Marlin_main.cpp 260 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. extern int8_t CrashDetectMenu;
  490. void crashdet_enable()
  491. {
  492. MYSERIAL.println("crashdet_enable");
  493. tmc2130_sg_stop_on_crash = true;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  495. CrashDetectMenu = 1;
  496. }
  497. void crashdet_disable()
  498. {
  499. MYSERIAL.println("crashdet_disable");
  500. tmc2130_sg_stop_on_crash = false;
  501. tmc2130_sg_crash = false;
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  503. CrashDetectMenu = 0;
  504. }
  505. void crashdet_stop_and_save_print()
  506. {
  507. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  508. }
  509. void crashdet_restore_print_and_continue()
  510. {
  511. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  512. // babystep_apply();
  513. }
  514. void crashdet_stop_and_save_print2()
  515. {
  516. cli();
  517. planner_abort_hard(); //abort printing
  518. cmdqueue_reset(); //empty cmdqueue
  519. card.sdprinting = false;
  520. card.closefile();
  521. sei();
  522. }
  523. void crashdet_detected()
  524. {
  525. // printf("CRASH_DETECTED");
  526. /* while (!is_buffer_empty())
  527. {
  528. process_commands();
  529. cmdqueue_pop_front();
  530. }*/
  531. st_synchronize();
  532. lcd_update_enable(true);
  533. lcd_implementation_clear();
  534. lcd_update(2);
  535. // Increment crash counter
  536. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  537. crash_count++;
  538. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(WELCOME_MSG);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X"));
  550. enquecommand_P(PSTR("G28 Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #ifdef MESH_BED_LEVELING
  570. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  571. #endif
  572. // Factory reset function
  573. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  574. // Level input parameter sets depth of reset
  575. // Quiet parameter masks all waitings for user interact.
  576. int er_progress = 0;
  577. void factory_reset(char level, bool quiet)
  578. {
  579. lcd_implementation_clear();
  580. int cursor_pos = 0;
  581. switch (level) {
  582. // Level 0: Language reset
  583. case 0:
  584. WRITE(BEEPER, HIGH);
  585. _delay_ms(100);
  586. WRITE(BEEPER, LOW);
  587. lcd_force_language_selection();
  588. break;
  589. //Level 1: Reset statistics
  590. case 1:
  591. WRITE(BEEPER, HIGH);
  592. _delay_ms(100);
  593. WRITE(BEEPER, LOW);
  594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  596. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  597. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  599. lcd_menu_statistics();
  600. break;
  601. // Level 2: Prepare for shipping
  602. case 2:
  603. //lcd_printPGM(PSTR("Factory RESET"));
  604. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  605. // Force language selection at the next boot up.
  606. lcd_force_language_selection();
  607. // Force the "Follow calibration flow" message at the next boot up.
  608. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  609. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  610. farm_no = 0;
  611. farm_mode == false;
  612. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  613. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  614. WRITE(BEEPER, HIGH);
  615. _delay_ms(100);
  616. WRITE(BEEPER, LOW);
  617. //_delay_ms(2000);
  618. break;
  619. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  620. case 3:
  621. lcd_printPGM(PSTR("Factory RESET"));
  622. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  623. WRITE(BEEPER, HIGH);
  624. _delay_ms(100);
  625. WRITE(BEEPER, LOW);
  626. er_progress = 0;
  627. lcd_print_at_PGM(3, 3, PSTR(" "));
  628. lcd_implementation_print_at(3, 3, er_progress);
  629. // Erase EEPROM
  630. for (int i = 0; i < 4096; i++) {
  631. eeprom_write_byte((uint8_t*)i, 0xFF);
  632. if (i % 41 == 0) {
  633. er_progress++;
  634. lcd_print_at_PGM(3, 3, PSTR(" "));
  635. lcd_implementation_print_at(3, 3, er_progress);
  636. lcd_printPGM(PSTR("%"));
  637. }
  638. }
  639. break;
  640. case 4:
  641. bowden_menu();
  642. break;
  643. default:
  644. break;
  645. }
  646. }
  647. #include "LiquidCrystal.h"
  648. extern LiquidCrystal lcd;
  649. FILE _lcdout = {0};
  650. int lcd_putchar(char c, FILE *stream)
  651. {
  652. lcd.write(c);
  653. return 0;
  654. }
  655. FILE _uartout = {0};
  656. int uart_putchar(char c, FILE *stream)
  657. {
  658. MYSERIAL.write(c);
  659. return 0;
  660. }
  661. void lcd_splash()
  662. {
  663. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  664. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  665. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  666. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  667. }
  668. // "Setup" function is called by the Arduino framework on startup.
  669. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  670. // are initialized by the main() routine provided by the Arduino framework.
  671. void setup()
  672. {
  673. lcd_init();
  674. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  675. lcd_splash();
  676. setup_killpin();
  677. setup_powerhold();
  678. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  679. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  680. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  681. if (farm_no == 0xFFFF) farm_no = 0;
  682. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  683. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  684. if (farm_mode)
  685. {
  686. prusa_statistics(8);
  687. selectedSerialPort = 1;
  688. }
  689. MYSERIAL.begin(BAUDRATE);
  690. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  691. stdout = uartout;
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. #if 0
  695. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  696. for (int i = 0; i < 4096; ++i) {
  697. int b = eeprom_read_byte((unsigned char*)i);
  698. if (b != 255) {
  699. SERIAL_ECHO(i);
  700. SERIAL_ECHO(":");
  701. SERIAL_ECHO(b);
  702. SERIAL_ECHOLN("");
  703. }
  704. }
  705. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  706. #endif
  707. // Check startup - does nothing if bootloader sets MCUSR to 0
  708. byte mcu = MCUSR;
  709. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  710. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  711. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  712. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  713. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  714. if (mcu & 1) puts_P(MSG_POWERUP);
  715. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  716. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  717. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  718. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  719. MCUSR = 0;
  720. //SERIAL_ECHORPGM(MSG_MARLIN);
  721. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  722. #ifdef STRING_VERSION_CONFIG_H
  723. #ifdef STRING_CONFIG_H_AUTHOR
  724. SERIAL_ECHO_START;
  725. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  726. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  727. SERIAL_ECHORPGM(MSG_AUTHOR);
  728. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  729. SERIAL_ECHOPGM("Compiled: ");
  730. SERIAL_ECHOLNPGM(__DATE__);
  731. #endif
  732. #endif
  733. SERIAL_ECHO_START;
  734. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  735. SERIAL_ECHO(freeMemory());
  736. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  737. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  738. //lcd_update_enable(false); // why do we need this?? - andre
  739. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  740. Config_RetrieveSettings(EEPROM_OFFSET);
  741. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  742. tp_init(); // Initialize temperature loop
  743. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  744. plan_init(); // Initialize planner;
  745. watchdog_init();
  746. #ifdef TMC2130
  747. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  748. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  749. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  750. if (crashdet)
  751. {
  752. crashdet_enable();
  753. MYSERIAL.println("CrashDetect ENABLED!");
  754. }
  755. else
  756. {
  757. crashdet_disable();
  758. MYSERIAL.println("CrashDetect DISABLED");
  759. }
  760. #endif //TMC2130
  761. #ifdef PAT9125
  762. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  763. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  764. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  765. if (!pat9125)
  766. {
  767. fsensor = 0; //disable sensor
  768. fsensor_not_responding = true;
  769. }
  770. puts_P(PSTR("FSensor "));
  771. if (fsensor)
  772. {
  773. puts_P(PSTR("ENABLED\n"));
  774. fsensor_enable();
  775. }
  776. else
  777. {
  778. puts_P(PSTR("DISABLED\n"));
  779. fsensor_disable();
  780. }
  781. #endif //PAT9125
  782. st_init(); // Initialize stepper, this enables interrupts!
  783. setup_photpin();
  784. servo_init();
  785. // Reset the machine correction matrix.
  786. // It does not make sense to load the correction matrix until the machine is homed.
  787. world2machine_reset();
  788. KEEPALIVE_STATE(PAUSED_FOR_USER);
  789. if (!READ(BTN_ENC))
  790. {
  791. _delay_ms(1000);
  792. if (!READ(BTN_ENC))
  793. {
  794. lcd_implementation_clear();
  795. lcd_printPGM(PSTR("Factory RESET"));
  796. SET_OUTPUT(BEEPER);
  797. WRITE(BEEPER, HIGH);
  798. while (!READ(BTN_ENC));
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(2000);
  801. char level = reset_menu();
  802. factory_reset(level, false);
  803. switch (level) {
  804. case 0: _delay_ms(0); break;
  805. case 1: _delay_ms(0); break;
  806. case 2: _delay_ms(0); break;
  807. case 3: _delay_ms(0); break;
  808. }
  809. // _delay_ms(100);
  810. /*
  811. #ifdef MESH_BED_LEVELING
  812. _delay_ms(2000);
  813. if (!READ(BTN_ENC))
  814. {
  815. WRITE(BEEPER, HIGH);
  816. _delay_ms(100);
  817. WRITE(BEEPER, LOW);
  818. _delay_ms(200);
  819. WRITE(BEEPER, HIGH);
  820. _delay_ms(100);
  821. WRITE(BEEPER, LOW);
  822. int _z = 0;
  823. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  824. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  825. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  826. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  827. }
  828. else
  829. {
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. }
  834. #endif // mesh */
  835. }
  836. }
  837. else
  838. {
  839. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  840. }
  841. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  842. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  845. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  846. #endif
  847. #ifdef DIGIPOT_I2C
  848. digipot_i2c_init();
  849. #endif
  850. setup_homepin();
  851. if (1) {
  852. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  853. // try to run to zero phase before powering the Z motor.
  854. // Move in negative direction
  855. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  856. // Round the current micro-micro steps to micro steps.
  857. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  858. // Until the phase counter is reset to zero.
  859. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  860. delay(2);
  861. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  862. delay(2);
  863. }
  864. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  865. }
  866. #if defined(Z_AXIS_ALWAYS_ON)
  867. enable_z();
  868. #endif
  869. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  870. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  871. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  872. if (farm_no == 0xFFFF) farm_no = 0;
  873. if (farm_mode)
  874. {
  875. prusa_statistics(8);
  876. }
  877. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  878. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  879. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  880. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  881. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  882. // where all the EEPROM entries are set to 0x0ff.
  883. // Once a firmware boots up, it forces at least a language selection, which changes
  884. // EEPROM_LANG to number lower than 0x0ff.
  885. // 1) Set a high power mode.
  886. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  887. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  888. }
  889. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  890. // but this times out if a blocking dialog is shown in setup().
  891. card.initsd();
  892. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  893. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  894. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  895. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  896. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  897. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  898. #ifdef SNMM
  899. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  900. int _z = BOWDEN_LENGTH;
  901. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  902. }
  903. #endif
  904. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  905. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  906. // is being written into the EEPROM, so the update procedure will be triggered only once.
  907. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  908. if (lang_selected >= LANG_NUM){
  909. lcd_mylang();
  910. }
  911. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  912. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  913. temp_cal_active = false;
  914. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  915. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  916. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  917. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  918. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  919. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  920. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  921. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  922. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  923. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  924. temp_cal_active = true;
  925. }
  926. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  927. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  928. }
  929. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  930. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  931. }
  932. check_babystep(); //checking if Z babystep is in allowed range
  933. setup_uvlo_interrupt();
  934. setup_fan_interrupt();
  935. fsensor_setup_interrupt();
  936. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  937. #ifndef DEBUG_DISABLE_STARTMSGS
  938. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  939. lcd_wizard(0);
  940. }
  941. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  942. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  943. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  944. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  945. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  946. // Show the message.
  947. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  948. }
  949. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  950. // Show the message.
  951. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  952. lcd_update_enable(true);
  953. }
  954. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  955. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  956. lcd_update_enable(true);
  957. }
  958. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  959. // Show the message.
  960. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  961. }
  962. }
  963. KEEPALIVE_STATE(IN_PROCESS);
  964. #endif //DEBUG_DISABLE_STARTMSGS
  965. lcd_update_enable(true);
  966. lcd_implementation_clear();
  967. lcd_update(2);
  968. // Store the currently running firmware into an eeprom,
  969. // so the next time the firmware gets updated, it will know from which version it has been updated.
  970. update_current_firmware_version_to_eeprom();
  971. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  972. /*
  973. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  974. else {
  975. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  976. lcd_update_enable(true);
  977. lcd_update(2);
  978. lcd_setstatuspgm(WELCOME_MSG);
  979. }
  980. */
  981. manage_heater(); // Update temperatures
  982. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  983. MYSERIAL.println("Power panic detected!");
  984. MYSERIAL.print("Current bed temp:");
  985. MYSERIAL.println(degBed());
  986. MYSERIAL.print("Saved bed temp:");
  987. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  988. #endif
  989. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  990. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  991. MYSERIAL.println("Automatic recovery!");
  992. #endif
  993. recover_print(1);
  994. }
  995. else{
  996. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  997. MYSERIAL.println("Normal recovery!");
  998. #endif
  999. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1000. else {
  1001. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1002. lcd_update_enable(true);
  1003. lcd_update(2);
  1004. lcd_setstatuspgm(WELCOME_MSG);
  1005. }
  1006. }
  1007. }
  1008. KEEPALIVE_STATE(NOT_BUSY);
  1009. wdt_enable(WDTO_4S);
  1010. }
  1011. void trace();
  1012. #define CHUNK_SIZE 64 // bytes
  1013. #define SAFETY_MARGIN 1
  1014. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1015. int chunkHead = 0;
  1016. int serial_read_stream() {
  1017. setTargetHotend(0, 0);
  1018. setTargetBed(0);
  1019. lcd_implementation_clear();
  1020. lcd_printPGM(PSTR(" Upload in progress"));
  1021. // first wait for how many bytes we will receive
  1022. uint32_t bytesToReceive;
  1023. // receive the four bytes
  1024. char bytesToReceiveBuffer[4];
  1025. for (int i=0; i<4; i++) {
  1026. int data;
  1027. while ((data = MYSERIAL.read()) == -1) {};
  1028. bytesToReceiveBuffer[i] = data;
  1029. }
  1030. // make it a uint32
  1031. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1032. // we're ready, notify the sender
  1033. MYSERIAL.write('+');
  1034. // lock in the routine
  1035. uint32_t receivedBytes = 0;
  1036. while (prusa_sd_card_upload) {
  1037. int i;
  1038. for (i=0; i<CHUNK_SIZE; i++) {
  1039. int data;
  1040. // check if we're not done
  1041. if (receivedBytes == bytesToReceive) {
  1042. break;
  1043. }
  1044. // read the next byte
  1045. while ((data = MYSERIAL.read()) == -1) {};
  1046. receivedBytes++;
  1047. // save it to the chunk
  1048. chunk[i] = data;
  1049. }
  1050. // write the chunk to SD
  1051. card.write_command_no_newline(&chunk[0]);
  1052. // notify the sender we're ready for more data
  1053. MYSERIAL.write('+');
  1054. // for safety
  1055. manage_heater();
  1056. // check if we're done
  1057. if(receivedBytes == bytesToReceive) {
  1058. trace(); // beep
  1059. card.closefile();
  1060. prusa_sd_card_upload = false;
  1061. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1062. return 0;
  1063. }
  1064. }
  1065. }
  1066. #ifdef HOST_KEEPALIVE_FEATURE
  1067. /**
  1068. * Output a "busy" message at regular intervals
  1069. * while the machine is not accepting commands.
  1070. */
  1071. void host_keepalive() {
  1072. if (farm_mode) return;
  1073. long ms = millis();
  1074. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1075. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1076. switch (busy_state) {
  1077. case IN_HANDLER:
  1078. case IN_PROCESS:
  1079. SERIAL_ECHO_START;
  1080. SERIAL_ECHOLNPGM("busy: processing");
  1081. break;
  1082. case PAUSED_FOR_USER:
  1083. SERIAL_ECHO_START;
  1084. SERIAL_ECHOLNPGM("busy: paused for user");
  1085. break;
  1086. case PAUSED_FOR_INPUT:
  1087. SERIAL_ECHO_START;
  1088. SERIAL_ECHOLNPGM("busy: paused for input");
  1089. break;
  1090. default:
  1091. break;
  1092. }
  1093. }
  1094. prev_busy_signal_ms = ms;
  1095. }
  1096. #endif
  1097. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1098. // Before loop(), the setup() function is called by the main() routine.
  1099. void loop()
  1100. {
  1101. KEEPALIVE_STATE(NOT_BUSY);
  1102. bool stack_integrity = true;
  1103. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1104. {
  1105. is_usb_printing = true;
  1106. usb_printing_counter--;
  1107. _usb_timer = millis();
  1108. }
  1109. if (usb_printing_counter == 0)
  1110. {
  1111. is_usb_printing = false;
  1112. }
  1113. if (prusa_sd_card_upload)
  1114. {
  1115. //we read byte-by byte
  1116. serial_read_stream();
  1117. } else
  1118. {
  1119. get_command();
  1120. #ifdef SDSUPPORT
  1121. card.checkautostart(false);
  1122. #endif
  1123. if(buflen)
  1124. {
  1125. cmdbuffer_front_already_processed = false;
  1126. #ifdef SDSUPPORT
  1127. if(card.saving)
  1128. {
  1129. // Saving a G-code file onto an SD-card is in progress.
  1130. // Saving starts with M28, saving until M29 is seen.
  1131. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1132. card.write_command(CMDBUFFER_CURRENT_STRING);
  1133. if(card.logging)
  1134. process_commands();
  1135. else
  1136. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1137. } else {
  1138. card.closefile();
  1139. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1140. }
  1141. } else {
  1142. process_commands();
  1143. }
  1144. #else
  1145. process_commands();
  1146. #endif //SDSUPPORT
  1147. if (! cmdbuffer_front_already_processed && buflen)
  1148. {
  1149. cli();
  1150. union {
  1151. struct {
  1152. char lo;
  1153. char hi;
  1154. } lohi;
  1155. uint16_t value;
  1156. } sdlen;
  1157. sdlen.value = 0;
  1158. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1159. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1160. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1161. }
  1162. cmdqueue_pop_front();
  1163. planner_add_sd_length(sdlen.value);
  1164. sei();
  1165. }
  1166. host_keepalive();
  1167. }
  1168. }
  1169. //check heater every n milliseconds
  1170. manage_heater();
  1171. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1172. checkHitEndstops();
  1173. lcd_update();
  1174. #ifdef PAT9125
  1175. fsensor_update();
  1176. #endif //PAT9125
  1177. #ifdef TMC2130
  1178. tmc2130_check_overtemp();
  1179. if (tmc2130_sg_crash)
  1180. {
  1181. tmc2130_sg_crash = false;
  1182. // crashdet_stop_and_save_print();
  1183. enquecommand_P((PSTR("CRASH_DETECTED")));
  1184. }
  1185. #endif //TMC2130
  1186. }
  1187. #define DEFINE_PGM_READ_ANY(type, reader) \
  1188. static inline type pgm_read_any(const type *p) \
  1189. { return pgm_read_##reader##_near(p); }
  1190. DEFINE_PGM_READ_ANY(float, float);
  1191. DEFINE_PGM_READ_ANY(signed char, byte);
  1192. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1193. static const PROGMEM type array##_P[3] = \
  1194. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1195. static inline type array(int axis) \
  1196. { return pgm_read_any(&array##_P[axis]); } \
  1197. type array##_ext(int axis) \
  1198. { return pgm_read_any(&array##_P[axis]); }
  1199. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1200. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1201. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1202. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1203. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1204. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1205. static void axis_is_at_home(int axis) {
  1206. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1207. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1208. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1209. }
  1210. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1211. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1212. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1213. saved_feedrate = feedrate;
  1214. saved_feedmultiply = feedmultiply;
  1215. feedmultiply = 100;
  1216. previous_millis_cmd = millis();
  1217. enable_endstops(enable_endstops_now);
  1218. }
  1219. static void clean_up_after_endstop_move() {
  1220. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1221. enable_endstops(false);
  1222. #endif
  1223. feedrate = saved_feedrate;
  1224. feedmultiply = saved_feedmultiply;
  1225. previous_millis_cmd = millis();
  1226. }
  1227. #ifdef ENABLE_AUTO_BED_LEVELING
  1228. #ifdef AUTO_BED_LEVELING_GRID
  1229. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1230. {
  1231. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1232. planeNormal.debug("planeNormal");
  1233. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1234. //bedLevel.debug("bedLevel");
  1235. //plan_bed_level_matrix.debug("bed level before");
  1236. //vector_3 uncorrected_position = plan_get_position_mm();
  1237. //uncorrected_position.debug("position before");
  1238. vector_3 corrected_position = plan_get_position();
  1239. // corrected_position.debug("position after");
  1240. current_position[X_AXIS] = corrected_position.x;
  1241. current_position[Y_AXIS] = corrected_position.y;
  1242. current_position[Z_AXIS] = corrected_position.z;
  1243. // put the bed at 0 so we don't go below it.
  1244. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1245. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1246. }
  1247. #else // not AUTO_BED_LEVELING_GRID
  1248. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1249. plan_bed_level_matrix.set_to_identity();
  1250. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1251. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1252. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1253. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1254. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1255. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1256. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1257. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1258. vector_3 corrected_position = plan_get_position();
  1259. current_position[X_AXIS] = corrected_position.x;
  1260. current_position[Y_AXIS] = corrected_position.y;
  1261. current_position[Z_AXIS] = corrected_position.z;
  1262. // put the bed at 0 so we don't go below it.
  1263. current_position[Z_AXIS] = zprobe_zoffset;
  1264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1265. }
  1266. #endif // AUTO_BED_LEVELING_GRID
  1267. static void run_z_probe() {
  1268. plan_bed_level_matrix.set_to_identity();
  1269. feedrate = homing_feedrate[Z_AXIS];
  1270. // move down until you find the bed
  1271. float zPosition = -10;
  1272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. // we have to let the planner know where we are right now as it is not where we said to go.
  1275. zPosition = st_get_position_mm(Z_AXIS);
  1276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1277. // move up the retract distance
  1278. zPosition += home_retract_mm(Z_AXIS);
  1279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1280. st_synchronize();
  1281. // move back down slowly to find bed
  1282. feedrate = homing_feedrate[Z_AXIS]/4;
  1283. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1285. st_synchronize();
  1286. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1287. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1289. }
  1290. static void do_blocking_move_to(float x, float y, float z) {
  1291. float oldFeedRate = feedrate;
  1292. feedrate = homing_feedrate[Z_AXIS];
  1293. current_position[Z_AXIS] = z;
  1294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. feedrate = XY_TRAVEL_SPEED;
  1297. current_position[X_AXIS] = x;
  1298. current_position[Y_AXIS] = y;
  1299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1300. st_synchronize();
  1301. feedrate = oldFeedRate;
  1302. }
  1303. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1304. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1305. }
  1306. /// Probe bed height at position (x,y), returns the measured z value
  1307. static float probe_pt(float x, float y, float z_before) {
  1308. // move to right place
  1309. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1310. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1311. run_z_probe();
  1312. float measured_z = current_position[Z_AXIS];
  1313. SERIAL_PROTOCOLRPGM(MSG_BED);
  1314. SERIAL_PROTOCOLPGM(" x: ");
  1315. SERIAL_PROTOCOL(x);
  1316. SERIAL_PROTOCOLPGM(" y: ");
  1317. SERIAL_PROTOCOL(y);
  1318. SERIAL_PROTOCOLPGM(" z: ");
  1319. SERIAL_PROTOCOL(measured_z);
  1320. SERIAL_PROTOCOLPGM("\n");
  1321. return measured_z;
  1322. }
  1323. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1324. #ifdef LIN_ADVANCE
  1325. /**
  1326. * M900: Set and/or Get advance K factor and WH/D ratio
  1327. *
  1328. * K<factor> Set advance K factor
  1329. * R<ratio> Set ratio directly (overrides WH/D)
  1330. * W<width> H<height> D<diam> Set ratio from WH/D
  1331. */
  1332. inline void gcode_M900() {
  1333. st_synchronize();
  1334. const float newK = code_seen('K') ? code_value_float() : -1;
  1335. if (newK >= 0) extruder_advance_k = newK;
  1336. float newR = code_seen('R') ? code_value_float() : -1;
  1337. if (newR < 0) {
  1338. const float newD = code_seen('D') ? code_value_float() : -1,
  1339. newW = code_seen('W') ? code_value_float() : -1,
  1340. newH = code_seen('H') ? code_value_float() : -1;
  1341. if (newD >= 0 && newW >= 0 && newH >= 0)
  1342. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1343. }
  1344. if (newR >= 0) advance_ed_ratio = newR;
  1345. SERIAL_ECHO_START;
  1346. SERIAL_ECHOPGM("Advance K=");
  1347. SERIAL_ECHOLN(extruder_advance_k);
  1348. SERIAL_ECHOPGM(" E/D=");
  1349. const float ratio = advance_ed_ratio;
  1350. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1351. }
  1352. #endif // LIN_ADVANCE
  1353. bool check_commands() {
  1354. bool end_command_found = false;
  1355. while (buflen)
  1356. {
  1357. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1358. if (!cmdbuffer_front_already_processed)
  1359. cmdqueue_pop_front();
  1360. cmdbuffer_front_already_processed = false;
  1361. }
  1362. return end_command_found;
  1363. }
  1364. #ifdef TMC2130
  1365. bool calibrate_z_auto()
  1366. {
  1367. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1368. lcd_implementation_clear();
  1369. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1370. bool endstops_enabled = enable_endstops(true);
  1371. int axis_up_dir = -home_dir(Z_AXIS);
  1372. tmc2130_home_enter(Z_AXIS_MASK);
  1373. current_position[Z_AXIS] = 0;
  1374. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1375. set_destination_to_current();
  1376. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1377. feedrate = homing_feedrate[Z_AXIS];
  1378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1379. st_synchronize();
  1380. // current_position[axis] = 0;
  1381. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1382. tmc2130_home_exit();
  1383. enable_endstops(false);
  1384. current_position[Z_AXIS] = 0;
  1385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1386. set_destination_to_current();
  1387. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1388. feedrate = homing_feedrate[Z_AXIS] / 2;
  1389. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1390. st_synchronize();
  1391. enable_endstops(endstops_enabled);
  1392. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1393. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1394. return true;
  1395. }
  1396. #endif //TMC2130
  1397. void homeaxis(int axis)
  1398. {
  1399. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1400. #define HOMEAXIS_DO(LETTER) \
  1401. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1402. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1403. {
  1404. int axis_home_dir = home_dir(axis);
  1405. feedrate = homing_feedrate[axis];
  1406. #ifdef TMC2130
  1407. tmc2130_home_enter(X_AXIS_MASK << axis);
  1408. #endif
  1409. // Move right a bit, so that the print head does not touch the left end position,
  1410. // and the following left movement has a chance to achieve the required velocity
  1411. // for the stall guard to work.
  1412. current_position[axis] = 0;
  1413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1414. // destination[axis] = 11.f;
  1415. destination[axis] = 3.f;
  1416. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1417. st_synchronize();
  1418. // Move left away from the possible collision with the collision detection disabled.
  1419. endstops_hit_on_purpose();
  1420. enable_endstops(false);
  1421. current_position[axis] = 0;
  1422. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1423. destination[axis] = - 1.;
  1424. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1425. st_synchronize();
  1426. // Now continue to move up to the left end stop with the collision detection enabled.
  1427. enable_endstops(true);
  1428. destination[axis] = - 1.1 * max_length(axis);
  1429. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1430. st_synchronize();
  1431. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1432. endstops_hit_on_purpose();
  1433. enable_endstops(false);
  1434. current_position[axis] = 0;
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. destination[axis] = 10.f;
  1437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1438. st_synchronize();
  1439. endstops_hit_on_purpose();
  1440. // Now move left up to the collision, this time with a repeatable velocity.
  1441. enable_endstops(true);
  1442. destination[axis] = - 15.f;
  1443. feedrate = homing_feedrate[axis]/2;
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. axis_is_at_home(axis);
  1447. axis_known_position[axis] = true;
  1448. #ifdef TMC2130
  1449. tmc2130_home_exit();
  1450. #endif
  1451. // Move the X carriage away from the collision.
  1452. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1453. endstops_hit_on_purpose();
  1454. enable_endstops(false);
  1455. {
  1456. // Two full periods (4 full steps).
  1457. float gap = 0.32f * 2.f;
  1458. current_position[axis] -= gap;
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1460. current_position[axis] += gap;
  1461. }
  1462. destination[axis] = current_position[axis];
  1463. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1464. st_synchronize();
  1465. feedrate = 0.0;
  1466. }
  1467. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1468. {
  1469. int axis_home_dir = home_dir(axis);
  1470. current_position[axis] = 0;
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1473. feedrate = homing_feedrate[axis];
  1474. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1475. st_synchronize();
  1476. current_position[axis] = 0;
  1477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1478. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1479. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1480. st_synchronize();
  1481. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1482. feedrate = homing_feedrate[axis]/2 ;
  1483. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1484. st_synchronize();
  1485. axis_is_at_home(axis);
  1486. destination[axis] = current_position[axis];
  1487. feedrate = 0.0;
  1488. endstops_hit_on_purpose();
  1489. axis_known_position[axis] = true;
  1490. }
  1491. enable_endstops(endstops_enabled);
  1492. }
  1493. /**/
  1494. void home_xy()
  1495. {
  1496. set_destination_to_current();
  1497. homeaxis(X_AXIS);
  1498. homeaxis(Y_AXIS);
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. endstops_hit_on_purpose();
  1501. }
  1502. void refresh_cmd_timeout(void)
  1503. {
  1504. previous_millis_cmd = millis();
  1505. }
  1506. #ifdef FWRETRACT
  1507. void retract(bool retracting, bool swapretract = false) {
  1508. if(retracting && !retracted[active_extruder]) {
  1509. destination[X_AXIS]=current_position[X_AXIS];
  1510. destination[Y_AXIS]=current_position[Y_AXIS];
  1511. destination[Z_AXIS]=current_position[Z_AXIS];
  1512. destination[E_AXIS]=current_position[E_AXIS];
  1513. if (swapretract) {
  1514. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1515. } else {
  1516. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1517. }
  1518. plan_set_e_position(current_position[E_AXIS]);
  1519. float oldFeedrate = feedrate;
  1520. feedrate=retract_feedrate*60;
  1521. retracted[active_extruder]=true;
  1522. prepare_move();
  1523. current_position[Z_AXIS]-=retract_zlift;
  1524. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. prepare_move();
  1526. feedrate = oldFeedrate;
  1527. } else if(!retracting && retracted[active_extruder]) {
  1528. destination[X_AXIS]=current_position[X_AXIS];
  1529. destination[Y_AXIS]=current_position[Y_AXIS];
  1530. destination[Z_AXIS]=current_position[Z_AXIS];
  1531. destination[E_AXIS]=current_position[E_AXIS];
  1532. current_position[Z_AXIS]+=retract_zlift;
  1533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1534. //prepare_move();
  1535. if (swapretract) {
  1536. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1537. } else {
  1538. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1539. }
  1540. plan_set_e_position(current_position[E_AXIS]);
  1541. float oldFeedrate = feedrate;
  1542. feedrate=retract_recover_feedrate*60;
  1543. retracted[active_extruder]=false;
  1544. prepare_move();
  1545. feedrate = oldFeedrate;
  1546. }
  1547. } //retract
  1548. #endif //FWRETRACT
  1549. void trace() {
  1550. tone(BEEPER, 440);
  1551. delay(25);
  1552. noTone(BEEPER);
  1553. delay(20);
  1554. }
  1555. /*
  1556. void ramming() {
  1557. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1558. if (current_temperature[0] < 230) {
  1559. //PLA
  1560. max_feedrate[E_AXIS] = 50;
  1561. //current_position[E_AXIS] -= 8;
  1562. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1563. //current_position[E_AXIS] += 8;
  1564. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1565. current_position[E_AXIS] += 5.4;
  1566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1567. current_position[E_AXIS] += 3.2;
  1568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1569. current_position[E_AXIS] += 3;
  1570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1571. st_synchronize();
  1572. max_feedrate[E_AXIS] = 80;
  1573. current_position[E_AXIS] -= 82;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1575. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1576. current_position[E_AXIS] -= 20;
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1578. current_position[E_AXIS] += 5;
  1579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1580. current_position[E_AXIS] += 5;
  1581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1582. current_position[E_AXIS] -= 10;
  1583. st_synchronize();
  1584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1585. current_position[E_AXIS] += 10;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1587. current_position[E_AXIS] -= 10;
  1588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1589. current_position[E_AXIS] += 10;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1591. current_position[E_AXIS] -= 10;
  1592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1593. st_synchronize();
  1594. }
  1595. else {
  1596. //ABS
  1597. max_feedrate[E_AXIS] = 50;
  1598. //current_position[E_AXIS] -= 8;
  1599. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1600. //current_position[E_AXIS] += 8;
  1601. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1602. current_position[E_AXIS] += 3.1;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1604. current_position[E_AXIS] += 3.1;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1606. current_position[E_AXIS] += 4;
  1607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1608. st_synchronize();
  1609. //current_position[X_AXIS] += 23; //delay
  1610. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1611. //current_position[X_AXIS] -= 23; //delay
  1612. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1613. delay(4700);
  1614. max_feedrate[E_AXIS] = 80;
  1615. current_position[E_AXIS] -= 92;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1617. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1618. current_position[E_AXIS] -= 5;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1620. current_position[E_AXIS] += 5;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1622. current_position[E_AXIS] -= 5;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1624. st_synchronize();
  1625. current_position[E_AXIS] += 5;
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1627. current_position[E_AXIS] -= 5;
  1628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1629. current_position[E_AXIS] += 5;
  1630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1631. current_position[E_AXIS] -= 5;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1633. st_synchronize();
  1634. }
  1635. }
  1636. */
  1637. #ifdef TMC2130
  1638. void force_high_power_mode(bool start_high_power_section) {
  1639. uint8_t silent;
  1640. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1641. if (silent == 1) {
  1642. //we are in silent mode, set to normal mode to enable crash detection
  1643. st_synchronize();
  1644. cli();
  1645. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1646. tmc2130_init();
  1647. sei();
  1648. digipot_init();
  1649. }
  1650. }
  1651. #endif //TMC2130
  1652. bool gcode_M45(bool onlyZ)
  1653. {
  1654. bool final_result = false;
  1655. #ifdef TMC2130
  1656. FORCE_HIGH_POWER_START;
  1657. #endif // TMC2130
  1658. // Only Z calibration?
  1659. if (!onlyZ)
  1660. {
  1661. setTargetBed(0);
  1662. setTargetHotend(0, 0);
  1663. setTargetHotend(0, 1);
  1664. setTargetHotend(0, 2);
  1665. adjust_bed_reset(); //reset bed level correction
  1666. }
  1667. // Disable the default update procedure of the display. We will do a modal dialog.
  1668. lcd_update_enable(false);
  1669. // Let the planner use the uncorrected coordinates.
  1670. mbl.reset();
  1671. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1672. // the planner will not perform any adjustments in the XY plane.
  1673. // Wait for the motors to stop and update the current position with the absolute values.
  1674. world2machine_revert_to_uncorrected();
  1675. // Reset the baby step value applied without moving the axes.
  1676. babystep_reset();
  1677. // Mark all axes as in a need for homing.
  1678. memset(axis_known_position, 0, sizeof(axis_known_position));
  1679. // Home in the XY plane.
  1680. //set_destination_to_current();
  1681. setup_for_endstop_move();
  1682. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1683. home_xy();
  1684. // Let the user move the Z axes up to the end stoppers.
  1685. #ifdef TMC2130
  1686. if (calibrate_z_auto())
  1687. {
  1688. #else //TMC2130
  1689. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1690. {
  1691. #endif //TMC2130
  1692. refresh_cmd_timeout();
  1693. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1694. //{
  1695. // lcd_wait_for_cool_down();
  1696. //}
  1697. if(!onlyZ)
  1698. {
  1699. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1700. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1701. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1702. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1703. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1704. KEEPALIVE_STATE(IN_HANDLER);
  1705. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1706. lcd_implementation_print_at(0, 2, 1);
  1707. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1708. }
  1709. // Move the print head close to the bed.
  1710. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1711. bool endstops_enabled = enable_endstops(true);
  1712. tmc2130_home_enter(Z_AXIS_MASK);
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1714. st_synchronize();
  1715. tmc2130_home_exit();
  1716. enable_endstops(endstops_enabled);
  1717. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1718. {
  1719. //#ifdef TMC2130
  1720. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1721. //#endif
  1722. int8_t verbosity_level = 0;
  1723. if (code_seen('V'))
  1724. {
  1725. // Just 'V' without a number counts as V1.
  1726. char c = strchr_pointer[1];
  1727. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1728. }
  1729. if (onlyZ)
  1730. {
  1731. clean_up_after_endstop_move();
  1732. // Z only calibration.
  1733. // Load the machine correction matrix
  1734. world2machine_initialize();
  1735. // and correct the current_position to match the transformed coordinate system.
  1736. world2machine_update_current();
  1737. //FIXME
  1738. bool result = sample_mesh_and_store_reference();
  1739. if (result)
  1740. {
  1741. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1742. // Shipped, the nozzle height has been set already. The user can start printing now.
  1743. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1744. final_result = true;
  1745. // babystep_apply();
  1746. }
  1747. }
  1748. else
  1749. {
  1750. // Reset the baby step value and the baby step applied flag.
  1751. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1752. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1753. // Complete XYZ calibration.
  1754. uint8_t point_too_far_mask = 0;
  1755. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1756. clean_up_after_endstop_move();
  1757. // Print head up.
  1758. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1760. st_synchronize();
  1761. if (result >= 0)
  1762. {
  1763. point_too_far_mask = 0;
  1764. // Second half: The fine adjustment.
  1765. // Let the planner use the uncorrected coordinates.
  1766. mbl.reset();
  1767. world2machine_reset();
  1768. // Home in the XY plane.
  1769. setup_for_endstop_move();
  1770. home_xy();
  1771. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1772. clean_up_after_endstop_move();
  1773. // Print head up.
  1774. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1776. st_synchronize();
  1777. // if (result >= 0) babystep_apply();
  1778. }
  1779. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1780. if (result >= 0)
  1781. {
  1782. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1783. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1784. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1785. final_result = true;
  1786. }
  1787. }
  1788. #ifdef TMC2130
  1789. tmc2130_home_exit();
  1790. #endif
  1791. }
  1792. else
  1793. {
  1794. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1795. final_result = false;
  1796. }
  1797. }
  1798. else
  1799. {
  1800. // Timeouted.
  1801. }
  1802. lcd_update_enable(true);
  1803. #ifdef TMC2130
  1804. FORCE_HIGH_POWER_END;
  1805. #endif // TMC2130
  1806. return final_result;
  1807. }
  1808. void gcode_M701()
  1809. {
  1810. #ifdef SNMM
  1811. extr_adj(snmm_extruder);//loads current extruder
  1812. #else
  1813. enable_z();
  1814. custom_message = true;
  1815. custom_message_type = 2;
  1816. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1817. current_position[E_AXIS] += 70;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1819. current_position[E_AXIS] += 25;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1821. st_synchronize();
  1822. if (!farm_mode && loading_flag) {
  1823. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1824. while (!clean) {
  1825. lcd_update_enable(true);
  1826. lcd_update(2);
  1827. current_position[E_AXIS] += 25;
  1828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1829. st_synchronize();
  1830. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1831. }
  1832. }
  1833. lcd_update_enable(true);
  1834. lcd_update(2);
  1835. lcd_setstatuspgm(WELCOME_MSG);
  1836. disable_z();
  1837. loading_flag = false;
  1838. custom_message = false;
  1839. custom_message_type = 0;
  1840. #endif
  1841. }
  1842. void process_commands()
  1843. {
  1844. #ifdef FILAMENT_RUNOUT_SUPPORT
  1845. SET_INPUT(FR_SENS);
  1846. #endif
  1847. #ifdef CMDBUFFER_DEBUG
  1848. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1849. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1850. SERIAL_ECHOLNPGM("");
  1851. SERIAL_ECHOPGM("In cmdqueue: ");
  1852. SERIAL_ECHO(buflen);
  1853. SERIAL_ECHOLNPGM("");
  1854. #endif /* CMDBUFFER_DEBUG */
  1855. unsigned long codenum; //throw away variable
  1856. char *starpos = NULL;
  1857. #ifdef ENABLE_AUTO_BED_LEVELING
  1858. float x_tmp, y_tmp, z_tmp, real_z;
  1859. #endif
  1860. // PRUSA GCODES
  1861. KEEPALIVE_STATE(IN_HANDLER);
  1862. #ifdef SNMM
  1863. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1864. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1865. int8_t SilentMode;
  1866. #endif
  1867. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1868. starpos = (strchr(strchr_pointer + 5, '*'));
  1869. if (starpos != NULL)
  1870. *(starpos) = '\0';
  1871. lcd_setstatus(strchr_pointer + 5);
  1872. }
  1873. else if(code_seen("CRASH_DETECTED"))
  1874. crashdet_detected();
  1875. else if(code_seen("CRASH_RECOVER"))
  1876. crashdet_recover();
  1877. else if(code_seen("CRASH_CANCEL"))
  1878. crashdet_cancel();
  1879. else if(code_seen("PRUSA")){
  1880. if (code_seen("Ping")) { //PRUSA Ping
  1881. if (farm_mode) {
  1882. PingTime = millis();
  1883. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1884. }
  1885. }
  1886. else if (code_seen("PRN")) {
  1887. MYSERIAL.println(status_number);
  1888. }else if (code_seen("FAN")) {
  1889. MYSERIAL.print("E0:");
  1890. MYSERIAL.print(60*fan_speed[0]);
  1891. MYSERIAL.println(" RPM");
  1892. MYSERIAL.print("PRN0:");
  1893. MYSERIAL.print(60*fan_speed[1]);
  1894. MYSERIAL.println(" RPM");
  1895. }else if (code_seen("fn")) {
  1896. if (farm_mode) {
  1897. MYSERIAL.println(farm_no);
  1898. }
  1899. else {
  1900. MYSERIAL.println("Not in farm mode.");
  1901. }
  1902. }else if (code_seen("fv")) {
  1903. // get file version
  1904. #ifdef SDSUPPORT
  1905. card.openFile(strchr_pointer + 3,true);
  1906. while (true) {
  1907. uint16_t readByte = card.get();
  1908. MYSERIAL.write(readByte);
  1909. if (readByte=='\n') {
  1910. break;
  1911. }
  1912. }
  1913. card.closefile();
  1914. #endif // SDSUPPORT
  1915. } else if (code_seen("M28")) {
  1916. trace();
  1917. prusa_sd_card_upload = true;
  1918. card.openFile(strchr_pointer+4,false);
  1919. } else if (code_seen("SN")) {
  1920. if (farm_mode) {
  1921. selectedSerialPort = 0;
  1922. MSerial.write(";S");
  1923. // S/N is:CZPX0917X003XC13518
  1924. int numbersRead = 0;
  1925. while (numbersRead < 19) {
  1926. while (MSerial.available() > 0) {
  1927. uint8_t serial_char = MSerial.read();
  1928. selectedSerialPort = 1;
  1929. MSerial.write(serial_char);
  1930. numbersRead++;
  1931. selectedSerialPort = 0;
  1932. }
  1933. }
  1934. selectedSerialPort = 1;
  1935. MSerial.write('\n');
  1936. /*for (int b = 0; b < 3; b++) {
  1937. tone(BEEPER, 110);
  1938. delay(50);
  1939. noTone(BEEPER);
  1940. delay(50);
  1941. }*/
  1942. } else {
  1943. MYSERIAL.println("Not in farm mode.");
  1944. }
  1945. } else if(code_seen("Fir")){
  1946. SERIAL_PROTOCOLLN(FW_version);
  1947. } else if(code_seen("Rev")){
  1948. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1949. } else if(code_seen("Lang")) {
  1950. lcd_force_language_selection();
  1951. } else if(code_seen("Lz")) {
  1952. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1953. } else if (code_seen("SERIAL LOW")) {
  1954. MYSERIAL.println("SERIAL LOW");
  1955. MYSERIAL.begin(BAUDRATE);
  1956. return;
  1957. } else if (code_seen("SERIAL HIGH")) {
  1958. MYSERIAL.println("SERIAL HIGH");
  1959. MYSERIAL.begin(1152000);
  1960. return;
  1961. } else if(code_seen("Beat")) {
  1962. // Kick farm link timer
  1963. kicktime = millis();
  1964. } else if(code_seen("FR")) {
  1965. // Factory full reset
  1966. factory_reset(0,true);
  1967. }
  1968. //else if (code_seen('Cal')) {
  1969. // lcd_calibration();
  1970. // }
  1971. }
  1972. else if (code_seen('^')) {
  1973. // nothing, this is a version line
  1974. } else if(code_seen('G'))
  1975. {
  1976. switch((int)code_value())
  1977. {
  1978. case 0: // G0 -> G1
  1979. case 1: // G1
  1980. if(Stopped == false) {
  1981. #ifdef FILAMENT_RUNOUT_SUPPORT
  1982. if(READ(FR_SENS)){
  1983. feedmultiplyBckp=feedmultiply;
  1984. float target[4];
  1985. float lastpos[4];
  1986. target[X_AXIS]=current_position[X_AXIS];
  1987. target[Y_AXIS]=current_position[Y_AXIS];
  1988. target[Z_AXIS]=current_position[Z_AXIS];
  1989. target[E_AXIS]=current_position[E_AXIS];
  1990. lastpos[X_AXIS]=current_position[X_AXIS];
  1991. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1992. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1993. lastpos[E_AXIS]=current_position[E_AXIS];
  1994. //retract by E
  1995. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1996. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1997. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1999. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2000. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2001. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2002. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2004. //finish moves
  2005. st_synchronize();
  2006. //disable extruder steppers so filament can be removed
  2007. disable_e0();
  2008. disable_e1();
  2009. disable_e2();
  2010. delay(100);
  2011. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2012. uint8_t cnt=0;
  2013. int counterBeep = 0;
  2014. lcd_wait_interact();
  2015. while(!lcd_clicked()){
  2016. cnt++;
  2017. manage_heater();
  2018. manage_inactivity(true);
  2019. //lcd_update();
  2020. if(cnt==0)
  2021. {
  2022. #if BEEPER > 0
  2023. if (counterBeep== 500){
  2024. counterBeep = 0;
  2025. }
  2026. SET_OUTPUT(BEEPER);
  2027. if (counterBeep== 0){
  2028. WRITE(BEEPER,HIGH);
  2029. }
  2030. if (counterBeep== 20){
  2031. WRITE(BEEPER,LOW);
  2032. }
  2033. counterBeep++;
  2034. #else
  2035. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2036. lcd_buzz(1000/6,100);
  2037. #else
  2038. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2039. #endif
  2040. #endif
  2041. }
  2042. }
  2043. WRITE(BEEPER,LOW);
  2044. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2046. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2048. lcd_change_fil_state = 0;
  2049. lcd_loading_filament();
  2050. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2051. lcd_change_fil_state = 0;
  2052. lcd_alright();
  2053. switch(lcd_change_fil_state){
  2054. case 2:
  2055. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2057. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2059. lcd_loading_filament();
  2060. break;
  2061. case 3:
  2062. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2064. lcd_loading_color();
  2065. break;
  2066. default:
  2067. lcd_change_success();
  2068. break;
  2069. }
  2070. }
  2071. target[E_AXIS]+= 5;
  2072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2073. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2075. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2076. //plan_set_e_position(current_position[E_AXIS]);
  2077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2078. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2079. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2080. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2081. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2082. plan_set_e_position(lastpos[E_AXIS]);
  2083. feedmultiply=feedmultiplyBckp;
  2084. char cmd[9];
  2085. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2086. enquecommand(cmd);
  2087. }
  2088. #endif
  2089. get_coordinates(); // For X Y Z E F
  2090. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2091. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2092. }
  2093. #ifdef FWRETRACT
  2094. if(autoretract_enabled)
  2095. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2096. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2097. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2098. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2099. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2100. retract(!retracted);
  2101. return;
  2102. }
  2103. }
  2104. #endif //FWRETRACT
  2105. prepare_move();
  2106. //ClearToSend();
  2107. }
  2108. break;
  2109. case 2: // G2 - CW ARC
  2110. if(Stopped == false) {
  2111. get_arc_coordinates();
  2112. prepare_arc_move(true);
  2113. }
  2114. break;
  2115. case 3: // G3 - CCW ARC
  2116. if(Stopped == false) {
  2117. get_arc_coordinates();
  2118. prepare_arc_move(false);
  2119. }
  2120. break;
  2121. case 4: // G4 dwell
  2122. codenum = 0;
  2123. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2124. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2125. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2126. st_synchronize();
  2127. codenum += millis(); // keep track of when we started waiting
  2128. previous_millis_cmd = millis();
  2129. while(millis() < codenum) {
  2130. manage_heater();
  2131. manage_inactivity();
  2132. lcd_update();
  2133. }
  2134. break;
  2135. #ifdef FWRETRACT
  2136. case 10: // G10 retract
  2137. #if EXTRUDERS > 1
  2138. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2139. retract(true,retracted_swap[active_extruder]);
  2140. #else
  2141. retract(true);
  2142. #endif
  2143. break;
  2144. case 11: // G11 retract_recover
  2145. #if EXTRUDERS > 1
  2146. retract(false,retracted_swap[active_extruder]);
  2147. #else
  2148. retract(false);
  2149. #endif
  2150. break;
  2151. #endif //FWRETRACT
  2152. case 28: //G28 Home all Axis one at a time
  2153. {
  2154. st_synchronize();
  2155. #if 1
  2156. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2157. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2158. #endif
  2159. // Flag for the display update routine and to disable the print cancelation during homing.
  2160. homing_flag = true;
  2161. // Which axes should be homed?
  2162. bool home_x = code_seen(axis_codes[X_AXIS]);
  2163. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2164. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2165. // Either all X,Y,Z codes are present, or none of them.
  2166. bool home_all_axes = home_x == home_y && home_x == home_z;
  2167. if (home_all_axes)
  2168. // No X/Y/Z code provided means to home all axes.
  2169. home_x = home_y = home_z = true;
  2170. #ifdef ENABLE_AUTO_BED_LEVELING
  2171. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2172. #endif //ENABLE_AUTO_BED_LEVELING
  2173. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2174. // the planner will not perform any adjustments in the XY plane.
  2175. // Wait for the motors to stop and update the current position with the absolute values.
  2176. world2machine_revert_to_uncorrected();
  2177. // For mesh bed leveling deactivate the matrix temporarily.
  2178. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2179. // in a single axis only.
  2180. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2181. #ifdef MESH_BED_LEVELING
  2182. uint8_t mbl_was_active = mbl.active;
  2183. mbl.active = 0;
  2184. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2185. #endif
  2186. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2187. // consumed during the first movements following this statement.
  2188. if (home_z)
  2189. babystep_undo();
  2190. saved_feedrate = feedrate;
  2191. saved_feedmultiply = feedmultiply;
  2192. feedmultiply = 100;
  2193. previous_millis_cmd = millis();
  2194. enable_endstops(true);
  2195. memcpy(destination, current_position, sizeof(destination));
  2196. feedrate = 0.0;
  2197. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2198. if(home_z)
  2199. homeaxis(Z_AXIS);
  2200. #endif
  2201. #ifdef QUICK_HOME
  2202. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2203. if(home_x && home_y) //first diagonal move
  2204. {
  2205. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2206. int x_axis_home_dir = home_dir(X_AXIS);
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2209. feedrate = homing_feedrate[X_AXIS];
  2210. if(homing_feedrate[Y_AXIS]<feedrate)
  2211. feedrate = homing_feedrate[Y_AXIS];
  2212. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2213. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2214. } else {
  2215. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2216. }
  2217. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2218. st_synchronize();
  2219. axis_is_at_home(X_AXIS);
  2220. axis_is_at_home(Y_AXIS);
  2221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2222. destination[X_AXIS] = current_position[X_AXIS];
  2223. destination[Y_AXIS] = current_position[Y_AXIS];
  2224. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2225. feedrate = 0.0;
  2226. st_synchronize();
  2227. endstops_hit_on_purpose();
  2228. current_position[X_AXIS] = destination[X_AXIS];
  2229. current_position[Y_AXIS] = destination[Y_AXIS];
  2230. current_position[Z_AXIS] = destination[Z_AXIS];
  2231. }
  2232. #endif /* QUICK_HOME */
  2233. if(home_x)
  2234. homeaxis(X_AXIS);
  2235. if(home_y)
  2236. homeaxis(Y_AXIS);
  2237. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2238. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2239. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2240. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2241. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2242. #ifndef Z_SAFE_HOMING
  2243. if(home_z) {
  2244. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2245. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2246. feedrate = max_feedrate[Z_AXIS];
  2247. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2248. st_synchronize();
  2249. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2250. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2251. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2252. {
  2253. homeaxis(X_AXIS);
  2254. homeaxis(Y_AXIS);
  2255. }
  2256. // 1st mesh bed leveling measurement point, corrected.
  2257. world2machine_initialize();
  2258. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2259. world2machine_reset();
  2260. if (destination[Y_AXIS] < Y_MIN_POS)
  2261. destination[Y_AXIS] = Y_MIN_POS;
  2262. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2263. feedrate = homing_feedrate[Z_AXIS]/10;
  2264. current_position[Z_AXIS] = 0;
  2265. enable_endstops(false);
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2268. st_synchronize();
  2269. current_position[X_AXIS] = destination[X_AXIS];
  2270. current_position[Y_AXIS] = destination[Y_AXIS];
  2271. enable_endstops(true);
  2272. endstops_hit_on_purpose();
  2273. homeaxis(Z_AXIS);
  2274. #else // MESH_BED_LEVELING
  2275. homeaxis(Z_AXIS);
  2276. #endif // MESH_BED_LEVELING
  2277. }
  2278. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2279. if(home_all_axes) {
  2280. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2281. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2282. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2283. feedrate = XY_TRAVEL_SPEED/60;
  2284. current_position[Z_AXIS] = 0;
  2285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2287. st_synchronize();
  2288. current_position[X_AXIS] = destination[X_AXIS];
  2289. current_position[Y_AXIS] = destination[Y_AXIS];
  2290. homeaxis(Z_AXIS);
  2291. }
  2292. // Let's see if X and Y are homed and probe is inside bed area.
  2293. if(home_z) {
  2294. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2295. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2296. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2297. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2298. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2299. current_position[Z_AXIS] = 0;
  2300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2301. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2302. feedrate = max_feedrate[Z_AXIS];
  2303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2304. st_synchronize();
  2305. homeaxis(Z_AXIS);
  2306. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2307. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2308. SERIAL_ECHO_START;
  2309. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2310. } else {
  2311. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2312. SERIAL_ECHO_START;
  2313. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2314. }
  2315. }
  2316. #endif // Z_SAFE_HOMING
  2317. #endif // Z_HOME_DIR < 0
  2318. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2319. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2320. #ifdef ENABLE_AUTO_BED_LEVELING
  2321. if(home_z)
  2322. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2323. #endif
  2324. // Set the planner and stepper routine positions.
  2325. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2326. // contains the machine coordinates.
  2327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2328. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2329. enable_endstops(false);
  2330. #endif
  2331. feedrate = saved_feedrate;
  2332. feedmultiply = saved_feedmultiply;
  2333. previous_millis_cmd = millis();
  2334. endstops_hit_on_purpose();
  2335. #ifndef MESH_BED_LEVELING
  2336. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2337. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2338. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2339. lcd_adjust_z();
  2340. #endif
  2341. // Load the machine correction matrix
  2342. world2machine_initialize();
  2343. // and correct the current_position XY axes to match the transformed coordinate system.
  2344. world2machine_update_current();
  2345. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2346. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2347. {
  2348. if (! home_z && mbl_was_active) {
  2349. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2350. mbl.active = true;
  2351. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2352. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2353. }
  2354. }
  2355. else
  2356. {
  2357. st_synchronize();
  2358. homing_flag = false;
  2359. // Push the commands to the front of the message queue in the reverse order!
  2360. // There shall be always enough space reserved for these commands.
  2361. // enquecommand_front_P((PSTR("G80")));
  2362. goto case_G80;
  2363. }
  2364. #endif
  2365. if (farm_mode) { prusa_statistics(20); };
  2366. homing_flag = false;
  2367. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2368. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2369. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2370. break;
  2371. }
  2372. #ifdef ENABLE_AUTO_BED_LEVELING
  2373. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2374. {
  2375. #if Z_MIN_PIN == -1
  2376. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2377. #endif
  2378. // Prevent user from running a G29 without first homing in X and Y
  2379. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2380. {
  2381. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2382. SERIAL_ECHO_START;
  2383. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2384. break; // abort G29, since we don't know where we are
  2385. }
  2386. st_synchronize();
  2387. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2388. //vector_3 corrected_position = plan_get_position_mm();
  2389. //corrected_position.debug("position before G29");
  2390. plan_bed_level_matrix.set_to_identity();
  2391. vector_3 uncorrected_position = plan_get_position();
  2392. //uncorrected_position.debug("position durring G29");
  2393. current_position[X_AXIS] = uncorrected_position.x;
  2394. current_position[Y_AXIS] = uncorrected_position.y;
  2395. current_position[Z_AXIS] = uncorrected_position.z;
  2396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2397. setup_for_endstop_move();
  2398. feedrate = homing_feedrate[Z_AXIS];
  2399. #ifdef AUTO_BED_LEVELING_GRID
  2400. // probe at the points of a lattice grid
  2401. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2402. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2403. // solve the plane equation ax + by + d = z
  2404. // A is the matrix with rows [x y 1] for all the probed points
  2405. // B is the vector of the Z positions
  2406. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2407. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2408. // "A" matrix of the linear system of equations
  2409. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2410. // "B" vector of Z points
  2411. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2412. int probePointCounter = 0;
  2413. bool zig = true;
  2414. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2415. {
  2416. int xProbe, xInc;
  2417. if (zig)
  2418. {
  2419. xProbe = LEFT_PROBE_BED_POSITION;
  2420. //xEnd = RIGHT_PROBE_BED_POSITION;
  2421. xInc = xGridSpacing;
  2422. zig = false;
  2423. } else // zag
  2424. {
  2425. xProbe = RIGHT_PROBE_BED_POSITION;
  2426. //xEnd = LEFT_PROBE_BED_POSITION;
  2427. xInc = -xGridSpacing;
  2428. zig = true;
  2429. }
  2430. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2431. {
  2432. float z_before;
  2433. if (probePointCounter == 0)
  2434. {
  2435. // raise before probing
  2436. z_before = Z_RAISE_BEFORE_PROBING;
  2437. } else
  2438. {
  2439. // raise extruder
  2440. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2441. }
  2442. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2443. eqnBVector[probePointCounter] = measured_z;
  2444. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2445. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2446. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2447. probePointCounter++;
  2448. xProbe += xInc;
  2449. }
  2450. }
  2451. clean_up_after_endstop_move();
  2452. // solve lsq problem
  2453. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2454. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2455. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2456. SERIAL_PROTOCOLPGM(" b: ");
  2457. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2458. SERIAL_PROTOCOLPGM(" d: ");
  2459. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2460. set_bed_level_equation_lsq(plane_equation_coefficients);
  2461. free(plane_equation_coefficients);
  2462. #else // AUTO_BED_LEVELING_GRID not defined
  2463. // Probe at 3 arbitrary points
  2464. // probe 1
  2465. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2466. // probe 2
  2467. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2468. // probe 3
  2469. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2470. clean_up_after_endstop_move();
  2471. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2472. #endif // AUTO_BED_LEVELING_GRID
  2473. st_synchronize();
  2474. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2475. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2476. // When the bed is uneven, this height must be corrected.
  2477. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2478. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2479. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2480. z_tmp = current_position[Z_AXIS];
  2481. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2482. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2483. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2484. }
  2485. break;
  2486. #ifndef Z_PROBE_SLED
  2487. case 30: // G30 Single Z Probe
  2488. {
  2489. st_synchronize();
  2490. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2491. setup_for_endstop_move();
  2492. feedrate = homing_feedrate[Z_AXIS];
  2493. run_z_probe();
  2494. SERIAL_PROTOCOLPGM(MSG_BED);
  2495. SERIAL_PROTOCOLPGM(" X: ");
  2496. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2497. SERIAL_PROTOCOLPGM(" Y: ");
  2498. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2499. SERIAL_PROTOCOLPGM(" Z: ");
  2500. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2501. SERIAL_PROTOCOLPGM("\n");
  2502. clean_up_after_endstop_move();
  2503. }
  2504. break;
  2505. #else
  2506. case 31: // dock the sled
  2507. dock_sled(true);
  2508. break;
  2509. case 32: // undock the sled
  2510. dock_sled(false);
  2511. break;
  2512. #endif // Z_PROBE_SLED
  2513. #endif // ENABLE_AUTO_BED_LEVELING
  2514. #ifdef MESH_BED_LEVELING
  2515. case 30: // G30 Single Z Probe
  2516. {
  2517. st_synchronize();
  2518. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2519. setup_for_endstop_move();
  2520. feedrate = homing_feedrate[Z_AXIS];
  2521. find_bed_induction_sensor_point_z(-10.f, 3);
  2522. SERIAL_PROTOCOLRPGM(MSG_BED);
  2523. SERIAL_PROTOCOLPGM(" X: ");
  2524. MYSERIAL.print(current_position[X_AXIS], 5);
  2525. SERIAL_PROTOCOLPGM(" Y: ");
  2526. MYSERIAL.print(current_position[Y_AXIS], 5);
  2527. SERIAL_PROTOCOLPGM(" Z: ");
  2528. MYSERIAL.print(current_position[Z_AXIS], 5);
  2529. SERIAL_PROTOCOLPGM("\n");
  2530. clean_up_after_endstop_move();
  2531. }
  2532. break;
  2533. case 75:
  2534. {
  2535. for (int i = 40; i <= 110; i++) {
  2536. MYSERIAL.print(i);
  2537. MYSERIAL.print(" ");
  2538. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2539. }
  2540. }
  2541. break;
  2542. case 76: //PINDA probe temperature calibration
  2543. {
  2544. #ifdef PINDA_THERMISTOR
  2545. if (true)
  2546. {
  2547. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2548. // We don't know where we are! HOME!
  2549. // Push the commands to the front of the message queue in the reverse order!
  2550. // There shall be always enough space reserved for these commands.
  2551. repeatcommand_front(); // repeat G76 with all its parameters
  2552. enquecommand_front_P((PSTR("G28 W0")));
  2553. break;
  2554. }
  2555. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2556. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2557. float zero_z;
  2558. int z_shift = 0; //unit: steps
  2559. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2560. if (start_temp < 35) start_temp = 35;
  2561. if (start_temp < current_temperature_pinda) start_temp += 5;
  2562. SERIAL_ECHOPGM("start temperature: ");
  2563. MYSERIAL.println(start_temp);
  2564. // setTargetHotend(200, 0);
  2565. setTargetBed(70 + (start_temp - 30));
  2566. custom_message = true;
  2567. custom_message_type = 4;
  2568. custom_message_state = 1;
  2569. custom_message = MSG_TEMP_CALIBRATION;
  2570. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2571. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2572. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2574. st_synchronize();
  2575. while (current_temperature_pinda < start_temp)
  2576. {
  2577. delay_keep_alive(1000);
  2578. serialecho_temperatures();
  2579. }
  2580. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2581. current_position[Z_AXIS] = 5;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2583. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2586. st_synchronize();
  2587. find_bed_induction_sensor_point_z(-1.f);
  2588. zero_z = current_position[Z_AXIS];
  2589. //current_position[Z_AXIS]
  2590. SERIAL_ECHOLNPGM("");
  2591. SERIAL_ECHOPGM("ZERO: ");
  2592. MYSERIAL.print(current_position[Z_AXIS]);
  2593. SERIAL_ECHOLNPGM("");
  2594. int i = -1; for (; i < 5; i++)
  2595. {
  2596. float temp = (40 + i * 5);
  2597. SERIAL_ECHOPGM("Step: ");
  2598. MYSERIAL.print(i + 2);
  2599. SERIAL_ECHOLNPGM("/6 (skipped)");
  2600. SERIAL_ECHOPGM("PINDA temperature: ");
  2601. MYSERIAL.print((40 + i*5));
  2602. SERIAL_ECHOPGM(" Z shift (mm):");
  2603. MYSERIAL.print(0);
  2604. SERIAL_ECHOLNPGM("");
  2605. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2606. if (start_temp <= temp) break;
  2607. }
  2608. for (i++; i < 5; i++)
  2609. {
  2610. float temp = (40 + i * 5);
  2611. SERIAL_ECHOPGM("Step: ");
  2612. MYSERIAL.print(i + 2);
  2613. SERIAL_ECHOLNPGM("/6");
  2614. custom_message_state = i + 2;
  2615. setTargetBed(50 + 10 * (temp - 30) / 5);
  2616. // setTargetHotend(255, 0);
  2617. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2618. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2619. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2621. st_synchronize();
  2622. while (current_temperature_pinda < temp)
  2623. {
  2624. delay_keep_alive(1000);
  2625. serialecho_temperatures();
  2626. }
  2627. current_position[Z_AXIS] = 5;
  2628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2629. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2630. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2632. st_synchronize();
  2633. find_bed_induction_sensor_point_z(-1.f);
  2634. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2635. SERIAL_ECHOLNPGM("");
  2636. SERIAL_ECHOPGM("PINDA temperature: ");
  2637. MYSERIAL.print(current_temperature_pinda);
  2638. SERIAL_ECHOPGM(" Z shift (mm):");
  2639. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2640. SERIAL_ECHOLNPGM("");
  2641. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2642. }
  2643. custom_message_type = 0;
  2644. custom_message = false;
  2645. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2646. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2647. disable_x();
  2648. disable_y();
  2649. disable_z();
  2650. disable_e0();
  2651. disable_e1();
  2652. disable_e2();
  2653. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2654. lcd_update_enable(true);
  2655. lcd_update(2);
  2656. setTargetBed(0); //set bed target temperature back to 0
  2657. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2658. break;
  2659. }
  2660. #endif //PINDA_THERMISTOR
  2661. setTargetBed(PINDA_MIN_T);
  2662. float zero_z;
  2663. int z_shift = 0; //unit: steps
  2664. int t_c; // temperature
  2665. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2666. // We don't know where we are! HOME!
  2667. // Push the commands to the front of the message queue in the reverse order!
  2668. // There shall be always enough space reserved for these commands.
  2669. repeatcommand_front(); // repeat G76 with all its parameters
  2670. enquecommand_front_P((PSTR("G28 W0")));
  2671. break;
  2672. }
  2673. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2674. custom_message = true;
  2675. custom_message_type = 4;
  2676. custom_message_state = 1;
  2677. custom_message = MSG_TEMP_CALIBRATION;
  2678. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2679. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2680. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2682. st_synchronize();
  2683. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2684. delay_keep_alive(1000);
  2685. serialecho_temperatures();
  2686. }
  2687. //enquecommand_P(PSTR("M190 S50"));
  2688. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2689. delay_keep_alive(1000);
  2690. serialecho_temperatures();
  2691. }
  2692. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2693. current_position[Z_AXIS] = 5;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2695. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2696. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2698. st_synchronize();
  2699. find_bed_induction_sensor_point_z(-1.f);
  2700. zero_z = current_position[Z_AXIS];
  2701. //current_position[Z_AXIS]
  2702. SERIAL_ECHOLNPGM("");
  2703. SERIAL_ECHOPGM("ZERO: ");
  2704. MYSERIAL.print(current_position[Z_AXIS]);
  2705. SERIAL_ECHOLNPGM("");
  2706. for (int i = 0; i<5; i++) {
  2707. SERIAL_ECHOPGM("Step: ");
  2708. MYSERIAL.print(i+2);
  2709. SERIAL_ECHOLNPGM("/6");
  2710. custom_message_state = i + 2;
  2711. t_c = 60 + i * 10;
  2712. setTargetBed(t_c);
  2713. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2714. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2715. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2717. st_synchronize();
  2718. while (degBed() < t_c) {
  2719. delay_keep_alive(1000);
  2720. serialecho_temperatures();
  2721. }
  2722. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2723. delay_keep_alive(1000);
  2724. serialecho_temperatures();
  2725. }
  2726. current_position[Z_AXIS] = 5;
  2727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2728. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2729. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2731. st_synchronize();
  2732. find_bed_induction_sensor_point_z(-1.f);
  2733. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2734. SERIAL_ECHOLNPGM("");
  2735. SERIAL_ECHOPGM("Temperature: ");
  2736. MYSERIAL.print(t_c);
  2737. SERIAL_ECHOPGM(" Z shift (mm):");
  2738. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2739. SERIAL_ECHOLNPGM("");
  2740. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2741. }
  2742. custom_message_type = 0;
  2743. custom_message = false;
  2744. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2745. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2746. disable_x();
  2747. disable_y();
  2748. disable_z();
  2749. disable_e0();
  2750. disable_e1();
  2751. disable_e2();
  2752. setTargetBed(0); //set bed target temperature back to 0
  2753. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2754. lcd_update_enable(true);
  2755. lcd_update(2);
  2756. }
  2757. break;
  2758. #ifdef DIS
  2759. case 77:
  2760. {
  2761. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2762. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2763. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2764. float dimension_x = 40;
  2765. float dimension_y = 40;
  2766. int points_x = 40;
  2767. int points_y = 40;
  2768. float offset_x = 74;
  2769. float offset_y = 33;
  2770. if (code_seen('X')) dimension_x = code_value();
  2771. if (code_seen('Y')) dimension_y = code_value();
  2772. if (code_seen('XP')) points_x = code_value();
  2773. if (code_seen('YP')) points_y = code_value();
  2774. if (code_seen('XO')) offset_x = code_value();
  2775. if (code_seen('YO')) offset_y = code_value();
  2776. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2777. } break;
  2778. #endif
  2779. case 79: {
  2780. for (int i = 255; i > 0; i = i - 5) {
  2781. fanSpeed = i;
  2782. //delay_keep_alive(2000);
  2783. for (int j = 0; j < 100; j++) {
  2784. delay_keep_alive(100);
  2785. }
  2786. fan_speed[1];
  2787. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2788. }
  2789. }break;
  2790. /**
  2791. * G80: Mesh-based Z probe, probes a grid and produces a
  2792. * mesh to compensate for variable bed height
  2793. *
  2794. * The S0 report the points as below
  2795. *
  2796. * +----> X-axis
  2797. * |
  2798. * |
  2799. * v Y-axis
  2800. *
  2801. */
  2802. case 80:
  2803. #ifdef MK1BP
  2804. break;
  2805. #endif //MK1BP
  2806. case_G80:
  2807. {
  2808. mesh_bed_leveling_flag = true;
  2809. int8_t verbosity_level = 0;
  2810. static bool run = false;
  2811. if (code_seen('V')) {
  2812. // Just 'V' without a number counts as V1.
  2813. char c = strchr_pointer[1];
  2814. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2815. }
  2816. // Firstly check if we know where we are
  2817. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2818. // We don't know where we are! HOME!
  2819. // Push the commands to the front of the message queue in the reverse order!
  2820. // There shall be always enough space reserved for these commands.
  2821. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2822. repeatcommand_front(); // repeat G80 with all its parameters
  2823. enquecommand_front_P((PSTR("G28 W0")));
  2824. }
  2825. else {
  2826. mesh_bed_leveling_flag = false;
  2827. }
  2828. break;
  2829. }
  2830. bool temp_comp_start = true;
  2831. #ifdef PINDA_THERMISTOR
  2832. temp_comp_start = false;
  2833. #endif //PINDA_THERMISTOR
  2834. if (temp_comp_start)
  2835. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2836. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2837. temp_compensation_start();
  2838. run = true;
  2839. repeatcommand_front(); // repeat G80 with all its parameters
  2840. enquecommand_front_P((PSTR("G28 W0")));
  2841. }
  2842. else {
  2843. mesh_bed_leveling_flag = false;
  2844. }
  2845. break;
  2846. }
  2847. run = false;
  2848. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2849. mesh_bed_leveling_flag = false;
  2850. break;
  2851. }
  2852. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2853. bool custom_message_old = custom_message;
  2854. unsigned int custom_message_type_old = custom_message_type;
  2855. unsigned int custom_message_state_old = custom_message_state;
  2856. custom_message = true;
  2857. custom_message_type = 1;
  2858. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2859. lcd_update(1);
  2860. mbl.reset(); //reset mesh bed leveling
  2861. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2862. // consumed during the first movements following this statement.
  2863. babystep_undo();
  2864. // Cycle through all points and probe them
  2865. // First move up. During this first movement, the babystepping will be reverted.
  2866. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2868. // The move to the first calibration point.
  2869. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2870. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2871. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2872. #ifdef SUPPORT_VERBOSITY
  2873. if (verbosity_level >= 1) {
  2874. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2875. }
  2876. #endif //SUPPORT_VERBOSITY
  2877. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2879. // Wait until the move is finished.
  2880. st_synchronize();
  2881. int mesh_point = 0; //index number of calibration point
  2882. int ix = 0;
  2883. int iy = 0;
  2884. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2885. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2886. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2887. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2888. #ifdef SUPPORT_VERBOSITY
  2889. if (verbosity_level >= 1) {
  2890. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2891. }
  2892. #endif // SUPPORT_VERBOSITY
  2893. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2894. const char *kill_message = NULL;
  2895. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2896. // Get coords of a measuring point.
  2897. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2898. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2899. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2900. float z0 = 0.f;
  2901. if (has_z && mesh_point > 0) {
  2902. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2903. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2904. //#if 0
  2905. #ifdef SUPPORT_VERBOSITY
  2906. if (verbosity_level >= 1) {
  2907. SERIAL_ECHOLNPGM("");
  2908. SERIAL_ECHOPGM("Bed leveling, point: ");
  2909. MYSERIAL.print(mesh_point);
  2910. SERIAL_ECHOPGM(", calibration z: ");
  2911. MYSERIAL.print(z0, 5);
  2912. SERIAL_ECHOLNPGM("");
  2913. }
  2914. #endif // SUPPORT_VERBOSITY
  2915. //#endif
  2916. }
  2917. // Move Z up to MESH_HOME_Z_SEARCH.
  2918. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2920. st_synchronize();
  2921. // Move to XY position of the sensor point.
  2922. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2923. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2924. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2925. #ifdef SUPPORT_VERBOSITY
  2926. if (verbosity_level >= 1) {
  2927. SERIAL_PROTOCOL(mesh_point);
  2928. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2929. }
  2930. #endif // SUPPORT_VERBOSITY
  2931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2932. st_synchronize();
  2933. // Go down until endstop is hit
  2934. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2935. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2936. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2937. break;
  2938. }
  2939. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2940. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2941. break;
  2942. }
  2943. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2944. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2945. break;
  2946. }
  2947. #ifdef SUPPORT_VERBOSITY
  2948. if (verbosity_level >= 10) {
  2949. SERIAL_ECHOPGM("X: ");
  2950. MYSERIAL.print(current_position[X_AXIS], 5);
  2951. SERIAL_ECHOLNPGM("");
  2952. SERIAL_ECHOPGM("Y: ");
  2953. MYSERIAL.print(current_position[Y_AXIS], 5);
  2954. SERIAL_PROTOCOLPGM("\n");
  2955. }
  2956. #endif // SUPPORT_VERBOSITY
  2957. float offset_z = 0;
  2958. #ifdef PINDA_THERMISTOR
  2959. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2960. #endif //PINDA_THERMISTOR
  2961. // #ifdef SUPPORT_VERBOSITY
  2962. // if (verbosity_level >= 1)
  2963. {
  2964. SERIAL_ECHOPGM("mesh bed leveling: ");
  2965. MYSERIAL.print(current_position[Z_AXIS], 5);
  2966. SERIAL_ECHOPGM(" offset: ");
  2967. MYSERIAL.print(offset_z, 5);
  2968. SERIAL_ECHOLNPGM("");
  2969. }
  2970. // #endif // SUPPORT_VERBOSITY
  2971. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2972. custom_message_state--;
  2973. mesh_point++;
  2974. lcd_update(1);
  2975. }
  2976. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2977. #ifdef SUPPORT_VERBOSITY
  2978. if (verbosity_level >= 20) {
  2979. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2980. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2981. MYSERIAL.print(current_position[Z_AXIS], 5);
  2982. }
  2983. #endif // SUPPORT_VERBOSITY
  2984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2985. st_synchronize();
  2986. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2987. kill(kill_message);
  2988. SERIAL_ECHOLNPGM("killed");
  2989. }
  2990. clean_up_after_endstop_move();
  2991. SERIAL_ECHOLNPGM("clean up finished ");
  2992. bool apply_temp_comp = true;
  2993. #ifdef PINDA_THERMISTOR
  2994. apply_temp_comp = false;
  2995. #endif
  2996. if (apply_temp_comp)
  2997. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2998. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2999. SERIAL_ECHOLNPGM("babystep applied");
  3000. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3001. #ifdef SUPPORT_VERBOSITY
  3002. if (verbosity_level >= 1) {
  3003. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3004. }
  3005. #endif // SUPPORT_VERBOSITY
  3006. for (uint8_t i = 0; i < 4; ++i) {
  3007. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3008. long correction = 0;
  3009. if (code_seen(codes[i]))
  3010. correction = code_value_long();
  3011. else if (eeprom_bed_correction_valid) {
  3012. unsigned char *addr = (i < 2) ?
  3013. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3014. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3015. correction = eeprom_read_int8(addr);
  3016. }
  3017. if (correction == 0)
  3018. continue;
  3019. float offset = float(correction) * 0.001f;
  3020. if (fabs(offset) > 0.101f) {
  3021. SERIAL_ERROR_START;
  3022. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3023. SERIAL_ECHO(offset);
  3024. SERIAL_ECHOLNPGM(" microns");
  3025. }
  3026. else {
  3027. switch (i) {
  3028. case 0:
  3029. for (uint8_t row = 0; row < 3; ++row) {
  3030. mbl.z_values[row][1] += 0.5f * offset;
  3031. mbl.z_values[row][0] += offset;
  3032. }
  3033. break;
  3034. case 1:
  3035. for (uint8_t row = 0; row < 3; ++row) {
  3036. mbl.z_values[row][1] += 0.5f * offset;
  3037. mbl.z_values[row][2] += offset;
  3038. }
  3039. break;
  3040. case 2:
  3041. for (uint8_t col = 0; col < 3; ++col) {
  3042. mbl.z_values[1][col] += 0.5f * offset;
  3043. mbl.z_values[0][col] += offset;
  3044. }
  3045. break;
  3046. case 3:
  3047. for (uint8_t col = 0; col < 3; ++col) {
  3048. mbl.z_values[1][col] += 0.5f * offset;
  3049. mbl.z_values[2][col] += offset;
  3050. }
  3051. break;
  3052. }
  3053. }
  3054. }
  3055. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3056. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3057. SERIAL_ECHOLNPGM("Upsample finished");
  3058. mbl.active = 1; //activate mesh bed leveling
  3059. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3060. go_home_with_z_lift();
  3061. SERIAL_ECHOLNPGM("Go home finished");
  3062. //unretract (after PINDA preheat retraction)
  3063. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3064. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3066. }
  3067. KEEPALIVE_STATE(NOT_BUSY);
  3068. // Restore custom message state
  3069. custom_message = custom_message_old;
  3070. custom_message_type = custom_message_type_old;
  3071. custom_message_state = custom_message_state_old;
  3072. mesh_bed_leveling_flag = false;
  3073. mesh_bed_run_from_menu = false;
  3074. lcd_update(2);
  3075. }
  3076. break;
  3077. /**
  3078. * G81: Print mesh bed leveling status and bed profile if activated
  3079. */
  3080. case 81:
  3081. if (mbl.active) {
  3082. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3083. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3084. SERIAL_PROTOCOLPGM(",");
  3085. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3086. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3087. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3088. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3089. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3090. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3091. SERIAL_PROTOCOLPGM(" ");
  3092. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3093. }
  3094. SERIAL_PROTOCOLPGM("\n");
  3095. }
  3096. }
  3097. else
  3098. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3099. break;
  3100. #if 0
  3101. /**
  3102. * G82: Single Z probe at current location
  3103. *
  3104. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3105. *
  3106. */
  3107. case 82:
  3108. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3109. setup_for_endstop_move();
  3110. find_bed_induction_sensor_point_z();
  3111. clean_up_after_endstop_move();
  3112. SERIAL_PROTOCOLPGM("Bed found at: ");
  3113. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3114. SERIAL_PROTOCOLPGM("\n");
  3115. break;
  3116. /**
  3117. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3118. */
  3119. case 83:
  3120. {
  3121. int babystepz = code_seen('S') ? code_value() : 0;
  3122. int BabyPosition = code_seen('P') ? code_value() : 0;
  3123. if (babystepz != 0) {
  3124. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3125. // Is the axis indexed starting with zero or one?
  3126. if (BabyPosition > 4) {
  3127. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3128. }else{
  3129. // Save it to the eeprom
  3130. babystepLoadZ = babystepz;
  3131. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3132. // adjust the Z
  3133. babystepsTodoZadd(babystepLoadZ);
  3134. }
  3135. }
  3136. }
  3137. break;
  3138. /**
  3139. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3140. */
  3141. case 84:
  3142. babystepsTodoZsubtract(babystepLoadZ);
  3143. // babystepLoadZ = 0;
  3144. break;
  3145. /**
  3146. * G85: Prusa3D specific: Pick best babystep
  3147. */
  3148. case 85:
  3149. lcd_pick_babystep();
  3150. break;
  3151. #endif
  3152. /**
  3153. * G86: Prusa3D specific: Disable babystep correction after home.
  3154. * This G-code will be performed at the start of a calibration script.
  3155. */
  3156. case 86:
  3157. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3158. break;
  3159. /**
  3160. * G87: Prusa3D specific: Enable babystep correction after home
  3161. * This G-code will be performed at the end of a calibration script.
  3162. */
  3163. case 87:
  3164. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3165. break;
  3166. /**
  3167. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3168. */
  3169. case 88:
  3170. break;
  3171. #endif // ENABLE_MESH_BED_LEVELING
  3172. case 90: // G90
  3173. relative_mode = false;
  3174. break;
  3175. case 91: // G91
  3176. relative_mode = true;
  3177. break;
  3178. case 92: // G92
  3179. if(!code_seen(axis_codes[E_AXIS]))
  3180. st_synchronize();
  3181. for(int8_t i=0; i < NUM_AXIS; i++) {
  3182. if(code_seen(axis_codes[i])) {
  3183. if(i == E_AXIS) {
  3184. current_position[i] = code_value();
  3185. plan_set_e_position(current_position[E_AXIS]);
  3186. }
  3187. else {
  3188. current_position[i] = code_value()+add_homing[i];
  3189. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3190. }
  3191. }
  3192. }
  3193. break;
  3194. case 98: //activate farm mode
  3195. farm_mode = 1;
  3196. PingTime = millis();
  3197. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3198. break;
  3199. case 99: //deactivate farm mode
  3200. farm_mode = 0;
  3201. lcd_printer_connected();
  3202. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3203. lcd_update(2);
  3204. break;
  3205. }
  3206. } // end if(code_seen('G'))
  3207. else if(code_seen('M'))
  3208. {
  3209. int index;
  3210. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3211. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3212. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3213. SERIAL_ECHOLNPGM("Invalid M code");
  3214. } else
  3215. switch((int)code_value())
  3216. {
  3217. #ifdef ULTIPANEL
  3218. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3219. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3220. {
  3221. char *src = strchr_pointer + 2;
  3222. codenum = 0;
  3223. bool hasP = false, hasS = false;
  3224. if (code_seen('P')) {
  3225. codenum = code_value(); // milliseconds to wait
  3226. hasP = codenum > 0;
  3227. }
  3228. if (code_seen('S')) {
  3229. codenum = code_value() * 1000; // seconds to wait
  3230. hasS = codenum > 0;
  3231. }
  3232. starpos = strchr(src, '*');
  3233. if (starpos != NULL) *(starpos) = '\0';
  3234. while (*src == ' ') ++src;
  3235. if (!hasP && !hasS && *src != '\0') {
  3236. lcd_setstatus(src);
  3237. } else {
  3238. LCD_MESSAGERPGM(MSG_USERWAIT);
  3239. }
  3240. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3241. st_synchronize();
  3242. previous_millis_cmd = millis();
  3243. if (codenum > 0){
  3244. codenum += millis(); // keep track of when we started waiting
  3245. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3246. while(millis() < codenum && !lcd_clicked()){
  3247. manage_heater();
  3248. manage_inactivity(true);
  3249. lcd_update();
  3250. }
  3251. KEEPALIVE_STATE(IN_HANDLER);
  3252. lcd_ignore_click(false);
  3253. }else{
  3254. if (!lcd_detected())
  3255. break;
  3256. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3257. while(!lcd_clicked()){
  3258. manage_heater();
  3259. manage_inactivity(true);
  3260. lcd_update();
  3261. }
  3262. KEEPALIVE_STATE(IN_HANDLER);
  3263. }
  3264. if (IS_SD_PRINTING)
  3265. LCD_MESSAGERPGM(MSG_RESUMING);
  3266. else
  3267. LCD_MESSAGERPGM(WELCOME_MSG);
  3268. }
  3269. break;
  3270. #endif
  3271. case 17:
  3272. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3273. enable_x();
  3274. enable_y();
  3275. enable_z();
  3276. enable_e0();
  3277. enable_e1();
  3278. enable_e2();
  3279. break;
  3280. #ifdef SDSUPPORT
  3281. case 20: // M20 - list SD card
  3282. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3283. card.ls();
  3284. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3285. break;
  3286. case 21: // M21 - init SD card
  3287. card.initsd();
  3288. break;
  3289. case 22: //M22 - release SD card
  3290. card.release();
  3291. break;
  3292. case 23: //M23 - Select file
  3293. starpos = (strchr(strchr_pointer + 4,'*'));
  3294. if(starpos!=NULL)
  3295. *(starpos)='\0';
  3296. card.openFile(strchr_pointer + 4,true);
  3297. break;
  3298. case 24: //M24 - Start SD print
  3299. card.startFileprint();
  3300. starttime=millis();
  3301. break;
  3302. case 25: //M25 - Pause SD print
  3303. card.pauseSDPrint();
  3304. break;
  3305. case 26: //M26 - Set SD index
  3306. if(card.cardOK && code_seen('S')) {
  3307. card.setIndex(code_value_long());
  3308. }
  3309. break;
  3310. case 27: //M27 - Get SD status
  3311. card.getStatus();
  3312. break;
  3313. case 28: //M28 - Start SD write
  3314. starpos = (strchr(strchr_pointer + 4,'*'));
  3315. if(starpos != NULL){
  3316. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3317. strchr_pointer = strchr(npos,' ') + 1;
  3318. *(starpos) = '\0';
  3319. }
  3320. card.openFile(strchr_pointer+4,false);
  3321. break;
  3322. case 29: //M29 - Stop SD write
  3323. //processed in write to file routine above
  3324. //card,saving = false;
  3325. break;
  3326. case 30: //M30 <filename> Delete File
  3327. if (card.cardOK){
  3328. card.closefile();
  3329. starpos = (strchr(strchr_pointer + 4,'*'));
  3330. if(starpos != NULL){
  3331. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3332. strchr_pointer = strchr(npos,' ') + 1;
  3333. *(starpos) = '\0';
  3334. }
  3335. card.removeFile(strchr_pointer + 4);
  3336. }
  3337. break;
  3338. case 32: //M32 - Select file and start SD print
  3339. {
  3340. if(card.sdprinting) {
  3341. st_synchronize();
  3342. }
  3343. starpos = (strchr(strchr_pointer + 4,'*'));
  3344. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3345. if(namestartpos==NULL)
  3346. {
  3347. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3348. }
  3349. else
  3350. namestartpos++; //to skip the '!'
  3351. if(starpos!=NULL)
  3352. *(starpos)='\0';
  3353. bool call_procedure=(code_seen('P'));
  3354. if(strchr_pointer>namestartpos)
  3355. call_procedure=false; //false alert, 'P' found within filename
  3356. if( card.cardOK )
  3357. {
  3358. card.openFile(namestartpos,true,!call_procedure);
  3359. if(code_seen('S'))
  3360. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3361. card.setIndex(code_value_long());
  3362. card.startFileprint();
  3363. if(!call_procedure)
  3364. starttime=millis(); //procedure calls count as normal print time.
  3365. }
  3366. } break;
  3367. case 928: //M928 - Start SD write
  3368. starpos = (strchr(strchr_pointer + 5,'*'));
  3369. if(starpos != NULL){
  3370. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3371. strchr_pointer = strchr(npos,' ') + 1;
  3372. *(starpos) = '\0';
  3373. }
  3374. card.openLogFile(strchr_pointer+5);
  3375. break;
  3376. #endif //SDSUPPORT
  3377. case 31: //M31 take time since the start of the SD print or an M109 command
  3378. {
  3379. stoptime=millis();
  3380. char time[30];
  3381. unsigned long t=(stoptime-starttime)/1000;
  3382. int sec,min;
  3383. min=t/60;
  3384. sec=t%60;
  3385. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3386. SERIAL_ECHO_START;
  3387. SERIAL_ECHOLN(time);
  3388. lcd_setstatus(time);
  3389. autotempShutdown();
  3390. }
  3391. break;
  3392. #ifndef _DISABLE_M42_M226
  3393. case 42: //M42 -Change pin status via gcode
  3394. if (code_seen('S'))
  3395. {
  3396. int pin_status = code_value();
  3397. int pin_number = LED_PIN;
  3398. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3399. pin_number = code_value();
  3400. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3401. {
  3402. if (sensitive_pins[i] == pin_number)
  3403. {
  3404. pin_number = -1;
  3405. break;
  3406. }
  3407. }
  3408. #if defined(FAN_PIN) && FAN_PIN > -1
  3409. if (pin_number == FAN_PIN)
  3410. fanSpeed = pin_status;
  3411. #endif
  3412. if (pin_number > -1)
  3413. {
  3414. pinMode(pin_number, OUTPUT);
  3415. digitalWrite(pin_number, pin_status);
  3416. analogWrite(pin_number, pin_status);
  3417. }
  3418. }
  3419. break;
  3420. #endif //_DISABLE_M42_M226
  3421. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3422. // Reset the baby step value and the baby step applied flag.
  3423. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3424. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3425. // Reset the skew and offset in both RAM and EEPROM.
  3426. reset_bed_offset_and_skew();
  3427. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3428. // the planner will not perform any adjustments in the XY plane.
  3429. // Wait for the motors to stop and update the current position with the absolute values.
  3430. world2machine_revert_to_uncorrected();
  3431. break;
  3432. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3433. {
  3434. bool only_Z = code_seen('Z');
  3435. gcode_M45(only_Z);
  3436. }
  3437. break;
  3438. /*
  3439. case 46:
  3440. {
  3441. // M46: Prusa3D: Show the assigned IP address.
  3442. uint8_t ip[4];
  3443. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3444. if (hasIP) {
  3445. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3446. SERIAL_ECHO(int(ip[0]));
  3447. SERIAL_ECHOPGM(".");
  3448. SERIAL_ECHO(int(ip[1]));
  3449. SERIAL_ECHOPGM(".");
  3450. SERIAL_ECHO(int(ip[2]));
  3451. SERIAL_ECHOPGM(".");
  3452. SERIAL_ECHO(int(ip[3]));
  3453. SERIAL_ECHOLNPGM("");
  3454. } else {
  3455. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3456. }
  3457. break;
  3458. }
  3459. */
  3460. case 47:
  3461. // M47: Prusa3D: Show end stops dialog on the display.
  3462. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3463. lcd_diag_show_end_stops();
  3464. KEEPALIVE_STATE(IN_HANDLER);
  3465. break;
  3466. #if 0
  3467. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3468. {
  3469. // Disable the default update procedure of the display. We will do a modal dialog.
  3470. lcd_update_enable(false);
  3471. // Let the planner use the uncorrected coordinates.
  3472. mbl.reset();
  3473. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3474. // the planner will not perform any adjustments in the XY plane.
  3475. // Wait for the motors to stop and update the current position with the absolute values.
  3476. world2machine_revert_to_uncorrected();
  3477. // Move the print head close to the bed.
  3478. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3480. st_synchronize();
  3481. // Home in the XY plane.
  3482. set_destination_to_current();
  3483. setup_for_endstop_move();
  3484. home_xy();
  3485. int8_t verbosity_level = 0;
  3486. if (code_seen('V')) {
  3487. // Just 'V' without a number counts as V1.
  3488. char c = strchr_pointer[1];
  3489. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3490. }
  3491. bool success = scan_bed_induction_points(verbosity_level);
  3492. clean_up_after_endstop_move();
  3493. // Print head up.
  3494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3496. st_synchronize();
  3497. lcd_update_enable(true);
  3498. break;
  3499. }
  3500. #endif
  3501. // M48 Z-Probe repeatability measurement function.
  3502. //
  3503. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3504. //
  3505. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3506. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3507. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3508. // regenerated.
  3509. //
  3510. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3511. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3512. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3513. //
  3514. #ifdef ENABLE_AUTO_BED_LEVELING
  3515. #ifdef Z_PROBE_REPEATABILITY_TEST
  3516. case 48: // M48 Z-Probe repeatability
  3517. {
  3518. #if Z_MIN_PIN == -1
  3519. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3520. #endif
  3521. double sum=0.0;
  3522. double mean=0.0;
  3523. double sigma=0.0;
  3524. double sample_set[50];
  3525. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3526. double X_current, Y_current, Z_current;
  3527. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3528. if (code_seen('V') || code_seen('v')) {
  3529. verbose_level = code_value();
  3530. if (verbose_level<0 || verbose_level>4 ) {
  3531. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3532. goto Sigma_Exit;
  3533. }
  3534. }
  3535. if (verbose_level > 0) {
  3536. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3537. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3538. }
  3539. if (code_seen('n')) {
  3540. n_samples = code_value();
  3541. if (n_samples<4 || n_samples>50 ) {
  3542. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3543. goto Sigma_Exit;
  3544. }
  3545. }
  3546. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3547. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3548. Z_current = st_get_position_mm(Z_AXIS);
  3549. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3550. ext_position = st_get_position_mm(E_AXIS);
  3551. if (code_seen('X') || code_seen('x') ) {
  3552. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3553. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3554. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3555. goto Sigma_Exit;
  3556. }
  3557. }
  3558. if (code_seen('Y') || code_seen('y') ) {
  3559. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3560. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3561. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3562. goto Sigma_Exit;
  3563. }
  3564. }
  3565. if (code_seen('L') || code_seen('l') ) {
  3566. n_legs = code_value();
  3567. if ( n_legs==1 )
  3568. n_legs = 2;
  3569. if ( n_legs<0 || n_legs>15 ) {
  3570. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3571. goto Sigma_Exit;
  3572. }
  3573. }
  3574. //
  3575. // Do all the preliminary setup work. First raise the probe.
  3576. //
  3577. st_synchronize();
  3578. plan_bed_level_matrix.set_to_identity();
  3579. plan_buffer_line( X_current, Y_current, Z_start_location,
  3580. ext_position,
  3581. homing_feedrate[Z_AXIS]/60,
  3582. active_extruder);
  3583. st_synchronize();
  3584. //
  3585. // Now get everything to the specified probe point So we can safely do a probe to
  3586. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3587. // use that as a starting point for each probe.
  3588. //
  3589. if (verbose_level > 2)
  3590. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3591. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3592. ext_position,
  3593. homing_feedrate[X_AXIS]/60,
  3594. active_extruder);
  3595. st_synchronize();
  3596. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3597. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3598. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3599. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3600. //
  3601. // OK, do the inital probe to get us close to the bed.
  3602. // Then retrace the right amount and use that in subsequent probes
  3603. //
  3604. setup_for_endstop_move();
  3605. run_z_probe();
  3606. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3607. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3608. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3609. ext_position,
  3610. homing_feedrate[X_AXIS]/60,
  3611. active_extruder);
  3612. st_synchronize();
  3613. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3614. for( n=0; n<n_samples; n++) {
  3615. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3616. if ( n_legs) {
  3617. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3618. int rotational_direction, l;
  3619. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3620. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3621. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3622. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3623. //SERIAL_ECHOPAIR(" theta: ",theta);
  3624. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3625. //SERIAL_PROTOCOLLNPGM("");
  3626. for( l=0; l<n_legs-1; l++) {
  3627. if (rotational_direction==1)
  3628. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3629. else
  3630. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3631. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3632. if ( radius<0.0 )
  3633. radius = -radius;
  3634. X_current = X_probe_location + cos(theta) * radius;
  3635. Y_current = Y_probe_location + sin(theta) * radius;
  3636. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3637. X_current = X_MIN_POS;
  3638. if ( X_current>X_MAX_POS)
  3639. X_current = X_MAX_POS;
  3640. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3641. Y_current = Y_MIN_POS;
  3642. if ( Y_current>Y_MAX_POS)
  3643. Y_current = Y_MAX_POS;
  3644. if (verbose_level>3 ) {
  3645. SERIAL_ECHOPAIR("x: ", X_current);
  3646. SERIAL_ECHOPAIR("y: ", Y_current);
  3647. SERIAL_PROTOCOLLNPGM("");
  3648. }
  3649. do_blocking_move_to( X_current, Y_current, Z_current );
  3650. }
  3651. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3652. }
  3653. setup_for_endstop_move();
  3654. run_z_probe();
  3655. sample_set[n] = current_position[Z_AXIS];
  3656. //
  3657. // Get the current mean for the data points we have so far
  3658. //
  3659. sum=0.0;
  3660. for( j=0; j<=n; j++) {
  3661. sum = sum + sample_set[j];
  3662. }
  3663. mean = sum / (double (n+1));
  3664. //
  3665. // Now, use that mean to calculate the standard deviation for the
  3666. // data points we have so far
  3667. //
  3668. sum=0.0;
  3669. for( j=0; j<=n; j++) {
  3670. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3671. }
  3672. sigma = sqrt( sum / (double (n+1)) );
  3673. if (verbose_level > 1) {
  3674. SERIAL_PROTOCOL(n+1);
  3675. SERIAL_PROTOCOL(" of ");
  3676. SERIAL_PROTOCOL(n_samples);
  3677. SERIAL_PROTOCOLPGM(" z: ");
  3678. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3679. }
  3680. if (verbose_level > 2) {
  3681. SERIAL_PROTOCOL(" mean: ");
  3682. SERIAL_PROTOCOL_F(mean,6);
  3683. SERIAL_PROTOCOL(" sigma: ");
  3684. SERIAL_PROTOCOL_F(sigma,6);
  3685. }
  3686. if (verbose_level > 0)
  3687. SERIAL_PROTOCOLPGM("\n");
  3688. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3689. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3690. st_synchronize();
  3691. }
  3692. delay(1000);
  3693. clean_up_after_endstop_move();
  3694. // enable_endstops(true);
  3695. if (verbose_level > 0) {
  3696. SERIAL_PROTOCOLPGM("Mean: ");
  3697. SERIAL_PROTOCOL_F(mean, 6);
  3698. SERIAL_PROTOCOLPGM("\n");
  3699. }
  3700. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3701. SERIAL_PROTOCOL_F(sigma, 6);
  3702. SERIAL_PROTOCOLPGM("\n\n");
  3703. Sigma_Exit:
  3704. break;
  3705. }
  3706. #endif // Z_PROBE_REPEATABILITY_TEST
  3707. #endif // ENABLE_AUTO_BED_LEVELING
  3708. case 104: // M104
  3709. if(setTargetedHotend(104)){
  3710. break;
  3711. }
  3712. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3713. setWatch();
  3714. break;
  3715. case 112: // M112 -Emergency Stop
  3716. kill("", 3);
  3717. break;
  3718. case 140: // M140 set bed temp
  3719. if (code_seen('S')) setTargetBed(code_value());
  3720. break;
  3721. case 105 : // M105
  3722. if(setTargetedHotend(105)){
  3723. break;
  3724. }
  3725. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3726. SERIAL_PROTOCOLPGM("ok T:");
  3727. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3728. SERIAL_PROTOCOLPGM(" /");
  3729. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3730. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3731. SERIAL_PROTOCOLPGM(" B:");
  3732. SERIAL_PROTOCOL_F(degBed(),1);
  3733. SERIAL_PROTOCOLPGM(" /");
  3734. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3735. #endif //TEMP_BED_PIN
  3736. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3737. SERIAL_PROTOCOLPGM(" T");
  3738. SERIAL_PROTOCOL(cur_extruder);
  3739. SERIAL_PROTOCOLPGM(":");
  3740. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3741. SERIAL_PROTOCOLPGM(" /");
  3742. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3743. }
  3744. #else
  3745. SERIAL_ERROR_START;
  3746. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3747. #endif
  3748. SERIAL_PROTOCOLPGM(" @:");
  3749. #ifdef EXTRUDER_WATTS
  3750. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3751. SERIAL_PROTOCOLPGM("W");
  3752. #else
  3753. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3754. #endif
  3755. SERIAL_PROTOCOLPGM(" B@:");
  3756. #ifdef BED_WATTS
  3757. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3758. SERIAL_PROTOCOLPGM("W");
  3759. #else
  3760. SERIAL_PROTOCOL(getHeaterPower(-1));
  3761. #endif
  3762. #ifdef PINDA_THERMISTOR
  3763. SERIAL_PROTOCOLPGM(" P:");
  3764. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3765. #endif //PINDA_THERMISTOR
  3766. #ifdef AMBIENT_THERMISTOR
  3767. SERIAL_PROTOCOLPGM(" A:");
  3768. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3769. #endif //AMBIENT_THERMISTOR
  3770. #ifdef SHOW_TEMP_ADC_VALUES
  3771. {float raw = 0.0;
  3772. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3773. SERIAL_PROTOCOLPGM(" ADC B:");
  3774. SERIAL_PROTOCOL_F(degBed(),1);
  3775. SERIAL_PROTOCOLPGM("C->");
  3776. raw = rawBedTemp();
  3777. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3778. SERIAL_PROTOCOLPGM(" Rb->");
  3779. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3780. SERIAL_PROTOCOLPGM(" Rxb->");
  3781. SERIAL_PROTOCOL_F(raw, 5);
  3782. #endif
  3783. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3784. SERIAL_PROTOCOLPGM(" T");
  3785. SERIAL_PROTOCOL(cur_extruder);
  3786. SERIAL_PROTOCOLPGM(":");
  3787. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3788. SERIAL_PROTOCOLPGM("C->");
  3789. raw = rawHotendTemp(cur_extruder);
  3790. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3791. SERIAL_PROTOCOLPGM(" Rt");
  3792. SERIAL_PROTOCOL(cur_extruder);
  3793. SERIAL_PROTOCOLPGM("->");
  3794. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3795. SERIAL_PROTOCOLPGM(" Rx");
  3796. SERIAL_PROTOCOL(cur_extruder);
  3797. SERIAL_PROTOCOLPGM("->");
  3798. SERIAL_PROTOCOL_F(raw, 5);
  3799. }}
  3800. #endif
  3801. SERIAL_PROTOCOLLN("");
  3802. KEEPALIVE_STATE(NOT_BUSY);
  3803. return;
  3804. break;
  3805. case 109:
  3806. {// M109 - Wait for extruder heater to reach target.
  3807. if(setTargetedHotend(109)){
  3808. break;
  3809. }
  3810. LCD_MESSAGERPGM(MSG_HEATING);
  3811. heating_status = 1;
  3812. if (farm_mode) { prusa_statistics(1); };
  3813. #ifdef AUTOTEMP
  3814. autotemp_enabled=false;
  3815. #endif
  3816. if (code_seen('S')) {
  3817. setTargetHotend(code_value(), tmp_extruder);
  3818. CooldownNoWait = true;
  3819. } else if (code_seen('R')) {
  3820. setTargetHotend(code_value(), tmp_extruder);
  3821. CooldownNoWait = false;
  3822. }
  3823. #ifdef AUTOTEMP
  3824. if (code_seen('S')) autotemp_min=code_value();
  3825. if (code_seen('B')) autotemp_max=code_value();
  3826. if (code_seen('F'))
  3827. {
  3828. autotemp_factor=code_value();
  3829. autotemp_enabled=true;
  3830. }
  3831. #endif
  3832. setWatch();
  3833. codenum = millis();
  3834. /* See if we are heating up or cooling down */
  3835. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3836. KEEPALIVE_STATE(NOT_BUSY);
  3837. cancel_heatup = false;
  3838. wait_for_heater(codenum); //loops until target temperature is reached
  3839. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3840. KEEPALIVE_STATE(IN_HANDLER);
  3841. heating_status = 2;
  3842. if (farm_mode) { prusa_statistics(2); };
  3843. //starttime=millis();
  3844. previous_millis_cmd = millis();
  3845. }
  3846. break;
  3847. case 190: // M190 - Wait for bed heater to reach target.
  3848. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3849. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3850. heating_status = 3;
  3851. if (farm_mode) { prusa_statistics(1); };
  3852. if (code_seen('S'))
  3853. {
  3854. setTargetBed(code_value());
  3855. CooldownNoWait = true;
  3856. }
  3857. else if (code_seen('R'))
  3858. {
  3859. setTargetBed(code_value());
  3860. CooldownNoWait = false;
  3861. }
  3862. codenum = millis();
  3863. cancel_heatup = false;
  3864. target_direction = isHeatingBed(); // true if heating, false if cooling
  3865. KEEPALIVE_STATE(NOT_BUSY);
  3866. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3867. {
  3868. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3869. {
  3870. if (!farm_mode) {
  3871. float tt = degHotend(active_extruder);
  3872. SERIAL_PROTOCOLPGM("T:");
  3873. SERIAL_PROTOCOL(tt);
  3874. SERIAL_PROTOCOLPGM(" E:");
  3875. SERIAL_PROTOCOL((int)active_extruder);
  3876. SERIAL_PROTOCOLPGM(" B:");
  3877. SERIAL_PROTOCOL_F(degBed(), 1);
  3878. SERIAL_PROTOCOLLN("");
  3879. }
  3880. codenum = millis();
  3881. }
  3882. manage_heater();
  3883. manage_inactivity();
  3884. lcd_update();
  3885. }
  3886. LCD_MESSAGERPGM(MSG_BED_DONE);
  3887. KEEPALIVE_STATE(IN_HANDLER);
  3888. heating_status = 4;
  3889. previous_millis_cmd = millis();
  3890. #endif
  3891. break;
  3892. #if defined(FAN_PIN) && FAN_PIN > -1
  3893. case 106: //M106 Fan On
  3894. if (code_seen('S')){
  3895. fanSpeed=constrain(code_value(),0,255);
  3896. }
  3897. else {
  3898. fanSpeed=255;
  3899. }
  3900. break;
  3901. case 107: //M107 Fan Off
  3902. fanSpeed = 0;
  3903. break;
  3904. #endif //FAN_PIN
  3905. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3906. case 80: // M80 - Turn on Power Supply
  3907. SET_OUTPUT(PS_ON_PIN); //GND
  3908. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3909. // If you have a switch on suicide pin, this is useful
  3910. // if you want to start another print with suicide feature after
  3911. // a print without suicide...
  3912. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3913. SET_OUTPUT(SUICIDE_PIN);
  3914. WRITE(SUICIDE_PIN, HIGH);
  3915. #endif
  3916. #ifdef ULTIPANEL
  3917. powersupply = true;
  3918. LCD_MESSAGERPGM(WELCOME_MSG);
  3919. lcd_update();
  3920. #endif
  3921. break;
  3922. #endif
  3923. case 81: // M81 - Turn off Power Supply
  3924. disable_heater();
  3925. st_synchronize();
  3926. disable_e0();
  3927. disable_e1();
  3928. disable_e2();
  3929. finishAndDisableSteppers();
  3930. fanSpeed = 0;
  3931. delay(1000); // Wait a little before to switch off
  3932. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3933. st_synchronize();
  3934. suicide();
  3935. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3936. SET_OUTPUT(PS_ON_PIN);
  3937. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3938. #endif
  3939. #ifdef ULTIPANEL
  3940. powersupply = false;
  3941. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3942. /*
  3943. MACHNAME = "Prusa i3"
  3944. MSGOFF = "Vypnuto"
  3945. "Prusai3"" ""vypnuto""."
  3946. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3947. */
  3948. lcd_update();
  3949. #endif
  3950. break;
  3951. case 82:
  3952. axis_relative_modes[3] = false;
  3953. break;
  3954. case 83:
  3955. axis_relative_modes[3] = true;
  3956. break;
  3957. case 18: //compatibility
  3958. case 84: // M84
  3959. if(code_seen('S')){
  3960. stepper_inactive_time = code_value() * 1000;
  3961. }
  3962. else
  3963. {
  3964. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3965. if(all_axis)
  3966. {
  3967. st_synchronize();
  3968. disable_e0();
  3969. disable_e1();
  3970. disable_e2();
  3971. finishAndDisableSteppers();
  3972. }
  3973. else
  3974. {
  3975. st_synchronize();
  3976. if (code_seen('X')) disable_x();
  3977. if (code_seen('Y')) disable_y();
  3978. if (code_seen('Z')) disable_z();
  3979. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3980. if (code_seen('E')) {
  3981. disable_e0();
  3982. disable_e1();
  3983. disable_e2();
  3984. }
  3985. #endif
  3986. }
  3987. }
  3988. snmm_filaments_used = 0;
  3989. break;
  3990. case 85: // M85
  3991. if(code_seen('S')) {
  3992. max_inactive_time = code_value() * 1000;
  3993. }
  3994. break;
  3995. case 92: // M92
  3996. for(int8_t i=0; i < NUM_AXIS; i++)
  3997. {
  3998. if(code_seen(axis_codes[i]))
  3999. {
  4000. if(i == 3) { // E
  4001. float value = code_value();
  4002. if(value < 20.0) {
  4003. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4004. max_jerk[E_AXIS] *= factor;
  4005. max_feedrate[i] *= factor;
  4006. axis_steps_per_sqr_second[i] *= factor;
  4007. }
  4008. axis_steps_per_unit[i] = value;
  4009. }
  4010. else {
  4011. axis_steps_per_unit[i] = code_value();
  4012. }
  4013. }
  4014. }
  4015. break;
  4016. #ifdef HOST_KEEPALIVE_FEATURE
  4017. case 113: // M113 - Get or set Host Keepalive interval
  4018. if (code_seen('S')) {
  4019. host_keepalive_interval = (uint8_t)code_value_short();
  4020. // NOMORE(host_keepalive_interval, 60);
  4021. }
  4022. else {
  4023. SERIAL_ECHO_START;
  4024. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4025. SERIAL_PROTOCOLLN("");
  4026. }
  4027. break;
  4028. #endif
  4029. case 115: // M115
  4030. if (code_seen('V')) {
  4031. // Report the Prusa version number.
  4032. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4033. } else if (code_seen('U')) {
  4034. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4035. // pause the print and ask the user to upgrade the firmware.
  4036. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4037. } else {
  4038. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4039. }
  4040. break;
  4041. /* case 117: // M117 display message
  4042. starpos = (strchr(strchr_pointer + 5,'*'));
  4043. if(starpos!=NULL)
  4044. *(starpos)='\0';
  4045. lcd_setstatus(strchr_pointer + 5);
  4046. break;*/
  4047. case 114: // M114
  4048. SERIAL_PROTOCOLPGM("X:");
  4049. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4050. SERIAL_PROTOCOLPGM(" Y:");
  4051. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4052. SERIAL_PROTOCOLPGM(" Z:");
  4053. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4054. SERIAL_PROTOCOLPGM(" E:");
  4055. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4056. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4057. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4058. SERIAL_PROTOCOLPGM(" Y:");
  4059. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4060. SERIAL_PROTOCOLPGM(" Z:");
  4061. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4062. SERIAL_PROTOCOLPGM(" E:");
  4063. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4064. SERIAL_PROTOCOLLN("");
  4065. break;
  4066. case 120: // M120
  4067. enable_endstops(false) ;
  4068. break;
  4069. case 121: // M121
  4070. enable_endstops(true) ;
  4071. break;
  4072. case 119: // M119
  4073. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4074. SERIAL_PROTOCOLLN("");
  4075. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4076. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4077. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4078. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4079. }else{
  4080. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4081. }
  4082. SERIAL_PROTOCOLLN("");
  4083. #endif
  4084. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4085. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4086. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4087. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4088. }else{
  4089. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4090. }
  4091. SERIAL_PROTOCOLLN("");
  4092. #endif
  4093. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4094. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4095. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4096. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4097. }else{
  4098. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4099. }
  4100. SERIAL_PROTOCOLLN("");
  4101. #endif
  4102. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4103. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4104. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4105. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4106. }else{
  4107. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4108. }
  4109. SERIAL_PROTOCOLLN("");
  4110. #endif
  4111. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4112. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4113. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4114. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4115. }else{
  4116. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4117. }
  4118. SERIAL_PROTOCOLLN("");
  4119. #endif
  4120. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4121. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4122. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4123. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4124. }else{
  4125. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4126. }
  4127. SERIAL_PROTOCOLLN("");
  4128. #endif
  4129. break;
  4130. //TODO: update for all axis, use for loop
  4131. #ifdef BLINKM
  4132. case 150: // M150
  4133. {
  4134. byte red;
  4135. byte grn;
  4136. byte blu;
  4137. if(code_seen('R')) red = code_value();
  4138. if(code_seen('U')) grn = code_value();
  4139. if(code_seen('B')) blu = code_value();
  4140. SendColors(red,grn,blu);
  4141. }
  4142. break;
  4143. #endif //BLINKM
  4144. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4145. {
  4146. tmp_extruder = active_extruder;
  4147. if(code_seen('T')) {
  4148. tmp_extruder = code_value();
  4149. if(tmp_extruder >= EXTRUDERS) {
  4150. SERIAL_ECHO_START;
  4151. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4152. break;
  4153. }
  4154. }
  4155. float area = .0;
  4156. if(code_seen('D')) {
  4157. float diameter = (float)code_value();
  4158. if (diameter == 0.0) {
  4159. // setting any extruder filament size disables volumetric on the assumption that
  4160. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4161. // for all extruders
  4162. volumetric_enabled = false;
  4163. } else {
  4164. filament_size[tmp_extruder] = (float)code_value();
  4165. // make sure all extruders have some sane value for the filament size
  4166. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4167. #if EXTRUDERS > 1
  4168. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4169. #if EXTRUDERS > 2
  4170. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4171. #endif
  4172. #endif
  4173. volumetric_enabled = true;
  4174. }
  4175. } else {
  4176. //reserved for setting filament diameter via UFID or filament measuring device
  4177. break;
  4178. }
  4179. calculate_volumetric_multipliers();
  4180. }
  4181. break;
  4182. case 201: // M201
  4183. for(int8_t i=0; i < NUM_AXIS; i++)
  4184. {
  4185. if(code_seen(axis_codes[i]))
  4186. {
  4187. max_acceleration_units_per_sq_second[i] = code_value();
  4188. }
  4189. }
  4190. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4191. reset_acceleration_rates();
  4192. break;
  4193. #if 0 // Not used for Sprinter/grbl gen6
  4194. case 202: // M202
  4195. for(int8_t i=0; i < NUM_AXIS; i++) {
  4196. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4197. }
  4198. break;
  4199. #endif
  4200. case 203: // M203 max feedrate mm/sec
  4201. for(int8_t i=0; i < NUM_AXIS; i++) {
  4202. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4203. }
  4204. break;
  4205. case 204: // M204 acclereration S normal moves T filmanent only moves
  4206. {
  4207. if(code_seen('S')) acceleration = code_value() ;
  4208. if(code_seen('T')) retract_acceleration = code_value() ;
  4209. }
  4210. break;
  4211. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4212. {
  4213. if(code_seen('S')) minimumfeedrate = code_value();
  4214. if(code_seen('T')) mintravelfeedrate = code_value();
  4215. if(code_seen('B')) minsegmenttime = code_value() ;
  4216. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4217. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4218. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4219. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4220. }
  4221. break;
  4222. case 206: // M206 additional homing offset
  4223. for(int8_t i=0; i < 3; i++)
  4224. {
  4225. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4226. }
  4227. break;
  4228. #ifdef FWRETRACT
  4229. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4230. {
  4231. if(code_seen('S'))
  4232. {
  4233. retract_length = code_value() ;
  4234. }
  4235. if(code_seen('F'))
  4236. {
  4237. retract_feedrate = code_value()/60 ;
  4238. }
  4239. if(code_seen('Z'))
  4240. {
  4241. retract_zlift = code_value() ;
  4242. }
  4243. }break;
  4244. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4245. {
  4246. if(code_seen('S'))
  4247. {
  4248. retract_recover_length = code_value() ;
  4249. }
  4250. if(code_seen('F'))
  4251. {
  4252. retract_recover_feedrate = code_value()/60 ;
  4253. }
  4254. }break;
  4255. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4256. {
  4257. if(code_seen('S'))
  4258. {
  4259. int t= code_value() ;
  4260. switch(t)
  4261. {
  4262. case 0:
  4263. {
  4264. autoretract_enabled=false;
  4265. retracted[0]=false;
  4266. #if EXTRUDERS > 1
  4267. retracted[1]=false;
  4268. #endif
  4269. #if EXTRUDERS > 2
  4270. retracted[2]=false;
  4271. #endif
  4272. }break;
  4273. case 1:
  4274. {
  4275. autoretract_enabled=true;
  4276. retracted[0]=false;
  4277. #if EXTRUDERS > 1
  4278. retracted[1]=false;
  4279. #endif
  4280. #if EXTRUDERS > 2
  4281. retracted[2]=false;
  4282. #endif
  4283. }break;
  4284. default:
  4285. SERIAL_ECHO_START;
  4286. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4287. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4288. SERIAL_ECHOLNPGM("\"(1)");
  4289. }
  4290. }
  4291. }break;
  4292. #endif // FWRETRACT
  4293. #if EXTRUDERS > 1
  4294. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4295. {
  4296. if(setTargetedHotend(218)){
  4297. break;
  4298. }
  4299. if(code_seen('X'))
  4300. {
  4301. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4302. }
  4303. if(code_seen('Y'))
  4304. {
  4305. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4306. }
  4307. SERIAL_ECHO_START;
  4308. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4309. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4310. {
  4311. SERIAL_ECHO(" ");
  4312. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4313. SERIAL_ECHO(",");
  4314. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4315. }
  4316. SERIAL_ECHOLN("");
  4317. }break;
  4318. #endif
  4319. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4320. {
  4321. if(code_seen('S'))
  4322. {
  4323. feedmultiply = code_value() ;
  4324. }
  4325. }
  4326. break;
  4327. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4328. {
  4329. if(code_seen('S'))
  4330. {
  4331. int tmp_code = code_value();
  4332. if (code_seen('T'))
  4333. {
  4334. if(setTargetedHotend(221)){
  4335. break;
  4336. }
  4337. extruder_multiply[tmp_extruder] = tmp_code;
  4338. }
  4339. else
  4340. {
  4341. extrudemultiply = tmp_code ;
  4342. }
  4343. }
  4344. }
  4345. break;
  4346. #ifndef _DISABLE_M42_M226
  4347. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4348. {
  4349. if(code_seen('P')){
  4350. int pin_number = code_value(); // pin number
  4351. int pin_state = -1; // required pin state - default is inverted
  4352. if(code_seen('S')) pin_state = code_value(); // required pin state
  4353. if(pin_state >= -1 && pin_state <= 1){
  4354. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4355. {
  4356. if (sensitive_pins[i] == pin_number)
  4357. {
  4358. pin_number = -1;
  4359. break;
  4360. }
  4361. }
  4362. if (pin_number > -1)
  4363. {
  4364. int target = LOW;
  4365. st_synchronize();
  4366. pinMode(pin_number, INPUT);
  4367. switch(pin_state){
  4368. case 1:
  4369. target = HIGH;
  4370. break;
  4371. case 0:
  4372. target = LOW;
  4373. break;
  4374. case -1:
  4375. target = !digitalRead(pin_number);
  4376. break;
  4377. }
  4378. while(digitalRead(pin_number) != target){
  4379. manage_heater();
  4380. manage_inactivity();
  4381. lcd_update();
  4382. }
  4383. }
  4384. }
  4385. }
  4386. }
  4387. break;
  4388. #endif //_DISABLE_M42_M226
  4389. #if NUM_SERVOS > 0
  4390. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4391. {
  4392. int servo_index = -1;
  4393. int servo_position = 0;
  4394. if (code_seen('P'))
  4395. servo_index = code_value();
  4396. if (code_seen('S')) {
  4397. servo_position = code_value();
  4398. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4399. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4400. servos[servo_index].attach(0);
  4401. #endif
  4402. servos[servo_index].write(servo_position);
  4403. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4404. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4405. servos[servo_index].detach();
  4406. #endif
  4407. }
  4408. else {
  4409. SERIAL_ECHO_START;
  4410. SERIAL_ECHO("Servo ");
  4411. SERIAL_ECHO(servo_index);
  4412. SERIAL_ECHOLN(" out of range");
  4413. }
  4414. }
  4415. else if (servo_index >= 0) {
  4416. SERIAL_PROTOCOL(MSG_OK);
  4417. SERIAL_PROTOCOL(" Servo ");
  4418. SERIAL_PROTOCOL(servo_index);
  4419. SERIAL_PROTOCOL(": ");
  4420. SERIAL_PROTOCOL(servos[servo_index].read());
  4421. SERIAL_PROTOCOLLN("");
  4422. }
  4423. }
  4424. break;
  4425. #endif // NUM_SERVOS > 0
  4426. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4427. case 300: // M300
  4428. {
  4429. int beepS = code_seen('S') ? code_value() : 110;
  4430. int beepP = code_seen('P') ? code_value() : 1000;
  4431. if (beepS > 0)
  4432. {
  4433. #if BEEPER > 0
  4434. tone(BEEPER, beepS);
  4435. delay(beepP);
  4436. noTone(BEEPER);
  4437. #elif defined(ULTRALCD)
  4438. lcd_buzz(beepS, beepP);
  4439. #elif defined(LCD_USE_I2C_BUZZER)
  4440. lcd_buzz(beepP, beepS);
  4441. #endif
  4442. }
  4443. else
  4444. {
  4445. delay(beepP);
  4446. }
  4447. }
  4448. break;
  4449. #endif // M300
  4450. #ifdef PIDTEMP
  4451. case 301: // M301
  4452. {
  4453. if(code_seen('P')) Kp = code_value();
  4454. if(code_seen('I')) Ki = scalePID_i(code_value());
  4455. if(code_seen('D')) Kd = scalePID_d(code_value());
  4456. #ifdef PID_ADD_EXTRUSION_RATE
  4457. if(code_seen('C')) Kc = code_value();
  4458. #endif
  4459. updatePID();
  4460. SERIAL_PROTOCOLRPGM(MSG_OK);
  4461. SERIAL_PROTOCOL(" p:");
  4462. SERIAL_PROTOCOL(Kp);
  4463. SERIAL_PROTOCOL(" i:");
  4464. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4465. SERIAL_PROTOCOL(" d:");
  4466. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4467. #ifdef PID_ADD_EXTRUSION_RATE
  4468. SERIAL_PROTOCOL(" c:");
  4469. //Kc does not have scaling applied above, or in resetting defaults
  4470. SERIAL_PROTOCOL(Kc);
  4471. #endif
  4472. SERIAL_PROTOCOLLN("");
  4473. }
  4474. break;
  4475. #endif //PIDTEMP
  4476. #ifdef PIDTEMPBED
  4477. case 304: // M304
  4478. {
  4479. if(code_seen('P')) bedKp = code_value();
  4480. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4481. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4482. updatePID();
  4483. SERIAL_PROTOCOLRPGM(MSG_OK);
  4484. SERIAL_PROTOCOL(" p:");
  4485. SERIAL_PROTOCOL(bedKp);
  4486. SERIAL_PROTOCOL(" i:");
  4487. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4488. SERIAL_PROTOCOL(" d:");
  4489. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4490. SERIAL_PROTOCOLLN("");
  4491. }
  4492. break;
  4493. #endif //PIDTEMP
  4494. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4495. {
  4496. #ifdef CHDK
  4497. SET_OUTPUT(CHDK);
  4498. WRITE(CHDK, HIGH);
  4499. chdkHigh = millis();
  4500. chdkActive = true;
  4501. #else
  4502. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4503. const uint8_t NUM_PULSES=16;
  4504. const float PULSE_LENGTH=0.01524;
  4505. for(int i=0; i < NUM_PULSES; i++) {
  4506. WRITE(PHOTOGRAPH_PIN, HIGH);
  4507. _delay_ms(PULSE_LENGTH);
  4508. WRITE(PHOTOGRAPH_PIN, LOW);
  4509. _delay_ms(PULSE_LENGTH);
  4510. }
  4511. delay(7.33);
  4512. for(int i=0; i < NUM_PULSES; i++) {
  4513. WRITE(PHOTOGRAPH_PIN, HIGH);
  4514. _delay_ms(PULSE_LENGTH);
  4515. WRITE(PHOTOGRAPH_PIN, LOW);
  4516. _delay_ms(PULSE_LENGTH);
  4517. }
  4518. #endif
  4519. #endif //chdk end if
  4520. }
  4521. break;
  4522. #ifdef DOGLCD
  4523. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4524. {
  4525. if (code_seen('C')) {
  4526. lcd_setcontrast( ((int)code_value())&63 );
  4527. }
  4528. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4529. SERIAL_PROTOCOL(lcd_contrast);
  4530. SERIAL_PROTOCOLLN("");
  4531. }
  4532. break;
  4533. #endif
  4534. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4535. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4536. {
  4537. float temp = .0;
  4538. if (code_seen('S')) temp=code_value();
  4539. set_extrude_min_temp(temp);
  4540. }
  4541. break;
  4542. #endif
  4543. case 303: // M303 PID autotune
  4544. {
  4545. float temp = 150.0;
  4546. int e=0;
  4547. int c=5;
  4548. if (code_seen('E')) e=code_value();
  4549. if (e<0)
  4550. temp=70;
  4551. if (code_seen('S')) temp=code_value();
  4552. if (code_seen('C')) c=code_value();
  4553. PID_autotune(temp, e, c);
  4554. }
  4555. break;
  4556. case 400: // M400 finish all moves
  4557. {
  4558. st_synchronize();
  4559. }
  4560. break;
  4561. #ifdef FILAMENT_SENSOR
  4562. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4563. {
  4564. #if (FILWIDTH_PIN > -1)
  4565. if(code_seen('N')) filament_width_nominal=code_value();
  4566. else{
  4567. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4568. SERIAL_PROTOCOLLN(filament_width_nominal);
  4569. }
  4570. #endif
  4571. }
  4572. break;
  4573. case 405: //M405 Turn on filament sensor for control
  4574. {
  4575. if(code_seen('D')) meas_delay_cm=code_value();
  4576. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4577. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4578. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4579. {
  4580. int temp_ratio = widthFil_to_size_ratio();
  4581. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4582. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4583. }
  4584. delay_index1=0;
  4585. delay_index2=0;
  4586. }
  4587. filament_sensor = true ;
  4588. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4589. //SERIAL_PROTOCOL(filament_width_meas);
  4590. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4591. //SERIAL_PROTOCOL(extrudemultiply);
  4592. }
  4593. break;
  4594. case 406: //M406 Turn off filament sensor for control
  4595. {
  4596. filament_sensor = false ;
  4597. }
  4598. break;
  4599. case 407: //M407 Display measured filament diameter
  4600. {
  4601. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4602. SERIAL_PROTOCOLLN(filament_width_meas);
  4603. }
  4604. break;
  4605. #endif
  4606. case 500: // M500 Store settings in EEPROM
  4607. {
  4608. Config_StoreSettings(EEPROM_OFFSET);
  4609. }
  4610. break;
  4611. case 501: // M501 Read settings from EEPROM
  4612. {
  4613. Config_RetrieveSettings(EEPROM_OFFSET);
  4614. }
  4615. break;
  4616. case 502: // M502 Revert to default settings
  4617. {
  4618. Config_ResetDefault();
  4619. }
  4620. break;
  4621. case 503: // M503 print settings currently in memory
  4622. {
  4623. Config_PrintSettings();
  4624. }
  4625. break;
  4626. case 509: //M509 Force language selection
  4627. {
  4628. lcd_force_language_selection();
  4629. SERIAL_ECHO_START;
  4630. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4631. }
  4632. break;
  4633. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4634. case 540:
  4635. {
  4636. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4637. }
  4638. break;
  4639. #endif
  4640. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4641. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4642. {
  4643. float value;
  4644. if (code_seen('Z'))
  4645. {
  4646. value = code_value();
  4647. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4648. {
  4649. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4650. SERIAL_ECHO_START;
  4651. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4652. SERIAL_PROTOCOLLN("");
  4653. }
  4654. else
  4655. {
  4656. SERIAL_ECHO_START;
  4657. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4658. SERIAL_ECHORPGM(MSG_Z_MIN);
  4659. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4660. SERIAL_ECHORPGM(MSG_Z_MAX);
  4661. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4662. SERIAL_PROTOCOLLN("");
  4663. }
  4664. }
  4665. else
  4666. {
  4667. SERIAL_ECHO_START;
  4668. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4669. SERIAL_ECHO(-zprobe_zoffset);
  4670. SERIAL_PROTOCOLLN("");
  4671. }
  4672. break;
  4673. }
  4674. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4675. #ifdef FILAMENTCHANGEENABLE
  4676. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4677. {
  4678. MYSERIAL.println("!!!!M600!!!!");
  4679. bool old_fsensor_enabled = fsensor_enabled;
  4680. fsensor_enabled = false; //temporary solution for unexpected restarting
  4681. st_synchronize();
  4682. float target[4];
  4683. float lastpos[4];
  4684. if (farm_mode)
  4685. {
  4686. prusa_statistics(22);
  4687. }
  4688. feedmultiplyBckp=feedmultiply;
  4689. int8_t TooLowZ = 0;
  4690. target[X_AXIS]=current_position[X_AXIS];
  4691. target[Y_AXIS]=current_position[Y_AXIS];
  4692. target[Z_AXIS]=current_position[Z_AXIS];
  4693. target[E_AXIS]=current_position[E_AXIS];
  4694. lastpos[X_AXIS]=current_position[X_AXIS];
  4695. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4696. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4697. lastpos[E_AXIS]=current_position[E_AXIS];
  4698. //Restract extruder
  4699. if(code_seen('E'))
  4700. {
  4701. target[E_AXIS]+= code_value();
  4702. }
  4703. else
  4704. {
  4705. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4706. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4707. #endif
  4708. }
  4709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4710. //Lift Z
  4711. if(code_seen('Z'))
  4712. {
  4713. target[Z_AXIS]+= code_value();
  4714. }
  4715. else
  4716. {
  4717. #ifdef FILAMENTCHANGE_ZADD
  4718. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4719. if(target[Z_AXIS] < 10){
  4720. target[Z_AXIS]+= 10 ;
  4721. TooLowZ = 1;
  4722. }else{
  4723. TooLowZ = 0;
  4724. }
  4725. #endif
  4726. }
  4727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4728. //Move XY to side
  4729. if(code_seen('X'))
  4730. {
  4731. target[X_AXIS]+= code_value();
  4732. }
  4733. else
  4734. {
  4735. #ifdef FILAMENTCHANGE_XPOS
  4736. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4737. #endif
  4738. }
  4739. if(code_seen('Y'))
  4740. {
  4741. target[Y_AXIS]= code_value();
  4742. }
  4743. else
  4744. {
  4745. #ifdef FILAMENTCHANGE_YPOS
  4746. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4747. #endif
  4748. }
  4749. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4750. st_synchronize();
  4751. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4752. uint8_t cnt = 0;
  4753. int counterBeep = 0;
  4754. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4755. while (!lcd_clicked()) {
  4756. cnt++;
  4757. manage_heater();
  4758. manage_inactivity(true);
  4759. /*#ifdef SNMM
  4760. target[E_AXIS] += 0.002;
  4761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4762. #endif // SNMM*/
  4763. if (cnt == 0)
  4764. {
  4765. #if BEEPER > 0
  4766. if (counterBeep == 500) {
  4767. counterBeep = 0;
  4768. }
  4769. SET_OUTPUT(BEEPER);
  4770. if (counterBeep == 0) {
  4771. WRITE(BEEPER, HIGH);
  4772. }
  4773. if (counterBeep == 20) {
  4774. WRITE(BEEPER, LOW);
  4775. }
  4776. counterBeep++;
  4777. #else
  4778. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4779. lcd_buzz(1000 / 6, 100);
  4780. #else
  4781. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4782. #endif
  4783. #endif
  4784. }
  4785. }
  4786. WRITE(BEEPER, LOW);
  4787. lcd_change_fil_state = 0;
  4788. while (lcd_change_fil_state == 0) {
  4789. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4790. KEEPALIVE_STATE(IN_HANDLER);
  4791. custom_message = true;
  4792. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4793. // Unload filament
  4794. if (code_seen('L'))
  4795. {
  4796. target[E_AXIS] += code_value();
  4797. }
  4798. else
  4799. {
  4800. #ifdef SNMM
  4801. #else
  4802. #ifdef FILAMENTCHANGE_FINALRETRACT
  4803. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4804. #endif
  4805. #endif // SNMM
  4806. }
  4807. #ifdef SNMM
  4808. target[E_AXIS] += 12;
  4809. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4810. target[E_AXIS] += 6;
  4811. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4812. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4814. st_synchronize();
  4815. target[E_AXIS] += (FIL_COOLING);
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4817. target[E_AXIS] += (FIL_COOLING*-1);
  4818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4819. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4820. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4821. st_synchronize();
  4822. #else
  4823. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4825. #endif // SNMM
  4826. //finish moves
  4827. st_synchronize();
  4828. //disable extruder steppers so filament can be removed
  4829. disable_e0();
  4830. disable_e1();
  4831. disable_e2();
  4832. delay(100);
  4833. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4834. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4835. //lcd_return_to_status();
  4836. lcd_update_enable(true);
  4837. }
  4838. //Wait for user to insert filament
  4839. lcd_wait_interact();
  4840. //load_filament_time = millis();
  4841. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4842. #ifdef PAT9125
  4843. if (fsensor_M600) fsensor_autoload_check_start();
  4844. #endif //PAT9125
  4845. while(!lcd_clicked())
  4846. {
  4847. manage_heater();
  4848. manage_inactivity(true);
  4849. #ifdef PAT9125
  4850. if (fsensor_M600 && fsensor_check_autoload())
  4851. break;
  4852. #endif //PAT9125
  4853. /*#ifdef SNMM
  4854. target[E_AXIS] += 0.002;
  4855. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4856. #endif // SNMM*/
  4857. }
  4858. #ifdef PAT9125
  4859. if (fsensor_M600) fsensor_autoload_check_stop();
  4860. #endif //PAT9125
  4861. //WRITE(BEEPER, LOW);
  4862. KEEPALIVE_STATE(IN_HANDLER);
  4863. #ifdef SNMM
  4864. display_loading();
  4865. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4866. do {
  4867. target[E_AXIS] += 0.002;
  4868. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4869. delay_keep_alive(2);
  4870. } while (!lcd_clicked());
  4871. KEEPALIVE_STATE(IN_HANDLER);
  4872. /*if (millis() - load_filament_time > 2) {
  4873. load_filament_time = millis();
  4874. target[E_AXIS] += 0.001;
  4875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4876. }*/
  4877. //Filament inserted
  4878. //Feed the filament to the end of nozzle quickly
  4879. st_synchronize();
  4880. target[E_AXIS] += bowden_length[snmm_extruder];
  4881. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4882. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4884. target[E_AXIS] += 40;
  4885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4886. target[E_AXIS] += 10;
  4887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4888. #else
  4889. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4891. #endif // SNMM
  4892. //Extrude some filament
  4893. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4895. //Wait for user to check the state
  4896. lcd_change_fil_state = 0;
  4897. lcd_loading_filament();
  4898. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4899. lcd_change_fil_state = 0;
  4900. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4901. lcd_alright();
  4902. KEEPALIVE_STATE(IN_HANDLER);
  4903. switch(lcd_change_fil_state){
  4904. // Filament failed to load so load it again
  4905. case 2:
  4906. #ifdef SNMM
  4907. display_loading();
  4908. do {
  4909. target[E_AXIS] += 0.002;
  4910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4911. delay_keep_alive(2);
  4912. } while (!lcd_clicked());
  4913. st_synchronize();
  4914. target[E_AXIS] += bowden_length[snmm_extruder];
  4915. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4916. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4917. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4918. target[E_AXIS] += 40;
  4919. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4920. target[E_AXIS] += 10;
  4921. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4922. #else
  4923. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4924. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4925. #endif
  4926. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4928. lcd_loading_filament();
  4929. break;
  4930. // Filament loaded properly but color is not clear
  4931. case 3:
  4932. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4934. lcd_loading_color();
  4935. break;
  4936. // Everything good
  4937. default:
  4938. lcd_change_success();
  4939. lcd_update_enable(true);
  4940. break;
  4941. }
  4942. }
  4943. //Not let's go back to print
  4944. //Feed a little of filament to stabilize pressure
  4945. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4947. //Retract
  4948. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4949. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4950. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4951. //Move XY back
  4952. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4953. //Move Z back
  4954. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4955. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4956. //Unretract
  4957. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4958. //Set E position to original
  4959. plan_set_e_position(lastpos[E_AXIS]);
  4960. //Recover feed rate
  4961. feedmultiply=feedmultiplyBckp;
  4962. char cmd[9];
  4963. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4964. enquecommand(cmd);
  4965. lcd_setstatuspgm(WELCOME_MSG);
  4966. custom_message = false;
  4967. custom_message_type = 0;
  4968. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4969. #ifdef PAT9125
  4970. if (fsensor_M600)
  4971. {
  4972. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4973. st_synchronize();
  4974. while (!is_buffer_empty())
  4975. {
  4976. process_commands();
  4977. cmdqueue_pop_front();
  4978. }
  4979. fsensor_enable();
  4980. fsensor_restore_print_and_continue();
  4981. }
  4982. #endif //PAT9125
  4983. }
  4984. break;
  4985. #endif //FILAMENTCHANGEENABLE
  4986. case 601: {
  4987. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4988. }
  4989. break;
  4990. case 602: {
  4991. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4992. }
  4993. break;
  4994. #ifdef LIN_ADVANCE
  4995. case 900: // M900: Set LIN_ADVANCE options.
  4996. gcode_M900();
  4997. break;
  4998. #endif
  4999. case 907: // M907 Set digital trimpot motor current using axis codes.
  5000. {
  5001. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5002. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5003. if(code_seen('B')) digipot_current(4,code_value());
  5004. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5005. #endif
  5006. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5007. if(code_seen('X')) digipot_current(0, code_value());
  5008. #endif
  5009. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5010. if(code_seen('Z')) digipot_current(1, code_value());
  5011. #endif
  5012. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5013. if(code_seen('E')) digipot_current(2, code_value());
  5014. #endif
  5015. #ifdef DIGIPOT_I2C
  5016. // this one uses actual amps in floating point
  5017. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5018. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5019. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5020. #endif
  5021. }
  5022. break;
  5023. case 908: // M908 Control digital trimpot directly.
  5024. {
  5025. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5026. uint8_t channel,current;
  5027. if(code_seen('P')) channel=code_value();
  5028. if(code_seen('S')) current=code_value();
  5029. digitalPotWrite(channel, current);
  5030. #endif
  5031. }
  5032. break;
  5033. case 910: // M910 TMC2130 init
  5034. {
  5035. tmc2130_init();
  5036. }
  5037. break;
  5038. case 911: // M911 Set TMC2130 holding currents
  5039. {
  5040. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5041. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5042. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5043. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5044. }
  5045. break;
  5046. case 912: // M912 Set TMC2130 running currents
  5047. {
  5048. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5049. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5050. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5051. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5052. }
  5053. break;
  5054. case 913: // M913 Print TMC2130 currents
  5055. {
  5056. tmc2130_print_currents();
  5057. }
  5058. break;
  5059. case 914: // M914 Set normal mode
  5060. {
  5061. tmc2130_mode = TMC2130_MODE_NORMAL;
  5062. tmc2130_init();
  5063. }
  5064. break;
  5065. case 915: // M915 Set silent mode
  5066. {
  5067. tmc2130_mode = TMC2130_MODE_SILENT;
  5068. tmc2130_init();
  5069. }
  5070. break;
  5071. case 916: // M916 Set sg_thrs
  5072. {
  5073. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5074. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5075. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5076. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5077. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5078. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5079. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5080. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5081. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5082. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5083. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5084. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5085. }
  5086. break;
  5087. case 917: // M917 Set TMC2130 pwm_ampl
  5088. {
  5089. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5090. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5091. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5092. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5093. }
  5094. break;
  5095. case 918: // M918 Set TMC2130 pwm_grad
  5096. {
  5097. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5098. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5099. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5100. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5101. }
  5102. break;
  5103. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5104. {
  5105. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5106. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5107. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5108. if(code_seen('B')) microstep_mode(4,code_value());
  5109. microstep_readings();
  5110. #endif
  5111. }
  5112. break;
  5113. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5114. {
  5115. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5116. if(code_seen('S')) switch((int)code_value())
  5117. {
  5118. case 1:
  5119. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5120. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5121. break;
  5122. case 2:
  5123. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5124. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5125. break;
  5126. }
  5127. microstep_readings();
  5128. #endif
  5129. }
  5130. break;
  5131. case 701: //M701: load filament
  5132. {
  5133. gcode_M701();
  5134. }
  5135. break;
  5136. case 702:
  5137. {
  5138. #ifdef SNMM
  5139. if (code_seen('U')) {
  5140. extr_unload_used(); //unload all filaments which were used in current print
  5141. }
  5142. else if (code_seen('C')) {
  5143. extr_unload(); //unload just current filament
  5144. }
  5145. else {
  5146. extr_unload_all(); //unload all filaments
  5147. }
  5148. #else
  5149. bool old_fsensor_enabled = fsensor_enabled;
  5150. fsensor_enabled = false;
  5151. custom_message = true;
  5152. custom_message_type = 2;
  5153. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5154. // extr_unload2();
  5155. current_position[E_AXIS] -= 80;
  5156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5157. st_synchronize();
  5158. lcd_setstatuspgm(WELCOME_MSG);
  5159. custom_message = false;
  5160. custom_message_type = 0;
  5161. fsensor_enabled = old_fsensor_enabled;
  5162. #endif
  5163. }
  5164. break;
  5165. case 999: // M999: Restart after being stopped
  5166. Stopped = false;
  5167. lcd_reset_alert_level();
  5168. gcode_LastN = Stopped_gcode_LastN;
  5169. FlushSerialRequestResend();
  5170. break;
  5171. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5172. }
  5173. } // end if(code_seen('M')) (end of M codes)
  5174. else if(code_seen('T'))
  5175. {
  5176. int index;
  5177. st_synchronize();
  5178. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5179. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5180. SERIAL_ECHOLNPGM("Invalid T code.");
  5181. }
  5182. else {
  5183. if (*(strchr_pointer + index) == '?') {
  5184. tmp_extruder = choose_extruder_menu();
  5185. }
  5186. else {
  5187. tmp_extruder = code_value();
  5188. }
  5189. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5190. #ifdef SNMM
  5191. #ifdef LIN_ADVANCE
  5192. if (snmm_extruder != tmp_extruder)
  5193. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5194. #endif
  5195. snmm_extruder = tmp_extruder;
  5196. delay(100);
  5197. disable_e0();
  5198. disable_e1();
  5199. disable_e2();
  5200. pinMode(E_MUX0_PIN, OUTPUT);
  5201. pinMode(E_MUX1_PIN, OUTPUT);
  5202. pinMode(E_MUX2_PIN, OUTPUT);
  5203. delay(100);
  5204. SERIAL_ECHO_START;
  5205. SERIAL_ECHO("T:");
  5206. SERIAL_ECHOLN((int)tmp_extruder);
  5207. switch (tmp_extruder) {
  5208. case 1:
  5209. WRITE(E_MUX0_PIN, HIGH);
  5210. WRITE(E_MUX1_PIN, LOW);
  5211. WRITE(E_MUX2_PIN, LOW);
  5212. break;
  5213. case 2:
  5214. WRITE(E_MUX0_PIN, LOW);
  5215. WRITE(E_MUX1_PIN, HIGH);
  5216. WRITE(E_MUX2_PIN, LOW);
  5217. break;
  5218. case 3:
  5219. WRITE(E_MUX0_PIN, HIGH);
  5220. WRITE(E_MUX1_PIN, HIGH);
  5221. WRITE(E_MUX2_PIN, LOW);
  5222. break;
  5223. default:
  5224. WRITE(E_MUX0_PIN, LOW);
  5225. WRITE(E_MUX1_PIN, LOW);
  5226. WRITE(E_MUX2_PIN, LOW);
  5227. break;
  5228. }
  5229. delay(100);
  5230. #else
  5231. if (tmp_extruder >= EXTRUDERS) {
  5232. SERIAL_ECHO_START;
  5233. SERIAL_ECHOPGM("T");
  5234. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5235. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5236. }
  5237. else {
  5238. boolean make_move = false;
  5239. if (code_seen('F')) {
  5240. make_move = true;
  5241. next_feedrate = code_value();
  5242. if (next_feedrate > 0.0) {
  5243. feedrate = next_feedrate;
  5244. }
  5245. }
  5246. #if EXTRUDERS > 1
  5247. if (tmp_extruder != active_extruder) {
  5248. // Save current position to return to after applying extruder offset
  5249. memcpy(destination, current_position, sizeof(destination));
  5250. // Offset extruder (only by XY)
  5251. int i;
  5252. for (i = 0; i < 2; i++) {
  5253. current_position[i] = current_position[i] -
  5254. extruder_offset[i][active_extruder] +
  5255. extruder_offset[i][tmp_extruder];
  5256. }
  5257. // Set the new active extruder and position
  5258. active_extruder = tmp_extruder;
  5259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5260. // Move to the old position if 'F' was in the parameters
  5261. if (make_move && Stopped == false) {
  5262. prepare_move();
  5263. }
  5264. }
  5265. #endif
  5266. SERIAL_ECHO_START;
  5267. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5268. SERIAL_PROTOCOLLN((int)active_extruder);
  5269. }
  5270. #endif
  5271. }
  5272. } // end if(code_seen('T')) (end of T codes)
  5273. #ifdef DEBUG_DCODES
  5274. else if (code_seen('D')) // D codes (debug)
  5275. {
  5276. switch((int)code_value())
  5277. {
  5278. case -1: // D-1 - Endless loop
  5279. dcode__1(); break;
  5280. case 0: // D0 - Reset
  5281. dcode_0(); break;
  5282. case 1: // D1 - Clear EEPROM
  5283. dcode_1(); break;
  5284. case 2: // D2 - Read/Write RAM
  5285. dcode_2(); break;
  5286. case 3: // D3 - Read/Write EEPROM
  5287. dcode_3(); break;
  5288. case 4: // D4 - Read/Write PIN
  5289. dcode_4(); break;
  5290. case 5: // D5 - Read/Write FLASH
  5291. // dcode_5(); break;
  5292. break;
  5293. case 6: // D6 - Read/Write external FLASH
  5294. dcode_6(); break;
  5295. case 7: // D7 - Read/Write Bootloader
  5296. dcode_7(); break;
  5297. case 8: // D8 - Read/Write PINDA
  5298. dcode_8(); break;
  5299. case 10: // D10 - XYZ calibration = OK
  5300. dcode_10(); break;
  5301. case 12: //D12 - Reset failstat counters
  5302. dcode_12(); break;
  5303. case 2130: // D9125 - TMC2130
  5304. dcode_2130(); break;
  5305. case 9125: // D9125 - PAT9125
  5306. dcode_9125(); break;
  5307. }
  5308. }
  5309. #endif //DEBUG_DCODES
  5310. else
  5311. {
  5312. SERIAL_ECHO_START;
  5313. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5314. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5315. SERIAL_ECHOLNPGM("\"(2)");
  5316. }
  5317. KEEPALIVE_STATE(NOT_BUSY);
  5318. ClearToSend();
  5319. }
  5320. void FlushSerialRequestResend()
  5321. {
  5322. //char cmdbuffer[bufindr][100]="Resend:";
  5323. MYSERIAL.flush();
  5324. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5325. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5326. ClearToSend();
  5327. }
  5328. // Confirm the execution of a command, if sent from a serial line.
  5329. // Execution of a command from a SD card will not be confirmed.
  5330. void ClearToSend()
  5331. {
  5332. previous_millis_cmd = millis();
  5333. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5334. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5335. }
  5336. void get_coordinates()
  5337. {
  5338. bool seen[4]={false,false,false,false};
  5339. for(int8_t i=0; i < NUM_AXIS; i++) {
  5340. if(code_seen(axis_codes[i]))
  5341. {
  5342. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5343. seen[i]=true;
  5344. }
  5345. else destination[i] = current_position[i]; //Are these else lines really needed?
  5346. }
  5347. if(code_seen('F')) {
  5348. next_feedrate = code_value();
  5349. #ifdef MAX_SILENT_FEEDRATE
  5350. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5351. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5352. #endif //MAX_SILENT_FEEDRATE
  5353. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5354. }
  5355. }
  5356. void get_arc_coordinates()
  5357. {
  5358. #ifdef SF_ARC_FIX
  5359. bool relative_mode_backup = relative_mode;
  5360. relative_mode = true;
  5361. #endif
  5362. get_coordinates();
  5363. #ifdef SF_ARC_FIX
  5364. relative_mode=relative_mode_backup;
  5365. #endif
  5366. if(code_seen('I')) {
  5367. offset[0] = code_value();
  5368. }
  5369. else {
  5370. offset[0] = 0.0;
  5371. }
  5372. if(code_seen('J')) {
  5373. offset[1] = code_value();
  5374. }
  5375. else {
  5376. offset[1] = 0.0;
  5377. }
  5378. }
  5379. void clamp_to_software_endstops(float target[3])
  5380. {
  5381. #ifdef DEBUG_DISABLE_SWLIMITS
  5382. return;
  5383. #endif //DEBUG_DISABLE_SWLIMITS
  5384. world2machine_clamp(target[0], target[1]);
  5385. // Clamp the Z coordinate.
  5386. if (min_software_endstops) {
  5387. float negative_z_offset = 0;
  5388. #ifdef ENABLE_AUTO_BED_LEVELING
  5389. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5390. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5391. #endif
  5392. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5393. }
  5394. if (max_software_endstops) {
  5395. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5396. }
  5397. }
  5398. #ifdef MESH_BED_LEVELING
  5399. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5400. float dx = x - current_position[X_AXIS];
  5401. float dy = y - current_position[Y_AXIS];
  5402. float dz = z - current_position[Z_AXIS];
  5403. int n_segments = 0;
  5404. if (mbl.active) {
  5405. float len = abs(dx) + abs(dy);
  5406. if (len > 0)
  5407. // Split to 3cm segments or shorter.
  5408. n_segments = int(ceil(len / 30.f));
  5409. }
  5410. if (n_segments > 1) {
  5411. float de = e - current_position[E_AXIS];
  5412. for (int i = 1; i < n_segments; ++ i) {
  5413. float t = float(i) / float(n_segments);
  5414. plan_buffer_line(
  5415. current_position[X_AXIS] + t * dx,
  5416. current_position[Y_AXIS] + t * dy,
  5417. current_position[Z_AXIS] + t * dz,
  5418. current_position[E_AXIS] + t * de,
  5419. feed_rate, extruder);
  5420. }
  5421. }
  5422. // The rest of the path.
  5423. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5424. current_position[X_AXIS] = x;
  5425. current_position[Y_AXIS] = y;
  5426. current_position[Z_AXIS] = z;
  5427. current_position[E_AXIS] = e;
  5428. }
  5429. #endif // MESH_BED_LEVELING
  5430. void prepare_move()
  5431. {
  5432. clamp_to_software_endstops(destination);
  5433. previous_millis_cmd = millis();
  5434. // Do not use feedmultiply for E or Z only moves
  5435. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5436. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5437. }
  5438. else {
  5439. #ifdef MESH_BED_LEVELING
  5440. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5441. #else
  5442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5443. #endif
  5444. }
  5445. for(int8_t i=0; i < NUM_AXIS; i++) {
  5446. current_position[i] = destination[i];
  5447. }
  5448. }
  5449. void prepare_arc_move(char isclockwise) {
  5450. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5451. // Trace the arc
  5452. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5453. // As far as the parser is concerned, the position is now == target. In reality the
  5454. // motion control system might still be processing the action and the real tool position
  5455. // in any intermediate location.
  5456. for(int8_t i=0; i < NUM_AXIS; i++) {
  5457. current_position[i] = destination[i];
  5458. }
  5459. previous_millis_cmd = millis();
  5460. }
  5461. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5462. #if defined(FAN_PIN)
  5463. #if CONTROLLERFAN_PIN == FAN_PIN
  5464. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5465. #endif
  5466. #endif
  5467. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5468. unsigned long lastMotorCheck = 0;
  5469. void controllerFan()
  5470. {
  5471. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5472. {
  5473. lastMotorCheck = millis();
  5474. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5475. #if EXTRUDERS > 2
  5476. || !READ(E2_ENABLE_PIN)
  5477. #endif
  5478. #if EXTRUDER > 1
  5479. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5480. || !READ(X2_ENABLE_PIN)
  5481. #endif
  5482. || !READ(E1_ENABLE_PIN)
  5483. #endif
  5484. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5485. {
  5486. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5487. }
  5488. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5489. {
  5490. digitalWrite(CONTROLLERFAN_PIN, 0);
  5491. analogWrite(CONTROLLERFAN_PIN, 0);
  5492. }
  5493. else
  5494. {
  5495. // allows digital or PWM fan output to be used (see M42 handling)
  5496. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5497. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5498. }
  5499. }
  5500. }
  5501. #endif
  5502. #ifdef TEMP_STAT_LEDS
  5503. static bool blue_led = false;
  5504. static bool red_led = false;
  5505. static uint32_t stat_update = 0;
  5506. void handle_status_leds(void) {
  5507. float max_temp = 0.0;
  5508. if(millis() > stat_update) {
  5509. stat_update += 500; // Update every 0.5s
  5510. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5511. max_temp = max(max_temp, degHotend(cur_extruder));
  5512. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5513. }
  5514. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5515. max_temp = max(max_temp, degTargetBed());
  5516. max_temp = max(max_temp, degBed());
  5517. #endif
  5518. if((max_temp > 55.0) && (red_led == false)) {
  5519. digitalWrite(STAT_LED_RED, 1);
  5520. digitalWrite(STAT_LED_BLUE, 0);
  5521. red_led = true;
  5522. blue_led = false;
  5523. }
  5524. if((max_temp < 54.0) && (blue_led == false)) {
  5525. digitalWrite(STAT_LED_RED, 0);
  5526. digitalWrite(STAT_LED_BLUE, 1);
  5527. red_led = false;
  5528. blue_led = true;
  5529. }
  5530. }
  5531. }
  5532. #endif
  5533. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5534. {
  5535. if (fsensor_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && (current_temperature[0] > EXTRUDE_MINTEMP))
  5536. {
  5537. if (fsensor_autoload_enabled)
  5538. {
  5539. if (fsensor_check_autoload())
  5540. {
  5541. fsensor_autoload_check_stop();
  5542. enquecommand_front_P((PSTR("M701")));
  5543. }
  5544. }
  5545. else
  5546. fsensor_autoload_check_start();
  5547. }
  5548. else
  5549. if (fsensor_autoload_enabled)
  5550. fsensor_autoload_check_stop();
  5551. #if defined(KILL_PIN) && KILL_PIN > -1
  5552. static int killCount = 0; // make the inactivity button a bit less responsive
  5553. const int KILL_DELAY = 10000;
  5554. #endif
  5555. if(buflen < (BUFSIZE-1)){
  5556. get_command();
  5557. }
  5558. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5559. if(max_inactive_time)
  5560. kill("", 4);
  5561. if(stepper_inactive_time) {
  5562. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5563. {
  5564. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5565. disable_x();
  5566. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5567. disable_y();
  5568. disable_z();
  5569. disable_e0();
  5570. disable_e1();
  5571. disable_e2();
  5572. }
  5573. }
  5574. }
  5575. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5576. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5577. {
  5578. chdkActive = false;
  5579. WRITE(CHDK, LOW);
  5580. }
  5581. #endif
  5582. #if defined(KILL_PIN) && KILL_PIN > -1
  5583. // Check if the kill button was pressed and wait just in case it was an accidental
  5584. // key kill key press
  5585. // -------------------------------------------------------------------------------
  5586. if( 0 == READ(KILL_PIN) )
  5587. {
  5588. killCount++;
  5589. }
  5590. else if (killCount > 0)
  5591. {
  5592. killCount--;
  5593. }
  5594. // Exceeded threshold and we can confirm that it was not accidental
  5595. // KILL the machine
  5596. // ----------------------------------------------------------------
  5597. if ( killCount >= KILL_DELAY)
  5598. {
  5599. kill("", 5);
  5600. }
  5601. #endif
  5602. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5603. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5604. #endif
  5605. #ifdef EXTRUDER_RUNOUT_PREVENT
  5606. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5607. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5608. {
  5609. bool oldstatus=READ(E0_ENABLE_PIN);
  5610. enable_e0();
  5611. float oldepos=current_position[E_AXIS];
  5612. float oldedes=destination[E_AXIS];
  5613. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5614. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5615. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5616. current_position[E_AXIS]=oldepos;
  5617. destination[E_AXIS]=oldedes;
  5618. plan_set_e_position(oldepos);
  5619. previous_millis_cmd=millis();
  5620. st_synchronize();
  5621. WRITE(E0_ENABLE_PIN,oldstatus);
  5622. }
  5623. #endif
  5624. #ifdef TEMP_STAT_LEDS
  5625. handle_status_leds();
  5626. #endif
  5627. check_axes_activity();
  5628. }
  5629. void kill(const char *full_screen_message, unsigned char id)
  5630. {
  5631. SERIAL_ECHOPGM("KILL: ");
  5632. MYSERIAL.println(int(id));
  5633. //return;
  5634. cli(); // Stop interrupts
  5635. disable_heater();
  5636. disable_x();
  5637. // SERIAL_ECHOLNPGM("kill - disable Y");
  5638. disable_y();
  5639. disable_z();
  5640. disable_e0();
  5641. disable_e1();
  5642. disable_e2();
  5643. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5644. pinMode(PS_ON_PIN,INPUT);
  5645. #endif
  5646. SERIAL_ERROR_START;
  5647. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5648. if (full_screen_message != NULL) {
  5649. SERIAL_ERRORLNRPGM(full_screen_message);
  5650. lcd_display_message_fullscreen_P(full_screen_message);
  5651. } else {
  5652. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5653. }
  5654. // FMC small patch to update the LCD before ending
  5655. sei(); // enable interrupts
  5656. for ( int i=5; i--; lcd_update())
  5657. {
  5658. delay(200);
  5659. }
  5660. cli(); // disable interrupts
  5661. suicide();
  5662. while(1)
  5663. {
  5664. wdt_reset();
  5665. /* Intentionally left empty */
  5666. } // Wait for reset
  5667. }
  5668. void Stop()
  5669. {
  5670. disable_heater();
  5671. if(Stopped == false) {
  5672. Stopped = true;
  5673. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5674. SERIAL_ERROR_START;
  5675. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5676. LCD_MESSAGERPGM(MSG_STOPPED);
  5677. }
  5678. }
  5679. bool IsStopped() { return Stopped; };
  5680. #ifdef FAST_PWM_FAN
  5681. void setPwmFrequency(uint8_t pin, int val)
  5682. {
  5683. val &= 0x07;
  5684. switch(digitalPinToTimer(pin))
  5685. {
  5686. #if defined(TCCR0A)
  5687. case TIMER0A:
  5688. case TIMER0B:
  5689. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5690. // TCCR0B |= val;
  5691. break;
  5692. #endif
  5693. #if defined(TCCR1A)
  5694. case TIMER1A:
  5695. case TIMER1B:
  5696. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5697. // TCCR1B |= val;
  5698. break;
  5699. #endif
  5700. #if defined(TCCR2)
  5701. case TIMER2:
  5702. case TIMER2:
  5703. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5704. TCCR2 |= val;
  5705. break;
  5706. #endif
  5707. #if defined(TCCR2A)
  5708. case TIMER2A:
  5709. case TIMER2B:
  5710. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5711. TCCR2B |= val;
  5712. break;
  5713. #endif
  5714. #if defined(TCCR3A)
  5715. case TIMER3A:
  5716. case TIMER3B:
  5717. case TIMER3C:
  5718. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5719. TCCR3B |= val;
  5720. break;
  5721. #endif
  5722. #if defined(TCCR4A)
  5723. case TIMER4A:
  5724. case TIMER4B:
  5725. case TIMER4C:
  5726. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5727. TCCR4B |= val;
  5728. break;
  5729. #endif
  5730. #if defined(TCCR5A)
  5731. case TIMER5A:
  5732. case TIMER5B:
  5733. case TIMER5C:
  5734. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5735. TCCR5B |= val;
  5736. break;
  5737. #endif
  5738. }
  5739. }
  5740. #endif //FAST_PWM_FAN
  5741. bool setTargetedHotend(int code){
  5742. tmp_extruder = active_extruder;
  5743. if(code_seen('T')) {
  5744. tmp_extruder = code_value();
  5745. if(tmp_extruder >= EXTRUDERS) {
  5746. SERIAL_ECHO_START;
  5747. switch(code){
  5748. case 104:
  5749. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5750. break;
  5751. case 105:
  5752. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5753. break;
  5754. case 109:
  5755. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5756. break;
  5757. case 218:
  5758. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5759. break;
  5760. case 221:
  5761. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5762. break;
  5763. }
  5764. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5765. return true;
  5766. }
  5767. }
  5768. return false;
  5769. }
  5770. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5771. {
  5772. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5773. {
  5774. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5775. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5776. }
  5777. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5778. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5779. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5780. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5781. total_filament_used = 0;
  5782. }
  5783. float calculate_volumetric_multiplier(float diameter) {
  5784. float area = .0;
  5785. float radius = .0;
  5786. radius = diameter * .5;
  5787. if (! volumetric_enabled || radius == 0) {
  5788. area = 1;
  5789. }
  5790. else {
  5791. area = M_PI * pow(radius, 2);
  5792. }
  5793. return 1.0 / area;
  5794. }
  5795. void calculate_volumetric_multipliers() {
  5796. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5797. #if EXTRUDERS > 1
  5798. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5799. #if EXTRUDERS > 2
  5800. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5801. #endif
  5802. #endif
  5803. }
  5804. void delay_keep_alive(unsigned int ms)
  5805. {
  5806. for (;;) {
  5807. manage_heater();
  5808. // Manage inactivity, but don't disable steppers on timeout.
  5809. manage_inactivity(true);
  5810. lcd_update();
  5811. if (ms == 0)
  5812. break;
  5813. else if (ms >= 50) {
  5814. delay(50);
  5815. ms -= 50;
  5816. } else {
  5817. delay(ms);
  5818. ms = 0;
  5819. }
  5820. }
  5821. }
  5822. void wait_for_heater(long codenum) {
  5823. #ifdef TEMP_RESIDENCY_TIME
  5824. long residencyStart;
  5825. residencyStart = -1;
  5826. /* continue to loop until we have reached the target temp
  5827. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5828. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5829. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5830. #else
  5831. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5832. #endif //TEMP_RESIDENCY_TIME
  5833. if ((millis() - codenum) > 1000UL)
  5834. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5835. if (!farm_mode) {
  5836. SERIAL_PROTOCOLPGM("T:");
  5837. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5838. SERIAL_PROTOCOLPGM(" E:");
  5839. SERIAL_PROTOCOL((int)tmp_extruder);
  5840. #ifdef TEMP_RESIDENCY_TIME
  5841. SERIAL_PROTOCOLPGM(" W:");
  5842. if (residencyStart > -1)
  5843. {
  5844. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5845. SERIAL_PROTOCOLLN(codenum);
  5846. }
  5847. else
  5848. {
  5849. SERIAL_PROTOCOLLN("?");
  5850. }
  5851. }
  5852. #else
  5853. SERIAL_PROTOCOLLN("");
  5854. #endif
  5855. codenum = millis();
  5856. }
  5857. manage_heater();
  5858. manage_inactivity();
  5859. lcd_update();
  5860. #ifdef TEMP_RESIDENCY_TIME
  5861. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5862. or when current temp falls outside the hysteresis after target temp was reached */
  5863. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5864. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5865. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5866. {
  5867. residencyStart = millis();
  5868. }
  5869. #endif //TEMP_RESIDENCY_TIME
  5870. }
  5871. }
  5872. void check_babystep() {
  5873. int babystep_z;
  5874. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5875. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5876. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5877. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5878. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5879. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5880. lcd_update_enable(true);
  5881. }
  5882. }
  5883. #ifdef DIS
  5884. void d_setup()
  5885. {
  5886. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5887. pinMode(D_DATA, INPUT_PULLUP);
  5888. pinMode(D_REQUIRE, OUTPUT);
  5889. digitalWrite(D_REQUIRE, HIGH);
  5890. }
  5891. float d_ReadData()
  5892. {
  5893. int digit[13];
  5894. String mergeOutput;
  5895. float output;
  5896. digitalWrite(D_REQUIRE, HIGH);
  5897. for (int i = 0; i<13; i++)
  5898. {
  5899. for (int j = 0; j < 4; j++)
  5900. {
  5901. while (digitalRead(D_DATACLOCK) == LOW) {}
  5902. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5903. bitWrite(digit[i], j, digitalRead(D_DATA));
  5904. }
  5905. }
  5906. digitalWrite(D_REQUIRE, LOW);
  5907. mergeOutput = "";
  5908. output = 0;
  5909. for (int r = 5; r <= 10; r++) //Merge digits
  5910. {
  5911. mergeOutput += digit[r];
  5912. }
  5913. output = mergeOutput.toFloat();
  5914. if (digit[4] == 8) //Handle sign
  5915. {
  5916. output *= -1;
  5917. }
  5918. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5919. {
  5920. output /= 10;
  5921. }
  5922. return output;
  5923. }
  5924. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5925. int t1 = 0;
  5926. int t_delay = 0;
  5927. int digit[13];
  5928. int m;
  5929. char str[3];
  5930. //String mergeOutput;
  5931. char mergeOutput[15];
  5932. float output;
  5933. int mesh_point = 0; //index number of calibration point
  5934. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5935. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5936. float mesh_home_z_search = 4;
  5937. float row[x_points_num];
  5938. int ix = 0;
  5939. int iy = 0;
  5940. char* filename_wldsd = "wldsd.txt";
  5941. char data_wldsd[70];
  5942. char numb_wldsd[10];
  5943. d_setup();
  5944. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5945. // We don't know where we are! HOME!
  5946. // Push the commands to the front of the message queue in the reverse order!
  5947. // There shall be always enough space reserved for these commands.
  5948. repeatcommand_front(); // repeat G80 with all its parameters
  5949. enquecommand_front_P((PSTR("G28 W0")));
  5950. enquecommand_front_P((PSTR("G1 Z5")));
  5951. return;
  5952. }
  5953. bool custom_message_old = custom_message;
  5954. unsigned int custom_message_type_old = custom_message_type;
  5955. unsigned int custom_message_state_old = custom_message_state;
  5956. custom_message = true;
  5957. custom_message_type = 1;
  5958. custom_message_state = (x_points_num * y_points_num) + 10;
  5959. lcd_update(1);
  5960. mbl.reset();
  5961. babystep_undo();
  5962. card.openFile(filename_wldsd, false);
  5963. current_position[Z_AXIS] = mesh_home_z_search;
  5964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5965. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5966. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5967. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5968. setup_for_endstop_move(false);
  5969. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5970. SERIAL_PROTOCOL(x_points_num);
  5971. SERIAL_PROTOCOLPGM(",");
  5972. SERIAL_PROTOCOL(y_points_num);
  5973. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5974. SERIAL_PROTOCOL(mesh_home_z_search);
  5975. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5976. SERIAL_PROTOCOL(x_dimension);
  5977. SERIAL_PROTOCOLPGM(",");
  5978. SERIAL_PROTOCOL(y_dimension);
  5979. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5980. while (mesh_point != x_points_num * y_points_num) {
  5981. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5982. iy = mesh_point / x_points_num;
  5983. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5984. float z0 = 0.f;
  5985. current_position[Z_AXIS] = mesh_home_z_search;
  5986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5987. st_synchronize();
  5988. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5989. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5991. st_synchronize();
  5992. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5993. break;
  5994. card.closefile();
  5995. }
  5996. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5997. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5998. //strcat(data_wldsd, numb_wldsd);
  5999. //MYSERIAL.println(data_wldsd);
  6000. //delay(1000);
  6001. //delay(3000);
  6002. //t1 = millis();
  6003. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6004. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6005. memset(digit, 0, sizeof(digit));
  6006. //cli();
  6007. digitalWrite(D_REQUIRE, LOW);
  6008. for (int i = 0; i<13; i++)
  6009. {
  6010. //t1 = millis();
  6011. for (int j = 0; j < 4; j++)
  6012. {
  6013. while (digitalRead(D_DATACLOCK) == LOW) {}
  6014. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6015. bitWrite(digit[i], j, digitalRead(D_DATA));
  6016. }
  6017. //t_delay = (millis() - t1);
  6018. //SERIAL_PROTOCOLPGM(" ");
  6019. //SERIAL_PROTOCOL_F(t_delay, 5);
  6020. //SERIAL_PROTOCOLPGM(" ");
  6021. }
  6022. //sei();
  6023. digitalWrite(D_REQUIRE, HIGH);
  6024. mergeOutput[0] = '\0';
  6025. output = 0;
  6026. for (int r = 5; r <= 10; r++) //Merge digits
  6027. {
  6028. sprintf(str, "%d", digit[r]);
  6029. strcat(mergeOutput, str);
  6030. }
  6031. output = atof(mergeOutput);
  6032. if (digit[4] == 8) //Handle sign
  6033. {
  6034. output *= -1;
  6035. }
  6036. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6037. {
  6038. output *= 0.1;
  6039. }
  6040. //output = d_ReadData();
  6041. //row[ix] = current_position[Z_AXIS];
  6042. memset(data_wldsd, 0, sizeof(data_wldsd));
  6043. for (int i = 0; i <3; i++) {
  6044. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6045. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6046. strcat(data_wldsd, numb_wldsd);
  6047. strcat(data_wldsd, ";");
  6048. }
  6049. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6050. dtostrf(output, 8, 5, numb_wldsd);
  6051. strcat(data_wldsd, numb_wldsd);
  6052. //strcat(data_wldsd, ";");
  6053. card.write_command(data_wldsd);
  6054. //row[ix] = d_ReadData();
  6055. row[ix] = output; // current_position[Z_AXIS];
  6056. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6057. for (int i = 0; i < x_points_num; i++) {
  6058. SERIAL_PROTOCOLPGM(" ");
  6059. SERIAL_PROTOCOL_F(row[i], 5);
  6060. }
  6061. SERIAL_PROTOCOLPGM("\n");
  6062. }
  6063. custom_message_state--;
  6064. mesh_point++;
  6065. lcd_update(1);
  6066. }
  6067. card.closefile();
  6068. }
  6069. #endif
  6070. void temp_compensation_start() {
  6071. custom_message = true;
  6072. custom_message_type = 5;
  6073. custom_message_state = PINDA_HEAT_T + 1;
  6074. lcd_update(2);
  6075. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6076. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6077. }
  6078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6079. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6080. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6081. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6083. st_synchronize();
  6084. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6085. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6086. delay_keep_alive(1000);
  6087. custom_message_state = PINDA_HEAT_T - i;
  6088. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6089. else lcd_update(1);
  6090. }
  6091. custom_message_type = 0;
  6092. custom_message_state = 0;
  6093. custom_message = false;
  6094. }
  6095. void temp_compensation_apply() {
  6096. int i_add;
  6097. int compensation_value;
  6098. int z_shift = 0;
  6099. float z_shift_mm;
  6100. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6101. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6102. i_add = (target_temperature_bed - 60) / 10;
  6103. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6104. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6105. }else {
  6106. //interpolation
  6107. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6108. }
  6109. SERIAL_PROTOCOLPGM("\n");
  6110. SERIAL_PROTOCOLPGM("Z shift applied:");
  6111. MYSERIAL.print(z_shift_mm);
  6112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6113. st_synchronize();
  6114. plan_set_z_position(current_position[Z_AXIS]);
  6115. }
  6116. else {
  6117. //we have no temp compensation data
  6118. }
  6119. }
  6120. float temp_comp_interpolation(float inp_temperature) {
  6121. //cubic spline interpolation
  6122. int n, i, j, k;
  6123. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6124. int shift[10];
  6125. int temp_C[10];
  6126. n = 6; //number of measured points
  6127. shift[0] = 0;
  6128. for (i = 0; i < n; i++) {
  6129. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6130. temp_C[i] = 50 + i * 10; //temperature in C
  6131. #ifdef PINDA_THERMISTOR
  6132. temp_C[i] = 35 + i * 5; //temperature in C
  6133. #else
  6134. temp_C[i] = 50 + i * 10; //temperature in C
  6135. #endif
  6136. x[i] = (float)temp_C[i];
  6137. f[i] = (float)shift[i];
  6138. }
  6139. if (inp_temperature < x[0]) return 0;
  6140. for (i = n - 1; i>0; i--) {
  6141. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6142. h[i - 1] = x[i] - x[i - 1];
  6143. }
  6144. //*********** formation of h, s , f matrix **************
  6145. for (i = 1; i<n - 1; i++) {
  6146. m[i][i] = 2 * (h[i - 1] + h[i]);
  6147. if (i != 1) {
  6148. m[i][i - 1] = h[i - 1];
  6149. m[i - 1][i] = h[i - 1];
  6150. }
  6151. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6152. }
  6153. //*********** forward elimination **************
  6154. for (i = 1; i<n - 2; i++) {
  6155. temp = (m[i + 1][i] / m[i][i]);
  6156. for (j = 1; j <= n - 1; j++)
  6157. m[i + 1][j] -= temp*m[i][j];
  6158. }
  6159. //*********** backward substitution *********
  6160. for (i = n - 2; i>0; i--) {
  6161. sum = 0;
  6162. for (j = i; j <= n - 2; j++)
  6163. sum += m[i][j] * s[j];
  6164. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6165. }
  6166. for (i = 0; i<n - 1; i++)
  6167. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6168. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6169. b = s[i] / 2;
  6170. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6171. d = f[i];
  6172. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6173. }
  6174. return sum;
  6175. }
  6176. #ifdef PINDA_THERMISTOR
  6177. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6178. {
  6179. if (!temp_cal_active) return 0;
  6180. if (!calibration_status_pinda()) return 0;
  6181. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6182. }
  6183. #endif //PINDA_THERMISTOR
  6184. void long_pause() //long pause print
  6185. {
  6186. st_synchronize();
  6187. //save currently set parameters to global variables
  6188. saved_feedmultiply = feedmultiply;
  6189. HotendTempBckp = degTargetHotend(active_extruder);
  6190. fanSpeedBckp = fanSpeed;
  6191. start_pause_print = millis();
  6192. //save position
  6193. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6194. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6195. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6196. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6197. //retract
  6198. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6200. //lift z
  6201. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6202. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6204. //set nozzle target temperature to 0
  6205. setTargetHotend(0, 0);
  6206. setTargetHotend(0, 1);
  6207. setTargetHotend(0, 2);
  6208. //Move XY to side
  6209. current_position[X_AXIS] = X_PAUSE_POS;
  6210. current_position[Y_AXIS] = Y_PAUSE_POS;
  6211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6212. // Turn off the print fan
  6213. fanSpeed = 0;
  6214. st_synchronize();
  6215. }
  6216. void serialecho_temperatures() {
  6217. float tt = degHotend(active_extruder);
  6218. SERIAL_PROTOCOLPGM("T:");
  6219. SERIAL_PROTOCOL(tt);
  6220. SERIAL_PROTOCOLPGM(" E:");
  6221. SERIAL_PROTOCOL((int)active_extruder);
  6222. SERIAL_PROTOCOLPGM(" B:");
  6223. SERIAL_PROTOCOL_F(degBed(), 1);
  6224. SERIAL_PROTOCOLLN("");
  6225. }
  6226. extern uint32_t sdpos_atomic;
  6227. void uvlo_()
  6228. {
  6229. unsigned long time_start = millis();
  6230. bool sd_print = card.sdprinting;
  6231. // Conserve power as soon as possible.
  6232. disable_x();
  6233. disable_y();
  6234. tmc2130_set_current_h(Z_AXIS, 12);
  6235. tmc2130_set_current_r(Z_AXIS, 12);
  6236. tmc2130_set_current_h(E_AXIS, 20);
  6237. tmc2130_set_current_r(E_AXIS, 20);
  6238. // Indicate that the interrupt has been triggered.
  6239. SERIAL_ECHOLNPGM("UVLO");
  6240. // Read out the current Z motor microstep counter. This will be later used
  6241. // for reaching the zero full step before powering off.
  6242. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6243. // Calculate the file position, from which to resume this print.
  6244. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6245. {
  6246. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6247. sd_position -= sdlen_planner;
  6248. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6249. sd_position -= sdlen_cmdqueue;
  6250. if (sd_position < 0) sd_position = 0;
  6251. }
  6252. // Backup the feedrate in mm/min.
  6253. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6254. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6255. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6256. // are in action.
  6257. planner_abort_hard();
  6258. // Store the current extruder position.
  6259. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6260. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6261. // Clean the input command queue.
  6262. cmdqueue_reset();
  6263. card.sdprinting = false;
  6264. // card.closefile();
  6265. // Enable stepper driver interrupt to move Z axis.
  6266. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6267. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6268. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6269. sei();
  6270. plan_buffer_line(
  6271. current_position[X_AXIS],
  6272. current_position[Y_AXIS],
  6273. current_position[Z_AXIS],
  6274. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6275. 400, active_extruder);
  6276. plan_buffer_line(
  6277. current_position[X_AXIS],
  6278. current_position[Y_AXIS],
  6279. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6280. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6281. 40, active_extruder);
  6282. // Move Z up to the next 0th full step.
  6283. // Write the file position.
  6284. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6285. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6286. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6287. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6288. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6289. // Scale the z value to 1u resolution.
  6290. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6291. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6292. }
  6293. // Read out the current Z motor microstep counter. This will be later used
  6294. // for reaching the zero full step before powering off.
  6295. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6296. // Store the current position.
  6297. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6298. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6299. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6300. // Store the current feed rate, temperatures and fan speed.
  6301. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6302. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6303. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6304. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6305. // Finaly store the "power outage" flag.
  6306. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6307. st_synchronize();
  6308. SERIAL_ECHOPGM("stps");
  6309. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6310. #if 0
  6311. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6312. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6314. st_synchronize();
  6315. #endif
  6316. disable_z();
  6317. // Increment power failure counter
  6318. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6319. power_count++;
  6320. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6321. SERIAL_ECHOLNPGM("UVLO - end");
  6322. MYSERIAL.println(millis() - time_start);
  6323. cli();
  6324. while(1);
  6325. }
  6326. void setup_fan_interrupt() {
  6327. //INT7
  6328. DDRE &= ~(1 << 7); //input pin
  6329. PORTE &= ~(1 << 7); //no internal pull-up
  6330. //start with sensing rising edge
  6331. EICRB &= ~(1 << 6);
  6332. EICRB |= (1 << 7);
  6333. //enable INT7 interrupt
  6334. EIMSK |= (1 << 7);
  6335. }
  6336. ISR(INT7_vect) {
  6337. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6338. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6339. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6340. t_fan_rising_edge = millis();
  6341. }
  6342. else { //interrupt was triggered by falling edge
  6343. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6344. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6345. }
  6346. }
  6347. EICRB ^= (1 << 6); //change edge
  6348. }
  6349. void setup_uvlo_interrupt() {
  6350. DDRE &= ~(1 << 4); //input pin
  6351. PORTE &= ~(1 << 4); //no internal pull-up
  6352. //sensing falling edge
  6353. EICRB |= (1 << 0);
  6354. EICRB &= ~(1 << 1);
  6355. //enable INT4 interrupt
  6356. EIMSK |= (1 << 4);
  6357. }
  6358. ISR(INT4_vect) {
  6359. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6360. SERIAL_ECHOLNPGM("INT4");
  6361. if (IS_SD_PRINTING) uvlo_();
  6362. }
  6363. void recover_print(uint8_t automatic) {
  6364. char cmd[30];
  6365. lcd_update_enable(true);
  6366. lcd_update(2);
  6367. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6368. recover_machine_state_after_power_panic();
  6369. // Set the target bed and nozzle temperatures.
  6370. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6371. enquecommand(cmd);
  6372. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6373. enquecommand(cmd);
  6374. // Lift the print head, so one may remove the excess priming material.
  6375. if (current_position[Z_AXIS] < 25)
  6376. enquecommand_P(PSTR("G1 Z25 F800"));
  6377. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6378. enquecommand_P(PSTR("G28 X Y"));
  6379. // Set the target bed and nozzle temperatures and wait.
  6380. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6381. enquecommand(cmd);
  6382. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6383. enquecommand(cmd);
  6384. enquecommand_P(PSTR("M83")); //E axis relative mode
  6385. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6386. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6387. if(automatic == 0){
  6388. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6389. }
  6390. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6391. // Mark the power panic status as inactive.
  6392. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6393. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6394. delay_keep_alive(1000);
  6395. }*/
  6396. SERIAL_ECHOPGM("After waiting for temp:");
  6397. SERIAL_ECHOPGM("Current position X_AXIS:");
  6398. MYSERIAL.println(current_position[X_AXIS]);
  6399. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6400. MYSERIAL.println(current_position[Y_AXIS]);
  6401. // Restart the print.
  6402. restore_print_from_eeprom();
  6403. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6404. MYSERIAL.print(current_position[Z_AXIS]);
  6405. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6406. MYSERIAL.print(current_position[E_AXIS]);
  6407. }
  6408. void recover_machine_state_after_power_panic()
  6409. {
  6410. char cmd[30];
  6411. // 1) Recover the logical cordinates at the time of the power panic.
  6412. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6413. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6414. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6415. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6416. // The current position after power panic is moved to the next closest 0th full step.
  6417. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6418. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6419. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6420. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6421. sprintf_P(cmd, PSTR("G92 E"));
  6422. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6423. enquecommand(cmd);
  6424. }
  6425. memcpy(destination, current_position, sizeof(destination));
  6426. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6427. print_world_coordinates();
  6428. // 2) Initialize the logical to physical coordinate system transformation.
  6429. world2machine_initialize();
  6430. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6431. mbl.active = false;
  6432. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6433. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6434. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6435. // Scale the z value to 10u resolution.
  6436. int16_t v;
  6437. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6438. if (v != 0)
  6439. mbl.active = true;
  6440. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6441. }
  6442. if (mbl.active)
  6443. mbl.upsample_3x3();
  6444. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6445. print_mesh_bed_leveling_table();
  6446. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6447. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6448. babystep_load();
  6449. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6451. // 6) Power up the motors, mark their positions as known.
  6452. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6453. axis_known_position[X_AXIS] = true; enable_x();
  6454. axis_known_position[Y_AXIS] = true; enable_y();
  6455. axis_known_position[Z_AXIS] = true; enable_z();
  6456. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6457. print_physical_coordinates();
  6458. // 7) Recover the target temperatures.
  6459. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6460. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6461. }
  6462. void restore_print_from_eeprom() {
  6463. float x_rec, y_rec, z_pos;
  6464. int feedrate_rec;
  6465. uint8_t fan_speed_rec;
  6466. char cmd[30];
  6467. char* c;
  6468. char filename[13];
  6469. uint8_t depth = 0;
  6470. char dir_name[9];
  6471. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6472. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6473. SERIAL_ECHOPGM("Feedrate:");
  6474. MYSERIAL.println(feedrate_rec);
  6475. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6476. MYSERIAL.println(int(depth));
  6477. for (int i = 0; i < depth; i++) {
  6478. for (int j = 0; j < 8; j++) {
  6479. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6480. }
  6481. dir_name[8] = '\0';
  6482. MYSERIAL.println(dir_name);
  6483. card.chdir(dir_name);
  6484. }
  6485. for (int i = 0; i < 8; i++) {
  6486. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6487. }
  6488. filename[8] = '\0';
  6489. MYSERIAL.print(filename);
  6490. strcat_P(filename, PSTR(".gco"));
  6491. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6492. for (c = &cmd[4]; *c; c++)
  6493. *c = tolower(*c);
  6494. enquecommand(cmd);
  6495. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6496. SERIAL_ECHOPGM("Position read from eeprom:");
  6497. MYSERIAL.println(position);
  6498. // E axis relative mode.
  6499. enquecommand_P(PSTR("M83"));
  6500. // Move to the XY print position in logical coordinates, where the print has been killed.
  6501. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6502. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6503. strcat_P(cmd, PSTR(" F2000"));
  6504. enquecommand(cmd);
  6505. // Move the Z axis down to the print, in logical coordinates.
  6506. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6507. enquecommand(cmd);
  6508. // Unretract.
  6509. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6510. // Set the feedrate saved at the power panic.
  6511. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6512. enquecommand(cmd);
  6513. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6514. {
  6515. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6516. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6517. }
  6518. // Set the fan speed saved at the power panic.
  6519. strcpy_P(cmd, PSTR("M106 S"));
  6520. strcat(cmd, itostr3(int(fan_speed_rec)));
  6521. enquecommand(cmd);
  6522. // Set a position in the file.
  6523. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6524. enquecommand(cmd);
  6525. // Start SD print.
  6526. enquecommand_P(PSTR("M24"));
  6527. }
  6528. ////////////////////////////////////////////////////////////////////////////////
  6529. // new save/restore printing
  6530. //extern uint32_t sdpos_atomic;
  6531. bool saved_printing = false;
  6532. uint32_t saved_sdpos = 0;
  6533. float saved_pos[4] = {0, 0, 0, 0};
  6534. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6535. float saved_feedrate2 = 0;
  6536. uint8_t saved_active_extruder = 0;
  6537. bool saved_extruder_under_pressure = false;
  6538. void stop_and_save_print_to_ram(float z_move, float e_move)
  6539. {
  6540. if (saved_printing) return;
  6541. cli();
  6542. unsigned char nplanner_blocks = number_of_blocks();
  6543. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6544. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6545. saved_sdpos -= sdlen_planner;
  6546. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6547. saved_sdpos -= sdlen_cmdqueue;
  6548. #if 0
  6549. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6550. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6551. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6552. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6553. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6554. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6555. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6556. {
  6557. card.setIndex(saved_sdpos);
  6558. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6559. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6560. MYSERIAL.print(char(card.get()));
  6561. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6562. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6563. MYSERIAL.print(char(card.get()));
  6564. SERIAL_ECHOLNPGM("End of command buffer");
  6565. }
  6566. {
  6567. // Print the content of the planner buffer, line by line:
  6568. card.setIndex(saved_sdpos);
  6569. int8_t iline = 0;
  6570. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6571. SERIAL_ECHOPGM("Planner line (from file): ");
  6572. MYSERIAL.print(int(iline), DEC);
  6573. SERIAL_ECHOPGM(", length: ");
  6574. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6575. SERIAL_ECHOPGM(", steps: (");
  6576. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6577. SERIAL_ECHOPGM(",");
  6578. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6579. SERIAL_ECHOPGM(",");
  6580. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6581. SERIAL_ECHOPGM(",");
  6582. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6583. SERIAL_ECHOPGM("), events: ");
  6584. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6585. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6586. MYSERIAL.print(char(card.get()));
  6587. }
  6588. }
  6589. {
  6590. // Print the content of the command buffer, line by line:
  6591. int8_t iline = 0;
  6592. union {
  6593. struct {
  6594. char lo;
  6595. char hi;
  6596. } lohi;
  6597. uint16_t value;
  6598. } sdlen_single;
  6599. int _bufindr = bufindr;
  6600. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6601. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6602. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6603. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6604. }
  6605. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6606. MYSERIAL.print(int(iline), DEC);
  6607. SERIAL_ECHOPGM(", type: ");
  6608. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6609. SERIAL_ECHOPGM(", len: ");
  6610. MYSERIAL.println(sdlen_single.value, DEC);
  6611. // Print the content of the buffer line.
  6612. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6613. SERIAL_ECHOPGM("Buffer line (from file): ");
  6614. MYSERIAL.print(int(iline), DEC);
  6615. MYSERIAL.println(int(iline), DEC);
  6616. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6617. MYSERIAL.print(char(card.get()));
  6618. if (-- _buflen == 0)
  6619. break;
  6620. // First skip the current command ID and iterate up to the end of the string.
  6621. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6622. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6623. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6624. // If the end of the buffer was empty,
  6625. if (_bufindr == sizeof(cmdbuffer)) {
  6626. // skip to the start and find the nonzero command.
  6627. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6628. }
  6629. }
  6630. }
  6631. #endif
  6632. #if 0
  6633. saved_feedrate2 = feedrate; //save feedrate
  6634. #else
  6635. // Try to deduce the feedrate from the first block of the planner.
  6636. // Speed is in mm/min.
  6637. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6638. #endif
  6639. planner_abort_hard(); //abort printing
  6640. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6641. saved_active_extruder = active_extruder; //save active_extruder
  6642. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6643. cmdqueue_reset(); //empty cmdqueue
  6644. card.sdprinting = false;
  6645. // card.closefile();
  6646. saved_printing = true;
  6647. sei();
  6648. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6649. #if 1
  6650. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6651. char buf[48];
  6652. strcpy_P(buf, PSTR("G1 Z"));
  6653. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6654. strcat_P(buf, PSTR(" E"));
  6655. // Relative extrusion
  6656. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6657. strcat_P(buf, PSTR(" F"));
  6658. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6659. // At this point the command queue is empty.
  6660. enquecommand(buf, false);
  6661. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6662. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6663. repeatcommand_front();
  6664. #else
  6665. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6666. st_synchronize(); //wait moving
  6667. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6668. memcpy(destination, current_position, sizeof(destination));
  6669. #endif
  6670. }
  6671. }
  6672. void restore_print_from_ram_and_continue(float e_move)
  6673. {
  6674. if (!saved_printing) return;
  6675. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6676. // current_position[axis] = st_get_position_mm(axis);
  6677. active_extruder = saved_active_extruder; //restore active_extruder
  6678. feedrate = saved_feedrate2; //restore feedrate
  6679. float e = saved_pos[E_AXIS] - e_move;
  6680. plan_set_e_position(e);
  6681. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6682. st_synchronize();
  6683. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6684. memcpy(destination, current_position, sizeof(destination));
  6685. card.setIndex(saved_sdpos);
  6686. sdpos_atomic = saved_sdpos;
  6687. card.sdprinting = true;
  6688. saved_printing = false;
  6689. }
  6690. void print_world_coordinates()
  6691. {
  6692. SERIAL_ECHOPGM("world coordinates: (");
  6693. MYSERIAL.print(current_position[X_AXIS], 3);
  6694. SERIAL_ECHOPGM(", ");
  6695. MYSERIAL.print(current_position[Y_AXIS], 3);
  6696. SERIAL_ECHOPGM(", ");
  6697. MYSERIAL.print(current_position[Z_AXIS], 3);
  6698. SERIAL_ECHOLNPGM(")");
  6699. }
  6700. void print_physical_coordinates()
  6701. {
  6702. SERIAL_ECHOPGM("physical coordinates: (");
  6703. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6704. SERIAL_ECHOPGM(", ");
  6705. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6706. SERIAL_ECHOPGM(", ");
  6707. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6708. SERIAL_ECHOLNPGM(")");
  6709. }
  6710. void print_mesh_bed_leveling_table()
  6711. {
  6712. SERIAL_ECHOPGM("mesh bed leveling: ");
  6713. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6714. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6715. MYSERIAL.print(mbl.z_values[y][x], 3);
  6716. SERIAL_ECHOPGM(" ");
  6717. }
  6718. SERIAL_ECHOLNPGM("");
  6719. }
  6720. #define FIL_LOAD_LENGTH 60
  6721. void extr_unload2() { //unloads filament
  6722. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6723. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6724. // int8_t SilentMode;
  6725. uint8_t snmm_extruder = 0;
  6726. if (degHotend0() > EXTRUDE_MINTEMP) {
  6727. lcd_implementation_clear();
  6728. lcd_display_message_fullscreen_P(PSTR(""));
  6729. max_feedrate[E_AXIS] = 50;
  6730. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6731. // lcd.print(" ");
  6732. // lcd.print(snmm_extruder + 1);
  6733. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6734. if (current_position[Z_AXIS] < 15) {
  6735. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6737. }
  6738. current_position[E_AXIS] += 10; //extrusion
  6739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6740. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6741. if (current_temperature[0] < 230) { //PLA & all other filaments
  6742. current_position[E_AXIS] += 5.4;
  6743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6744. current_position[E_AXIS] += 3.2;
  6745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6746. current_position[E_AXIS] += 3;
  6747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6748. }
  6749. else { //ABS
  6750. current_position[E_AXIS] += 3.1;
  6751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6752. current_position[E_AXIS] += 3.1;
  6753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6754. current_position[E_AXIS] += 4;
  6755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6756. /*current_position[X_AXIS] += 23; //delay
  6757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6758. current_position[X_AXIS] -= 23; //delay
  6759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6760. delay_keep_alive(4700);
  6761. }
  6762. max_feedrate[E_AXIS] = 80;
  6763. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6765. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6767. st_synchronize();
  6768. //digipot_init();
  6769. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6770. // else digipot_current(2, tmp_motor_loud[2]);
  6771. lcd_update_enable(true);
  6772. // lcd_return_to_status();
  6773. max_feedrate[E_AXIS] = 50;
  6774. }
  6775. else {
  6776. lcd_implementation_clear();
  6777. lcd.setCursor(0, 0);
  6778. lcd_printPGM(MSG_ERROR);
  6779. lcd.setCursor(0, 2);
  6780. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6781. delay(2000);
  6782. lcd_implementation_clear();
  6783. }
  6784. // lcd_return_to_status();
  6785. }