HEATER_1_PIN, 1);
  1584. }
  1585. } else {
  1586. // turn OFF heather only if the minimum time is up
  1587. if (state_timer_heater_1 == 0) {
  1588. // if change state set timer
  1589. if (state_heater_1 == 1) {
  1590. state_timer_heater_1 = MIN_STATE_TIME;
  1591. }
  1592. state_heater_1 = 0;
  1593. WRITE(HEATER_1_PIN, 0);
  1594. }
  1595. }
  1596. #endif
  1597. #if EXTRUDERS > 2
  1598. // EXTRUDER 2
  1599. soft_pwm_2 = soft_pwm[2];
  1600. if (soft_pwm_2 > 0) {
  1601. // turn ON heather only if the minimum time is up
  1602. if (state_timer_heater_2 == 0) {
  1603. // if change state set timer
  1604. if (state_heater_2 == 0) {
  1605. state_timer_heater_2 = MIN_STATE_TIME;
  1606. }
  1607. state_heater_2 = 1;
  1608. WRITE(HEATER_2_PIN, 1);
  1609. }
  1610. } else {
  1611. // turn OFF heather only if the minimum time is up
  1612. if (state_timer_heater_2 == 0) {
  1613. // if change state set timer
  1614. if (state_heater_2 == 1) {
  1615. state_timer_heater_2 = MIN_STATE_TIME;
  1616. }
  1617. state_heater_2 = 0;
  1618. WRITE(HEATER_2_PIN, 0);
  1619. }
  1620. }
  1621. #endif
  1622. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1623. // BED
  1624. soft_pwm_b = soft_pwm_bed;
  1625. if (soft_pwm_b > 0) {
  1626. // turn ON heather only if the minimum time is up
  1627. if (state_timer_heater_b == 0) {
  1628. // if change state set timer
  1629. if (state_heater_b == 0) {
  1630. state_timer_heater_b = MIN_STATE_TIME;
  1631. }
  1632. state_heater_b = 1;
  1633. //WRITE(HEATER_BED_PIN, 1);
  1634. }
  1635. } else {
  1636. // turn OFF heather only if the minimum time is up
  1637. if (state_timer_heater_b == 0) {
  1638. // if change state set timer
  1639. if (state_heater_b == 1) {
  1640. state_timer_heater_b = MIN_STATE_TIME;
  1641. }
  1642. state_heater_b = 0;
  1643. WRITE(HEATER_BED_PIN, 0);
  1644. }
  1645. }
  1646. #endif
  1647. } // if (slow_pwm_count == 0)
  1648. // EXTRUDER 0
  1649. if (soft_pwm_0 < slow_pwm_count) {
  1650. // turn OFF heather only if the minimum time is up
  1651. if (state_timer_heater_0 == 0) {
  1652. // if change state set timer
  1653. if (state_heater_0 == 1) {
  1654. state_timer_heater_0 = MIN_STATE_TIME;
  1655. }
  1656. state_heater_0 = 0;
  1657. WRITE(HEATER_0_PIN, 0);
  1658. #ifdef HEATERS_PARALLEL
  1659. WRITE(HEATER_1_PIN, 0);
  1660. #endif
  1661. }
  1662. }
  1663. #if EXTRUDERS > 1
  1664. // EXTRUDER 1
  1665. if (soft_pwm_1 < slow_pwm_count) {
  1666. // turn OFF heather only if the minimum time is up
  1667. if (state_timer_heater_1 == 0) {
  1668. // if change state set timer
  1669. if (state_heater_1 == 1) {
  1670. state_timer_heater_1 = MIN_STATE_TIME;
  1671. }
  1672. state_heater_1 = 0;
  1673. WRITE(HEATER_1_PIN, 0);
  1674. }
  1675. }
  1676. #endif
  1677. #if EXTRUDERS > 2
  1678. // EXTRUDER 2
  1679. if (soft_pwm_2 < slow_pwm_count) {
  1680. // turn OFF heather only if the minimum time is up
  1681. if (state_timer_heater_2 == 0) {
  1682. // if change state set timer
  1683. if (state_heater_2 == 1) {
  1684. state_timer_heater_2 = MIN_STATE_TIME;
  1685. }
  1686. state_heater_2 = 0;
  1687. WRITE(HEATER_2_PIN, 0);
  1688. }
  1689. }
  1690. #endif
  1691. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1692. // BED
  1693. if (soft_pwm_b < slow_pwm_count) {
  1694. // turn OFF heather only if the minimum time is up
  1695. if (state_timer_heater_b == 0) {
  1696. // if change state set timer
  1697. if (state_heater_b == 1) {
  1698. state_timer_heater_b = MIN_STATE_TIME;
  1699. }
  1700. state_heater_b = 0;
  1701. WRITE(HEATER_BED_PIN, 0);
  1702. }
  1703. }
  1704. #endif
  1705. #ifdef FAN_SOFT_PWM
  1706. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1707. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1708. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1709. }
  1710. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1711. #endif
  1712. pwm_count += (1 << SOFT_PWM_SCALE);
  1713. pwm_count &= 0x7f;
  1714. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1715. if ((pwm_count % 64) == 0) {
  1716. slow_pwm_count++;
  1717. slow_pwm_count &= 0x7f;
  1718. // Extruder 0
  1719. if (state_timer_heater_0 > 0) {
  1720. state_timer_heater_0--;
  1721. }
  1722. #if EXTRUDERS > 1
  1723. // Extruder 1
  1724. if (state_timer_heater_1 > 0)
  1725. state_timer_heater_1--;
  1726. #endif
  1727. #if EXTRUDERS > 2
  1728. // Extruder 2
  1729. if (state_timer_heater_2 > 0)
  1730. state_timer_heater_2--;
  1731. #endif
  1732. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1733. // Bed
  1734. if (state_timer_heater_b > 0)
  1735. state_timer_heater_b--;
  1736. #endif
  1737. } //if ((pwm_count % 64) == 0) {
  1738. #endif //ifndef SLOW_PWM_HEATERS
  1739. #ifdef BABYSTEPPING
  1740. for(uint8_t axis=0;axis<3;axis++)
  1741. {
  1742. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1743. if(curTodo>0)
  1744. {
  1745. asm("cli");
  1746. babystep(axis,/*fwd*/true);
  1747. babystepsTodo[axis]--; //less to do next time
  1748. asm("sei");
  1749. }
  1750. else
  1751. if(curTodo<0)
  1752. {
  1753. asm("cli");
  1754. babystep(axis,/*fwd*/false);
  1755. babystepsTodo[axis]++; //less to do next time
  1756. asm("sei");
  1757. }
  1758. }
  1759. #endif //BABYSTEPPING
  1760. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1761. check_fans();
  1762. #endif //(defined(TACH_0))
  1763. _lock = false;
  1764. }
  1765. void check_max_temp()
  1766. {
  1767. //heater
  1768. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1769. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1770. #else
  1771. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1772. #endif
  1773. max_temp_error(0);
  1774. }
  1775. //bed
  1776. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1777. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1778. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1779. #else
  1780. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1781. #endif
  1782. target_temperature_bed = 0;
  1783. bed_max_temp_error();
  1784. }
  1785. #endif
  1786. }
  1787. //! number of repeating the same state with consecutive step() calls
  1788. //! used to slow down text switching
  1789. struct alert_automaton_mintemp {
  1790. private:
  1791. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1792. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1793. States state = States::Init;
  1794. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1795. void substep(States next_state){
  1796. if( repeat == 0 ){
  1797. state = next_state; // advance to the next state
  1798. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1799. } else {
  1800. --repeat;
  1801. }
  1802. }
  1803. public:
  1804. //! brief state automaton step routine
  1805. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1806. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1807. void step(float current_temp, float mintemp){
  1808. static const char m2[] PROGMEM = "MINTEMP fixed";
  1809. static const char m1[] PROGMEM = "Please restart";
  1810. switch(state){
  1811. case States::Init: // initial state - check hysteresis
  1812. if( current_temp > mintemp ){
  1813. state = States::TempAboveMintemp;
  1814. }
  1815. // otherwise keep the Err MINTEMP alert message on the display,
  1816. // i.e. do not transfer to state 1
  1817. break;
  1818. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1819. lcd_setalertstatuspgm(m2);
  1820. substep(States::ShowMintemp);
  1821. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1822. break;
  1823. case States::ShowPleaseRestart: // displaying "Please restart"
  1824. lcd_updatestatuspgm(m1);
  1825. substep(States::ShowMintemp);
  1826. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1827. break;
  1828. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1829. lcd_updatestatuspgm(m2);
  1830. substep(States::ShowPleaseRestart);
  1831. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1832. break;
  1833. }
  1834. }
  1835. };
  1836. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1837. void check_min_temp_heater0()
  1838. {
  1839. //heater
  1840. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1841. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1842. #else
  1843. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1844. #endif
  1845. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1846. min_temp_error(0);
  1847. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1848. // no recovery, just force the user to restart the printer
  1849. // which is a safer variant than just continuing printing
  1850. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1851. // we shall signalize, that MINTEMP has been fixed
  1852. // Code notice: normally the alert_automaton instance would have been placed here
  1853. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1854. // due to stupid compiler that takes 16 more bytes.
  1855. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1856. }
  1857. }
  1858. void check_min_temp_bed()
  1859. {
  1860. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1861. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1862. #else
  1863. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1864. #endif
  1865. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1866. bed_min_temp_error();
  1867. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1868. // no recovery, just force the user to restart the printer
  1869. // which is a safer variant than just continuing printing
  1870. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1871. }
  1872. }
  1873. void check_min_temp()
  1874. {
  1875. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1876. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1877. #ifdef AMBIENT_THERMISTOR
  1878. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1879. { // ambient temperature is low
  1880. #endif //AMBIENT_THERMISTOR
  1881. // *** 'common' part of code for MK2.5 & MK3
  1882. // * nozzle checking
  1883. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1884. { // ~ nozzle heating is on
  1885. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1886. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1887. {
  1888. bCheckingOnHeater=true; // not necessary
  1889. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1890. }
  1891. }
  1892. else { // ~ nozzle heating is off
  1893. oTimer4minTempHeater.start();
  1894. bCheckingOnHeater=false;
  1895. }
  1896. // * bed checking
  1897. if(target_temperature_bed>BED_MINTEMP)
  1898. { // ~ bed heating is on
  1899. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1900. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1901. {
  1902. bCheckingOnBed=true; // not necessary
  1903. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1904. }
  1905. }
  1906. else { // ~ bed heating is off
  1907. oTimer4minTempBed.start();
  1908. bCheckingOnBed=false;
  1909. }
  1910. // *** end of 'common' part
  1911. #ifdef AMBIENT_THERMISTOR
  1912. }
  1913. else { // ambient temperature is standard
  1914. check_min_temp_heater0();
  1915. check_min_temp_bed();
  1916. }
  1917. #endif //AMBIENT_THERMISTOR
  1918. }
  1919. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1920. void check_fans() {
  1921. #ifdef FAN_SOFT_PWM
  1922. if (READ(TACH_0) != fan_state[0]) {
  1923. if(fan_measuring) fan_edge_counter[0] ++;
  1924. fan_state[0] = !fan_state[0];
  1925. }
  1926. #else //FAN_SOFT_PWM
  1927. if (READ(TACH_0) != fan_state[0]) {
  1928. fan_edge_counter[0] ++;
  1929. fan_state[0] = !fan_state[0];
  1930. }
  1931. #endif
  1932. //if (READ(TACH_1) != fan_state[1]) {
  1933. // fan_edge_counter[1] ++;
  1934. // fan_state[1] = !fan_state[1];
  1935. //}
  1936. }
  1937. #endif //TACH_0
  1938. #ifdef PIDTEMP
  1939. // Apply the scale factors to the PID values
  1940. float scalePID_i(float i)
  1941. {
  1942. return i*PID_dT;
  1943. }
  1944. float unscalePID_i(float i)
  1945. {
  1946. return i/PID_dT;
  1947. }
  1948. float scalePID_d(float d)
  1949. {
  1950. return d/PID_dT;
  1951. }
  1952. float unscalePID_d(float d)
  1953. {
  1954. return d*PID_dT;
  1955. }
  1956. #endif //PIDTEMP