temperature.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "temperature.h"
  24. #include "stepper.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "sound.h"
  28. #include "fancheck.h"
  29. #include "SdFatUtil.h"
  30. #include <avr/wdt.h>
  31. #include "adc.h"
  32. #include "ConfigurationStore.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #if (ADC_OVRSAMPL != OVERSAMPLENR)
  36. #error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"
  37. #endif
  38. //===========================================================================
  39. //=============================public variables============================
  40. //===========================================================================
  41. int target_temperature[EXTRUDERS] = { 0 };
  42. int target_temperature_bed = 0;
  43. int current_temperature_raw[EXTRUDERS] = { 0 };
  44. float current_temperature[EXTRUDERS] = { 0.0 };
  45. #ifdef PINDA_THERMISTOR
  46. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  47. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  48. float current_temperature_pinda = 0.0;
  49. #endif //PINDA_THERMISTOR
  50. #ifdef AMBIENT_THERMISTOR
  51. int current_temperature_raw_ambient = 0 ;
  52. float current_temperature_ambient = 0.0;
  53. #endif //AMBIENT_THERMISTOR
  54. #ifdef VOLT_PWR_PIN
  55. int current_voltage_raw_pwr = 0;
  56. #endif
  57. #ifdef VOLT_BED_PIN
  58. int current_voltage_raw_bed = 0;
  59. #endif
  60. #ifdef IR_SENSOR_ANALOG
  61. uint16_t current_voltage_raw_IR = 0;
  62. #endif //IR_SENSOR_ANALOG
  63. int current_temperature_bed_raw = 0;
  64. float current_temperature_bed = 0.0;
  65. #ifdef PIDTEMP
  66. float _Kp, _Ki, _Kd;
  67. int pid_cycle, pid_number_of_cycles;
  68. bool pid_tuning_finished = false;
  69. #endif //PIDTEMP
  70. unsigned char soft_pwm_bed;
  71. #ifdef BABYSTEPPING
  72. volatile int babystepsTodo[3]={0,0,0};
  73. #endif
  74. //===========================================================================
  75. //=============================private variables============================
  76. //===========================================================================
  77. #define TEMP_MEAS_RATE 250
  78. static volatile bool temp_meas_ready = false;
  79. #ifdef PIDTEMP
  80. //static cannot be external:
  81. static float iState_sum[EXTRUDERS] = { 0 };
  82. static float dState_last[EXTRUDERS] = { 0 };
  83. static float pTerm[EXTRUDERS];
  84. static float iTerm[EXTRUDERS];
  85. static float dTerm[EXTRUDERS];
  86. //int output;
  87. static float pid_error[EXTRUDERS];
  88. static float iState_sum_min[EXTRUDERS];
  89. static float iState_sum_max[EXTRUDERS];
  90. // static float pid_input[EXTRUDERS];
  91. // static float pid_output[EXTRUDERS];
  92. static bool pid_reset[EXTRUDERS];
  93. #endif //PIDTEMP
  94. #ifdef PIDTEMPBED
  95. //static cannot be external:
  96. static float temp_iState_bed = { 0 };
  97. static float temp_dState_bed = { 0 };
  98. static float pTerm_bed;
  99. static float iTerm_bed;
  100. static float dTerm_bed;
  101. //int output;
  102. static float pid_error_bed;
  103. static float temp_iState_min_bed;
  104. static float temp_iState_max_bed;
  105. #else //PIDTEMPBED
  106. static unsigned long previous_millis_bed_heater;
  107. #endif //PIDTEMPBED
  108. static unsigned char soft_pwm[EXTRUDERS];
  109. #ifdef FAN_SOFT_PWM
  110. unsigned char fanSpeedSoftPwm;
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. uint8_t fanSpeedBckp = 255;
  114. #if EXTRUDERS > 3
  115. # error Unsupported number of extruders
  116. #elif EXTRUDERS > 2
  117. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  118. #elif EXTRUDERS > 1
  119. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  120. #else
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  122. #endif
  123. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  124. // Init min and max temp with extreme values to prevent false errors during startup
  125. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  126. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  127. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  128. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  129. #ifdef BED_MINTEMP
  130. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  131. #endif
  132. #ifdef BED_MAXTEMP
  133. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  134. #endif
  135. #ifdef AMBIENT_MINTEMP
  136. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  137. #endif
  138. #ifdef AMBIENT_MAXTEMP
  139. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  140. #endif
  141. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  142. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  143. static float analog2temp(int raw, uint8_t e);
  144. static float analog2tempBed(int raw);
  145. #ifdef AMBIENT_MAXTEMP
  146. static float analog2tempAmbient(int raw);
  147. #endif
  148. static void updateTemperaturesFromRawValues();
  149. enum TempRunawayStates : uint8_t
  150. {
  151. TempRunaway_INACTIVE = 0,
  152. TempRunaway_PREHEAT = 1,
  153. TempRunaway_ACTIVE = 2,
  154. };
  155. #ifndef SOFT_PWM_SCALE
  156. #define SOFT_PWM_SCALE 0
  157. #endif
  158. //===========================================================================
  159. //============================= functions ============================
  160. //===========================================================================
  161. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  162. static uint8_t temp_runaway_status[1 + EXTRUDERS];
  163. static float temp_runaway_target[1 + EXTRUDERS];
  164. static uint32_t temp_runaway_timer[1 + EXTRUDERS];
  165. static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
  166. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  167. static void temp_runaway_stop(bool isPreheat, bool isBed);
  168. #endif
  169. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  170. bool checkAllHotends(void)
  171. {
  172. bool result=false;
  173. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  174. return(result);
  175. }
  176. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  177. // codegen bug causing a stack overwrite issue in process_commands()
  178. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  179. {
  180. pid_number_of_cycles = ncycles;
  181. pid_tuning_finished = false;
  182. float input = 0.0;
  183. pid_cycle=0;
  184. bool heating = true;
  185. unsigned long temp_millis = _millis();
  186. unsigned long t1=temp_millis;
  187. unsigned long t2=temp_millis;
  188. long t_high = 0;
  189. long t_low = 0;
  190. long bias, d;
  191. float Ku, Tu;
  192. float max = 0, min = 10000;
  193. uint8_t safety_check_cycles = 0;
  194. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  195. float temp_ambient;
  196. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = _millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. timer02_set_pwm0(soft_pwm_bed << 1);
  215. bias = d = (MAX_BED_POWER)/2;
  216. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  217. }
  218. else
  219. {
  220. soft_pwm[extruder] = (PID_MAX)/2;
  221. bias = d = (PID_MAX)/2;
  222. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  223. }
  224. for(;;) {
  225. #ifdef WATCHDOG
  226. wdt_reset();
  227. #endif //WATCHDOG
  228. if(temp_meas_ready == true) { // temp sample ready
  229. updateTemperaturesFromRawValues();
  230. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  231. max=max(max,input);
  232. min=min(min,input);
  233. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  234. if(_millis() - extruder_autofan_last_check > 2500) {
  235. checkExtruderAutoFans();
  236. extruder_autofan_last_check = _millis();
  237. }
  238. #endif
  239. if(heating == true && input > temp) {
  240. if(_millis() - t2 > 5000) {
  241. heating=false;
  242. if (extruder<0)
  243. {
  244. soft_pwm_bed = (bias - d) >> 1;
  245. timer02_set_pwm0(soft_pwm_bed << 1);
  246. }
  247. else
  248. soft_pwm[extruder] = (bias - d) >> 1;
  249. t1=_millis();
  250. t_high=t1 - t2;
  251. max=temp;
  252. }
  253. }
  254. if(heating == false && input < temp) {
  255. if(_millis() - t1 > 5000) {
  256. heating=true;
  257. t2=_millis();
  258. t_low=t2 - t1;
  259. if(pid_cycle > 0) {
  260. bias += (d*(t_high - t_low))/(t_low + t_high);
  261. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  262. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  263. else d = bias;
  264. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  265. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  266. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  267. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  268. if(pid_cycle > 2) {
  269. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  270. Tu = ((float)(t_low + t_high)/1000.0);
  271. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  272. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  273. _Kp = 0.6*Ku;
  274. _Ki = 2*_Kp/Tu;
  275. _Kd = _Kp*Tu/8;
  276. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  277. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  278. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  279. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  280. /*
  281. _Kp = 0.33*Ku;
  282. _Ki = _Kp/Tu;
  283. _Kd = _Kp*Tu/3;
  284. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  285. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  286. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  287. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  288. _Kp = 0.2*Ku;
  289. _Ki = 2*_Kp/Tu;
  290. _Kd = _Kp*Tu/3;
  291. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  292. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  293. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  294. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  295. */
  296. }
  297. }
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias + d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias + d) >> 1;
  305. pid_cycle++;
  306. min=temp;
  307. }
  308. }
  309. }
  310. if(input > (temp + 20)) {
  311. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  312. pid_tuning_finished = true;
  313. pid_cycle = 0;
  314. return;
  315. }
  316. if(_millis() - temp_millis > 2000) {
  317. int p;
  318. if (extruder<0){
  319. p=soft_pwm_bed;
  320. SERIAL_PROTOCOLPGM("B:");
  321. }else{
  322. p=soft_pwm[extruder];
  323. SERIAL_PROTOCOLPGM("T:");
  324. }
  325. SERIAL_PROTOCOL(input);
  326. SERIAL_PROTOCOLPGM(" @:");
  327. SERIAL_PROTOCOLLN(p);
  328. if (safety_check_cycles == 0) { //save ambient temp
  329. temp_ambient = input;
  330. //SERIAL_ECHOPGM("Ambient T: ");
  331. //MYSERIAL.println(temp_ambient);
  332. safety_check_cycles++;
  333. }
  334. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  338. safety_check_cycles++;
  339. //SERIAL_ECHOPGM("Time from beginning: ");
  340. //MYSERIAL.print(safety_check_cycles_count * 2);
  341. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  342. //MYSERIAL.println(input - temp_ambient);
  343. if (fabs(input - temp_ambient) < 5.0) {
  344. temp_runaway_stop(false, (extruder<0));
  345. pid_tuning_finished = true;
  346. return;
  347. }
  348. }
  349. temp_millis = _millis();
  350. }
  351. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. if(pid_cycle > ncycles) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. lcd_update(0);
  364. }
  365. }
  366. void updatePID()
  367. {
  368. #ifdef PIDTEMP
  369. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  370. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  371. }
  372. #endif
  373. #ifdef PIDTEMPBED
  374. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  375. #endif
  376. }
  377. int getHeaterPower(int heater) {
  378. if (heater<0)
  379. return soft_pwm_bed;
  380. return soft_pwm[heater];
  381. }
  382. // reset PID state after changing target_temperature
  383. void resetPID(uint8_t extruder _UNUSED) {}
  384. void manage_heater()
  385. {
  386. #ifdef WATCHDOG
  387. wdt_reset();
  388. #endif //WATCHDOG
  389. float pid_input;
  390. float pid_output;
  391. // run at TEMP_MEAS_RATE
  392. if(temp_meas_ready != true) return;
  393. static unsigned long old_stamp = _millis();
  394. unsigned long new_stamp = _millis();
  395. unsigned long diff = new_stamp - old_stamp;
  396. if(diff < TEMP_MEAS_RATE) return;
  397. old_stamp = new_stamp;
  398. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  399. updateTemperaturesFromRawValues();
  400. check_max_temp();
  401. check_min_temp();
  402. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  403. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  404. #endif
  405. for(uint8_t e = 0; e < EXTRUDERS; e++)
  406. {
  407. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  408. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  409. #endif
  410. #ifdef PIDTEMP
  411. pid_input = current_temperature[e];
  412. #ifndef PID_OPENLOOP
  413. if(target_temperature[e] == 0) {
  414. pid_output = 0;
  415. pid_reset[e] = true;
  416. } else {
  417. pid_error[e] = target_temperature[e] - pid_input;
  418. if(pid_reset[e]) {
  419. iState_sum[e] = 0.0;
  420. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  421. pid_reset[e] = false;
  422. }
  423. #ifndef PonM
  424. pTerm[e] = cs.Kp * pid_error[e];
  425. iState_sum[e] += pid_error[e];
  426. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  427. iTerm[e] = cs.Ki * iState_sum[e];
  428. // PID_K1 defined in Configuration.h in the PID settings
  429. #define K2 (1.0-PID_K1)
  430. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  431. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  432. if (pid_output > PID_MAX) {
  433. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  434. pid_output=PID_MAX;
  435. } else if (pid_output < 0) {
  436. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  437. pid_output=0;
  438. }
  439. #else // PonM ("Proportional on Measurement" method)
  440. iState_sum[e] += cs.Ki * pid_error[e];
  441. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  442. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  443. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  444. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  445. pid_output = constrain(pid_output, 0, PID_MAX);
  446. #endif // PonM
  447. }
  448. dState_last[e] = pid_input;
  449. #else
  450. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  451. #endif //PID_OPENLOOP
  452. #ifdef PID_DEBUG
  453. SERIAL_ECHO_START;
  454. SERIAL_ECHO(" PID_DEBUG ");
  455. SERIAL_ECHO(e);
  456. SERIAL_ECHO(": Input ");
  457. SERIAL_ECHO(pid_input);
  458. SERIAL_ECHO(" Output ");
  459. SERIAL_ECHO(pid_output);
  460. SERIAL_ECHO(" pTerm ");
  461. SERIAL_ECHO(pTerm[e]);
  462. SERIAL_ECHO(" iTerm ");
  463. SERIAL_ECHO(iTerm[e]);
  464. SERIAL_ECHO(" dTerm ");
  465. SERIAL_ECHOLN(-dTerm[e]);
  466. #endif //PID_DEBUG
  467. #else /* PID off */
  468. pid_output = 0;
  469. if(current_temperature[e] < target_temperature[e]) {
  470. pid_output = PID_MAX;
  471. }
  472. #endif
  473. // Check if temperature is within the correct range
  474. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  475. {
  476. soft_pwm[e] = (int)pid_output >> 1;
  477. }
  478. else
  479. {
  480. soft_pwm[e] = 0;
  481. }
  482. } // End extruder for loop
  483. checkFans();
  484. #ifndef PIDTEMPBED
  485. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  486. return;
  487. previous_millis_bed_heater = _millis();
  488. #endif
  489. #if TEMP_SENSOR_BED != 0
  490. #ifdef PIDTEMPBED
  491. pid_input = current_temperature_bed;
  492. #ifndef PID_OPENLOOP
  493. pid_error_bed = target_temperature_bed - pid_input;
  494. pTerm_bed = cs.bedKp * pid_error_bed;
  495. temp_iState_bed += pid_error_bed;
  496. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  497. iTerm_bed = cs.bedKi * temp_iState_bed;
  498. //PID_K1 defined in Configuration.h in the PID settings
  499. #define K2 (1.0-PID_K1)
  500. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  501. temp_dState_bed = pid_input;
  502. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  503. if (pid_output > MAX_BED_POWER) {
  504. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  505. pid_output=MAX_BED_POWER;
  506. } else if (pid_output < 0){
  507. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  508. pid_output=0;
  509. }
  510. #else
  511. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  512. #endif //PID_OPENLOOP
  513. if(current_temperature_bed < BED_MAXTEMP)
  514. {
  515. soft_pwm_bed = (int)pid_output >> 1;
  516. timer02_set_pwm0(soft_pwm_bed << 1);
  517. }
  518. else {
  519. soft_pwm_bed = 0;
  520. timer02_set_pwm0(soft_pwm_bed << 1);
  521. }
  522. #elif !defined(BED_LIMIT_SWITCHING)
  523. // Check if temperature is within the correct range
  524. if(current_temperature_bed < BED_MAXTEMP)
  525. {
  526. if(current_temperature_bed >= target_temperature_bed)
  527. {
  528. soft_pwm_bed = 0;
  529. timer02_set_pwm0(soft_pwm_bed << 1);
  530. }
  531. else
  532. {
  533. soft_pwm_bed = MAX_BED_POWER>>1;
  534. timer02_set_pwm0(soft_pwm_bed << 1);
  535. }
  536. }
  537. else
  538. {
  539. soft_pwm_bed = 0;
  540. timer02_set_pwm0(soft_pwm_bed << 1);
  541. WRITE(HEATER_BED_PIN,LOW);
  542. }
  543. #else //#ifdef BED_LIMIT_SWITCHING
  544. // Check if temperature is within the correct band
  545. if(current_temperature_bed < BED_MAXTEMP)
  546. {
  547. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  548. {
  549. soft_pwm_bed = 0;
  550. timer02_set_pwm0(soft_pwm_bed << 1);
  551. }
  552. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  553. {
  554. soft_pwm_bed = MAX_BED_POWER>>1;
  555. timer02_set_pwm0(soft_pwm_bed << 1);
  556. }
  557. }
  558. else
  559. {
  560. soft_pwm_bed = 0;
  561. timer02_set_pwm0(soft_pwm_bed << 1);
  562. WRITE(HEATER_BED_PIN,LOW);
  563. }
  564. #endif
  565. if(target_temperature_bed==0)
  566. {
  567. soft_pwm_bed = 0;
  568. timer02_set_pwm0(soft_pwm_bed << 1);
  569. }
  570. #endif
  571. }
  572. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  573. // Derived from RepRap FiveD extruder::getTemperature()
  574. // For hot end temperature measurement.
  575. static float analog2temp(int raw, uint8_t e) {
  576. if(e >= EXTRUDERS)
  577. {
  578. SERIAL_ERROR_START;
  579. SERIAL_ERROR((int)e);
  580. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  581. kill(NULL, 6);
  582. return 0.0;
  583. }
  584. #ifdef HEATER_0_USES_MAX6675
  585. if (e == 0)
  586. {
  587. return 0.25 * raw;
  588. }
  589. #endif
  590. if(heater_ttbl_map[e] != NULL)
  591. {
  592. float celsius = 0;
  593. uint8_t i;
  594. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  595. for (i=1; i<heater_ttbllen_map[e]; i++)
  596. {
  597. if (PGM_RD_W((*tt)[i][0]) > raw)
  598. {
  599. celsius = PGM_RD_W((*tt)[i-1][1]) +
  600. (raw - PGM_RD_W((*tt)[i-1][0])) *
  601. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  602. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  603. break;
  604. }
  605. }
  606. // Overflow: Set to last value in the table
  607. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  608. return celsius;
  609. }
  610. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  611. }
  612. // Derived from RepRap FiveD extruder::getTemperature()
  613. // For bed temperature measurement.
  614. static float analog2tempBed(int raw) {
  615. #ifdef BED_USES_THERMISTOR
  616. float celsius = 0;
  617. byte i;
  618. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  619. {
  620. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  621. {
  622. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  623. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  624. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  625. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  626. break;
  627. }
  628. }
  629. // Overflow: Set to last value in the table
  630. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  631. // temperature offset adjustment
  632. #ifdef BED_OFFSET
  633. float _offset = BED_OFFSET;
  634. float _offset_center = BED_OFFSET_CENTER;
  635. float _offset_start = BED_OFFSET_START;
  636. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  637. float _second_koef = (_offset / 2) / (100 - _offset_center);
  638. if (celsius >= _offset_start && celsius <= _offset_center)
  639. {
  640. celsius = celsius + (_first_koef * (celsius - _offset_start));
  641. }
  642. else if (celsius > _offset_center && celsius <= 100)
  643. {
  644. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  645. }
  646. else if (celsius > 100)
  647. {
  648. celsius = celsius + _offset;
  649. }
  650. #endif
  651. return celsius;
  652. #elif defined BED_USES_AD595
  653. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  654. #else
  655. return 0;
  656. #endif
  657. }
  658. #ifdef AMBIENT_THERMISTOR
  659. static float analog2tempAmbient(int raw)
  660. {
  661. float celsius = 0;
  662. byte i;
  663. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  664. {
  665. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  666. {
  667. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  668. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  669. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  670. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  671. break;
  672. }
  673. }
  674. // Overflow: Set to last value in the table
  675. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  676. return celsius;
  677. }
  678. #endif //AMBIENT_THERMISTOR
  679. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  680. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  681. static void updateTemperaturesFromRawValues()
  682. {
  683. CRITICAL_SECTION_START;
  684. adc_start_cycle();
  685. temp_meas_ready = false;
  686. CRITICAL_SECTION_END;
  687. for(uint8_t e=0;e<EXTRUDERS;e++)
  688. {
  689. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  690. }
  691. #ifdef PINDA_THERMISTOR
  692. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  693. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  694. #endif
  695. #ifdef AMBIENT_THERMISTOR
  696. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  697. #endif
  698. #ifdef DEBUG_HEATER_BED_SIM
  699. current_temperature_bed = target_temperature_bed;
  700. #else //DEBUG_HEATER_BED_SIM
  701. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  702. #endif //DEBUG_HEATER_BED_SIM
  703. }
  704. void tp_init()
  705. {
  706. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  707. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  708. MCUCR=(1<<JTD);
  709. MCUCR=(1<<JTD);
  710. #endif
  711. // Finish init of mult extruder arrays
  712. for(int e = 0; e < EXTRUDERS; e++) {
  713. // populate with the first value
  714. maxttemp[e] = maxttemp[0];
  715. #ifdef PIDTEMP
  716. iState_sum_min[e] = 0.0;
  717. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  718. #endif //PIDTEMP
  719. #ifdef PIDTEMPBED
  720. temp_iState_min_bed = 0.0;
  721. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  722. #endif //PIDTEMPBED
  723. }
  724. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  725. SET_OUTPUT(HEATER_0_PIN);
  726. #endif
  727. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  728. SET_OUTPUT(HEATER_1_PIN);
  729. #endif
  730. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  731. SET_OUTPUT(HEATER_2_PIN);
  732. #endif
  733. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  734. SET_OUTPUT(HEATER_BED_PIN);
  735. #endif
  736. #if defined(FAN_PIN) && (FAN_PIN > -1)
  737. SET_OUTPUT(FAN_PIN);
  738. #ifdef FAST_PWM_FAN
  739. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  740. #endif
  741. #ifdef FAN_SOFT_PWM
  742. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  743. #endif
  744. #endif
  745. #ifdef HEATER_0_USES_MAX6675
  746. #ifndef SDSUPPORT
  747. SET_OUTPUT(SCK_PIN);
  748. WRITE(SCK_PIN,0);
  749. SET_OUTPUT(MOSI_PIN);
  750. WRITE(MOSI_PIN,1);
  751. SET_INPUT(MISO_PIN);
  752. WRITE(MISO_PIN,1);
  753. #endif
  754. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  755. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  756. pinMode(SS_PIN, OUTPUT);
  757. digitalWrite(SS_PIN,0);
  758. pinMode(MAX6675_SS, OUTPUT);
  759. digitalWrite(MAX6675_SS,1);
  760. #endif
  761. // initialize the ADC and start a conversion
  762. adc_init();
  763. adc_start_cycle();
  764. timer0_init(); //enables the heatbed timer.
  765. // timer2 already enabled earlier in the code
  766. // now enable the COMPB temperature interrupt
  767. OCR2B = 128;
  768. ENABLE_SOFT_PWM_INTERRUPT();
  769. timer4_init(); //for tone and Extruder fan PWM
  770. // Wait for temperature measurement to settle
  771. _delay(250);
  772. #ifdef HEATER_0_MINTEMP
  773. minttemp[0] = HEATER_0_MINTEMP;
  774. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  775. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  776. minttemp_raw[0] += OVERSAMPLENR;
  777. #else
  778. minttemp_raw[0] -= OVERSAMPLENR;
  779. #endif
  780. }
  781. #endif //MINTEMP
  782. #ifdef HEATER_0_MAXTEMP
  783. maxttemp[0] = HEATER_0_MAXTEMP;
  784. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  785. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  786. maxttemp_raw[0] -= OVERSAMPLENR;
  787. #else
  788. maxttemp_raw[0] += OVERSAMPLENR;
  789. #endif
  790. }
  791. #endif //MAXTEMP
  792. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  793. minttemp[1] = HEATER_1_MINTEMP;
  794. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  795. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  796. minttemp_raw[1] += OVERSAMPLENR;
  797. #else
  798. minttemp_raw[1] -= OVERSAMPLENR;
  799. #endif
  800. }
  801. #endif // MINTEMP 1
  802. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  803. maxttemp[1] = HEATER_1_MAXTEMP;
  804. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  805. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  806. maxttemp_raw[1] -= OVERSAMPLENR;
  807. #else
  808. maxttemp_raw[1] += OVERSAMPLENR;
  809. #endif
  810. }
  811. #endif //MAXTEMP 1
  812. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  813. minttemp[2] = HEATER_2_MINTEMP;
  814. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  815. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  816. minttemp_raw[2] += OVERSAMPLENR;
  817. #else
  818. minttemp_raw[2] -= OVERSAMPLENR;
  819. #endif
  820. }
  821. #endif //MINTEMP 2
  822. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  823. maxttemp[2] = HEATER_2_MAXTEMP;
  824. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  825. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  826. maxttemp_raw[2] -= OVERSAMPLENR;
  827. #else
  828. maxttemp_raw[2] += OVERSAMPLENR;
  829. #endif
  830. }
  831. #endif //MAXTEMP 2
  832. #ifdef BED_MINTEMP
  833. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  834. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  835. bed_minttemp_raw += OVERSAMPLENR;
  836. #else
  837. bed_minttemp_raw -= OVERSAMPLENR;
  838. #endif
  839. }
  840. #endif //BED_MINTEMP
  841. #ifdef BED_MAXTEMP
  842. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  843. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  844. bed_maxttemp_raw -= OVERSAMPLENR;
  845. #else
  846. bed_maxttemp_raw += OVERSAMPLENR;
  847. #endif
  848. }
  849. #endif //BED_MAXTEMP
  850. #ifdef AMBIENT_MINTEMP
  851. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  852. #if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
  853. ambient_minttemp_raw += OVERSAMPLENR;
  854. #else
  855. ambient_minttemp_raw -= OVERSAMPLENR;
  856. #endif
  857. }
  858. #endif //AMBIENT_MINTEMP
  859. #ifdef AMBIENT_MAXTEMP
  860. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  861. #if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
  862. ambient_maxttemp_raw -= OVERSAMPLENR;
  863. #else
  864. ambient_maxttemp_raw += OVERSAMPLENR;
  865. #endif
  866. }
  867. #endif //AMBIENT_MAXTEMP
  868. }
  869. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  870. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  871. {
  872. float __delta;
  873. float __hysteresis = 0;
  874. uint16_t __timeout = 0;
  875. bool temp_runaway_check_active = false;
  876. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  877. static uint8_t __preheat_counter[2] = { 0,0};
  878. static uint8_t __preheat_errors[2] = { 0,0};
  879. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  880. {
  881. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  882. if (_isbed)
  883. {
  884. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  885. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  886. }
  887. #endif
  888. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  889. if (!_isbed)
  890. {
  891. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  892. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  893. }
  894. #endif
  895. temp_runaway_timer[_heater_id] = _millis();
  896. if (_output == 0)
  897. {
  898. temp_runaway_check_active = false;
  899. temp_runaway_error_counter[_heater_id] = 0;
  900. }
  901. if (temp_runaway_target[_heater_id] != _target_temperature)
  902. {
  903. if (_target_temperature > 0)
  904. {
  905. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  906. temp_runaway_target[_heater_id] = _target_temperature;
  907. __preheat_start[_heater_id] = _current_temperature;
  908. __preheat_counter[_heater_id] = 0;
  909. }
  910. else
  911. {
  912. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  913. temp_runaway_target[_heater_id] = _target_temperature;
  914. }
  915. }
  916. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  917. {
  918. __preheat_counter[_heater_id]++;
  919. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  920. {
  921. /*SERIAL_ECHOPGM("Heater:");
  922. MYSERIAL.print(_heater_id);
  923. SERIAL_ECHOPGM(" T:");
  924. MYSERIAL.print(_current_temperature);
  925. SERIAL_ECHOPGM(" Tstart:");
  926. MYSERIAL.print(__preheat_start[_heater_id]);
  927. SERIAL_ECHOPGM(" delta:");
  928. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  929. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  930. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  931. __delta=2.0;
  932. if(_isbed)
  933. {
  934. __delta=3.0;
  935. if(_current_temperature>90.0) __delta=2.0;
  936. if(_current_temperature>105.0) __delta=0.6;
  937. }
  938. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  939. __preheat_errors[_heater_id]++;
  940. /*SERIAL_ECHOPGM(" Preheat errors:");
  941. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  942. }
  943. else {
  944. //SERIAL_ECHOLNPGM("");
  945. __preheat_errors[_heater_id] = 0;
  946. }
  947. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  948. {
  949. if (farm_mode) { prusa_statistics(0); }
  950. temp_runaway_stop(true, _isbed);
  951. if (farm_mode) { prusa_statistics(91); }
  952. }
  953. __preheat_start[_heater_id] = _current_temperature;
  954. __preheat_counter[_heater_id] = 0;
  955. }
  956. }
  957. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  958. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  959. {
  960. /*SERIAL_ECHOPGM("Heater:");
  961. MYSERIAL.print(_heater_id);
  962. MYSERIAL.println(" ->tempRunaway");*/
  963. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  964. temp_runaway_check_active = false;
  965. temp_runaway_error_counter[_heater_id] = 0;
  966. }
  967. if (_output > 0)
  968. {
  969. temp_runaway_check_active = true;
  970. }
  971. if (temp_runaway_check_active)
  972. {
  973. // we are in range
  974. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  975. {
  976. temp_runaway_check_active = false;
  977. temp_runaway_error_counter[_heater_id] = 0;
  978. }
  979. else
  980. {
  981. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  982. {
  983. temp_runaway_error_counter[_heater_id]++;
  984. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  985. {
  986. if (farm_mode) { prusa_statistics(0); }
  987. temp_runaway_stop(false, _isbed);
  988. if (farm_mode) { prusa_statistics(90); }
  989. }
  990. }
  991. }
  992. }
  993. }
  994. }
  995. void temp_runaway_stop(bool isPreheat, bool isBed)
  996. {
  997. disable_heater();
  998. Sound_MakeCustom(200,0,true);
  999. if (isPreheat)
  1000. {
  1001. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1002. SERIAL_ERROR_START;
  1003. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1004. hotendFanSetFullSpeed();
  1005. }
  1006. else
  1007. {
  1008. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1009. SERIAL_ERROR_START;
  1010. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1011. }
  1012. Stop();
  1013. }
  1014. #endif
  1015. void disable_heater()
  1016. {
  1017. setAllTargetHotends(0);
  1018. setTargetBed(0);
  1019. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1020. target_temperature[0]=0;
  1021. soft_pwm[0]=0;
  1022. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1023. WRITE(HEATER_0_PIN,LOW);
  1024. #endif
  1025. #endif
  1026. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1027. target_temperature[1]=0;
  1028. soft_pwm[1]=0;
  1029. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1030. WRITE(HEATER_1_PIN,LOW);
  1031. #endif
  1032. #endif
  1033. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1034. target_temperature[2]=0;
  1035. soft_pwm[2]=0;
  1036. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1037. WRITE(HEATER_2_PIN,LOW);
  1038. #endif
  1039. #endif
  1040. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1041. target_temperature_bed=0;
  1042. soft_pwm_bed=0;
  1043. timer02_set_pwm0(soft_pwm_bed << 1);
  1044. bedPWMDisabled = 0;
  1045. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1046. //WRITE(HEATER_BED_PIN,LOW);
  1047. #endif
  1048. #endif
  1049. }
  1050. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1051. //! than raw const char * of the messages themselves.
  1052. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1053. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1054. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1055. //! remember the last alert message sent to the LCD
  1056. //! to prevent flicker and improve speed
  1057. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1058. //! update the current temperature error message
  1059. //! @param type short error abbreviation (PROGMEM)
  1060. void temp_update_messagepgm(const char* PROGMEM type)
  1061. {
  1062. char msg[LCD_WIDTH];
  1063. strcpy_P(msg, PSTR("Err: "));
  1064. strcat_P(msg, type);
  1065. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1066. }
  1067. //! signal a temperature error on both the lcd and serial
  1068. //! @param type short error abbreviation (PROGMEM)
  1069. //! @param e optional extruder index for hotend errors
  1070. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1071. {
  1072. temp_update_messagepgm(type);
  1073. SERIAL_ERROR_START;
  1074. if(e != EXTRUDERS) {
  1075. SERIAL_ERROR((int)e);
  1076. SERIAL_ERRORPGM(": ");
  1077. }
  1078. SERIAL_ERRORPGM("Heaters switched off. ");
  1079. SERIAL_ERRORRPGM(type);
  1080. SERIAL_ERRORLNPGM(" triggered!");
  1081. }
  1082. void max_temp_error(uint8_t e) {
  1083. disable_heater();
  1084. if(IsStopped() == false) {
  1085. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1086. }
  1087. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1088. Stop();
  1089. #endif
  1090. hotendFanSetFullSpeed();
  1091. if (farm_mode) { prusa_statistics(93); }
  1092. }
  1093. void min_temp_error(uint8_t e) {
  1094. #ifdef DEBUG_DISABLE_MINTEMP
  1095. return;
  1096. #endif
  1097. disable_heater();
  1098. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1099. static const char err[] PROGMEM = "MINTEMP";
  1100. if(IsStopped() == false) {
  1101. temp_error_messagepgm(err, e);
  1102. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1103. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1104. // we are already stopped due to some error, only update the status message without flickering
  1105. temp_update_messagepgm(err);
  1106. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1107. }
  1108. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1109. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1110. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1111. // lcd_print_stop();
  1112. // }
  1113. Stop();
  1114. #endif
  1115. if (farm_mode) { prusa_statistics(92); }
  1116. }
  1117. void bed_max_temp_error(void) {
  1118. disable_heater();
  1119. if(IsStopped() == false) {
  1120. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1121. }
  1122. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1123. Stop();
  1124. #endif
  1125. }
  1126. void bed_min_temp_error(void) {
  1127. #ifdef DEBUG_DISABLE_MINTEMP
  1128. return;
  1129. #endif
  1130. disable_heater();
  1131. static const char err[] PROGMEM = "MINTEMP BED";
  1132. if(IsStopped() == false) {
  1133. temp_error_messagepgm(err);
  1134. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1135. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1136. // we are already stopped due to some error, only update the status message without flickering
  1137. temp_update_messagepgm(err);
  1138. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1139. }
  1140. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1141. Stop();
  1142. #endif
  1143. }
  1144. #ifdef AMBIENT_THERMISTOR
  1145. void ambient_max_temp_error(void) {
  1146. disable_heater();
  1147. if(IsStopped() == false) {
  1148. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1149. }
  1150. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1151. Stop();
  1152. #endif
  1153. }
  1154. void ambient_min_temp_error(void) {
  1155. #ifdef DEBUG_DISABLE_MINTEMP
  1156. return;
  1157. #endif
  1158. disable_heater();
  1159. if(IsStopped() == false) {
  1160. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1161. }
  1162. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1163. Stop();
  1164. #endif
  1165. }
  1166. #endif
  1167. #ifdef HEATER_0_USES_MAX6675
  1168. #define MAX6675_HEAT_INTERVAL 250
  1169. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1170. int max6675_temp = 2000;
  1171. int read_max6675()
  1172. {
  1173. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1174. return max6675_temp;
  1175. max6675_previous_millis = _millis();
  1176. max6675_temp = 0;
  1177. #ifdef PRR
  1178. PRR &= ~(1<<PRSPI);
  1179. #elif defined PRR0
  1180. PRR0 &= ~(1<<PRSPI);
  1181. #endif
  1182. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1183. // enable TT_MAX6675
  1184. WRITE(MAX6675_SS, 0);
  1185. // ensure 100ns delay - a bit extra is fine
  1186. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1187. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1188. // read MSB
  1189. SPDR = 0;
  1190. for (;(SPSR & (1<<SPIF)) == 0;);
  1191. max6675_temp = SPDR;
  1192. max6675_temp <<= 8;
  1193. // read LSB
  1194. SPDR = 0;
  1195. for (;(SPSR & (1<<SPIF)) == 0;);
  1196. max6675_temp |= SPDR;
  1197. // disable TT_MAX6675
  1198. WRITE(MAX6675_SS, 1);
  1199. if (max6675_temp & 4)
  1200. {
  1201. // thermocouple open
  1202. max6675_temp = 2000;
  1203. }
  1204. else
  1205. {
  1206. max6675_temp = max6675_temp >> 3;
  1207. }
  1208. return max6675_temp;
  1209. }
  1210. #endif
  1211. void adc_ready(void) //callback from adc when sampling finished
  1212. {
  1213. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1214. #ifdef PINDA_THERMISTOR
  1215. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1216. #endif //PINDA_THERMISTOR
  1217. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1218. #ifdef VOLT_PWR_PIN
  1219. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1220. #endif
  1221. #ifdef AMBIENT_THERMISTOR
  1222. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1223. #endif //AMBIENT_THERMISTOR
  1224. #ifdef VOLT_BED_PIN
  1225. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1226. #endif
  1227. #ifdef IR_SENSOR_ANALOG
  1228. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1229. #endif //IR_SENSOR_ANALOG
  1230. temp_meas_ready = true;
  1231. }
  1232. #ifdef BABYSTEPPING
  1233. FORCE_INLINE static void applyBabysteps() {
  1234. for(uint8_t axis=0;axis<3;axis++)
  1235. {
  1236. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1237. if(curTodo>0)
  1238. {
  1239. CRITICAL_SECTION_START;
  1240. babystep(axis,/*fwd*/true);
  1241. babystepsTodo[axis]--; //less to do next time
  1242. CRITICAL_SECTION_END;
  1243. }
  1244. else
  1245. if(curTodo<0)
  1246. {
  1247. CRITICAL_SECTION_START;
  1248. babystep(axis,/*fwd*/false);
  1249. babystepsTodo[axis]++; //less to do next time
  1250. CRITICAL_SECTION_END;
  1251. }
  1252. }
  1253. }
  1254. #endif //BABYSTEPPING
  1255. FORCE_INLINE static void soft_pwm_core()
  1256. {
  1257. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1258. static uint8_t soft_pwm_0;
  1259. #ifdef SLOW_PWM_HEATERS
  1260. static unsigned char slow_pwm_count = 0;
  1261. static unsigned char state_heater_0 = 0;
  1262. static unsigned char state_timer_heater_0 = 0;
  1263. #endif
  1264. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1265. static unsigned char soft_pwm_1;
  1266. #ifdef SLOW_PWM_HEATERS
  1267. static unsigned char state_heater_1 = 0;
  1268. static unsigned char state_timer_heater_1 = 0;
  1269. #endif
  1270. #endif
  1271. #if EXTRUDERS > 2
  1272. static unsigned char soft_pwm_2;
  1273. #ifdef SLOW_PWM_HEATERS
  1274. static unsigned char state_heater_2 = 0;
  1275. static unsigned char state_timer_heater_2 = 0;
  1276. #endif
  1277. #endif
  1278. #if HEATER_BED_PIN > -1
  1279. // @@DR static unsigned char soft_pwm_b;
  1280. #ifdef SLOW_PWM_HEATERS
  1281. static unsigned char state_heater_b = 0;
  1282. static unsigned char state_timer_heater_b = 0;
  1283. #endif
  1284. #endif
  1285. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1286. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1287. #endif
  1288. #ifndef SLOW_PWM_HEATERS
  1289. /*
  1290. * standard PWM modulation
  1291. */
  1292. if (pwm_count == 0)
  1293. {
  1294. soft_pwm_0 = soft_pwm[0];
  1295. if(soft_pwm_0 > 0)
  1296. {
  1297. WRITE(HEATER_0_PIN,1);
  1298. #ifdef HEATERS_PARALLEL
  1299. WRITE(HEATER_1_PIN,1);
  1300. #endif
  1301. } else WRITE(HEATER_0_PIN,0);
  1302. #if EXTRUDERS > 1
  1303. soft_pwm_1 = soft_pwm[1];
  1304. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1305. #endif
  1306. #if EXTRUDERS > 2
  1307. soft_pwm_2 = soft_pwm[2];
  1308. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1309. #endif
  1310. }
  1311. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1312. #if 0 // @@DR vypnuto pro hw pwm bedu
  1313. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1314. // teoreticky by se tato cast uz vubec nemusela poustet
  1315. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1316. {
  1317. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1318. # ifndef SYSTEM_TIMER_2
  1319. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1320. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1321. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1322. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1323. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1324. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1325. # endif //SYSTEM_TIMER_2
  1326. }
  1327. #endif
  1328. #endif
  1329. #ifdef FAN_SOFT_PWM
  1330. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1331. {
  1332. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1333. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1334. }
  1335. #endif
  1336. if(soft_pwm_0 < pwm_count)
  1337. {
  1338. WRITE(HEATER_0_PIN,0);
  1339. #ifdef HEATERS_PARALLEL
  1340. WRITE(HEATER_1_PIN,0);
  1341. #endif
  1342. }
  1343. #if EXTRUDERS > 1
  1344. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1345. #endif
  1346. #if EXTRUDERS > 2
  1347. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1348. #endif
  1349. #if 0 // @@DR
  1350. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1351. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1352. //WRITE(HEATER_BED_PIN,0);
  1353. }
  1354. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1355. #endif
  1356. #endif
  1357. #ifdef FAN_SOFT_PWM
  1358. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1359. #endif
  1360. pwm_count += (1 << SOFT_PWM_SCALE);
  1361. pwm_count &= 0x7f;
  1362. #else //ifndef SLOW_PWM_HEATERS
  1363. /*
  1364. * SLOW PWM HEATERS
  1365. *
  1366. * for heaters drived by relay
  1367. */
  1368. #ifndef MIN_STATE_TIME
  1369. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1370. #endif
  1371. if (slow_pwm_count == 0) {
  1372. // EXTRUDER 0
  1373. soft_pwm_0 = soft_pwm[0];
  1374. if (soft_pwm_0 > 0) {
  1375. // turn ON heather only if the minimum time is up
  1376. if (state_timer_heater_0 == 0) {
  1377. // if change state set timer
  1378. if (state_heater_0 == 0) {
  1379. state_timer_heater_0 = MIN_STATE_TIME;
  1380. }
  1381. state_heater_0 = 1;
  1382. WRITE(HEATER_0_PIN, 1);
  1383. #ifdef HEATERS_PARALLEL
  1384. WRITE(HEATER_1_PIN, 1);
  1385. #endif
  1386. }
  1387. } else {
  1388. // turn OFF heather only if the minimum time is up
  1389. if (state_timer_heater_0 == 0) {
  1390. // if change state set timer
  1391. if (state_heater_0 == 1) {
  1392. state_timer_heater_0 = MIN_STATE_TIME;
  1393. }
  1394. state_heater_0 = 0;
  1395. WRITE(HEATER_0_PIN, 0);
  1396. #ifdef HEATERS_PARALLEL
  1397. WRITE(HEATER_1_PIN, 0);
  1398. #endif
  1399. }
  1400. }
  1401. #if EXTRUDERS > 1
  1402. // EXTRUDER 1
  1403. soft_pwm_1 = soft_pwm[1];
  1404. if (soft_pwm_1 > 0) {
  1405. // turn ON heather only if the minimum time is up
  1406. if (state_timer_heater_1 == 0) {
  1407. // if change state set timer
  1408. if (state_heater_1 == 0) {
  1409. state_timer_heater_1 = MIN_STATE_TIME;
  1410. }
  1411. state_heater_1 = 1;
  1412. WRITE(HEATER_1_PIN, 1);
  1413. }
  1414. } else {
  1415. // turn OFF heather only if the minimum time is up
  1416. if (state_timer_heater_1 == 0) {
  1417. // if change state set timer
  1418. if (state_heater_1 == 1) {
  1419. state_timer_heater_1 = MIN_STATE_TIME;
  1420. }
  1421. state_heater_1 = 0;
  1422. WRITE(HEATER_1_PIN, 0);
  1423. }
  1424. }
  1425. #endif
  1426. #if EXTRUDERS > 2
  1427. // EXTRUDER 2
  1428. soft_pwm_2 = soft_pwm[2];
  1429. if (soft_pwm_2 > 0) {
  1430. // turn ON heather only if the minimum time is up
  1431. if (state_timer_heater_2 == 0) {
  1432. // if change state set timer
  1433. if (state_heater_2 == 0) {
  1434. state_timer_heater_2 = MIN_STATE_TIME;
  1435. }
  1436. state_heater_2 = 1;
  1437. WRITE(HEATER_2_PIN, 1);
  1438. }
  1439. } else {
  1440. // turn OFF heather only if the minimum time is up
  1441. if (state_timer_heater_2 == 0) {
  1442. // if change state set timer
  1443. if (state_heater_2 == 1) {
  1444. state_timer_heater_2 = MIN_STATE_TIME;
  1445. }
  1446. state_heater_2 = 0;
  1447. WRITE(HEATER_2_PIN, 0);
  1448. }
  1449. }
  1450. #endif
  1451. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1452. // BED
  1453. soft_pwm_b = soft_pwm_bed;
  1454. if (soft_pwm_b > 0) {
  1455. // turn ON heather only if the minimum time is up
  1456. if (state_timer_heater_b == 0) {
  1457. // if change state set timer
  1458. if (state_heater_b == 0) {
  1459. state_timer_heater_b = MIN_STATE_TIME;
  1460. }
  1461. state_heater_b = 1;
  1462. //WRITE(HEATER_BED_PIN, 1);
  1463. }
  1464. } else {
  1465. // turn OFF heather only if the minimum time is up
  1466. if (state_timer_heater_b == 0) {
  1467. // if change state set timer
  1468. if (state_heater_b == 1) {
  1469. state_timer_heater_b = MIN_STATE_TIME;
  1470. }
  1471. state_heater_b = 0;
  1472. WRITE(HEATER_BED_PIN, 0);
  1473. }
  1474. }
  1475. #endif
  1476. } // if (slow_pwm_count == 0)
  1477. // EXTRUDER 0
  1478. if (soft_pwm_0 < slow_pwm_count) {
  1479. // turn OFF heather only if the minimum time is up
  1480. if (state_timer_heater_0 == 0) {
  1481. // if change state set timer
  1482. if (state_heater_0 == 1) {
  1483. state_timer_heater_0 = MIN_STATE_TIME;
  1484. }
  1485. state_heater_0 = 0;
  1486. WRITE(HEATER_0_PIN, 0);
  1487. #ifdef HEATERS_PARALLEL
  1488. WRITE(HEATER_1_PIN, 0);
  1489. #endif
  1490. }
  1491. }
  1492. #if EXTRUDERS > 1
  1493. // EXTRUDER 1
  1494. if (soft_pwm_1 < slow_pwm_count) {
  1495. // turn OFF heather only if the minimum time is up
  1496. if (state_timer_heater_1 == 0) {
  1497. // if change state set timer
  1498. if (state_heater_1 == 1) {
  1499. state_timer_heater_1 = MIN_STATE_TIME;
  1500. }
  1501. state_heater_1 = 0;
  1502. WRITE(HEATER_1_PIN, 0);
  1503. }
  1504. }
  1505. #endif
  1506. #if EXTRUDERS > 2
  1507. // EXTRUDER 2
  1508. if (soft_pwm_2 < slow_pwm_count) {
  1509. // turn OFF heather only if the minimum time is up
  1510. if (state_timer_heater_2 == 0) {
  1511. // if change state set timer
  1512. if (state_heater_2 == 1) {
  1513. state_timer_heater_2 = MIN_STATE_TIME;
  1514. }
  1515. state_heater_2 = 0;
  1516. WRITE(HEATER_2_PIN, 0);
  1517. }
  1518. }
  1519. #endif
  1520. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1521. // BED
  1522. if (soft_pwm_b < slow_pwm_count) {
  1523. // turn OFF heather only if the minimum time is up
  1524. if (state_timer_heater_b == 0) {
  1525. // if change state set timer
  1526. if (state_heater_b == 1) {
  1527. state_timer_heater_b = MIN_STATE_TIME;
  1528. }
  1529. state_heater_b = 0;
  1530. WRITE(HEATER_BED_PIN, 0);
  1531. }
  1532. }
  1533. #endif
  1534. #ifdef FAN_SOFT_PWM
  1535. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1536. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1537. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1538. }
  1539. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1540. #endif
  1541. pwm_count += (1 << SOFT_PWM_SCALE);
  1542. pwm_count &= 0x7f;
  1543. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1544. if ((pwm_count % 64) == 0) {
  1545. slow_pwm_count++;
  1546. slow_pwm_count &= 0x7f;
  1547. // Extruder 0
  1548. if (state_timer_heater_0 > 0) {
  1549. state_timer_heater_0--;
  1550. }
  1551. #if EXTRUDERS > 1
  1552. // Extruder 1
  1553. if (state_timer_heater_1 > 0)
  1554. state_timer_heater_1--;
  1555. #endif
  1556. #if EXTRUDERS > 2
  1557. // Extruder 2
  1558. if (state_timer_heater_2 > 0)
  1559. state_timer_heater_2--;
  1560. #endif
  1561. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1562. // Bed
  1563. if (state_timer_heater_b > 0)
  1564. state_timer_heater_b--;
  1565. #endif
  1566. } //if ((pwm_count % 64) == 0) {
  1567. #endif //ifndef SLOW_PWM_HEATERS
  1568. }
  1569. FORCE_INLINE static void soft_pwm_isr()
  1570. {
  1571. lcd_buttons_update();
  1572. soft_pwm_core();
  1573. #ifdef BABYSTEPPING
  1574. applyBabysteps();
  1575. #endif //BABYSTEPPING
  1576. // Check if a stack overflow happened
  1577. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1578. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1579. readFanTach();
  1580. #endif //(defined(TACH_0))
  1581. }
  1582. // Timer2 (originaly timer0) is shared with millies
  1583. #ifdef SYSTEM_TIMER_2
  1584. ISR(TIMER2_COMPB_vect)
  1585. #else //SYSTEM_TIMER_2
  1586. ISR(TIMER0_COMPB_vect)
  1587. #endif //SYSTEM_TIMER_2
  1588. {
  1589. DISABLE_SOFT_PWM_INTERRUPT();
  1590. sei();
  1591. soft_pwm_isr();
  1592. cli();
  1593. ENABLE_SOFT_PWM_INTERRUPT();
  1594. }
  1595. void check_max_temp()
  1596. {
  1597. //heater
  1598. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1599. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1600. #else
  1601. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1602. #endif
  1603. max_temp_error(0);
  1604. }
  1605. //bed
  1606. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1607. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1608. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1609. #else
  1610. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1611. #endif
  1612. bed_max_temp_error();
  1613. }
  1614. #endif
  1615. //ambient
  1616. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1617. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1618. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1619. #else
  1620. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1621. #endif
  1622. ambient_max_temp_error();
  1623. }
  1624. #endif
  1625. }
  1626. //! number of repeating the same state with consecutive step() calls
  1627. //! used to slow down text switching
  1628. struct alert_automaton_mintemp {
  1629. const char *m2;
  1630. alert_automaton_mintemp(const char *m2):m2(m2){}
  1631. private:
  1632. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1633. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1634. States state = States::Init;
  1635. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1636. void substep(States next_state){
  1637. if( repeat == 0 ){
  1638. state = next_state; // advance to the next state
  1639. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1640. } else {
  1641. --repeat;
  1642. }
  1643. }
  1644. public:
  1645. //! brief state automaton step routine
  1646. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1647. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1648. void step(float current_temp, float mintemp){
  1649. static const char m1[] PROGMEM = "Please restart";
  1650. switch(state){
  1651. case States::Init: // initial state - check hysteresis
  1652. if( current_temp > mintemp ){
  1653. state = States::TempAboveMintemp;
  1654. }
  1655. // otherwise keep the Err MINTEMP alert message on the display,
  1656. // i.e. do not transfer to state 1
  1657. break;
  1658. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1659. lcd_setalertstatuspgm(m2);
  1660. substep(States::ShowMintemp);
  1661. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1662. break;
  1663. case States::ShowPleaseRestart: // displaying "Please restart"
  1664. lcd_updatestatuspgm(m1);
  1665. substep(States::ShowMintemp);
  1666. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1667. break;
  1668. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1669. lcd_updatestatuspgm(m2);
  1670. substep(States::ShowPleaseRestart);
  1671. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1672. break;
  1673. }
  1674. }
  1675. };
  1676. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1677. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1678. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1679. void check_min_temp_heater0()
  1680. {
  1681. //heater
  1682. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1683. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1684. #else
  1685. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1686. #endif
  1687. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1688. min_temp_error(0);
  1689. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1690. // no recovery, just force the user to restart the printer
  1691. // which is a safer variant than just continuing printing
  1692. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1693. // we shall signalize, that MINTEMP has been fixed
  1694. // Code notice: normally the alert_automaton instance would have been placed here
  1695. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1696. // due to stupid compiler that takes 16 more bytes.
  1697. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1698. }
  1699. }
  1700. void check_min_temp_bed()
  1701. {
  1702. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1703. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1704. #else
  1705. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1706. #endif
  1707. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1708. bed_min_temp_error();
  1709. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1710. // no recovery, just force the user to restart the printer
  1711. // which is a safer variant than just continuing printing
  1712. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1713. }
  1714. }
  1715. #ifdef AMBIENT_MINTEMP
  1716. void check_min_temp_ambient()
  1717. {
  1718. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1719. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1720. #else
  1721. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1722. #endif
  1723. ambient_min_temp_error();
  1724. }
  1725. }
  1726. #endif
  1727. void check_min_temp()
  1728. {
  1729. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1730. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1731. #ifdef AMBIENT_THERMISTOR
  1732. #ifdef AMBIENT_MINTEMP
  1733. check_min_temp_ambient();
  1734. #endif
  1735. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1736. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1737. #else
  1738. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1739. #endif
  1740. { // ambient temperature is low
  1741. #endif //AMBIENT_THERMISTOR
  1742. // *** 'common' part of code for MK2.5 & MK3
  1743. // * nozzle checking
  1744. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1745. { // ~ nozzle heating is on
  1746. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1747. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1748. {
  1749. bCheckingOnHeater=true; // not necessary
  1750. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1751. }
  1752. }
  1753. else { // ~ nozzle heating is off
  1754. oTimer4minTempHeater.start();
  1755. bCheckingOnHeater=false;
  1756. }
  1757. // * bed checking
  1758. if(target_temperature_bed>BED_MINTEMP)
  1759. { // ~ bed heating is on
  1760. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1761. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1762. {
  1763. bCheckingOnBed=true; // not necessary
  1764. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1765. }
  1766. }
  1767. else { // ~ bed heating is off
  1768. oTimer4minTempBed.start();
  1769. bCheckingOnBed=false;
  1770. }
  1771. // *** end of 'common' part
  1772. #ifdef AMBIENT_THERMISTOR
  1773. }
  1774. else { // ambient temperature is standard
  1775. check_min_temp_heater0();
  1776. check_min_temp_bed();
  1777. }
  1778. #endif //AMBIENT_THERMISTOR
  1779. }
  1780. #ifdef PIDTEMP
  1781. // Apply the scale factors to the PID values
  1782. float scalePID_i(float i)
  1783. {
  1784. return i*PID_dT;
  1785. }
  1786. float unscalePID_i(float i)
  1787. {
  1788. return i/PID_dT;
  1789. }
  1790. float scalePID_d(float d)
  1791. {
  1792. return d/PID_dT;
  1793. }
  1794. float unscalePID_d(float d)
  1795. {
  1796. return d*PID_dT;
  1797. }
  1798. #endif //PIDTEMP
  1799. #ifdef PINDA_THERMISTOR
  1800. //! @brief PINDA thermistor detected
  1801. //!
  1802. //! @retval true firmware should do temperature compensation and allow calibration
  1803. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  1804. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  1805. //!
  1806. bool has_temperature_compensation()
  1807. {
  1808. #ifdef SUPERPINDA_SUPPORT
  1809. #ifdef PINDA_TEMP_COMP
  1810. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  1811. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  1812. {
  1813. #endif //PINDA_TEMP_COMP
  1814. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  1815. #ifdef PINDA_TEMP_COMP
  1816. }
  1817. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  1818. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  1819. #endif //PINDA_TEMP_COMP
  1820. #else
  1821. return true;
  1822. #endif
  1823. }
  1824. #endif //PINDA_THERMISTOR