Marlin_main.cpp 289 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. //unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. bool fan_state[2];
  272. int fan_edge_counter[2];
  273. int fan_speed[2];
  274. char dir_names[3][9];
  275. bool sortAlpha = false;
  276. bool volumetric_enabled = false;
  277. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  278. #if EXTRUDERS > 1
  279. , DEFAULT_NOMINAL_FILAMENT_DIA
  280. #if EXTRUDERS > 2
  281. , DEFAULT_NOMINAL_FILAMENT_DIA
  282. #endif
  283. #endif
  284. };
  285. float extruder_multiplier[EXTRUDERS] = {1.0
  286. #if EXTRUDERS > 1
  287. , 1.0
  288. #if EXTRUDERS > 2
  289. , 1.0
  290. #endif
  291. #endif
  292. };
  293. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  294. float add_homing[3]={0,0,0};
  295. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. bool axis_known_position[3] = {false, false, false};
  298. float zprobe_zoffset;
  299. // Extruder offset
  300. #if EXTRUDERS > 1
  301. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  302. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  303. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  304. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  305. #endif
  306. };
  307. #endif
  308. uint8_t active_extruder = 0;
  309. int fanSpeed=0;
  310. #ifdef FWRETRACT
  311. bool autoretract_enabled=false;
  312. bool retracted[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. bool retracted_swap[EXTRUDERS]={false
  321. #if EXTRUDERS > 1
  322. , false
  323. #if EXTRUDERS > 2
  324. , false
  325. #endif
  326. #endif
  327. };
  328. float retract_length = RETRACT_LENGTH;
  329. float retract_length_swap = RETRACT_LENGTH_SWAP;
  330. float retract_feedrate = RETRACT_FEEDRATE;
  331. float retract_zlift = RETRACT_ZLIFT;
  332. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  333. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  334. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  335. #endif
  336. #ifdef ULTIPANEL
  337. #ifdef PS_DEFAULT_OFF
  338. bool powersupply = false;
  339. #else
  340. bool powersupply = true;
  341. #endif
  342. #endif
  343. bool cancel_heatup = false ;
  344. #ifdef HOST_KEEPALIVE_FEATURE
  345. int busy_state = NOT_BUSY;
  346. static long prev_busy_signal_ms = -1;
  347. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  348. #else
  349. #define host_keepalive();
  350. #define KEEPALIVE_STATE(n);
  351. #endif
  352. const char errormagic[] PROGMEM = "Error:";
  353. const char echomagic[] PROGMEM = "echo:";
  354. bool no_response = false;
  355. uint8_t important_status;
  356. uint8_t saved_filament_type;
  357. // save/restore printing
  358. bool saved_printing = false;
  359. //===========================================================================
  360. //=============================Private Variables=============================
  361. //===========================================================================
  362. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  363. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  364. static float delta[3] = {0.0, 0.0, 0.0};
  365. // For tracing an arc
  366. static float offset[3] = {0.0, 0.0, 0.0};
  367. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  368. // Determines Absolute or Relative Coordinates.
  369. // Also there is bool axis_relative_modes[] per axis flag.
  370. static bool relative_mode = false;
  371. #ifndef _DISABLE_M42_M226
  372. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  373. #endif //_DISABLE_M42_M226
  374. //static float tt = 0;
  375. //static float bt = 0;
  376. //Inactivity shutdown variables
  377. static unsigned long previous_millis_cmd = 0;
  378. unsigned long max_inactive_time = 0;
  379. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  380. unsigned long starttime=0;
  381. unsigned long stoptime=0;
  382. unsigned long _usb_timer = 0;
  383. static uint8_t tmp_extruder;
  384. bool extruder_under_pressure = true;
  385. bool Stopped=false;
  386. #if NUM_SERVOS > 0
  387. Servo servos[NUM_SERVOS];
  388. #endif
  389. bool CooldownNoWait = true;
  390. bool target_direction;
  391. //Insert variables if CHDK is defined
  392. #ifdef CHDK
  393. unsigned long chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. // save/restore printing
  397. static uint32_t saved_sdpos = 0;
  398. static float saved_pos[4] = { 0, 0, 0, 0 };
  399. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  400. static float saved_feedrate2 = 0;
  401. static uint8_t saved_active_extruder = 0;
  402. static bool saved_extruder_under_pressure = false;
  403. //===========================================================================
  404. //=============================Routines======================================
  405. //===========================================================================
  406. void get_arc_coordinates();
  407. bool setTargetedHotend(int code);
  408. void serial_echopair_P(const char *s_P, float v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, double v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, unsigned long v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. #ifdef SDSUPPORT
  415. #include "SdFatUtil.h"
  416. int freeMemory() { return SdFatUtil::FreeRam(); }
  417. #else
  418. extern "C" {
  419. extern unsigned int __bss_end;
  420. extern unsigned int __heap_start;
  421. extern void *__brkval;
  422. int freeMemory() {
  423. int free_memory;
  424. if ((int)__brkval == 0)
  425. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  426. else
  427. free_memory = ((int)&free_memory) - ((int)__brkval);
  428. return free_memory;
  429. }
  430. }
  431. #endif //!SDSUPPORT
  432. void setup_killpin()
  433. {
  434. #if defined(KILL_PIN) && KILL_PIN > -1
  435. SET_INPUT(KILL_PIN);
  436. WRITE(KILL_PIN,HIGH);
  437. #endif
  438. }
  439. // Set home pin
  440. void setup_homepin(void)
  441. {
  442. #if defined(HOME_PIN) && HOME_PIN > -1
  443. SET_INPUT(HOME_PIN);
  444. WRITE(HOME_PIN,HIGH);
  445. #endif
  446. }
  447. void setup_photpin()
  448. {
  449. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  450. SET_OUTPUT(PHOTOGRAPH_PIN);
  451. WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold()
  455. {
  456. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  457. SET_OUTPUT(SUICIDE_PIN);
  458. WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  461. SET_OUTPUT(PS_ON_PIN);
  462. #if defined(PS_DEFAULT_OFF)
  463. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  464. #else
  465. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  466. #endif
  467. #endif
  468. }
  469. void suicide()
  470. {
  471. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  472. SET_OUTPUT(SUICIDE_PIN);
  473. WRITE(SUICIDE_PIN, LOW);
  474. #endif
  475. }
  476. void servo_init()
  477. {
  478. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  479. servos[0].attach(SERVO0_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  482. servos[1].attach(SERVO1_PIN);
  483. #endif
  484. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  485. servos[2].attach(SERVO2_PIN);
  486. #endif
  487. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  488. servos[3].attach(SERVO3_PIN);
  489. #endif
  490. #if (NUM_SERVOS >= 5)
  491. #error "TODO: enter initalisation code for more servos"
  492. #endif
  493. }
  494. static void lcd_language_menu();
  495. void stop_and_save_print_to_ram(float z_move, float e_move);
  496. void restore_print_from_ram_and_continue(float e_move);
  497. bool fans_check_enabled = true;
  498. bool filament_autoload_enabled = true;
  499. #ifdef TMC2130
  500. extern int8_t CrashDetectMenu;
  501. void crashdet_enable()
  502. {
  503. // MYSERIAL.println("crashdet_enable");
  504. tmc2130_sg_stop_on_crash = true;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  506. CrashDetectMenu = 1;
  507. }
  508. void crashdet_disable()
  509. {
  510. // MYSERIAL.println("crashdet_disable");
  511. tmc2130_sg_stop_on_crash = false;
  512. tmc2130_sg_crash = 0;
  513. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  514. CrashDetectMenu = 0;
  515. }
  516. void crashdet_stop_and_save_print()
  517. {
  518. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  519. }
  520. void crashdet_restore_print_and_continue()
  521. {
  522. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  523. // babystep_apply();
  524. }
  525. void crashdet_stop_and_save_print2()
  526. {
  527. cli();
  528. planner_abort_hard(); //abort printing
  529. cmdqueue_reset(); //empty cmdqueue
  530. card.sdprinting = false;
  531. card.closefile();
  532. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  533. st_reset_timer();
  534. sei();
  535. }
  536. void crashdet_detected(uint8_t mask)
  537. {
  538. // printf("CRASH_DETECTED");
  539. /* while (!is_buffer_empty())
  540. {
  541. process_commands();
  542. cmdqueue_pop_front();
  543. }*/
  544. st_synchronize();
  545. lcd_update_enable(true);
  546. lcd_implementation_clear();
  547. lcd_update(2);
  548. if (mask & X_AXIS_MASK)
  549. {
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  551. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  552. }
  553. if (mask & Y_AXIS_MASK)
  554. {
  555. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  556. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  557. }
  558. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  559. bool yesno = true;
  560. #else
  561. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  562. #endif
  563. lcd_update_enable(true);
  564. lcd_update(2);
  565. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  566. if (yesno)
  567. {
  568. enquecommand_P(PSTR("G28 X Y"));
  569. enquecommand_P(PSTR("CRASH_RECOVER"));
  570. }
  571. else
  572. {
  573. enquecommand_P(PSTR("CRASH_CANCEL"));
  574. }
  575. }
  576. void crashdet_recover()
  577. {
  578. crashdet_restore_print_and_continue();
  579. tmc2130_sg_stop_on_crash = true;
  580. }
  581. void crashdet_cancel()
  582. {
  583. card.sdprinting = false;
  584. card.closefile();
  585. tmc2130_sg_stop_on_crash = true;
  586. }
  587. #endif //TMC2130
  588. void failstats_reset_print()
  589. {
  590. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  593. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  594. }
  595. #ifdef MESH_BED_LEVELING
  596. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  597. #endif
  598. // Factory reset function
  599. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  600. // Level input parameter sets depth of reset
  601. // Quiet parameter masks all waitings for user interact.
  602. int er_progress = 0;
  603. void factory_reset(char level, bool quiet)
  604. {
  605. lcd_implementation_clear();
  606. int cursor_pos = 0;
  607. switch (level) {
  608. // Level 0: Language reset
  609. case 0:
  610. WRITE(BEEPER, HIGH);
  611. _delay_ms(100);
  612. WRITE(BEEPER, LOW);
  613. lcd_force_language_selection();
  614. break;
  615. //Level 1: Reset statistics
  616. case 1:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  621. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  622. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  623. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  624. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  625. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  626. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  627. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  628. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  629. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  630. lcd_menu_statistics();
  631. break;
  632. // Level 2: Prepare for shipping
  633. case 2:
  634. //lcd_printPGM(PSTR("Factory RESET"));
  635. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  636. // Force language selection at the next boot up.
  637. lcd_force_language_selection();
  638. // Force the "Follow calibration flow" message at the next boot up.
  639. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  640. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  641. farm_no = 0;
  642. //*** MaR::180501_01
  643. farm_mode = false;
  644. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  645. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. //_delay_ms(2000);
  650. break;
  651. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  652. case 3:
  653. lcd_printPGM(PSTR("Factory RESET"));
  654. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. er_progress = 0;
  659. lcd_print_at_PGM(3, 3, PSTR(" "));
  660. lcd_implementation_print_at(3, 3, er_progress);
  661. // Erase EEPROM
  662. for (int i = 0; i < 4096; i++) {
  663. eeprom_write_byte((uint8_t*)i, 0xFF);
  664. if (i % 41 == 0) {
  665. er_progress++;
  666. lcd_print_at_PGM(3, 3, PSTR(" "));
  667. lcd_implementation_print_at(3, 3, er_progress);
  668. lcd_printPGM(PSTR("%"));
  669. }
  670. }
  671. break;
  672. case 4:
  673. bowden_menu();
  674. break;
  675. default:
  676. break;
  677. }
  678. }
  679. #include "LiquidCrystal_Prusa.h"
  680. extern LiquidCrystal_Prusa lcd;
  681. FILE _lcdout = {0};
  682. int lcd_putchar(char c, FILE *stream)
  683. {
  684. lcd.write(c);
  685. return 0;
  686. }
  687. FILE _uartout = {0};
  688. int uart_putchar(char c, FILE *stream)
  689. {
  690. MYSERIAL.write(c);
  691. return 0;
  692. }
  693. void lcd_splash()
  694. {
  695. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  696. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  697. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  698. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  699. }
  700. void factory_reset()
  701. {
  702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  703. if (!READ(BTN_ENC))
  704. {
  705. _delay_ms(1000);
  706. if (!READ(BTN_ENC))
  707. {
  708. lcd_implementation_clear();
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. SET_OUTPUT(BEEPER);
  711. WRITE(BEEPER, HIGH);
  712. while (!READ(BTN_ENC));
  713. WRITE(BEEPER, LOW);
  714. _delay_ms(2000);
  715. char level = reset_menu();
  716. factory_reset(level, false);
  717. switch (level) {
  718. case 0: _delay_ms(0); break;
  719. case 1: _delay_ms(0); break;
  720. case 2: _delay_ms(0); break;
  721. case 3: _delay_ms(0); break;
  722. }
  723. // _delay_ms(100);
  724. /*
  725. #ifdef MESH_BED_LEVELING
  726. _delay_ms(2000);
  727. if (!READ(BTN_ENC))
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. _delay_ms(200);
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. int _z = 0;
  737. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  738. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  739. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  740. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  741. }
  742. else
  743. {
  744. WRITE(BEEPER, HIGH);
  745. _delay_ms(100);
  746. WRITE(BEEPER, LOW);
  747. }
  748. #endif // mesh */
  749. }
  750. }
  751. else
  752. {
  753. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  754. }
  755. KEEPALIVE_STATE(IN_HANDLER);
  756. }
  757. void show_fw_version_warnings() {
  758. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  759. switch (FW_DEV_VERSION) {
  760. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  761. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  762. case(FW_VERSION_DEVEL):
  763. case(FW_VERSION_DEBUG):
  764. lcd_update_enable(false);
  765. lcd_implementation_clear();
  766. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  767. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  768. #else
  769. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  770. #endif
  771. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  772. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  773. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  774. lcd_wait_for_click();
  775. break;
  776. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  777. }
  778. lcd_update_enable(true);
  779. }
  780. uint8_t check_printer_version()
  781. {
  782. uint8_t version_changed = 0;
  783. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  784. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  785. if (printer_type != PRINTER_TYPE) {
  786. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  787. else version_changed |= 0b10;
  788. }
  789. if (motherboard != MOTHERBOARD) {
  790. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  791. else version_changed |= 0b01;
  792. }
  793. return version_changed;
  794. }
  795. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  796. {
  797. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  798. }
  799. #include "bootapp.h"
  800. void __test()
  801. {
  802. cli();
  803. boot_app_magic = 0x55aa55aa;
  804. boot_app_flags = BOOT_APP_FLG_USER0;
  805. boot_reserved = 0x00;
  806. wdt_enable(WDTO_15MS);
  807. while(1);
  808. }
  809. void upgrade_sec_lang_from_external_flash()
  810. {
  811. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  812. {
  813. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  814. boot_reserved++;
  815. if (boot_reserved < 4)
  816. {
  817. _delay_ms(1000);
  818. cli();
  819. wdt_enable(WDTO_15MS);
  820. while(1);
  821. }
  822. }
  823. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  824. }
  825. // "Setup" function is called by the Arduino framework on startup.
  826. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  827. // are initialized by the main() routine provided by the Arduino framework.
  828. void setup()
  829. {
  830. lcd_init();
  831. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  832. upgrade_sec_lang_from_external_flash();
  833. lcd_splash();
  834. setup_killpin();
  835. setup_powerhold();
  836. //*** MaR::180501_02b
  837. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  838. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  839. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  840. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  841. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  842. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  843. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  844. if (farm_mode)
  845. {
  846. no_response = true; //we need confirmation by recieving PRUSA thx
  847. important_status = 8;
  848. prusa_statistics(8);
  849. selectedSerialPort = 1;
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. stdout = uartout;
  854. SERIAL_PROTOCOLLNPGM("start");
  855. SERIAL_ECHO_START;
  856. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  857. #if 0
  858. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  859. for (int i = 0; i < 4096; ++i) {
  860. int b = eeprom_read_byte((unsigned char*)i);
  861. if (b != 255) {
  862. SERIAL_ECHO(i);
  863. SERIAL_ECHO(":");
  864. SERIAL_ECHO(b);
  865. SERIAL_ECHOLN("");
  866. }
  867. }
  868. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  869. #endif
  870. // Check startup - does nothing if bootloader sets MCUSR to 0
  871. byte mcu = MCUSR;
  872. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  873. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  874. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  875. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  876. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  877. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  878. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  879. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  880. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  881. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  882. MCUSR = 0;
  883. //SERIAL_ECHORPGM(MSG_MARLIN);
  884. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  885. #ifdef STRING_VERSION_CONFIG_H
  886. #ifdef STRING_CONFIG_H_AUTHOR
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  889. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  890. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  891. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  892. SERIAL_ECHOPGM("Compiled: ");
  893. SERIAL_ECHOLNPGM(__DATE__);
  894. #endif
  895. #endif
  896. SERIAL_ECHO_START;
  897. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  898. SERIAL_ECHO(freeMemory());
  899. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  900. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  901. //lcd_update_enable(false); // why do we need this?? - andre
  902. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  903. bool previous_settings_retrieved = false;
  904. uint8_t hw_changed = check_printer_version();
  905. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  906. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  907. }
  908. else { //printer version was changed so use default settings
  909. Config_ResetDefault();
  910. }
  911. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  912. tp_init(); // Initialize temperature loop
  913. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  914. plan_init(); // Initialize planner;
  915. factory_reset();
  916. #ifdef TMC2130
  917. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  918. if (silentMode == 0xff) silentMode = 0;
  919. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  920. tmc2130_mode = TMC2130_MODE_NORMAL;
  921. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  922. if (crashdet && !farm_mode)
  923. {
  924. crashdet_enable();
  925. MYSERIAL.println("CrashDetect ENABLED!");
  926. }
  927. else
  928. {
  929. crashdet_disable();
  930. MYSERIAL.println("CrashDetect DISABLED");
  931. }
  932. #ifdef TMC2130_LINEARITY_CORRECTION
  933. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  934. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  935. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  936. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  937. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  938. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  939. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  940. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  941. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  942. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  943. #endif //TMC2130_LINEARITY_CORRECTION
  944. #ifdef TMC2130_VARIABLE_RESOLUTION
  945. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  946. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  947. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  948. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  949. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  950. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  951. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  952. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  953. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  954. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  955. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  956. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  957. #else //TMC2130_VARIABLE_RESOLUTION
  958. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  959. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  960. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  961. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  962. #endif //TMC2130_VARIABLE_RESOLUTION
  963. #endif //TMC2130
  964. #ifdef NEW_SPI
  965. spi_init();
  966. #endif //NEW_SPI
  967. st_init(); // Initialize stepper, this enables interrupts!
  968. #ifdef TMC2130
  969. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  970. tmc2130_init();
  971. #endif //TMC2130
  972. setup_photpin();
  973. servo_init();
  974. // Reset the machine correction matrix.
  975. // It does not make sense to load the correction matrix until the machine is homed.
  976. world2machine_reset();
  977. #ifdef PAT9125
  978. fsensor_init();
  979. #endif //PAT9125
  980. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  981. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  982. #endif
  983. setup_homepin();
  984. #ifdef TMC2130
  985. if (1) {
  986. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  987. // try to run to zero phase before powering the Z motor.
  988. // Move in negative direction
  989. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  990. // Round the current micro-micro steps to micro steps.
  991. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  992. // Until the phase counter is reset to zero.
  993. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  994. delay(2);
  995. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  996. delay(2);
  997. }
  998. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  999. }
  1000. #endif //TMC2130
  1001. #if defined(Z_AXIS_ALWAYS_ON)
  1002. enable_z();
  1003. #endif
  1004. //*** MaR::180501_02
  1005. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1006. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1007. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1008. if (farm_no == 0xFFFF) farm_no = 0;
  1009. if (farm_mode)
  1010. {
  1011. prusa_statistics(8);
  1012. }
  1013. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1014. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1015. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1016. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1017. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1018. // where all the EEPROM entries are set to 0x0ff.
  1019. // Once a firmware boots up, it forces at least a language selection, which changes
  1020. // EEPROM_LANG to number lower than 0x0ff.
  1021. // 1) Set a high power mode.
  1022. #ifdef TMC2130
  1023. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1024. tmc2130_mode = TMC2130_MODE_NORMAL;
  1025. #endif //TMC2130
  1026. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1027. }
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. #ifdef DEBUG_SD_SPEED_TEST
  1032. if (card.cardOK)
  1033. {
  1034. uint8_t* buff = (uint8_t*)block_buffer;
  1035. uint32_t block = 0;
  1036. uint32_t sumr = 0;
  1037. uint32_t sumw = 0;
  1038. for (int i = 0; i < 1024; i++)
  1039. {
  1040. uint32_t u = micros();
  1041. bool res = card.card.readBlock(i, buff);
  1042. u = micros() - u;
  1043. if (res)
  1044. {
  1045. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1046. sumr += u;
  1047. u = micros();
  1048. res = card.card.writeBlock(i, buff);
  1049. u = micros() - u;
  1050. if (res)
  1051. {
  1052. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1053. sumw += u;
  1054. }
  1055. else
  1056. {
  1057. printf_P(PSTR("writeBlock %4d error\n"), i);
  1058. break;
  1059. }
  1060. }
  1061. else
  1062. {
  1063. printf_P(PSTR("readBlock %4d error\n"), i);
  1064. break;
  1065. }
  1066. }
  1067. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1068. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1069. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1070. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1071. }
  1072. else
  1073. printf_P(PSTR("Card NG!\n"));
  1074. #endif DEBUG_SD_SPEED_TEST
  1075. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1077. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1078. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1079. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1080. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1081. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1082. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1083. #ifdef SNMM
  1084. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1085. int _z = BOWDEN_LENGTH;
  1086. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1087. }
  1088. #endif
  1089. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1090. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1091. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1092. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1093. if (lang_selected >= LANG_NUM)
  1094. {
  1095. lcd_mylang();
  1096. }
  1097. lang_select(lang_selected);
  1098. #ifdef DEBUG_SEC_LANG
  1099. lang_print_sec_lang(uartout);
  1100. #endif //DEBUG_SEC_LANG
  1101. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1102. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1103. temp_cal_active = false;
  1104. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1105. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1106. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1107. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1108. int16_t z_shift = 0;
  1109. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1110. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1111. temp_cal_active = false;
  1112. }
  1113. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1114. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1115. }
  1116. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1117. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1118. }
  1119. check_babystep(); //checking if Z babystep is in allowed range
  1120. #ifdef UVLO_SUPPORT
  1121. setup_uvlo_interrupt();
  1122. #endif //UVLO_SUPPORT
  1123. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1124. setup_fan_interrupt();
  1125. #endif //DEBUG_DISABLE_FANCHECK
  1126. #ifdef PAT9125
  1127. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1128. fsensor_setup_interrupt();
  1129. #endif //DEBUG_DISABLE_FSENSORCHECK
  1130. #endif //PAT9125
  1131. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1132. #ifndef DEBUG_DISABLE_STARTMSGS
  1133. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1134. show_fw_version_warnings();
  1135. switch (hw_changed) {
  1136. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1137. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1138. case(0b01):
  1139. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1140. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1141. break;
  1142. case(0b10):
  1143. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1144. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1145. break;
  1146. case(0b11):
  1147. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1148. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1149. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1150. break;
  1151. default: break; //no change, show no message
  1152. }
  1153. if (!previous_settings_retrieved) {
  1154. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1155. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1156. }
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1158. lcd_wizard(0);
  1159. }
  1160. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1161. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1162. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1163. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1164. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1165. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1166. // Show the message.
  1167. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1168. }
  1169. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1170. // Show the message.
  1171. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1172. lcd_update_enable(true);
  1173. }
  1174. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1175. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1176. lcd_update_enable(true);
  1177. }
  1178. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1179. // Show the message.
  1180. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1181. }
  1182. }
  1183. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1184. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1185. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1186. update_current_firmware_version_to_eeprom();
  1187. lcd_selftest();
  1188. }
  1189. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1190. KEEPALIVE_STATE(IN_PROCESS);
  1191. #endif //DEBUG_DISABLE_STARTMSGS
  1192. lcd_update_enable(true);
  1193. lcd_implementation_clear();
  1194. lcd_update(2);
  1195. // Store the currently running firmware into an eeprom,
  1196. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1197. update_current_firmware_version_to_eeprom();
  1198. #ifdef TMC2130
  1199. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1200. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1201. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1202. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1203. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1204. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1205. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1206. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1207. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1208. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1209. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1210. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1211. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1212. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1213. #endif //TMC2130
  1214. #ifdef UVLO_SUPPORT
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1216. /*
  1217. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1218. else {
  1219. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1220. lcd_update_enable(true);
  1221. lcd_update(2);
  1222. lcd_setstatuspgm(_T(WELCOME_MSG));
  1223. }
  1224. */
  1225. manage_heater(); // Update temperatures
  1226. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1227. MYSERIAL.println("Power panic detected!");
  1228. MYSERIAL.print("Current bed temp:");
  1229. MYSERIAL.println(degBed());
  1230. MYSERIAL.print("Saved bed temp:");
  1231. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1232. #endif
  1233. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1234. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1235. MYSERIAL.println("Automatic recovery!");
  1236. #endif
  1237. recover_print(1);
  1238. }
  1239. else{
  1240. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1241. MYSERIAL.println("Normal recovery!");
  1242. #endif
  1243. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1244. else {
  1245. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1246. lcd_update_enable(true);
  1247. lcd_update(2);
  1248. lcd_setstatuspgm(_T(WELCOME_MSG));
  1249. }
  1250. }
  1251. }
  1252. #endif //UVLO_SUPPORT
  1253. KEEPALIVE_STATE(NOT_BUSY);
  1254. #ifdef WATCHDOG
  1255. wdt_enable(WDTO_4S);
  1256. #endif //WATCHDOG
  1257. }
  1258. #ifdef PAT9125
  1259. void fsensor_init() {
  1260. int pat9125 = pat9125_init();
  1261. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1262. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1263. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1264. if (!pat9125)
  1265. {
  1266. fsensor = 0; //disable sensor
  1267. fsensor_not_responding = true;
  1268. }
  1269. else {
  1270. fsensor_not_responding = false;
  1271. }
  1272. puts_P(PSTR("FSensor "));
  1273. if (fsensor)
  1274. {
  1275. puts_P(PSTR("ENABLED\n"));
  1276. fsensor_enable();
  1277. }
  1278. else
  1279. {
  1280. puts_P(PSTR("DISABLED\n"));
  1281. fsensor_disable();
  1282. }
  1283. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1284. filament_autoload_enabled = false;
  1285. fsensor_disable();
  1286. #endif //DEBUG_DISABLE_FSENSORCHECK
  1287. }
  1288. #endif //PAT9125
  1289. void trace();
  1290. #define CHUNK_SIZE 64 // bytes
  1291. #define SAFETY_MARGIN 1
  1292. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1293. int chunkHead = 0;
  1294. int serial_read_stream() {
  1295. setTargetHotend(0, 0);
  1296. setTargetBed(0);
  1297. lcd_implementation_clear();
  1298. lcd_printPGM(PSTR(" Upload in progress"));
  1299. // first wait for how many bytes we will receive
  1300. uint32_t bytesToReceive;
  1301. // receive the four bytes
  1302. char bytesToReceiveBuffer[4];
  1303. for (int i=0; i<4; i++) {
  1304. int data;
  1305. while ((data = MYSERIAL.read()) == -1) {};
  1306. bytesToReceiveBuffer[i] = data;
  1307. }
  1308. // make it a uint32
  1309. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1310. // we're ready, notify the sender
  1311. MYSERIAL.write('+');
  1312. // lock in the routine
  1313. uint32_t receivedBytes = 0;
  1314. while (prusa_sd_card_upload) {
  1315. int i;
  1316. for (i=0; i<CHUNK_SIZE; i++) {
  1317. int data;
  1318. // check if we're not done
  1319. if (receivedBytes == bytesToReceive) {
  1320. break;
  1321. }
  1322. // read the next byte
  1323. while ((data = MYSERIAL.read()) == -1) {};
  1324. receivedBytes++;
  1325. // save it to the chunk
  1326. chunk[i] = data;
  1327. }
  1328. // write the chunk to SD
  1329. card.write_command_no_newline(&chunk[0]);
  1330. // notify the sender we're ready for more data
  1331. MYSERIAL.write('+');
  1332. // for safety
  1333. manage_heater();
  1334. // check if we're done
  1335. if(receivedBytes == bytesToReceive) {
  1336. trace(); // beep
  1337. card.closefile();
  1338. prusa_sd_card_upload = false;
  1339. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1340. return 0;
  1341. }
  1342. }
  1343. }
  1344. #ifdef HOST_KEEPALIVE_FEATURE
  1345. /**
  1346. * Output a "busy" message at regular intervals
  1347. * while the machine is not accepting commands.
  1348. */
  1349. void host_keepalive() {
  1350. if (farm_mode) return;
  1351. long ms = millis();
  1352. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1353. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1354. switch (busy_state) {
  1355. case IN_HANDLER:
  1356. case IN_PROCESS:
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHOLNPGM("busy: processing");
  1359. break;
  1360. case PAUSED_FOR_USER:
  1361. SERIAL_ECHO_START;
  1362. SERIAL_ECHOLNPGM("busy: paused for user");
  1363. break;
  1364. case PAUSED_FOR_INPUT:
  1365. SERIAL_ECHO_START;
  1366. SERIAL_ECHOLNPGM("busy: paused for input");
  1367. break;
  1368. default:
  1369. break;
  1370. }
  1371. }
  1372. prev_busy_signal_ms = ms;
  1373. }
  1374. #endif
  1375. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1376. // Before loop(), the setup() function is called by the main() routine.
  1377. void loop()
  1378. {
  1379. KEEPALIVE_STATE(NOT_BUSY);
  1380. bool stack_integrity = true;
  1381. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1382. {
  1383. is_usb_printing = true;
  1384. usb_printing_counter--;
  1385. _usb_timer = millis();
  1386. }
  1387. if (usb_printing_counter == 0)
  1388. {
  1389. is_usb_printing = false;
  1390. }
  1391. if (prusa_sd_card_upload)
  1392. {
  1393. //we read byte-by byte
  1394. serial_read_stream();
  1395. } else
  1396. {
  1397. get_command();
  1398. #ifdef SDSUPPORT
  1399. card.checkautostart(false);
  1400. #endif
  1401. if(buflen)
  1402. {
  1403. cmdbuffer_front_already_processed = false;
  1404. #ifdef SDSUPPORT
  1405. if(card.saving)
  1406. {
  1407. // Saving a G-code file onto an SD-card is in progress.
  1408. // Saving starts with M28, saving until M29 is seen.
  1409. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1410. card.write_command(CMDBUFFER_CURRENT_STRING);
  1411. if(card.logging)
  1412. process_commands();
  1413. else
  1414. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1415. } else {
  1416. card.closefile();
  1417. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1418. }
  1419. } else {
  1420. process_commands();
  1421. }
  1422. #else
  1423. process_commands();
  1424. #endif //SDSUPPORT
  1425. if (! cmdbuffer_front_already_processed && buflen)
  1426. {
  1427. // ptr points to the start of the block currently being processed.
  1428. // The first character in the block is the block type.
  1429. char *ptr = cmdbuffer + bufindr;
  1430. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1431. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1432. union {
  1433. struct {
  1434. char lo;
  1435. char hi;
  1436. } lohi;
  1437. uint16_t value;
  1438. } sdlen;
  1439. sdlen.value = 0;
  1440. {
  1441. // This block locks the interrupts globally for 3.25 us,
  1442. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1443. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1444. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1445. cli();
  1446. // Reset the command to something, which will be ignored by the power panic routine,
  1447. // so this buffer length will not be counted twice.
  1448. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1449. // Extract the current buffer length.
  1450. sdlen.lohi.lo = *ptr ++;
  1451. sdlen.lohi.hi = *ptr;
  1452. // and pass it to the planner queue.
  1453. planner_add_sd_length(sdlen.value);
  1454. sei();
  1455. }
  1456. }
  1457. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1458. // this block's SD card length will not be counted twice as its command type has been replaced
  1459. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1460. cmdqueue_pop_front();
  1461. }
  1462. host_keepalive();
  1463. }
  1464. }
  1465. //check heater every n milliseconds
  1466. manage_heater();
  1467. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1468. checkHitEndstops();
  1469. lcd_update();
  1470. #ifdef PAT9125
  1471. fsensor_update();
  1472. #endif //PAT9125
  1473. #ifdef TMC2130
  1474. tmc2130_check_overtemp();
  1475. if (tmc2130_sg_crash)
  1476. {
  1477. uint8_t crash = tmc2130_sg_crash;
  1478. tmc2130_sg_crash = 0;
  1479. // crashdet_stop_and_save_print();
  1480. switch (crash)
  1481. {
  1482. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1483. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1484. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1485. }
  1486. }
  1487. #endif //TMC2130
  1488. }
  1489. #define DEFINE_PGM_READ_ANY(type, reader) \
  1490. static inline type pgm_read_any(const type *p) \
  1491. { return pgm_read_##reader##_near(p); }
  1492. DEFINE_PGM_READ_ANY(float, float);
  1493. DEFINE_PGM_READ_ANY(signed char, byte);
  1494. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1495. static const PROGMEM type array##_P[3] = \
  1496. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1497. static inline type array(int axis) \
  1498. { return pgm_read_any(&array##_P[axis]); } \
  1499. type array##_ext(int axis) \
  1500. { return pgm_read_any(&array##_P[axis]); }
  1501. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1502. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1503. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1504. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1505. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1506. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1507. static void axis_is_at_home(int axis) {
  1508. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1509. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1510. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1511. }
  1512. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1513. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1514. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1515. saved_feedrate = feedrate;
  1516. saved_feedmultiply = feedmultiply;
  1517. feedmultiply = 100;
  1518. previous_millis_cmd = millis();
  1519. enable_endstops(enable_endstops_now);
  1520. }
  1521. static void clean_up_after_endstop_move() {
  1522. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1523. enable_endstops(false);
  1524. #endif
  1525. feedrate = saved_feedrate;
  1526. feedmultiply = saved_feedmultiply;
  1527. previous_millis_cmd = millis();
  1528. }
  1529. #ifdef ENABLE_AUTO_BED_LEVELING
  1530. #ifdef AUTO_BED_LEVELING_GRID
  1531. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1532. {
  1533. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1534. planeNormal.debug("planeNormal");
  1535. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1536. //bedLevel.debug("bedLevel");
  1537. //plan_bed_level_matrix.debug("bed level before");
  1538. //vector_3 uncorrected_position = plan_get_position_mm();
  1539. //uncorrected_position.debug("position before");
  1540. vector_3 corrected_position = plan_get_position();
  1541. // corrected_position.debug("position after");
  1542. current_position[X_AXIS] = corrected_position.x;
  1543. current_position[Y_AXIS] = corrected_position.y;
  1544. current_position[Z_AXIS] = corrected_position.z;
  1545. // put the bed at 0 so we don't go below it.
  1546. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1548. }
  1549. #else // not AUTO_BED_LEVELING_GRID
  1550. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1551. plan_bed_level_matrix.set_to_identity();
  1552. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1553. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1554. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1555. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1556. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1557. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1558. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1559. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1560. vector_3 corrected_position = plan_get_position();
  1561. current_position[X_AXIS] = corrected_position.x;
  1562. current_position[Y_AXIS] = corrected_position.y;
  1563. current_position[Z_AXIS] = corrected_position.z;
  1564. // put the bed at 0 so we don't go below it.
  1565. current_position[Z_AXIS] = zprobe_zoffset;
  1566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1567. }
  1568. #endif // AUTO_BED_LEVELING_GRID
  1569. static void run_z_probe() {
  1570. plan_bed_level_matrix.set_to_identity();
  1571. feedrate = homing_feedrate[Z_AXIS];
  1572. // move down until you find the bed
  1573. float zPosition = -10;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. // we have to let the planner know where we are right now as it is not where we said to go.
  1577. zPosition = st_get_position_mm(Z_AXIS);
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1579. // move up the retract distance
  1580. zPosition += home_retract_mm(Z_AXIS);
  1581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1582. st_synchronize();
  1583. // move back down slowly to find bed
  1584. feedrate = homing_feedrate[Z_AXIS]/4;
  1585. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1587. st_synchronize();
  1588. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1589. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1591. }
  1592. static void do_blocking_move_to(float x, float y, float z) {
  1593. float oldFeedRate = feedrate;
  1594. feedrate = homing_feedrate[Z_AXIS];
  1595. current_position[Z_AXIS] = z;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1597. st_synchronize();
  1598. feedrate = XY_TRAVEL_SPEED;
  1599. current_position[X_AXIS] = x;
  1600. current_position[Y_AXIS] = y;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1602. st_synchronize();
  1603. feedrate = oldFeedRate;
  1604. }
  1605. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1606. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1607. }
  1608. /// Probe bed height at position (x,y), returns the measured z value
  1609. static float probe_pt(float x, float y, float z_before) {
  1610. // move to right place
  1611. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1612. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1613. run_z_probe();
  1614. float measured_z = current_position[Z_AXIS];
  1615. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1616. SERIAL_PROTOCOLPGM(" x: ");
  1617. SERIAL_PROTOCOL(x);
  1618. SERIAL_PROTOCOLPGM(" y: ");
  1619. SERIAL_PROTOCOL(y);
  1620. SERIAL_PROTOCOLPGM(" z: ");
  1621. SERIAL_PROTOCOL(measured_z);
  1622. SERIAL_PROTOCOLPGM("\n");
  1623. return measured_z;
  1624. }
  1625. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1626. #ifdef LIN_ADVANCE
  1627. /**
  1628. * M900: Set and/or Get advance K factor and WH/D ratio
  1629. *
  1630. * K<factor> Set advance K factor
  1631. * R<ratio> Set ratio directly (overrides WH/D)
  1632. * W<width> H<height> D<diam> Set ratio from WH/D
  1633. */
  1634. inline void gcode_M900() {
  1635. st_synchronize();
  1636. const float newK = code_seen('K') ? code_value_float() : -1;
  1637. if (newK >= 0) extruder_advance_k = newK;
  1638. float newR = code_seen('R') ? code_value_float() : -1;
  1639. if (newR < 0) {
  1640. const float newD = code_seen('D') ? code_value_float() : -1,
  1641. newW = code_seen('W') ? code_value_float() : -1,
  1642. newH = code_seen('H') ? code_value_float() : -1;
  1643. if (newD >= 0 && newW >= 0 && newH >= 0)
  1644. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1645. }
  1646. if (newR >= 0) advance_ed_ratio = newR;
  1647. SERIAL_ECHO_START;
  1648. SERIAL_ECHOPGM("Advance K=");
  1649. SERIAL_ECHOLN(extruder_advance_k);
  1650. SERIAL_ECHOPGM(" E/D=");
  1651. const float ratio = advance_ed_ratio;
  1652. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1653. }
  1654. #endif // LIN_ADVANCE
  1655. bool check_commands() {
  1656. bool end_command_found = false;
  1657. while (buflen)
  1658. {
  1659. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1660. if (!cmdbuffer_front_already_processed)
  1661. cmdqueue_pop_front();
  1662. cmdbuffer_front_already_processed = false;
  1663. }
  1664. return end_command_found;
  1665. }
  1666. #ifdef TMC2130
  1667. bool calibrate_z_auto()
  1668. {
  1669. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1670. lcd_implementation_clear();
  1671. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1672. bool endstops_enabled = enable_endstops(true);
  1673. int axis_up_dir = -home_dir(Z_AXIS);
  1674. tmc2130_home_enter(Z_AXIS_MASK);
  1675. current_position[Z_AXIS] = 0;
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1677. set_destination_to_current();
  1678. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1679. feedrate = homing_feedrate[Z_AXIS];
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. // current_position[axis] = 0;
  1683. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. tmc2130_home_exit();
  1685. enable_endstops(false);
  1686. current_position[Z_AXIS] = 0;
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. set_destination_to_current();
  1689. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1690. feedrate = homing_feedrate[Z_AXIS] / 2;
  1691. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. enable_endstops(endstops_enabled);
  1694. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1695. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1696. return true;
  1697. }
  1698. #endif //TMC2130
  1699. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1700. {
  1701. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1702. #define HOMEAXIS_DO(LETTER) \
  1703. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1704. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1705. {
  1706. int axis_home_dir = home_dir(axis);
  1707. feedrate = homing_feedrate[axis];
  1708. #ifdef TMC2130
  1709. tmc2130_home_enter(X_AXIS_MASK << axis);
  1710. #endif //TMC2130
  1711. // Move right a bit, so that the print head does not touch the left end position,
  1712. // and the following left movement has a chance to achieve the required velocity
  1713. // for the stall guard to work.
  1714. current_position[axis] = 0;
  1715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1716. set_destination_to_current();
  1717. // destination[axis] = 11.f;
  1718. destination[axis] = 3.f;
  1719. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1720. st_synchronize();
  1721. // Move left away from the possible collision with the collision detection disabled.
  1722. endstops_hit_on_purpose();
  1723. enable_endstops(false);
  1724. current_position[axis] = 0;
  1725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1726. destination[axis] = - 1.;
  1727. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1728. st_synchronize();
  1729. // Now continue to move up to the left end stop with the collision detection enabled.
  1730. enable_endstops(true);
  1731. destination[axis] = - 1.1 * max_length(axis);
  1732. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1733. st_synchronize();
  1734. for (uint8_t i = 0; i < cnt; i++)
  1735. {
  1736. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1737. endstops_hit_on_purpose();
  1738. enable_endstops(false);
  1739. current_position[axis] = 0;
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. destination[axis] = 10.f;
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1743. st_synchronize();
  1744. endstops_hit_on_purpose();
  1745. // Now move left up to the collision, this time with a repeatable velocity.
  1746. enable_endstops(true);
  1747. destination[axis] = - 11.f;
  1748. #ifdef TMC2130
  1749. feedrate = homing_feedrate[axis];
  1750. #else //TMC2130
  1751. feedrate = homing_feedrate[axis] / 2;
  1752. #endif //TMC2130
  1753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1754. st_synchronize();
  1755. #ifdef TMC2130
  1756. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1757. if (pstep) pstep[i] = mscnt >> 4;
  1758. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1759. #endif //TMC2130
  1760. }
  1761. endstops_hit_on_purpose();
  1762. enable_endstops(false);
  1763. #ifdef TMC2130
  1764. uint8_t orig = tmc2130_home_origin[axis];
  1765. uint8_t back = tmc2130_home_bsteps[axis];
  1766. if (tmc2130_home_enabled && (orig <= 63))
  1767. {
  1768. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1769. if (back > 0)
  1770. tmc2130_do_steps(axis, back, 1, 1000);
  1771. }
  1772. else
  1773. tmc2130_do_steps(axis, 8, 2, 1000);
  1774. tmc2130_home_exit();
  1775. #endif //TMC2130
  1776. axis_is_at_home(axis);
  1777. axis_known_position[axis] = true;
  1778. // Move from minimum
  1779. #ifdef TMC2130
  1780. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1781. #else //TMC2130
  1782. float dist = 0.01f * 64;
  1783. #endif //TMC2130
  1784. current_position[axis] -= dist;
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. current_position[axis] += dist;
  1787. destination[axis] = current_position[axis];
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. feedrate = 0.0;
  1791. }
  1792. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1793. {
  1794. int axis_home_dir = home_dir(axis);
  1795. current_position[axis] = 0;
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1798. feedrate = homing_feedrate[axis];
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. #ifdef TMC2130
  1802. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1803. #endif //TMC2130
  1804. current_position[axis] = 0;
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1806. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1810. feedrate = homing_feedrate[axis]/2 ;
  1811. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1812. st_synchronize();
  1813. #ifdef TMC2130
  1814. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1815. #endif //TMC2130
  1816. axis_is_at_home(axis);
  1817. destination[axis] = current_position[axis];
  1818. feedrate = 0.0;
  1819. endstops_hit_on_purpose();
  1820. axis_known_position[axis] = true;
  1821. }
  1822. enable_endstops(endstops_enabled);
  1823. }
  1824. /**/
  1825. void home_xy()
  1826. {
  1827. set_destination_to_current();
  1828. homeaxis(X_AXIS);
  1829. homeaxis(Y_AXIS);
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. endstops_hit_on_purpose();
  1832. }
  1833. void refresh_cmd_timeout(void)
  1834. {
  1835. previous_millis_cmd = millis();
  1836. }
  1837. #ifdef FWRETRACT
  1838. void retract(bool retracting, bool swapretract = false) {
  1839. if(retracting && !retracted[active_extruder]) {
  1840. destination[X_AXIS]=current_position[X_AXIS];
  1841. destination[Y_AXIS]=current_position[Y_AXIS];
  1842. destination[Z_AXIS]=current_position[Z_AXIS];
  1843. destination[E_AXIS]=current_position[E_AXIS];
  1844. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1845. plan_set_e_position(current_position[E_AXIS]);
  1846. float oldFeedrate = feedrate;
  1847. feedrate=retract_feedrate*60;
  1848. retracted[active_extruder]=true;
  1849. prepare_move();
  1850. current_position[Z_AXIS]-=retract_zlift;
  1851. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1852. prepare_move();
  1853. feedrate = oldFeedrate;
  1854. } else if(!retracting && retracted[active_extruder]) {
  1855. destination[X_AXIS]=current_position[X_AXIS];
  1856. destination[Y_AXIS]=current_position[Y_AXIS];
  1857. destination[Z_AXIS]=current_position[Z_AXIS];
  1858. destination[E_AXIS]=current_position[E_AXIS];
  1859. current_position[Z_AXIS]+=retract_zlift;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1862. plan_set_e_position(current_position[E_AXIS]);
  1863. float oldFeedrate = feedrate;
  1864. feedrate=retract_recover_feedrate*60;
  1865. retracted[active_extruder]=false;
  1866. prepare_move();
  1867. feedrate = oldFeedrate;
  1868. }
  1869. } //retract
  1870. #endif //FWRETRACT
  1871. void trace() {
  1872. tone(BEEPER, 440);
  1873. delay(25);
  1874. noTone(BEEPER);
  1875. delay(20);
  1876. }
  1877. /*
  1878. void ramming() {
  1879. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1880. if (current_temperature[0] < 230) {
  1881. //PLA
  1882. max_feedrate[E_AXIS] = 50;
  1883. //current_position[E_AXIS] -= 8;
  1884. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1885. //current_position[E_AXIS] += 8;
  1886. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1887. current_position[E_AXIS] += 5.4;
  1888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1889. current_position[E_AXIS] += 3.2;
  1890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1891. current_position[E_AXIS] += 3;
  1892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1893. st_synchronize();
  1894. max_feedrate[E_AXIS] = 80;
  1895. current_position[E_AXIS] -= 82;
  1896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1897. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1898. current_position[E_AXIS] -= 20;
  1899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1900. current_position[E_AXIS] += 5;
  1901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1902. current_position[E_AXIS] += 5;
  1903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1904. current_position[E_AXIS] -= 10;
  1905. st_synchronize();
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1907. current_position[E_AXIS] += 10;
  1908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1909. current_position[E_AXIS] -= 10;
  1910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1911. current_position[E_AXIS] += 10;
  1912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1913. current_position[E_AXIS] -= 10;
  1914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1915. st_synchronize();
  1916. }
  1917. else {
  1918. //ABS
  1919. max_feedrate[E_AXIS] = 50;
  1920. //current_position[E_AXIS] -= 8;
  1921. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1922. //current_position[E_AXIS] += 8;
  1923. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1924. current_position[E_AXIS] += 3.1;
  1925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1926. current_position[E_AXIS] += 3.1;
  1927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1928. current_position[E_AXIS] += 4;
  1929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1930. st_synchronize();
  1931. //current_position[X_AXIS] += 23; //delay
  1932. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1933. //current_position[X_AXIS] -= 23; //delay
  1934. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1935. delay(4700);
  1936. max_feedrate[E_AXIS] = 80;
  1937. current_position[E_AXIS] -= 92;
  1938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1939. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1940. current_position[E_AXIS] -= 5;
  1941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1942. current_position[E_AXIS] += 5;
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1944. current_position[E_AXIS] -= 5;
  1945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1946. st_synchronize();
  1947. current_position[E_AXIS] += 5;
  1948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1949. current_position[E_AXIS] -= 5;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1951. current_position[E_AXIS] += 5;
  1952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1953. current_position[E_AXIS] -= 5;
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1955. st_synchronize();
  1956. }
  1957. }
  1958. */
  1959. #ifdef TMC2130
  1960. void force_high_power_mode(bool start_high_power_section) {
  1961. uint8_t silent;
  1962. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1963. if (silent == 1) {
  1964. //we are in silent mode, set to normal mode to enable crash detection
  1965. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1966. st_synchronize();
  1967. cli();
  1968. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1969. tmc2130_init();
  1970. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1971. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1972. st_reset_timer();
  1973. sei();
  1974. }
  1975. }
  1976. #endif //TMC2130
  1977. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1978. {
  1979. bool final_result = false;
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_START;
  1982. #endif // TMC2130
  1983. // Only Z calibration?
  1984. if (!onlyZ)
  1985. {
  1986. setTargetBed(0);
  1987. setTargetHotend(0, 0);
  1988. setTargetHotend(0, 1);
  1989. setTargetHotend(0, 2);
  1990. adjust_bed_reset(); //reset bed level correction
  1991. }
  1992. // Disable the default update procedure of the display. We will do a modal dialog.
  1993. lcd_update_enable(false);
  1994. // Let the planner use the uncorrected coordinates.
  1995. mbl.reset();
  1996. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1997. // the planner will not perform any adjustments in the XY plane.
  1998. // Wait for the motors to stop and update the current position with the absolute values.
  1999. world2machine_revert_to_uncorrected();
  2000. // Reset the baby step value applied without moving the axes.
  2001. babystep_reset();
  2002. // Mark all axes as in a need for homing.
  2003. memset(axis_known_position, 0, sizeof(axis_known_position));
  2004. // Home in the XY plane.
  2005. //set_destination_to_current();
  2006. setup_for_endstop_move();
  2007. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2008. home_xy();
  2009. enable_endstops(false);
  2010. current_position[X_AXIS] += 5;
  2011. current_position[Y_AXIS] += 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2013. st_synchronize();
  2014. // Let the user move the Z axes up to the end stoppers.
  2015. #ifdef TMC2130
  2016. if (calibrate_z_auto())
  2017. {
  2018. #else //TMC2130
  2019. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2020. {
  2021. #endif //TMC2130
  2022. refresh_cmd_timeout();
  2023. #ifndef STEEL_SHEET
  2024. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2025. {
  2026. lcd_wait_for_cool_down();
  2027. }
  2028. #endif //STEEL_SHEET
  2029. if(!onlyZ)
  2030. {
  2031. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2032. #ifdef STEEL_SHEET
  2033. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2034. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2035. #endif //STEEL_SHEET
  2036. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2037. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2038. KEEPALIVE_STATE(IN_HANDLER);
  2039. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2040. lcd_implementation_print_at(0, 2, 1);
  2041. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2042. }
  2043. // Move the print head close to the bed.
  2044. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2045. bool endstops_enabled = enable_endstops(true);
  2046. #ifdef TMC2130
  2047. tmc2130_home_enter(Z_AXIS_MASK);
  2048. #endif //TMC2130
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2050. st_synchronize();
  2051. #ifdef TMC2130
  2052. tmc2130_home_exit();
  2053. #endif //TMC2130
  2054. enable_endstops(endstops_enabled);
  2055. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2056. {
  2057. int8_t verbosity_level = 0;
  2058. if (code_seen('V'))
  2059. {
  2060. // Just 'V' without a number counts as V1.
  2061. char c = strchr_pointer[1];
  2062. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2063. }
  2064. if (onlyZ)
  2065. {
  2066. clean_up_after_endstop_move();
  2067. // Z only calibration.
  2068. // Load the machine correction matrix
  2069. world2machine_initialize();
  2070. // and correct the current_position to match the transformed coordinate system.
  2071. world2machine_update_current();
  2072. //FIXME
  2073. bool result = sample_mesh_and_store_reference();
  2074. if (result)
  2075. {
  2076. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2077. // Shipped, the nozzle height has been set already. The user can start printing now.
  2078. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2079. final_result = true;
  2080. // babystep_apply();
  2081. }
  2082. }
  2083. else
  2084. {
  2085. // Reset the baby step value and the baby step applied flag.
  2086. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2087. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2088. // Complete XYZ calibration.
  2089. uint8_t point_too_far_mask = 0;
  2090. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2091. clean_up_after_endstop_move();
  2092. // Print head up.
  2093. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2095. st_synchronize();
  2096. //#ifndef NEW_XYZCAL
  2097. if (result >= 0)
  2098. {
  2099. #ifdef HEATBED_V2
  2100. sample_z();
  2101. #else //HEATBED_V2
  2102. point_too_far_mask = 0;
  2103. // Second half: The fine adjustment.
  2104. // Let the planner use the uncorrected coordinates.
  2105. mbl.reset();
  2106. world2machine_reset();
  2107. // Home in the XY plane.
  2108. setup_for_endstop_move();
  2109. home_xy();
  2110. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2111. clean_up_after_endstop_move();
  2112. // Print head up.
  2113. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2115. st_synchronize();
  2116. // if (result >= 0) babystep_apply();
  2117. #endif //HEATBED_V2
  2118. }
  2119. //#endif //NEW_XYZCAL
  2120. lcd_update_enable(true);
  2121. lcd_update(2);
  2122. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2123. if (result >= 0)
  2124. {
  2125. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2126. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2127. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2128. final_result = true;
  2129. }
  2130. }
  2131. #ifdef TMC2130
  2132. tmc2130_home_exit();
  2133. #endif
  2134. }
  2135. else
  2136. {
  2137. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2138. final_result = false;
  2139. }
  2140. }
  2141. else
  2142. {
  2143. // Timeouted.
  2144. }
  2145. lcd_update_enable(true);
  2146. #ifdef TMC2130
  2147. FORCE_HIGH_POWER_END;
  2148. #endif // TMC2130
  2149. return final_result;
  2150. }
  2151. void gcode_M114()
  2152. {
  2153. SERIAL_PROTOCOLPGM("X:");
  2154. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2155. SERIAL_PROTOCOLPGM(" Y:");
  2156. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2157. SERIAL_PROTOCOLPGM(" Z:");
  2158. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2159. SERIAL_PROTOCOLPGM(" E:");
  2160. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2161. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2162. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2163. SERIAL_PROTOCOLPGM(" Y:");
  2164. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2165. SERIAL_PROTOCOLPGM(" Z:");
  2166. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2167. SERIAL_PROTOCOLPGM(" E:");
  2168. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2169. SERIAL_PROTOCOLLN("");
  2170. }
  2171. void gcode_M701()
  2172. {
  2173. #ifdef SNMM
  2174. extr_adj(snmm_extruder);//loads current extruder
  2175. #else
  2176. enable_z();
  2177. custom_message = true;
  2178. custom_message_type = 2;
  2179. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2180. current_position[E_AXIS] += 70;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2182. current_position[E_AXIS] += 25;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2184. st_synchronize();
  2185. tone(BEEPER, 500);
  2186. delay_keep_alive(50);
  2187. noTone(BEEPER);
  2188. if (!farm_mode && loading_flag) {
  2189. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2190. while (!clean) {
  2191. lcd_update_enable(true);
  2192. lcd_update(2);
  2193. current_position[E_AXIS] += 25;
  2194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2195. st_synchronize();
  2196. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2197. }
  2198. }
  2199. lcd_update_enable(true);
  2200. lcd_update(2);
  2201. lcd_setstatuspgm(_T(WELCOME_MSG));
  2202. disable_z();
  2203. loading_flag = false;
  2204. custom_message = false;
  2205. custom_message_type = 0;
  2206. #endif
  2207. }
  2208. /**
  2209. * @brief Get serial number from 32U2 processor
  2210. *
  2211. * Typical format of S/N is:CZPX0917X003XC13518
  2212. *
  2213. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2214. *
  2215. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2216. * reply is transmitted to serial port 1 character by character.
  2217. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2218. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2219. * in any case.
  2220. */
  2221. static void gcode_PRUSA_SN()
  2222. {
  2223. if (farm_mode) {
  2224. selectedSerialPort = 0;
  2225. MSerial.write(";S");
  2226. int numbersRead = 0;
  2227. Timer timeout;
  2228. timeout.start();
  2229. while (numbersRead < 19) {
  2230. while (MSerial.available() > 0) {
  2231. uint8_t serial_char = MSerial.read();
  2232. selectedSerialPort = 1;
  2233. MSerial.write(serial_char);
  2234. numbersRead++;
  2235. selectedSerialPort = 0;
  2236. }
  2237. if (timeout.expired(100)) break;
  2238. }
  2239. selectedSerialPort = 1;
  2240. MSerial.write('\n');
  2241. #if 0
  2242. for (int b = 0; b < 3; b++) {
  2243. tone(BEEPER, 110);
  2244. delay(50);
  2245. noTone(BEEPER);
  2246. delay(50);
  2247. }
  2248. #endif
  2249. } else {
  2250. MYSERIAL.println("Not in farm mode.");
  2251. }
  2252. }
  2253. void process_commands()
  2254. {
  2255. if (!buflen) return; //empty command
  2256. #ifdef FILAMENT_RUNOUT_SUPPORT
  2257. SET_INPUT(FR_SENS);
  2258. #endif
  2259. #ifdef CMDBUFFER_DEBUG
  2260. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2261. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2262. SERIAL_ECHOLNPGM("");
  2263. SERIAL_ECHOPGM("In cmdqueue: ");
  2264. SERIAL_ECHO(buflen);
  2265. SERIAL_ECHOLNPGM("");
  2266. #endif /* CMDBUFFER_DEBUG */
  2267. unsigned long codenum; //throw away variable
  2268. char *starpos = NULL;
  2269. #ifdef ENABLE_AUTO_BED_LEVELING
  2270. float x_tmp, y_tmp, z_tmp, real_z;
  2271. #endif
  2272. // PRUSA GCODES
  2273. KEEPALIVE_STATE(IN_HANDLER);
  2274. #ifdef SNMM
  2275. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2276. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2277. int8_t SilentMode;
  2278. #endif
  2279. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2280. starpos = (strchr(strchr_pointer + 5, '*'));
  2281. if (starpos != NULL)
  2282. *(starpos) = '\0';
  2283. lcd_setstatus(strchr_pointer + 5);
  2284. }
  2285. #ifdef TMC2130
  2286. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2287. {
  2288. if(code_seen("CRASH_DETECTED"))
  2289. {
  2290. uint8_t mask = 0;
  2291. if (code_seen("X")) mask |= X_AXIS_MASK;
  2292. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2293. crashdet_detected(mask);
  2294. }
  2295. else if(code_seen("CRASH_RECOVER"))
  2296. crashdet_recover();
  2297. else if(code_seen("CRASH_CANCEL"))
  2298. crashdet_cancel();
  2299. }
  2300. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2301. {
  2302. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2303. {
  2304. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2305. tmc2130_set_wave(E_AXIS, 247, fac);
  2306. }
  2307. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2308. {
  2309. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2310. uint16_t res = tmc2130_get_res(E_AXIS);
  2311. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2312. }
  2313. }
  2314. #endif //TMC2130
  2315. else if(code_seen("PRUSA")){
  2316. if (code_seen("Ping")) { //PRUSA Ping
  2317. if (farm_mode) {
  2318. PingTime = millis();
  2319. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2320. }
  2321. }
  2322. else if (code_seen("PRN")) {
  2323. MYSERIAL.println(status_number);
  2324. }else if (code_seen("FAN")) {
  2325. MYSERIAL.print("E0:");
  2326. MYSERIAL.print(60*fan_speed[0]);
  2327. MYSERIAL.println(" RPM");
  2328. MYSERIAL.print("PRN0:");
  2329. MYSERIAL.print(60*fan_speed[1]);
  2330. MYSERIAL.println(" RPM");
  2331. }else if (code_seen("fn")) {
  2332. if (farm_mode) {
  2333. MYSERIAL.println(farm_no);
  2334. }
  2335. else {
  2336. MYSERIAL.println("Not in farm mode.");
  2337. }
  2338. }
  2339. else if (code_seen("thx")) {
  2340. no_response = false;
  2341. }else if (code_seen("fv")) {
  2342. // get file version
  2343. #ifdef SDSUPPORT
  2344. card.openFile(strchr_pointer + 3,true);
  2345. while (true) {
  2346. uint16_t readByte = card.get();
  2347. MYSERIAL.write(readByte);
  2348. if (readByte=='\n') {
  2349. break;
  2350. }
  2351. }
  2352. card.closefile();
  2353. #endif // SDSUPPORT
  2354. } else if (code_seen("M28")) {
  2355. trace();
  2356. prusa_sd_card_upload = true;
  2357. card.openFile(strchr_pointer+4,false);
  2358. } else if (code_seen("SN")) {
  2359. gcode_PRUSA_SN();
  2360. } else if(code_seen("Fir")){
  2361. SERIAL_PROTOCOLLN(FW_VERSION);
  2362. } else if(code_seen("Rev")){
  2363. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2364. } else if(code_seen("Lang")) {
  2365. lcd_force_language_selection();
  2366. } else if(code_seen("Lz")) {
  2367. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2368. } else if (code_seen("SERIAL LOW")) {
  2369. MYSERIAL.println("SERIAL LOW");
  2370. MYSERIAL.begin(BAUDRATE);
  2371. return;
  2372. } else if (code_seen("SERIAL HIGH")) {
  2373. MYSERIAL.println("SERIAL HIGH");
  2374. MYSERIAL.begin(1152000);
  2375. return;
  2376. } else if(code_seen("Beat")) {
  2377. // Kick farm link timer
  2378. kicktime = millis();
  2379. } else if(code_seen("FR")) {
  2380. // Factory full reset
  2381. factory_reset(0,true);
  2382. }
  2383. //else if (code_seen('Cal')) {
  2384. // lcd_calibration();
  2385. // }
  2386. }
  2387. else if (code_seen('^')) {
  2388. // nothing, this is a version line
  2389. } else if(code_seen('G'))
  2390. {
  2391. switch((int)code_value())
  2392. {
  2393. case 0: // G0 -> G1
  2394. case 1: // G1
  2395. if(Stopped == false) {
  2396. #ifdef FILAMENT_RUNOUT_SUPPORT
  2397. if(READ(FR_SENS)){
  2398. feedmultiplyBckp=feedmultiply;
  2399. float target[4];
  2400. float lastpos[4];
  2401. target[X_AXIS]=current_position[X_AXIS];
  2402. target[Y_AXIS]=current_position[Y_AXIS];
  2403. target[Z_AXIS]=current_position[Z_AXIS];
  2404. target[E_AXIS]=current_position[E_AXIS];
  2405. lastpos[X_AXIS]=current_position[X_AXIS];
  2406. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2407. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2408. lastpos[E_AXIS]=current_position[E_AXIS];
  2409. //retract by E
  2410. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2412. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2414. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2415. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2416. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2417. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2419. //finish moves
  2420. st_synchronize();
  2421. //disable extruder steppers so filament can be removed
  2422. disable_e0();
  2423. disable_e1();
  2424. disable_e2();
  2425. delay(100);
  2426. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2427. uint8_t cnt=0;
  2428. int counterBeep = 0;
  2429. lcd_wait_interact();
  2430. while(!lcd_clicked()){
  2431. cnt++;
  2432. manage_heater();
  2433. manage_inactivity(true);
  2434. //lcd_update();
  2435. if(cnt==0)
  2436. {
  2437. #if BEEPER > 0
  2438. if (counterBeep== 500){
  2439. counterBeep = 0;
  2440. }
  2441. SET_OUTPUT(BEEPER);
  2442. if (counterBeep== 0){
  2443. WRITE(BEEPER,HIGH);
  2444. }
  2445. if (counterBeep== 20){
  2446. WRITE(BEEPER,LOW);
  2447. }
  2448. counterBeep++;
  2449. #else
  2450. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2451. lcd_buzz(1000/6,100);
  2452. #else
  2453. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2454. #endif
  2455. #endif
  2456. }
  2457. }
  2458. WRITE(BEEPER,LOW);
  2459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2461. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2463. lcd_change_fil_state = 0;
  2464. lcd_loading_filament();
  2465. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2466. lcd_change_fil_state = 0;
  2467. lcd_alright();
  2468. switch(lcd_change_fil_state){
  2469. case 2:
  2470. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2472. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2474. lcd_loading_filament();
  2475. break;
  2476. case 3:
  2477. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2479. lcd_loading_color();
  2480. break;
  2481. default:
  2482. lcd_change_success();
  2483. break;
  2484. }
  2485. }
  2486. target[E_AXIS]+= 5;
  2487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2488. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2490. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2491. //plan_set_e_position(current_position[E_AXIS]);
  2492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2493. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2494. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2495. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2496. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2497. plan_set_e_position(lastpos[E_AXIS]);
  2498. feedmultiply=feedmultiplyBckp;
  2499. char cmd[9];
  2500. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2501. enquecommand(cmd);
  2502. }
  2503. #endif
  2504. get_coordinates(); // For X Y Z E F
  2505. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2506. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2507. }
  2508. #ifdef FWRETRACT
  2509. if(autoretract_enabled)
  2510. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2511. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2512. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2513. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2514. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2515. retract(!retracted);
  2516. return;
  2517. }
  2518. }
  2519. #endif //FWRETRACT
  2520. prepare_move();
  2521. //ClearToSend();
  2522. }
  2523. break;
  2524. case 2: // G2 - CW ARC
  2525. if(Stopped == false) {
  2526. get_arc_coordinates();
  2527. prepare_arc_move(true);
  2528. }
  2529. break;
  2530. case 3: // G3 - CCW ARC
  2531. if(Stopped == false) {
  2532. get_arc_coordinates();
  2533. prepare_arc_move(false);
  2534. }
  2535. break;
  2536. case 4: // G4 dwell
  2537. codenum = 0;
  2538. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2539. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2540. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2541. st_synchronize();
  2542. codenum += millis(); // keep track of when we started waiting
  2543. previous_millis_cmd = millis();
  2544. while(millis() < codenum) {
  2545. manage_heater();
  2546. manage_inactivity();
  2547. lcd_update();
  2548. }
  2549. break;
  2550. #ifdef FWRETRACT
  2551. case 10: // G10 retract
  2552. #if EXTRUDERS > 1
  2553. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2554. retract(true,retracted_swap[active_extruder]);
  2555. #else
  2556. retract(true);
  2557. #endif
  2558. break;
  2559. case 11: // G11 retract_recover
  2560. #if EXTRUDERS > 1
  2561. retract(false,retracted_swap[active_extruder]);
  2562. #else
  2563. retract(false);
  2564. #endif
  2565. break;
  2566. #endif //FWRETRACT
  2567. case 28: //G28 Home all Axis one at a time
  2568. {
  2569. st_synchronize();
  2570. #if 0
  2571. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2572. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2573. #endif
  2574. // Flag for the display update routine and to disable the print cancelation during homing.
  2575. homing_flag = true;
  2576. // Which axes should be homed?
  2577. bool home_x = code_seen(axis_codes[X_AXIS]);
  2578. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2579. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2580. // calibrate?
  2581. bool calib = code_seen('C');
  2582. // Either all X,Y,Z codes are present, or none of them.
  2583. bool home_all_axes = home_x == home_y && home_x == home_z;
  2584. if (home_all_axes)
  2585. // No X/Y/Z code provided means to home all axes.
  2586. home_x = home_y = home_z = true;
  2587. #ifdef ENABLE_AUTO_BED_LEVELING
  2588. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2589. #endif //ENABLE_AUTO_BED_LEVELING
  2590. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2591. // the planner will not perform any adjustments in the XY plane.
  2592. // Wait for the motors to stop and update the current position with the absolute values.
  2593. world2machine_revert_to_uncorrected();
  2594. // For mesh bed leveling deactivate the matrix temporarily.
  2595. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2596. // in a single axis only.
  2597. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2598. #ifdef MESH_BED_LEVELING
  2599. uint8_t mbl_was_active = mbl.active;
  2600. mbl.active = 0;
  2601. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2602. #endif
  2603. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2604. // consumed during the first movements following this statement.
  2605. if (home_z)
  2606. babystep_undo();
  2607. saved_feedrate = feedrate;
  2608. saved_feedmultiply = feedmultiply;
  2609. feedmultiply = 100;
  2610. previous_millis_cmd = millis();
  2611. enable_endstops(true);
  2612. memcpy(destination, current_position, sizeof(destination));
  2613. feedrate = 0.0;
  2614. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2615. if(home_z)
  2616. homeaxis(Z_AXIS);
  2617. #endif
  2618. #ifdef QUICK_HOME
  2619. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2620. if(home_x && home_y) //first diagonal move
  2621. {
  2622. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2623. int x_axis_home_dir = home_dir(X_AXIS);
  2624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2625. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2626. feedrate = homing_feedrate[X_AXIS];
  2627. if(homing_feedrate[Y_AXIS]<feedrate)
  2628. feedrate = homing_feedrate[Y_AXIS];
  2629. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2630. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2631. } else {
  2632. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2633. }
  2634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2635. st_synchronize();
  2636. axis_is_at_home(X_AXIS);
  2637. axis_is_at_home(Y_AXIS);
  2638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2639. destination[X_AXIS] = current_position[X_AXIS];
  2640. destination[Y_AXIS] = current_position[Y_AXIS];
  2641. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2642. feedrate = 0.0;
  2643. st_synchronize();
  2644. endstops_hit_on_purpose();
  2645. current_position[X_AXIS] = destination[X_AXIS];
  2646. current_position[Y_AXIS] = destination[Y_AXIS];
  2647. current_position[Z_AXIS] = destination[Z_AXIS];
  2648. }
  2649. #endif /* QUICK_HOME */
  2650. #ifdef TMC2130
  2651. if(home_x)
  2652. {
  2653. if (!calib)
  2654. homeaxis(X_AXIS);
  2655. else
  2656. tmc2130_home_calibrate(X_AXIS);
  2657. }
  2658. if(home_y)
  2659. {
  2660. if (!calib)
  2661. homeaxis(Y_AXIS);
  2662. else
  2663. tmc2130_home_calibrate(Y_AXIS);
  2664. }
  2665. #endif //TMC2130
  2666. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2667. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2668. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2669. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2670. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2671. #ifndef Z_SAFE_HOMING
  2672. if(home_z) {
  2673. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2674. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2675. feedrate = max_feedrate[Z_AXIS];
  2676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2677. st_synchronize();
  2678. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2679. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2680. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2681. {
  2682. homeaxis(X_AXIS);
  2683. homeaxis(Y_AXIS);
  2684. }
  2685. // 1st mesh bed leveling measurement point, corrected.
  2686. world2machine_initialize();
  2687. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2688. world2machine_reset();
  2689. if (destination[Y_AXIS] < Y_MIN_POS)
  2690. destination[Y_AXIS] = Y_MIN_POS;
  2691. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2692. feedrate = homing_feedrate[Z_AXIS]/10;
  2693. current_position[Z_AXIS] = 0;
  2694. enable_endstops(false);
  2695. #ifdef DEBUG_BUILD
  2696. SERIAL_ECHOLNPGM("plan_set_position()");
  2697. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2698. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2699. #endif
  2700. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2701. #ifdef DEBUG_BUILD
  2702. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2703. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2704. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2705. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2706. #endif
  2707. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2708. st_synchronize();
  2709. current_position[X_AXIS] = destination[X_AXIS];
  2710. current_position[Y_AXIS] = destination[Y_AXIS];
  2711. enable_endstops(true);
  2712. endstops_hit_on_purpose();
  2713. homeaxis(Z_AXIS);
  2714. #else // MESH_BED_LEVELING
  2715. homeaxis(Z_AXIS);
  2716. #endif // MESH_BED_LEVELING
  2717. }
  2718. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2719. if(home_all_axes) {
  2720. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2721. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2722. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2723. feedrate = XY_TRAVEL_SPEED/60;
  2724. current_position[Z_AXIS] = 0;
  2725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2727. st_synchronize();
  2728. current_position[X_AXIS] = destination[X_AXIS];
  2729. current_position[Y_AXIS] = destination[Y_AXIS];
  2730. homeaxis(Z_AXIS);
  2731. }
  2732. // Let's see if X and Y are homed and probe is inside bed area.
  2733. if(home_z) {
  2734. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2735. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2736. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2737. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2738. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2739. current_position[Z_AXIS] = 0;
  2740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2741. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2742. feedrate = max_feedrate[Z_AXIS];
  2743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2744. st_synchronize();
  2745. homeaxis(Z_AXIS);
  2746. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2747. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2748. SERIAL_ECHO_START;
  2749. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2750. } else {
  2751. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2752. SERIAL_ECHO_START;
  2753. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2754. }
  2755. }
  2756. #endif // Z_SAFE_HOMING
  2757. #endif // Z_HOME_DIR < 0
  2758. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2759. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2760. #ifdef ENABLE_AUTO_BED_LEVELING
  2761. if(home_z)
  2762. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2763. #endif
  2764. // Set the planner and stepper routine positions.
  2765. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2766. // contains the machine coordinates.
  2767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2768. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2769. enable_endstops(false);
  2770. #endif
  2771. feedrate = saved_feedrate;
  2772. feedmultiply = saved_feedmultiply;
  2773. previous_millis_cmd = millis();
  2774. endstops_hit_on_purpose();
  2775. #ifndef MESH_BED_LEVELING
  2776. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2777. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2778. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2779. lcd_adjust_z();
  2780. #endif
  2781. // Load the machine correction matrix
  2782. world2machine_initialize();
  2783. // and correct the current_position XY axes to match the transformed coordinate system.
  2784. world2machine_update_current();
  2785. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2786. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2787. {
  2788. if (! home_z && mbl_was_active) {
  2789. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2790. mbl.active = true;
  2791. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2792. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2793. }
  2794. }
  2795. else
  2796. {
  2797. st_synchronize();
  2798. homing_flag = false;
  2799. // Push the commands to the front of the message queue in the reverse order!
  2800. // There shall be always enough space reserved for these commands.
  2801. // enquecommand_front_P((PSTR("G80")));
  2802. goto case_G80;
  2803. }
  2804. #endif
  2805. if (farm_mode) { prusa_statistics(20); };
  2806. homing_flag = false;
  2807. #if 0
  2808. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2809. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2810. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2811. #endif
  2812. break;
  2813. }
  2814. #ifdef ENABLE_AUTO_BED_LEVELING
  2815. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2816. {
  2817. #if Z_MIN_PIN == -1
  2818. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2819. #endif
  2820. // Prevent user from running a G29 without first homing in X and Y
  2821. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2822. {
  2823. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2824. SERIAL_ECHO_START;
  2825. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2826. break; // abort G29, since we don't know where we are
  2827. }
  2828. st_synchronize();
  2829. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2830. //vector_3 corrected_position = plan_get_position_mm();
  2831. //corrected_position.debug("position before G29");
  2832. plan_bed_level_matrix.set_to_identity();
  2833. vector_3 uncorrected_position = plan_get_position();
  2834. //uncorrected_position.debug("position durring G29");
  2835. current_position[X_AXIS] = uncorrected_position.x;
  2836. current_position[Y_AXIS] = uncorrected_position.y;
  2837. current_position[Z_AXIS] = uncorrected_position.z;
  2838. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2839. setup_for_endstop_move();
  2840. feedrate = homing_feedrate[Z_AXIS];
  2841. #ifdef AUTO_BED_LEVELING_GRID
  2842. // probe at the points of a lattice grid
  2843. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2844. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2845. // solve the plane equation ax + by + d = z
  2846. // A is the matrix with rows [x y 1] for all the probed points
  2847. // B is the vector of the Z positions
  2848. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2849. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2850. // "A" matrix of the linear system of equations
  2851. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2852. // "B" vector of Z points
  2853. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2854. int probePointCounter = 0;
  2855. bool zig = true;
  2856. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2857. {
  2858. int xProbe, xInc;
  2859. if (zig)
  2860. {
  2861. xProbe = LEFT_PROBE_BED_POSITION;
  2862. //xEnd = RIGHT_PROBE_BED_POSITION;
  2863. xInc = xGridSpacing;
  2864. zig = false;
  2865. } else // zag
  2866. {
  2867. xProbe = RIGHT_PROBE_BED_POSITION;
  2868. //xEnd = LEFT_PROBE_BED_POSITION;
  2869. xInc = -xGridSpacing;
  2870. zig = true;
  2871. }
  2872. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2873. {
  2874. float z_before;
  2875. if (probePointCounter == 0)
  2876. {
  2877. // raise before probing
  2878. z_before = Z_RAISE_BEFORE_PROBING;
  2879. } else
  2880. {
  2881. // raise extruder
  2882. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2883. }
  2884. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2885. eqnBVector[probePointCounter] = measured_z;
  2886. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2887. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2888. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2889. probePointCounter++;
  2890. xProbe += xInc;
  2891. }
  2892. }
  2893. clean_up_after_endstop_move();
  2894. // solve lsq problem
  2895. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2896. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2897. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2898. SERIAL_PROTOCOLPGM(" b: ");
  2899. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2900. SERIAL_PROTOCOLPGM(" d: ");
  2901. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2902. set_bed_level_equation_lsq(plane_equation_coefficients);
  2903. free(plane_equation_coefficients);
  2904. #else // AUTO_BED_LEVELING_GRID not defined
  2905. // Probe at 3 arbitrary points
  2906. // probe 1
  2907. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2908. // probe 2
  2909. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2910. // probe 3
  2911. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2912. clean_up_after_endstop_move();
  2913. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2914. #endif // AUTO_BED_LEVELING_GRID
  2915. st_synchronize();
  2916. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2917. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2918. // When the bed is uneven, this height must be corrected.
  2919. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2920. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2921. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2922. z_tmp = current_position[Z_AXIS];
  2923. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2924. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2926. }
  2927. break;
  2928. #ifndef Z_PROBE_SLED
  2929. case 30: // G30 Single Z Probe
  2930. {
  2931. st_synchronize();
  2932. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2933. setup_for_endstop_move();
  2934. feedrate = homing_feedrate[Z_AXIS];
  2935. run_z_probe();
  2936. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  2937. SERIAL_PROTOCOLPGM(" X: ");
  2938. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2939. SERIAL_PROTOCOLPGM(" Y: ");
  2940. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2941. SERIAL_PROTOCOLPGM(" Z: ");
  2942. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2943. SERIAL_PROTOCOLPGM("\n");
  2944. clean_up_after_endstop_move();
  2945. }
  2946. break;
  2947. #else
  2948. case 31: // dock the sled
  2949. dock_sled(true);
  2950. break;
  2951. case 32: // undock the sled
  2952. dock_sled(false);
  2953. break;
  2954. #endif // Z_PROBE_SLED
  2955. #endif // ENABLE_AUTO_BED_LEVELING
  2956. #ifdef MESH_BED_LEVELING
  2957. case 30: // G30 Single Z Probe
  2958. {
  2959. st_synchronize();
  2960. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2961. setup_for_endstop_move();
  2962. feedrate = homing_feedrate[Z_AXIS];
  2963. find_bed_induction_sensor_point_z(-10.f, 3);
  2964. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  2965. SERIAL_PROTOCOLPGM(" X: ");
  2966. MYSERIAL.print(current_position[X_AXIS], 5);
  2967. SERIAL_PROTOCOLPGM(" Y: ");
  2968. MYSERIAL.print(current_position[Y_AXIS], 5);
  2969. SERIAL_PROTOCOLPGM(" Z: ");
  2970. MYSERIAL.print(current_position[Z_AXIS], 5);
  2971. SERIAL_PROTOCOLPGM("\n");
  2972. clean_up_after_endstop_move();
  2973. }
  2974. break;
  2975. case 75:
  2976. {
  2977. for (int i = 40; i <= 110; i++) {
  2978. MYSERIAL.print(i);
  2979. MYSERIAL.print(" ");
  2980. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2981. }
  2982. }
  2983. break;
  2984. case 76: //PINDA probe temperature calibration
  2985. {
  2986. #ifdef PINDA_THERMISTOR
  2987. if (true)
  2988. {
  2989. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2990. {
  2991. // We don't know where we are! HOME!
  2992. // Push the commands to the front of the message queue in the reverse order!
  2993. // There shall be always enough space reserved for these commands.
  2994. repeatcommand_front(); // repeat G76 with all its parameters
  2995. enquecommand_front_P((PSTR("G28 W0")));
  2996. break;
  2997. }
  2998. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  2999. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3000. if (result)
  3001. {
  3002. current_position[Z_AXIS] = 50;
  3003. current_position[Y_AXIS] += 180;
  3004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3005. st_synchronize();
  3006. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3007. current_position[Y_AXIS] -= 180;
  3008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3009. st_synchronize();
  3010. feedrate = homing_feedrate[Z_AXIS] / 10;
  3011. enable_endstops(true);
  3012. endstops_hit_on_purpose();
  3013. homeaxis(Z_AXIS);
  3014. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3015. enable_endstops(false);
  3016. }
  3017. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3018. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3019. current_position[Z_AXIS] = 100;
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3021. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3022. lcd_temp_cal_show_result(false);
  3023. break;
  3024. }
  3025. }
  3026. lcd_update_enable(true);
  3027. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3028. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3029. float zero_z;
  3030. int z_shift = 0; //unit: steps
  3031. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3032. if (start_temp < 35) start_temp = 35;
  3033. if (start_temp < current_temperature_pinda) start_temp += 5;
  3034. SERIAL_ECHOPGM("start temperature: ");
  3035. MYSERIAL.println(start_temp);
  3036. // setTargetHotend(200, 0);
  3037. setTargetBed(70 + (start_temp - 30));
  3038. custom_message = true;
  3039. custom_message_type = 4;
  3040. custom_message_state = 1;
  3041. custom_message = _T(MSG_TEMP_CALIBRATION);
  3042. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3043. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3044. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3046. st_synchronize();
  3047. while (current_temperature_pinda < start_temp)
  3048. {
  3049. delay_keep_alive(1000);
  3050. serialecho_temperatures();
  3051. }
  3052. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3053. current_position[Z_AXIS] = 5;
  3054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3055. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3056. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3058. st_synchronize();
  3059. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3060. if (find_z_result == false) {
  3061. lcd_temp_cal_show_result(find_z_result);
  3062. break;
  3063. }
  3064. zero_z = current_position[Z_AXIS];
  3065. //current_position[Z_AXIS]
  3066. SERIAL_ECHOLNPGM("");
  3067. SERIAL_ECHOPGM("ZERO: ");
  3068. MYSERIAL.print(current_position[Z_AXIS]);
  3069. SERIAL_ECHOLNPGM("");
  3070. int i = -1; for (; i < 5; i++)
  3071. {
  3072. float temp = (40 + i * 5);
  3073. SERIAL_ECHOPGM("Step: ");
  3074. MYSERIAL.print(i + 2);
  3075. SERIAL_ECHOLNPGM("/6 (skipped)");
  3076. SERIAL_ECHOPGM("PINDA temperature: ");
  3077. MYSERIAL.print((40 + i*5));
  3078. SERIAL_ECHOPGM(" Z shift (mm):");
  3079. MYSERIAL.print(0);
  3080. SERIAL_ECHOLNPGM("");
  3081. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3082. if (start_temp <= temp) break;
  3083. }
  3084. for (i++; i < 5; i++)
  3085. {
  3086. float temp = (40 + i * 5);
  3087. SERIAL_ECHOPGM("Step: ");
  3088. MYSERIAL.print(i + 2);
  3089. SERIAL_ECHOLNPGM("/6");
  3090. custom_message_state = i + 2;
  3091. setTargetBed(50 + 10 * (temp - 30) / 5);
  3092. // setTargetHotend(255, 0);
  3093. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3094. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3095. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3097. st_synchronize();
  3098. while (current_temperature_pinda < temp)
  3099. {
  3100. delay_keep_alive(1000);
  3101. serialecho_temperatures();
  3102. }
  3103. current_position[Z_AXIS] = 5;
  3104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3105. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3106. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3108. st_synchronize();
  3109. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3110. if (find_z_result == false) {
  3111. lcd_temp_cal_show_result(find_z_result);
  3112. break;
  3113. }
  3114. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3115. SERIAL_ECHOLNPGM("");
  3116. SERIAL_ECHOPGM("PINDA temperature: ");
  3117. MYSERIAL.print(current_temperature_pinda);
  3118. SERIAL_ECHOPGM(" Z shift (mm):");
  3119. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3120. SERIAL_ECHOLNPGM("");
  3121. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3122. }
  3123. lcd_temp_cal_show_result(true);
  3124. break;
  3125. }
  3126. #endif //PINDA_THERMISTOR
  3127. setTargetBed(PINDA_MIN_T);
  3128. float zero_z;
  3129. int z_shift = 0; //unit: steps
  3130. int t_c; // temperature
  3131. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3132. // We don't know where we are! HOME!
  3133. // Push the commands to the front of the message queue in the reverse order!
  3134. // There shall be always enough space reserved for these commands.
  3135. repeatcommand_front(); // repeat G76 with all its parameters
  3136. enquecommand_front_P((PSTR("G28 W0")));
  3137. break;
  3138. }
  3139. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3140. custom_message = true;
  3141. custom_message_type = 4;
  3142. custom_message_state = 1;
  3143. custom_message = _T(MSG_TEMP_CALIBRATION);
  3144. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3145. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3146. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3148. st_synchronize();
  3149. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3150. delay_keep_alive(1000);
  3151. serialecho_temperatures();
  3152. }
  3153. //enquecommand_P(PSTR("M190 S50"));
  3154. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3155. delay_keep_alive(1000);
  3156. serialecho_temperatures();
  3157. }
  3158. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3159. current_position[Z_AXIS] = 5;
  3160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3161. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3162. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3164. st_synchronize();
  3165. find_bed_induction_sensor_point_z(-1.f);
  3166. zero_z = current_position[Z_AXIS];
  3167. //current_position[Z_AXIS]
  3168. SERIAL_ECHOLNPGM("");
  3169. SERIAL_ECHOPGM("ZERO: ");
  3170. MYSERIAL.print(current_position[Z_AXIS]);
  3171. SERIAL_ECHOLNPGM("");
  3172. for (int i = 0; i<5; i++) {
  3173. SERIAL_ECHOPGM("Step: ");
  3174. MYSERIAL.print(i+2);
  3175. SERIAL_ECHOLNPGM("/6");
  3176. custom_message_state = i + 2;
  3177. t_c = 60 + i * 10;
  3178. setTargetBed(t_c);
  3179. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3180. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3181. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3183. st_synchronize();
  3184. while (degBed() < t_c) {
  3185. delay_keep_alive(1000);
  3186. serialecho_temperatures();
  3187. }
  3188. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3189. delay_keep_alive(1000);
  3190. serialecho_temperatures();
  3191. }
  3192. current_position[Z_AXIS] = 5;
  3193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3194. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3195. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3197. st_synchronize();
  3198. find_bed_induction_sensor_point_z(-1.f);
  3199. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3200. SERIAL_ECHOLNPGM("");
  3201. SERIAL_ECHOPGM("Temperature: ");
  3202. MYSERIAL.print(t_c);
  3203. SERIAL_ECHOPGM(" Z shift (mm):");
  3204. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3205. SERIAL_ECHOLNPGM("");
  3206. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3207. }
  3208. custom_message_type = 0;
  3209. custom_message = false;
  3210. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3211. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3212. disable_x();
  3213. disable_y();
  3214. disable_z();
  3215. disable_e0();
  3216. disable_e1();
  3217. disable_e2();
  3218. setTargetBed(0); //set bed target temperature back to 0
  3219. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3220. temp_cal_active = true;
  3221. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3222. lcd_update_enable(true);
  3223. lcd_update(2);
  3224. }
  3225. break;
  3226. #ifdef DIS
  3227. case 77:
  3228. {
  3229. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3230. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3231. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3232. float dimension_x = 40;
  3233. float dimension_y = 40;
  3234. int points_x = 40;
  3235. int points_y = 40;
  3236. float offset_x = 74;
  3237. float offset_y = 33;
  3238. if (code_seen('X')) dimension_x = code_value();
  3239. if (code_seen('Y')) dimension_y = code_value();
  3240. if (code_seen('XP')) points_x = code_value();
  3241. if (code_seen('YP')) points_y = code_value();
  3242. if (code_seen('XO')) offset_x = code_value();
  3243. if (code_seen('YO')) offset_y = code_value();
  3244. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3245. } break;
  3246. #endif
  3247. case 79: {
  3248. for (int i = 255; i > 0; i = i - 5) {
  3249. fanSpeed = i;
  3250. //delay_keep_alive(2000);
  3251. for (int j = 0; j < 100; j++) {
  3252. delay_keep_alive(100);
  3253. }
  3254. fan_speed[1];
  3255. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3256. }
  3257. }break;
  3258. /**
  3259. * G80: Mesh-based Z probe, probes a grid and produces a
  3260. * mesh to compensate for variable bed height
  3261. *
  3262. * The S0 report the points as below
  3263. *
  3264. * +----> X-axis
  3265. * |
  3266. * |
  3267. * v Y-axis
  3268. *
  3269. */
  3270. case 80:
  3271. #ifdef MK1BP
  3272. break;
  3273. #endif //MK1BP
  3274. case_G80:
  3275. {
  3276. #ifdef TMC2130
  3277. //previously enqueued "G28 W0" failed (crash Z)
  3278. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
  3279. {
  3280. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3281. break;
  3282. }
  3283. #endif //TMC2130
  3284. mesh_bed_leveling_flag = true;
  3285. int8_t verbosity_level = 0;
  3286. static bool run = false;
  3287. if (code_seen('V')) {
  3288. // Just 'V' without a number counts as V1.
  3289. char c = strchr_pointer[1];
  3290. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3291. }
  3292. // Firstly check if we know where we are
  3293. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3294. // We don't know where we are! HOME!
  3295. // Push the commands to the front of the message queue in the reverse order!
  3296. // There shall be always enough space reserved for these commands.
  3297. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3298. repeatcommand_front(); // repeat G80 with all its parameters
  3299. enquecommand_front_P((PSTR("G28 W0")));
  3300. }
  3301. else {
  3302. mesh_bed_leveling_flag = false;
  3303. }
  3304. break;
  3305. }
  3306. bool temp_comp_start = true;
  3307. #ifdef PINDA_THERMISTOR
  3308. temp_comp_start = false;
  3309. #endif //PINDA_THERMISTOR
  3310. if (temp_comp_start)
  3311. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3312. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3313. temp_compensation_start();
  3314. run = true;
  3315. repeatcommand_front(); // repeat G80 with all its parameters
  3316. enquecommand_front_P((PSTR("G28 W0")));
  3317. }
  3318. else {
  3319. mesh_bed_leveling_flag = false;
  3320. }
  3321. break;
  3322. }
  3323. run = false;
  3324. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3325. mesh_bed_leveling_flag = false;
  3326. break;
  3327. }
  3328. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3329. bool custom_message_old = custom_message;
  3330. unsigned int custom_message_type_old = custom_message_type;
  3331. unsigned int custom_message_state_old = custom_message_state;
  3332. custom_message = true;
  3333. custom_message_type = 1;
  3334. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3335. lcd_update(1);
  3336. mbl.reset(); //reset mesh bed leveling
  3337. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3338. // consumed during the first movements following this statement.
  3339. babystep_undo();
  3340. // Cycle through all points and probe them
  3341. // First move up. During this first movement, the babystepping will be reverted.
  3342. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3344. // The move to the first calibration point.
  3345. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3346. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3347. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3348. #ifdef SUPPORT_VERBOSITY
  3349. if (verbosity_level >= 1) {
  3350. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3351. }
  3352. #endif //SUPPORT_VERBOSITY
  3353. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3354. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3355. // Wait until the move is finished.
  3356. st_synchronize();
  3357. int mesh_point = 0; //index number of calibration point
  3358. int ix = 0;
  3359. int iy = 0;
  3360. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3361. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3362. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3363. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3364. #ifdef SUPPORT_VERBOSITY
  3365. if (verbosity_level >= 1) {
  3366. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3367. }
  3368. #endif // SUPPORT_VERBOSITY
  3369. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3370. const char *kill_message = NULL;
  3371. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3372. // Get coords of a measuring point.
  3373. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3374. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3375. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3376. float z0 = 0.f;
  3377. if (has_z && mesh_point > 0) {
  3378. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3379. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3380. //#if 0
  3381. #ifdef SUPPORT_VERBOSITY
  3382. if (verbosity_level >= 1) {
  3383. SERIAL_ECHOLNPGM("");
  3384. SERIAL_ECHOPGM("Bed leveling, point: ");
  3385. MYSERIAL.print(mesh_point);
  3386. SERIAL_ECHOPGM(", calibration z: ");
  3387. MYSERIAL.print(z0, 5);
  3388. SERIAL_ECHOLNPGM("");
  3389. }
  3390. #endif // SUPPORT_VERBOSITY
  3391. //#endif
  3392. }
  3393. // Move Z up to MESH_HOME_Z_SEARCH.
  3394. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3396. st_synchronize();
  3397. // Move to XY position of the sensor point.
  3398. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3399. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3400. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3401. #ifdef SUPPORT_VERBOSITY
  3402. if (verbosity_level >= 1) {
  3403. SERIAL_PROTOCOL(mesh_point);
  3404. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3405. }
  3406. #endif // SUPPORT_VERBOSITY
  3407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3408. st_synchronize();
  3409. // Go down until endstop is hit
  3410. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3411. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3412. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3413. break;
  3414. }
  3415. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3416. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3417. break;
  3418. }
  3419. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3420. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3421. break;
  3422. }
  3423. #ifdef SUPPORT_VERBOSITY
  3424. if (verbosity_level >= 10) {
  3425. SERIAL_ECHOPGM("X: ");
  3426. MYSERIAL.print(current_position[X_AXIS], 5);
  3427. SERIAL_ECHOLNPGM("");
  3428. SERIAL_ECHOPGM("Y: ");
  3429. MYSERIAL.print(current_position[Y_AXIS], 5);
  3430. SERIAL_PROTOCOLPGM("\n");
  3431. }
  3432. #endif // SUPPORT_VERBOSITY
  3433. float offset_z = 0;
  3434. #ifdef PINDA_THERMISTOR
  3435. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3436. #endif //PINDA_THERMISTOR
  3437. // #ifdef SUPPORT_VERBOSITY
  3438. /* if (verbosity_level >= 1)
  3439. {
  3440. SERIAL_ECHOPGM("mesh bed leveling: ");
  3441. MYSERIAL.print(current_position[Z_AXIS], 5);
  3442. SERIAL_ECHOPGM(" offset: ");
  3443. MYSERIAL.print(offset_z, 5);
  3444. SERIAL_ECHOLNPGM("");
  3445. }*/
  3446. // #endif // SUPPORT_VERBOSITY
  3447. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3448. custom_message_state--;
  3449. mesh_point++;
  3450. lcd_update(1);
  3451. }
  3452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3453. #ifdef SUPPORT_VERBOSITY
  3454. if (verbosity_level >= 20) {
  3455. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3456. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3457. MYSERIAL.print(current_position[Z_AXIS], 5);
  3458. }
  3459. #endif // SUPPORT_VERBOSITY
  3460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3461. st_synchronize();
  3462. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3463. kill(kill_message);
  3464. SERIAL_ECHOLNPGM("killed");
  3465. }
  3466. clean_up_after_endstop_move();
  3467. // SERIAL_ECHOLNPGM("clean up finished ");
  3468. bool apply_temp_comp = true;
  3469. #ifdef PINDA_THERMISTOR
  3470. apply_temp_comp = false;
  3471. #endif
  3472. if (apply_temp_comp)
  3473. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3474. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3475. // SERIAL_ECHOLNPGM("babystep applied");
  3476. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3477. #ifdef SUPPORT_VERBOSITY
  3478. if (verbosity_level >= 1) {
  3479. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3480. }
  3481. #endif // SUPPORT_VERBOSITY
  3482. for (uint8_t i = 0; i < 4; ++i) {
  3483. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3484. long correction = 0;
  3485. if (code_seen(codes[i]))
  3486. correction = code_value_long();
  3487. else if (eeprom_bed_correction_valid) {
  3488. unsigned char *addr = (i < 2) ?
  3489. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3490. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3491. correction = eeprom_read_int8(addr);
  3492. }
  3493. if (correction == 0)
  3494. continue;
  3495. float offset = float(correction) * 0.001f;
  3496. if (fabs(offset) > 0.101f) {
  3497. SERIAL_ERROR_START;
  3498. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3499. SERIAL_ECHO(offset);
  3500. SERIAL_ECHOLNPGM(" microns");
  3501. }
  3502. else {
  3503. switch (i) {
  3504. case 0:
  3505. for (uint8_t row = 0; row < 3; ++row) {
  3506. mbl.z_values[row][1] += 0.5f * offset;
  3507. mbl.z_values[row][0] += offset;
  3508. }
  3509. break;
  3510. case 1:
  3511. for (uint8_t row = 0; row < 3; ++row) {
  3512. mbl.z_values[row][1] += 0.5f * offset;
  3513. mbl.z_values[row][2] += offset;
  3514. }
  3515. break;
  3516. case 2:
  3517. for (uint8_t col = 0; col < 3; ++col) {
  3518. mbl.z_values[1][col] += 0.5f * offset;
  3519. mbl.z_values[0][col] += offset;
  3520. }
  3521. break;
  3522. case 3:
  3523. for (uint8_t col = 0; col < 3; ++col) {
  3524. mbl.z_values[1][col] += 0.5f * offset;
  3525. mbl.z_values[2][col] += offset;
  3526. }
  3527. break;
  3528. }
  3529. }
  3530. }
  3531. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3532. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3533. // SERIAL_ECHOLNPGM("Upsample finished");
  3534. mbl.active = 1; //activate mesh bed leveling
  3535. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3536. go_home_with_z_lift();
  3537. // SERIAL_ECHOLNPGM("Go home finished");
  3538. //unretract (after PINDA preheat retraction)
  3539. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3540. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3542. }
  3543. KEEPALIVE_STATE(NOT_BUSY);
  3544. // Restore custom message state
  3545. custom_message = custom_message_old;
  3546. custom_message_type = custom_message_type_old;
  3547. custom_message_state = custom_message_state_old;
  3548. mesh_bed_leveling_flag = false;
  3549. mesh_bed_run_from_menu = false;
  3550. lcd_update(2);
  3551. }
  3552. break;
  3553. /**
  3554. * G81: Print mesh bed leveling status and bed profile if activated
  3555. */
  3556. case 81:
  3557. if (mbl.active) {
  3558. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3559. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3560. SERIAL_PROTOCOLPGM(",");
  3561. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3562. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3563. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3564. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3565. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3566. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3567. SERIAL_PROTOCOLPGM(" ");
  3568. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3569. }
  3570. SERIAL_PROTOCOLPGM("\n");
  3571. }
  3572. }
  3573. else
  3574. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3575. break;
  3576. #if 0
  3577. /**
  3578. * G82: Single Z probe at current location
  3579. *
  3580. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3581. *
  3582. */
  3583. case 82:
  3584. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3585. setup_for_endstop_move();
  3586. find_bed_induction_sensor_point_z();
  3587. clean_up_after_endstop_move();
  3588. SERIAL_PROTOCOLPGM("Bed found at: ");
  3589. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3590. SERIAL_PROTOCOLPGM("\n");
  3591. break;
  3592. /**
  3593. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3594. */
  3595. case 83:
  3596. {
  3597. int babystepz = code_seen('S') ? code_value() : 0;
  3598. int BabyPosition = code_seen('P') ? code_value() : 0;
  3599. if (babystepz != 0) {
  3600. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3601. // Is the axis indexed starting with zero or one?
  3602. if (BabyPosition > 4) {
  3603. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3604. }else{
  3605. // Save it to the eeprom
  3606. babystepLoadZ = babystepz;
  3607. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3608. // adjust the Z
  3609. babystepsTodoZadd(babystepLoadZ);
  3610. }
  3611. }
  3612. }
  3613. break;
  3614. /**
  3615. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3616. */
  3617. case 84:
  3618. babystepsTodoZsubtract(babystepLoadZ);
  3619. // babystepLoadZ = 0;
  3620. break;
  3621. /**
  3622. * G85: Prusa3D specific: Pick best babystep
  3623. */
  3624. case 85:
  3625. lcd_pick_babystep();
  3626. break;
  3627. #endif
  3628. /**
  3629. * G86: Prusa3D specific: Disable babystep correction after home.
  3630. * This G-code will be performed at the start of a calibration script.
  3631. */
  3632. case 86:
  3633. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3634. break;
  3635. /**
  3636. * G87: Prusa3D specific: Enable babystep correction after home
  3637. * This G-code will be performed at the end of a calibration script.
  3638. */
  3639. case 87:
  3640. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3641. break;
  3642. /**
  3643. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3644. */
  3645. case 88:
  3646. break;
  3647. #endif // ENABLE_MESH_BED_LEVELING
  3648. case 90: // G90
  3649. relative_mode = false;
  3650. break;
  3651. case 91: // G91
  3652. relative_mode = true;
  3653. break;
  3654. case 92: // G92
  3655. if(!code_seen(axis_codes[E_AXIS]))
  3656. st_synchronize();
  3657. for(int8_t i=0; i < NUM_AXIS; i++) {
  3658. if(code_seen(axis_codes[i])) {
  3659. if(i == E_AXIS) {
  3660. current_position[i] = code_value();
  3661. plan_set_e_position(current_position[E_AXIS]);
  3662. }
  3663. else {
  3664. current_position[i] = code_value()+add_homing[i];
  3665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3666. }
  3667. }
  3668. }
  3669. break;
  3670. case 98: // G98 (activate farm mode)
  3671. farm_mode = 1;
  3672. PingTime = millis();
  3673. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3674. SilentModeMenu = SILENT_MODE_OFF;
  3675. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3676. break;
  3677. case 99: // G99 (deactivate farm mode)
  3678. farm_mode = 0;
  3679. lcd_printer_connected();
  3680. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3681. lcd_update(2);
  3682. break;
  3683. default:
  3684. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3685. }
  3686. } // end if(code_seen('G'))
  3687. else if(code_seen('M'))
  3688. {
  3689. int index;
  3690. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3691. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3692. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3693. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3694. } else
  3695. switch((int)code_value())
  3696. {
  3697. #ifdef ULTIPANEL
  3698. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3699. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3700. {
  3701. char *src = strchr_pointer + 2;
  3702. codenum = 0;
  3703. bool hasP = false, hasS = false;
  3704. if (code_seen('P')) {
  3705. codenum = code_value(); // milliseconds to wait
  3706. hasP = codenum > 0;
  3707. }
  3708. if (code_seen('S')) {
  3709. codenum = code_value() * 1000; // seconds to wait
  3710. hasS = codenum > 0;
  3711. }
  3712. starpos = strchr(src, '*');
  3713. if (starpos != NULL) *(starpos) = '\0';
  3714. while (*src == ' ') ++src;
  3715. if (!hasP && !hasS && *src != '\0') {
  3716. lcd_setstatus(src);
  3717. } else {
  3718. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3719. }
  3720. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3721. st_synchronize();
  3722. previous_millis_cmd = millis();
  3723. if (codenum > 0){
  3724. codenum += millis(); // keep track of when we started waiting
  3725. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3726. while(millis() < codenum && !lcd_clicked()){
  3727. manage_heater();
  3728. manage_inactivity(true);
  3729. lcd_update();
  3730. }
  3731. KEEPALIVE_STATE(IN_HANDLER);
  3732. lcd_ignore_click(false);
  3733. }else{
  3734. if (!lcd_detected())
  3735. break;
  3736. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3737. while(!lcd_clicked()){
  3738. manage_heater();
  3739. manage_inactivity(true);
  3740. lcd_update();
  3741. }
  3742. KEEPALIVE_STATE(IN_HANDLER);
  3743. }
  3744. if (IS_SD_PRINTING)
  3745. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3746. else
  3747. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3748. }
  3749. break;
  3750. #endif
  3751. case 17:
  3752. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3753. enable_x();
  3754. enable_y();
  3755. enable_z();
  3756. enable_e0();
  3757. enable_e1();
  3758. enable_e2();
  3759. break;
  3760. #ifdef SDSUPPORT
  3761. case 20: // M20 - list SD card
  3762. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3763. card.ls();
  3764. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3765. break;
  3766. case 21: // M21 - init SD card
  3767. card.initsd();
  3768. break;
  3769. case 22: //M22 - release SD card
  3770. card.release();
  3771. break;
  3772. case 23: //M23 - Select file
  3773. starpos = (strchr(strchr_pointer + 4,'*'));
  3774. if(starpos!=NULL)
  3775. *(starpos)='\0';
  3776. card.openFile(strchr_pointer + 4,true);
  3777. break;
  3778. case 24: //M24 - Start SD print
  3779. if (!card.paused)
  3780. failstats_reset_print();
  3781. card.startFileprint();
  3782. starttime=millis();
  3783. break;
  3784. case 25: //M25 - Pause SD print
  3785. card.pauseSDPrint();
  3786. break;
  3787. case 26: //M26 - Set SD index
  3788. if(card.cardOK && code_seen('S')) {
  3789. card.setIndex(code_value_long());
  3790. }
  3791. break;
  3792. case 27: //M27 - Get SD status
  3793. card.getStatus();
  3794. break;
  3795. case 28: //M28 - Start SD write
  3796. starpos = (strchr(strchr_pointer + 4,'*'));
  3797. if(starpos != NULL){
  3798. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3799. strchr_pointer = strchr(npos,' ') + 1;
  3800. *(starpos) = '\0';
  3801. }
  3802. card.openFile(strchr_pointer+4,false);
  3803. break;
  3804. case 29: //M29 - Stop SD write
  3805. //processed in write to file routine above
  3806. //card,saving = false;
  3807. break;
  3808. case 30: //M30 <filename> Delete File
  3809. if (card.cardOK){
  3810. card.closefile();
  3811. starpos = (strchr(strchr_pointer + 4,'*'));
  3812. if(starpos != NULL){
  3813. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3814. strchr_pointer = strchr(npos,' ') + 1;
  3815. *(starpos) = '\0';
  3816. }
  3817. card.removeFile(strchr_pointer + 4);
  3818. }
  3819. break;
  3820. case 32: //M32 - Select file and start SD print
  3821. {
  3822. if(card.sdprinting) {
  3823. st_synchronize();
  3824. }
  3825. starpos = (strchr(strchr_pointer + 4,'*'));
  3826. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3827. if(namestartpos==NULL)
  3828. {
  3829. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3830. }
  3831. else
  3832. namestartpos++; //to skip the '!'
  3833. if(starpos!=NULL)
  3834. *(starpos)='\0';
  3835. bool call_procedure=(code_seen('P'));
  3836. if(strchr_pointer>namestartpos)
  3837. call_procedure=false; //false alert, 'P' found within filename
  3838. if( card.cardOK )
  3839. {
  3840. card.openFile(namestartpos,true,!call_procedure);
  3841. if(code_seen('S'))
  3842. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3843. card.setIndex(code_value_long());
  3844. card.startFileprint();
  3845. if(!call_procedure)
  3846. starttime=millis(); //procedure calls count as normal print time.
  3847. }
  3848. } break;
  3849. case 928: //M928 - Start SD write
  3850. starpos = (strchr(strchr_pointer + 5,'*'));
  3851. if(starpos != NULL){
  3852. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3853. strchr_pointer = strchr(npos,' ') + 1;
  3854. *(starpos) = '\0';
  3855. }
  3856. card.openLogFile(strchr_pointer+5);
  3857. break;
  3858. #endif //SDSUPPORT
  3859. case 31: //M31 take time since the start of the SD print or an M109 command
  3860. {
  3861. stoptime=millis();
  3862. char time[30];
  3863. unsigned long t=(stoptime-starttime)/1000;
  3864. int sec,min;
  3865. min=t/60;
  3866. sec=t%60;
  3867. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3868. SERIAL_ECHO_START;
  3869. SERIAL_ECHOLN(time);
  3870. lcd_setstatus(time);
  3871. autotempShutdown();
  3872. }
  3873. break;
  3874. #ifndef _DISABLE_M42_M226
  3875. case 42: //M42 -Change pin status via gcode
  3876. if (code_seen('S'))
  3877. {
  3878. int pin_status = code_value();
  3879. int pin_number = LED_PIN;
  3880. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3881. pin_number = code_value();
  3882. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3883. {
  3884. if (sensitive_pins[i] == pin_number)
  3885. {
  3886. pin_number = -1;
  3887. break;
  3888. }
  3889. }
  3890. #if defined(FAN_PIN) && FAN_PIN > -1
  3891. if (pin_number == FAN_PIN)
  3892. fanSpeed = pin_status;
  3893. #endif
  3894. if (pin_number > -1)
  3895. {
  3896. pinMode(pin_number, OUTPUT);
  3897. digitalWrite(pin_number, pin_status);
  3898. analogWrite(pin_number, pin_status);
  3899. }
  3900. }
  3901. break;
  3902. #endif //_DISABLE_M42_M226
  3903. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3904. // Reset the baby step value and the baby step applied flag.
  3905. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3906. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3907. // Reset the skew and offset in both RAM and EEPROM.
  3908. reset_bed_offset_and_skew();
  3909. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3910. // the planner will not perform any adjustments in the XY plane.
  3911. // Wait for the motors to stop and update the current position with the absolute values.
  3912. world2machine_revert_to_uncorrected();
  3913. break;
  3914. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3915. {
  3916. int8_t verbosity_level = 0;
  3917. bool only_Z = code_seen('Z');
  3918. #ifdef SUPPORT_VERBOSITY
  3919. if (code_seen('V'))
  3920. {
  3921. // Just 'V' without a number counts as V1.
  3922. char c = strchr_pointer[1];
  3923. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3924. }
  3925. #endif //SUPPORT_VERBOSITY
  3926. gcode_M45(only_Z, verbosity_level);
  3927. }
  3928. break;
  3929. /*
  3930. case 46:
  3931. {
  3932. // M46: Prusa3D: Show the assigned IP address.
  3933. uint8_t ip[4];
  3934. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3935. if (hasIP) {
  3936. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3937. SERIAL_ECHO(int(ip[0]));
  3938. SERIAL_ECHOPGM(".");
  3939. SERIAL_ECHO(int(ip[1]));
  3940. SERIAL_ECHOPGM(".");
  3941. SERIAL_ECHO(int(ip[2]));
  3942. SERIAL_ECHOPGM(".");
  3943. SERIAL_ECHO(int(ip[3]));
  3944. SERIAL_ECHOLNPGM("");
  3945. } else {
  3946. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3947. }
  3948. break;
  3949. }
  3950. */
  3951. case 47:
  3952. // M47: Prusa3D: Show end stops dialog on the display.
  3953. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3954. lcd_diag_show_end_stops();
  3955. KEEPALIVE_STATE(IN_HANDLER);
  3956. break;
  3957. #if 0
  3958. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3959. {
  3960. // Disable the default update procedure of the display. We will do a modal dialog.
  3961. lcd_update_enable(false);
  3962. // Let the planner use the uncorrected coordinates.
  3963. mbl.reset();
  3964. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3965. // the planner will not perform any adjustments in the XY plane.
  3966. // Wait for the motors to stop and update the current position with the absolute values.
  3967. world2machine_revert_to_uncorrected();
  3968. // Move the print head close to the bed.
  3969. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3971. st_synchronize();
  3972. // Home in the XY plane.
  3973. set_destination_to_current();
  3974. setup_for_endstop_move();
  3975. home_xy();
  3976. int8_t verbosity_level = 0;
  3977. if (code_seen('V')) {
  3978. // Just 'V' without a number counts as V1.
  3979. char c = strchr_pointer[1];
  3980. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3981. }
  3982. bool success = scan_bed_induction_points(verbosity_level);
  3983. clean_up_after_endstop_move();
  3984. // Print head up.
  3985. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3987. st_synchronize();
  3988. lcd_update_enable(true);
  3989. break;
  3990. }
  3991. #endif
  3992. // M48 Z-Probe repeatability measurement function.
  3993. //
  3994. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3995. //
  3996. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3997. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3998. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3999. // regenerated.
  4000. //
  4001. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4002. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4003. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4004. //
  4005. #ifdef ENABLE_AUTO_BED_LEVELING
  4006. #ifdef Z_PROBE_REPEATABILITY_TEST
  4007. case 48: // M48 Z-Probe repeatability
  4008. {
  4009. #if Z_MIN_PIN == -1
  4010. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4011. #endif
  4012. double sum=0.0;
  4013. double mean=0.0;
  4014. double sigma=0.0;
  4015. double sample_set[50];
  4016. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4017. double X_current, Y_current, Z_current;
  4018. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4019. if (code_seen('V') || code_seen('v')) {
  4020. verbose_level = code_value();
  4021. if (verbose_level<0 || verbose_level>4 ) {
  4022. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4023. goto Sigma_Exit;
  4024. }
  4025. }
  4026. if (verbose_level > 0) {
  4027. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4028. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4029. }
  4030. if (code_seen('n')) {
  4031. n_samples = code_value();
  4032. if (n_samples<4 || n_samples>50 ) {
  4033. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4034. goto Sigma_Exit;
  4035. }
  4036. }
  4037. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4038. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4039. Z_current = st_get_position_mm(Z_AXIS);
  4040. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4041. ext_position = st_get_position_mm(E_AXIS);
  4042. if (code_seen('X') || code_seen('x') ) {
  4043. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4044. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4045. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4046. goto Sigma_Exit;
  4047. }
  4048. }
  4049. if (code_seen('Y') || code_seen('y') ) {
  4050. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4051. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4052. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4053. goto Sigma_Exit;
  4054. }
  4055. }
  4056. if (code_seen('L') || code_seen('l') ) {
  4057. n_legs = code_value();
  4058. if ( n_legs==1 )
  4059. n_legs = 2;
  4060. if ( n_legs<0 || n_legs>15 ) {
  4061. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4062. goto Sigma_Exit;
  4063. }
  4064. }
  4065. //
  4066. // Do all the preliminary setup work. First raise the probe.
  4067. //
  4068. st_synchronize();
  4069. plan_bed_level_matrix.set_to_identity();
  4070. plan_buffer_line( X_current, Y_current, Z_start_location,
  4071. ext_position,
  4072. homing_feedrate[Z_AXIS]/60,
  4073. active_extruder);
  4074. st_synchronize();
  4075. //
  4076. // Now get everything to the specified probe point So we can safely do a probe to
  4077. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4078. // use that as a starting point for each probe.
  4079. //
  4080. if (verbose_level > 2)
  4081. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4082. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4083. ext_position,
  4084. homing_feedrate[X_AXIS]/60,
  4085. active_extruder);
  4086. st_synchronize();
  4087. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4088. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4089. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4090. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4091. //
  4092. // OK, do the inital probe to get us close to the bed.
  4093. // Then retrace the right amount and use that in subsequent probes
  4094. //
  4095. setup_for_endstop_move();
  4096. run_z_probe();
  4097. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4098. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4099. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4100. ext_position,
  4101. homing_feedrate[X_AXIS]/60,
  4102. active_extruder);
  4103. st_synchronize();
  4104. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4105. for( n=0; n<n_samples; n++) {
  4106. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4107. if ( n_legs) {
  4108. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4109. int rotational_direction, l;
  4110. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4111. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4112. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4113. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4114. //SERIAL_ECHOPAIR(" theta: ",theta);
  4115. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4116. //SERIAL_PROTOCOLLNPGM("");
  4117. for( l=0; l<n_legs-1; l++) {
  4118. if (rotational_direction==1)
  4119. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4120. else
  4121. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4122. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4123. if ( radius<0.0 )
  4124. radius = -radius;
  4125. X_current = X_probe_location + cos(theta) * radius;
  4126. Y_current = Y_probe_location + sin(theta) * radius;
  4127. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4128. X_current = X_MIN_POS;
  4129. if ( X_current>X_MAX_POS)
  4130. X_current = X_MAX_POS;
  4131. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4132. Y_current = Y_MIN_POS;
  4133. if ( Y_current>Y_MAX_POS)
  4134. Y_current = Y_MAX_POS;
  4135. if (verbose_level>3 ) {
  4136. SERIAL_ECHOPAIR("x: ", X_current);
  4137. SERIAL_ECHOPAIR("y: ", Y_current);
  4138. SERIAL_PROTOCOLLNPGM("");
  4139. }
  4140. do_blocking_move_to( X_current, Y_current, Z_current );
  4141. }
  4142. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4143. }
  4144. setup_for_endstop_move();
  4145. run_z_probe();
  4146. sample_set[n] = current_position[Z_AXIS];
  4147. //
  4148. // Get the current mean for the data points we have so far
  4149. //
  4150. sum=0.0;
  4151. for( j=0; j<=n; j++) {
  4152. sum = sum + sample_set[j];
  4153. }
  4154. mean = sum / (double (n+1));
  4155. //
  4156. // Now, use that mean to calculate the standard deviation for the
  4157. // data points we have so far
  4158. //
  4159. sum=0.0;
  4160. for( j=0; j<=n; j++) {
  4161. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4162. }
  4163. sigma = sqrt( sum / (double (n+1)) );
  4164. if (verbose_level > 1) {
  4165. SERIAL_PROTOCOL(n+1);
  4166. SERIAL_PROTOCOL(" of ");
  4167. SERIAL_PROTOCOL(n_samples);
  4168. SERIAL_PROTOCOLPGM(" z: ");
  4169. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4170. }
  4171. if (verbose_level > 2) {
  4172. SERIAL_PROTOCOL(" mean: ");
  4173. SERIAL_PROTOCOL_F(mean,6);
  4174. SERIAL_PROTOCOL(" sigma: ");
  4175. SERIAL_PROTOCOL_F(sigma,6);
  4176. }
  4177. if (verbose_level > 0)
  4178. SERIAL_PROTOCOLPGM("\n");
  4179. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4180. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4181. st_synchronize();
  4182. }
  4183. delay(1000);
  4184. clean_up_after_endstop_move();
  4185. // enable_endstops(true);
  4186. if (verbose_level > 0) {
  4187. SERIAL_PROTOCOLPGM("Mean: ");
  4188. SERIAL_PROTOCOL_F(mean, 6);
  4189. SERIAL_PROTOCOLPGM("\n");
  4190. }
  4191. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4192. SERIAL_PROTOCOL_F(sigma, 6);
  4193. SERIAL_PROTOCOLPGM("\n\n");
  4194. Sigma_Exit:
  4195. break;
  4196. }
  4197. #endif // Z_PROBE_REPEATABILITY_TEST
  4198. #endif // ENABLE_AUTO_BED_LEVELING
  4199. case 104: // M104
  4200. if(setTargetedHotend(104)){
  4201. break;
  4202. }
  4203. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4204. setWatch();
  4205. break;
  4206. case 112: // M112 -Emergency Stop
  4207. kill("", 3);
  4208. break;
  4209. case 140: // M140 set bed temp
  4210. if (code_seen('S')) setTargetBed(code_value());
  4211. break;
  4212. case 105 : // M105
  4213. if(setTargetedHotend(105)){
  4214. break;
  4215. }
  4216. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4217. SERIAL_PROTOCOLPGM("ok T:");
  4218. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4219. SERIAL_PROTOCOLPGM(" /");
  4220. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4221. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4222. SERIAL_PROTOCOLPGM(" B:");
  4223. SERIAL_PROTOCOL_F(degBed(),1);
  4224. SERIAL_PROTOCOLPGM(" /");
  4225. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4226. #endif //TEMP_BED_PIN
  4227. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4228. SERIAL_PROTOCOLPGM(" T");
  4229. SERIAL_PROTOCOL(cur_extruder);
  4230. SERIAL_PROTOCOLPGM(":");
  4231. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4232. SERIAL_PROTOCOLPGM(" /");
  4233. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4234. }
  4235. #else
  4236. SERIAL_ERROR_START;
  4237. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4238. #endif
  4239. SERIAL_PROTOCOLPGM(" @:");
  4240. #ifdef EXTRUDER_WATTS
  4241. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4242. SERIAL_PROTOCOLPGM("W");
  4243. #else
  4244. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4245. #endif
  4246. SERIAL_PROTOCOLPGM(" B@:");
  4247. #ifdef BED_WATTS
  4248. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4249. SERIAL_PROTOCOLPGM("W");
  4250. #else
  4251. SERIAL_PROTOCOL(getHeaterPower(-1));
  4252. #endif
  4253. #ifdef PINDA_THERMISTOR
  4254. SERIAL_PROTOCOLPGM(" P:");
  4255. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4256. #endif //PINDA_THERMISTOR
  4257. #ifdef AMBIENT_THERMISTOR
  4258. SERIAL_PROTOCOLPGM(" A:");
  4259. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4260. #endif //AMBIENT_THERMISTOR
  4261. #ifdef SHOW_TEMP_ADC_VALUES
  4262. {float raw = 0.0;
  4263. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4264. SERIAL_PROTOCOLPGM(" ADC B:");
  4265. SERIAL_PROTOCOL_F(degBed(),1);
  4266. SERIAL_PROTOCOLPGM("C->");
  4267. raw = rawBedTemp();
  4268. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4269. SERIAL_PROTOCOLPGM(" Rb->");
  4270. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4271. SERIAL_PROTOCOLPGM(" Rxb->");
  4272. SERIAL_PROTOCOL_F(raw, 5);
  4273. #endif
  4274. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4275. SERIAL_PROTOCOLPGM(" T");
  4276. SERIAL_PROTOCOL(cur_extruder);
  4277. SERIAL_PROTOCOLPGM(":");
  4278. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4279. SERIAL_PROTOCOLPGM("C->");
  4280. raw = rawHotendTemp(cur_extruder);
  4281. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4282. SERIAL_PROTOCOLPGM(" Rt");
  4283. SERIAL_PROTOCOL(cur_extruder);
  4284. SERIAL_PROTOCOLPGM("->");
  4285. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4286. SERIAL_PROTOCOLPGM(" Rx");
  4287. SERIAL_PROTOCOL(cur_extruder);
  4288. SERIAL_PROTOCOLPGM("->");
  4289. SERIAL_PROTOCOL_F(raw, 5);
  4290. }}
  4291. #endif
  4292. SERIAL_PROTOCOLLN("");
  4293. KEEPALIVE_STATE(NOT_BUSY);
  4294. return;
  4295. break;
  4296. case 109:
  4297. {// M109 - Wait for extruder heater to reach target.
  4298. if(setTargetedHotend(109)){
  4299. break;
  4300. }
  4301. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4302. heating_status = 1;
  4303. if (farm_mode) { prusa_statistics(1); };
  4304. #ifdef AUTOTEMP
  4305. autotemp_enabled=false;
  4306. #endif
  4307. if (code_seen('S')) {
  4308. setTargetHotend(code_value(), tmp_extruder);
  4309. CooldownNoWait = true;
  4310. } else if (code_seen('R')) {
  4311. setTargetHotend(code_value(), tmp_extruder);
  4312. CooldownNoWait = false;
  4313. }
  4314. #ifdef AUTOTEMP
  4315. if (code_seen('S')) autotemp_min=code_value();
  4316. if (code_seen('B')) autotemp_max=code_value();
  4317. if (code_seen('F'))
  4318. {
  4319. autotemp_factor=code_value();
  4320. autotemp_enabled=true;
  4321. }
  4322. #endif
  4323. setWatch();
  4324. codenum = millis();
  4325. /* See if we are heating up or cooling down */
  4326. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4327. KEEPALIVE_STATE(NOT_BUSY);
  4328. cancel_heatup = false;
  4329. wait_for_heater(codenum); //loops until target temperature is reached
  4330. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4331. KEEPALIVE_STATE(IN_HANDLER);
  4332. heating_status = 2;
  4333. if (farm_mode) { prusa_statistics(2); };
  4334. //starttime=millis();
  4335. previous_millis_cmd = millis();
  4336. }
  4337. break;
  4338. case 190: // M190 - Wait for bed heater to reach target.
  4339. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4340. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4341. heating_status = 3;
  4342. if (farm_mode) { prusa_statistics(1); };
  4343. if (code_seen('S'))
  4344. {
  4345. setTargetBed(code_value());
  4346. CooldownNoWait = true;
  4347. }
  4348. else if (code_seen('R'))
  4349. {
  4350. setTargetBed(code_value());
  4351. CooldownNoWait = false;
  4352. }
  4353. codenum = millis();
  4354. cancel_heatup = false;
  4355. target_direction = isHeatingBed(); // true if heating, false if cooling
  4356. KEEPALIVE_STATE(NOT_BUSY);
  4357. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4358. {
  4359. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4360. {
  4361. if (!farm_mode) {
  4362. float tt = degHotend(active_extruder);
  4363. SERIAL_PROTOCOLPGM("T:");
  4364. SERIAL_PROTOCOL(tt);
  4365. SERIAL_PROTOCOLPGM(" E:");
  4366. SERIAL_PROTOCOL((int)active_extruder);
  4367. SERIAL_PROTOCOLPGM(" B:");
  4368. SERIAL_PROTOCOL_F(degBed(), 1);
  4369. SERIAL_PROTOCOLLN("");
  4370. }
  4371. codenum = millis();
  4372. }
  4373. manage_heater();
  4374. manage_inactivity();
  4375. lcd_update();
  4376. }
  4377. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4378. KEEPALIVE_STATE(IN_HANDLER);
  4379. heating_status = 4;
  4380. previous_millis_cmd = millis();
  4381. #endif
  4382. break;
  4383. #if defined(FAN_PIN) && FAN_PIN > -1
  4384. case 106: //M106 Fan On
  4385. if (code_seen('S')){
  4386. fanSpeed=constrain(code_value(),0,255);
  4387. }
  4388. else {
  4389. fanSpeed=255;
  4390. }
  4391. break;
  4392. case 107: //M107 Fan Off
  4393. fanSpeed = 0;
  4394. break;
  4395. #endif //FAN_PIN
  4396. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4397. case 80: // M80 - Turn on Power Supply
  4398. SET_OUTPUT(PS_ON_PIN); //GND
  4399. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4400. // If you have a switch on suicide pin, this is useful
  4401. // if you want to start another print with suicide feature after
  4402. // a print without suicide...
  4403. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4404. SET_OUTPUT(SUICIDE_PIN);
  4405. WRITE(SUICIDE_PIN, HIGH);
  4406. #endif
  4407. #ifdef ULTIPANEL
  4408. powersupply = true;
  4409. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4410. lcd_update();
  4411. #endif
  4412. break;
  4413. #endif
  4414. case 81: // M81 - Turn off Power Supply
  4415. disable_heater();
  4416. st_synchronize();
  4417. disable_e0();
  4418. disable_e1();
  4419. disable_e2();
  4420. finishAndDisableSteppers();
  4421. fanSpeed = 0;
  4422. delay(1000); // Wait a little before to switch off
  4423. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4424. st_synchronize();
  4425. suicide();
  4426. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4427. SET_OUTPUT(PS_ON_PIN);
  4428. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4429. #endif
  4430. #ifdef ULTIPANEL
  4431. powersupply = false;
  4432. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4433. /*
  4434. MACHNAME = "Prusa i3"
  4435. MSGOFF = "Vypnuto"
  4436. "Prusai3"" ""vypnuto""."
  4437. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4438. */
  4439. lcd_update();
  4440. #endif
  4441. break;
  4442. case 82:
  4443. axis_relative_modes[3] = false;
  4444. break;
  4445. case 83:
  4446. axis_relative_modes[3] = true;
  4447. break;
  4448. case 18: //compatibility
  4449. case 84: // M84
  4450. if(code_seen('S')){
  4451. stepper_inactive_time = code_value() * 1000;
  4452. }
  4453. else
  4454. {
  4455. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4456. if(all_axis)
  4457. {
  4458. st_synchronize();
  4459. disable_e0();
  4460. disable_e1();
  4461. disable_e2();
  4462. finishAndDisableSteppers();
  4463. }
  4464. else
  4465. {
  4466. st_synchronize();
  4467. if (code_seen('X')) disable_x();
  4468. if (code_seen('Y')) disable_y();
  4469. if (code_seen('Z')) disable_z();
  4470. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4471. if (code_seen('E')) {
  4472. disable_e0();
  4473. disable_e1();
  4474. disable_e2();
  4475. }
  4476. #endif
  4477. }
  4478. }
  4479. snmm_filaments_used = 0;
  4480. break;
  4481. case 85: // M85
  4482. if(code_seen('S')) {
  4483. max_inactive_time = code_value() * 1000;
  4484. }
  4485. break;
  4486. case 92: // M92
  4487. for(int8_t i=0; i < NUM_AXIS; i++)
  4488. {
  4489. if(code_seen(axis_codes[i]))
  4490. {
  4491. if(i == 3) { // E
  4492. float value = code_value();
  4493. if(value < 20.0) {
  4494. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4495. max_jerk[E_AXIS] *= factor;
  4496. max_feedrate[i] *= factor;
  4497. axis_steps_per_sqr_second[i] *= factor;
  4498. }
  4499. axis_steps_per_unit[i] = value;
  4500. }
  4501. else {
  4502. axis_steps_per_unit[i] = code_value();
  4503. }
  4504. }
  4505. }
  4506. break;
  4507. case 110: // M110 - reset line pos
  4508. if (code_seen('N'))
  4509. gcode_LastN = code_value_long();
  4510. break;
  4511. #ifdef HOST_KEEPALIVE_FEATURE
  4512. case 113: // M113 - Get or set Host Keepalive interval
  4513. if (code_seen('S')) {
  4514. host_keepalive_interval = (uint8_t)code_value_short();
  4515. // NOMORE(host_keepalive_interval, 60);
  4516. }
  4517. else {
  4518. SERIAL_ECHO_START;
  4519. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4520. SERIAL_PROTOCOLLN("");
  4521. }
  4522. break;
  4523. #endif
  4524. case 115: // M115
  4525. if (code_seen('V')) {
  4526. // Report the Prusa version number.
  4527. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4528. } else if (code_seen('U')) {
  4529. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4530. // pause the print and ask the user to upgrade the firmware.
  4531. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4532. } else {
  4533. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4534. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4535. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4536. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4537. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4538. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4539. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4540. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4541. SERIAL_ECHOPGM(" UUID:");
  4542. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4543. }
  4544. break;
  4545. /* case 117: // M117 display message
  4546. starpos = (strchr(strchr_pointer + 5,'*'));
  4547. if(starpos!=NULL)
  4548. *(starpos)='\0';
  4549. lcd_setstatus(strchr_pointer + 5);
  4550. break;*/
  4551. case 114: // M114
  4552. gcode_M114();
  4553. break;
  4554. case 120: // M120
  4555. enable_endstops(false) ;
  4556. break;
  4557. case 121: // M121
  4558. enable_endstops(true) ;
  4559. break;
  4560. case 119: // M119
  4561. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4562. SERIAL_PROTOCOLLN("");
  4563. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4564. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4565. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4566. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4567. }else{
  4568. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4569. }
  4570. SERIAL_PROTOCOLLN("");
  4571. #endif
  4572. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4573. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4574. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4575. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4576. }else{
  4577. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4578. }
  4579. SERIAL_PROTOCOLLN("");
  4580. #endif
  4581. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4582. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4583. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4584. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4585. }else{
  4586. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4587. }
  4588. SERIAL_PROTOCOLLN("");
  4589. #endif
  4590. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4591. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4592. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4593. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4594. }else{
  4595. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4596. }
  4597. SERIAL_PROTOCOLLN("");
  4598. #endif
  4599. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4600. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4601. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4602. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4603. }else{
  4604. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4605. }
  4606. SERIAL_PROTOCOLLN("");
  4607. #endif
  4608. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4609. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4610. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4611. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4612. }else{
  4613. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4614. }
  4615. SERIAL_PROTOCOLLN("");
  4616. #endif
  4617. break;
  4618. //TODO: update for all axis, use for loop
  4619. #ifdef BLINKM
  4620. case 150: // M150
  4621. {
  4622. byte red;
  4623. byte grn;
  4624. byte blu;
  4625. if(code_seen('R')) red = code_value();
  4626. if(code_seen('U')) grn = code_value();
  4627. if(code_seen('B')) blu = code_value();
  4628. SendColors(red,grn,blu);
  4629. }
  4630. break;
  4631. #endif //BLINKM
  4632. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4633. {
  4634. tmp_extruder = active_extruder;
  4635. if(code_seen('T')) {
  4636. tmp_extruder = code_value();
  4637. if(tmp_extruder >= EXTRUDERS) {
  4638. SERIAL_ECHO_START;
  4639. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4640. break;
  4641. }
  4642. }
  4643. float area = .0;
  4644. if(code_seen('D')) {
  4645. float diameter = (float)code_value();
  4646. if (diameter == 0.0) {
  4647. // setting any extruder filament size disables volumetric on the assumption that
  4648. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4649. // for all extruders
  4650. volumetric_enabled = false;
  4651. } else {
  4652. filament_size[tmp_extruder] = (float)code_value();
  4653. // make sure all extruders have some sane value for the filament size
  4654. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4655. #if EXTRUDERS > 1
  4656. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4657. #if EXTRUDERS > 2
  4658. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4659. #endif
  4660. #endif
  4661. volumetric_enabled = true;
  4662. }
  4663. } else {
  4664. //reserved for setting filament diameter via UFID or filament measuring device
  4665. break;
  4666. }
  4667. calculate_extruder_multipliers();
  4668. }
  4669. break;
  4670. case 201: // M201
  4671. for(int8_t i=0; i < NUM_AXIS; i++)
  4672. {
  4673. if(code_seen(axis_codes[i]))
  4674. {
  4675. max_acceleration_units_per_sq_second[i] = code_value();
  4676. }
  4677. }
  4678. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4679. reset_acceleration_rates();
  4680. break;
  4681. #if 0 // Not used for Sprinter/grbl gen6
  4682. case 202: // M202
  4683. for(int8_t i=0; i < NUM_AXIS; i++) {
  4684. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4685. }
  4686. break;
  4687. #endif
  4688. case 203: // M203 max feedrate mm/sec
  4689. for(int8_t i=0; i < NUM_AXIS; i++) {
  4690. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4691. }
  4692. break;
  4693. case 204: // M204 acclereration S normal moves T filmanent only moves
  4694. {
  4695. if(code_seen('S')) acceleration = code_value() ;
  4696. if(code_seen('T')) retract_acceleration = code_value() ;
  4697. }
  4698. break;
  4699. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4700. {
  4701. if(code_seen('S')) minimumfeedrate = code_value();
  4702. if(code_seen('T')) mintravelfeedrate = code_value();
  4703. if(code_seen('B')) minsegmenttime = code_value() ;
  4704. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4705. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4706. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4707. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4708. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4709. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4710. }
  4711. break;
  4712. case 206: // M206 additional homing offset
  4713. for(int8_t i=0; i < 3; i++)
  4714. {
  4715. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4716. }
  4717. break;
  4718. #ifdef FWRETRACT
  4719. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4720. {
  4721. if(code_seen('S'))
  4722. {
  4723. retract_length = code_value() ;
  4724. }
  4725. if(code_seen('F'))
  4726. {
  4727. retract_feedrate = code_value()/60 ;
  4728. }
  4729. if(code_seen('Z'))
  4730. {
  4731. retract_zlift = code_value() ;
  4732. }
  4733. }break;
  4734. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4735. {
  4736. if(code_seen('S'))
  4737. {
  4738. retract_recover_length = code_value() ;
  4739. }
  4740. if(code_seen('F'))
  4741. {
  4742. retract_recover_feedrate = code_value()/60 ;
  4743. }
  4744. }break;
  4745. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4746. {
  4747. if(code_seen('S'))
  4748. {
  4749. int t= code_value() ;
  4750. switch(t)
  4751. {
  4752. case 0:
  4753. {
  4754. autoretract_enabled=false;
  4755. retracted[0]=false;
  4756. #if EXTRUDERS > 1
  4757. retracted[1]=false;
  4758. #endif
  4759. #if EXTRUDERS > 2
  4760. retracted[2]=false;
  4761. #endif
  4762. }break;
  4763. case 1:
  4764. {
  4765. autoretract_enabled=true;
  4766. retracted[0]=false;
  4767. #if EXTRUDERS > 1
  4768. retracted[1]=false;
  4769. #endif
  4770. #if EXTRUDERS > 2
  4771. retracted[2]=false;
  4772. #endif
  4773. }break;
  4774. default:
  4775. SERIAL_ECHO_START;
  4776. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4777. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4778. SERIAL_ECHOLNPGM("\"(1)");
  4779. }
  4780. }
  4781. }break;
  4782. #endif // FWRETRACT
  4783. #if EXTRUDERS > 1
  4784. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4785. {
  4786. if(setTargetedHotend(218)){
  4787. break;
  4788. }
  4789. if(code_seen('X'))
  4790. {
  4791. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4792. }
  4793. if(code_seen('Y'))
  4794. {
  4795. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4796. }
  4797. SERIAL_ECHO_START;
  4798. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4799. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4800. {
  4801. SERIAL_ECHO(" ");
  4802. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4803. SERIAL_ECHO(",");
  4804. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4805. }
  4806. SERIAL_ECHOLN("");
  4807. }break;
  4808. #endif
  4809. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4810. {
  4811. if(code_seen('S'))
  4812. {
  4813. feedmultiply = code_value() ;
  4814. }
  4815. }
  4816. break;
  4817. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4818. {
  4819. if(code_seen('S'))
  4820. {
  4821. int tmp_code = code_value();
  4822. if (code_seen('T'))
  4823. {
  4824. if(setTargetedHotend(221)){
  4825. break;
  4826. }
  4827. extruder_multiply[tmp_extruder] = tmp_code;
  4828. }
  4829. else
  4830. {
  4831. extrudemultiply = tmp_code ;
  4832. }
  4833. }
  4834. calculate_extruder_multipliers();
  4835. }
  4836. break;
  4837. #ifndef _DISABLE_M42_M226
  4838. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4839. {
  4840. if(code_seen('P')){
  4841. int pin_number = code_value(); // pin number
  4842. int pin_state = -1; // required pin state - default is inverted
  4843. if(code_seen('S')) pin_state = code_value(); // required pin state
  4844. if(pin_state >= -1 && pin_state <= 1){
  4845. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4846. {
  4847. if (sensitive_pins[i] == pin_number)
  4848. {
  4849. pin_number = -1;
  4850. break;
  4851. }
  4852. }
  4853. if (pin_number > -1)
  4854. {
  4855. int target = LOW;
  4856. st_synchronize();
  4857. pinMode(pin_number, INPUT);
  4858. switch(pin_state){
  4859. case 1:
  4860. target = HIGH;
  4861. break;
  4862. case 0:
  4863. target = LOW;
  4864. break;
  4865. case -1:
  4866. target = !digitalRead(pin_number);
  4867. break;
  4868. }
  4869. while(digitalRead(pin_number) != target){
  4870. manage_heater();
  4871. manage_inactivity();
  4872. lcd_update();
  4873. }
  4874. }
  4875. }
  4876. }
  4877. }
  4878. break;
  4879. #endif //_DISABLE_M42_M226
  4880. #if NUM_SERVOS > 0
  4881. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4882. {
  4883. int servo_index = -1;
  4884. int servo_position = 0;
  4885. if (code_seen('P'))
  4886. servo_index = code_value();
  4887. if (code_seen('S')) {
  4888. servo_position = code_value();
  4889. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4890. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4891. servos[servo_index].attach(0);
  4892. #endif
  4893. servos[servo_index].write(servo_position);
  4894. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4895. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4896. servos[servo_index].detach();
  4897. #endif
  4898. }
  4899. else {
  4900. SERIAL_ECHO_START;
  4901. SERIAL_ECHO("Servo ");
  4902. SERIAL_ECHO(servo_index);
  4903. SERIAL_ECHOLN(" out of range");
  4904. }
  4905. }
  4906. else if (servo_index >= 0) {
  4907. SERIAL_PROTOCOL(_T(MSG_OK));
  4908. SERIAL_PROTOCOL(" Servo ");
  4909. SERIAL_PROTOCOL(servo_index);
  4910. SERIAL_PROTOCOL(": ");
  4911. SERIAL_PROTOCOL(servos[servo_index].read());
  4912. SERIAL_PROTOCOLLN("");
  4913. }
  4914. }
  4915. break;
  4916. #endif // NUM_SERVOS > 0
  4917. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4918. case 300: // M300
  4919. {
  4920. int beepS = code_seen('S') ? code_value() : 110;
  4921. int beepP = code_seen('P') ? code_value() : 1000;
  4922. if (beepS > 0)
  4923. {
  4924. #if BEEPER > 0
  4925. tone(BEEPER, beepS);
  4926. delay(beepP);
  4927. noTone(BEEPER);
  4928. #elif defined(ULTRALCD)
  4929. lcd_buzz(beepS, beepP);
  4930. #elif defined(LCD_USE_I2C_BUZZER)
  4931. lcd_buzz(beepP, beepS);
  4932. #endif
  4933. }
  4934. else
  4935. {
  4936. delay(beepP);
  4937. }
  4938. }
  4939. break;
  4940. #endif // M300
  4941. #ifdef PIDTEMP
  4942. case 301: // M301
  4943. {
  4944. if(code_seen('P')) Kp = code_value();
  4945. if(code_seen('I')) Ki = scalePID_i(code_value());
  4946. if(code_seen('D')) Kd = scalePID_d(code_value());
  4947. #ifdef PID_ADD_EXTRUSION_RATE
  4948. if(code_seen('C')) Kc = code_value();
  4949. #endif
  4950. updatePID();
  4951. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4952. SERIAL_PROTOCOL(" p:");
  4953. SERIAL_PROTOCOL(Kp);
  4954. SERIAL_PROTOCOL(" i:");
  4955. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4956. SERIAL_PROTOCOL(" d:");
  4957. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4958. #ifdef PID_ADD_EXTRUSION_RATE
  4959. SERIAL_PROTOCOL(" c:");
  4960. //Kc does not have scaling applied above, or in resetting defaults
  4961. SERIAL_PROTOCOL(Kc);
  4962. #endif
  4963. SERIAL_PROTOCOLLN("");
  4964. }
  4965. break;
  4966. #endif //PIDTEMP
  4967. #ifdef PIDTEMPBED
  4968. case 304: // M304
  4969. {
  4970. if(code_seen('P')) bedKp = code_value();
  4971. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4972. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4973. updatePID();
  4974. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4975. SERIAL_PROTOCOL(" p:");
  4976. SERIAL_PROTOCOL(bedKp);
  4977. SERIAL_PROTOCOL(" i:");
  4978. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4979. SERIAL_PROTOCOL(" d:");
  4980. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4981. SERIAL_PROTOCOLLN("");
  4982. }
  4983. break;
  4984. #endif //PIDTEMP
  4985. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4986. {
  4987. #ifdef CHDK
  4988. SET_OUTPUT(CHDK);
  4989. WRITE(CHDK, HIGH);
  4990. chdkHigh = millis();
  4991. chdkActive = true;
  4992. #else
  4993. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4994. const uint8_t NUM_PULSES=16;
  4995. const float PULSE_LENGTH=0.01524;
  4996. for(int i=0; i < NUM_PULSES; i++) {
  4997. WRITE(PHOTOGRAPH_PIN, HIGH);
  4998. _delay_ms(PULSE_LENGTH);
  4999. WRITE(PHOTOGRAPH_PIN, LOW);
  5000. _delay_ms(PULSE_LENGTH);
  5001. }
  5002. delay(7.33);
  5003. for(int i=0; i < NUM_PULSES; i++) {
  5004. WRITE(PHOTOGRAPH_PIN, HIGH);
  5005. _delay_ms(PULSE_LENGTH);
  5006. WRITE(PHOTOGRAPH_PIN, LOW);
  5007. _delay_ms(PULSE_LENGTH);
  5008. }
  5009. #endif
  5010. #endif //chdk end if
  5011. }
  5012. break;
  5013. #ifdef DOGLCD
  5014. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5015. {
  5016. if (code_seen('C')) {
  5017. lcd_setcontrast( ((int)code_value())&63 );
  5018. }
  5019. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5020. SERIAL_PROTOCOL(lcd_contrast);
  5021. SERIAL_PROTOCOLLN("");
  5022. }
  5023. break;
  5024. #endif
  5025. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5026. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5027. {
  5028. float temp = .0;
  5029. if (code_seen('S')) temp=code_value();
  5030. set_extrude_min_temp(temp);
  5031. }
  5032. break;
  5033. #endif
  5034. case 303: // M303 PID autotune
  5035. {
  5036. float temp = 150.0;
  5037. int e=0;
  5038. int c=5;
  5039. if (code_seen('E')) e=code_value();
  5040. if (e<0)
  5041. temp=70;
  5042. if (code_seen('S')) temp=code_value();
  5043. if (code_seen('C')) c=code_value();
  5044. PID_autotune(temp, e, c);
  5045. }
  5046. break;
  5047. case 400: // M400 finish all moves
  5048. {
  5049. st_synchronize();
  5050. }
  5051. break;
  5052. case 500: // M500 Store settings in EEPROM
  5053. {
  5054. Config_StoreSettings(EEPROM_OFFSET);
  5055. }
  5056. break;
  5057. case 501: // M501 Read settings from EEPROM
  5058. {
  5059. Config_RetrieveSettings(EEPROM_OFFSET);
  5060. }
  5061. break;
  5062. case 502: // M502 Revert to default settings
  5063. {
  5064. Config_ResetDefault();
  5065. }
  5066. break;
  5067. case 503: // M503 print settings currently in memory
  5068. {
  5069. Config_PrintSettings();
  5070. }
  5071. break;
  5072. case 509: //M509 Force language selection
  5073. {
  5074. lcd_force_language_selection();
  5075. SERIAL_ECHO_START;
  5076. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5077. }
  5078. break;
  5079. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5080. case 540:
  5081. {
  5082. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5083. }
  5084. break;
  5085. #endif
  5086. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5087. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5088. {
  5089. float value;
  5090. if (code_seen('Z'))
  5091. {
  5092. value = code_value();
  5093. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5094. {
  5095. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5096. SERIAL_ECHO_START;
  5097. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5098. SERIAL_PROTOCOLLN("");
  5099. }
  5100. else
  5101. {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5104. SERIAL_ECHORPGM(MSG_Z_MIN);
  5105. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5106. SERIAL_ECHORPGM(MSG_Z_MAX);
  5107. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5108. SERIAL_PROTOCOLLN("");
  5109. }
  5110. }
  5111. else
  5112. {
  5113. SERIAL_ECHO_START;
  5114. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5115. SERIAL_ECHO(-zprobe_zoffset);
  5116. SERIAL_PROTOCOLLN("");
  5117. }
  5118. break;
  5119. }
  5120. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5121. #ifdef FILAMENTCHANGEENABLE
  5122. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5123. {
  5124. #ifdef PAT9125
  5125. bool old_fsensor_enabled = fsensor_enabled;
  5126. fsensor_enabled = false; //temporary solution for unexpected restarting
  5127. #endif //PAT9125
  5128. st_synchronize();
  5129. float target[4];
  5130. float lastpos[4];
  5131. if (farm_mode)
  5132. {
  5133. prusa_statistics(22);
  5134. }
  5135. feedmultiplyBckp=feedmultiply;
  5136. int8_t TooLowZ = 0;
  5137. float HotendTempBckp = degTargetHotend(active_extruder);
  5138. int fanSpeedBckp = fanSpeed;
  5139. target[X_AXIS]=current_position[X_AXIS];
  5140. target[Y_AXIS]=current_position[Y_AXIS];
  5141. target[Z_AXIS]=current_position[Z_AXIS];
  5142. target[E_AXIS]=current_position[E_AXIS];
  5143. lastpos[X_AXIS]=current_position[X_AXIS];
  5144. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5145. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5146. lastpos[E_AXIS]=current_position[E_AXIS];
  5147. //Restract extruder
  5148. if(code_seen('E'))
  5149. {
  5150. target[E_AXIS]+= code_value();
  5151. }
  5152. else
  5153. {
  5154. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5155. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5156. #endif
  5157. }
  5158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5159. //Lift Z
  5160. if(code_seen('Z'))
  5161. {
  5162. target[Z_AXIS]+= code_value();
  5163. }
  5164. else
  5165. {
  5166. #ifdef FILAMENTCHANGE_ZADD
  5167. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5168. if(target[Z_AXIS] < 10){
  5169. target[Z_AXIS]+= 10 ;
  5170. TooLowZ = 1;
  5171. }else{
  5172. TooLowZ = 0;
  5173. }
  5174. #endif
  5175. }
  5176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5177. //Move XY to side
  5178. if(code_seen('X'))
  5179. {
  5180. target[X_AXIS]+= code_value();
  5181. }
  5182. else
  5183. {
  5184. #ifdef FILAMENTCHANGE_XPOS
  5185. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5186. #endif
  5187. }
  5188. if(code_seen('Y'))
  5189. {
  5190. target[Y_AXIS]= code_value();
  5191. }
  5192. else
  5193. {
  5194. #ifdef FILAMENTCHANGE_YPOS
  5195. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5196. #endif
  5197. }
  5198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5199. st_synchronize();
  5200. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5201. uint8_t cnt = 0;
  5202. int counterBeep = 0;
  5203. fanSpeed = 0;
  5204. unsigned long waiting_start_time = millis();
  5205. uint8_t wait_for_user_state = 0;
  5206. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5207. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5208. //cnt++;
  5209. manage_heater();
  5210. manage_inactivity(true);
  5211. /*#ifdef SNMM
  5212. target[E_AXIS] += 0.002;
  5213. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5214. #endif // SNMM*/
  5215. //if (cnt == 0)
  5216. {
  5217. #if BEEPER > 0
  5218. if (counterBeep == 500) {
  5219. counterBeep = 0;
  5220. }
  5221. SET_OUTPUT(BEEPER);
  5222. if (counterBeep == 0) {
  5223. WRITE(BEEPER, HIGH);
  5224. }
  5225. if (counterBeep == 20) {
  5226. WRITE(BEEPER, LOW);
  5227. }
  5228. counterBeep++;
  5229. #else
  5230. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5231. lcd_buzz(1000 / 6, 100);
  5232. #else
  5233. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5234. #endif
  5235. #endif
  5236. }
  5237. switch (wait_for_user_state) {
  5238. case 0:
  5239. delay_keep_alive(4);
  5240. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5241. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5242. wait_for_user_state = 1;
  5243. setTargetHotend(0, 0);
  5244. setTargetHotend(0, 1);
  5245. setTargetHotend(0, 2);
  5246. st_synchronize();
  5247. disable_e0();
  5248. disable_e1();
  5249. disable_e2();
  5250. }
  5251. break;
  5252. case 1:
  5253. delay_keep_alive(4);
  5254. if (lcd_clicked()) {
  5255. setTargetHotend(HotendTempBckp, active_extruder);
  5256. lcd_wait_for_heater();
  5257. wait_for_user_state = 2;
  5258. }
  5259. break;
  5260. case 2:
  5261. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5262. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5263. waiting_start_time = millis();
  5264. wait_for_user_state = 0;
  5265. }
  5266. else {
  5267. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5268. lcd.setCursor(1, 4);
  5269. lcd.print(ftostr3(degHotend(active_extruder)));
  5270. }
  5271. break;
  5272. }
  5273. }
  5274. WRITE(BEEPER, LOW);
  5275. lcd_change_fil_state = 0;
  5276. // Unload filament
  5277. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5278. KEEPALIVE_STATE(IN_HANDLER);
  5279. custom_message = true;
  5280. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5281. if (code_seen('L'))
  5282. {
  5283. target[E_AXIS] += code_value();
  5284. }
  5285. else
  5286. {
  5287. #ifdef SNMM
  5288. #else
  5289. #ifdef FILAMENTCHANGE_FINALRETRACT
  5290. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5291. #endif
  5292. #endif // SNMM
  5293. }
  5294. #ifdef SNMM
  5295. target[E_AXIS] += 12;
  5296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5297. target[E_AXIS] += 6;
  5298. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5299. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5300. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5301. st_synchronize();
  5302. target[E_AXIS] += (FIL_COOLING);
  5303. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5304. target[E_AXIS] += (FIL_COOLING*-1);
  5305. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5306. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5308. st_synchronize();
  5309. #else
  5310. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5311. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5312. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5313. st_synchronize();
  5314. #ifdef TMC2130
  5315. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5316. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5317. #else
  5318. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5319. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5320. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5321. #endif //TMC2130
  5322. target[E_AXIS] -= 45;
  5323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5324. st_synchronize();
  5325. target[E_AXIS] -= 15;
  5326. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5327. st_synchronize();
  5328. target[E_AXIS] -= 20;
  5329. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5330. st_synchronize();
  5331. #ifdef TMC2130
  5332. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5333. #else
  5334. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5335. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5336. else st_current_set(2, tmp_motor_loud[2]);
  5337. #endif //TMC2130
  5338. #endif // SNMM
  5339. //finish moves
  5340. st_synchronize();
  5341. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5342. //disable extruder steppers so filament can be removed
  5343. disable_e0();
  5344. disable_e1();
  5345. disable_e2();
  5346. delay(100);
  5347. WRITE(BEEPER, HIGH);
  5348. counterBeep = 0;
  5349. while(!lcd_clicked() && (counterBeep < 50)) {
  5350. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5351. delay_keep_alive(100);
  5352. counterBeep++;
  5353. }
  5354. WRITE(BEEPER, LOW);
  5355. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5356. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5357. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5358. //lcd_return_to_status();
  5359. lcd_update_enable(true);
  5360. //Wait for user to insert filament
  5361. lcd_wait_interact();
  5362. //load_filament_time = millis();
  5363. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5364. #ifdef PAT9125
  5365. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5366. #endif //PAT9125
  5367. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5368. while(!lcd_clicked())
  5369. {
  5370. manage_heater();
  5371. manage_inactivity(true);
  5372. #ifdef PAT9125
  5373. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5374. {
  5375. tone(BEEPER, 1000);
  5376. delay_keep_alive(50);
  5377. noTone(BEEPER);
  5378. break;
  5379. }
  5380. #endif //PAT9125
  5381. /*#ifdef SNMM
  5382. target[E_AXIS] += 0.002;
  5383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5384. #endif // SNMM*/
  5385. }
  5386. #ifdef PAT9125
  5387. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5388. #endif //PAT9125
  5389. //WRITE(BEEPER, LOW);
  5390. KEEPALIVE_STATE(IN_HANDLER);
  5391. #ifdef SNMM
  5392. display_loading();
  5393. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5394. do {
  5395. target[E_AXIS] += 0.002;
  5396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5397. delay_keep_alive(2);
  5398. } while (!lcd_clicked());
  5399. KEEPALIVE_STATE(IN_HANDLER);
  5400. /*if (millis() - load_filament_time > 2) {
  5401. load_filament_time = millis();
  5402. target[E_AXIS] += 0.001;
  5403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5404. }*/
  5405. //Filament inserted
  5406. //Feed the filament to the end of nozzle quickly
  5407. st_synchronize();
  5408. target[E_AXIS] += bowden_length[snmm_extruder];
  5409. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5410. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5412. target[E_AXIS] += 40;
  5413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5414. target[E_AXIS] += 10;
  5415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5416. #else
  5417. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5419. #endif // SNMM
  5420. //Extrude some filament
  5421. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5423. //Wait for user to check the state
  5424. lcd_change_fil_state = 0;
  5425. lcd_loading_filament();
  5426. tone(BEEPER, 500);
  5427. delay_keep_alive(50);
  5428. noTone(BEEPER);
  5429. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5430. lcd_change_fil_state = 0;
  5431. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5432. lcd_alright();
  5433. KEEPALIVE_STATE(IN_HANDLER);
  5434. switch(lcd_change_fil_state){
  5435. // Filament failed to load so load it again
  5436. case 2:
  5437. #ifdef SNMM
  5438. display_loading();
  5439. do {
  5440. target[E_AXIS] += 0.002;
  5441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5442. delay_keep_alive(2);
  5443. } while (!lcd_clicked());
  5444. st_synchronize();
  5445. target[E_AXIS] += bowden_length[snmm_extruder];
  5446. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5447. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5449. target[E_AXIS] += 40;
  5450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5451. target[E_AXIS] += 10;
  5452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5453. #else
  5454. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5456. #endif
  5457. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5459. lcd_loading_filament();
  5460. break;
  5461. // Filament loaded properly but color is not clear
  5462. case 3:
  5463. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5465. lcd_loading_color();
  5466. break;
  5467. // Everything good
  5468. default:
  5469. lcd_change_success();
  5470. lcd_update_enable(true);
  5471. break;
  5472. }
  5473. }
  5474. //Not let's go back to print
  5475. fanSpeed = fanSpeedBckp;
  5476. //Feed a little of filament to stabilize pressure
  5477. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5479. //Retract
  5480. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5482. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5483. //Move XY back
  5484. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5485. //Move Z back
  5486. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5487. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5488. //Unretract
  5489. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5490. //Set E position to original
  5491. plan_set_e_position(lastpos[E_AXIS]);
  5492. //Recover feed rate
  5493. feedmultiply=feedmultiplyBckp;
  5494. char cmd[9];
  5495. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5496. enquecommand(cmd);
  5497. lcd_setstatuspgm(_T(WELCOME_MSG));
  5498. custom_message = false;
  5499. custom_message_type = 0;
  5500. #ifdef PAT9125
  5501. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5502. if (fsensor_M600)
  5503. {
  5504. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5505. st_synchronize();
  5506. while (!is_buffer_empty())
  5507. {
  5508. process_commands();
  5509. cmdqueue_pop_front();
  5510. }
  5511. fsensor_enable();
  5512. fsensor_restore_print_and_continue();
  5513. }
  5514. #endif //PAT9125
  5515. }
  5516. break;
  5517. #endif //FILAMENTCHANGEENABLE
  5518. case 601: {
  5519. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5520. }
  5521. break;
  5522. case 602: {
  5523. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5524. }
  5525. break;
  5526. #ifdef PINDA_THERMISTOR
  5527. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5528. {
  5529. int setTargetPinda = 0;
  5530. if (code_seen('S')) {
  5531. setTargetPinda = code_value();
  5532. }
  5533. else {
  5534. break;
  5535. }
  5536. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5537. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5538. SERIAL_PROTOCOL(setTargetPinda);
  5539. SERIAL_PROTOCOLLN("");
  5540. codenum = millis();
  5541. cancel_heatup = false;
  5542. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5543. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5544. {
  5545. SERIAL_PROTOCOLPGM("P:");
  5546. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5547. SERIAL_PROTOCOLPGM("/");
  5548. SERIAL_PROTOCOL(setTargetPinda);
  5549. SERIAL_PROTOCOLLN("");
  5550. codenum = millis();
  5551. }
  5552. manage_heater();
  5553. manage_inactivity();
  5554. lcd_update();
  5555. }
  5556. LCD_MESSAGERPGM(_T(MSG_OK));
  5557. break;
  5558. }
  5559. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5560. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5561. uint8_t cal_status = calibration_status_pinda();
  5562. int16_t usteps = 0;
  5563. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5564. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5565. for (uint8_t i = 0; i < 6; i++)
  5566. {
  5567. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5568. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5569. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5570. SERIAL_PROTOCOLPGM(", ");
  5571. SERIAL_PROTOCOL(35 + (i * 5));
  5572. SERIAL_PROTOCOLPGM(", ");
  5573. SERIAL_PROTOCOL(usteps);
  5574. SERIAL_PROTOCOLPGM(", ");
  5575. SERIAL_PROTOCOL(mm * 1000);
  5576. SERIAL_PROTOCOLLN("");
  5577. }
  5578. }
  5579. else if (code_seen('!')) { // ! - Set factory default values
  5580. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5581. int16_t z_shift = 8; //40C - 20um - 8usteps
  5582. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5583. z_shift = 24; //45C - 60um - 24usteps
  5584. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5585. z_shift = 48; //50C - 120um - 48usteps
  5586. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5587. z_shift = 80; //55C - 200um - 80usteps
  5588. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5589. z_shift = 120; //60C - 300um - 120usteps
  5590. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5591. SERIAL_PROTOCOLLN("factory restored");
  5592. }
  5593. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5594. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5595. int16_t z_shift = 0;
  5596. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5597. SERIAL_PROTOCOLLN("zerorized");
  5598. }
  5599. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5600. int16_t usteps = code_value();
  5601. if (code_seen('I')) {
  5602. byte index = code_value();
  5603. if ((index >= 0) && (index < 5)) {
  5604. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5605. SERIAL_PROTOCOLLN("OK");
  5606. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5607. for (uint8_t i = 0; i < 6; i++)
  5608. {
  5609. usteps = 0;
  5610. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5611. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5612. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5613. SERIAL_PROTOCOLPGM(", ");
  5614. SERIAL_PROTOCOL(35 + (i * 5));
  5615. SERIAL_PROTOCOLPGM(", ");
  5616. SERIAL_PROTOCOL(usteps);
  5617. SERIAL_PROTOCOLPGM(", ");
  5618. SERIAL_PROTOCOL(mm * 1000);
  5619. SERIAL_PROTOCOLLN("");
  5620. }
  5621. }
  5622. }
  5623. }
  5624. else {
  5625. SERIAL_PROTOCOLPGM("no valid command");
  5626. }
  5627. break;
  5628. #endif //PINDA_THERMISTOR
  5629. #ifdef LIN_ADVANCE
  5630. case 900: // M900: Set LIN_ADVANCE options.
  5631. gcode_M900();
  5632. break;
  5633. #endif
  5634. case 907: // M907 Set digital trimpot motor current using axis codes.
  5635. {
  5636. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5637. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5638. if(code_seen('B')) st_current_set(4,code_value());
  5639. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5640. #endif
  5641. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5642. if(code_seen('X')) st_current_set(0, code_value());
  5643. #endif
  5644. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5645. if(code_seen('Z')) st_current_set(1, code_value());
  5646. #endif
  5647. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5648. if(code_seen('E')) st_current_set(2, code_value());
  5649. #endif
  5650. }
  5651. break;
  5652. case 908: // M908 Control digital trimpot directly.
  5653. {
  5654. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5655. uint8_t channel,current;
  5656. if(code_seen('P')) channel=code_value();
  5657. if(code_seen('S')) current=code_value();
  5658. digitalPotWrite(channel, current);
  5659. #endif
  5660. }
  5661. break;
  5662. #ifdef TMC2130
  5663. case 910: // M910 TMC2130 init
  5664. {
  5665. tmc2130_init();
  5666. }
  5667. break;
  5668. case 911: // M911 Set TMC2130 holding currents
  5669. {
  5670. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5671. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5672. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5673. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5674. }
  5675. break;
  5676. case 912: // M912 Set TMC2130 running currents
  5677. {
  5678. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5679. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5680. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5681. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5682. }
  5683. break;
  5684. case 913: // M913 Print TMC2130 currents
  5685. {
  5686. tmc2130_print_currents();
  5687. }
  5688. break;
  5689. case 914: // M914 Set normal mode
  5690. {
  5691. tmc2130_mode = TMC2130_MODE_NORMAL;
  5692. tmc2130_init();
  5693. }
  5694. break;
  5695. case 915: // M915 Set silent mode
  5696. {
  5697. tmc2130_mode = TMC2130_MODE_SILENT;
  5698. tmc2130_init();
  5699. }
  5700. break;
  5701. case 916: // M916 Set sg_thrs
  5702. {
  5703. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5704. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5705. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5706. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5707. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5708. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5709. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5710. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5711. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5712. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5713. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5714. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5715. }
  5716. break;
  5717. case 917: // M917 Set TMC2130 pwm_ampl
  5718. {
  5719. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5720. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5721. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5722. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5723. }
  5724. break;
  5725. case 918: // M918 Set TMC2130 pwm_grad
  5726. {
  5727. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5728. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5729. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5730. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5731. }
  5732. break;
  5733. #endif //TMC2130
  5734. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5735. {
  5736. #ifdef TMC2130
  5737. if(code_seen('E'))
  5738. {
  5739. uint16_t res_new = code_value();
  5740. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5741. {
  5742. st_synchronize();
  5743. uint8_t axis = E_AXIS;
  5744. uint16_t res = tmc2130_get_res(axis);
  5745. tmc2130_set_res(axis, res_new);
  5746. if (res_new > res)
  5747. {
  5748. uint16_t fac = (res_new / res);
  5749. axis_steps_per_unit[axis] *= fac;
  5750. position[E_AXIS] *= fac;
  5751. }
  5752. else
  5753. {
  5754. uint16_t fac = (res / res_new);
  5755. axis_steps_per_unit[axis] /= fac;
  5756. position[E_AXIS] /= fac;
  5757. }
  5758. }
  5759. }
  5760. #else //TMC2130
  5761. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5762. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5763. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5764. if(code_seen('B')) microstep_mode(4,code_value());
  5765. microstep_readings();
  5766. #endif
  5767. #endif //TMC2130
  5768. }
  5769. break;
  5770. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5771. {
  5772. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5773. if(code_seen('S')) switch((int)code_value())
  5774. {
  5775. case 1:
  5776. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5777. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5778. break;
  5779. case 2:
  5780. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5781. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5782. break;
  5783. }
  5784. microstep_readings();
  5785. #endif
  5786. }
  5787. break;
  5788. case 701: //M701: load filament
  5789. {
  5790. gcode_M701();
  5791. }
  5792. break;
  5793. case 702:
  5794. {
  5795. #ifdef SNMM
  5796. if (code_seen('U')) {
  5797. extr_unload_used(); //unload all filaments which were used in current print
  5798. }
  5799. else if (code_seen('C')) {
  5800. extr_unload(); //unload just current filament
  5801. }
  5802. else {
  5803. extr_unload_all(); //unload all filaments
  5804. }
  5805. #else
  5806. #ifdef PAT9125
  5807. bool old_fsensor_enabled = fsensor_enabled;
  5808. fsensor_enabled = false;
  5809. #endif //PAT9125
  5810. custom_message = true;
  5811. custom_message_type = 2;
  5812. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5813. // extr_unload2();
  5814. current_position[E_AXIS] -= 45;
  5815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5816. st_synchronize();
  5817. current_position[E_AXIS] -= 15;
  5818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5819. st_synchronize();
  5820. current_position[E_AXIS] -= 20;
  5821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5822. st_synchronize();
  5823. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5824. //disable extruder steppers so filament can be removed
  5825. disable_e0();
  5826. disable_e1();
  5827. disable_e2();
  5828. delay(100);
  5829. WRITE(BEEPER, HIGH);
  5830. uint8_t counterBeep = 0;
  5831. while (!lcd_clicked() && (counterBeep < 50)) {
  5832. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5833. delay_keep_alive(100);
  5834. counterBeep++;
  5835. }
  5836. WRITE(BEEPER, LOW);
  5837. st_synchronize();
  5838. while (lcd_clicked()) delay_keep_alive(100);
  5839. lcd_update_enable(true);
  5840. lcd_setstatuspgm(_T(WELCOME_MSG));
  5841. custom_message = false;
  5842. custom_message_type = 0;
  5843. #ifdef PAT9125
  5844. fsensor_enabled = old_fsensor_enabled;
  5845. #endif //PAT9125
  5846. #endif
  5847. }
  5848. break;
  5849. case 999: // M999: Restart after being stopped
  5850. Stopped = false;
  5851. lcd_reset_alert_level();
  5852. gcode_LastN = Stopped_gcode_LastN;
  5853. FlushSerialRequestResend();
  5854. break;
  5855. default:
  5856. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5857. }
  5858. } // end if(code_seen('M')) (end of M codes)
  5859. else if(code_seen('T'))
  5860. {
  5861. int index;
  5862. st_synchronize();
  5863. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5864. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5865. SERIAL_ECHOLNPGM("Invalid T code.");
  5866. }
  5867. else {
  5868. if (*(strchr_pointer + index) == '?') {
  5869. tmp_extruder = choose_extruder_menu();
  5870. }
  5871. else {
  5872. tmp_extruder = code_value();
  5873. }
  5874. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5875. #ifdef SNMM
  5876. #ifdef LIN_ADVANCE
  5877. if (snmm_extruder != tmp_extruder)
  5878. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5879. #endif
  5880. snmm_extruder = tmp_extruder;
  5881. delay(100);
  5882. disable_e0();
  5883. disable_e1();
  5884. disable_e2();
  5885. pinMode(E_MUX0_PIN, OUTPUT);
  5886. pinMode(E_MUX1_PIN, OUTPUT);
  5887. delay(100);
  5888. SERIAL_ECHO_START;
  5889. SERIAL_ECHO("T:");
  5890. SERIAL_ECHOLN((int)tmp_extruder);
  5891. switch (tmp_extruder) {
  5892. case 1:
  5893. WRITE(E_MUX0_PIN, HIGH);
  5894. WRITE(E_MUX1_PIN, LOW);
  5895. break;
  5896. case 2:
  5897. WRITE(E_MUX0_PIN, LOW);
  5898. WRITE(E_MUX1_PIN, HIGH);
  5899. break;
  5900. case 3:
  5901. WRITE(E_MUX0_PIN, HIGH);
  5902. WRITE(E_MUX1_PIN, HIGH);
  5903. break;
  5904. default:
  5905. WRITE(E_MUX0_PIN, LOW);
  5906. WRITE(E_MUX1_PIN, LOW);
  5907. break;
  5908. }
  5909. delay(100);
  5910. #else
  5911. if (tmp_extruder >= EXTRUDERS) {
  5912. SERIAL_ECHO_START;
  5913. SERIAL_ECHOPGM("T");
  5914. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5915. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5916. }
  5917. else {
  5918. boolean make_move = false;
  5919. if (code_seen('F')) {
  5920. make_move = true;
  5921. next_feedrate = code_value();
  5922. if (next_feedrate > 0.0) {
  5923. feedrate = next_feedrate;
  5924. }
  5925. }
  5926. #if EXTRUDERS > 1
  5927. if (tmp_extruder != active_extruder) {
  5928. // Save current position to return to after applying extruder offset
  5929. memcpy(destination, current_position, sizeof(destination));
  5930. // Offset extruder (only by XY)
  5931. int i;
  5932. for (i = 0; i < 2; i++) {
  5933. current_position[i] = current_position[i] -
  5934. extruder_offset[i][active_extruder] +
  5935. extruder_offset[i][tmp_extruder];
  5936. }
  5937. // Set the new active extruder and position
  5938. active_extruder = tmp_extruder;
  5939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5940. // Move to the old position if 'F' was in the parameters
  5941. if (make_move && Stopped == false) {
  5942. prepare_move();
  5943. }
  5944. }
  5945. #endif
  5946. SERIAL_ECHO_START;
  5947. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  5948. SERIAL_PROTOCOLLN((int)active_extruder);
  5949. }
  5950. #endif
  5951. }
  5952. } // end if(code_seen('T')) (end of T codes)
  5953. #ifdef DEBUG_DCODES
  5954. else if (code_seen('D')) // D codes (debug)
  5955. {
  5956. switch((int)code_value())
  5957. {
  5958. case -1: // D-1 - Endless loop
  5959. dcode__1(); break;
  5960. case 0: // D0 - Reset
  5961. dcode_0(); break;
  5962. case 1: // D1 - Clear EEPROM
  5963. dcode_1(); break;
  5964. case 2: // D2 - Read/Write RAM
  5965. dcode_2(); break;
  5966. case 3: // D3 - Read/Write EEPROM
  5967. dcode_3(); break;
  5968. case 4: // D4 - Read/Write PIN
  5969. dcode_4(); break;
  5970. case 5: // D5 - Read/Write FLASH
  5971. // dcode_5(); break;
  5972. break;
  5973. case 6: // D6 - Read/Write external FLASH
  5974. dcode_6(); break;
  5975. case 7: // D7 - Read/Write Bootloader
  5976. dcode_7(); break;
  5977. case 8: // D8 - Read/Write PINDA
  5978. dcode_8(); break;
  5979. case 9: // D9 - Read/Write ADC
  5980. dcode_9(); break;
  5981. case 10: // D10 - XYZ calibration = OK
  5982. dcode_10(); break;
  5983. #ifdef TMC2130
  5984. case 2130: // D9125 - TMC2130
  5985. dcode_2130(); break;
  5986. #endif //TMC2130
  5987. #ifdef PAT9125
  5988. case 9125: // D9125 - PAT9125
  5989. dcode_9125(); break;
  5990. #endif //PAT9125
  5991. }
  5992. }
  5993. #endif //DEBUG_DCODES
  5994. else
  5995. {
  5996. SERIAL_ECHO_START;
  5997. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5998. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5999. SERIAL_ECHOLNPGM("\"(2)");
  6000. }
  6001. KEEPALIVE_STATE(NOT_BUSY);
  6002. ClearToSend();
  6003. }
  6004. void FlushSerialRequestResend()
  6005. {
  6006. //char cmdbuffer[bufindr][100]="Resend:";
  6007. MYSERIAL.flush();
  6008. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6009. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6010. previous_millis_cmd = millis();
  6011. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6012. }
  6013. // Confirm the execution of a command, if sent from a serial line.
  6014. // Execution of a command from a SD card will not be confirmed.
  6015. void ClearToSend()
  6016. {
  6017. previous_millis_cmd = millis();
  6018. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  6019. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6020. }
  6021. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6022. void update_currents() {
  6023. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6024. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6025. float tmp_motor[3];
  6026. //SERIAL_ECHOLNPGM("Currents updated: ");
  6027. if (destination[Z_AXIS] < Z_SILENT) {
  6028. //SERIAL_ECHOLNPGM("LOW");
  6029. for (uint8_t i = 0; i < 3; i++) {
  6030. st_current_set(i, current_low[i]);
  6031. /*MYSERIAL.print(int(i));
  6032. SERIAL_ECHOPGM(": ");
  6033. MYSERIAL.println(current_low[i]);*/
  6034. }
  6035. }
  6036. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6037. //SERIAL_ECHOLNPGM("HIGH");
  6038. for (uint8_t i = 0; i < 3; i++) {
  6039. st_current_set(i, current_high[i]);
  6040. /*MYSERIAL.print(int(i));
  6041. SERIAL_ECHOPGM(": ");
  6042. MYSERIAL.println(current_high[i]);*/
  6043. }
  6044. }
  6045. else {
  6046. for (uint8_t i = 0; i < 3; i++) {
  6047. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6048. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6049. st_current_set(i, tmp_motor[i]);
  6050. /*MYSERIAL.print(int(i));
  6051. SERIAL_ECHOPGM(": ");
  6052. MYSERIAL.println(tmp_motor[i]);*/
  6053. }
  6054. }
  6055. }
  6056. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6057. void get_coordinates()
  6058. {
  6059. bool seen[4]={false,false,false,false};
  6060. for(int8_t i=0; i < NUM_AXIS; i++) {
  6061. if(code_seen(axis_codes[i]))
  6062. {
  6063. bool relative = axis_relative_modes[i] || relative_mode;
  6064. destination[i] = (float)code_value();
  6065. if (i == E_AXIS) {
  6066. float emult = extruder_multiplier[active_extruder];
  6067. if (emult != 1.) {
  6068. if (! relative) {
  6069. destination[i] -= current_position[i];
  6070. relative = true;
  6071. }
  6072. destination[i] *= emult;
  6073. }
  6074. }
  6075. if (relative)
  6076. destination[i] += current_position[i];
  6077. seen[i]=true;
  6078. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6079. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6080. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6081. }
  6082. else destination[i] = current_position[i]; //Are these else lines really needed?
  6083. }
  6084. if(code_seen('F')) {
  6085. next_feedrate = code_value();
  6086. #ifdef MAX_SILENT_FEEDRATE
  6087. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6088. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6089. #endif //MAX_SILENT_FEEDRATE
  6090. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6091. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6092. {
  6093. // float e_max_speed =
  6094. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6095. }
  6096. }
  6097. }
  6098. void get_arc_coordinates()
  6099. {
  6100. #ifdef SF_ARC_FIX
  6101. bool relative_mode_backup = relative_mode;
  6102. relative_mode = true;
  6103. #endif
  6104. get_coordinates();
  6105. #ifdef SF_ARC_FIX
  6106. relative_mode=relative_mode_backup;
  6107. #endif
  6108. if(code_seen('I')) {
  6109. offset[0] = code_value();
  6110. }
  6111. else {
  6112. offset[0] = 0.0;
  6113. }
  6114. if(code_seen('J')) {
  6115. offset[1] = code_value();
  6116. }
  6117. else {
  6118. offset[1] = 0.0;
  6119. }
  6120. }
  6121. void clamp_to_software_endstops(float target[3])
  6122. {
  6123. #ifdef DEBUG_DISABLE_SWLIMITS
  6124. return;
  6125. #endif //DEBUG_DISABLE_SWLIMITS
  6126. world2machine_clamp(target[0], target[1]);
  6127. // Clamp the Z coordinate.
  6128. if (min_software_endstops) {
  6129. float negative_z_offset = 0;
  6130. #ifdef ENABLE_AUTO_BED_LEVELING
  6131. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6132. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6133. #endif
  6134. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6135. }
  6136. if (max_software_endstops) {
  6137. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6138. }
  6139. }
  6140. #ifdef MESH_BED_LEVELING
  6141. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6142. float dx = x - current_position[X_AXIS];
  6143. float dy = y - current_position[Y_AXIS];
  6144. float dz = z - current_position[Z_AXIS];
  6145. int n_segments = 0;
  6146. if (mbl.active) {
  6147. float len = abs(dx) + abs(dy);
  6148. if (len > 0)
  6149. // Split to 3cm segments or shorter.
  6150. n_segments = int(ceil(len / 30.f));
  6151. }
  6152. if (n_segments > 1) {
  6153. float de = e - current_position[E_AXIS];
  6154. for (int i = 1; i < n_segments; ++ i) {
  6155. float t = float(i) / float(n_segments);
  6156. plan_buffer_line(
  6157. current_position[X_AXIS] + t * dx,
  6158. current_position[Y_AXIS] + t * dy,
  6159. current_position[Z_AXIS] + t * dz,
  6160. current_position[E_AXIS] + t * de,
  6161. feed_rate, extruder);
  6162. }
  6163. }
  6164. // The rest of the path.
  6165. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6166. current_position[X_AXIS] = x;
  6167. current_position[Y_AXIS] = y;
  6168. current_position[Z_AXIS] = z;
  6169. current_position[E_AXIS] = e;
  6170. }
  6171. #endif // MESH_BED_LEVELING
  6172. void prepare_move()
  6173. {
  6174. clamp_to_software_endstops(destination);
  6175. previous_millis_cmd = millis();
  6176. // Do not use feedmultiply for E or Z only moves
  6177. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6178. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6179. }
  6180. else {
  6181. #ifdef MESH_BED_LEVELING
  6182. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6183. #else
  6184. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6185. #endif
  6186. }
  6187. for(int8_t i=0; i < NUM_AXIS; i++) {
  6188. current_position[i] = destination[i];
  6189. }
  6190. }
  6191. void prepare_arc_move(char isclockwise) {
  6192. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6193. // Trace the arc
  6194. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6195. // As far as the parser is concerned, the position is now == target. In reality the
  6196. // motion control system might still be processing the action and the real tool position
  6197. // in any intermediate location.
  6198. for(int8_t i=0; i < NUM_AXIS; i++) {
  6199. current_position[i] = destination[i];
  6200. }
  6201. previous_millis_cmd = millis();
  6202. }
  6203. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6204. #if defined(FAN_PIN)
  6205. #if CONTROLLERFAN_PIN == FAN_PIN
  6206. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6207. #endif
  6208. #endif
  6209. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6210. unsigned long lastMotorCheck = 0;
  6211. void controllerFan()
  6212. {
  6213. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6214. {
  6215. lastMotorCheck = millis();
  6216. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6217. #if EXTRUDERS > 2
  6218. || !READ(E2_ENABLE_PIN)
  6219. #endif
  6220. #if EXTRUDER > 1
  6221. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6222. || !READ(X2_ENABLE_PIN)
  6223. #endif
  6224. || !READ(E1_ENABLE_PIN)
  6225. #endif
  6226. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6227. {
  6228. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6229. }
  6230. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6231. {
  6232. digitalWrite(CONTROLLERFAN_PIN, 0);
  6233. analogWrite(CONTROLLERFAN_PIN, 0);
  6234. }
  6235. else
  6236. {
  6237. // allows digital or PWM fan output to be used (see M42 handling)
  6238. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6239. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6240. }
  6241. }
  6242. }
  6243. #endif
  6244. #ifdef TEMP_STAT_LEDS
  6245. static bool blue_led = false;
  6246. static bool red_led = false;
  6247. static uint32_t stat_update = 0;
  6248. void handle_status_leds(void) {
  6249. float max_temp = 0.0;
  6250. if(millis() > stat_update) {
  6251. stat_update += 500; // Update every 0.5s
  6252. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6253. max_temp = max(max_temp, degHotend(cur_extruder));
  6254. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6255. }
  6256. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6257. max_temp = max(max_temp, degTargetBed());
  6258. max_temp = max(max_temp, degBed());
  6259. #endif
  6260. if((max_temp > 55.0) && (red_led == false)) {
  6261. digitalWrite(STAT_LED_RED, 1);
  6262. digitalWrite(STAT_LED_BLUE, 0);
  6263. red_led = true;
  6264. blue_led = false;
  6265. }
  6266. if((max_temp < 54.0) && (blue_led == false)) {
  6267. digitalWrite(STAT_LED_RED, 0);
  6268. digitalWrite(STAT_LED_BLUE, 1);
  6269. red_led = false;
  6270. blue_led = true;
  6271. }
  6272. }
  6273. }
  6274. #endif
  6275. #ifdef SAFETYTIMER
  6276. /**
  6277. * @brief Turn off heating after 30 minutes of inactivity
  6278. *
  6279. * Full screen blocking notification message is shown after heater turning off.
  6280. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6281. * damage print.
  6282. */
  6283. static void handleSafetyTimer()
  6284. {
  6285. #if (EXTRUDERS > 1)
  6286. #error Implemented only for one extruder.
  6287. #endif //(EXTRUDERS > 1)
  6288. static Timer safetyTimer;
  6289. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6290. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6291. {
  6292. safetyTimer.stop();
  6293. }
  6294. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6295. {
  6296. safetyTimer.start();
  6297. }
  6298. else if (safetyTimer.expired(1800000ul)) //30 min
  6299. {
  6300. setTargetBed(0);
  6301. setTargetHotend(0, 0);
  6302. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6303. }
  6304. }
  6305. #endif //SAFETYTIMER
  6306. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6307. {
  6308. #ifdef PAT9125
  6309. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6310. {
  6311. if (fsensor_autoload_enabled)
  6312. {
  6313. if (fsensor_check_autoload())
  6314. {
  6315. if (degHotend0() > EXTRUDE_MINTEMP)
  6316. {
  6317. fsensor_autoload_check_stop();
  6318. tone(BEEPER, 1000);
  6319. delay_keep_alive(50);
  6320. noTone(BEEPER);
  6321. loading_flag = true;
  6322. enquecommand_front_P((PSTR("M701")));
  6323. }
  6324. else
  6325. {
  6326. lcd_update_enable(false);
  6327. lcd_implementation_clear();
  6328. lcd.setCursor(0, 0);
  6329. lcd_printPGM(_T(MSG_ERROR));
  6330. lcd.setCursor(0, 2);
  6331. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6332. delay(2000);
  6333. lcd_implementation_clear();
  6334. lcd_update_enable(true);
  6335. }
  6336. }
  6337. }
  6338. else
  6339. fsensor_autoload_check_start();
  6340. }
  6341. else
  6342. if (fsensor_autoload_enabled)
  6343. fsensor_autoload_check_stop();
  6344. #endif //PAT9125
  6345. #ifdef SAFETYTIMER
  6346. handleSafetyTimer();
  6347. #endif //SAFETYTIMER
  6348. #if defined(KILL_PIN) && KILL_PIN > -1
  6349. static int killCount = 0; // make the inactivity button a bit less responsive
  6350. const int KILL_DELAY = 10000;
  6351. #endif
  6352. if(buflen < (BUFSIZE-1)){
  6353. get_command();
  6354. }
  6355. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6356. if(max_inactive_time)
  6357. kill("", 4);
  6358. if(stepper_inactive_time) {
  6359. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6360. {
  6361. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6362. disable_x();
  6363. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6364. disable_y();
  6365. disable_z();
  6366. disable_e0();
  6367. disable_e1();
  6368. disable_e2();
  6369. }
  6370. }
  6371. }
  6372. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6373. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6374. {
  6375. chdkActive = false;
  6376. WRITE(CHDK, LOW);
  6377. }
  6378. #endif
  6379. #if defined(KILL_PIN) && KILL_PIN > -1
  6380. // Check if the kill button was pressed and wait just in case it was an accidental
  6381. // key kill key press
  6382. // -------------------------------------------------------------------------------
  6383. if( 0 == READ(KILL_PIN) )
  6384. {
  6385. killCount++;
  6386. }
  6387. else if (killCount > 0)
  6388. {
  6389. killCount--;
  6390. }
  6391. // Exceeded threshold and we can confirm that it was not accidental
  6392. // KILL the machine
  6393. // ----------------------------------------------------------------
  6394. if ( killCount >= KILL_DELAY)
  6395. {
  6396. kill("", 5);
  6397. }
  6398. #endif
  6399. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6400. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6401. #endif
  6402. #ifdef EXTRUDER_RUNOUT_PREVENT
  6403. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6404. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6405. {
  6406. bool oldstatus=READ(E0_ENABLE_PIN);
  6407. enable_e0();
  6408. float oldepos=current_position[E_AXIS];
  6409. float oldedes=destination[E_AXIS];
  6410. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6411. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6412. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6413. current_position[E_AXIS]=oldepos;
  6414. destination[E_AXIS]=oldedes;
  6415. plan_set_e_position(oldepos);
  6416. previous_millis_cmd=millis();
  6417. st_synchronize();
  6418. WRITE(E0_ENABLE_PIN,oldstatus);
  6419. }
  6420. #endif
  6421. #ifdef TEMP_STAT_LEDS
  6422. handle_status_leds();
  6423. #endif
  6424. check_axes_activity();
  6425. }
  6426. void kill(const char *full_screen_message, unsigned char id)
  6427. {
  6428. SERIAL_ECHOPGM("KILL: ");
  6429. MYSERIAL.println(int(id));
  6430. //return;
  6431. cli(); // Stop interrupts
  6432. disable_heater();
  6433. disable_x();
  6434. // SERIAL_ECHOLNPGM("kill - disable Y");
  6435. disable_y();
  6436. disable_z();
  6437. disable_e0();
  6438. disable_e1();
  6439. disable_e2();
  6440. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6441. pinMode(PS_ON_PIN,INPUT);
  6442. #endif
  6443. SERIAL_ERROR_START;
  6444. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6445. if (full_screen_message != NULL) {
  6446. SERIAL_ERRORLNRPGM(full_screen_message);
  6447. lcd_display_message_fullscreen_P(full_screen_message);
  6448. } else {
  6449. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6450. }
  6451. // FMC small patch to update the LCD before ending
  6452. sei(); // enable interrupts
  6453. for ( int i=5; i--; lcd_update())
  6454. {
  6455. delay(200);
  6456. }
  6457. cli(); // disable interrupts
  6458. suicide();
  6459. while(1)
  6460. {
  6461. #ifdef WATCHDOG
  6462. wdt_reset();
  6463. #endif //WATCHDOG
  6464. /* Intentionally left empty */
  6465. } // Wait for reset
  6466. }
  6467. void Stop()
  6468. {
  6469. disable_heater();
  6470. if(Stopped == false) {
  6471. Stopped = true;
  6472. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6473. SERIAL_ERROR_START;
  6474. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6475. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6476. }
  6477. }
  6478. bool IsStopped() { return Stopped; };
  6479. #ifdef FAST_PWM_FAN
  6480. void setPwmFrequency(uint8_t pin, int val)
  6481. {
  6482. val &= 0x07;
  6483. switch(digitalPinToTimer(pin))
  6484. {
  6485. #if defined(TCCR0A)
  6486. case TIMER0A:
  6487. case TIMER0B:
  6488. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6489. // TCCR0B |= val;
  6490. break;
  6491. #endif
  6492. #if defined(TCCR1A)
  6493. case TIMER1A:
  6494. case TIMER1B:
  6495. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6496. // TCCR1B |= val;
  6497. break;
  6498. #endif
  6499. #if defined(TCCR2)
  6500. case TIMER2:
  6501. case TIMER2:
  6502. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6503. TCCR2 |= val;
  6504. break;
  6505. #endif
  6506. #if defined(TCCR2A)
  6507. case TIMER2A:
  6508. case TIMER2B:
  6509. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6510. TCCR2B |= val;
  6511. break;
  6512. #endif
  6513. #if defined(TCCR3A)
  6514. case TIMER3A:
  6515. case TIMER3B:
  6516. case TIMER3C:
  6517. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6518. TCCR3B |= val;
  6519. break;
  6520. #endif
  6521. #if defined(TCCR4A)
  6522. case TIMER4A:
  6523. case TIMER4B:
  6524. case TIMER4C:
  6525. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6526. TCCR4B |= val;
  6527. break;
  6528. #endif
  6529. #if defined(TCCR5A)
  6530. case TIMER5A:
  6531. case TIMER5B:
  6532. case TIMER5C:
  6533. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6534. TCCR5B |= val;
  6535. break;
  6536. #endif
  6537. }
  6538. }
  6539. #endif //FAST_PWM_FAN
  6540. bool setTargetedHotend(int code){
  6541. tmp_extruder = active_extruder;
  6542. if(code_seen('T')) {
  6543. tmp_extruder = code_value();
  6544. if(tmp_extruder >= EXTRUDERS) {
  6545. SERIAL_ECHO_START;
  6546. switch(code){
  6547. case 104:
  6548. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6549. break;
  6550. case 105:
  6551. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6552. break;
  6553. case 109:
  6554. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6555. break;
  6556. case 218:
  6557. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6558. break;
  6559. case 221:
  6560. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6561. break;
  6562. }
  6563. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6564. return true;
  6565. }
  6566. }
  6567. return false;
  6568. }
  6569. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6570. {
  6571. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6572. {
  6573. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6574. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6575. }
  6576. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6577. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6578. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6579. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6580. total_filament_used = 0;
  6581. }
  6582. float calculate_extruder_multiplier(float diameter) {
  6583. float out = 1.f;
  6584. if (volumetric_enabled && diameter > 0.f) {
  6585. float area = M_PI * diameter * diameter * 0.25;
  6586. out = 1.f / area;
  6587. }
  6588. if (extrudemultiply != 100)
  6589. out *= float(extrudemultiply) * 0.01f;
  6590. return out;
  6591. }
  6592. void calculate_extruder_multipliers() {
  6593. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6594. #if EXTRUDERS > 1
  6595. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6596. #if EXTRUDERS > 2
  6597. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6598. #endif
  6599. #endif
  6600. }
  6601. void delay_keep_alive(unsigned int ms)
  6602. {
  6603. for (;;) {
  6604. manage_heater();
  6605. // Manage inactivity, but don't disable steppers on timeout.
  6606. manage_inactivity(true);
  6607. lcd_update();
  6608. if (ms == 0)
  6609. break;
  6610. else if (ms >= 50) {
  6611. delay(50);
  6612. ms -= 50;
  6613. } else {
  6614. delay(ms);
  6615. ms = 0;
  6616. }
  6617. }
  6618. }
  6619. void wait_for_heater(long codenum) {
  6620. #ifdef TEMP_RESIDENCY_TIME
  6621. long residencyStart;
  6622. residencyStart = -1;
  6623. /* continue to loop until we have reached the target temp
  6624. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6625. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6626. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6627. #else
  6628. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6629. #endif //TEMP_RESIDENCY_TIME
  6630. if ((millis() - codenum) > 1000UL)
  6631. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6632. if (!farm_mode) {
  6633. SERIAL_PROTOCOLPGM("T:");
  6634. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6635. SERIAL_PROTOCOLPGM(" E:");
  6636. SERIAL_PROTOCOL((int)tmp_extruder);
  6637. #ifdef TEMP_RESIDENCY_TIME
  6638. SERIAL_PROTOCOLPGM(" W:");
  6639. if (residencyStart > -1)
  6640. {
  6641. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6642. SERIAL_PROTOCOLLN(codenum);
  6643. }
  6644. else
  6645. {
  6646. SERIAL_PROTOCOLLN("?");
  6647. }
  6648. }
  6649. #else
  6650. SERIAL_PROTOCOLLN("");
  6651. #endif
  6652. codenum = millis();
  6653. }
  6654. manage_heater();
  6655. manage_inactivity();
  6656. lcd_update();
  6657. #ifdef TEMP_RESIDENCY_TIME
  6658. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6659. or when current temp falls outside the hysteresis after target temp was reached */
  6660. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6661. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6662. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6663. {
  6664. residencyStart = millis();
  6665. }
  6666. #endif //TEMP_RESIDENCY_TIME
  6667. }
  6668. }
  6669. void check_babystep() {
  6670. int babystep_z;
  6671. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6672. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6673. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6674. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6675. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6676. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6677. lcd_update_enable(true);
  6678. }
  6679. }
  6680. #ifdef DIS
  6681. void d_setup()
  6682. {
  6683. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6684. pinMode(D_DATA, INPUT_PULLUP);
  6685. pinMode(D_REQUIRE, OUTPUT);
  6686. digitalWrite(D_REQUIRE, HIGH);
  6687. }
  6688. float d_ReadData()
  6689. {
  6690. int digit[13];
  6691. String mergeOutput;
  6692. float output;
  6693. digitalWrite(D_REQUIRE, HIGH);
  6694. for (int i = 0; i<13; i++)
  6695. {
  6696. for (int j = 0; j < 4; j++)
  6697. {
  6698. while (digitalRead(D_DATACLOCK) == LOW) {}
  6699. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6700. bitWrite(digit[i], j, digitalRead(D_DATA));
  6701. }
  6702. }
  6703. digitalWrite(D_REQUIRE, LOW);
  6704. mergeOutput = "";
  6705. output = 0;
  6706. for (int r = 5; r <= 10; r++) //Merge digits
  6707. {
  6708. mergeOutput += digit[r];
  6709. }
  6710. output = mergeOutput.toFloat();
  6711. if (digit[4] == 8) //Handle sign
  6712. {
  6713. output *= -1;
  6714. }
  6715. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6716. {
  6717. output /= 10;
  6718. }
  6719. return output;
  6720. }
  6721. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6722. int t1 = 0;
  6723. int t_delay = 0;
  6724. int digit[13];
  6725. int m;
  6726. char str[3];
  6727. //String mergeOutput;
  6728. char mergeOutput[15];
  6729. float output;
  6730. int mesh_point = 0; //index number of calibration point
  6731. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6732. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6733. float mesh_home_z_search = 4;
  6734. float row[x_points_num];
  6735. int ix = 0;
  6736. int iy = 0;
  6737. char* filename_wldsd = "wldsd.txt";
  6738. char data_wldsd[70];
  6739. char numb_wldsd[10];
  6740. d_setup();
  6741. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6742. // We don't know where we are! HOME!
  6743. // Push the commands to the front of the message queue in the reverse order!
  6744. // There shall be always enough space reserved for these commands.
  6745. repeatcommand_front(); // repeat G80 with all its parameters
  6746. enquecommand_front_P((PSTR("G28 W0")));
  6747. enquecommand_front_P((PSTR("G1 Z5")));
  6748. return;
  6749. }
  6750. bool custom_message_old = custom_message;
  6751. unsigned int custom_message_type_old = custom_message_type;
  6752. unsigned int custom_message_state_old = custom_message_state;
  6753. custom_message = true;
  6754. custom_message_type = 1;
  6755. custom_message_state = (x_points_num * y_points_num) + 10;
  6756. lcd_update(1);
  6757. mbl.reset();
  6758. babystep_undo();
  6759. card.openFile(filename_wldsd, false);
  6760. current_position[Z_AXIS] = mesh_home_z_search;
  6761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6762. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6763. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6764. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6765. setup_for_endstop_move(false);
  6766. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6767. SERIAL_PROTOCOL(x_points_num);
  6768. SERIAL_PROTOCOLPGM(",");
  6769. SERIAL_PROTOCOL(y_points_num);
  6770. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6771. SERIAL_PROTOCOL(mesh_home_z_search);
  6772. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6773. SERIAL_PROTOCOL(x_dimension);
  6774. SERIAL_PROTOCOLPGM(",");
  6775. SERIAL_PROTOCOL(y_dimension);
  6776. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6777. while (mesh_point != x_points_num * y_points_num) {
  6778. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6779. iy = mesh_point / x_points_num;
  6780. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6781. float z0 = 0.f;
  6782. current_position[Z_AXIS] = mesh_home_z_search;
  6783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6784. st_synchronize();
  6785. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6786. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6788. st_synchronize();
  6789. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6790. break;
  6791. card.closefile();
  6792. }
  6793. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6794. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6795. //strcat(data_wldsd, numb_wldsd);
  6796. //MYSERIAL.println(data_wldsd);
  6797. //delay(1000);
  6798. //delay(3000);
  6799. //t1 = millis();
  6800. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6801. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6802. memset(digit, 0, sizeof(digit));
  6803. //cli();
  6804. digitalWrite(D_REQUIRE, LOW);
  6805. for (int i = 0; i<13; i++)
  6806. {
  6807. //t1 = millis();
  6808. for (int j = 0; j < 4; j++)
  6809. {
  6810. while (digitalRead(D_DATACLOCK) == LOW) {}
  6811. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6812. bitWrite(digit[i], j, digitalRead(D_DATA));
  6813. }
  6814. //t_delay = (millis() - t1);
  6815. //SERIAL_PROTOCOLPGM(" ");
  6816. //SERIAL_PROTOCOL_F(t_delay, 5);
  6817. //SERIAL_PROTOCOLPGM(" ");
  6818. }
  6819. //sei();
  6820. digitalWrite(D_REQUIRE, HIGH);
  6821. mergeOutput[0] = '\0';
  6822. output = 0;
  6823. for (int r = 5; r <= 10; r++) //Merge digits
  6824. {
  6825. sprintf(str, "%d", digit[r]);
  6826. strcat(mergeOutput, str);
  6827. }
  6828. output = atof(mergeOutput);
  6829. if (digit[4] == 8) //Handle sign
  6830. {
  6831. output *= -1;
  6832. }
  6833. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6834. {
  6835. output *= 0.1;
  6836. }
  6837. //output = d_ReadData();
  6838. //row[ix] = current_position[Z_AXIS];
  6839. memset(data_wldsd, 0, sizeof(data_wldsd));
  6840. for (int i = 0; i <3; i++) {
  6841. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6842. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6843. strcat(data_wldsd, numb_wldsd);
  6844. strcat(data_wldsd, ";");
  6845. }
  6846. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6847. dtostrf(output, 8, 5, numb_wldsd);
  6848. strcat(data_wldsd, numb_wldsd);
  6849. //strcat(data_wldsd, ";");
  6850. card.write_command(data_wldsd);
  6851. //row[ix] = d_ReadData();
  6852. row[ix] = output; // current_position[Z_AXIS];
  6853. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6854. for (int i = 0; i < x_points_num; i++) {
  6855. SERIAL_PROTOCOLPGM(" ");
  6856. SERIAL_PROTOCOL_F(row[i], 5);
  6857. }
  6858. SERIAL_PROTOCOLPGM("\n");
  6859. }
  6860. custom_message_state--;
  6861. mesh_point++;
  6862. lcd_update(1);
  6863. }
  6864. card.closefile();
  6865. }
  6866. #endif
  6867. void temp_compensation_start() {
  6868. custom_message = true;
  6869. custom_message_type = 5;
  6870. custom_message_state = PINDA_HEAT_T + 1;
  6871. lcd_update(2);
  6872. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6873. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6874. }
  6875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6876. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6877. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6878. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6880. st_synchronize();
  6881. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6882. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6883. delay_keep_alive(1000);
  6884. custom_message_state = PINDA_HEAT_T - i;
  6885. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6886. else lcd_update(1);
  6887. }
  6888. custom_message_type = 0;
  6889. custom_message_state = 0;
  6890. custom_message = false;
  6891. }
  6892. void temp_compensation_apply() {
  6893. int i_add;
  6894. int compensation_value;
  6895. int z_shift = 0;
  6896. float z_shift_mm;
  6897. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6898. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6899. i_add = (target_temperature_bed - 60) / 10;
  6900. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6901. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6902. }else {
  6903. //interpolation
  6904. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6905. }
  6906. SERIAL_PROTOCOLPGM("\n");
  6907. SERIAL_PROTOCOLPGM("Z shift applied:");
  6908. MYSERIAL.print(z_shift_mm);
  6909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6910. st_synchronize();
  6911. plan_set_z_position(current_position[Z_AXIS]);
  6912. }
  6913. else {
  6914. //we have no temp compensation data
  6915. }
  6916. }
  6917. float temp_comp_interpolation(float inp_temperature) {
  6918. //cubic spline interpolation
  6919. int n, i, j, k;
  6920. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6921. int shift[10];
  6922. int temp_C[10];
  6923. n = 6; //number of measured points
  6924. shift[0] = 0;
  6925. for (i = 0; i < n; i++) {
  6926. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6927. temp_C[i] = 50 + i * 10; //temperature in C
  6928. #ifdef PINDA_THERMISTOR
  6929. temp_C[i] = 35 + i * 5; //temperature in C
  6930. #else
  6931. temp_C[i] = 50 + i * 10; //temperature in C
  6932. #endif
  6933. x[i] = (float)temp_C[i];
  6934. f[i] = (float)shift[i];
  6935. }
  6936. if (inp_temperature < x[0]) return 0;
  6937. for (i = n - 1; i>0; i--) {
  6938. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6939. h[i - 1] = x[i] - x[i - 1];
  6940. }
  6941. //*********** formation of h, s , f matrix **************
  6942. for (i = 1; i<n - 1; i++) {
  6943. m[i][i] = 2 * (h[i - 1] + h[i]);
  6944. if (i != 1) {
  6945. m[i][i - 1] = h[i - 1];
  6946. m[i - 1][i] = h[i - 1];
  6947. }
  6948. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6949. }
  6950. //*********** forward elimination **************
  6951. for (i = 1; i<n - 2; i++) {
  6952. temp = (m[i + 1][i] / m[i][i]);
  6953. for (j = 1; j <= n - 1; j++)
  6954. m[i + 1][j] -= temp*m[i][j];
  6955. }
  6956. //*********** backward substitution *********
  6957. for (i = n - 2; i>0; i--) {
  6958. sum = 0;
  6959. for (j = i; j <= n - 2; j++)
  6960. sum += m[i][j] * s[j];
  6961. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6962. }
  6963. for (i = 0; i<n - 1; i++)
  6964. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6965. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6966. b = s[i] / 2;
  6967. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6968. d = f[i];
  6969. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6970. }
  6971. return sum;
  6972. }
  6973. #ifdef PINDA_THERMISTOR
  6974. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6975. {
  6976. if (!temp_cal_active) return 0;
  6977. if (!calibration_status_pinda()) return 0;
  6978. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6979. }
  6980. #endif //PINDA_THERMISTOR
  6981. void long_pause() //long pause print
  6982. {
  6983. st_synchronize();
  6984. //save currently set parameters to global variables
  6985. saved_feedmultiply = feedmultiply;
  6986. HotendTempBckp = degTargetHotend(active_extruder);
  6987. fanSpeedBckp = fanSpeed;
  6988. start_pause_print = millis();
  6989. //save position
  6990. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6991. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6992. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6993. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6994. //retract
  6995. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6997. //lift z
  6998. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6999. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7001. //set nozzle target temperature to 0
  7002. setTargetHotend(0, 0);
  7003. setTargetHotend(0, 1);
  7004. setTargetHotend(0, 2);
  7005. //Move XY to side
  7006. current_position[X_AXIS] = X_PAUSE_POS;
  7007. current_position[Y_AXIS] = Y_PAUSE_POS;
  7008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7009. // Turn off the print fan
  7010. fanSpeed = 0;
  7011. st_synchronize();
  7012. }
  7013. void serialecho_temperatures() {
  7014. float tt = degHotend(active_extruder);
  7015. SERIAL_PROTOCOLPGM("T:");
  7016. SERIAL_PROTOCOL(tt);
  7017. SERIAL_PROTOCOLPGM(" E:");
  7018. SERIAL_PROTOCOL((int)active_extruder);
  7019. SERIAL_PROTOCOLPGM(" B:");
  7020. SERIAL_PROTOCOL_F(degBed(), 1);
  7021. SERIAL_PROTOCOLLN("");
  7022. }
  7023. extern uint32_t sdpos_atomic;
  7024. #ifdef UVLO_SUPPORT
  7025. void uvlo_()
  7026. {
  7027. unsigned long time_start = millis();
  7028. bool sd_print = card.sdprinting;
  7029. // Conserve power as soon as possible.
  7030. disable_x();
  7031. disable_y();
  7032. disable_e0();
  7033. #ifdef TMC2130
  7034. tmc2130_set_current_h(Z_AXIS, 20);
  7035. tmc2130_set_current_r(Z_AXIS, 20);
  7036. tmc2130_set_current_h(E_AXIS, 20);
  7037. tmc2130_set_current_r(E_AXIS, 20);
  7038. #endif //TMC2130
  7039. // Indicate that the interrupt has been triggered.
  7040. // SERIAL_ECHOLNPGM("UVLO");
  7041. // Read out the current Z motor microstep counter. This will be later used
  7042. // for reaching the zero full step before powering off.
  7043. uint16_t z_microsteps = 0;
  7044. #ifdef TMC2130
  7045. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7046. #endif //TMC2130
  7047. // Calculate the file position, from which to resume this print.
  7048. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7049. {
  7050. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7051. sd_position -= sdlen_planner;
  7052. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7053. sd_position -= sdlen_cmdqueue;
  7054. if (sd_position < 0) sd_position = 0;
  7055. }
  7056. // Backup the feedrate in mm/min.
  7057. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7058. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7059. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7060. // are in action.
  7061. planner_abort_hard();
  7062. // Store the current extruder position.
  7063. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7064. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7065. // Clean the input command queue.
  7066. cmdqueue_reset();
  7067. card.sdprinting = false;
  7068. // card.closefile();
  7069. // Enable stepper driver interrupt to move Z axis.
  7070. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7071. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7072. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7073. sei();
  7074. plan_buffer_line(
  7075. current_position[X_AXIS],
  7076. current_position[Y_AXIS],
  7077. current_position[Z_AXIS],
  7078. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7079. 95, active_extruder);
  7080. st_synchronize();
  7081. disable_e0();
  7082. plan_buffer_line(
  7083. current_position[X_AXIS],
  7084. current_position[Y_AXIS],
  7085. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7086. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7087. 40, active_extruder);
  7088. st_synchronize();
  7089. disable_e0();
  7090. plan_buffer_line(
  7091. current_position[X_AXIS],
  7092. current_position[Y_AXIS],
  7093. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7094. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7095. 40, active_extruder);
  7096. st_synchronize();
  7097. disable_e0();
  7098. disable_z();
  7099. // Move Z up to the next 0th full step.
  7100. // Write the file position.
  7101. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7102. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7103. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7104. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7105. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7106. // Scale the z value to 1u resolution.
  7107. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7108. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7109. }
  7110. // Read out the current Z motor microstep counter. This will be later used
  7111. // for reaching the zero full step before powering off.
  7112. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7113. // Store the current position.
  7114. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7115. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7116. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7117. // Store the current feed rate, temperatures and fan speed.
  7118. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7119. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7120. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7121. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7122. // Finaly store the "power outage" flag.
  7123. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7124. st_synchronize();
  7125. SERIAL_ECHOPGM("stps");
  7126. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7127. disable_z();
  7128. // Increment power failure counter
  7129. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7130. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7131. SERIAL_ECHOLNPGM("UVLO - end");
  7132. MYSERIAL.println(millis() - time_start);
  7133. #if 0
  7134. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7135. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7137. st_synchronize();
  7138. #endif
  7139. cli();
  7140. volatile unsigned int ppcount = 0;
  7141. SET_OUTPUT(BEEPER);
  7142. WRITE(BEEPER, HIGH);
  7143. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7144. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7145. }
  7146. WRITE(BEEPER, LOW);
  7147. while(1){
  7148. #if 1
  7149. WRITE(BEEPER, LOW);
  7150. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7151. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7152. }
  7153. #endif
  7154. };
  7155. }
  7156. #endif //UVLO_SUPPORT
  7157. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7158. void setup_fan_interrupt() {
  7159. //INT7
  7160. DDRE &= ~(1 << 7); //input pin
  7161. PORTE &= ~(1 << 7); //no internal pull-up
  7162. //start with sensing rising edge
  7163. EICRB &= ~(1 << 6);
  7164. EICRB |= (1 << 7);
  7165. //enable INT7 interrupt
  7166. EIMSK |= (1 << 7);
  7167. }
  7168. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7169. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7170. ISR(INT7_vect) {
  7171. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7172. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7173. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7174. t_fan_rising_edge = millis_nc();
  7175. }
  7176. else { //interrupt was triggered by falling edge
  7177. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7178. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7179. }
  7180. }
  7181. EICRB ^= (1 << 6); //change edge
  7182. }
  7183. #endif
  7184. #ifdef UVLO_SUPPORT
  7185. void setup_uvlo_interrupt() {
  7186. DDRE &= ~(1 << 4); //input pin
  7187. PORTE &= ~(1 << 4); //no internal pull-up
  7188. //sensing falling edge
  7189. EICRB |= (1 << 0);
  7190. EICRB &= ~(1 << 1);
  7191. //enable INT4 interrupt
  7192. EIMSK |= (1 << 4);
  7193. }
  7194. ISR(INT4_vect) {
  7195. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7196. SERIAL_ECHOLNPGM("INT4");
  7197. if (IS_SD_PRINTING) uvlo_();
  7198. }
  7199. void recover_print(uint8_t automatic) {
  7200. char cmd[30];
  7201. lcd_update_enable(true);
  7202. lcd_update(2);
  7203. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7204. recover_machine_state_after_power_panic();
  7205. // Set the target bed and nozzle temperatures.
  7206. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7207. enquecommand(cmd);
  7208. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7209. enquecommand(cmd);
  7210. // Lift the print head, so one may remove the excess priming material.
  7211. if (current_position[Z_AXIS] < 25)
  7212. enquecommand_P(PSTR("G1 Z25 F800"));
  7213. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7214. enquecommand_P(PSTR("G28 X Y"));
  7215. // Set the target bed and nozzle temperatures and wait.
  7216. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7217. enquecommand(cmd);
  7218. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7219. enquecommand(cmd);
  7220. enquecommand_P(PSTR("M83")); //E axis relative mode
  7221. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7222. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7223. if(automatic == 0){
  7224. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7225. }
  7226. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7227. // Mark the power panic status as inactive.
  7228. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7229. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7230. delay_keep_alive(1000);
  7231. }*/
  7232. SERIAL_ECHOPGM("After waiting for temp:");
  7233. SERIAL_ECHOPGM("Current position X_AXIS:");
  7234. MYSERIAL.println(current_position[X_AXIS]);
  7235. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7236. MYSERIAL.println(current_position[Y_AXIS]);
  7237. // Restart the print.
  7238. restore_print_from_eeprom();
  7239. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7240. MYSERIAL.print(current_position[Z_AXIS]);
  7241. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7242. MYSERIAL.print(current_position[E_AXIS]);
  7243. }
  7244. void recover_machine_state_after_power_panic()
  7245. {
  7246. char cmd[30];
  7247. // 1) Recover the logical cordinates at the time of the power panic.
  7248. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7249. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7250. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7251. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7252. // The current position after power panic is moved to the next closest 0th full step.
  7253. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7254. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7255. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7256. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7257. sprintf_P(cmd, PSTR("G92 E"));
  7258. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7259. enquecommand(cmd);
  7260. }
  7261. memcpy(destination, current_position, sizeof(destination));
  7262. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7263. print_world_coordinates();
  7264. // 2) Initialize the logical to physical coordinate system transformation.
  7265. world2machine_initialize();
  7266. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7267. mbl.active = false;
  7268. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7269. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7270. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7271. // Scale the z value to 10u resolution.
  7272. int16_t v;
  7273. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7274. if (v != 0)
  7275. mbl.active = true;
  7276. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7277. }
  7278. if (mbl.active)
  7279. mbl.upsample_3x3();
  7280. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7281. // print_mesh_bed_leveling_table();
  7282. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7283. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7284. babystep_load();
  7285. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7287. // 6) Power up the motors, mark their positions as known.
  7288. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7289. axis_known_position[X_AXIS] = true; enable_x();
  7290. axis_known_position[Y_AXIS] = true; enable_y();
  7291. axis_known_position[Z_AXIS] = true; enable_z();
  7292. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7293. print_physical_coordinates();
  7294. // 7) Recover the target temperatures.
  7295. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7296. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7297. }
  7298. void restore_print_from_eeprom() {
  7299. float x_rec, y_rec, z_pos;
  7300. int feedrate_rec;
  7301. uint8_t fan_speed_rec;
  7302. char cmd[30];
  7303. char* c;
  7304. char filename[13];
  7305. uint8_t depth = 0;
  7306. char dir_name[9];
  7307. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7308. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7309. SERIAL_ECHOPGM("Feedrate:");
  7310. MYSERIAL.println(feedrate_rec);
  7311. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7312. MYSERIAL.println(int(depth));
  7313. for (int i = 0; i < depth; i++) {
  7314. for (int j = 0; j < 8; j++) {
  7315. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7316. }
  7317. dir_name[8] = '\0';
  7318. MYSERIAL.println(dir_name);
  7319. card.chdir(dir_name);
  7320. }
  7321. for (int i = 0; i < 8; i++) {
  7322. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7323. }
  7324. filename[8] = '\0';
  7325. MYSERIAL.print(filename);
  7326. strcat_P(filename, PSTR(".gco"));
  7327. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7328. for (c = &cmd[4]; *c; c++)
  7329. *c = tolower(*c);
  7330. enquecommand(cmd);
  7331. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7332. SERIAL_ECHOPGM("Position read from eeprom:");
  7333. MYSERIAL.println(position);
  7334. // E axis relative mode.
  7335. enquecommand_P(PSTR("M83"));
  7336. // Move to the XY print position in logical coordinates, where the print has been killed.
  7337. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7338. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7339. strcat_P(cmd, PSTR(" F2000"));
  7340. enquecommand(cmd);
  7341. // Move the Z axis down to the print, in logical coordinates.
  7342. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7343. enquecommand(cmd);
  7344. // Unretract.
  7345. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7346. // Set the feedrate saved at the power panic.
  7347. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7348. enquecommand(cmd);
  7349. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7350. {
  7351. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7352. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7353. }
  7354. // Set the fan speed saved at the power panic.
  7355. strcpy_P(cmd, PSTR("M106 S"));
  7356. strcat(cmd, itostr3(int(fan_speed_rec)));
  7357. enquecommand(cmd);
  7358. // Set a position in the file.
  7359. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7360. enquecommand(cmd);
  7361. // Start SD print.
  7362. enquecommand_P(PSTR("M24"));
  7363. }
  7364. #endif //UVLO_SUPPORT
  7365. ////////////////////////////////////////////////////////////////////////////////
  7366. // save/restore printing
  7367. void stop_and_save_print_to_ram(float z_move, float e_move)
  7368. {
  7369. if (saved_printing) return;
  7370. cli();
  7371. unsigned char nplanner_blocks = number_of_blocks();
  7372. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7373. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7374. saved_sdpos -= sdlen_planner;
  7375. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7376. saved_sdpos -= sdlen_cmdqueue;
  7377. #if 0
  7378. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7379. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7380. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7381. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7382. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7383. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7384. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7385. {
  7386. card.setIndex(saved_sdpos);
  7387. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7388. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7389. MYSERIAL.print(char(card.get()));
  7390. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7391. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7392. MYSERIAL.print(char(card.get()));
  7393. SERIAL_ECHOLNPGM("End of command buffer");
  7394. }
  7395. {
  7396. // Print the content of the planner buffer, line by line:
  7397. card.setIndex(saved_sdpos);
  7398. int8_t iline = 0;
  7399. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7400. SERIAL_ECHOPGM("Planner line (from file): ");
  7401. MYSERIAL.print(int(iline), DEC);
  7402. SERIAL_ECHOPGM(", length: ");
  7403. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7404. SERIAL_ECHOPGM(", steps: (");
  7405. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7406. SERIAL_ECHOPGM(",");
  7407. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7408. SERIAL_ECHOPGM(",");
  7409. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7410. SERIAL_ECHOPGM(",");
  7411. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7412. SERIAL_ECHOPGM("), events: ");
  7413. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7414. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7415. MYSERIAL.print(char(card.get()));
  7416. }
  7417. }
  7418. {
  7419. // Print the content of the command buffer, line by line:
  7420. int8_t iline = 0;
  7421. union {
  7422. struct {
  7423. char lo;
  7424. char hi;
  7425. } lohi;
  7426. uint16_t value;
  7427. } sdlen_single;
  7428. int _bufindr = bufindr;
  7429. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7430. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7431. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7432. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7433. }
  7434. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7435. MYSERIAL.print(int(iline), DEC);
  7436. SERIAL_ECHOPGM(", type: ");
  7437. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7438. SERIAL_ECHOPGM(", len: ");
  7439. MYSERIAL.println(sdlen_single.value, DEC);
  7440. // Print the content of the buffer line.
  7441. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7442. SERIAL_ECHOPGM("Buffer line (from file): ");
  7443. MYSERIAL.print(int(iline), DEC);
  7444. MYSERIAL.println(int(iline), DEC);
  7445. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7446. MYSERIAL.print(char(card.get()));
  7447. if (-- _buflen == 0)
  7448. break;
  7449. // First skip the current command ID and iterate up to the end of the string.
  7450. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7451. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7452. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7453. // If the end of the buffer was empty,
  7454. if (_bufindr == sizeof(cmdbuffer)) {
  7455. // skip to the start and find the nonzero command.
  7456. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7457. }
  7458. }
  7459. }
  7460. #endif
  7461. #if 0
  7462. saved_feedrate2 = feedrate; //save feedrate
  7463. #else
  7464. // Try to deduce the feedrate from the first block of the planner.
  7465. // Speed is in mm/min.
  7466. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7467. #endif
  7468. planner_abort_hard(); //abort printing
  7469. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7470. saved_active_extruder = active_extruder; //save active_extruder
  7471. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7472. cmdqueue_reset(); //empty cmdqueue
  7473. card.sdprinting = false;
  7474. // card.closefile();
  7475. saved_printing = true;
  7476. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7477. st_reset_timer();
  7478. sei();
  7479. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7480. #if 1
  7481. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7482. char buf[48];
  7483. strcpy_P(buf, PSTR("G1 Z"));
  7484. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7485. strcat_P(buf, PSTR(" E"));
  7486. // Relative extrusion
  7487. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7488. strcat_P(buf, PSTR(" F"));
  7489. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7490. // At this point the command queue is empty.
  7491. enquecommand(buf, false);
  7492. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7493. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7494. repeatcommand_front();
  7495. #else
  7496. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7497. st_synchronize(); //wait moving
  7498. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7499. memcpy(destination, current_position, sizeof(destination));
  7500. #endif
  7501. }
  7502. }
  7503. void restore_print_from_ram_and_continue(float e_move)
  7504. {
  7505. if (!saved_printing) return;
  7506. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7507. // current_position[axis] = st_get_position_mm(axis);
  7508. active_extruder = saved_active_extruder; //restore active_extruder
  7509. feedrate = saved_feedrate2; //restore feedrate
  7510. float e = saved_pos[E_AXIS] - e_move;
  7511. plan_set_e_position(e);
  7512. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7513. st_synchronize();
  7514. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7515. memcpy(destination, current_position, sizeof(destination));
  7516. card.setIndex(saved_sdpos);
  7517. sdpos_atomic = saved_sdpos;
  7518. card.sdprinting = true;
  7519. saved_printing = false;
  7520. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7521. }
  7522. void print_world_coordinates()
  7523. {
  7524. SERIAL_ECHOPGM("world coordinates: (");
  7525. MYSERIAL.print(current_position[X_AXIS], 3);
  7526. SERIAL_ECHOPGM(", ");
  7527. MYSERIAL.print(current_position[Y_AXIS], 3);
  7528. SERIAL_ECHOPGM(", ");
  7529. MYSERIAL.print(current_position[Z_AXIS], 3);
  7530. SERIAL_ECHOLNPGM(")");
  7531. }
  7532. void print_physical_coordinates()
  7533. {
  7534. SERIAL_ECHOPGM("physical coordinates: (");
  7535. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7536. SERIAL_ECHOPGM(", ");
  7537. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7538. SERIAL_ECHOPGM(", ");
  7539. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7540. SERIAL_ECHOLNPGM(")");
  7541. }
  7542. void print_mesh_bed_leveling_table()
  7543. {
  7544. SERIAL_ECHOPGM("mesh bed leveling: ");
  7545. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7546. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7547. MYSERIAL.print(mbl.z_values[y][x], 3);
  7548. SERIAL_ECHOPGM(" ");
  7549. }
  7550. SERIAL_ECHOLNPGM("");
  7551. }
  7552. #define FIL_LOAD_LENGTH 60