fsensor.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "io_atmega2560.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. #include "mmu.h"
  11. #include "cardreader.h"
  12. #include "adc.h"
  13. #include "temperature.h"
  14. #include "config.h"
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  18. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  25. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  26. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  27. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  28. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  29. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  30. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  31. //! @}
  32. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  33. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  34. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  35. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  36. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  37. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  38. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  39. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  40. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  41. //! enabled = initialized and sampled every chunk event
  42. bool fsensor_enabled = true;
  43. //! runout watching is done in fsensor_update (called from main loop)
  44. bool fsensor_watch_runout = true;
  45. //! not responding - is set if any communication error occurred during initialization or readout
  46. bool fsensor_not_responding = false;
  47. #ifdef PAT9125
  48. uint8_t fsensor_int_pin_old = 0;
  49. //! optical checking "chunk lenght" (already in steps)
  50. int16_t fsensor_chunk_len = 0;
  51. //! enable/disable quality meassurement
  52. bool fsensor_oq_meassure_enabled = false;
  53. //! number of errors, updated in ISR
  54. uint8_t fsensor_err_cnt = 0;
  55. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  56. int16_t fsensor_st_cnt = 0;
  57. //! count of total sensor "soft" failures (filament status checks)
  58. uint8_t fsensor_softfail = 0;
  59. //! timestamp of last soft failure
  60. unsigned long fsensor_softfail_last = 0;
  61. //! count of soft failures within the configured time
  62. uint8_t fsensor_softfail_ccnt = 0;
  63. #endif
  64. //! log flag: 0=log disabled, 1=log enabled
  65. uint8_t fsensor_log = 1;
  66. //! @name filament autoload variables
  67. //! @{
  68. //! autoload feature enabled
  69. bool fsensor_autoload_enabled = true;
  70. //! autoload watching enable/disable flag
  71. bool fsensor_watch_autoload = false;
  72. #ifdef PAT9125
  73. //
  74. uint16_t fsensor_autoload_y;
  75. //
  76. uint8_t fsensor_autoload_c;
  77. //
  78. uint32_t fsensor_autoload_last_millis;
  79. //
  80. uint8_t fsensor_autoload_sum;
  81. //! @}
  82. #endif
  83. //! @name filament optical quality measurement variables
  84. //! @{
  85. //! Measurement enable/disable flag
  86. bool fsensor_oq_meassure = false;
  87. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  88. uint8_t fsensor_oq_skipchunk;
  89. //! number of samples from start of measurement
  90. uint8_t fsensor_oq_samples;
  91. //! sum of steps in positive direction movements
  92. uint16_t fsensor_oq_st_sum;
  93. //! sum of deltas in positive direction movements
  94. uint16_t fsensor_oq_yd_sum;
  95. //! sum of errors during measurement
  96. uint16_t fsensor_oq_er_sum;
  97. //! max error counter value during measurement
  98. uint8_t fsensor_oq_er_max;
  99. //! minimum delta value
  100. int16_t fsensor_oq_yd_min;
  101. //! maximum delta value
  102. int16_t fsensor_oq_yd_max;
  103. //! sum of shutter value
  104. uint16_t fsensor_oq_sh_sum;
  105. //! @}
  106. #if IR_SENSOR_ANALOG
  107. ClFsensorPCB oFsensorPCB;
  108. ClFsensorActionNA oFsensorActionNA;
  109. bool bIRsensorStateFlag=false;
  110. unsigned long nIRsensorLastTime;
  111. #endif //IR_SENSOR_ANALOG
  112. void fsensor_stop_and_save_print(void)
  113. {
  114. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  115. stop_and_save_print_to_ram(0, 0);
  116. fsensor_watch_runout = false;
  117. }
  118. #ifdef PAT9125
  119. // Reset all internal counters to zero, including stepper callbacks
  120. void fsensor_reset_err_cnt()
  121. {
  122. fsensor_err_cnt = 0;
  123. pat9125_y = 0;
  124. st_reset_fsensor();
  125. }
  126. void fsensor_set_axis_steps_per_unit(float u)
  127. {
  128. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  129. }
  130. #endif
  131. void fsensor_restore_print_and_continue(void)
  132. {
  133. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  134. fsensor_watch_runout = true;
  135. #ifdef PAT9125
  136. fsensor_reset_err_cnt();
  137. #endif
  138. restore_print_from_ram_and_continue(0);
  139. }
  140. // fsensor_checkpoint_print cuts the current print job at the current position,
  141. // allowing new instructions to be inserted in the middle
  142. void fsensor_checkpoint_print(void)
  143. {
  144. printf_P(PSTR("fsensor_checkpoint_print\n"));
  145. stop_and_save_print_to_ram(0, 0);
  146. restore_print_from_ram_and_continue(0);
  147. }
  148. void fsensor_init(void)
  149. {
  150. #ifdef PAT9125
  151. uint8_t pat9125 = pat9125_init();
  152. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  153. #endif //PAT9125
  154. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  155. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  156. fsensor_not_responding = false;
  157. #ifdef PAT9125
  158. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  159. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  160. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  161. if (!pat9125)
  162. {
  163. fsensor = 0; //disable sensor
  164. fsensor_not_responding = true;
  165. }
  166. #endif //PAT9125
  167. #if IR_SENSOR_ANALOG
  168. bIRsensorStateFlag=false;
  169. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  170. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  171. #endif //IR_SENSOR_ANALOG
  172. if (fsensor)
  173. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  174. else
  175. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  176. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  177. #if IR_SENSOR_ANALOG
  178. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  179. #else //IR_SENSOR_ANALOG
  180. printf_P(PSTR("\n"));
  181. #endif //IR_SENSOR_ANALOG
  182. if (check_for_ir_sensor()) ir_sensor_detected = true;
  183. }
  184. bool fsensor_enable(bool bUpdateEEPROM)
  185. {
  186. #ifdef PAT9125
  187. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  188. uint8_t pat9125 = pat9125_init();
  189. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  190. if (pat9125)
  191. fsensor_not_responding = false;
  192. else
  193. fsensor_not_responding = true;
  194. fsensor_enabled = pat9125 ? true : false;
  195. fsensor_watch_runout = true;
  196. fsensor_oq_meassure = false;
  197. fsensor_reset_err_cnt();
  198. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  199. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  200. }
  201. else //filament sensor is FINDA, always enable
  202. {
  203. fsensor_enabled = true;
  204. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  205. FSensorStateMenu = 1;
  206. }
  207. #else // PAT9125
  208. #if IR_SENSOR_ANALOG
  209. if(!fsensor_IR_check())
  210. {
  211. bUpdateEEPROM=true;
  212. fsensor_enabled=false;
  213. fsensor_not_responding=true;
  214. FSensorStateMenu=0;
  215. }
  216. else {
  217. #endif //IR_SENSOR_ANALOG
  218. fsensor_enabled=true;
  219. fsensor_not_responding=false;
  220. FSensorStateMenu=1;
  221. #if IR_SENSOR_ANALOG
  222. }
  223. #endif //IR_SENSOR_ANALOG
  224. if(bUpdateEEPROM)
  225. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  226. #endif //PAT9125
  227. return fsensor_enabled;
  228. }
  229. void fsensor_disable(bool bUpdateEEPROM)
  230. {
  231. fsensor_enabled = false;
  232. FSensorStateMenu = 0;
  233. if(bUpdateEEPROM)
  234. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  235. }
  236. void fsensor_autoload_set(bool State)
  237. {
  238. #ifdef PAT9125
  239. if (!State) fsensor_autoload_check_stop();
  240. #endif //PAT9125
  241. fsensor_autoload_enabled = State;
  242. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  243. }
  244. void pciSetup(byte pin)
  245. {
  246. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  247. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  248. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  249. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  250. }
  251. #ifdef PAT9125
  252. void fsensor_autoload_check_start(void)
  253. {
  254. // puts_P(_N("fsensor_autoload_check_start\n"));
  255. if (!fsensor_enabled) return;
  256. if (!fsensor_autoload_enabled) return;
  257. if (fsensor_watch_autoload) return;
  258. if (!pat9125_update()) //update sensor
  259. {
  260. fsensor_disable();
  261. fsensor_not_responding = true;
  262. fsensor_watch_autoload = false;
  263. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  264. return;
  265. }
  266. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  267. fsensor_autoload_y = pat9125_y; //save current y value
  268. fsensor_autoload_c = 0; //reset number of changes counter
  269. fsensor_autoload_sum = 0;
  270. fsensor_autoload_last_millis = _millis();
  271. fsensor_watch_runout = false;
  272. fsensor_watch_autoload = true;
  273. }
  274. void fsensor_autoload_check_stop(void)
  275. {
  276. // puts_P(_N("fsensor_autoload_check_stop\n"));
  277. if (!fsensor_enabled) return;
  278. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  279. if (!fsensor_autoload_enabled) return;
  280. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  281. if (!fsensor_watch_autoload) return;
  282. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  283. fsensor_autoload_sum = 0;
  284. fsensor_watch_autoload = false;
  285. fsensor_watch_runout = true;
  286. fsensor_reset_err_cnt();
  287. }
  288. #endif //PAT9125
  289. bool fsensor_check_autoload(void)
  290. {
  291. if (!fsensor_enabled) return false;
  292. if (!fsensor_autoload_enabled) return false;
  293. if (ir_sensor_detected) {
  294. if (digitalRead(IR_SENSOR_PIN) == 1) {
  295. fsensor_watch_autoload = true;
  296. }
  297. else if (fsensor_watch_autoload == true) {
  298. fsensor_watch_autoload = false;
  299. return true;
  300. }
  301. }
  302. #ifdef PAT9125
  303. if (!fsensor_watch_autoload)
  304. {
  305. fsensor_autoload_check_start();
  306. return false;
  307. }
  308. #if 0
  309. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  310. #endif
  311. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  312. fsensor_autoload_last_millis = _millis();
  313. if (!pat9125_update_y()) //update sensor
  314. {
  315. fsensor_disable();
  316. fsensor_not_responding = true;
  317. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  318. return false;
  319. }
  320. int16_t dy = pat9125_y - fsensor_autoload_y;
  321. if (dy) //? dy value is nonzero
  322. {
  323. if (dy > 0) //? delta-y value is positive (inserting)
  324. {
  325. fsensor_autoload_sum += dy;
  326. fsensor_autoload_c += 3; //increment change counter by 3
  327. }
  328. else if (fsensor_autoload_c > 1)
  329. fsensor_autoload_c -= 2; //decrement change counter by 2
  330. fsensor_autoload_y = pat9125_y; //save current value
  331. }
  332. else if (fsensor_autoload_c > 0)
  333. fsensor_autoload_c--;
  334. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  335. #if 0
  336. puts_P(_N("fsensor_check_autoload\n"));
  337. if (fsensor_autoload_c != fsensor_autoload_c_old)
  338. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  339. #endif
  340. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  341. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  342. {
  343. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  344. return true;
  345. }
  346. #endif //PAT9125
  347. return false;
  348. }
  349. #ifdef PAT9125
  350. void fsensor_oq_meassure_set(bool State)
  351. {
  352. fsensor_oq_meassure_enabled = State;
  353. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  354. }
  355. void fsensor_oq_meassure_start(uint8_t skip)
  356. {
  357. if (!fsensor_enabled) return;
  358. if (!fsensor_oq_meassure_enabled) return;
  359. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  360. fsensor_oq_skipchunk = skip;
  361. fsensor_oq_samples = 0;
  362. fsensor_oq_st_sum = 0;
  363. fsensor_oq_yd_sum = 0;
  364. fsensor_oq_er_sum = 0;
  365. fsensor_oq_er_max = 0;
  366. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  367. fsensor_oq_yd_max = 0;
  368. fsensor_oq_sh_sum = 0;
  369. pat9125_update();
  370. pat9125_y = 0;
  371. fsensor_oq_meassure = true;
  372. }
  373. void fsensor_oq_meassure_stop(void)
  374. {
  375. if (!fsensor_enabled) return;
  376. if (!fsensor_oq_meassure_enabled) return;
  377. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  378. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  379. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  380. fsensor_oq_meassure = false;
  381. }
  382. const char _OK[] PROGMEM = "OK";
  383. const char _NG[] PROGMEM = "NG!";
  384. bool fsensor_oq_result(void)
  385. {
  386. if (!fsensor_enabled) return true;
  387. if (!fsensor_oq_meassure_enabled) return true;
  388. printf_P(_N("fsensor_oq_result\n"));
  389. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  390. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  391. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  392. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  393. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  394. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  395. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  396. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  397. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  398. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  399. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  400. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  401. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  402. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  403. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  404. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  405. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  406. if (yd_qua >= 8) res_sh_avg = true;
  407. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  408. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  409. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  410. return res;
  411. }
  412. ISR(FSENSOR_INT_PIN_VECT)
  413. {
  414. if (mmu_enabled || ir_sensor_detected) return;
  415. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  416. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  417. // prevent isr re-entry
  418. static bool _lock = false;
  419. if (_lock) return;
  420. _lock = true;
  421. // fetch fsensor_st_cnt atomically
  422. int st_cnt = fsensor_st_cnt;
  423. fsensor_st_cnt = 0;
  424. sei();
  425. uint8_t old_err_cnt = fsensor_err_cnt;
  426. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  427. if (!pat9125_res)
  428. {
  429. fsensor_disable();
  430. fsensor_not_responding = true;
  431. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  432. }
  433. if (st_cnt != 0)
  434. {
  435. // movement was planned, check for sensor movement
  436. int8_t st_dir = st_cnt >= 0;
  437. int8_t pat9125_dir = pat9125_y >= 0;
  438. if (pat9125_y == 0)
  439. {
  440. // no movement detected: increase error count only when extruding, since fast retracts
  441. // cannot always be seen. We also need to ensure that no runout is generated while
  442. // retracting as it's not currently handled everywhere
  443. if (st_dir) ++fsensor_err_cnt;
  444. }
  445. else if (pat9125_dir != st_dir)
  446. {
  447. // detected direction opposite of motor movement
  448. if (st_dir) ++fsensor_err_cnt;
  449. }
  450. else if (pat9125_dir == st_dir)
  451. {
  452. // direction agreeing with planned movement
  453. if (fsensor_err_cnt) --fsensor_err_cnt;
  454. }
  455. if (st_dir && fsensor_oq_meassure)
  456. {
  457. // extruding with quality assessment
  458. if (fsensor_oq_skipchunk)
  459. {
  460. fsensor_oq_skipchunk--;
  461. fsensor_err_cnt = 0;
  462. }
  463. else
  464. {
  465. if (st_cnt == fsensor_chunk_len)
  466. {
  467. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  468. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  469. }
  470. fsensor_oq_samples++;
  471. fsensor_oq_st_sum += st_cnt;
  472. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  473. if (fsensor_err_cnt > old_err_cnt)
  474. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  475. if (fsensor_oq_er_max < fsensor_err_cnt)
  476. fsensor_oq_er_max = fsensor_err_cnt;
  477. fsensor_oq_sh_sum += pat9125_s;
  478. }
  479. }
  480. }
  481. #ifdef DEBUG_FSENSOR_LOG
  482. if (fsensor_log)
  483. {
  484. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  485. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  486. }
  487. #endif //DEBUG_FSENSOR_LOG
  488. pat9125_y = 0;
  489. _lock = false;
  490. return;
  491. }
  492. void fsensor_setup_interrupt(void)
  493. {
  494. pinMode(FSENSOR_INT_PIN, OUTPUT);
  495. digitalWrite(FSENSOR_INT_PIN, LOW);
  496. fsensor_int_pin_old = 0;
  497. //pciSetup(FSENSOR_INT_PIN);
  498. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  499. // so interrupt registers settings:
  500. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  501. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  502. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  503. }
  504. void fsensor_st_block_chunk(int cnt)
  505. {
  506. if (!fsensor_enabled) return;
  507. fsensor_st_cnt += cnt;
  508. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  509. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  510. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  511. }
  512. #endif //PAT9125
  513. //! Common code for enqueing M600 and supplemental codes into the command queue.
  514. //! Used both for the IR sensor and the PAT9125
  515. void fsensor_enque_M600(){
  516. printf_P(PSTR("fsensor_update - M600\n"));
  517. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  518. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  519. enquecommand_front_P((PSTR("M600")));
  520. }
  521. //! @brief filament sensor update (perform M600 on filament runout)
  522. //!
  523. //! Works only if filament sensor is enabled.
  524. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  525. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  526. void fsensor_update(void)
  527. {
  528. #ifdef PAT9125
  529. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  530. {
  531. fsensor_stop_and_save_print();
  532. KEEPALIVE_STATE(IN_HANDLER);
  533. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  534. fsensor_autoload_enabled = false;
  535. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  536. fsensor_oq_meassure_enabled = true;
  537. // move the nozzle away while checking the filament
  538. current_position[Z_AXIS] += 0.8;
  539. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  540. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  541. st_synchronize();
  542. // check the filament in isolation
  543. fsensor_reset_err_cnt();
  544. fsensor_oq_meassure_start(0);
  545. float e_tmp = current_position[E_AXIS];
  546. current_position[E_AXIS] -= 3;
  547. plan_buffer_line_curposXYZE(200/60, active_extruder);
  548. current_position[E_AXIS] = e_tmp;
  549. plan_buffer_line_curposXYZE(200/60, active_extruder);
  550. st_synchronize();
  551. fsensor_oq_meassure_stop();
  552. bool err = false;
  553. err |= (fsensor_err_cnt > 1);
  554. err |= (fsensor_oq_er_sum > 2);
  555. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  556. fsensor_restore_print_and_continue();
  557. fsensor_autoload_enabled = autoload_enabled_tmp;
  558. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  559. unsigned long now = _millis();
  560. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  561. fsensor_softfail_ccnt = 0;
  562. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  563. {
  564. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  565. ++fsensor_softfail;
  566. ++fsensor_softfail_ccnt;
  567. fsensor_softfail_last = now;
  568. }
  569. else
  570. {
  571. fsensor_softfail_ccnt = 0;
  572. fsensor_softfail_last = 0;
  573. fsensor_enque_M600();
  574. }
  575. }
  576. #else //PAT9125
  577. if (CHECK_FSENSOR && ir_sensor_detected)
  578. {
  579. if(digitalRead(IR_SENSOR_PIN))
  580. { // IR_SENSOR_PIN ~ H
  581. #if IR_SENSOR_ANALOG
  582. if(!bIRsensorStateFlag)
  583. {
  584. bIRsensorStateFlag=true;
  585. nIRsensorLastTime=_millis();
  586. }
  587. else
  588. {
  589. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  590. {
  591. uint8_t nMUX1,nMUX2;
  592. uint16_t nADC;
  593. bIRsensorStateFlag=false;
  594. // sequence for direct data reading from AD converter
  595. DISABLE_TEMPERATURE_INTERRUPT();
  596. nMUX1=ADMUX; // ADMUX saving
  597. nMUX2=ADCSRB;
  598. adc_setmux(VOLT_IR_PIN);
  599. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  600. while(ADCSRA&(1<<ADSC))
  601. ;
  602. ADCSRA|=(1<<ADSC); // second conversion used
  603. while(ADCSRA&(1<<ADSC))
  604. ;
  605. nADC=ADC;
  606. ADMUX=nMUX1; // ADMUX restoring
  607. ADCSRB=nMUX2;
  608. ENABLE_TEMPERATURE_INTERRUPT();
  609. // end of sequence for ...
  610. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  611. {
  612. fsensor_disable();
  613. fsensor_not_responding = true;
  614. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  615. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  616. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  617. lcd_pause_print();
  618. }
  619. else
  620. {
  621. #endif //IR_SENSOR_ANALOG
  622. fsensor_checkpoint_print();
  623. fsensor_enque_M600();
  624. #if IR_SENSOR_ANALOG
  625. }
  626. }
  627. }
  628. }
  629. else
  630. { // IR_SENSOR_PIN ~ L
  631. bIRsensorStateFlag=false;
  632. #endif //IR_SENSOR_ANALOG
  633. }
  634. }
  635. #endif //PAT9125
  636. }
  637. #if IR_SENSOR_ANALOG
  638. bool fsensor_IR_check()
  639. {
  640. uint16_t volt_IR_int;
  641. bool bCheckResult;
  642. volt_IR_int=current_voltage_raw_IR;
  643. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  644. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  645. return(bCheckResult);
  646. }
  647. #endif //IR_SENSOR_ANALOG