Marlin_main.cpp 246 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #endif //PAT9125
  58. #ifdef TMC2130
  59. #include "tmc2130.h"
  60. #endif //TMC2130
  61. #ifdef BLINKM
  62. #include "BlinkM.h"
  63. #include "Wire.h"
  64. #endif
  65. #ifdef ULTRALCD
  66. #include "ultralcd.h"
  67. #endif
  68. #if NUM_SERVOS > 0
  69. #include "Servo.h"
  70. #endif
  71. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  72. #include <SPI.h>
  73. #endif
  74. #define VERSION_STRING "1.0.2"
  75. #include "ultralcd.h"
  76. #include "cmdqueue.h"
  77. // Macros for bit masks
  78. #define BIT(b) (1<<(b))
  79. #define TEST(n,b) (((n)&BIT(b))!=0)
  80. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  81. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  82. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  83. //Implemented Codes
  84. //-------------------
  85. // PRUSA CODES
  86. // P F - Returns FW versions
  87. // P R - Returns revision of printer
  88. // G0 -> G1
  89. // G1 - Coordinated Movement X Y Z E
  90. // G2 - CW ARC
  91. // G3 - CCW ARC
  92. // G4 - Dwell S<seconds> or P<milliseconds>
  93. // G10 - retract filament according to settings of M207
  94. // G11 - retract recover filament according to settings of M208
  95. // G28 - Home all Axis
  96. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  97. // G30 - Single Z Probe, probes bed at current XY location.
  98. // G31 - Dock sled (Z_PROBE_SLED only)
  99. // G32 - Undock sled (Z_PROBE_SLED only)
  100. // G80 - Automatic mesh bed leveling
  101. // G81 - Print bed profile
  102. // G90 - Use Absolute Coordinates
  103. // G91 - Use Relative Coordinates
  104. // G92 - Set current position to coordinates given
  105. // M Codes
  106. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  107. // M1 - Same as M0
  108. // M17 - Enable/Power all stepper motors
  109. // M18 - Disable all stepper motors; same as M84
  110. // M20 - List SD card
  111. // M21 - Init SD card
  112. // M22 - Release SD card
  113. // M23 - Select SD file (M23 filename.g)
  114. // M24 - Start/resume SD print
  115. // M25 - Pause SD print
  116. // M26 - Set SD position in bytes (M26 S12345)
  117. // M27 - Report SD print status
  118. // M28 - Start SD write (M28 filename.g)
  119. // M29 - Stop SD write
  120. // M30 - Delete file from SD (M30 filename.g)
  121. // M31 - Output time since last M109 or SD card start to serial
  122. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  123. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  124. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  125. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  126. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. // M80 - Turn on Power Supply
  128. // M81 - Turn off Power Supply
  129. // M82 - Set E codes absolute (default)
  130. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  131. // M84 - Disable steppers until next move,
  132. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  133. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  134. // M92 - Set axis_steps_per_unit - same syntax as G92
  135. // M104 - Set extruder target temp
  136. // M105 - Read current temp
  137. // M106 - Fan on
  138. // M107 - Fan off
  139. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  141. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  142. // M112 - Emergency stop
  143. // M114 - Output current position to serial port
  144. // M115 - Capabilities string
  145. // M117 - display message
  146. // M119 - Output Endstop status to serial port
  147. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  148. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  149. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  150. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  151. // M140 - Set bed target temp
  152. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  153. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  154. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  155. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  156. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  157. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  158. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  159. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  160. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  161. // M206 - set additional homing offset
  162. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  163. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  164. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  165. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  166. // M220 S<factor in percent>- set speed factor override percentage
  167. // M221 S<factor in percent>- set extrude factor override percentage
  168. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  169. // M240 - Trigger a camera to take a photograph
  170. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  171. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  172. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  173. // M301 - Set PID parameters P I and D
  174. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  175. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  176. // M304 - Set bed PID parameters P I and D
  177. // M400 - Finish all moves
  178. // M401 - Lower z-probe if present
  179. // M402 - Raise z-probe if present
  180. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  181. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  182. // M406 - Turn off Filament Sensor extrusion control
  183. // M407 - Displays measured filament diameter
  184. // M500 - stores parameters in EEPROM
  185. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. // M503 - print the current settings (from memory not from EEPROM)
  188. // M509 - force language selection on next restart
  189. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  190. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  191. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  192. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  193. // M907 - Set digital trimpot motor current using axis codes.
  194. // M908 - Control digital trimpot directly.
  195. // M350 - Set microstepping mode.
  196. // M351 - Toggle MS1 MS2 pins directly.
  197. // M928 - Start SD logging (M928 filename.g) - ended by M29
  198. // M999 - Restart after being stopped by error
  199. //Stepper Movement Variables
  200. //===========================================================================
  201. //=============================imported variables============================
  202. //===========================================================================
  203. //===========================================================================
  204. //=============================public variables=============================
  205. //===========================================================================
  206. #ifdef SDSUPPORT
  207. CardReader card;
  208. #endif
  209. unsigned long PingTime = millis();
  210. union Data
  211. {
  212. byte b[2];
  213. int value;
  214. };
  215. float homing_feedrate[] = HOMING_FEEDRATE;
  216. // Currently only the extruder axis may be switched to a relative mode.
  217. // Other axes are always absolute or relative based on the common relative_mode flag.
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedmultiply=100; //100->1 200->2
  220. int saved_feedmultiply;
  221. int extrudemultiply=100; //100->1 200->2
  222. int extruder_multiply[EXTRUDERS] = {100
  223. #if EXTRUDERS > 1
  224. , 100
  225. #if EXTRUDERS > 2
  226. , 100
  227. #endif
  228. #endif
  229. };
  230. int bowden_length[4];
  231. bool is_usb_printing = false;
  232. bool homing_flag = false;
  233. bool temp_cal_active = false;
  234. unsigned long kicktime = millis()+100000;
  235. unsigned int usb_printing_counter;
  236. int lcd_change_fil_state = 0;
  237. int feedmultiplyBckp = 100;
  238. float HotendTempBckp = 0;
  239. int fanSpeedBckp = 0;
  240. float pause_lastpos[4];
  241. unsigned long pause_time = 0;
  242. unsigned long start_pause_print = millis();
  243. unsigned long load_filament_time;
  244. bool mesh_bed_leveling_flag = false;
  245. bool mesh_bed_run_from_menu = false;
  246. unsigned char lang_selected = 0;
  247. int8_t FarmMode = 0;
  248. bool prusa_sd_card_upload = false;
  249. unsigned int status_number = 0;
  250. unsigned long total_filament_used;
  251. unsigned int heating_status;
  252. unsigned int heating_status_counter;
  253. bool custom_message;
  254. bool loading_flag = false;
  255. unsigned int custom_message_type;
  256. unsigned int custom_message_state;
  257. char snmm_filaments_used = 0;
  258. float distance_from_min[3];
  259. float angleDiff;
  260. bool fan_state[2];
  261. int fan_edge_counter[2];
  262. int fan_speed[2];
  263. bool volumetric_enabled = false;
  264. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  265. #if EXTRUDERS > 1
  266. , DEFAULT_NOMINAL_FILAMENT_DIA
  267. #if EXTRUDERS > 2
  268. , DEFAULT_NOMINAL_FILAMENT_DIA
  269. #endif
  270. #endif
  271. };
  272. float volumetric_multiplier[EXTRUDERS] = {1.0
  273. #if EXTRUDERS > 1
  274. , 1.0
  275. #if EXTRUDERS > 2
  276. , 1.0
  277. #endif
  278. #endif
  279. };
  280. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  281. float add_homing[3]={0,0,0};
  282. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  283. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  284. bool axis_known_position[3] = {false, false, false};
  285. float zprobe_zoffset;
  286. // Extruder offset
  287. #if EXTRUDERS > 1
  288. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  289. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  290. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  291. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  292. #endif
  293. };
  294. #endif
  295. uint8_t active_extruder = 0;
  296. int fanSpeed=0;
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled=false;
  299. bool retracted[EXTRUDERS]={false
  300. #if EXTRUDERS > 1
  301. , false
  302. #if EXTRUDERS > 2
  303. , false
  304. #endif
  305. #endif
  306. };
  307. bool retracted_swap[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. float retract_length = RETRACT_LENGTH;
  316. float retract_length_swap = RETRACT_LENGTH_SWAP;
  317. float retract_feedrate = RETRACT_FEEDRATE;
  318. float retract_zlift = RETRACT_ZLIFT;
  319. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  320. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  321. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  322. #endif
  323. #ifdef ULTIPANEL
  324. #ifdef PS_DEFAULT_OFF
  325. bool powersupply = false;
  326. #else
  327. bool powersupply = true;
  328. #endif
  329. #endif
  330. bool cancel_heatup = false ;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. const char errormagic[] PROGMEM = "Error:";
  343. const char echomagic[] PROGMEM = "echo:";
  344. //===========================================================================
  345. //=============================Private Variables=============================
  346. //===========================================================================
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  349. static float delta[3] = {0.0, 0.0, 0.0};
  350. // For tracing an arc
  351. static float offset[3] = {0.0, 0.0, 0.0};
  352. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  353. // Determines Absolute or Relative Coordinates.
  354. // Also there is bool axis_relative_modes[] per axis flag.
  355. static bool relative_mode = false;
  356. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  357. //static float tt = 0;
  358. //static float bt = 0;
  359. //Inactivity shutdown variables
  360. static unsigned long previous_millis_cmd = 0;
  361. unsigned long max_inactive_time = 0;
  362. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  363. unsigned long starttime=0;
  364. unsigned long stoptime=0;
  365. unsigned long _usb_timer = 0;
  366. static uint8_t tmp_extruder;
  367. bool extruder_under_pressure = true;
  368. bool Stopped=false;
  369. #if NUM_SERVOS > 0
  370. Servo servos[NUM_SERVOS];
  371. #endif
  372. bool CooldownNoWait = true;
  373. bool target_direction;
  374. //Insert variables if CHDK is defined
  375. #ifdef CHDK
  376. unsigned long chdkHigh = 0;
  377. boolean chdkActive = false;
  378. #endif
  379. //===========================================================================
  380. //=============================Routines======================================
  381. //===========================================================================
  382. void get_arc_coordinates();
  383. bool setTargetedHotend(int code);
  384. void serial_echopair_P(const char *s_P, float v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. void serial_echopair_P(const char *s_P, double v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. void serial_echopair_P(const char *s_P, unsigned long v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. #ifdef SDSUPPORT
  391. #include "SdFatUtil.h"
  392. int freeMemory() { return SdFatUtil::FreeRam(); }
  393. #else
  394. extern "C" {
  395. extern unsigned int __bss_end;
  396. extern unsigned int __heap_start;
  397. extern void *__brkval;
  398. int freeMemory() {
  399. int free_memory;
  400. if ((int)__brkval == 0)
  401. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  402. else
  403. free_memory = ((int)&free_memory) - ((int)__brkval);
  404. return free_memory;
  405. }
  406. }
  407. #endif //!SDSUPPORT
  408. void setup_killpin()
  409. {
  410. #if defined(KILL_PIN) && KILL_PIN > -1
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN,HIGH);
  413. #endif
  414. }
  415. // Set home pin
  416. void setup_homepin(void)
  417. {
  418. #if defined(HOME_PIN) && HOME_PIN > -1
  419. SET_INPUT(HOME_PIN);
  420. WRITE(HOME_PIN,HIGH);
  421. #endif
  422. }
  423. void setup_photpin()
  424. {
  425. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  426. SET_OUTPUT(PHOTOGRAPH_PIN);
  427. WRITE(PHOTOGRAPH_PIN, LOW);
  428. #endif
  429. }
  430. void setup_powerhold()
  431. {
  432. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  433. SET_OUTPUT(SUICIDE_PIN);
  434. WRITE(SUICIDE_PIN, HIGH);
  435. #endif
  436. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  437. SET_OUTPUT(PS_ON_PIN);
  438. #if defined(PS_DEFAULT_OFF)
  439. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  440. #else
  441. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  442. #endif
  443. #endif
  444. }
  445. void suicide()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. SET_OUTPUT(SUICIDE_PIN);
  449. WRITE(SUICIDE_PIN, LOW);
  450. #endif
  451. }
  452. void servo_init()
  453. {
  454. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  455. servos[0].attach(SERVO0_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  458. servos[1].attach(SERVO1_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  461. servos[2].attach(SERVO2_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  464. servos[3].attach(SERVO3_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 5)
  467. #error "TODO: enter initalisation code for more servos"
  468. #endif
  469. }
  470. static void lcd_language_menu();
  471. void stop_and_save_print_to_ram(float z_move, float e_move);
  472. void restore_print_from_ram_and_continue(float e_move);
  473. void crashdet_enable()
  474. {
  475. tmc2130_sg_stop_on_crash = true;
  476. }
  477. void crashdet_disable()
  478. {
  479. tmc2130_sg_stop_on_crash = false;
  480. }
  481. void crashdet_stop_and_save_print()
  482. {
  483. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  484. }
  485. void crashdet_restore_print_and_continue()
  486. {
  487. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  488. }
  489. void crashdet_stop_and_save_print2()
  490. {
  491. cli();
  492. planner_abort_hard(); //abort printing
  493. cmdqueue_reset(); //empty cmdqueue
  494. card.sdprinting = false;
  495. card.closefile();
  496. sei();
  497. }
  498. #ifdef PAT9125
  499. void fsensor_stop_and_save_print()
  500. {
  501. // stop_and_save_print_to_ram(10, -0.8); //XY - no change, Z 10mm up, E 0.8mm in
  502. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  503. }
  504. void fsensor_restore_print_and_continue()
  505. {
  506. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  507. }
  508. bool fsensor_enabled = false;
  509. bool fsensor_ignore_error = true;
  510. bool fsensor_M600 = false;
  511. long fsensor_prev_pos_e = 0;
  512. uint8_t fsensor_err_cnt = 0;
  513. #define FSENS_ESTEPS 280 //extruder resolution [steps/mm]
  514. //#define FSENS_MINDEL 560 //filament sensor min delta [steps] (3mm)
  515. #define FSENS_MINDEL 280 //filament sensor min delta [steps] (3mm)
  516. #define FSENS_MINFAC 3 //filament sensor minimum factor [count/mm]
  517. //#define FSENS_MAXFAC 50 //filament sensor maximum factor [count/mm]
  518. #define FSENS_MAXFAC 40 //filament sensor maximum factor [count/mm]
  519. //#define FSENS_MAXERR 2 //filament sensor max error count
  520. #define FSENS_MAXERR 5 //filament sensor max error count
  521. void fsensor_enable()
  522. {
  523. MYSERIAL.println("fsensor_enable");
  524. pat9125_y = 0;
  525. fsensor_prev_pos_e = st_get_position(E_AXIS);
  526. fsensor_err_cnt = 0;
  527. fsensor_enabled = true;
  528. fsensor_ignore_error = true;
  529. fsensor_M600 = false;
  530. }
  531. void fsensor_disable()
  532. {
  533. MYSERIAL.println("fsensor_disable");
  534. fsensor_enabled = false;
  535. }
  536. void fsensor_update()
  537. {
  538. if (!fsensor_enabled) return;
  539. long pos_e = st_get_position(E_AXIS); //current position
  540. pat9125_update();
  541. long del_e = pos_e - fsensor_prev_pos_e; //delta
  542. if (abs(del_e) < FSENS_MINDEL) return;
  543. float de = ((float)del_e / FSENS_ESTEPS);
  544. int cmin = de * FSENS_MINFAC;
  545. int cmax = de * FSENS_MAXFAC;
  546. int cnt = -pat9125_y;
  547. fsensor_prev_pos_e = pos_e;
  548. pat9125_y = 0;
  549. bool err = false;
  550. if ((del_e > 0) && ((cnt < cmin) || (cnt > cmax))) err = true;
  551. if ((del_e < 0) && ((cnt > cmin) || (cnt < cmax))) err = true;
  552. if (err)
  553. fsensor_err_cnt++;
  554. else
  555. fsensor_err_cnt = 0;
  556. /**/
  557. MYSERIAL.print("pos_e=");
  558. MYSERIAL.print(pos_e);
  559. MYSERIAL.print(" de=");
  560. MYSERIAL.print(de);
  561. MYSERIAL.print(" cmin=");
  562. MYSERIAL.print((int)cmin);
  563. MYSERIAL.print(" cmax=");
  564. MYSERIAL.print((int)cmax);
  565. MYSERIAL.print(" cnt=");
  566. MYSERIAL.print((int)cnt);
  567. MYSERIAL.print(" err=");
  568. MYSERIAL.println((int)fsensor_err_cnt);/**/
  569. // return;
  570. if (fsensor_err_cnt > FSENS_MAXERR)
  571. {
  572. MYSERIAL.println("fsensor_update (fsensor_err_cnt > FSENS_MAXERR)");
  573. if (fsensor_ignore_error)
  574. {
  575. MYSERIAL.println("fsensor_update - error ignored)");
  576. fsensor_ignore_error = false;
  577. }
  578. else
  579. {
  580. MYSERIAL.println("fsensor_update - ERROR!!!");
  581. fsensor_stop_and_save_print();
  582. enquecommand_front_P((PSTR("M600")));
  583. fsensor_M600 = true;
  584. fsensor_enabled = false;
  585. }
  586. }
  587. }
  588. #endif //PAT9125
  589. #ifdef MESH_BED_LEVELING
  590. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  591. #endif
  592. // Factory reset function
  593. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  594. // Level input parameter sets depth of reset
  595. // Quiet parameter masks all waitings for user interact.
  596. int er_progress = 0;
  597. void factory_reset(char level, bool quiet)
  598. {
  599. lcd_implementation_clear();
  600. int cursor_pos = 0;
  601. switch (level) {
  602. // Level 0: Language reset
  603. case 0:
  604. WRITE(BEEPER, HIGH);
  605. _delay_ms(100);
  606. WRITE(BEEPER, LOW);
  607. lcd_force_language_selection();
  608. break;
  609. //Level 1: Reset statistics
  610. case 1:
  611. WRITE(BEEPER, HIGH);
  612. _delay_ms(100);
  613. WRITE(BEEPER, LOW);
  614. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  615. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  616. lcd_menu_statistics();
  617. break;
  618. // Level 2: Prepare for shipping
  619. case 2:
  620. //lcd_printPGM(PSTR("Factory RESET"));
  621. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  622. // Force language selection at the next boot up.
  623. lcd_force_language_selection();
  624. // Force the "Follow calibration flow" message at the next boot up.
  625. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  626. farm_no = 0;
  627. farm_mode == false;
  628. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  629. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  630. WRITE(BEEPER, HIGH);
  631. _delay_ms(100);
  632. WRITE(BEEPER, LOW);
  633. //_delay_ms(2000);
  634. break;
  635. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  636. case 3:
  637. lcd_printPGM(PSTR("Factory RESET"));
  638. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  639. WRITE(BEEPER, HIGH);
  640. _delay_ms(100);
  641. WRITE(BEEPER, LOW);
  642. er_progress = 0;
  643. lcd_print_at_PGM(3, 3, PSTR(" "));
  644. lcd_implementation_print_at(3, 3, er_progress);
  645. // Erase EEPROM
  646. for (int i = 0; i < 4096; i++) {
  647. eeprom_write_byte((uint8_t*)i, 0xFF);
  648. if (i % 41 == 0) {
  649. er_progress++;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. lcd_printPGM(PSTR("%"));
  653. }
  654. }
  655. break;
  656. case 4:
  657. bowden_menu();
  658. break;
  659. default:
  660. break;
  661. }
  662. }
  663. // "Setup" function is called by the Arduino framework on startup.
  664. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  665. // are initialized by the main() routine provided by the Arduino framework.
  666. void setup()
  667. {
  668. lcd_init();
  669. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  670. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  671. setup_killpin();
  672. setup_powerhold();
  673. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  674. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  675. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  676. if (farm_no == 0xFFFF) farm_no = 0;
  677. if (farm_mode)
  678. {
  679. prusa_statistics(8);
  680. selectedSerialPort = 1;
  681. }
  682. else
  683. selectedSerialPort = 0;
  684. MYSERIAL.begin(BAUDRATE);
  685. SERIAL_PROTOCOLLNPGM("start");
  686. SERIAL_ECHO_START;
  687. #if 0
  688. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  689. for (int i = 0; i < 4096; ++i) {
  690. int b = eeprom_read_byte((unsigned char*)i);
  691. if (b != 255) {
  692. SERIAL_ECHO(i);
  693. SERIAL_ECHO(":");
  694. SERIAL_ECHO(b);
  695. SERIAL_ECHOLN("");
  696. }
  697. }
  698. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  699. #endif
  700. // Check startup - does nothing if bootloader sets MCUSR to 0
  701. byte mcu = MCUSR;
  702. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  703. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  704. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  705. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  706. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  707. MCUSR = 0;
  708. //SERIAL_ECHORPGM(MSG_MARLIN);
  709. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  710. #ifdef STRING_VERSION_CONFIG_H
  711. #ifdef STRING_CONFIG_H_AUTHOR
  712. SERIAL_ECHO_START;
  713. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  714. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  715. SERIAL_ECHORPGM(MSG_AUTHOR);
  716. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  717. SERIAL_ECHOPGM("Compiled: ");
  718. SERIAL_ECHOLNPGM(__DATE__);
  719. #endif
  720. #endif
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  723. SERIAL_ECHO(freeMemory());
  724. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  725. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  726. //lcd_update_enable(false); // why do we need this?? - andre
  727. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  728. Config_RetrieveSettings(EEPROM_OFFSET);
  729. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  730. tp_init(); // Initialize temperature loop
  731. plan_init(); // Initialize planner;
  732. watchdog_init();
  733. #ifdef TMC2130
  734. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  735. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  736. #endif //TMC2130
  737. #ifdef PAT9125
  738. MYSERIAL.print("PAT9125_init:");
  739. MYSERIAL.println(pat9125_init(200, 200));
  740. #endif //PAT9125
  741. st_init(); // Initialize stepper, this enables interrupts!
  742. setup_photpin();
  743. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  744. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  745. servo_init();
  746. // Reset the machine correction matrix.
  747. // It does not make sense to load the correction matrix until the machine is homed.
  748. world2machine_reset();
  749. if (!READ(BTN_ENC))
  750. {
  751. _delay_ms(1000);
  752. if (!READ(BTN_ENC))
  753. {
  754. lcd_implementation_clear();
  755. lcd_printPGM(PSTR("Factory RESET"));
  756. SET_OUTPUT(BEEPER);
  757. WRITE(BEEPER, HIGH);
  758. while (!READ(BTN_ENC));
  759. WRITE(BEEPER, LOW);
  760. _delay_ms(2000);
  761. char level = reset_menu();
  762. factory_reset(level, false);
  763. switch (level) {
  764. case 0: _delay_ms(0); break;
  765. case 1: _delay_ms(0); break;
  766. case 2: _delay_ms(0); break;
  767. case 3: _delay_ms(0); break;
  768. }
  769. // _delay_ms(100);
  770. /*
  771. #ifdef MESH_BED_LEVELING
  772. _delay_ms(2000);
  773. if (!READ(BTN_ENC))
  774. {
  775. WRITE(BEEPER, HIGH);
  776. _delay_ms(100);
  777. WRITE(BEEPER, LOW);
  778. _delay_ms(200);
  779. WRITE(BEEPER, HIGH);
  780. _delay_ms(100);
  781. WRITE(BEEPER, LOW);
  782. int _z = 0;
  783. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  784. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  785. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  786. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  787. }
  788. else
  789. {
  790. WRITE(BEEPER, HIGH);
  791. _delay_ms(100);
  792. WRITE(BEEPER, LOW);
  793. }
  794. #endif // mesh */
  795. }
  796. }
  797. else
  798. {
  799. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  800. }
  801. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  802. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  803. #endif
  804. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  805. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  806. #endif
  807. #ifdef DIGIPOT_I2C
  808. digipot_i2c_init();
  809. #endif
  810. setup_homepin();
  811. if (1) {
  812. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  813. // try to run to zero phase before powering the Z motor.
  814. // Move in negative direction
  815. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  816. // Round the current micro-micro steps to micro steps.
  817. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  818. // Until the phase counter is reset to zero.
  819. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  820. delay(2);
  821. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  822. delay(2);
  823. }
  824. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  825. }
  826. #if defined(Z_AXIS_ALWAYS_ON)
  827. enable_z();
  828. #endif
  829. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  830. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  831. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  832. if (farm_no == 0xFFFF) farm_no = 0;
  833. if (farm_mode)
  834. {
  835. prusa_statistics(8);
  836. }
  837. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  838. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  839. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  840. // but this times out if a blocking dialog is shown in setup().
  841. card.initsd();
  842. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  843. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  844. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  845. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  846. // where all the EEPROM entries are set to 0x0ff.
  847. // Once a firmware boots up, it forces at least a language selection, which changes
  848. // EEPROM_LANG to number lower than 0x0ff.
  849. // 1) Set a high power mode.
  850. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  851. }
  852. #ifdef SNMM
  853. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  854. int _z = BOWDEN_LENGTH;
  855. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  856. }
  857. #endif
  858. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  859. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  860. // is being written into the EEPROM, so the update procedure will be triggered only once.
  861. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  862. if (lang_selected >= LANG_NUM){
  863. lcd_mylang();
  864. }
  865. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  866. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  867. temp_cal_active = false;
  868. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  869. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  870. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  871. }
  872. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  873. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  874. }
  875. #ifndef DEBUG_DISABLE_STARTMSGS
  876. check_babystep(); //checking if Z babystep is in allowed range
  877. setup_uvlo_interrupt();
  878. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  879. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  880. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  881. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  882. // Show the message.
  883. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  884. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  885. // Show the message.
  886. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  887. lcd_update_enable(true);
  888. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  889. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  890. lcd_update_enable(true);
  891. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  892. // Show the message.
  893. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  894. }
  895. #endif //DEBUG_DISABLE_STARTMSGS
  896. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  897. lcd_update_enable(true);
  898. lcd_implementation_clear();
  899. lcd_update(2);
  900. // Store the currently running firmware into an eeprom,
  901. // so the next time the firmware gets updated, it will know from which version it has been updated.
  902. update_current_firmware_version_to_eeprom();
  903. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  904. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  905. else {
  906. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  907. lcd_update_enable(true);
  908. lcd_update(2);
  909. lcd_setstatuspgm(WELCOME_MSG);
  910. }
  911. }
  912. }
  913. void trace();
  914. #define CHUNK_SIZE 64 // bytes
  915. #define SAFETY_MARGIN 1
  916. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  917. int chunkHead = 0;
  918. int serial_read_stream() {
  919. setTargetHotend(0, 0);
  920. setTargetBed(0);
  921. lcd_implementation_clear();
  922. lcd_printPGM(PSTR(" Upload in progress"));
  923. // first wait for how many bytes we will receive
  924. uint32_t bytesToReceive;
  925. // receive the four bytes
  926. char bytesToReceiveBuffer[4];
  927. for (int i=0; i<4; i++) {
  928. int data;
  929. while ((data = MYSERIAL.read()) == -1) {};
  930. bytesToReceiveBuffer[i] = data;
  931. }
  932. // make it a uint32
  933. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  934. // we're ready, notify the sender
  935. MYSERIAL.write('+');
  936. // lock in the routine
  937. uint32_t receivedBytes = 0;
  938. while (prusa_sd_card_upload) {
  939. int i;
  940. for (i=0; i<CHUNK_SIZE; i++) {
  941. int data;
  942. // check if we're not done
  943. if (receivedBytes == bytesToReceive) {
  944. break;
  945. }
  946. // read the next byte
  947. while ((data = MYSERIAL.read()) == -1) {};
  948. receivedBytes++;
  949. // save it to the chunk
  950. chunk[i] = data;
  951. }
  952. // write the chunk to SD
  953. card.write_command_no_newline(&chunk[0]);
  954. // notify the sender we're ready for more data
  955. MYSERIAL.write('+');
  956. // for safety
  957. manage_heater();
  958. // check if we're done
  959. if(receivedBytes == bytesToReceive) {
  960. trace(); // beep
  961. card.closefile();
  962. prusa_sd_card_upload = false;
  963. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  964. return 0;
  965. }
  966. }
  967. }
  968. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  969. // Before loop(), the setup() function is called by the main() routine.
  970. void loop()
  971. {
  972. bool stack_integrity = true;
  973. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  974. {
  975. is_usb_printing = true;
  976. usb_printing_counter--;
  977. _usb_timer = millis();
  978. }
  979. if (usb_printing_counter == 0)
  980. {
  981. is_usb_printing = false;
  982. }
  983. if (prusa_sd_card_upload)
  984. {
  985. //we read byte-by byte
  986. serial_read_stream();
  987. } else
  988. {
  989. get_command();
  990. #ifdef SDSUPPORT
  991. card.checkautostart(false);
  992. #endif
  993. if(buflen)
  994. {
  995. cmdbuffer_front_already_processed = false;
  996. #ifdef SDSUPPORT
  997. if(card.saving)
  998. {
  999. // Saving a G-code file onto an SD-card is in progress.
  1000. // Saving starts with M28, saving until M29 is seen.
  1001. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1002. card.write_command(CMDBUFFER_CURRENT_STRING);
  1003. if(card.logging)
  1004. process_commands();
  1005. else
  1006. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1007. } else {
  1008. card.closefile();
  1009. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1010. }
  1011. } else {
  1012. process_commands();
  1013. }
  1014. #else
  1015. process_commands();
  1016. #endif //SDSUPPORT
  1017. if (! cmdbuffer_front_already_processed && buflen)
  1018. {
  1019. cli();
  1020. union {
  1021. struct {
  1022. char lo;
  1023. char hi;
  1024. } lohi;
  1025. uint16_t value;
  1026. } sdlen;
  1027. sdlen.value = 0;
  1028. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1029. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1030. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1031. }
  1032. cmdqueue_pop_front();
  1033. planner_add_sd_length(sdlen.value);
  1034. sei();
  1035. }
  1036. }
  1037. }
  1038. //check heater every n milliseconds
  1039. manage_heater();
  1040. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1041. checkHitEndstops();
  1042. lcd_update();
  1043. #ifdef PAT9125
  1044. fsensor_update();
  1045. #endif //PAT9125
  1046. #ifdef TMC2130
  1047. tmc2130_check_overtemp();
  1048. if (tmc2130_sg_crash)
  1049. {
  1050. tmc2130_sg_crash = false;
  1051. // crashdet_stop_and_save_print();
  1052. enquecommand_P((PSTR("D999")));
  1053. }
  1054. #endif //TMC2130
  1055. }
  1056. #define DEFINE_PGM_READ_ANY(type, reader) \
  1057. static inline type pgm_read_any(const type *p) \
  1058. { return pgm_read_##reader##_near(p); }
  1059. DEFINE_PGM_READ_ANY(float, float);
  1060. DEFINE_PGM_READ_ANY(signed char, byte);
  1061. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1062. static const PROGMEM type array##_P[3] = \
  1063. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1064. static inline type array(int axis) \
  1065. { return pgm_read_any(&array##_P[axis]); } \
  1066. type array##_ext(int axis) \
  1067. { return pgm_read_any(&array##_P[axis]); }
  1068. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1069. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1070. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1071. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1072. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1073. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1074. static void axis_is_at_home(int axis) {
  1075. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1076. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1077. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1078. }
  1079. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1080. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1081. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1082. saved_feedrate = feedrate;
  1083. saved_feedmultiply = feedmultiply;
  1084. feedmultiply = 100;
  1085. previous_millis_cmd = millis();
  1086. enable_endstops(enable_endstops_now);
  1087. }
  1088. static void clean_up_after_endstop_move() {
  1089. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1090. enable_endstops(false);
  1091. #endif
  1092. feedrate = saved_feedrate;
  1093. feedmultiply = saved_feedmultiply;
  1094. previous_millis_cmd = millis();
  1095. }
  1096. #ifdef ENABLE_AUTO_BED_LEVELING
  1097. #ifdef AUTO_BED_LEVELING_GRID
  1098. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1099. {
  1100. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1101. planeNormal.debug("planeNormal");
  1102. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1103. //bedLevel.debug("bedLevel");
  1104. //plan_bed_level_matrix.debug("bed level before");
  1105. //vector_3 uncorrected_position = plan_get_position_mm();
  1106. //uncorrected_position.debug("position before");
  1107. vector_3 corrected_position = plan_get_position();
  1108. // corrected_position.debug("position after");
  1109. current_position[X_AXIS] = corrected_position.x;
  1110. current_position[Y_AXIS] = corrected_position.y;
  1111. current_position[Z_AXIS] = corrected_position.z;
  1112. // put the bed at 0 so we don't go below it.
  1113. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1115. }
  1116. #else // not AUTO_BED_LEVELING_GRID
  1117. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1118. plan_bed_level_matrix.set_to_identity();
  1119. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1120. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1121. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1122. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1123. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1124. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1125. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1126. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1127. vector_3 corrected_position = plan_get_position();
  1128. current_position[X_AXIS] = corrected_position.x;
  1129. current_position[Y_AXIS] = corrected_position.y;
  1130. current_position[Z_AXIS] = corrected_position.z;
  1131. // put the bed at 0 so we don't go below it.
  1132. current_position[Z_AXIS] = zprobe_zoffset;
  1133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1134. }
  1135. #endif // AUTO_BED_LEVELING_GRID
  1136. static void run_z_probe() {
  1137. plan_bed_level_matrix.set_to_identity();
  1138. feedrate = homing_feedrate[Z_AXIS];
  1139. // move down until you find the bed
  1140. float zPosition = -10;
  1141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1142. st_synchronize();
  1143. // we have to let the planner know where we are right now as it is not where we said to go.
  1144. zPosition = st_get_position_mm(Z_AXIS);
  1145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1146. // move up the retract distance
  1147. zPosition += home_retract_mm(Z_AXIS);
  1148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1149. st_synchronize();
  1150. // move back down slowly to find bed
  1151. feedrate = homing_feedrate[Z_AXIS]/4;
  1152. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1154. st_synchronize();
  1155. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1156. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1158. }
  1159. static void do_blocking_move_to(float x, float y, float z) {
  1160. float oldFeedRate = feedrate;
  1161. feedrate = homing_feedrate[Z_AXIS];
  1162. current_position[Z_AXIS] = z;
  1163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1164. st_synchronize();
  1165. feedrate = XY_TRAVEL_SPEED;
  1166. current_position[X_AXIS] = x;
  1167. current_position[Y_AXIS] = y;
  1168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1169. st_synchronize();
  1170. feedrate = oldFeedRate;
  1171. }
  1172. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1173. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1174. }
  1175. /// Probe bed height at position (x,y), returns the measured z value
  1176. static float probe_pt(float x, float y, float z_before) {
  1177. // move to right place
  1178. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1179. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1180. run_z_probe();
  1181. float measured_z = current_position[Z_AXIS];
  1182. SERIAL_PROTOCOLRPGM(MSG_BED);
  1183. SERIAL_PROTOCOLPGM(" x: ");
  1184. SERIAL_PROTOCOL(x);
  1185. SERIAL_PROTOCOLPGM(" y: ");
  1186. SERIAL_PROTOCOL(y);
  1187. SERIAL_PROTOCOLPGM(" z: ");
  1188. SERIAL_PROTOCOL(measured_z);
  1189. SERIAL_PROTOCOLPGM("\n");
  1190. return measured_z;
  1191. }
  1192. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1193. #ifdef LIN_ADVANCE
  1194. /**
  1195. * M900: Set and/or Get advance K factor and WH/D ratio
  1196. *
  1197. * K<factor> Set advance K factor
  1198. * R<ratio> Set ratio directly (overrides WH/D)
  1199. * W<width> H<height> D<diam> Set ratio from WH/D
  1200. */
  1201. inline void gcode_M900() {
  1202. st_synchronize();
  1203. const float newK = code_seen('K') ? code_value_float() : -1;
  1204. if (newK >= 0) extruder_advance_k = newK;
  1205. float newR = code_seen('R') ? code_value_float() : -1;
  1206. if (newR < 0) {
  1207. const float newD = code_seen('D') ? code_value_float() : -1,
  1208. newW = code_seen('W') ? code_value_float() : -1,
  1209. newH = code_seen('H') ? code_value_float() : -1;
  1210. if (newD >= 0 && newW >= 0 && newH >= 0)
  1211. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1212. }
  1213. if (newR >= 0) advance_ed_ratio = newR;
  1214. SERIAL_ECHO_START;
  1215. SERIAL_ECHOPGM("Advance K=");
  1216. SERIAL_ECHOLN(extruder_advance_k);
  1217. SERIAL_ECHOPGM(" E/D=");
  1218. const float ratio = advance_ed_ratio;
  1219. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1220. }
  1221. #endif // LIN_ADVANCE
  1222. #ifdef TMC2130
  1223. bool calibrate_z_auto()
  1224. {
  1225. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1226. bool endstops_enabled = enable_endstops(true);
  1227. int axis_up_dir = -home_dir(Z_AXIS);
  1228. tmc2130_home_enter(Z_AXIS_MASK);
  1229. current_position[Z_AXIS] = 0;
  1230. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1231. set_destination_to_current();
  1232. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1233. feedrate = homing_feedrate[Z_AXIS];
  1234. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1235. tmc2130_home_restart(Z_AXIS);
  1236. st_synchronize();
  1237. // current_position[axis] = 0;
  1238. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1239. tmc2130_home_exit();
  1240. enable_endstops(false);
  1241. current_position[Z_AXIS] = 0;
  1242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1243. set_destination_to_current();
  1244. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1245. feedrate = homing_feedrate[Z_AXIS] / 2;
  1246. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1247. st_synchronize();
  1248. enable_endstops(endstops_enabled);
  1249. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. return true;
  1252. }
  1253. #endif //TMC2130
  1254. void homeaxis(int axis)
  1255. {
  1256. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1257. #define HOMEAXIS_DO(LETTER) \
  1258. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1259. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1260. {
  1261. int axis_home_dir = home_dir(axis);
  1262. feedrate = homing_feedrate[axis];
  1263. #ifdef TMC2130
  1264. tmc2130_home_enter(X_AXIS_MASK << axis);
  1265. #endif
  1266. // Move right a bit, so that the print head does not touch the left end position,
  1267. // and the following left movement has a chance to achieve the required velocity
  1268. // for the stall guard to work.
  1269. current_position[axis] = 0;
  1270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1271. // destination[axis] = 11.f;
  1272. destination[axis] = 3.f;
  1273. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1274. st_synchronize();
  1275. // Move left away from the possible collision with the collision detection disabled.
  1276. endstops_hit_on_purpose();
  1277. enable_endstops(false);
  1278. current_position[axis] = 0;
  1279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1280. destination[axis] = - 1.;
  1281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1282. st_synchronize();
  1283. // Now continue to move up to the left end stop with the collision detection enabled.
  1284. enable_endstops(true);
  1285. destination[axis] = - 1.1 * max_length(axis);
  1286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1287. st_synchronize();
  1288. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1289. endstops_hit_on_purpose();
  1290. enable_endstops(false);
  1291. current_position[axis] = 0;
  1292. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1293. destination[axis] = 10.f;
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. endstops_hit_on_purpose();
  1297. // Now move left up to the collision, this time with a repeatable velocity.
  1298. enable_endstops(true);
  1299. destination[axis] = - 15.f;
  1300. feedrate = homing_feedrate[axis]/2;
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. axis_is_at_home(axis);
  1304. axis_known_position[axis] = true;
  1305. #ifdef TMC2130
  1306. tmc2130_home_exit();
  1307. #endif
  1308. // Move the X carriage away from the collision.
  1309. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1310. endstops_hit_on_purpose();
  1311. enable_endstops(false);
  1312. {
  1313. // Two full periods (4 full steps).
  1314. float gap = 0.32f * 2.f;
  1315. current_position[axis] -= gap;
  1316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1317. current_position[axis] += gap;
  1318. }
  1319. destination[axis] = current_position[axis];
  1320. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1321. st_synchronize();
  1322. feedrate = 0.0;
  1323. }
  1324. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1325. {
  1326. int axis_home_dir = home_dir(axis);
  1327. current_position[axis] = 0;
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1330. feedrate = homing_feedrate[axis];
  1331. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1332. st_synchronize();
  1333. current_position[axis] = 0;
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1339. feedrate = homing_feedrate[axis]/2 ;
  1340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1341. st_synchronize();
  1342. axis_is_at_home(axis);
  1343. destination[axis] = current_position[axis];
  1344. feedrate = 0.0;
  1345. endstops_hit_on_purpose();
  1346. axis_known_position[axis] = true;
  1347. }
  1348. enable_endstops(endstops_enabled);
  1349. }
  1350. /**/
  1351. void home_xy()
  1352. {
  1353. set_destination_to_current();
  1354. homeaxis(X_AXIS);
  1355. homeaxis(Y_AXIS);
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. endstops_hit_on_purpose();
  1358. }
  1359. void refresh_cmd_timeout(void)
  1360. {
  1361. previous_millis_cmd = millis();
  1362. }
  1363. #ifdef FWRETRACT
  1364. void retract(bool retracting, bool swapretract = false) {
  1365. if(retracting && !retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. if (swapretract) {
  1371. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1372. } else {
  1373. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1374. }
  1375. plan_set_e_position(current_position[E_AXIS]);
  1376. float oldFeedrate = feedrate;
  1377. feedrate=retract_feedrate*60;
  1378. retracted[active_extruder]=true;
  1379. prepare_move();
  1380. current_position[Z_AXIS]-=retract_zlift;
  1381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. } else if(!retracting && retracted[active_extruder]) {
  1385. destination[X_AXIS]=current_position[X_AXIS];
  1386. destination[Y_AXIS]=current_position[Y_AXIS];
  1387. destination[Z_AXIS]=current_position[Z_AXIS];
  1388. destination[E_AXIS]=current_position[E_AXIS];
  1389. current_position[Z_AXIS]+=retract_zlift;
  1390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1391. //prepare_move();
  1392. if (swapretract) {
  1393. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1394. } else {
  1395. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1396. }
  1397. plan_set_e_position(current_position[E_AXIS]);
  1398. float oldFeedrate = feedrate;
  1399. feedrate=retract_recover_feedrate*60;
  1400. retracted[active_extruder]=false;
  1401. prepare_move();
  1402. feedrate = oldFeedrate;
  1403. }
  1404. } //retract
  1405. #endif //FWRETRACT
  1406. void trace() {
  1407. tone(BEEPER, 440);
  1408. delay(25);
  1409. noTone(BEEPER);
  1410. delay(20);
  1411. }
  1412. /*
  1413. void ramming() {
  1414. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1415. if (current_temperature[0] < 230) {
  1416. //PLA
  1417. max_feedrate[E_AXIS] = 50;
  1418. //current_position[E_AXIS] -= 8;
  1419. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1420. //current_position[E_AXIS] += 8;
  1421. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1422. current_position[E_AXIS] += 5.4;
  1423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1424. current_position[E_AXIS] += 3.2;
  1425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1426. current_position[E_AXIS] += 3;
  1427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1428. st_synchronize();
  1429. max_feedrate[E_AXIS] = 80;
  1430. current_position[E_AXIS] -= 82;
  1431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1432. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1433. current_position[E_AXIS] -= 20;
  1434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1435. current_position[E_AXIS] += 5;
  1436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1437. current_position[E_AXIS] += 5;
  1438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1439. current_position[E_AXIS] -= 10;
  1440. st_synchronize();
  1441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1442. current_position[E_AXIS] += 10;
  1443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1444. current_position[E_AXIS] -= 10;
  1445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1446. current_position[E_AXIS] += 10;
  1447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1448. current_position[E_AXIS] -= 10;
  1449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1450. st_synchronize();
  1451. }
  1452. else {
  1453. //ABS
  1454. max_feedrate[E_AXIS] = 50;
  1455. //current_position[E_AXIS] -= 8;
  1456. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1457. //current_position[E_AXIS] += 8;
  1458. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1459. current_position[E_AXIS] += 3.1;
  1460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1461. current_position[E_AXIS] += 3.1;
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1463. current_position[E_AXIS] += 4;
  1464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1465. st_synchronize();
  1466. //current_position[X_AXIS] += 23; //delay
  1467. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1468. //current_position[X_AXIS] -= 23; //delay
  1469. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1470. delay(4700);
  1471. max_feedrate[E_AXIS] = 80;
  1472. current_position[E_AXIS] -= 92;
  1473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1474. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1475. current_position[E_AXIS] -= 5;
  1476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1477. current_position[E_AXIS] += 5;
  1478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1479. current_position[E_AXIS] -= 5;
  1480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1481. st_synchronize();
  1482. current_position[E_AXIS] += 5;
  1483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1484. current_position[E_AXIS] -= 5;
  1485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1486. current_position[E_AXIS] += 5;
  1487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1488. current_position[E_AXIS] -= 5;
  1489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1490. st_synchronize();
  1491. }
  1492. }
  1493. */
  1494. void process_commands()
  1495. {
  1496. #ifdef FILAMENT_RUNOUT_SUPPORT
  1497. SET_INPUT(FR_SENS);
  1498. #endif
  1499. #ifdef CMDBUFFER_DEBUG
  1500. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1501. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1502. SERIAL_ECHOLNPGM("");
  1503. SERIAL_ECHOPGM("In cmdqueue: ");
  1504. SERIAL_ECHO(buflen);
  1505. SERIAL_ECHOLNPGM("");
  1506. #endif /* CMDBUFFER_DEBUG */
  1507. unsigned long codenum; //throw away variable
  1508. char *starpos = NULL;
  1509. #ifdef ENABLE_AUTO_BED_LEVELING
  1510. float x_tmp, y_tmp, z_tmp, real_z;
  1511. #endif
  1512. // PRUSA GCODES
  1513. #ifdef SNMM
  1514. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1515. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1516. int8_t SilentMode;
  1517. #endif
  1518. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1519. starpos = (strchr(strchr_pointer + 5, '*'));
  1520. if (starpos != NULL)
  1521. *(starpos) = '\0';
  1522. lcd_setstatus(strchr_pointer + 5);
  1523. }
  1524. else if(code_seen("PRUSA")){
  1525. if (code_seen("Ping")) { //PRUSA Ping
  1526. if (farm_mode) {
  1527. PingTime = millis();
  1528. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1529. }
  1530. }
  1531. else if (code_seen("PRN")) {
  1532. MYSERIAL.println(status_number);
  1533. }else if (code_seen("fn")) {
  1534. if (farm_mode) {
  1535. MYSERIAL.println(farm_no);
  1536. }
  1537. else {
  1538. MYSERIAL.println("Not in farm mode.");
  1539. }
  1540. }else if (code_seen("fv")) {
  1541. // get file version
  1542. #ifdef SDSUPPORT
  1543. card.openFile(strchr_pointer + 3,true);
  1544. while (true) {
  1545. uint16_t readByte = card.get();
  1546. MYSERIAL.write(readByte);
  1547. if (readByte=='\n') {
  1548. break;
  1549. }
  1550. }
  1551. card.closefile();
  1552. #endif // SDSUPPORT
  1553. } else if (code_seen("M28")) {
  1554. trace();
  1555. prusa_sd_card_upload = true;
  1556. card.openFile(strchr_pointer+4,false);
  1557. } else if (code_seen("SN")) {
  1558. if (farm_mode) {
  1559. selectedSerialPort = 0;
  1560. MSerial.write(";S");
  1561. // S/N is:CZPX0917X003XC13518
  1562. int numbersRead = 0;
  1563. while (numbersRead < 19) {
  1564. while (MSerial.available() > 0) {
  1565. uint8_t serial_char = MSerial.read();
  1566. selectedSerialPort = 1;
  1567. MSerial.write(serial_char);
  1568. numbersRead++;
  1569. selectedSerialPort = 0;
  1570. }
  1571. }
  1572. selectedSerialPort = 1;
  1573. MSerial.write('\n');
  1574. /*for (int b = 0; b < 3; b++) {
  1575. tone(BEEPER, 110);
  1576. delay(50);
  1577. noTone(BEEPER);
  1578. delay(50);
  1579. }*/
  1580. } else {
  1581. MYSERIAL.println("Not in farm mode.");
  1582. }
  1583. } else if(code_seen("Fir")){
  1584. SERIAL_PROTOCOLLN(FW_version);
  1585. } else if(code_seen("Rev")){
  1586. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1587. } else if(code_seen("Lang")) {
  1588. lcd_force_language_selection();
  1589. } else if(code_seen("Lz")) {
  1590. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1591. } else if (code_seen("SERIAL LOW")) {
  1592. MYSERIAL.println("SERIAL LOW");
  1593. MYSERIAL.begin(BAUDRATE);
  1594. return;
  1595. } else if (code_seen("SERIAL HIGH")) {
  1596. MYSERIAL.println("SERIAL HIGH");
  1597. MYSERIAL.begin(1152000);
  1598. return;
  1599. } else if(code_seen("Beat")) {
  1600. // Kick farm link timer
  1601. kicktime = millis();
  1602. } else if(code_seen("FR")) {
  1603. // Factory full reset
  1604. factory_reset(0,true);
  1605. }
  1606. //else if (code_seen('Cal')) {
  1607. // lcd_calibration();
  1608. // }
  1609. }
  1610. else if (code_seen('^')) {
  1611. // nothing, this is a version line
  1612. } else if(code_seen('G'))
  1613. {
  1614. switch((int)code_value())
  1615. {
  1616. case 0: // G0 -> G1
  1617. case 1: // G1
  1618. if(Stopped == false) {
  1619. #ifdef FILAMENT_RUNOUT_SUPPORT
  1620. if(READ(FR_SENS)){
  1621. feedmultiplyBckp=feedmultiply;
  1622. float target[4];
  1623. float lastpos[4];
  1624. target[X_AXIS]=current_position[X_AXIS];
  1625. target[Y_AXIS]=current_position[Y_AXIS];
  1626. target[Z_AXIS]=current_position[Z_AXIS];
  1627. target[E_AXIS]=current_position[E_AXIS];
  1628. lastpos[X_AXIS]=current_position[X_AXIS];
  1629. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1630. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1631. lastpos[E_AXIS]=current_position[E_AXIS];
  1632. //retract by E
  1633. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1635. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1636. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1637. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1638. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1639. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1640. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1642. //finish moves
  1643. st_synchronize();
  1644. //disable extruder steppers so filament can be removed
  1645. disable_e0();
  1646. disable_e1();
  1647. disable_e2();
  1648. delay(100);
  1649. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1650. uint8_t cnt=0;
  1651. int counterBeep = 0;
  1652. lcd_wait_interact();
  1653. while(!lcd_clicked()){
  1654. cnt++;
  1655. manage_heater();
  1656. manage_inactivity(true);
  1657. //lcd_update();
  1658. if(cnt==0)
  1659. {
  1660. #if BEEPER > 0
  1661. if (counterBeep== 500){
  1662. counterBeep = 0;
  1663. }
  1664. SET_OUTPUT(BEEPER);
  1665. if (counterBeep== 0){
  1666. WRITE(BEEPER,HIGH);
  1667. }
  1668. if (counterBeep== 20){
  1669. WRITE(BEEPER,LOW);
  1670. }
  1671. counterBeep++;
  1672. #else
  1673. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1674. lcd_buzz(1000/6,100);
  1675. #else
  1676. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1677. #endif
  1678. #endif
  1679. }
  1680. }
  1681. WRITE(BEEPER,LOW);
  1682. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1684. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1686. lcd_change_fil_state = 0;
  1687. lcd_loading_filament();
  1688. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1689. lcd_change_fil_state = 0;
  1690. lcd_alright();
  1691. switch(lcd_change_fil_state){
  1692. case 2:
  1693. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1695. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1697. lcd_loading_filament();
  1698. break;
  1699. case 3:
  1700. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1702. lcd_loading_color();
  1703. break;
  1704. default:
  1705. lcd_change_success();
  1706. break;
  1707. }
  1708. }
  1709. target[E_AXIS]+= 5;
  1710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1711. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1713. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1714. //plan_set_e_position(current_position[E_AXIS]);
  1715. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1716. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1717. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1718. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1719. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1720. plan_set_e_position(lastpos[E_AXIS]);
  1721. feedmultiply=feedmultiplyBckp;
  1722. char cmd[9];
  1723. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1724. enquecommand(cmd);
  1725. }
  1726. #endif
  1727. get_coordinates(); // For X Y Z E F
  1728. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1729. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1730. }
  1731. #ifdef FWRETRACT
  1732. if(autoretract_enabled)
  1733. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1734. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1735. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1736. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1737. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1738. retract(!retracted);
  1739. return;
  1740. }
  1741. }
  1742. #endif //FWRETRACT
  1743. prepare_move();
  1744. //ClearToSend();
  1745. }
  1746. break;
  1747. case 2: // G2 - CW ARC
  1748. if(Stopped == false) {
  1749. get_arc_coordinates();
  1750. prepare_arc_move(true);
  1751. }
  1752. break;
  1753. case 3: // G3 - CCW ARC
  1754. if(Stopped == false) {
  1755. get_arc_coordinates();
  1756. prepare_arc_move(false);
  1757. }
  1758. break;
  1759. case 4: // G4 dwell
  1760. codenum = 0;
  1761. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1762. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1763. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1764. st_synchronize();
  1765. codenum += millis(); // keep track of when we started waiting
  1766. previous_millis_cmd = millis();
  1767. while(millis() < codenum) {
  1768. manage_heater();
  1769. manage_inactivity();
  1770. lcd_update();
  1771. }
  1772. break;
  1773. #ifdef FWRETRACT
  1774. case 10: // G10 retract
  1775. #if EXTRUDERS > 1
  1776. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1777. retract(true,retracted_swap[active_extruder]);
  1778. #else
  1779. retract(true);
  1780. #endif
  1781. break;
  1782. case 11: // G11 retract_recover
  1783. #if EXTRUDERS > 1
  1784. retract(false,retracted_swap[active_extruder]);
  1785. #else
  1786. retract(false);
  1787. #endif
  1788. break;
  1789. #endif //FWRETRACT
  1790. case 28: //G28 Home all Axis one at a time
  1791. {
  1792. st_synchronize();
  1793. #if 1
  1794. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1795. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1796. #endif
  1797. // Flag for the display update routine and to disable the print cancelation during homing.
  1798. homing_flag = true;
  1799. // Which axes should be homed?
  1800. bool home_x = code_seen(axis_codes[X_AXIS]);
  1801. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1802. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1803. // Either all X,Y,Z codes are present, or none of them.
  1804. bool home_all_axes = home_x == home_y && home_x == home_z;
  1805. if (home_all_axes)
  1806. // No X/Y/Z code provided means to home all axes.
  1807. home_x = home_y = home_z = true;
  1808. #ifdef ENABLE_AUTO_BED_LEVELING
  1809. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1810. #endif //ENABLE_AUTO_BED_LEVELING
  1811. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1812. // the planner will not perform any adjustments in the XY plane.
  1813. // Wait for the motors to stop and update the current position with the absolute values.
  1814. world2machine_revert_to_uncorrected();
  1815. // For mesh bed leveling deactivate the matrix temporarily.
  1816. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1817. // in a single axis only.
  1818. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1819. #ifdef MESH_BED_LEVELING
  1820. uint8_t mbl_was_active = mbl.active;
  1821. mbl.active = 0;
  1822. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1823. #endif
  1824. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1825. // consumed during the first movements following this statement.
  1826. if (home_z)
  1827. babystep_undo();
  1828. saved_feedrate = feedrate;
  1829. saved_feedmultiply = feedmultiply;
  1830. feedmultiply = 100;
  1831. previous_millis_cmd = millis();
  1832. enable_endstops(true);
  1833. memcpy(destination, current_position, sizeof(destination));
  1834. feedrate = 0.0;
  1835. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1836. if(home_z)
  1837. homeaxis(Z_AXIS);
  1838. #endif
  1839. #ifdef QUICK_HOME
  1840. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1841. if(home_x && home_y) //first diagonal move
  1842. {
  1843. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1844. int x_axis_home_dir = home_dir(X_AXIS);
  1845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1846. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1847. feedrate = homing_feedrate[X_AXIS];
  1848. if(homing_feedrate[Y_AXIS]<feedrate)
  1849. feedrate = homing_feedrate[Y_AXIS];
  1850. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1851. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1852. } else {
  1853. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1854. }
  1855. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1856. st_synchronize();
  1857. axis_is_at_home(X_AXIS);
  1858. axis_is_at_home(Y_AXIS);
  1859. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1860. destination[X_AXIS] = current_position[X_AXIS];
  1861. destination[Y_AXIS] = current_position[Y_AXIS];
  1862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1863. feedrate = 0.0;
  1864. st_synchronize();
  1865. endstops_hit_on_purpose();
  1866. current_position[X_AXIS] = destination[X_AXIS];
  1867. current_position[Y_AXIS] = destination[Y_AXIS];
  1868. current_position[Z_AXIS] = destination[Z_AXIS];
  1869. }
  1870. #endif /* QUICK_HOME */
  1871. if(home_x)
  1872. homeaxis(X_AXIS);
  1873. if(home_y)
  1874. homeaxis(Y_AXIS);
  1875. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1876. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1877. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1878. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1879. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1880. #ifndef Z_SAFE_HOMING
  1881. if(home_z) {
  1882. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1883. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1884. feedrate = max_feedrate[Z_AXIS];
  1885. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1886. st_synchronize();
  1887. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1888. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1889. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1890. {
  1891. homeaxis(X_AXIS);
  1892. homeaxis(Y_AXIS);
  1893. }
  1894. // 1st mesh bed leveling measurement point, corrected.
  1895. world2machine_initialize();
  1896. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1897. world2machine_reset();
  1898. if (destination[Y_AXIS] < Y_MIN_POS)
  1899. destination[Y_AXIS] = Y_MIN_POS;
  1900. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1901. feedrate = homing_feedrate[Z_AXIS]/10;
  1902. current_position[Z_AXIS] = 0;
  1903. enable_endstops(false);
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1906. st_synchronize();
  1907. current_position[X_AXIS] = destination[X_AXIS];
  1908. current_position[Y_AXIS] = destination[Y_AXIS];
  1909. enable_endstops(true);
  1910. endstops_hit_on_purpose();
  1911. homeaxis(Z_AXIS);
  1912. #else // MESH_BED_LEVELING
  1913. homeaxis(Z_AXIS);
  1914. #endif // MESH_BED_LEVELING
  1915. }
  1916. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1917. if(home_all_axes) {
  1918. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1919. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1920. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1921. feedrate = XY_TRAVEL_SPEED/60;
  1922. current_position[Z_AXIS] = 0;
  1923. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1925. st_synchronize();
  1926. current_position[X_AXIS] = destination[X_AXIS];
  1927. current_position[Y_AXIS] = destination[Y_AXIS];
  1928. homeaxis(Z_AXIS);
  1929. }
  1930. // Let's see if X and Y are homed and probe is inside bed area.
  1931. if(home_z) {
  1932. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1933. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1934. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1935. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1936. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1937. current_position[Z_AXIS] = 0;
  1938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1939. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1940. feedrate = max_feedrate[Z_AXIS];
  1941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1942. st_synchronize();
  1943. homeaxis(Z_AXIS);
  1944. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1945. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1946. SERIAL_ECHO_START;
  1947. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1948. } else {
  1949. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1950. SERIAL_ECHO_START;
  1951. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1952. }
  1953. }
  1954. #endif // Z_SAFE_HOMING
  1955. #endif // Z_HOME_DIR < 0
  1956. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1957. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1958. #ifdef ENABLE_AUTO_BED_LEVELING
  1959. if(home_z)
  1960. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1961. #endif
  1962. // Set the planner and stepper routine positions.
  1963. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  1964. // contains the machine coordinates.
  1965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1966. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1967. enable_endstops(false);
  1968. #endif
  1969. feedrate = saved_feedrate;
  1970. feedmultiply = saved_feedmultiply;
  1971. previous_millis_cmd = millis();
  1972. endstops_hit_on_purpose();
  1973. #ifndef MESH_BED_LEVELING
  1974. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1975. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1976. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1977. lcd_adjust_z();
  1978. #endif
  1979. // Load the machine correction matrix
  1980. world2machine_initialize();
  1981. // and correct the current_position XY axes to match the transformed coordinate system.
  1982. world2machine_update_current();
  1983. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  1984. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1985. {
  1986. if (! home_z && mbl_was_active) {
  1987. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  1988. mbl.active = true;
  1989. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  1990. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  1991. }
  1992. }
  1993. else
  1994. {
  1995. st_synchronize();
  1996. homing_flag = false;
  1997. // Push the commands to the front of the message queue in the reverse order!
  1998. // There shall be always enough space reserved for these commands.
  1999. // enquecommand_front_P((PSTR("G80")));
  2000. goto case_G80;
  2001. }
  2002. #endif
  2003. if (farm_mode) { prusa_statistics(20); };
  2004. homing_flag = false;
  2005. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2006. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2007. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2008. break;
  2009. }
  2010. #ifdef ENABLE_AUTO_BED_LEVELING
  2011. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2012. {
  2013. #if Z_MIN_PIN == -1
  2014. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2015. #endif
  2016. // Prevent user from running a G29 without first homing in X and Y
  2017. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2018. {
  2019. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2020. SERIAL_ECHO_START;
  2021. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2022. break; // abort G29, since we don't know where we are
  2023. }
  2024. st_synchronize();
  2025. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2026. //vector_3 corrected_position = plan_get_position_mm();
  2027. //corrected_position.debug("position before G29");
  2028. plan_bed_level_matrix.set_to_identity();
  2029. vector_3 uncorrected_position = plan_get_position();
  2030. //uncorrected_position.debug("position durring G29");
  2031. current_position[X_AXIS] = uncorrected_position.x;
  2032. current_position[Y_AXIS] = uncorrected_position.y;
  2033. current_position[Z_AXIS] = uncorrected_position.z;
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. setup_for_endstop_move();
  2036. feedrate = homing_feedrate[Z_AXIS];
  2037. #ifdef AUTO_BED_LEVELING_GRID
  2038. // probe at the points of a lattice grid
  2039. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2040. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2041. // solve the plane equation ax + by + d = z
  2042. // A is the matrix with rows [x y 1] for all the probed points
  2043. // B is the vector of the Z positions
  2044. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2045. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2046. // "A" matrix of the linear system of equations
  2047. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2048. // "B" vector of Z points
  2049. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2050. int probePointCounter = 0;
  2051. bool zig = true;
  2052. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2053. {
  2054. int xProbe, xInc;
  2055. if (zig)
  2056. {
  2057. xProbe = LEFT_PROBE_BED_POSITION;
  2058. //xEnd = RIGHT_PROBE_BED_POSITION;
  2059. xInc = xGridSpacing;
  2060. zig = false;
  2061. } else // zag
  2062. {
  2063. xProbe = RIGHT_PROBE_BED_POSITION;
  2064. //xEnd = LEFT_PROBE_BED_POSITION;
  2065. xInc = -xGridSpacing;
  2066. zig = true;
  2067. }
  2068. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2069. {
  2070. float z_before;
  2071. if (probePointCounter == 0)
  2072. {
  2073. // raise before probing
  2074. z_before = Z_RAISE_BEFORE_PROBING;
  2075. } else
  2076. {
  2077. // raise extruder
  2078. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2079. }
  2080. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2081. eqnBVector[probePointCounter] = measured_z;
  2082. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2083. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2084. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2085. probePointCounter++;
  2086. xProbe += xInc;
  2087. }
  2088. }
  2089. clean_up_after_endstop_move();
  2090. // solve lsq problem
  2091. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2092. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2093. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2094. SERIAL_PROTOCOLPGM(" b: ");
  2095. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2096. SERIAL_PROTOCOLPGM(" d: ");
  2097. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2098. set_bed_level_equation_lsq(plane_equation_coefficients);
  2099. free(plane_equation_coefficients);
  2100. #else // AUTO_BED_LEVELING_GRID not defined
  2101. // Probe at 3 arbitrary points
  2102. // probe 1
  2103. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2104. // probe 2
  2105. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2106. // probe 3
  2107. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2108. clean_up_after_endstop_move();
  2109. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2110. #endif // AUTO_BED_LEVELING_GRID
  2111. st_synchronize();
  2112. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2113. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2114. // When the bed is uneven, this height must be corrected.
  2115. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2116. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2117. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2118. z_tmp = current_position[Z_AXIS];
  2119. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2120. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2122. }
  2123. break;
  2124. #ifndef Z_PROBE_SLED
  2125. case 30: // G30 Single Z Probe
  2126. {
  2127. st_synchronize();
  2128. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2129. setup_for_endstop_move();
  2130. feedrate = homing_feedrate[Z_AXIS];
  2131. run_z_probe();
  2132. SERIAL_PROTOCOLPGM(MSG_BED);
  2133. SERIAL_PROTOCOLPGM(" X: ");
  2134. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2135. SERIAL_PROTOCOLPGM(" Y: ");
  2136. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2137. SERIAL_PROTOCOLPGM(" Z: ");
  2138. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2139. SERIAL_PROTOCOLPGM("\n");
  2140. clean_up_after_endstop_move();
  2141. }
  2142. break;
  2143. #else
  2144. case 31: // dock the sled
  2145. dock_sled(true);
  2146. break;
  2147. case 32: // undock the sled
  2148. dock_sled(false);
  2149. break;
  2150. #endif // Z_PROBE_SLED
  2151. #endif // ENABLE_AUTO_BED_LEVELING
  2152. #ifdef MESH_BED_LEVELING
  2153. case 30: // G30 Single Z Probe
  2154. {
  2155. st_synchronize();
  2156. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2157. setup_for_endstop_move();
  2158. feedrate = homing_feedrate[Z_AXIS];
  2159. find_bed_induction_sensor_point_z(-10.f, 3);
  2160. SERIAL_PROTOCOLRPGM(MSG_BED);
  2161. SERIAL_PROTOCOLPGM(" X: ");
  2162. MYSERIAL.print(current_position[X_AXIS], 5);
  2163. SERIAL_PROTOCOLPGM(" Y: ");
  2164. MYSERIAL.print(current_position[Y_AXIS], 5);
  2165. SERIAL_PROTOCOLPGM(" Z: ");
  2166. MYSERIAL.print(current_position[Z_AXIS], 5);
  2167. SERIAL_PROTOCOLPGM("\n");
  2168. clean_up_after_endstop_move();
  2169. }
  2170. break;
  2171. case 75:
  2172. {
  2173. for (int i = 40; i <= 110; i++) {
  2174. MYSERIAL.print(i);
  2175. MYSERIAL.print(" ");
  2176. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2177. }
  2178. }
  2179. break;
  2180. case 76: //PINDA probe temperature calibration
  2181. {
  2182. #ifdef PINDA_THERMISTOR
  2183. if (true)
  2184. {
  2185. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2186. // We don't know where we are! HOME!
  2187. // Push the commands to the front of the message queue in the reverse order!
  2188. // There shall be always enough space reserved for these commands.
  2189. repeatcommand_front(); // repeat G76 with all its parameters
  2190. enquecommand_front_P((PSTR("G28 W0")));
  2191. break;
  2192. }
  2193. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2194. float zero_z;
  2195. int z_shift = 0; //unit: steps
  2196. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2197. if (start_temp < 35) start_temp = 35;
  2198. if (start_temp < current_temperature_pinda) start_temp += 5;
  2199. SERIAL_ECHOPGM("start temperature: ");
  2200. MYSERIAL.println(start_temp);
  2201. // setTargetHotend(200, 0);
  2202. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2203. custom_message = true;
  2204. custom_message_type = 4;
  2205. custom_message_state = 1;
  2206. custom_message = MSG_TEMP_CALIBRATION;
  2207. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2208. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2209. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2211. st_synchronize();
  2212. while (current_temperature_pinda < start_temp)
  2213. {
  2214. delay_keep_alive(1000);
  2215. serialecho_temperatures();
  2216. }
  2217. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2218. current_position[Z_AXIS] = 5;
  2219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2220. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2221. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2223. st_synchronize();
  2224. find_bed_induction_sensor_point_z(-1.f);
  2225. zero_z = current_position[Z_AXIS];
  2226. //current_position[Z_AXIS]
  2227. SERIAL_ECHOLNPGM("");
  2228. SERIAL_ECHOPGM("ZERO: ");
  2229. MYSERIAL.print(current_position[Z_AXIS]);
  2230. SERIAL_ECHOLNPGM("");
  2231. int i = -1; for (; i < 5; i++)
  2232. {
  2233. float temp = (40 + i * 5);
  2234. SERIAL_ECHOPGM("Step: ");
  2235. MYSERIAL.print(i + 2);
  2236. SERIAL_ECHOLNPGM("/6 (skipped)");
  2237. SERIAL_ECHOPGM("PINDA temperature: ");
  2238. MYSERIAL.print((40 + i*5));
  2239. SERIAL_ECHOPGM(" Z shift (mm):");
  2240. MYSERIAL.print(0);
  2241. SERIAL_ECHOLNPGM("");
  2242. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2243. if (start_temp <= temp) break;
  2244. }
  2245. for (i++; i < 5; i++)
  2246. {
  2247. float temp = (40 + i * 5);
  2248. SERIAL_ECHOPGM("Step: ");
  2249. MYSERIAL.print(i + 2);
  2250. SERIAL_ECHOLNPGM("/6");
  2251. custom_message_state = i + 2;
  2252. setTargetBed(50 + 10 * (temp - 30) / 5);
  2253. // setTargetHotend(255, 0);
  2254. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2255. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2256. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2258. st_synchronize();
  2259. while (current_temperature_pinda < temp)
  2260. {
  2261. delay_keep_alive(1000);
  2262. serialecho_temperatures();
  2263. }
  2264. current_position[Z_AXIS] = 5;
  2265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2266. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2267. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2269. st_synchronize();
  2270. find_bed_induction_sensor_point_z(-1.f);
  2271. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2272. SERIAL_ECHOLNPGM("");
  2273. SERIAL_ECHOPGM("PINDA temperature: ");
  2274. MYSERIAL.print(current_temperature_pinda);
  2275. SERIAL_ECHOPGM(" Z shift (mm):");
  2276. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2277. SERIAL_ECHOLNPGM("");
  2278. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2279. }
  2280. custom_message_type = 0;
  2281. custom_message = false;
  2282. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2283. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2284. disable_x();
  2285. disable_y();
  2286. disable_z();
  2287. disable_e0();
  2288. disable_e1();
  2289. disable_e2();
  2290. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2291. lcd_update_enable(true);
  2292. lcd_update(2);
  2293. setTargetBed(0); //set bed target temperature back to 0
  2294. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2295. break;
  2296. }
  2297. #endif //PINDA_THERMISTOR
  2298. setTargetBed(PINDA_MIN_T);
  2299. float zero_z;
  2300. int z_shift = 0; //unit: steps
  2301. int t_c; // temperature
  2302. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2303. // We don't know where we are! HOME!
  2304. // Push the commands to the front of the message queue in the reverse order!
  2305. // There shall be always enough space reserved for these commands.
  2306. repeatcommand_front(); // repeat G76 with all its parameters
  2307. enquecommand_front_P((PSTR("G28 W0")));
  2308. break;
  2309. }
  2310. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2311. custom_message = true;
  2312. custom_message_type = 4;
  2313. custom_message_state = 1;
  2314. custom_message = MSG_TEMP_CALIBRATION;
  2315. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2316. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2317. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2319. st_synchronize();
  2320. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2321. delay_keep_alive(1000);
  2322. serialecho_temperatures();
  2323. }
  2324. //enquecommand_P(PSTR("M190 S50"));
  2325. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2326. delay_keep_alive(1000);
  2327. serialecho_temperatures();
  2328. }
  2329. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2330. current_position[Z_AXIS] = 5;
  2331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2332. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2333. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2335. st_synchronize();
  2336. find_bed_induction_sensor_point_z(-1.f);
  2337. zero_z = current_position[Z_AXIS];
  2338. //current_position[Z_AXIS]
  2339. SERIAL_ECHOLNPGM("");
  2340. SERIAL_ECHOPGM("ZERO: ");
  2341. MYSERIAL.print(current_position[Z_AXIS]);
  2342. SERIAL_ECHOLNPGM("");
  2343. for (int i = 0; i<5; i++) {
  2344. SERIAL_ECHOPGM("Step: ");
  2345. MYSERIAL.print(i+2);
  2346. SERIAL_ECHOLNPGM("/6");
  2347. custom_message_state = i + 2;
  2348. t_c = 60 + i * 10;
  2349. setTargetBed(t_c);
  2350. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2351. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2352. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2354. st_synchronize();
  2355. while (degBed() < t_c) {
  2356. delay_keep_alive(1000);
  2357. serialecho_temperatures();
  2358. }
  2359. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2360. delay_keep_alive(1000);
  2361. serialecho_temperatures();
  2362. }
  2363. current_position[Z_AXIS] = 5;
  2364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2365. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2366. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2368. st_synchronize();
  2369. find_bed_induction_sensor_point_z(-1.f);
  2370. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2371. SERIAL_ECHOLNPGM("");
  2372. SERIAL_ECHOPGM("Temperature: ");
  2373. MYSERIAL.print(t_c);
  2374. SERIAL_ECHOPGM(" Z shift (mm):");
  2375. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2376. SERIAL_ECHOLNPGM("");
  2377. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2378. }
  2379. custom_message_type = 0;
  2380. custom_message = false;
  2381. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2382. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2383. disable_x();
  2384. disable_y();
  2385. disable_z();
  2386. disable_e0();
  2387. disable_e1();
  2388. disable_e2();
  2389. setTargetBed(0); //set bed target temperature back to 0
  2390. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2391. lcd_update_enable(true);
  2392. lcd_update(2);
  2393. }
  2394. break;
  2395. #ifdef DIS
  2396. case 77:
  2397. {
  2398. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2399. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2400. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2401. float dimension_x = 40;
  2402. float dimension_y = 40;
  2403. int points_x = 40;
  2404. int points_y = 40;
  2405. float offset_x = 74;
  2406. float offset_y = 33;
  2407. if (code_seen('X')) dimension_x = code_value();
  2408. if (code_seen('Y')) dimension_y = code_value();
  2409. if (code_seen('XP')) points_x = code_value();
  2410. if (code_seen('YP')) points_y = code_value();
  2411. if (code_seen('XO')) offset_x = code_value();
  2412. if (code_seen('YO')) offset_y = code_value();
  2413. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2414. } break;
  2415. #endif
  2416. case 79: {
  2417. for (int i = 255; i > 0; i = i - 5) {
  2418. fanSpeed = i;
  2419. //delay_keep_alive(2000);
  2420. for (int j = 0; j < 100; j++) {
  2421. delay_keep_alive(100);
  2422. }
  2423. fan_speed[1];
  2424. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2425. }
  2426. }break;
  2427. /**
  2428. * G80: Mesh-based Z probe, probes a grid and produces a
  2429. * mesh to compensate for variable bed height
  2430. *
  2431. * The S0 report the points as below
  2432. *
  2433. * +----> X-axis
  2434. * |
  2435. * |
  2436. * v Y-axis
  2437. *
  2438. */
  2439. case 80:
  2440. #ifdef MK1BP
  2441. break;
  2442. #endif //MK1BP
  2443. case_G80:
  2444. {
  2445. mesh_bed_leveling_flag = true;
  2446. int8_t verbosity_level = 0;
  2447. static bool run = false;
  2448. if (code_seen('V')) {
  2449. // Just 'V' without a number counts as V1.
  2450. char c = strchr_pointer[1];
  2451. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2452. }
  2453. // Firstly check if we know where we are
  2454. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2455. // We don't know where we are! HOME!
  2456. // Push the commands to the front of the message queue in the reverse order!
  2457. // There shall be always enough space reserved for these commands.
  2458. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2459. repeatcommand_front(); // repeat G80 with all its parameters
  2460. enquecommand_front_P((PSTR("G28 W0")));
  2461. }
  2462. else {
  2463. mesh_bed_leveling_flag = false;
  2464. }
  2465. break;
  2466. }
  2467. bool temp_comp_start = true;
  2468. #ifdef PINDA_THERMISTOR
  2469. temp_comp_start = false;
  2470. #endif //PINDA_THERMISTOR
  2471. if (temp_comp_start)
  2472. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2473. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2474. temp_compensation_start();
  2475. run = true;
  2476. repeatcommand_front(); // repeat G80 with all its parameters
  2477. enquecommand_front_P((PSTR("G28 W0")));
  2478. }
  2479. else {
  2480. mesh_bed_leveling_flag = false;
  2481. }
  2482. break;
  2483. }
  2484. run = false;
  2485. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2486. mesh_bed_leveling_flag = false;
  2487. break;
  2488. }
  2489. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2490. bool custom_message_old = custom_message;
  2491. unsigned int custom_message_type_old = custom_message_type;
  2492. unsigned int custom_message_state_old = custom_message_state;
  2493. custom_message = true;
  2494. custom_message_type = 1;
  2495. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2496. lcd_update(1);
  2497. mbl.reset(); //reset mesh bed leveling
  2498. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2499. // consumed during the first movements following this statement.
  2500. babystep_undo();
  2501. // Cycle through all points and probe them
  2502. // First move up. During this first movement, the babystepping will be reverted.
  2503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2505. // The move to the first calibration point.
  2506. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2507. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2508. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2509. if (verbosity_level >= 1) {
  2510. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2511. }
  2512. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2514. // Wait until the move is finished.
  2515. st_synchronize();
  2516. int mesh_point = 0; //index number of calibration point
  2517. int ix = 0;
  2518. int iy = 0;
  2519. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2520. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2521. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2522. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2523. if (verbosity_level >= 1) {
  2524. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2525. }
  2526. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2527. const char *kill_message = NULL;
  2528. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2529. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2530. // Get coords of a measuring point.
  2531. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2532. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2533. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2534. float z0 = 0.f;
  2535. if (has_z && mesh_point > 0) {
  2536. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2537. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2538. //#if 0
  2539. if (verbosity_level >= 1) {
  2540. SERIAL_ECHOPGM("Bed leveling, point: ");
  2541. MYSERIAL.print(mesh_point);
  2542. SERIAL_ECHOPGM(", calibration z: ");
  2543. MYSERIAL.print(z0, 5);
  2544. SERIAL_ECHOLNPGM("");
  2545. }
  2546. //#endif
  2547. }
  2548. // Move Z up to MESH_HOME_Z_SEARCH.
  2549. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2551. st_synchronize();
  2552. // Move to XY position of the sensor point.
  2553. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2554. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2555. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2556. if (verbosity_level >= 1) {
  2557. SERIAL_PROTOCOL(mesh_point);
  2558. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2559. }
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2561. st_synchronize();
  2562. // Go down until endstop is hit
  2563. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2564. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2565. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2566. break;
  2567. }
  2568. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2569. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2570. break;
  2571. }
  2572. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2573. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2574. break;
  2575. }
  2576. if (verbosity_level >= 10) {
  2577. SERIAL_ECHOPGM("X: ");
  2578. MYSERIAL.print(current_position[X_AXIS], 5);
  2579. SERIAL_ECHOLNPGM("");
  2580. SERIAL_ECHOPGM("Y: ");
  2581. MYSERIAL.print(current_position[Y_AXIS], 5);
  2582. SERIAL_PROTOCOLPGM("\n");
  2583. }
  2584. float offset_z = 0;
  2585. #ifdef PINDA_THERMISTOR
  2586. offset_z = temp_compensation_pinda_thermistor_offset();
  2587. #endif //PINDA_THERMISTOR
  2588. if (verbosity_level >= 1) {
  2589. SERIAL_ECHOPGM("mesh bed leveling: ");
  2590. MYSERIAL.print(current_position[Z_AXIS], 5);
  2591. SERIAL_ECHOPGM(" offset: ");
  2592. MYSERIAL.print(offset_z, 5);
  2593. SERIAL_ECHOLNPGM("");
  2594. }
  2595. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2596. custom_message_state--;
  2597. mesh_point++;
  2598. lcd_update(1);
  2599. }
  2600. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2602. if (verbosity_level >= 20) {
  2603. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2604. MYSERIAL.print(current_position[Z_AXIS], 5);
  2605. }
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2607. st_synchronize();
  2608. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2609. kill(kill_message);
  2610. SERIAL_ECHOLNPGM("killed");
  2611. }
  2612. clean_up_after_endstop_move();
  2613. SERIAL_ECHOLNPGM("clean up finished ");
  2614. bool apply_temp_comp = true;
  2615. #ifdef PINDA_THERMISTOR
  2616. apply_temp_comp = false;
  2617. #endif
  2618. if (apply_temp_comp)
  2619. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2620. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2621. SERIAL_ECHOLNPGM("babystep applied");
  2622. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2623. if (verbosity_level >= 1) {
  2624. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2625. }
  2626. for (uint8_t i = 0; i < 4; ++i) {
  2627. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2628. long correction = 0;
  2629. if (code_seen(codes[i]))
  2630. correction = code_value_long();
  2631. else if (eeprom_bed_correction_valid) {
  2632. unsigned char *addr = (i < 2) ?
  2633. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2634. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2635. correction = eeprom_read_int8(addr);
  2636. }
  2637. if (correction == 0)
  2638. continue;
  2639. float offset = float(correction) * 0.001f;
  2640. if (fabs(offset) > 0.101f) {
  2641. SERIAL_ERROR_START;
  2642. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2643. SERIAL_ECHO(offset);
  2644. SERIAL_ECHOLNPGM(" microns");
  2645. }
  2646. else {
  2647. switch (i) {
  2648. case 0:
  2649. for (uint8_t row = 0; row < 3; ++row) {
  2650. mbl.z_values[row][1] += 0.5f * offset;
  2651. mbl.z_values[row][0] += offset;
  2652. }
  2653. break;
  2654. case 1:
  2655. for (uint8_t row = 0; row < 3; ++row) {
  2656. mbl.z_values[row][1] += 0.5f * offset;
  2657. mbl.z_values[row][2] += offset;
  2658. }
  2659. break;
  2660. case 2:
  2661. for (uint8_t col = 0; col < 3; ++col) {
  2662. mbl.z_values[1][col] += 0.5f * offset;
  2663. mbl.z_values[0][col] += offset;
  2664. }
  2665. break;
  2666. case 3:
  2667. for (uint8_t col = 0; col < 3; ++col) {
  2668. mbl.z_values[1][col] += 0.5f * offset;
  2669. mbl.z_values[2][col] += offset;
  2670. }
  2671. break;
  2672. }
  2673. }
  2674. }
  2675. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2676. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2677. SERIAL_ECHOLNPGM("Upsample finished");
  2678. mbl.active = 1; //activate mesh bed leveling
  2679. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2680. go_home_with_z_lift();
  2681. SERIAL_ECHOLNPGM("Go home finished");
  2682. //unretract (after PINDA preheat retraction)
  2683. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2684. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2686. }
  2687. // Restore custom message state
  2688. custom_message = custom_message_old;
  2689. custom_message_type = custom_message_type_old;
  2690. custom_message_state = custom_message_state_old;
  2691. mesh_bed_leveling_flag = false;
  2692. mesh_bed_run_from_menu = false;
  2693. lcd_update(2);
  2694. }
  2695. break;
  2696. /**
  2697. * G81: Print mesh bed leveling status and bed profile if activated
  2698. */
  2699. case 81:
  2700. if (mbl.active) {
  2701. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2702. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2703. SERIAL_PROTOCOLPGM(",");
  2704. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2705. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2706. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2707. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2708. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2709. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2710. SERIAL_PROTOCOLPGM(" ");
  2711. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2712. }
  2713. SERIAL_PROTOCOLPGM("\n");
  2714. }
  2715. }
  2716. else
  2717. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2718. break;
  2719. #if 0
  2720. /**
  2721. * G82: Single Z probe at current location
  2722. *
  2723. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2724. *
  2725. */
  2726. case 82:
  2727. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2728. setup_for_endstop_move();
  2729. find_bed_induction_sensor_point_z();
  2730. clean_up_after_endstop_move();
  2731. SERIAL_PROTOCOLPGM("Bed found at: ");
  2732. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2733. SERIAL_PROTOCOLPGM("\n");
  2734. break;
  2735. /**
  2736. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2737. */
  2738. case 83:
  2739. {
  2740. int babystepz = code_seen('S') ? code_value() : 0;
  2741. int BabyPosition = code_seen('P') ? code_value() : 0;
  2742. if (babystepz != 0) {
  2743. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2744. // Is the axis indexed starting with zero or one?
  2745. if (BabyPosition > 4) {
  2746. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2747. }else{
  2748. // Save it to the eeprom
  2749. babystepLoadZ = babystepz;
  2750. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2751. // adjust the Z
  2752. babystepsTodoZadd(babystepLoadZ);
  2753. }
  2754. }
  2755. }
  2756. break;
  2757. /**
  2758. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2759. */
  2760. case 84:
  2761. babystepsTodoZsubtract(babystepLoadZ);
  2762. // babystepLoadZ = 0;
  2763. break;
  2764. /**
  2765. * G85: Prusa3D specific: Pick best babystep
  2766. */
  2767. case 85:
  2768. lcd_pick_babystep();
  2769. break;
  2770. #endif
  2771. /**
  2772. * G86: Prusa3D specific: Disable babystep correction after home.
  2773. * This G-code will be performed at the start of a calibration script.
  2774. */
  2775. case 86:
  2776. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2777. break;
  2778. /**
  2779. * G87: Prusa3D specific: Enable babystep correction after home
  2780. * This G-code will be performed at the end of a calibration script.
  2781. */
  2782. case 87:
  2783. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2784. break;
  2785. /**
  2786. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2787. */
  2788. case 88:
  2789. break;
  2790. #endif // ENABLE_MESH_BED_LEVELING
  2791. case 90: // G90
  2792. relative_mode = false;
  2793. break;
  2794. case 91: // G91
  2795. relative_mode = true;
  2796. break;
  2797. case 92: // G92
  2798. if(!code_seen(axis_codes[E_AXIS]))
  2799. st_synchronize();
  2800. for(int8_t i=0; i < NUM_AXIS; i++) {
  2801. if(code_seen(axis_codes[i])) {
  2802. if(i == E_AXIS) {
  2803. current_position[i] = code_value();
  2804. plan_set_e_position(current_position[E_AXIS]);
  2805. }
  2806. else {
  2807. current_position[i] = code_value()+add_homing[i];
  2808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2809. }
  2810. }
  2811. }
  2812. break;
  2813. case 98: //activate farm mode
  2814. farm_mode = 1;
  2815. PingTime = millis();
  2816. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2817. break;
  2818. case 99: //deactivate farm mode
  2819. farm_mode = 0;
  2820. lcd_printer_connected();
  2821. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2822. lcd_update(2);
  2823. break;
  2824. }
  2825. } // end if(code_seen('G'))
  2826. else if(code_seen('M'))
  2827. {
  2828. int index;
  2829. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2830. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2831. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2832. SERIAL_ECHOLNPGM("Invalid M code");
  2833. } else
  2834. switch((int)code_value())
  2835. {
  2836. #ifdef ULTIPANEL
  2837. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2838. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2839. {
  2840. char *src = strchr_pointer + 2;
  2841. codenum = 0;
  2842. bool hasP = false, hasS = false;
  2843. if (code_seen('P')) {
  2844. codenum = code_value(); // milliseconds to wait
  2845. hasP = codenum > 0;
  2846. }
  2847. if (code_seen('S')) {
  2848. codenum = code_value() * 1000; // seconds to wait
  2849. hasS = codenum > 0;
  2850. }
  2851. starpos = strchr(src, '*');
  2852. if (starpos != NULL) *(starpos) = '\0';
  2853. while (*src == ' ') ++src;
  2854. if (!hasP && !hasS && *src != '\0') {
  2855. lcd_setstatus(src);
  2856. } else {
  2857. LCD_MESSAGERPGM(MSG_USERWAIT);
  2858. }
  2859. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2860. st_synchronize();
  2861. previous_millis_cmd = millis();
  2862. if (codenum > 0){
  2863. codenum += millis(); // keep track of when we started waiting
  2864. while(millis() < codenum && !lcd_clicked()){
  2865. manage_heater();
  2866. manage_inactivity(true);
  2867. lcd_update();
  2868. }
  2869. lcd_ignore_click(false);
  2870. }else{
  2871. if (!lcd_detected())
  2872. break;
  2873. while(!lcd_clicked()){
  2874. manage_heater();
  2875. manage_inactivity(true);
  2876. lcd_update();
  2877. }
  2878. }
  2879. if (IS_SD_PRINTING)
  2880. LCD_MESSAGERPGM(MSG_RESUMING);
  2881. else
  2882. LCD_MESSAGERPGM(WELCOME_MSG);
  2883. }
  2884. break;
  2885. #endif
  2886. case 17:
  2887. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2888. enable_x();
  2889. enable_y();
  2890. enable_z();
  2891. enable_e0();
  2892. enable_e1();
  2893. enable_e2();
  2894. break;
  2895. #ifdef SDSUPPORT
  2896. case 20: // M20 - list SD card
  2897. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2898. card.ls();
  2899. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2900. break;
  2901. case 21: // M21 - init SD card
  2902. card.initsd();
  2903. break;
  2904. case 22: //M22 - release SD card
  2905. card.release();
  2906. break;
  2907. case 23: //M23 - Select file
  2908. starpos = (strchr(strchr_pointer + 4,'*'));
  2909. if(starpos!=NULL)
  2910. *(starpos)='\0';
  2911. card.openFile(strchr_pointer + 4,true);
  2912. break;
  2913. case 24: //M24 - Start SD print
  2914. card.startFileprint();
  2915. starttime=millis();
  2916. break;
  2917. case 25: //M25 - Pause SD print
  2918. card.pauseSDPrint();
  2919. break;
  2920. case 26: //M26 - Set SD index
  2921. if(card.cardOK && code_seen('S')) {
  2922. card.setIndex(code_value_long());
  2923. }
  2924. break;
  2925. case 27: //M27 - Get SD status
  2926. card.getStatus();
  2927. break;
  2928. case 28: //M28 - Start SD write
  2929. starpos = (strchr(strchr_pointer + 4,'*'));
  2930. if(starpos != NULL){
  2931. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2932. strchr_pointer = strchr(npos,' ') + 1;
  2933. *(starpos) = '\0';
  2934. }
  2935. card.openFile(strchr_pointer+4,false);
  2936. break;
  2937. case 29: //M29 - Stop SD write
  2938. //processed in write to file routine above
  2939. //card,saving = false;
  2940. break;
  2941. case 30: //M30 <filename> Delete File
  2942. if (card.cardOK){
  2943. card.closefile();
  2944. starpos = (strchr(strchr_pointer + 4,'*'));
  2945. if(starpos != NULL){
  2946. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2947. strchr_pointer = strchr(npos,' ') + 1;
  2948. *(starpos) = '\0';
  2949. }
  2950. card.removeFile(strchr_pointer + 4);
  2951. }
  2952. break;
  2953. case 32: //M32 - Select file and start SD print
  2954. {
  2955. if(card.sdprinting) {
  2956. st_synchronize();
  2957. }
  2958. starpos = (strchr(strchr_pointer + 4,'*'));
  2959. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2960. if(namestartpos==NULL)
  2961. {
  2962. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2963. }
  2964. else
  2965. namestartpos++; //to skip the '!'
  2966. if(starpos!=NULL)
  2967. *(starpos)='\0';
  2968. bool call_procedure=(code_seen('P'));
  2969. if(strchr_pointer>namestartpos)
  2970. call_procedure=false; //false alert, 'P' found within filename
  2971. if( card.cardOK )
  2972. {
  2973. card.openFile(namestartpos,true,!call_procedure);
  2974. if(code_seen('S'))
  2975. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2976. card.setIndex(code_value_long());
  2977. card.startFileprint();
  2978. if(!call_procedure)
  2979. starttime=millis(); //procedure calls count as normal print time.
  2980. }
  2981. } break;
  2982. case 928: //M928 - Start SD write
  2983. starpos = (strchr(strchr_pointer + 5,'*'));
  2984. if(starpos != NULL){
  2985. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2986. strchr_pointer = strchr(npos,' ') + 1;
  2987. *(starpos) = '\0';
  2988. }
  2989. card.openLogFile(strchr_pointer+5);
  2990. break;
  2991. #endif //SDSUPPORT
  2992. case 31: //M31 take time since the start of the SD print or an M109 command
  2993. {
  2994. stoptime=millis();
  2995. char time[30];
  2996. unsigned long t=(stoptime-starttime)/1000;
  2997. int sec,min;
  2998. min=t/60;
  2999. sec=t%60;
  3000. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3001. SERIAL_ECHO_START;
  3002. SERIAL_ECHOLN(time);
  3003. lcd_setstatus(time);
  3004. autotempShutdown();
  3005. }
  3006. break;
  3007. case 42: //M42 -Change pin status via gcode
  3008. if (code_seen('S'))
  3009. {
  3010. int pin_status = code_value();
  3011. int pin_number = LED_PIN;
  3012. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3013. pin_number = code_value();
  3014. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3015. {
  3016. if (sensitive_pins[i] == pin_number)
  3017. {
  3018. pin_number = -1;
  3019. break;
  3020. }
  3021. }
  3022. #if defined(FAN_PIN) && FAN_PIN > -1
  3023. if (pin_number == FAN_PIN)
  3024. fanSpeed = pin_status;
  3025. #endif
  3026. if (pin_number > -1)
  3027. {
  3028. pinMode(pin_number, OUTPUT);
  3029. digitalWrite(pin_number, pin_status);
  3030. analogWrite(pin_number, pin_status);
  3031. }
  3032. }
  3033. break;
  3034. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3035. // Reset the baby step value and the baby step applied flag.
  3036. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3037. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3038. // Reset the skew and offset in both RAM and EEPROM.
  3039. reset_bed_offset_and_skew();
  3040. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3041. // the planner will not perform any adjustments in the XY plane.
  3042. // Wait for the motors to stop and update the current position with the absolute values.
  3043. world2machine_revert_to_uncorrected();
  3044. break;
  3045. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3046. {
  3047. // Only Z calibration?
  3048. bool onlyZ = code_seen('Z');
  3049. if (!onlyZ) {
  3050. setTargetBed(0);
  3051. setTargetHotend(0, 0);
  3052. setTargetHotend(0, 1);
  3053. setTargetHotend(0, 2);
  3054. adjust_bed_reset(); //reset bed level correction
  3055. }
  3056. // Disable the default update procedure of the display. We will do a modal dialog.
  3057. lcd_update_enable(false);
  3058. // Let the planner use the uncorrected coordinates.
  3059. mbl.reset();
  3060. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3061. // the planner will not perform any adjustments in the XY plane.
  3062. // Wait for the motors to stop and update the current position with the absolute values.
  3063. world2machine_revert_to_uncorrected();
  3064. // Reset the baby step value applied without moving the axes.
  3065. babystep_reset();
  3066. // Mark all axes as in a need for homing.
  3067. memset(axis_known_position, 0, sizeof(axis_known_position));
  3068. // Home in the XY plane.
  3069. //set_destination_to_current();
  3070. setup_for_endstop_move();
  3071. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3072. home_xy();
  3073. // Let the user move the Z axes up to the end stoppers.
  3074. #ifdef TMC2130
  3075. if (calibrate_z_auto()) {
  3076. #else //TMC2130
  3077. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3078. #endif //TMC2130
  3079. refresh_cmd_timeout();
  3080. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3081. lcd_wait_for_cool_down();
  3082. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3083. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3084. lcd_implementation_print_at(0, 2, 1);
  3085. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3086. }
  3087. // Move the print head close to the bed.
  3088. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3090. st_synchronize();
  3091. //#ifdef TMC2130
  3092. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3093. //#endif
  3094. int8_t verbosity_level = 0;
  3095. if (code_seen('V')) {
  3096. // Just 'V' without a number counts as V1.
  3097. char c = strchr_pointer[1];
  3098. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3099. }
  3100. if (onlyZ) {
  3101. clean_up_after_endstop_move();
  3102. // Z only calibration.
  3103. // Load the machine correction matrix
  3104. world2machine_initialize();
  3105. // and correct the current_position to match the transformed coordinate system.
  3106. world2machine_update_current();
  3107. //FIXME
  3108. bool result = sample_mesh_and_store_reference();
  3109. if (result) {
  3110. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3111. // Shipped, the nozzle height has been set already. The user can start printing now.
  3112. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3113. // babystep_apply();
  3114. }
  3115. } else {
  3116. // Reset the baby step value and the baby step applied flag.
  3117. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3118. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3119. // Complete XYZ calibration.
  3120. uint8_t point_too_far_mask = 0;
  3121. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3122. clean_up_after_endstop_move();
  3123. // Print head up.
  3124. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3126. st_synchronize();
  3127. if (result >= 0) {
  3128. point_too_far_mask = 0;
  3129. // Second half: The fine adjustment.
  3130. // Let the planner use the uncorrected coordinates.
  3131. mbl.reset();
  3132. world2machine_reset();
  3133. // Home in the XY plane.
  3134. setup_for_endstop_move();
  3135. home_xy();
  3136. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3137. clean_up_after_endstop_move();
  3138. // Print head up.
  3139. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3141. st_synchronize();
  3142. // if (result >= 0) babystep_apply();
  3143. }
  3144. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3145. if (result >= 0) {
  3146. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3147. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3148. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3149. }
  3150. }
  3151. #ifdef TMC2130
  3152. tmc2130_home_exit();
  3153. #endif
  3154. } else {
  3155. // Timeouted.
  3156. }
  3157. lcd_update_enable(true);
  3158. break;
  3159. }
  3160. /*
  3161. case 46:
  3162. {
  3163. // M46: Prusa3D: Show the assigned IP address.
  3164. uint8_t ip[4];
  3165. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3166. if (hasIP) {
  3167. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3168. SERIAL_ECHO(int(ip[0]));
  3169. SERIAL_ECHOPGM(".");
  3170. SERIAL_ECHO(int(ip[1]));
  3171. SERIAL_ECHOPGM(".");
  3172. SERIAL_ECHO(int(ip[2]));
  3173. SERIAL_ECHOPGM(".");
  3174. SERIAL_ECHO(int(ip[3]));
  3175. SERIAL_ECHOLNPGM("");
  3176. } else {
  3177. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3178. }
  3179. break;
  3180. }
  3181. */
  3182. case 47:
  3183. // M47: Prusa3D: Show end stops dialog on the display.
  3184. lcd_diag_show_end_stops();
  3185. break;
  3186. #if 0
  3187. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3188. {
  3189. // Disable the default update procedure of the display. We will do a modal dialog.
  3190. lcd_update_enable(false);
  3191. // Let the planner use the uncorrected coordinates.
  3192. mbl.reset();
  3193. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3194. // the planner will not perform any adjustments in the XY plane.
  3195. // Wait for the motors to stop and update the current position with the absolute values.
  3196. world2machine_revert_to_uncorrected();
  3197. // Move the print head close to the bed.
  3198. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3200. st_synchronize();
  3201. // Home in the XY plane.
  3202. set_destination_to_current();
  3203. setup_for_endstop_move();
  3204. home_xy();
  3205. int8_t verbosity_level = 0;
  3206. if (code_seen('V')) {
  3207. // Just 'V' without a number counts as V1.
  3208. char c = strchr_pointer[1];
  3209. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3210. }
  3211. bool success = scan_bed_induction_points(verbosity_level);
  3212. clean_up_after_endstop_move();
  3213. // Print head up.
  3214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3216. st_synchronize();
  3217. lcd_update_enable(true);
  3218. break;
  3219. }
  3220. #endif
  3221. // M48 Z-Probe repeatability measurement function.
  3222. //
  3223. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3224. //
  3225. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3226. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3227. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3228. // regenerated.
  3229. //
  3230. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3231. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3232. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3233. //
  3234. #ifdef ENABLE_AUTO_BED_LEVELING
  3235. #ifdef Z_PROBE_REPEATABILITY_TEST
  3236. case 48: // M48 Z-Probe repeatability
  3237. {
  3238. #if Z_MIN_PIN == -1
  3239. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3240. #endif
  3241. double sum=0.0;
  3242. double mean=0.0;
  3243. double sigma=0.0;
  3244. double sample_set[50];
  3245. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3246. double X_current, Y_current, Z_current;
  3247. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3248. if (code_seen('V') || code_seen('v')) {
  3249. verbose_level = code_value();
  3250. if (verbose_level<0 || verbose_level>4 ) {
  3251. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3252. goto Sigma_Exit;
  3253. }
  3254. }
  3255. if (verbose_level > 0) {
  3256. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3257. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3258. }
  3259. if (code_seen('n')) {
  3260. n_samples = code_value();
  3261. if (n_samples<4 || n_samples>50 ) {
  3262. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3263. goto Sigma_Exit;
  3264. }
  3265. }
  3266. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3267. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3268. Z_current = st_get_position_mm(Z_AXIS);
  3269. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3270. ext_position = st_get_position_mm(E_AXIS);
  3271. if (code_seen('X') || code_seen('x') ) {
  3272. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3273. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3274. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3275. goto Sigma_Exit;
  3276. }
  3277. }
  3278. if (code_seen('Y') || code_seen('y') ) {
  3279. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3280. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3281. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3282. goto Sigma_Exit;
  3283. }
  3284. }
  3285. if (code_seen('L') || code_seen('l') ) {
  3286. n_legs = code_value();
  3287. if ( n_legs==1 )
  3288. n_legs = 2;
  3289. if ( n_legs<0 || n_legs>15 ) {
  3290. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3291. goto Sigma_Exit;
  3292. }
  3293. }
  3294. //
  3295. // Do all the preliminary setup work. First raise the probe.
  3296. //
  3297. st_synchronize();
  3298. plan_bed_level_matrix.set_to_identity();
  3299. plan_buffer_line( X_current, Y_current, Z_start_location,
  3300. ext_position,
  3301. homing_feedrate[Z_AXIS]/60,
  3302. active_extruder);
  3303. st_synchronize();
  3304. //
  3305. // Now get everything to the specified probe point So we can safely do a probe to
  3306. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3307. // use that as a starting point for each probe.
  3308. //
  3309. if (verbose_level > 2)
  3310. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3311. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3312. ext_position,
  3313. homing_feedrate[X_AXIS]/60,
  3314. active_extruder);
  3315. st_synchronize();
  3316. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3317. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3318. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3319. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3320. //
  3321. // OK, do the inital probe to get us close to the bed.
  3322. // Then retrace the right amount and use that in subsequent probes
  3323. //
  3324. setup_for_endstop_move();
  3325. run_z_probe();
  3326. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3327. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3328. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3329. ext_position,
  3330. homing_feedrate[X_AXIS]/60,
  3331. active_extruder);
  3332. st_synchronize();
  3333. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3334. for( n=0; n<n_samples; n++) {
  3335. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3336. if ( n_legs) {
  3337. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3338. int rotational_direction, l;
  3339. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3340. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3341. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3342. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3343. //SERIAL_ECHOPAIR(" theta: ",theta);
  3344. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3345. //SERIAL_PROTOCOLLNPGM("");
  3346. for( l=0; l<n_legs-1; l++) {
  3347. if (rotational_direction==1)
  3348. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3349. else
  3350. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3351. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3352. if ( radius<0.0 )
  3353. radius = -radius;
  3354. X_current = X_probe_location + cos(theta) * radius;
  3355. Y_current = Y_probe_location + sin(theta) * radius;
  3356. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3357. X_current = X_MIN_POS;
  3358. if ( X_current>X_MAX_POS)
  3359. X_current = X_MAX_POS;
  3360. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3361. Y_current = Y_MIN_POS;
  3362. if ( Y_current>Y_MAX_POS)
  3363. Y_current = Y_MAX_POS;
  3364. if (verbose_level>3 ) {
  3365. SERIAL_ECHOPAIR("x: ", X_current);
  3366. SERIAL_ECHOPAIR("y: ", Y_current);
  3367. SERIAL_PROTOCOLLNPGM("");
  3368. }
  3369. do_blocking_move_to( X_current, Y_current, Z_current );
  3370. }
  3371. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3372. }
  3373. setup_for_endstop_move();
  3374. run_z_probe();
  3375. sample_set[n] = current_position[Z_AXIS];
  3376. //
  3377. // Get the current mean for the data points we have so far
  3378. //
  3379. sum=0.0;
  3380. for( j=0; j<=n; j++) {
  3381. sum = sum + sample_set[j];
  3382. }
  3383. mean = sum / (double (n+1));
  3384. //
  3385. // Now, use that mean to calculate the standard deviation for the
  3386. // data points we have so far
  3387. //
  3388. sum=0.0;
  3389. for( j=0; j<=n; j++) {
  3390. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3391. }
  3392. sigma = sqrt( sum / (double (n+1)) );
  3393. if (verbose_level > 1) {
  3394. SERIAL_PROTOCOL(n+1);
  3395. SERIAL_PROTOCOL(" of ");
  3396. SERIAL_PROTOCOL(n_samples);
  3397. SERIAL_PROTOCOLPGM(" z: ");
  3398. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3399. }
  3400. if (verbose_level > 2) {
  3401. SERIAL_PROTOCOL(" mean: ");
  3402. SERIAL_PROTOCOL_F(mean,6);
  3403. SERIAL_PROTOCOL(" sigma: ");
  3404. SERIAL_PROTOCOL_F(sigma,6);
  3405. }
  3406. if (verbose_level > 0)
  3407. SERIAL_PROTOCOLPGM("\n");
  3408. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3409. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3410. st_synchronize();
  3411. }
  3412. delay(1000);
  3413. clean_up_after_endstop_move();
  3414. // enable_endstops(true);
  3415. if (verbose_level > 0) {
  3416. SERIAL_PROTOCOLPGM("Mean: ");
  3417. SERIAL_PROTOCOL_F(mean, 6);
  3418. SERIAL_PROTOCOLPGM("\n");
  3419. }
  3420. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3421. SERIAL_PROTOCOL_F(sigma, 6);
  3422. SERIAL_PROTOCOLPGM("\n\n");
  3423. Sigma_Exit:
  3424. break;
  3425. }
  3426. #endif // Z_PROBE_REPEATABILITY_TEST
  3427. #endif // ENABLE_AUTO_BED_LEVELING
  3428. case 104: // M104
  3429. if(setTargetedHotend(104)){
  3430. break;
  3431. }
  3432. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3433. setWatch();
  3434. break;
  3435. case 112: // M112 -Emergency Stop
  3436. kill("", 3);
  3437. break;
  3438. case 140: // M140 set bed temp
  3439. if (code_seen('S')) setTargetBed(code_value());
  3440. break;
  3441. case 105 : // M105
  3442. if(setTargetedHotend(105)){
  3443. break;
  3444. }
  3445. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3446. SERIAL_PROTOCOLPGM("ok T:");
  3447. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3448. SERIAL_PROTOCOLPGM(" /");
  3449. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3450. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3451. SERIAL_PROTOCOLPGM(" B:");
  3452. SERIAL_PROTOCOL_F(degBed(),1);
  3453. SERIAL_PROTOCOLPGM(" /");
  3454. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3455. #endif //TEMP_BED_PIN
  3456. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3457. SERIAL_PROTOCOLPGM(" T");
  3458. SERIAL_PROTOCOL(cur_extruder);
  3459. SERIAL_PROTOCOLPGM(":");
  3460. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3461. SERIAL_PROTOCOLPGM(" /");
  3462. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3463. }
  3464. #else
  3465. SERIAL_ERROR_START;
  3466. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3467. #endif
  3468. SERIAL_PROTOCOLPGM(" @:");
  3469. #ifdef EXTRUDER_WATTS
  3470. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3471. SERIAL_PROTOCOLPGM("W");
  3472. #else
  3473. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3474. #endif
  3475. SERIAL_PROTOCOLPGM(" B@:");
  3476. #ifdef BED_WATTS
  3477. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3478. SERIAL_PROTOCOLPGM("W");
  3479. #else
  3480. SERIAL_PROTOCOL(getHeaterPower(-1));
  3481. #endif
  3482. #ifdef PINDA_THERMISTOR
  3483. SERIAL_PROTOCOLPGM(" P:");
  3484. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3485. #endif //PINDA_THERMISTOR
  3486. #ifdef AMBIENT_THERMISTOR
  3487. SERIAL_PROTOCOLPGM(" A:");
  3488. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3489. #endif //AMBIENT_THERMISTOR
  3490. #ifdef SHOW_TEMP_ADC_VALUES
  3491. {float raw = 0.0;
  3492. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3493. SERIAL_PROTOCOLPGM(" ADC B:");
  3494. SERIAL_PROTOCOL_F(degBed(),1);
  3495. SERIAL_PROTOCOLPGM("C->");
  3496. raw = rawBedTemp();
  3497. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3498. SERIAL_PROTOCOLPGM(" Rb->");
  3499. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3500. SERIAL_PROTOCOLPGM(" Rxb->");
  3501. SERIAL_PROTOCOL_F(raw, 5);
  3502. #endif
  3503. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3504. SERIAL_PROTOCOLPGM(" T");
  3505. SERIAL_PROTOCOL(cur_extruder);
  3506. SERIAL_PROTOCOLPGM(":");
  3507. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3508. SERIAL_PROTOCOLPGM("C->");
  3509. raw = rawHotendTemp(cur_extruder);
  3510. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3511. SERIAL_PROTOCOLPGM(" Rt");
  3512. SERIAL_PROTOCOL(cur_extruder);
  3513. SERIAL_PROTOCOLPGM("->");
  3514. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3515. SERIAL_PROTOCOLPGM(" Rx");
  3516. SERIAL_PROTOCOL(cur_extruder);
  3517. SERIAL_PROTOCOLPGM("->");
  3518. SERIAL_PROTOCOL_F(raw, 5);
  3519. }}
  3520. #endif
  3521. SERIAL_PROTOCOLLN("");
  3522. return;
  3523. break;
  3524. case 109:
  3525. {// M109 - Wait for extruder heater to reach target.
  3526. if(setTargetedHotend(109)){
  3527. break;
  3528. }
  3529. LCD_MESSAGERPGM(MSG_HEATING);
  3530. heating_status = 1;
  3531. if (farm_mode) { prusa_statistics(1); };
  3532. #ifdef AUTOTEMP
  3533. autotemp_enabled=false;
  3534. #endif
  3535. if (code_seen('S')) {
  3536. setTargetHotend(code_value(), tmp_extruder);
  3537. CooldownNoWait = true;
  3538. } else if (code_seen('R')) {
  3539. setTargetHotend(code_value(), tmp_extruder);
  3540. CooldownNoWait = false;
  3541. }
  3542. #ifdef AUTOTEMP
  3543. if (code_seen('S')) autotemp_min=code_value();
  3544. if (code_seen('B')) autotemp_max=code_value();
  3545. if (code_seen('F'))
  3546. {
  3547. autotemp_factor=code_value();
  3548. autotemp_enabled=true;
  3549. }
  3550. #endif
  3551. setWatch();
  3552. codenum = millis();
  3553. /* See if we are heating up or cooling down */
  3554. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3555. cancel_heatup = false;
  3556. wait_for_heater(codenum); //loops until target temperature is reached
  3557. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3558. heating_status = 2;
  3559. if (farm_mode) { prusa_statistics(2); };
  3560. //starttime=millis();
  3561. previous_millis_cmd = millis();
  3562. }
  3563. break;
  3564. case 190: // M190 - Wait for bed heater to reach target.
  3565. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3566. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3567. heating_status = 3;
  3568. if (farm_mode) { prusa_statistics(1); };
  3569. if (code_seen('S'))
  3570. {
  3571. setTargetBed(code_value());
  3572. CooldownNoWait = true;
  3573. }
  3574. else if (code_seen('R'))
  3575. {
  3576. setTargetBed(code_value());
  3577. CooldownNoWait = false;
  3578. }
  3579. codenum = millis();
  3580. cancel_heatup = false;
  3581. target_direction = isHeatingBed(); // true if heating, false if cooling
  3582. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3583. {
  3584. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3585. {
  3586. if (!farm_mode) {
  3587. float tt = degHotend(active_extruder);
  3588. SERIAL_PROTOCOLPGM("T:");
  3589. SERIAL_PROTOCOL(tt);
  3590. SERIAL_PROTOCOLPGM(" E:");
  3591. SERIAL_PROTOCOL((int)active_extruder);
  3592. SERIAL_PROTOCOLPGM(" B:");
  3593. SERIAL_PROTOCOL_F(degBed(), 1);
  3594. SERIAL_PROTOCOLLN("");
  3595. }
  3596. codenum = millis();
  3597. }
  3598. manage_heater();
  3599. manage_inactivity();
  3600. lcd_update();
  3601. }
  3602. LCD_MESSAGERPGM(MSG_BED_DONE);
  3603. heating_status = 4;
  3604. previous_millis_cmd = millis();
  3605. #endif
  3606. break;
  3607. #if defined(FAN_PIN) && FAN_PIN > -1
  3608. case 106: //M106 Fan On
  3609. if (code_seen('S')){
  3610. fanSpeed=constrain(code_value(),0,255);
  3611. }
  3612. else {
  3613. fanSpeed=255;
  3614. }
  3615. break;
  3616. case 107: //M107 Fan Off
  3617. fanSpeed = 0;
  3618. break;
  3619. #endif //FAN_PIN
  3620. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3621. case 80: // M80 - Turn on Power Supply
  3622. SET_OUTPUT(PS_ON_PIN); //GND
  3623. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3624. // If you have a switch on suicide pin, this is useful
  3625. // if you want to start another print with suicide feature after
  3626. // a print without suicide...
  3627. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3628. SET_OUTPUT(SUICIDE_PIN);
  3629. WRITE(SUICIDE_PIN, HIGH);
  3630. #endif
  3631. #ifdef ULTIPANEL
  3632. powersupply = true;
  3633. LCD_MESSAGERPGM(WELCOME_MSG);
  3634. lcd_update();
  3635. #endif
  3636. break;
  3637. #endif
  3638. case 81: // M81 - Turn off Power Supply
  3639. disable_heater();
  3640. st_synchronize();
  3641. disable_e0();
  3642. disable_e1();
  3643. disable_e2();
  3644. finishAndDisableSteppers();
  3645. fanSpeed = 0;
  3646. delay(1000); // Wait a little before to switch off
  3647. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3648. st_synchronize();
  3649. suicide();
  3650. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3651. SET_OUTPUT(PS_ON_PIN);
  3652. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3653. #endif
  3654. #ifdef ULTIPANEL
  3655. powersupply = false;
  3656. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3657. /*
  3658. MACHNAME = "Prusa i3"
  3659. MSGOFF = "Vypnuto"
  3660. "Prusai3"" ""vypnuto""."
  3661. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3662. */
  3663. lcd_update();
  3664. #endif
  3665. break;
  3666. case 82:
  3667. axis_relative_modes[3] = false;
  3668. break;
  3669. case 83:
  3670. axis_relative_modes[3] = true;
  3671. break;
  3672. case 18: //compatibility
  3673. case 84: // M84
  3674. if(code_seen('S')){
  3675. stepper_inactive_time = code_value() * 1000;
  3676. }
  3677. else
  3678. {
  3679. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3680. if(all_axis)
  3681. {
  3682. st_synchronize();
  3683. disable_e0();
  3684. disable_e1();
  3685. disable_e2();
  3686. finishAndDisableSteppers();
  3687. }
  3688. else
  3689. {
  3690. st_synchronize();
  3691. if (code_seen('X')) disable_x();
  3692. if (code_seen('Y')) disable_y();
  3693. if (code_seen('Z')) disable_z();
  3694. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3695. if (code_seen('E')) {
  3696. disable_e0();
  3697. disable_e1();
  3698. disable_e2();
  3699. }
  3700. #endif
  3701. }
  3702. }
  3703. snmm_filaments_used = 0;
  3704. break;
  3705. case 85: // M85
  3706. if(code_seen('S')) {
  3707. max_inactive_time = code_value() * 1000;
  3708. }
  3709. break;
  3710. case 92: // M92
  3711. for(int8_t i=0; i < NUM_AXIS; i++)
  3712. {
  3713. if(code_seen(axis_codes[i]))
  3714. {
  3715. if(i == 3) { // E
  3716. float value = code_value();
  3717. if(value < 20.0) {
  3718. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3719. max_jerk[E_AXIS] *= factor;
  3720. max_feedrate[i] *= factor;
  3721. axis_steps_per_sqr_second[i] *= factor;
  3722. }
  3723. axis_steps_per_unit[i] = value;
  3724. }
  3725. else {
  3726. axis_steps_per_unit[i] = code_value();
  3727. }
  3728. }
  3729. }
  3730. break;
  3731. case 115: // M115
  3732. if (code_seen('V')) {
  3733. // Report the Prusa version number.
  3734. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3735. } else if (code_seen('U')) {
  3736. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3737. // pause the print and ask the user to upgrade the firmware.
  3738. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3739. } else {
  3740. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3741. }
  3742. break;
  3743. /* case 117: // M117 display message
  3744. starpos = (strchr(strchr_pointer + 5,'*'));
  3745. if(starpos!=NULL)
  3746. *(starpos)='\0';
  3747. lcd_setstatus(strchr_pointer + 5);
  3748. break;*/
  3749. case 114: // M114
  3750. SERIAL_PROTOCOLPGM("X:");
  3751. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3752. SERIAL_PROTOCOLPGM(" Y:");
  3753. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3754. SERIAL_PROTOCOLPGM(" Z:");
  3755. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3756. SERIAL_PROTOCOLPGM(" E:");
  3757. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3758. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3759. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3760. SERIAL_PROTOCOLPGM(" Y:");
  3761. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3762. SERIAL_PROTOCOLPGM(" Z:");
  3763. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3764. SERIAL_PROTOCOLLN("");
  3765. break;
  3766. case 120: // M120
  3767. enable_endstops(false) ;
  3768. break;
  3769. case 121: // M121
  3770. enable_endstops(true) ;
  3771. break;
  3772. case 119: // M119
  3773. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3774. SERIAL_PROTOCOLLN("");
  3775. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3776. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3777. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3778. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3779. }else{
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3781. }
  3782. SERIAL_PROTOCOLLN("");
  3783. #endif
  3784. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3785. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3786. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3787. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3788. }else{
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3790. }
  3791. SERIAL_PROTOCOLLN("");
  3792. #endif
  3793. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3794. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3795. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3796. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3797. }else{
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3799. }
  3800. SERIAL_PROTOCOLLN("");
  3801. #endif
  3802. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3803. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3804. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3805. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3806. }else{
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3808. }
  3809. SERIAL_PROTOCOLLN("");
  3810. #endif
  3811. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3812. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3813. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3814. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3815. }else{
  3816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3817. }
  3818. SERIAL_PROTOCOLLN("");
  3819. #endif
  3820. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3821. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3822. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3823. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3824. }else{
  3825. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3826. }
  3827. SERIAL_PROTOCOLLN("");
  3828. #endif
  3829. break;
  3830. //TODO: update for all axis, use for loop
  3831. #ifdef BLINKM
  3832. case 150: // M150
  3833. {
  3834. byte red;
  3835. byte grn;
  3836. byte blu;
  3837. if(code_seen('R')) red = code_value();
  3838. if(code_seen('U')) grn = code_value();
  3839. if(code_seen('B')) blu = code_value();
  3840. SendColors(red,grn,blu);
  3841. }
  3842. break;
  3843. #endif //BLINKM
  3844. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3845. {
  3846. tmp_extruder = active_extruder;
  3847. if(code_seen('T')) {
  3848. tmp_extruder = code_value();
  3849. if(tmp_extruder >= EXTRUDERS) {
  3850. SERIAL_ECHO_START;
  3851. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3852. break;
  3853. }
  3854. }
  3855. float area = .0;
  3856. if(code_seen('D')) {
  3857. float diameter = (float)code_value();
  3858. if (diameter == 0.0) {
  3859. // setting any extruder filament size disables volumetric on the assumption that
  3860. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3861. // for all extruders
  3862. volumetric_enabled = false;
  3863. } else {
  3864. filament_size[tmp_extruder] = (float)code_value();
  3865. // make sure all extruders have some sane value for the filament size
  3866. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3867. #if EXTRUDERS > 1
  3868. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3869. #if EXTRUDERS > 2
  3870. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3871. #endif
  3872. #endif
  3873. volumetric_enabled = true;
  3874. }
  3875. } else {
  3876. //reserved for setting filament diameter via UFID or filament measuring device
  3877. break;
  3878. }
  3879. calculate_volumetric_multipliers();
  3880. }
  3881. break;
  3882. case 201: // M201
  3883. for(int8_t i=0; i < NUM_AXIS; i++)
  3884. {
  3885. if(code_seen(axis_codes[i]))
  3886. {
  3887. max_acceleration_units_per_sq_second[i] = code_value();
  3888. }
  3889. }
  3890. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3891. reset_acceleration_rates();
  3892. break;
  3893. #if 0 // Not used for Sprinter/grbl gen6
  3894. case 202: // M202
  3895. for(int8_t i=0; i < NUM_AXIS; i++) {
  3896. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3897. }
  3898. break;
  3899. #endif
  3900. case 203: // M203 max feedrate mm/sec
  3901. for(int8_t i=0; i < NUM_AXIS; i++) {
  3902. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3903. }
  3904. break;
  3905. case 204: // M204 acclereration S normal moves T filmanent only moves
  3906. {
  3907. if(code_seen('S')) acceleration = code_value() ;
  3908. if(code_seen('T')) retract_acceleration = code_value() ;
  3909. }
  3910. break;
  3911. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3912. {
  3913. if(code_seen('S')) minimumfeedrate = code_value();
  3914. if(code_seen('T')) mintravelfeedrate = code_value();
  3915. if(code_seen('B')) minsegmenttime = code_value() ;
  3916. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3917. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3918. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3919. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3920. }
  3921. break;
  3922. case 206: // M206 additional homing offset
  3923. for(int8_t i=0; i < 3; i++)
  3924. {
  3925. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3926. }
  3927. break;
  3928. #ifdef FWRETRACT
  3929. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3930. {
  3931. if(code_seen('S'))
  3932. {
  3933. retract_length = code_value() ;
  3934. }
  3935. if(code_seen('F'))
  3936. {
  3937. retract_feedrate = code_value()/60 ;
  3938. }
  3939. if(code_seen('Z'))
  3940. {
  3941. retract_zlift = code_value() ;
  3942. }
  3943. }break;
  3944. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3945. {
  3946. if(code_seen('S'))
  3947. {
  3948. retract_recover_length = code_value() ;
  3949. }
  3950. if(code_seen('F'))
  3951. {
  3952. retract_recover_feedrate = code_value()/60 ;
  3953. }
  3954. }break;
  3955. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3956. {
  3957. if(code_seen('S'))
  3958. {
  3959. int t= code_value() ;
  3960. switch(t)
  3961. {
  3962. case 0:
  3963. {
  3964. autoretract_enabled=false;
  3965. retracted[0]=false;
  3966. #if EXTRUDERS > 1
  3967. retracted[1]=false;
  3968. #endif
  3969. #if EXTRUDERS > 2
  3970. retracted[2]=false;
  3971. #endif
  3972. }break;
  3973. case 1:
  3974. {
  3975. autoretract_enabled=true;
  3976. retracted[0]=false;
  3977. #if EXTRUDERS > 1
  3978. retracted[1]=false;
  3979. #endif
  3980. #if EXTRUDERS > 2
  3981. retracted[2]=false;
  3982. #endif
  3983. }break;
  3984. default:
  3985. SERIAL_ECHO_START;
  3986. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3987. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3988. SERIAL_ECHOLNPGM("\"(1)");
  3989. }
  3990. }
  3991. }break;
  3992. #endif // FWRETRACT
  3993. #if EXTRUDERS > 1
  3994. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3995. {
  3996. if(setTargetedHotend(218)){
  3997. break;
  3998. }
  3999. if(code_seen('X'))
  4000. {
  4001. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4002. }
  4003. if(code_seen('Y'))
  4004. {
  4005. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4006. }
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4009. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4010. {
  4011. SERIAL_ECHO(" ");
  4012. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4013. SERIAL_ECHO(",");
  4014. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4015. }
  4016. SERIAL_ECHOLN("");
  4017. }break;
  4018. #endif
  4019. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4020. {
  4021. if(code_seen('S'))
  4022. {
  4023. feedmultiply = code_value() ;
  4024. }
  4025. }
  4026. break;
  4027. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4028. {
  4029. if(code_seen('S'))
  4030. {
  4031. int tmp_code = code_value();
  4032. if (code_seen('T'))
  4033. {
  4034. if(setTargetedHotend(221)){
  4035. break;
  4036. }
  4037. extruder_multiply[tmp_extruder] = tmp_code;
  4038. }
  4039. else
  4040. {
  4041. extrudemultiply = tmp_code ;
  4042. }
  4043. }
  4044. }
  4045. break;
  4046. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4047. {
  4048. if(code_seen('P')){
  4049. int pin_number = code_value(); // pin number
  4050. int pin_state = -1; // required pin state - default is inverted
  4051. if(code_seen('S')) pin_state = code_value(); // required pin state
  4052. if(pin_state >= -1 && pin_state <= 1){
  4053. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4054. {
  4055. if (sensitive_pins[i] == pin_number)
  4056. {
  4057. pin_number = -1;
  4058. break;
  4059. }
  4060. }
  4061. if (pin_number > -1)
  4062. {
  4063. int target = LOW;
  4064. st_synchronize();
  4065. pinMode(pin_number, INPUT);
  4066. switch(pin_state){
  4067. case 1:
  4068. target = HIGH;
  4069. break;
  4070. case 0:
  4071. target = LOW;
  4072. break;
  4073. case -1:
  4074. target = !digitalRead(pin_number);
  4075. break;
  4076. }
  4077. while(digitalRead(pin_number) != target){
  4078. manage_heater();
  4079. manage_inactivity();
  4080. lcd_update();
  4081. }
  4082. }
  4083. }
  4084. }
  4085. }
  4086. break;
  4087. #if NUM_SERVOS > 0
  4088. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4089. {
  4090. int servo_index = -1;
  4091. int servo_position = 0;
  4092. if (code_seen('P'))
  4093. servo_index = code_value();
  4094. if (code_seen('S')) {
  4095. servo_position = code_value();
  4096. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4097. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4098. servos[servo_index].attach(0);
  4099. #endif
  4100. servos[servo_index].write(servo_position);
  4101. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4102. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4103. servos[servo_index].detach();
  4104. #endif
  4105. }
  4106. else {
  4107. SERIAL_ECHO_START;
  4108. SERIAL_ECHO("Servo ");
  4109. SERIAL_ECHO(servo_index);
  4110. SERIAL_ECHOLN(" out of range");
  4111. }
  4112. }
  4113. else if (servo_index >= 0) {
  4114. SERIAL_PROTOCOL(MSG_OK);
  4115. SERIAL_PROTOCOL(" Servo ");
  4116. SERIAL_PROTOCOL(servo_index);
  4117. SERIAL_PROTOCOL(": ");
  4118. SERIAL_PROTOCOL(servos[servo_index].read());
  4119. SERIAL_PROTOCOLLN("");
  4120. }
  4121. }
  4122. break;
  4123. #endif // NUM_SERVOS > 0
  4124. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4125. case 300: // M300
  4126. {
  4127. int beepS = code_seen('S') ? code_value() : 110;
  4128. int beepP = code_seen('P') ? code_value() : 1000;
  4129. if (beepS > 0)
  4130. {
  4131. #if BEEPER > 0
  4132. tone(BEEPER, beepS);
  4133. delay(beepP);
  4134. noTone(BEEPER);
  4135. #elif defined(ULTRALCD)
  4136. lcd_buzz(beepS, beepP);
  4137. #elif defined(LCD_USE_I2C_BUZZER)
  4138. lcd_buzz(beepP, beepS);
  4139. #endif
  4140. }
  4141. else
  4142. {
  4143. delay(beepP);
  4144. }
  4145. }
  4146. break;
  4147. #endif // M300
  4148. #ifdef PIDTEMP
  4149. case 301: // M301
  4150. {
  4151. if(code_seen('P')) Kp = code_value();
  4152. if(code_seen('I')) Ki = scalePID_i(code_value());
  4153. if(code_seen('D')) Kd = scalePID_d(code_value());
  4154. #ifdef PID_ADD_EXTRUSION_RATE
  4155. if(code_seen('C')) Kc = code_value();
  4156. #endif
  4157. updatePID();
  4158. SERIAL_PROTOCOLRPGM(MSG_OK);
  4159. SERIAL_PROTOCOL(" p:");
  4160. SERIAL_PROTOCOL(Kp);
  4161. SERIAL_PROTOCOL(" i:");
  4162. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4163. SERIAL_PROTOCOL(" d:");
  4164. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4165. #ifdef PID_ADD_EXTRUSION_RATE
  4166. SERIAL_PROTOCOL(" c:");
  4167. //Kc does not have scaling applied above, or in resetting defaults
  4168. SERIAL_PROTOCOL(Kc);
  4169. #endif
  4170. SERIAL_PROTOCOLLN("");
  4171. }
  4172. break;
  4173. #endif //PIDTEMP
  4174. #ifdef PIDTEMPBED
  4175. case 304: // M304
  4176. {
  4177. if(code_seen('P')) bedKp = code_value();
  4178. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4179. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4180. updatePID();
  4181. SERIAL_PROTOCOLRPGM(MSG_OK);
  4182. SERIAL_PROTOCOL(" p:");
  4183. SERIAL_PROTOCOL(bedKp);
  4184. SERIAL_PROTOCOL(" i:");
  4185. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4186. SERIAL_PROTOCOL(" d:");
  4187. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4188. SERIAL_PROTOCOLLN("");
  4189. }
  4190. break;
  4191. #endif //PIDTEMP
  4192. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4193. {
  4194. #ifdef CHDK
  4195. SET_OUTPUT(CHDK);
  4196. WRITE(CHDK, HIGH);
  4197. chdkHigh = millis();
  4198. chdkActive = true;
  4199. #else
  4200. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4201. const uint8_t NUM_PULSES=16;
  4202. const float PULSE_LENGTH=0.01524;
  4203. for(int i=0; i < NUM_PULSES; i++) {
  4204. WRITE(PHOTOGRAPH_PIN, HIGH);
  4205. _delay_ms(PULSE_LENGTH);
  4206. WRITE(PHOTOGRAPH_PIN, LOW);
  4207. _delay_ms(PULSE_LENGTH);
  4208. }
  4209. delay(7.33);
  4210. for(int i=0; i < NUM_PULSES; i++) {
  4211. WRITE(PHOTOGRAPH_PIN, HIGH);
  4212. _delay_ms(PULSE_LENGTH);
  4213. WRITE(PHOTOGRAPH_PIN, LOW);
  4214. _delay_ms(PULSE_LENGTH);
  4215. }
  4216. #endif
  4217. #endif //chdk end if
  4218. }
  4219. break;
  4220. #ifdef DOGLCD
  4221. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4222. {
  4223. if (code_seen('C')) {
  4224. lcd_setcontrast( ((int)code_value())&63 );
  4225. }
  4226. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4227. SERIAL_PROTOCOL(lcd_contrast);
  4228. SERIAL_PROTOCOLLN("");
  4229. }
  4230. break;
  4231. #endif
  4232. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4233. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4234. {
  4235. float temp = .0;
  4236. if (code_seen('S')) temp=code_value();
  4237. set_extrude_min_temp(temp);
  4238. }
  4239. break;
  4240. #endif
  4241. case 303: // M303 PID autotune
  4242. {
  4243. float temp = 150.0;
  4244. int e=0;
  4245. int c=5;
  4246. if (code_seen('E')) e=code_value();
  4247. if (e<0)
  4248. temp=70;
  4249. if (code_seen('S')) temp=code_value();
  4250. if (code_seen('C')) c=code_value();
  4251. PID_autotune(temp, e, c);
  4252. }
  4253. break;
  4254. case 400: // M400 finish all moves
  4255. {
  4256. st_synchronize();
  4257. }
  4258. break;
  4259. #ifdef FILAMENT_SENSOR
  4260. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4261. {
  4262. #if (FILWIDTH_PIN > -1)
  4263. if(code_seen('N')) filament_width_nominal=code_value();
  4264. else{
  4265. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4266. SERIAL_PROTOCOLLN(filament_width_nominal);
  4267. }
  4268. #endif
  4269. }
  4270. break;
  4271. case 405: //M405 Turn on filament sensor for control
  4272. {
  4273. if(code_seen('D')) meas_delay_cm=code_value();
  4274. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4275. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4276. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4277. {
  4278. int temp_ratio = widthFil_to_size_ratio();
  4279. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4280. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4281. }
  4282. delay_index1=0;
  4283. delay_index2=0;
  4284. }
  4285. filament_sensor = true ;
  4286. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4287. //SERIAL_PROTOCOL(filament_width_meas);
  4288. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4289. //SERIAL_PROTOCOL(extrudemultiply);
  4290. }
  4291. break;
  4292. case 406: //M406 Turn off filament sensor for control
  4293. {
  4294. filament_sensor = false ;
  4295. }
  4296. break;
  4297. case 407: //M407 Display measured filament diameter
  4298. {
  4299. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4300. SERIAL_PROTOCOLLN(filament_width_meas);
  4301. }
  4302. break;
  4303. #endif
  4304. case 500: // M500 Store settings in EEPROM
  4305. {
  4306. Config_StoreSettings(EEPROM_OFFSET);
  4307. }
  4308. break;
  4309. case 501: // M501 Read settings from EEPROM
  4310. {
  4311. Config_RetrieveSettings(EEPROM_OFFSET);
  4312. }
  4313. break;
  4314. case 502: // M502 Revert to default settings
  4315. {
  4316. Config_ResetDefault();
  4317. }
  4318. break;
  4319. case 503: // M503 print settings currently in memory
  4320. {
  4321. Config_PrintSettings();
  4322. }
  4323. break;
  4324. case 509: //M509 Force language selection
  4325. {
  4326. lcd_force_language_selection();
  4327. SERIAL_ECHO_START;
  4328. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4329. }
  4330. break;
  4331. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4332. case 540:
  4333. {
  4334. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4335. }
  4336. break;
  4337. #endif
  4338. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4339. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4340. {
  4341. float value;
  4342. if (code_seen('Z'))
  4343. {
  4344. value = code_value();
  4345. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4346. {
  4347. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4348. SERIAL_ECHO_START;
  4349. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4350. SERIAL_PROTOCOLLN("");
  4351. }
  4352. else
  4353. {
  4354. SERIAL_ECHO_START;
  4355. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4356. SERIAL_ECHORPGM(MSG_Z_MIN);
  4357. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4358. SERIAL_ECHORPGM(MSG_Z_MAX);
  4359. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4360. SERIAL_PROTOCOLLN("");
  4361. }
  4362. }
  4363. else
  4364. {
  4365. SERIAL_ECHO_START;
  4366. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4367. SERIAL_ECHO(-zprobe_zoffset);
  4368. SERIAL_PROTOCOLLN("");
  4369. }
  4370. break;
  4371. }
  4372. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4373. #ifdef FILAMENTCHANGEENABLE
  4374. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4375. {
  4376. MYSERIAL.println("!!!!M600!!!!");
  4377. st_synchronize();
  4378. float target[4];
  4379. float lastpos[4];
  4380. if (farm_mode)
  4381. {
  4382. prusa_statistics(22);
  4383. }
  4384. feedmultiplyBckp=feedmultiply;
  4385. int8_t TooLowZ = 0;
  4386. target[X_AXIS]=current_position[X_AXIS];
  4387. target[Y_AXIS]=current_position[Y_AXIS];
  4388. target[Z_AXIS]=current_position[Z_AXIS];
  4389. target[E_AXIS]=current_position[E_AXIS];
  4390. lastpos[X_AXIS]=current_position[X_AXIS];
  4391. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4392. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4393. lastpos[E_AXIS]=current_position[E_AXIS];
  4394. //Restract extruder
  4395. if(code_seen('E'))
  4396. {
  4397. target[E_AXIS]+= code_value();
  4398. }
  4399. else
  4400. {
  4401. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4402. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4403. #endif
  4404. }
  4405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4406. //Lift Z
  4407. if(code_seen('Z'))
  4408. {
  4409. target[Z_AXIS]+= code_value();
  4410. }
  4411. else
  4412. {
  4413. #ifdef FILAMENTCHANGE_ZADD
  4414. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4415. if(target[Z_AXIS] < 10){
  4416. target[Z_AXIS]+= 10 ;
  4417. TooLowZ = 1;
  4418. }else{
  4419. TooLowZ = 0;
  4420. }
  4421. #endif
  4422. }
  4423. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4424. //Move XY to side
  4425. if(code_seen('X'))
  4426. {
  4427. target[X_AXIS]+= code_value();
  4428. }
  4429. else
  4430. {
  4431. #ifdef FILAMENTCHANGE_XPOS
  4432. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4433. #endif
  4434. }
  4435. if(code_seen('Y'))
  4436. {
  4437. target[Y_AXIS]= code_value();
  4438. }
  4439. else
  4440. {
  4441. #ifdef FILAMENTCHANGE_YPOS
  4442. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4443. #endif
  4444. }
  4445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4446. st_synchronize();
  4447. custom_message = true;
  4448. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4449. // Unload filament
  4450. if(code_seen('L'))
  4451. {
  4452. target[E_AXIS]+= code_value();
  4453. }
  4454. else
  4455. {
  4456. #ifdef SNMM
  4457. #else
  4458. #ifdef FILAMENTCHANGE_FINALRETRACT
  4459. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4460. #endif
  4461. #endif // SNMM
  4462. }
  4463. #ifdef SNMM
  4464. target[E_AXIS] += 12;
  4465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4466. target[E_AXIS] += 6;
  4467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4468. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4469. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4470. st_synchronize();
  4471. target[E_AXIS] += (FIL_COOLING);
  4472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4473. target[E_AXIS] += (FIL_COOLING*-1);
  4474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4475. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4477. st_synchronize();
  4478. #else
  4479. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4480. #endif // SNMM
  4481. //finish moves
  4482. st_synchronize();
  4483. //disable extruder steppers so filament can be removed
  4484. disable_e0();
  4485. disable_e1();
  4486. disable_e2();
  4487. delay(100);
  4488. //Wait for user to insert filament
  4489. uint8_t cnt=0;
  4490. int counterBeep = 0;
  4491. lcd_wait_interact();
  4492. load_filament_time = millis();
  4493. while(!lcd_clicked()){
  4494. cnt++;
  4495. manage_heater();
  4496. manage_inactivity(true);
  4497. /*#ifdef SNMM
  4498. target[E_AXIS] += 0.002;
  4499. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4500. #endif // SNMM*/
  4501. if(cnt==0)
  4502. {
  4503. #if BEEPER > 0
  4504. if (counterBeep== 500){
  4505. counterBeep = 0;
  4506. }
  4507. SET_OUTPUT(BEEPER);
  4508. if (counterBeep== 0){
  4509. WRITE(BEEPER,HIGH);
  4510. }
  4511. if (counterBeep== 20){
  4512. WRITE(BEEPER,LOW);
  4513. }
  4514. counterBeep++;
  4515. #else
  4516. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4517. lcd_buzz(1000/6,100);
  4518. #else
  4519. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4520. #endif
  4521. #endif
  4522. }
  4523. }
  4524. #ifdef SNMM
  4525. display_loading();
  4526. do {
  4527. target[E_AXIS] += 0.002;
  4528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4529. delay_keep_alive(2);
  4530. } while (!lcd_clicked());
  4531. /*if (millis() - load_filament_time > 2) {
  4532. load_filament_time = millis();
  4533. target[E_AXIS] += 0.001;
  4534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4535. }*/
  4536. #endif
  4537. //Filament inserted
  4538. WRITE(BEEPER,LOW);
  4539. //Feed the filament to the end of nozzle quickly
  4540. #ifdef SNMM
  4541. st_synchronize();
  4542. target[E_AXIS] += bowden_length[snmm_extruder];
  4543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4544. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4546. target[E_AXIS] += 40;
  4547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4548. target[E_AXIS] += 10;
  4549. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4550. #else
  4551. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4553. #endif // SNMM
  4554. //Extrude some filament
  4555. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4557. //Wait for user to check the state
  4558. lcd_change_fil_state = 0;
  4559. lcd_loading_filament();
  4560. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4561. lcd_change_fil_state = 0;
  4562. lcd_alright();
  4563. switch(lcd_change_fil_state){
  4564. // Filament failed to load so load it again
  4565. case 2:
  4566. #ifdef SNMM
  4567. display_loading();
  4568. do {
  4569. target[E_AXIS] += 0.002;
  4570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4571. delay_keep_alive(2);
  4572. } while (!lcd_clicked());
  4573. st_synchronize();
  4574. target[E_AXIS] += bowden_length[snmm_extruder];
  4575. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4576. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4578. target[E_AXIS] += 40;
  4579. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4580. target[E_AXIS] += 10;
  4581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4582. #else
  4583. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4584. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4585. #endif
  4586. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4587. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4588. lcd_loading_filament();
  4589. break;
  4590. // Filament loaded properly but color is not clear
  4591. case 3:
  4592. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4594. lcd_loading_color();
  4595. break;
  4596. // Everything good
  4597. default:
  4598. lcd_change_success();
  4599. lcd_update_enable(true);
  4600. break;
  4601. }
  4602. }
  4603. //Not let's go back to print
  4604. //Feed a little of filament to stabilize pressure
  4605. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4607. //Retract
  4608. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4610. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4611. //Move XY back
  4612. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4613. //Move Z back
  4614. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4615. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4616. //Unretract
  4617. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4618. //Set E position to original
  4619. plan_set_e_position(lastpos[E_AXIS]);
  4620. //Recover feed rate
  4621. feedmultiply=feedmultiplyBckp;
  4622. char cmd[9];
  4623. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4624. enquecommand(cmd);
  4625. lcd_setstatuspgm(WELCOME_MSG);
  4626. custom_message = false;
  4627. custom_message_type = 0;
  4628. #ifdef PAT9125
  4629. if (fsensor_M600)
  4630. {
  4631. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4632. st_synchronize();
  4633. while (!is_buffer_empty())
  4634. {
  4635. process_commands();
  4636. cmdqueue_pop_front();
  4637. }
  4638. fsensor_enable();
  4639. fsensor_restore_print_and_continue();
  4640. }
  4641. #endif //PAT9125
  4642. }
  4643. break;
  4644. #endif //FILAMENTCHANGEENABLE
  4645. case 601: {
  4646. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4647. }
  4648. break;
  4649. case 602: {
  4650. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4651. }
  4652. break;
  4653. #ifdef LIN_ADVANCE
  4654. case 900: // M900: Set LIN_ADVANCE options.
  4655. gcode_M900();
  4656. break;
  4657. #endif
  4658. case 907: // M907 Set digital trimpot motor current using axis codes.
  4659. {
  4660. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4661. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4662. if(code_seen('B')) digipot_current(4,code_value());
  4663. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4664. #endif
  4665. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4666. if(code_seen('X')) digipot_current(0, code_value());
  4667. #endif
  4668. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4669. if(code_seen('Z')) digipot_current(1, code_value());
  4670. #endif
  4671. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4672. if(code_seen('E')) digipot_current(2, code_value());
  4673. #endif
  4674. #ifdef DIGIPOT_I2C
  4675. // this one uses actual amps in floating point
  4676. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4677. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4678. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4679. #endif
  4680. }
  4681. break;
  4682. case 908: // M908 Control digital trimpot directly.
  4683. {
  4684. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4685. uint8_t channel,current;
  4686. if(code_seen('P')) channel=code_value();
  4687. if(code_seen('S')) current=code_value();
  4688. digitalPotWrite(channel, current);
  4689. #endif
  4690. }
  4691. break;
  4692. case 910: // M910 TMC2130 init
  4693. {
  4694. tmc2130_init();
  4695. }
  4696. break;
  4697. case 911: // M911 Set TMC2130 holding currents
  4698. {
  4699. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4700. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4701. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4702. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4703. }
  4704. break;
  4705. case 912: // M912 Set TMC2130 running currents
  4706. {
  4707. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4708. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4709. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4710. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4711. }
  4712. break;
  4713. case 913: // M913 Print TMC2130 currents
  4714. {
  4715. tmc2130_print_currents();
  4716. }
  4717. break;
  4718. case 914: // M914 Set normal mode
  4719. {
  4720. tmc2130_mode = TMC2130_MODE_NORMAL;
  4721. tmc2130_init();
  4722. }
  4723. break;
  4724. case 915: // M915 Set silent mode
  4725. {
  4726. tmc2130_mode = TMC2130_MODE_SILENT;
  4727. tmc2130_init();
  4728. }
  4729. break;
  4730. case 916: // M916 Set sg_thrs
  4731. {
  4732. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4733. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4734. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4735. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4736. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4737. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4738. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4739. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4740. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4741. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4742. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4743. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4744. }
  4745. break;
  4746. case 917: // M917 Set TMC2130 pwm_ampl
  4747. {
  4748. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4749. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4750. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4751. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4752. }
  4753. break;
  4754. case 918: // M918 Set TMC2130 pwm_grad
  4755. {
  4756. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4757. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4758. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4759. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4760. }
  4761. break;
  4762. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4763. {
  4764. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4765. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4766. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4767. if(code_seen('B')) microstep_mode(4,code_value());
  4768. microstep_readings();
  4769. #endif
  4770. }
  4771. break;
  4772. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4773. {
  4774. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4775. if(code_seen('S')) switch((int)code_value())
  4776. {
  4777. case 1:
  4778. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4779. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4780. break;
  4781. case 2:
  4782. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4783. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4784. break;
  4785. }
  4786. microstep_readings();
  4787. #endif
  4788. }
  4789. break;
  4790. case 701: //M701: load filament
  4791. {
  4792. enable_z();
  4793. custom_message = true;
  4794. custom_message_type = 2;
  4795. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4796. current_position[E_AXIS] += 70;
  4797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4798. current_position[E_AXIS] += 25;
  4799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4800. st_synchronize();
  4801. if (!farm_mode && loading_flag) {
  4802. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4803. while (!clean) {
  4804. lcd_update_enable(true);
  4805. lcd_update(2);
  4806. current_position[E_AXIS] += 25;
  4807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4808. st_synchronize();
  4809. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4810. }
  4811. }
  4812. lcd_update_enable(true);
  4813. lcd_update(2);
  4814. lcd_setstatuspgm(WELCOME_MSG);
  4815. disable_z();
  4816. loading_flag = false;
  4817. custom_message = false;
  4818. custom_message_type = 0;
  4819. }
  4820. break;
  4821. case 702:
  4822. {
  4823. #ifdef SNMM
  4824. if (code_seen('U')) {
  4825. extr_unload_used(); //unload all filaments which were used in current print
  4826. }
  4827. else if (code_seen('C')) {
  4828. extr_unload(); //unload just current filament
  4829. }
  4830. else {
  4831. extr_unload_all(); //unload all filaments
  4832. }
  4833. #else
  4834. custom_message = true;
  4835. custom_message_type = 2;
  4836. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4837. current_position[E_AXIS] -= 80;
  4838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4839. st_synchronize();
  4840. lcd_setstatuspgm(WELCOME_MSG);
  4841. custom_message = false;
  4842. custom_message_type = 0;
  4843. #endif
  4844. }
  4845. break;
  4846. case 999: // M999: Restart after being stopped
  4847. Stopped = false;
  4848. lcd_reset_alert_level();
  4849. gcode_LastN = Stopped_gcode_LastN;
  4850. FlushSerialRequestResend();
  4851. break;
  4852. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4853. }
  4854. } // end if(code_seen('M')) (end of M codes)
  4855. else if(code_seen('T'))
  4856. {
  4857. int index;
  4858. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4859. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4860. SERIAL_ECHOLNPGM("Invalid T code.");
  4861. }
  4862. else {
  4863. if (*(strchr_pointer + index) == '?') {
  4864. tmp_extruder = choose_extruder_menu();
  4865. }
  4866. else {
  4867. tmp_extruder = code_value();
  4868. }
  4869. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4870. #ifdef SNMM
  4871. #ifdef LIN_ADVANCE
  4872. if (snmm_extruder != tmp_extruder)
  4873. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4874. #endif
  4875. snmm_extruder = tmp_extruder;
  4876. st_synchronize();
  4877. delay(100);
  4878. disable_e0();
  4879. disable_e1();
  4880. disable_e2();
  4881. pinMode(E_MUX0_PIN, OUTPUT);
  4882. pinMode(E_MUX1_PIN, OUTPUT);
  4883. pinMode(E_MUX2_PIN, OUTPUT);
  4884. delay(100);
  4885. SERIAL_ECHO_START;
  4886. SERIAL_ECHO("T:");
  4887. SERIAL_ECHOLN((int)tmp_extruder);
  4888. switch (tmp_extruder) {
  4889. case 1:
  4890. WRITE(E_MUX0_PIN, HIGH);
  4891. WRITE(E_MUX1_PIN, LOW);
  4892. WRITE(E_MUX2_PIN, LOW);
  4893. break;
  4894. case 2:
  4895. WRITE(E_MUX0_PIN, LOW);
  4896. WRITE(E_MUX1_PIN, HIGH);
  4897. WRITE(E_MUX2_PIN, LOW);
  4898. break;
  4899. case 3:
  4900. WRITE(E_MUX0_PIN, HIGH);
  4901. WRITE(E_MUX1_PIN, HIGH);
  4902. WRITE(E_MUX2_PIN, LOW);
  4903. break;
  4904. default:
  4905. WRITE(E_MUX0_PIN, LOW);
  4906. WRITE(E_MUX1_PIN, LOW);
  4907. WRITE(E_MUX2_PIN, LOW);
  4908. break;
  4909. }
  4910. delay(100);
  4911. #else
  4912. if (tmp_extruder >= EXTRUDERS) {
  4913. SERIAL_ECHO_START;
  4914. SERIAL_ECHOPGM("T");
  4915. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4916. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4917. }
  4918. else {
  4919. boolean make_move = false;
  4920. if (code_seen('F')) {
  4921. make_move = true;
  4922. next_feedrate = code_value();
  4923. if (next_feedrate > 0.0) {
  4924. feedrate = next_feedrate;
  4925. }
  4926. }
  4927. #if EXTRUDERS > 1
  4928. if (tmp_extruder != active_extruder) {
  4929. // Save current position to return to after applying extruder offset
  4930. memcpy(destination, current_position, sizeof(destination));
  4931. // Offset extruder (only by XY)
  4932. int i;
  4933. for (i = 0; i < 2; i++) {
  4934. current_position[i] = current_position[i] -
  4935. extruder_offset[i][active_extruder] +
  4936. extruder_offset[i][tmp_extruder];
  4937. }
  4938. // Set the new active extruder and position
  4939. active_extruder = tmp_extruder;
  4940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4941. // Move to the old position if 'F' was in the parameters
  4942. if (make_move && Stopped == false) {
  4943. prepare_move();
  4944. }
  4945. }
  4946. #endif
  4947. SERIAL_ECHO_START;
  4948. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4949. SERIAL_PROTOCOLLN((int)active_extruder);
  4950. }
  4951. #endif
  4952. }
  4953. } // end if(code_seen('T')) (end of T codes)
  4954. #ifdef DEBUG_DCODES
  4955. else if (code_seen('D')) // D codes (debug)
  4956. {
  4957. switch((int)code_value())
  4958. {
  4959. case 0: // D0 - Reset
  4960. dcode_0(); break;
  4961. case 1: // D1 - Clear EEPROM
  4962. dcode_1(); break;
  4963. case 2: // D2 - Read/Write RAM
  4964. dcode_2(); break;
  4965. case 3: // D3 - Read/Write EEPROM
  4966. dcode_3(); break;
  4967. case 4: // D4 - Read/Write PIN
  4968. dcode_4(); break;
  4969. case 5:
  4970. MYSERIAL.println("D5 - Test");
  4971. if (code_seen('P'))
  4972. selectedSerialPort = (int)code_value();
  4973. MYSERIAL.print("selectedSerialPort = ");
  4974. MYSERIAL.println(selectedSerialPort, DEC);
  4975. break;
  4976. case 999:
  4977. {
  4978. MYSERIAL.println("D999 - crash");
  4979. /* while (!is_buffer_empty())
  4980. {
  4981. process_commands();
  4982. cmdqueue_pop_front();
  4983. }*/
  4984. st_synchronize();
  4985. lcd_update_enable(true);
  4986. lcd_implementation_clear();
  4987. lcd_update(2);
  4988. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  4989. lcd_update_enable(true);
  4990. lcd_update(2);
  4991. lcd_setstatuspgm(WELCOME_MSG);
  4992. if (yesno)
  4993. {
  4994. enquecommand_P(PSTR("G28 X"));
  4995. enquecommand_P(PSTR("G28 Y"));
  4996. enquecommand_P(PSTR("D1000"));
  4997. }
  4998. else
  4999. {
  5000. enquecommand_P(PSTR("D1001"));
  5001. }
  5002. }
  5003. break;
  5004. case 1000:
  5005. crashdet_restore_print_and_continue();
  5006. tmc2130_sg_stop_on_crash = true;
  5007. break;
  5008. case 1001:
  5009. card.sdprinting = false;
  5010. card.closefile();
  5011. tmc2130_sg_stop_on_crash = true;
  5012. break;
  5013. /* case 4:
  5014. {
  5015. MYSERIAL.println("D4 - Test");
  5016. uint8_t data[16];
  5017. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5018. MYSERIAL.println(cnt, DEC);
  5019. for (int i = 0; i < cnt; i++)
  5020. {
  5021. serial_print_hex_byte(data[i]);
  5022. MYSERIAL.write(' ');
  5023. }
  5024. MYSERIAL.write('\n');
  5025. }
  5026. break;
  5027. /* case 3:
  5028. if (code_seen('L')) // lcd pwm (0-255)
  5029. {
  5030. lcdSoftPwm = (int)code_value();
  5031. }
  5032. if (code_seen('B')) // lcd blink delay (0-255)
  5033. {
  5034. lcdBlinkDelay = (int)code_value();
  5035. }
  5036. // calibrate_z_auto();
  5037. /* MYSERIAL.print("fsensor_enable()");
  5038. #ifdef PAT9125
  5039. fsensor_enable();
  5040. #endif*/
  5041. break;
  5042. // case 4:
  5043. // lcdBlinkDelay = 10;
  5044. /* MYSERIAL.print("fsensor_disable()");
  5045. #ifdef PAT9125
  5046. fsensor_disable();
  5047. #endif
  5048. break;*/
  5049. // break;
  5050. /* case 5:
  5051. {
  5052. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5053. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5054. MYSERIAL.println(val);
  5055. homeaxis(0);
  5056. }
  5057. break;*/
  5058. case 6:
  5059. {
  5060. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5061. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5062. MYSERIAL.println(val);*/
  5063. homeaxis(1);
  5064. }
  5065. break;
  5066. case 7:
  5067. {
  5068. MYSERIAL.print("pat9125_init=");
  5069. MYSERIAL.println(pat9125_init(200, 200));
  5070. }
  5071. break;
  5072. case 8:
  5073. {
  5074. MYSERIAL.print("swi2c_check=");
  5075. MYSERIAL.println(swi2c_check(0x75));
  5076. }
  5077. break;
  5078. }
  5079. }
  5080. #endif //DEBUG_DCODES
  5081. else
  5082. {
  5083. SERIAL_ECHO_START;
  5084. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5085. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5086. SERIAL_ECHOLNPGM("\"(2)");
  5087. }
  5088. ClearToSend();
  5089. }
  5090. void FlushSerialRequestResend()
  5091. {
  5092. //char cmdbuffer[bufindr][100]="Resend:";
  5093. MYSERIAL.flush();
  5094. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5095. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5096. ClearToSend();
  5097. }
  5098. // Confirm the execution of a command, if sent from a serial line.
  5099. // Execution of a command from a SD card will not be confirmed.
  5100. void ClearToSend()
  5101. {
  5102. previous_millis_cmd = millis();
  5103. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5104. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5105. }
  5106. void get_coordinates()
  5107. {
  5108. bool seen[4]={false,false,false,false};
  5109. for(int8_t i=0; i < NUM_AXIS; i++) {
  5110. if(code_seen(axis_codes[i]))
  5111. {
  5112. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5113. seen[i]=true;
  5114. }
  5115. else destination[i] = current_position[i]; //Are these else lines really needed?
  5116. }
  5117. if(code_seen('F')) {
  5118. next_feedrate = code_value();
  5119. #ifdef MAX_SILENT_FEEDRATE
  5120. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5121. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5122. #endif //MAX_SILENT_FEEDRATE
  5123. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5124. }
  5125. }
  5126. void get_arc_coordinates()
  5127. {
  5128. #ifdef SF_ARC_FIX
  5129. bool relative_mode_backup = relative_mode;
  5130. relative_mode = true;
  5131. #endif
  5132. get_coordinates();
  5133. #ifdef SF_ARC_FIX
  5134. relative_mode=relative_mode_backup;
  5135. #endif
  5136. if(code_seen('I')) {
  5137. offset[0] = code_value();
  5138. }
  5139. else {
  5140. offset[0] = 0.0;
  5141. }
  5142. if(code_seen('J')) {
  5143. offset[1] = code_value();
  5144. }
  5145. else {
  5146. offset[1] = 0.0;
  5147. }
  5148. }
  5149. void clamp_to_software_endstops(float target[3])
  5150. {
  5151. #ifdef DEBUG_DISABLE_SWLIMITS
  5152. return;
  5153. #endif //DEBUG_DISABLE_SWLIMITS
  5154. world2machine_clamp(target[0], target[1]);
  5155. // Clamp the Z coordinate.
  5156. if (min_software_endstops) {
  5157. float negative_z_offset = 0;
  5158. #ifdef ENABLE_AUTO_BED_LEVELING
  5159. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5160. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5161. #endif
  5162. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5163. }
  5164. if (max_software_endstops) {
  5165. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5166. }
  5167. }
  5168. #ifdef MESH_BED_LEVELING
  5169. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5170. float dx = x - current_position[X_AXIS];
  5171. float dy = y - current_position[Y_AXIS];
  5172. float dz = z - current_position[Z_AXIS];
  5173. int n_segments = 0;
  5174. if (mbl.active) {
  5175. float len = abs(dx) + abs(dy);
  5176. if (len > 0)
  5177. // Split to 3cm segments or shorter.
  5178. n_segments = int(ceil(len / 30.f));
  5179. }
  5180. if (n_segments > 1) {
  5181. float de = e - current_position[E_AXIS];
  5182. for (int i = 1; i < n_segments; ++ i) {
  5183. float t = float(i) / float(n_segments);
  5184. plan_buffer_line(
  5185. current_position[X_AXIS] + t * dx,
  5186. current_position[Y_AXIS] + t * dy,
  5187. current_position[Z_AXIS] + t * dz,
  5188. current_position[E_AXIS] + t * de,
  5189. feed_rate, extruder);
  5190. }
  5191. }
  5192. // The rest of the path.
  5193. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5194. current_position[X_AXIS] = x;
  5195. current_position[Y_AXIS] = y;
  5196. current_position[Z_AXIS] = z;
  5197. current_position[E_AXIS] = e;
  5198. }
  5199. #endif // MESH_BED_LEVELING
  5200. void prepare_move()
  5201. {
  5202. clamp_to_software_endstops(destination);
  5203. previous_millis_cmd = millis();
  5204. // Do not use feedmultiply for E or Z only moves
  5205. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5206. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5207. }
  5208. else {
  5209. #ifdef MESH_BED_LEVELING
  5210. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5211. #else
  5212. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5213. #endif
  5214. }
  5215. for(int8_t i=0; i < NUM_AXIS; i++) {
  5216. current_position[i] = destination[i];
  5217. }
  5218. }
  5219. void prepare_arc_move(char isclockwise) {
  5220. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5221. // Trace the arc
  5222. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5223. // As far as the parser is concerned, the position is now == target. In reality the
  5224. // motion control system might still be processing the action and the real tool position
  5225. // in any intermediate location.
  5226. for(int8_t i=0; i < NUM_AXIS; i++) {
  5227. current_position[i] = destination[i];
  5228. }
  5229. previous_millis_cmd = millis();
  5230. }
  5231. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5232. #if defined(FAN_PIN)
  5233. #if CONTROLLERFAN_PIN == FAN_PIN
  5234. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5235. #endif
  5236. #endif
  5237. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5238. unsigned long lastMotorCheck = 0;
  5239. void controllerFan()
  5240. {
  5241. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5242. {
  5243. lastMotorCheck = millis();
  5244. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5245. #if EXTRUDERS > 2
  5246. || !READ(E2_ENABLE_PIN)
  5247. #endif
  5248. #if EXTRUDER > 1
  5249. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5250. || !READ(X2_ENABLE_PIN)
  5251. #endif
  5252. || !READ(E1_ENABLE_PIN)
  5253. #endif
  5254. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5255. {
  5256. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5257. }
  5258. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5259. {
  5260. digitalWrite(CONTROLLERFAN_PIN, 0);
  5261. analogWrite(CONTROLLERFAN_PIN, 0);
  5262. }
  5263. else
  5264. {
  5265. // allows digital or PWM fan output to be used (see M42 handling)
  5266. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5267. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5268. }
  5269. }
  5270. }
  5271. #endif
  5272. #ifdef TEMP_STAT_LEDS
  5273. static bool blue_led = false;
  5274. static bool red_led = false;
  5275. static uint32_t stat_update = 0;
  5276. void handle_status_leds(void) {
  5277. float max_temp = 0.0;
  5278. if(millis() > stat_update) {
  5279. stat_update += 500; // Update every 0.5s
  5280. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5281. max_temp = max(max_temp, degHotend(cur_extruder));
  5282. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5283. }
  5284. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5285. max_temp = max(max_temp, degTargetBed());
  5286. max_temp = max(max_temp, degBed());
  5287. #endif
  5288. if((max_temp > 55.0) && (red_led == false)) {
  5289. digitalWrite(STAT_LED_RED, 1);
  5290. digitalWrite(STAT_LED_BLUE, 0);
  5291. red_led = true;
  5292. blue_led = false;
  5293. }
  5294. if((max_temp < 54.0) && (blue_led == false)) {
  5295. digitalWrite(STAT_LED_RED, 0);
  5296. digitalWrite(STAT_LED_BLUE, 1);
  5297. red_led = false;
  5298. blue_led = true;
  5299. }
  5300. }
  5301. }
  5302. #endif
  5303. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5304. {
  5305. #if defined(KILL_PIN) && KILL_PIN > -1
  5306. static int killCount = 0; // make the inactivity button a bit less responsive
  5307. const int KILL_DELAY = 10000;
  5308. #endif
  5309. if(buflen < (BUFSIZE-1)){
  5310. get_command();
  5311. }
  5312. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5313. if(max_inactive_time)
  5314. kill("", 4);
  5315. if(stepper_inactive_time) {
  5316. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5317. {
  5318. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5319. disable_x();
  5320. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5321. disable_y();
  5322. disable_z();
  5323. disable_e0();
  5324. disable_e1();
  5325. disable_e2();
  5326. }
  5327. }
  5328. }
  5329. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5330. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5331. {
  5332. chdkActive = false;
  5333. WRITE(CHDK, LOW);
  5334. }
  5335. #endif
  5336. #if defined(KILL_PIN) && KILL_PIN > -1
  5337. // Check if the kill button was pressed and wait just in case it was an accidental
  5338. // key kill key press
  5339. // -------------------------------------------------------------------------------
  5340. if( 0 == READ(KILL_PIN) )
  5341. {
  5342. killCount++;
  5343. }
  5344. else if (killCount > 0)
  5345. {
  5346. killCount--;
  5347. }
  5348. // Exceeded threshold and we can confirm that it was not accidental
  5349. // KILL the machine
  5350. // ----------------------------------------------------------------
  5351. if ( killCount >= KILL_DELAY)
  5352. {
  5353. kill("", 5);
  5354. }
  5355. #endif
  5356. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5357. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5358. #endif
  5359. #ifdef EXTRUDER_RUNOUT_PREVENT
  5360. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5361. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5362. {
  5363. bool oldstatus=READ(E0_ENABLE_PIN);
  5364. enable_e0();
  5365. float oldepos=current_position[E_AXIS];
  5366. float oldedes=destination[E_AXIS];
  5367. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5368. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5369. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5370. current_position[E_AXIS]=oldepos;
  5371. destination[E_AXIS]=oldedes;
  5372. plan_set_e_position(oldepos);
  5373. previous_millis_cmd=millis();
  5374. st_synchronize();
  5375. WRITE(E0_ENABLE_PIN,oldstatus);
  5376. }
  5377. #endif
  5378. #ifdef TEMP_STAT_LEDS
  5379. handle_status_leds();
  5380. #endif
  5381. check_axes_activity();
  5382. }
  5383. void kill(const char *full_screen_message, unsigned char id)
  5384. {
  5385. SERIAL_ECHOPGM("KILL: ");
  5386. MYSERIAL.println(int(id));
  5387. //return;
  5388. cli(); // Stop interrupts
  5389. disable_heater();
  5390. disable_x();
  5391. // SERIAL_ECHOLNPGM("kill - disable Y");
  5392. disable_y();
  5393. disable_z();
  5394. disable_e0();
  5395. disable_e1();
  5396. disable_e2();
  5397. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5398. pinMode(PS_ON_PIN,INPUT);
  5399. #endif
  5400. SERIAL_ERROR_START;
  5401. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5402. if (full_screen_message != NULL) {
  5403. SERIAL_ERRORLNRPGM(full_screen_message);
  5404. lcd_display_message_fullscreen_P(full_screen_message);
  5405. } else {
  5406. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5407. }
  5408. // FMC small patch to update the LCD before ending
  5409. sei(); // enable interrupts
  5410. for ( int i=5; i--; lcd_update())
  5411. {
  5412. delay(200);
  5413. }
  5414. cli(); // disable interrupts
  5415. suicide();
  5416. while(1) { /* Intentionally left empty */ } // Wait for reset
  5417. }
  5418. void Stop()
  5419. {
  5420. disable_heater();
  5421. if(Stopped == false) {
  5422. Stopped = true;
  5423. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5424. SERIAL_ERROR_START;
  5425. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5426. LCD_MESSAGERPGM(MSG_STOPPED);
  5427. }
  5428. }
  5429. bool IsStopped() { return Stopped; };
  5430. #ifdef FAST_PWM_FAN
  5431. void setPwmFrequency(uint8_t pin, int val)
  5432. {
  5433. val &= 0x07;
  5434. switch(digitalPinToTimer(pin))
  5435. {
  5436. #if defined(TCCR0A)
  5437. case TIMER0A:
  5438. case TIMER0B:
  5439. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5440. // TCCR0B |= val;
  5441. break;
  5442. #endif
  5443. #if defined(TCCR1A)
  5444. case TIMER1A:
  5445. case TIMER1B:
  5446. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5447. // TCCR1B |= val;
  5448. break;
  5449. #endif
  5450. #if defined(TCCR2)
  5451. case TIMER2:
  5452. case TIMER2:
  5453. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5454. TCCR2 |= val;
  5455. break;
  5456. #endif
  5457. #if defined(TCCR2A)
  5458. case TIMER2A:
  5459. case TIMER2B:
  5460. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5461. TCCR2B |= val;
  5462. break;
  5463. #endif
  5464. #if defined(TCCR3A)
  5465. case TIMER3A:
  5466. case TIMER3B:
  5467. case TIMER3C:
  5468. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5469. TCCR3B |= val;
  5470. break;
  5471. #endif
  5472. #if defined(TCCR4A)
  5473. case TIMER4A:
  5474. case TIMER4B:
  5475. case TIMER4C:
  5476. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5477. TCCR4B |= val;
  5478. break;
  5479. #endif
  5480. #if defined(TCCR5A)
  5481. case TIMER5A:
  5482. case TIMER5B:
  5483. case TIMER5C:
  5484. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5485. TCCR5B |= val;
  5486. break;
  5487. #endif
  5488. }
  5489. }
  5490. #endif //FAST_PWM_FAN
  5491. bool setTargetedHotend(int code){
  5492. tmp_extruder = active_extruder;
  5493. if(code_seen('T')) {
  5494. tmp_extruder = code_value();
  5495. if(tmp_extruder >= EXTRUDERS) {
  5496. SERIAL_ECHO_START;
  5497. switch(code){
  5498. case 104:
  5499. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5500. break;
  5501. case 105:
  5502. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5503. break;
  5504. case 109:
  5505. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5506. break;
  5507. case 218:
  5508. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5509. break;
  5510. case 221:
  5511. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5512. break;
  5513. }
  5514. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5515. return true;
  5516. }
  5517. }
  5518. return false;
  5519. }
  5520. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5521. {
  5522. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5523. {
  5524. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5525. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5526. }
  5527. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5528. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5529. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5530. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5531. total_filament_used = 0;
  5532. }
  5533. float calculate_volumetric_multiplier(float diameter) {
  5534. float area = .0;
  5535. float radius = .0;
  5536. radius = diameter * .5;
  5537. if (! volumetric_enabled || radius == 0) {
  5538. area = 1;
  5539. }
  5540. else {
  5541. area = M_PI * pow(radius, 2);
  5542. }
  5543. return 1.0 / area;
  5544. }
  5545. void calculate_volumetric_multipliers() {
  5546. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5547. #if EXTRUDERS > 1
  5548. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5549. #if EXTRUDERS > 2
  5550. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5551. #endif
  5552. #endif
  5553. }
  5554. void delay_keep_alive(unsigned int ms)
  5555. {
  5556. for (;;) {
  5557. manage_heater();
  5558. // Manage inactivity, but don't disable steppers on timeout.
  5559. manage_inactivity(true);
  5560. lcd_update();
  5561. if (ms == 0)
  5562. break;
  5563. else if (ms >= 50) {
  5564. delay(50);
  5565. ms -= 50;
  5566. } else {
  5567. delay(ms);
  5568. ms = 0;
  5569. }
  5570. }
  5571. }
  5572. void wait_for_heater(long codenum) {
  5573. #ifdef TEMP_RESIDENCY_TIME
  5574. long residencyStart;
  5575. residencyStart = -1;
  5576. /* continue to loop until we have reached the target temp
  5577. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5578. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5579. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5580. #else
  5581. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5582. #endif //TEMP_RESIDENCY_TIME
  5583. if ((millis() - codenum) > 1000UL)
  5584. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5585. if (!farm_mode) {
  5586. SERIAL_PROTOCOLPGM("T:");
  5587. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5588. SERIAL_PROTOCOLPGM(" E:");
  5589. SERIAL_PROTOCOL((int)tmp_extruder);
  5590. #ifdef TEMP_RESIDENCY_TIME
  5591. SERIAL_PROTOCOLPGM(" W:");
  5592. if (residencyStart > -1)
  5593. {
  5594. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5595. SERIAL_PROTOCOLLN(codenum);
  5596. }
  5597. else
  5598. {
  5599. SERIAL_PROTOCOLLN("?");
  5600. }
  5601. }
  5602. #else
  5603. SERIAL_PROTOCOLLN("");
  5604. #endif
  5605. codenum = millis();
  5606. }
  5607. manage_heater();
  5608. manage_inactivity();
  5609. lcd_update();
  5610. #ifdef TEMP_RESIDENCY_TIME
  5611. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5612. or when current temp falls outside the hysteresis after target temp was reached */
  5613. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5614. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5615. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5616. {
  5617. residencyStart = millis();
  5618. }
  5619. #endif //TEMP_RESIDENCY_TIME
  5620. }
  5621. }
  5622. void check_babystep() {
  5623. int babystep_z;
  5624. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5625. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5626. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5627. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5628. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5629. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5630. lcd_update_enable(true);
  5631. }
  5632. }
  5633. #ifdef DIS
  5634. void d_setup()
  5635. {
  5636. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5637. pinMode(D_DATA, INPUT_PULLUP);
  5638. pinMode(D_REQUIRE, OUTPUT);
  5639. digitalWrite(D_REQUIRE, HIGH);
  5640. }
  5641. float d_ReadData()
  5642. {
  5643. int digit[13];
  5644. String mergeOutput;
  5645. float output;
  5646. digitalWrite(D_REQUIRE, HIGH);
  5647. for (int i = 0; i<13; i++)
  5648. {
  5649. for (int j = 0; j < 4; j++)
  5650. {
  5651. while (digitalRead(D_DATACLOCK) == LOW) {}
  5652. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5653. bitWrite(digit[i], j, digitalRead(D_DATA));
  5654. }
  5655. }
  5656. digitalWrite(D_REQUIRE, LOW);
  5657. mergeOutput = "";
  5658. output = 0;
  5659. for (int r = 5; r <= 10; r++) //Merge digits
  5660. {
  5661. mergeOutput += digit[r];
  5662. }
  5663. output = mergeOutput.toFloat();
  5664. if (digit[4] == 8) //Handle sign
  5665. {
  5666. output *= -1;
  5667. }
  5668. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5669. {
  5670. output /= 10;
  5671. }
  5672. return output;
  5673. }
  5674. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5675. int t1 = 0;
  5676. int t_delay = 0;
  5677. int digit[13];
  5678. int m;
  5679. char str[3];
  5680. //String mergeOutput;
  5681. char mergeOutput[15];
  5682. float output;
  5683. int mesh_point = 0; //index number of calibration point
  5684. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5685. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5686. float mesh_home_z_search = 4;
  5687. float row[x_points_num];
  5688. int ix = 0;
  5689. int iy = 0;
  5690. char* filename_wldsd = "wldsd.txt";
  5691. char data_wldsd[70];
  5692. char numb_wldsd[10];
  5693. d_setup();
  5694. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5695. // We don't know where we are! HOME!
  5696. // Push the commands to the front of the message queue in the reverse order!
  5697. // There shall be always enough space reserved for these commands.
  5698. repeatcommand_front(); // repeat G80 with all its parameters
  5699. enquecommand_front_P((PSTR("G28 W0")));
  5700. enquecommand_front_P((PSTR("G1 Z5")));
  5701. return;
  5702. }
  5703. bool custom_message_old = custom_message;
  5704. unsigned int custom_message_type_old = custom_message_type;
  5705. unsigned int custom_message_state_old = custom_message_state;
  5706. custom_message = true;
  5707. custom_message_type = 1;
  5708. custom_message_state = (x_points_num * y_points_num) + 10;
  5709. lcd_update(1);
  5710. mbl.reset();
  5711. babystep_undo();
  5712. card.openFile(filename_wldsd, false);
  5713. current_position[Z_AXIS] = mesh_home_z_search;
  5714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5715. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5716. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5717. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5718. setup_for_endstop_move(false);
  5719. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5720. SERIAL_PROTOCOL(x_points_num);
  5721. SERIAL_PROTOCOLPGM(",");
  5722. SERIAL_PROTOCOL(y_points_num);
  5723. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5724. SERIAL_PROTOCOL(mesh_home_z_search);
  5725. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5726. SERIAL_PROTOCOL(x_dimension);
  5727. SERIAL_PROTOCOLPGM(",");
  5728. SERIAL_PROTOCOL(y_dimension);
  5729. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5730. while (mesh_point != x_points_num * y_points_num) {
  5731. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5732. iy = mesh_point / x_points_num;
  5733. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5734. float z0 = 0.f;
  5735. current_position[Z_AXIS] = mesh_home_z_search;
  5736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5737. st_synchronize();
  5738. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5739. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5741. st_synchronize();
  5742. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5743. break;
  5744. card.closefile();
  5745. }
  5746. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5747. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5748. //strcat(data_wldsd, numb_wldsd);
  5749. //MYSERIAL.println(data_wldsd);
  5750. //delay(1000);
  5751. //delay(3000);
  5752. //t1 = millis();
  5753. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5754. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5755. memset(digit, 0, sizeof(digit));
  5756. //cli();
  5757. digitalWrite(D_REQUIRE, LOW);
  5758. for (int i = 0; i<13; i++)
  5759. {
  5760. //t1 = millis();
  5761. for (int j = 0; j < 4; j++)
  5762. {
  5763. while (digitalRead(D_DATACLOCK) == LOW) {}
  5764. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5765. bitWrite(digit[i], j, digitalRead(D_DATA));
  5766. }
  5767. //t_delay = (millis() - t1);
  5768. //SERIAL_PROTOCOLPGM(" ");
  5769. //SERIAL_PROTOCOL_F(t_delay, 5);
  5770. //SERIAL_PROTOCOLPGM(" ");
  5771. }
  5772. //sei();
  5773. digitalWrite(D_REQUIRE, HIGH);
  5774. mergeOutput[0] = '\0';
  5775. output = 0;
  5776. for (int r = 5; r <= 10; r++) //Merge digits
  5777. {
  5778. sprintf(str, "%d", digit[r]);
  5779. strcat(mergeOutput, str);
  5780. }
  5781. output = atof(mergeOutput);
  5782. if (digit[4] == 8) //Handle sign
  5783. {
  5784. output *= -1;
  5785. }
  5786. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5787. {
  5788. output *= 0.1;
  5789. }
  5790. //output = d_ReadData();
  5791. //row[ix] = current_position[Z_AXIS];
  5792. memset(data_wldsd, 0, sizeof(data_wldsd));
  5793. for (int i = 0; i <3; i++) {
  5794. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5795. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5796. strcat(data_wldsd, numb_wldsd);
  5797. strcat(data_wldsd, ";");
  5798. }
  5799. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5800. dtostrf(output, 8, 5, numb_wldsd);
  5801. strcat(data_wldsd, numb_wldsd);
  5802. //strcat(data_wldsd, ";");
  5803. card.write_command(data_wldsd);
  5804. //row[ix] = d_ReadData();
  5805. row[ix] = output; // current_position[Z_AXIS];
  5806. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5807. for (int i = 0; i < x_points_num; i++) {
  5808. SERIAL_PROTOCOLPGM(" ");
  5809. SERIAL_PROTOCOL_F(row[i], 5);
  5810. }
  5811. SERIAL_PROTOCOLPGM("\n");
  5812. }
  5813. custom_message_state--;
  5814. mesh_point++;
  5815. lcd_update(1);
  5816. }
  5817. card.closefile();
  5818. }
  5819. #endif
  5820. void temp_compensation_start() {
  5821. custom_message = true;
  5822. custom_message_type = 5;
  5823. custom_message_state = PINDA_HEAT_T + 1;
  5824. lcd_update(2);
  5825. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5826. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5827. }
  5828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5829. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5830. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5831. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5833. st_synchronize();
  5834. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5835. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5836. delay_keep_alive(1000);
  5837. custom_message_state = PINDA_HEAT_T - i;
  5838. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5839. else lcd_update(1);
  5840. }
  5841. custom_message_type = 0;
  5842. custom_message_state = 0;
  5843. custom_message = false;
  5844. }
  5845. void temp_compensation_apply() {
  5846. int i_add;
  5847. int compensation_value;
  5848. int z_shift = 0;
  5849. float z_shift_mm;
  5850. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5851. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5852. i_add = (target_temperature_bed - 60) / 10;
  5853. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5854. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5855. }else {
  5856. //interpolation
  5857. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5858. }
  5859. SERIAL_PROTOCOLPGM("\n");
  5860. SERIAL_PROTOCOLPGM("Z shift applied:");
  5861. MYSERIAL.print(z_shift_mm);
  5862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5863. st_synchronize();
  5864. plan_set_z_position(current_position[Z_AXIS]);
  5865. }
  5866. else {
  5867. //we have no temp compensation data
  5868. }
  5869. }
  5870. float temp_comp_interpolation(float inp_temperature) {
  5871. //cubic spline interpolation
  5872. int n, i, j, k;
  5873. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5874. int shift[10];
  5875. int temp_C[10];
  5876. n = 6; //number of measured points
  5877. shift[0] = 0;
  5878. for (i = 0; i < n; i++) {
  5879. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5880. temp_C[i] = 50 + i * 10; //temperature in C
  5881. #ifdef PINDA_THERMISTOR
  5882. temp_C[i] = 35 + i * 5; //temperature in C
  5883. #else
  5884. temp_C[i] = 50 + i * 10; //temperature in C
  5885. #endif
  5886. x[i] = (float)temp_C[i];
  5887. f[i] = (float)shift[i];
  5888. }
  5889. if (inp_temperature < x[0]) return 0;
  5890. for (i = n - 1; i>0; i--) {
  5891. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5892. h[i - 1] = x[i] - x[i - 1];
  5893. }
  5894. //*********** formation of h, s , f matrix **************
  5895. for (i = 1; i<n - 1; i++) {
  5896. m[i][i] = 2 * (h[i - 1] + h[i]);
  5897. if (i != 1) {
  5898. m[i][i - 1] = h[i - 1];
  5899. m[i - 1][i] = h[i - 1];
  5900. }
  5901. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5902. }
  5903. //*********** forward elimination **************
  5904. for (i = 1; i<n - 2; i++) {
  5905. temp = (m[i + 1][i] / m[i][i]);
  5906. for (j = 1; j <= n - 1; j++)
  5907. m[i + 1][j] -= temp*m[i][j];
  5908. }
  5909. //*********** backward substitution *********
  5910. for (i = n - 2; i>0; i--) {
  5911. sum = 0;
  5912. for (j = i; j <= n - 2; j++)
  5913. sum += m[i][j] * s[j];
  5914. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5915. }
  5916. for (i = 0; i<n - 1; i++)
  5917. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5918. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5919. b = s[i] / 2;
  5920. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5921. d = f[i];
  5922. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5923. }
  5924. return sum;
  5925. }
  5926. #ifdef PINDA_THERMISTOR
  5927. float temp_compensation_pinda_thermistor_offset()
  5928. {
  5929. if (!temp_cal_active) return 0;
  5930. if (!calibration_status_pinda()) return 0;
  5931. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5932. }
  5933. #endif //PINDA_THERMISTOR
  5934. void long_pause() //long pause print
  5935. {
  5936. st_synchronize();
  5937. //save currently set parameters to global variables
  5938. saved_feedmultiply = feedmultiply;
  5939. HotendTempBckp = degTargetHotend(active_extruder);
  5940. fanSpeedBckp = fanSpeed;
  5941. start_pause_print = millis();
  5942. //save position
  5943. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5944. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5945. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5946. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5947. //retract
  5948. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5950. //lift z
  5951. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5952. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5954. //set nozzle target temperature to 0
  5955. setTargetHotend(0, 0);
  5956. setTargetHotend(0, 1);
  5957. setTargetHotend(0, 2);
  5958. //Move XY to side
  5959. current_position[X_AXIS] = X_PAUSE_POS;
  5960. current_position[Y_AXIS] = Y_PAUSE_POS;
  5961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5962. // Turn off the print fan
  5963. fanSpeed = 0;
  5964. st_synchronize();
  5965. }
  5966. void serialecho_temperatures() {
  5967. float tt = degHotend(active_extruder);
  5968. SERIAL_PROTOCOLPGM("T:");
  5969. SERIAL_PROTOCOL(tt);
  5970. SERIAL_PROTOCOLPGM(" E:");
  5971. SERIAL_PROTOCOL((int)active_extruder);
  5972. SERIAL_PROTOCOLPGM(" B:");
  5973. SERIAL_PROTOCOL_F(degBed(), 1);
  5974. SERIAL_PROTOCOLLN("");
  5975. }
  5976. extern uint32_t sdpos_atomic;
  5977. void uvlo_()
  5978. {
  5979. // Conserve power as soon as possible.
  5980. disable_x();
  5981. disable_y();
  5982. // Indicate that the interrupt has been triggered.
  5983. SERIAL_ECHOLNPGM("UVLO");
  5984. // Read out the current Z motor microstep counter. This will be later used
  5985. // for reaching the zero full step before powering off.
  5986. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  5987. // Calculate the file position, from which to resume this print.
  5988. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  5989. {
  5990. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  5991. sd_position -= sdlen_planner;
  5992. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  5993. sd_position -= sdlen_cmdqueue;
  5994. if (sd_position < 0) sd_position = 0;
  5995. }
  5996. // Backup the feedrate in mm/min.
  5997. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  5998. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  5999. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6000. // are in action.
  6001. planner_abort_hard();
  6002. // Clean the input command queue.
  6003. cmdqueue_reset();
  6004. card.sdprinting = false;
  6005. // card.closefile();
  6006. // Enable stepper driver interrupt to move Z axis.
  6007. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6008. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6009. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6010. sei();
  6011. plan_buffer_line(
  6012. current_position[X_AXIS],
  6013. current_position[Y_AXIS],
  6014. current_position[Z_AXIS],
  6015. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6016. 400, active_extruder);
  6017. plan_buffer_line(
  6018. current_position[X_AXIS],
  6019. current_position[Y_AXIS],
  6020. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6021. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6022. 40, active_extruder);
  6023. // Move Z up to the next 0th full step.
  6024. // Write the file position.
  6025. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6026. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6027. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6028. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6029. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6030. // Scale the z value to 1u resolution.
  6031. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6032. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6033. }
  6034. // Read out the current Z motor microstep counter. This will be later used
  6035. // for reaching the zero full step before powering off.
  6036. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6037. // Store the current position.
  6038. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6039. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6040. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6041. // Store the current feed rate, temperatures and fan speed.
  6042. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6043. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6044. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6045. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6046. // Finaly store the "power outage" flag.
  6047. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6048. st_synchronize();
  6049. SERIAL_ECHOPGM("stps");
  6050. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6051. #if 0
  6052. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6053. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6055. st_synchronize();
  6056. #endif
  6057. disable_z();
  6058. SERIAL_ECHOLNPGM("UVLO - end");
  6059. cli();
  6060. while(1);
  6061. }
  6062. void setup_uvlo_interrupt() {
  6063. DDRE &= ~(1 << 4); //input pin
  6064. PORTE &= ~(1 << 4); //no internal pull-up
  6065. //sensing falling edge
  6066. EICRB |= (1 << 0);
  6067. EICRB &= ~(1 << 1);
  6068. //enable INT4 interrupt
  6069. EIMSK |= (1 << 4);
  6070. }
  6071. ISR(INT4_vect) {
  6072. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6073. SERIAL_ECHOLNPGM("INT4");
  6074. if (IS_SD_PRINTING) uvlo_();
  6075. }
  6076. void recover_print() {
  6077. char cmd[30];
  6078. lcd_update_enable(true);
  6079. lcd_update(2);
  6080. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6081. recover_machine_state_after_power_panic();
  6082. // Lift the print head, so one may remove the excess priming material.
  6083. if (current_position[Z_AXIS] < 25)
  6084. enquecommand_P(PSTR("G1 Z25 F800"));
  6085. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6086. enquecommand_P(PSTR("G28 X Y"));
  6087. // Set the target bed and nozzle temperatures.
  6088. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6089. enquecommand(cmd);
  6090. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6091. enquecommand(cmd);
  6092. enquecommand_P(PSTR("M83")); //E axis relative mode
  6093. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6094. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6095. // Mark the power panic status as inactive.
  6096. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6097. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6098. delay_keep_alive(1000);
  6099. }*/
  6100. SERIAL_ECHOPGM("After waiting for temp:");
  6101. SERIAL_ECHOPGM("Current position X_AXIS:");
  6102. MYSERIAL.println(current_position[X_AXIS]);
  6103. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6104. MYSERIAL.println(current_position[Y_AXIS]);
  6105. // Restart the print.
  6106. restore_print_from_eeprom();
  6107. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6108. MYSERIAL.print(current_position[Z_AXIS]);
  6109. }
  6110. void recover_machine_state_after_power_panic()
  6111. {
  6112. // 1) Recover the logical cordinates at the time of the power panic.
  6113. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6114. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6115. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6116. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6117. // The current position after power panic is moved to the next closest 0th full step.
  6118. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6119. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6120. memcpy(destination, current_position, sizeof(destination));
  6121. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6122. print_world_coordinates();
  6123. // 2) Initialize the logical to physical coordinate system transformation.
  6124. world2machine_initialize();
  6125. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6126. mbl.active = false;
  6127. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6128. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6129. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6130. // Scale the z value to 10u resolution.
  6131. int16_t v;
  6132. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6133. if (v != 0)
  6134. mbl.active = true;
  6135. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6136. }
  6137. if (mbl.active)
  6138. mbl.upsample_3x3();
  6139. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6140. print_mesh_bed_leveling_table();
  6141. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6142. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6143. babystep_load();
  6144. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6146. // 6) Power up the motors, mark their positions as known.
  6147. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6148. axis_known_position[X_AXIS] = true; enable_x();
  6149. axis_known_position[Y_AXIS] = true; enable_y();
  6150. axis_known_position[Z_AXIS] = true; enable_z();
  6151. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6152. print_physical_coordinates();
  6153. // 7) Recover the target temperatures.
  6154. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6155. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6156. }
  6157. void restore_print_from_eeprom() {
  6158. float x_rec, y_rec, z_pos;
  6159. int feedrate_rec;
  6160. uint8_t fan_speed_rec;
  6161. char cmd[30];
  6162. char* c;
  6163. char filename[13];
  6164. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6165. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6166. SERIAL_ECHOPGM("Feedrate:");
  6167. MYSERIAL.println(feedrate_rec);
  6168. for (int i = 0; i < 8; i++) {
  6169. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6170. }
  6171. filename[8] = '\0';
  6172. MYSERIAL.print(filename);
  6173. strcat_P(filename, PSTR(".gco"));
  6174. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6175. for (c = &cmd[4]; *c; c++)
  6176. *c = tolower(*c);
  6177. enquecommand(cmd);
  6178. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6179. SERIAL_ECHOPGM("Position read from eeprom:");
  6180. MYSERIAL.println(position);
  6181. // E axis relative mode.
  6182. enquecommand_P(PSTR("M83"));
  6183. // Move to the XY print position in logical coordinates, where the print has been killed.
  6184. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6185. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6186. strcat_P(cmd, PSTR(" F2000"));
  6187. enquecommand(cmd);
  6188. // Move the Z axis down to the print, in logical coordinates.
  6189. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6190. enquecommand(cmd);
  6191. // Unretract.
  6192. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6193. // Set the feedrate saved at the power panic.
  6194. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6195. enquecommand(cmd);
  6196. // Set the fan speed saved at the power panic.
  6197. strcpy_P(cmd, PSTR("M106 S"));
  6198. strcat(cmd, itostr3(int(fan_speed_rec)));
  6199. enquecommand(cmd);
  6200. // Set a position in the file.
  6201. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6202. enquecommand(cmd);
  6203. // Start SD print.
  6204. enquecommand_P(PSTR("M24"));
  6205. }
  6206. ////////////////////////////////////////////////////////////////////////////////
  6207. // new save/restore printing
  6208. //extern uint32_t sdpos_atomic;
  6209. bool saved_printing = false;
  6210. uint32_t saved_sdpos = 0;
  6211. float saved_pos[4] = {0, 0, 0, 0};
  6212. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6213. float saved_feedrate2 = 0;
  6214. uint8_t saved_active_extruder = 0;
  6215. bool saved_extruder_under_pressure = false;
  6216. void stop_and_save_print_to_ram(float z_move, float e_move)
  6217. {
  6218. if (saved_printing) return;
  6219. cli();
  6220. unsigned char nplanner_blocks = number_of_blocks();
  6221. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6222. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6223. saved_sdpos -= sdlen_planner;
  6224. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6225. saved_sdpos -= sdlen_cmdqueue;
  6226. #if 0
  6227. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6228. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6229. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6230. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6231. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6232. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6233. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6234. {
  6235. card.setIndex(saved_sdpos);
  6236. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6237. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6238. MYSERIAL.print(char(card.get()));
  6239. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6240. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6241. MYSERIAL.print(char(card.get()));
  6242. SERIAL_ECHOLNPGM("End of command buffer");
  6243. }
  6244. {
  6245. // Print the content of the planner buffer, line by line:
  6246. card.setIndex(saved_sdpos);
  6247. int8_t iline = 0;
  6248. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6249. SERIAL_ECHOPGM("Planner line (from file): ");
  6250. MYSERIAL.print(int(iline), DEC);
  6251. SERIAL_ECHOPGM(", length: ");
  6252. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6253. SERIAL_ECHOPGM(", steps: (");
  6254. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6255. SERIAL_ECHOPGM(",");
  6256. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6257. SERIAL_ECHOPGM(",");
  6258. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6259. SERIAL_ECHOPGM(",");
  6260. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6261. SERIAL_ECHOPGM("), events: ");
  6262. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6263. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6264. MYSERIAL.print(char(card.get()));
  6265. }
  6266. }
  6267. {
  6268. // Print the content of the command buffer, line by line:
  6269. int8_t iline = 0;
  6270. union {
  6271. struct {
  6272. char lo;
  6273. char hi;
  6274. } lohi;
  6275. uint16_t value;
  6276. } sdlen_single;
  6277. int _bufindr = bufindr;
  6278. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6279. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6280. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6281. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6282. }
  6283. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6284. MYSERIAL.print(int(iline), DEC);
  6285. SERIAL_ECHOPGM(", type: ");
  6286. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6287. SERIAL_ECHOPGM(", len: ");
  6288. MYSERIAL.println(sdlen_single.value, DEC);
  6289. // Print the content of the buffer line.
  6290. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6291. SERIAL_ECHOPGM("Buffer line (from file): ");
  6292. MYSERIAL.print(int(iline), DEC);
  6293. MYSERIAL.println(int(iline), DEC);
  6294. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6295. MYSERIAL.print(char(card.get()));
  6296. if (-- _buflen == 0)
  6297. break;
  6298. // First skip the current command ID and iterate up to the end of the string.
  6299. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6300. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6301. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6302. // If the end of the buffer was empty,
  6303. if (_bufindr == sizeof(cmdbuffer)) {
  6304. // skip to the start and find the nonzero command.
  6305. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6306. }
  6307. }
  6308. }
  6309. #endif
  6310. #if 0
  6311. saved_feedrate2 = feedrate; //save feedrate
  6312. #else
  6313. // Try to deduce the feedrate from the first block of the planner.
  6314. // Speed is in mm/min.
  6315. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6316. #endif
  6317. planner_abort_hard(); //abort printing
  6318. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6319. saved_active_extruder = active_extruder; //save active_extruder
  6320. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6321. cmdqueue_reset(); //empty cmdqueue
  6322. card.sdprinting = false;
  6323. // card.closefile();
  6324. saved_printing = true;
  6325. sei();
  6326. if ((z_move != 0) || (e_move != 0)) { // extruder and z move
  6327. #if 1
  6328. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6329. char buf[48];
  6330. strcpy_P(buf, PSTR("G1 Z"));
  6331. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6332. strcat_P(buf, PSTR(" E"));
  6333. // Relative extrusion
  6334. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6335. strcat_P(buf, PSTR(" F"));
  6336. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6337. // At this point the command queue is empty.
  6338. enquecommand(buf, false);
  6339. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6340. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6341. repeatcommand_front();
  6342. #else
  6343. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6344. st_synchronize(); //wait moving
  6345. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6346. memcpy(destination, current_position, sizeof(destination));
  6347. #endif
  6348. }
  6349. }
  6350. void restore_print_from_ram_and_continue(float e_move)
  6351. {
  6352. if (!saved_printing) return;
  6353. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6354. // current_position[axis] = st_get_position_mm(axis);
  6355. active_extruder = saved_active_extruder; //restore active_extruder
  6356. feedrate = saved_feedrate2; //restore feedrate
  6357. float e = saved_pos[E_AXIS] - e_move;
  6358. plan_set_e_position(e);
  6359. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS], active_extruder);
  6360. st_synchronize();
  6361. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6362. memcpy(destination, current_position, sizeof(destination));
  6363. card.setIndex(saved_sdpos);
  6364. sdpos_atomic = saved_sdpos;
  6365. card.sdprinting = true;
  6366. saved_printing = false;
  6367. }
  6368. void print_world_coordinates()
  6369. {
  6370. SERIAL_ECHOPGM("world coordinates: (");
  6371. MYSERIAL.print(current_position[X_AXIS], 3);
  6372. SERIAL_ECHOPGM(", ");
  6373. MYSERIAL.print(current_position[Y_AXIS], 3);
  6374. SERIAL_ECHOPGM(", ");
  6375. MYSERIAL.print(current_position[Z_AXIS], 3);
  6376. SERIAL_ECHOLNPGM(")");
  6377. }
  6378. void print_physical_coordinates()
  6379. {
  6380. SERIAL_ECHOPGM("physical coordinates: (");
  6381. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6382. SERIAL_ECHOPGM(", ");
  6383. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6384. SERIAL_ECHOPGM(", ");
  6385. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6386. SERIAL_ECHOLNPGM(")");
  6387. }
  6388. void print_mesh_bed_leveling_table()
  6389. {
  6390. SERIAL_ECHOPGM("mesh bed leveling: ");
  6391. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6392. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6393. MYSERIAL.print(mbl.z_values[y][x], 3);
  6394. SERIAL_ECHOPGM(" ");
  6395. }
  6396. SERIAL_ECHOLNPGM("");
  6397. }