Marlin_main.cpp 305 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  121. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  122. //Implemented Codes
  123. //-------------------
  124. // PRUSA CODES
  125. // P F - Returns FW versions
  126. // P R - Returns revision of printer
  127. // G0 -> G1
  128. // G1 - Coordinated Movement X Y Z E
  129. // G2 - CW ARC
  130. // G3 - CCW ARC
  131. // G4 - Dwell S<seconds> or P<milliseconds>
  132. // G10 - retract filament according to settings of M207
  133. // G11 - retract recover filament according to settings of M208
  134. // G28 - Home all Axis
  135. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  136. // G30 - Single Z Probe, probes bed at current XY location.
  137. // G31 - Dock sled (Z_PROBE_SLED only)
  138. // G32 - Undock sled (Z_PROBE_SLED only)
  139. // G80 - Automatic mesh bed leveling
  140. // G81 - Print bed profile
  141. // G90 - Use Absolute Coordinates
  142. // G91 - Use Relative Coordinates
  143. // G92 - Set current position to coordinates given
  144. // M Codes
  145. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  146. // M1 - Same as M0
  147. // M17 - Enable/Power all stepper motors
  148. // M18 - Disable all stepper motors; same as M84
  149. // M20 - List SD card
  150. // M21 - Init SD card
  151. // M22 - Release SD card
  152. // M23 - Select SD file (M23 filename.g)
  153. // M24 - Start/resume SD print
  154. // M25 - Pause SD print
  155. // M26 - Set SD position in bytes (M26 S12345)
  156. // M27 - Report SD print status
  157. // M28 - Start SD write (M28 filename.g)
  158. // M29 - Stop SD write
  159. // M30 - Delete file from SD (M30 filename.g)
  160. // M31 - Output time since last M109 or SD card start to serial
  161. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  162. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  163. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  164. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  165. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  166. // M73 - Show percent done and print time remaining
  167. // M80 - Turn on Power Supply
  168. // M81 - Turn off Power Supply
  169. // M82 - Set E codes absolute (default)
  170. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  171. // M84 - Disable steppers until next move,
  172. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  173. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  174. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  175. // M92 - Set axis_steps_per_unit - same syntax as G92
  176. // M104 - Set extruder target temp
  177. // M105 - Read current temp
  178. // M106 - Fan on
  179. // M107 - Fan off
  180. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  181. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  182. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  183. // M112 - Emergency stop
  184. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  185. // M114 - Output current position to serial port
  186. // M115 - Capabilities string
  187. // M117 - display message
  188. // M119 - Output Endstop status to serial port
  189. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  190. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  191. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  193. // M140 - Set bed target temp
  194. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  195. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  196. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  197. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  198. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  199. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  200. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  201. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  202. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  203. // M206 - set additional homing offset
  204. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  205. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  206. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  207. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  208. // M220 S<factor in percent>- set speed factor override percentage
  209. // M221 S<factor in percent>- set extrude factor override percentage
  210. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  211. // M240 - Trigger a camera to take a photograph
  212. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  213. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  214. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  215. // M301 - Set PID parameters P I and D
  216. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  217. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  218. // M304 - Set bed PID parameters P I and D
  219. // M400 - Finish all moves
  220. // M401 - Lower z-probe if present
  221. // M402 - Raise z-probe if present
  222. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  223. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  224. // M406 - Turn off Filament Sensor extrusion control
  225. // M407 - Displays measured filament diameter
  226. // M500 - stores parameters in EEPROM
  227. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  228. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  229. // M503 - print the current settings (from memory not from EEPROM)
  230. // M509 - force language selection on next restart
  231. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  233. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  234. // M860 - Wait for PINDA thermistor to reach target temperature.
  235. // M861 - Set / Read PINDA temperature compensation offsets
  236. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  237. // M907 - Set digital trimpot motor current using axis codes.
  238. // M908 - Control digital trimpot directly.
  239. // M350 - Set microstepping mode.
  240. // M351 - Toggle MS1 MS2 pins directly.
  241. // M928 - Start SD logging (M928 filename.g) - ended by M29
  242. // M999 - Restart after being stopped by error
  243. //Stepper Movement Variables
  244. //===========================================================================
  245. //=============================imported variables============================
  246. //===========================================================================
  247. //===========================================================================
  248. //=============================public variables=============================
  249. //===========================================================================
  250. #ifdef SDSUPPORT
  251. CardReader card;
  252. #endif
  253. unsigned long PingTime = millis();
  254. unsigned long NcTime;
  255. //used for PINDA temp calibration and pause print
  256. #define DEFAULT_RETRACTION 1
  257. #define DEFAULT_RETRACTION_MM 4 //MM
  258. float default_retraction = DEFAULT_RETRACTION;
  259. float homing_feedrate[] = HOMING_FEEDRATE;
  260. // Currently only the extruder axis may be switched to a relative mode.
  261. // Other axes are always absolute or relative based on the common relative_mode flag.
  262. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  263. int feedmultiply=100; //100->1 200->2
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. LongTimer safetyTimer;
  284. LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool loading_flag = false;
  295. char snmm_filaments_used = 0;
  296. bool fan_state[2];
  297. int fan_edge_counter[2];
  298. int fan_speed[2];
  299. char dir_names[3][9];
  300. bool sortAlpha = false;
  301. bool volumetric_enabled = false;
  302. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  303. #if EXTRUDERS > 1
  304. , DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 2
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #endif
  308. #endif
  309. };
  310. float extruder_multiplier[EXTRUDERS] = {1.0
  311. #if EXTRUDERS > 1
  312. , 1.0
  313. #if EXTRUDERS > 2
  314. , 1.0
  315. #endif
  316. #endif
  317. };
  318. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  319. //shortcuts for more readable code
  320. #define _x current_position[X_AXIS]
  321. #define _y current_position[Y_AXIS]
  322. #define _z current_position[Z_AXIS]
  323. #define _e current_position[E_AXIS]
  324. float add_homing[3]={0,0,0};
  325. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  326. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  327. bool axis_known_position[3] = {false, false, false};
  328. float zprobe_zoffset;
  329. // Extruder offset
  330. #if EXTRUDERS > 1
  331. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  332. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  333. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  334. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  335. #endif
  336. };
  337. #endif
  338. uint8_t active_extruder = 0;
  339. int fanSpeed=0;
  340. #ifdef FWRETRACT
  341. bool autoretract_enabled=false;
  342. bool retracted[EXTRUDERS]={false
  343. #if EXTRUDERS > 1
  344. , false
  345. #if EXTRUDERS > 2
  346. , false
  347. #endif
  348. #endif
  349. };
  350. bool retracted_swap[EXTRUDERS]={false
  351. #if EXTRUDERS > 1
  352. , false
  353. #if EXTRUDERS > 2
  354. , false
  355. #endif
  356. #endif
  357. };
  358. float retract_length = RETRACT_LENGTH;
  359. float retract_length_swap = RETRACT_LENGTH_SWAP;
  360. float retract_feedrate = RETRACT_FEEDRATE;
  361. float retract_zlift = RETRACT_ZLIFT;
  362. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  363. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  364. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  365. #endif
  366. #ifdef PS_DEFAULT_OFF
  367. bool powersupply = false;
  368. #else
  369. bool powersupply = true;
  370. #endif
  371. bool cancel_heatup = false ;
  372. #ifdef HOST_KEEPALIVE_FEATURE
  373. int busy_state = NOT_BUSY;
  374. static long prev_busy_signal_ms = -1;
  375. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  376. #else
  377. #define host_keepalive();
  378. #define KEEPALIVE_STATE(n);
  379. #endif
  380. const char errormagic[] PROGMEM = "Error:";
  381. const char echomagic[] PROGMEM = "echo:";
  382. bool no_response = false;
  383. uint8_t important_status;
  384. uint8_t saved_filament_type;
  385. // save/restore printing
  386. bool saved_printing = false;
  387. // save/restore printing in case that mmu was not responding
  388. bool mmu_print_saved = false;
  389. // storing estimated time to end of print counted by slicer
  390. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  391. uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  392. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  393. uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. //===========================================================================
  395. //=============================Private Variables=============================
  396. //===========================================================================
  397. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  398. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  399. // For tracing an arc
  400. static float offset[3] = {0.0, 0.0, 0.0};
  401. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  402. // Determines Absolute or Relative Coordinates.
  403. // Also there is bool axis_relative_modes[] per axis flag.
  404. static bool relative_mode = false;
  405. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  406. //static float tt = 0;
  407. //static float bt = 0;
  408. //Inactivity shutdown variables
  409. static unsigned long previous_millis_cmd = 0;
  410. unsigned long max_inactive_time = 0;
  411. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  412. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  413. unsigned long starttime=0;
  414. unsigned long stoptime=0;
  415. unsigned long _usb_timer = 0;
  416. bool extruder_under_pressure = true;
  417. bool Stopped=false;
  418. #if NUM_SERVOS > 0
  419. Servo servos[NUM_SERVOS];
  420. #endif
  421. bool CooldownNoWait = true;
  422. bool target_direction;
  423. //Insert variables if CHDK is defined
  424. #ifdef CHDK
  425. unsigned long chdkHigh = 0;
  426. boolean chdkActive = false;
  427. #endif
  428. // save/restore printing
  429. static uint32_t saved_sdpos = 0;
  430. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  431. static float saved_pos[4] = { 0, 0, 0, 0 };
  432. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  433. static float saved_feedrate2 = 0;
  434. static uint8_t saved_active_extruder = 0;
  435. static float saved_extruder_temperature = 0.0;
  436. static bool saved_extruder_under_pressure = false;
  437. static bool saved_extruder_relative_mode = false;
  438. static int saved_fanSpeed = 0;
  439. //===========================================================================
  440. //=============================Routines======================================
  441. //===========================================================================
  442. static void get_arc_coordinates();
  443. static bool setTargetedHotend(int code, uint8_t &extruder);
  444. static void print_time_remaining_init();
  445. static void wait_for_heater(long codenum, uint8_t extruder);
  446. uint16_t gcode_in_progress = 0;
  447. uint16_t mcode_in_progress = 0;
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. bool fans_check_enabled = true;
  535. #ifdef TMC2130
  536. extern int8_t CrashDetectMenu;
  537. void crashdet_enable()
  538. {
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. tmc2130_sg_stop_on_crash = false;
  546. tmc2130_sg_crash = 0;
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  548. CrashDetectMenu = 0;
  549. }
  550. void crashdet_stop_and_save_print()
  551. {
  552. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  553. }
  554. void crashdet_restore_print_and_continue()
  555. {
  556. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  557. // babystep_apply();
  558. }
  559. void crashdet_stop_and_save_print2()
  560. {
  561. cli();
  562. planner_abort_hard(); //abort printing
  563. cmdqueue_reset(); //empty cmdqueue
  564. card.sdprinting = false;
  565. card.closefile();
  566. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  567. st_reset_timer();
  568. sei();
  569. }
  570. void crashdet_detected(uint8_t mask)
  571. {
  572. st_synchronize();
  573. static uint8_t crashDet_counter = 0;
  574. bool automatic_recovery_after_crash = true;
  575. if (crashDet_counter++ == 0) {
  576. crashDetTimer.start();
  577. }
  578. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  579. crashDetTimer.stop();
  580. crashDet_counter = 0;
  581. }
  582. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  583. automatic_recovery_after_crash = false;
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else {
  588. crashDetTimer.start();
  589. }
  590. lcd_update_enable(true);
  591. lcd_clear();
  592. lcd_update(2);
  593. if (mask & X_AXIS_MASK)
  594. {
  595. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  596. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  597. }
  598. if (mask & Y_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  602. }
  603. lcd_update_enable(true);
  604. lcd_update(2);
  605. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  606. gcode_G28(true, true, false); //home X and Y
  607. st_synchronize();
  608. if (automatic_recovery_after_crash) {
  609. enquecommand_P(PSTR("CRASH_RECOVER"));
  610. }else{
  611. setTargetHotend(0, active_extruder);
  612. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  613. lcd_update_enable(true);
  614. if (yesno)
  615. {
  616. enquecommand_P(PSTR("CRASH_RECOVER"));
  617. }
  618. else
  619. {
  620. enquecommand_P(PSTR("CRASH_CANCEL"));
  621. }
  622. }
  623. }
  624. void crashdet_recover()
  625. {
  626. crashdet_restore_print_and_continue();
  627. tmc2130_sg_stop_on_crash = true;
  628. }
  629. void crashdet_cancel()
  630. {
  631. tmc2130_sg_stop_on_crash = true;
  632. if (saved_printing_type == PRINTING_TYPE_SD) {
  633. lcd_print_stop();
  634. }else if(saved_printing_type == PRINTING_TYPE_USB){
  635. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  636. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  637. }
  638. }
  639. #endif //TMC2130
  640. void failstats_reset_print()
  641. {
  642. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  643. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  644. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  645. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  646. }
  647. #ifdef MESH_BED_LEVELING
  648. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  649. #endif
  650. // Factory reset function
  651. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  652. // Level input parameter sets depth of reset
  653. int er_progress = 0;
  654. static void factory_reset(char level)
  655. {
  656. lcd_clear();
  657. switch (level) {
  658. // Level 0: Language reset
  659. case 0:
  660. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  661. WRITE(BEEPER, HIGH);
  662. _delay_ms(100);
  663. WRITE(BEEPER, LOW);
  664. lang_reset();
  665. break;
  666. //Level 1: Reset statistics
  667. case 1:
  668. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  673. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  674. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  675. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  676. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  678. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  679. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  680. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  682. lcd_menu_statistics();
  683. break;
  684. // Level 2: Prepare for shipping
  685. case 2:
  686. //lcd_puts_P(PSTR("Factory RESET"));
  687. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  688. // Force language selection at the next boot up.
  689. lang_reset();
  690. // Force the "Follow calibration flow" message at the next boot up.
  691. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  692. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  693. farm_no = 0;
  694. farm_mode = false;
  695. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  696. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  697. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  698. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  699. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  700. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  701. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  702. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  703. #ifdef FILAMENT_SENSOR
  704. fsensor_enable();
  705. fsensor_autoload_set(true);
  706. #endif //FILAMENT_SENSOR
  707. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. //_delay_ms(2000);
  712. break;
  713. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  714. case 3:
  715. lcd_puts_P(PSTR("Factory RESET"));
  716. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  717. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. er_progress = 0;
  722. lcd_puts_at_P(3, 3, PSTR(" "));
  723. lcd_set_cursor(3, 3);
  724. lcd_print(er_progress);
  725. // Erase EEPROM
  726. for (int i = 0; i < 4096; i++) {
  727. eeprom_write_byte((uint8_t*)i, 0xFF);
  728. if (i % 41 == 0) {
  729. er_progress++;
  730. lcd_puts_at_P(3, 3, PSTR(" "));
  731. lcd_set_cursor(3, 3);
  732. lcd_print(er_progress);
  733. lcd_puts_P(PSTR("%"));
  734. }
  735. }
  736. break;
  737. case 4:
  738. bowden_menu();
  739. break;
  740. default:
  741. break;
  742. }
  743. }
  744. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  745. int uart_putchar(char c, FILE *)
  746. {
  747. MYSERIAL.write(c);
  748. return 0;
  749. }
  750. void lcd_splash()
  751. {
  752. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  753. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  754. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  755. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  756. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  757. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  758. }
  759. void factory_reset()
  760. {
  761. KEEPALIVE_STATE(PAUSED_FOR_USER);
  762. if (!READ(BTN_ENC))
  763. {
  764. _delay_ms(1000);
  765. if (!READ(BTN_ENC))
  766. {
  767. lcd_clear();
  768. lcd_puts_P(PSTR("Factory RESET"));
  769. SET_OUTPUT(BEEPER);
  770. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  771. WRITE(BEEPER, HIGH);
  772. while (!READ(BTN_ENC));
  773. WRITE(BEEPER, LOW);
  774. _delay_ms(2000);
  775. char level = reset_menu();
  776. factory_reset(level);
  777. switch (level) {
  778. case 0: _delay_ms(0); break;
  779. case 1: _delay_ms(0); break;
  780. case 2: _delay_ms(0); break;
  781. case 3: _delay_ms(0); break;
  782. }
  783. }
  784. }
  785. KEEPALIVE_STATE(IN_HANDLER);
  786. }
  787. void show_fw_version_warnings() {
  788. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  789. switch (FW_DEV_VERSION) {
  790. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  791. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  792. case(FW_VERSION_DEVEL):
  793. case(FW_VERSION_DEBUG):
  794. lcd_update_enable(false);
  795. lcd_clear();
  796. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  797. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  798. #else
  799. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  800. #endif
  801. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  802. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  803. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  804. lcd_wait_for_click();
  805. break;
  806. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  807. }
  808. lcd_update_enable(true);
  809. }
  810. uint8_t check_printer_version()
  811. {
  812. uint8_t version_changed = 0;
  813. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  814. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  815. if (printer_type != PRINTER_TYPE) {
  816. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  817. else version_changed |= 0b10;
  818. }
  819. if (motherboard != MOTHERBOARD) {
  820. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  821. else version_changed |= 0b01;
  822. }
  823. return version_changed;
  824. }
  825. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  826. {
  827. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  828. }
  829. #ifdef BOOTAPP
  830. #include "bootapp.h" //bootloader support
  831. #endif //BOOTAPP
  832. #if (LANG_MODE != 0) //secondary language support
  833. #ifdef W25X20CL
  834. // language update from external flash
  835. #define LANGBOOT_BLOCKSIZE 0x1000u
  836. #define LANGBOOT_RAMBUFFER 0x0800
  837. void update_sec_lang_from_external_flash()
  838. {
  839. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  840. {
  841. uint8_t lang = boot_reserved >> 4;
  842. uint8_t state = boot_reserved & 0xf;
  843. lang_table_header_t header;
  844. uint32_t src_addr;
  845. if (lang_get_header(lang, &header, &src_addr))
  846. {
  847. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  848. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  849. delay(100);
  850. boot_reserved = (state + 1) | (lang << 4);
  851. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  852. {
  853. cli();
  854. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  855. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  856. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  857. if (state == 0)
  858. {
  859. //TODO - check header integrity
  860. }
  861. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  862. }
  863. else
  864. {
  865. //TODO - check sec lang data integrity
  866. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  867. }
  868. }
  869. }
  870. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  871. }
  872. #ifdef DEBUG_W25X20CL
  873. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  874. {
  875. lang_table_header_t header;
  876. uint8_t count = 0;
  877. uint32_t addr = 0x00000;
  878. while (1)
  879. {
  880. printf_P(_n("LANGTABLE%d:"), count);
  881. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  882. if (header.magic != LANG_MAGIC)
  883. {
  884. printf_P(_n("NG!\n"));
  885. break;
  886. }
  887. printf_P(_n("OK\n"));
  888. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  889. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  890. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  891. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  892. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  893. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  894. addr += header.size;
  895. codes[count] = header.code;
  896. count ++;
  897. }
  898. return count;
  899. }
  900. void list_sec_lang_from_external_flash()
  901. {
  902. uint16_t codes[8];
  903. uint8_t count = lang_xflash_enum_codes(codes);
  904. printf_P(_n("XFlash lang count = %hhd\n"), count);
  905. }
  906. #endif //DEBUG_W25X20CL
  907. #endif //W25X20CL
  908. #endif //(LANG_MODE != 0)
  909. // "Setup" function is called by the Arduino framework on startup.
  910. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  911. // are initialized by the main() routine provided by the Arduino framework.
  912. void setup()
  913. {
  914. mmu_init();
  915. ultralcd_init();
  916. spi_init();
  917. lcd_splash();
  918. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  919. #ifdef W25X20CL
  920. if (!w25x20cl_init())
  921. kill(_i("External SPI flash W25X20CL not responding."));
  922. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  923. optiboot_w25x20cl_enter();
  924. #endif
  925. #if (LANG_MODE != 0) //secondary language support
  926. #ifdef W25X20CL
  927. if (w25x20cl_init())
  928. update_sec_lang_from_external_flash();
  929. #endif //W25X20CL
  930. #endif //(LANG_MODE != 0)
  931. setup_killpin();
  932. setup_powerhold();
  933. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  934. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  935. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  936. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  937. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  938. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  939. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  940. if (farm_mode)
  941. {
  942. no_response = true; //we need confirmation by recieving PRUSA thx
  943. important_status = 8;
  944. prusa_statistics(8);
  945. selectedSerialPort = 1;
  946. #ifdef TMC2130
  947. //increased extruder current (PFW363)
  948. tmc2130_current_h[E_AXIS] = 36;
  949. tmc2130_current_r[E_AXIS] = 36;
  950. #endif //TMC2130
  951. #ifdef FILAMENT_SENSOR
  952. //disabled filament autoload (PFW360)
  953. fsensor_autoload_set(false);
  954. #endif //FILAMENT_SENSOR
  955. }
  956. MYSERIAL.begin(BAUDRATE);
  957. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  958. stdout = uartout;
  959. SERIAL_PROTOCOLLNPGM("start");
  960. SERIAL_ECHO_START;
  961. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  962. #ifdef DEBUG_SEC_LANG
  963. lang_table_header_t header;
  964. uint32_t src_addr = 0x00000;
  965. if (lang_get_header(1, &header, &src_addr))
  966. {
  967. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  968. #define LT_PRINT_TEST 2
  969. // flash usage
  970. // total p.test
  971. //0 252718 t+c text code
  972. //1 253142 424 170 254
  973. //2 253040 322 164 158
  974. //3 253248 530 135 395
  975. #if (LT_PRINT_TEST==1) //not optimized printf
  976. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  977. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  978. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  979. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  980. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  981. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  982. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  983. #elif (LT_PRINT_TEST==2) //optimized printf
  984. printf_P(
  985. _n(
  986. " _src_addr = 0x%08lx\n"
  987. " _lt_magic = 0x%08lx %S\n"
  988. " _lt_size = 0x%04x (%d)\n"
  989. " _lt_count = 0x%04x (%d)\n"
  990. " _lt_chsum = 0x%04x\n"
  991. " _lt_code = 0x%04x (%c%c)\n"
  992. " _lt_resv1 = 0x%08lx\n"
  993. ),
  994. src_addr,
  995. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  996. header.size, header.size,
  997. header.count, header.count,
  998. header.checksum,
  999. header.code, header.code >> 8, header.code & 0xff,
  1000. header.signature
  1001. );
  1002. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1003. MYSERIAL.print(" _src_addr = 0x");
  1004. MYSERIAL.println(src_addr, 16);
  1005. MYSERIAL.print(" _lt_magic = 0x");
  1006. MYSERIAL.print(header.magic, 16);
  1007. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1008. MYSERIAL.print(" _lt_size = 0x");
  1009. MYSERIAL.print(header.size, 16);
  1010. MYSERIAL.print(" (");
  1011. MYSERIAL.print(header.size, 10);
  1012. MYSERIAL.println(")");
  1013. MYSERIAL.print(" _lt_count = 0x");
  1014. MYSERIAL.print(header.count, 16);
  1015. MYSERIAL.print(" (");
  1016. MYSERIAL.print(header.count, 10);
  1017. MYSERIAL.println(")");
  1018. MYSERIAL.print(" _lt_chsum = 0x");
  1019. MYSERIAL.println(header.checksum, 16);
  1020. MYSERIAL.print(" _lt_code = 0x");
  1021. MYSERIAL.print(header.code, 16);
  1022. MYSERIAL.print(" (");
  1023. MYSERIAL.print((char)(header.code >> 8), 0);
  1024. MYSERIAL.print((char)(header.code & 0xff), 0);
  1025. MYSERIAL.println(")");
  1026. MYSERIAL.print(" _lt_resv1 = 0x");
  1027. MYSERIAL.println(header.signature, 16);
  1028. #endif //(LT_PRINT_TEST==)
  1029. #undef LT_PRINT_TEST
  1030. #if 0
  1031. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1032. for (uint16_t i = 0; i < 1024; i++)
  1033. {
  1034. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1035. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1036. if ((i % 16) == 15) putchar('\n');
  1037. }
  1038. #endif
  1039. uint16_t sum = 0;
  1040. for (uint16_t i = 0; i < header.size; i++)
  1041. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1042. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1043. sum -= header.checksum; //subtract checksum
  1044. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1045. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1046. if (sum == header.checksum)
  1047. printf_P(_n("Checksum OK\n"), sum);
  1048. else
  1049. printf_P(_n("Checksum NG\n"), sum);
  1050. }
  1051. else
  1052. printf_P(_n("lang_get_header failed!\n"));
  1053. #if 0
  1054. for (uint16_t i = 0; i < 1024*10; i++)
  1055. {
  1056. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1057. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1058. if ((i % 16) == 15) putchar('\n');
  1059. }
  1060. #endif
  1061. #if 0
  1062. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1063. for (int i = 0; i < 4096; ++i) {
  1064. int b = eeprom_read_byte((unsigned char*)i);
  1065. if (b != 255) {
  1066. SERIAL_ECHO(i);
  1067. SERIAL_ECHO(":");
  1068. SERIAL_ECHO(b);
  1069. SERIAL_ECHOLN("");
  1070. }
  1071. }
  1072. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1073. #endif
  1074. #endif //DEBUG_SEC_LANG
  1075. // Check startup - does nothing if bootloader sets MCUSR to 0
  1076. byte mcu = MCUSR;
  1077. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1078. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1079. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1080. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1081. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1082. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1083. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1084. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1085. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1086. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1087. MCUSR = 0;
  1088. //SERIAL_ECHORPGM(MSG_MARLIN);
  1089. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1090. #ifdef STRING_VERSION_CONFIG_H
  1091. #ifdef STRING_CONFIG_H_AUTHOR
  1092. SERIAL_ECHO_START;
  1093. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1094. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1095. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1096. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1097. SERIAL_ECHOPGM("Compiled: ");
  1098. SERIAL_ECHOLNPGM(__DATE__);
  1099. #endif
  1100. #endif
  1101. SERIAL_ECHO_START;
  1102. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1103. SERIAL_ECHO(freeMemory());
  1104. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1105. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1106. //lcd_update_enable(false); // why do we need this?? - andre
  1107. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1108. bool previous_settings_retrieved = false;
  1109. uint8_t hw_changed = check_printer_version();
  1110. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1111. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1112. }
  1113. else { //printer version was changed so use default settings
  1114. Config_ResetDefault();
  1115. }
  1116. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1117. tp_init(); // Initialize temperature loop
  1118. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1119. plan_init(); // Initialize planner;
  1120. factory_reset();
  1121. lcd_encoder_diff=0;
  1122. #ifdef TMC2130
  1123. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1124. if (silentMode == 0xff) silentMode = 0;
  1125. tmc2130_mode = TMC2130_MODE_NORMAL;
  1126. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1127. if (crashdet && !farm_mode)
  1128. {
  1129. crashdet_enable();
  1130. puts_P(_N("CrashDetect ENABLED!"));
  1131. }
  1132. else
  1133. {
  1134. crashdet_disable();
  1135. puts_P(_N("CrashDetect DISABLED"));
  1136. }
  1137. #ifdef TMC2130_LINEARITY_CORRECTION
  1138. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1139. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1140. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1141. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1142. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1143. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1144. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1145. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1146. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1147. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1148. #endif //TMC2130_LINEARITY_CORRECTION
  1149. #ifdef TMC2130_VARIABLE_RESOLUTION
  1150. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1151. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1152. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1153. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1154. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1155. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1156. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1157. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1158. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1159. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1160. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1161. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1162. #else //TMC2130_VARIABLE_RESOLUTION
  1163. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1164. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1165. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1166. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1167. #endif //TMC2130_VARIABLE_RESOLUTION
  1168. #endif //TMC2130
  1169. st_init(); // Initialize stepper, this enables interrupts!
  1170. #ifdef TMC2130
  1171. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1172. update_mode_profile();
  1173. tmc2130_init();
  1174. #endif //TMC2130
  1175. setup_photpin();
  1176. servo_init();
  1177. // Reset the machine correction matrix.
  1178. // It does not make sense to load the correction matrix until the machine is homed.
  1179. world2machine_reset();
  1180. #ifdef FILAMENT_SENSOR
  1181. fsensor_init();
  1182. #endif //FILAMENT_SENSOR
  1183. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1184. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1185. #endif
  1186. setup_homepin();
  1187. #ifdef TMC2130
  1188. if (1) {
  1189. // try to run to zero phase before powering the Z motor.
  1190. // Move in negative direction
  1191. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1192. // Round the current micro-micro steps to micro steps.
  1193. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1194. // Until the phase counter is reset to zero.
  1195. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1196. delay(2);
  1197. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1198. delay(2);
  1199. }
  1200. }
  1201. #endif //TMC2130
  1202. #if defined(Z_AXIS_ALWAYS_ON)
  1203. enable_z();
  1204. #endif
  1205. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1206. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1207. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1208. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1209. if (farm_mode)
  1210. {
  1211. prusa_statistics(8);
  1212. }
  1213. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1214. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1215. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1216. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1217. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1218. // where all the EEPROM entries are set to 0x0ff.
  1219. // Once a firmware boots up, it forces at least a language selection, which changes
  1220. // EEPROM_LANG to number lower than 0x0ff.
  1221. // 1) Set a high power mode.
  1222. #ifdef TMC2130
  1223. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1224. tmc2130_mode = TMC2130_MODE_NORMAL;
  1225. #endif //TMC2130
  1226. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1227. }
  1228. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1229. // but this times out if a blocking dialog is shown in setup().
  1230. card.initsd();
  1231. #ifdef DEBUG_SD_SPEED_TEST
  1232. if (card.cardOK)
  1233. {
  1234. uint8_t* buff = (uint8_t*)block_buffer;
  1235. uint32_t block = 0;
  1236. uint32_t sumr = 0;
  1237. uint32_t sumw = 0;
  1238. for (int i = 0; i < 1024; i++)
  1239. {
  1240. uint32_t u = micros();
  1241. bool res = card.card.readBlock(i, buff);
  1242. u = micros() - u;
  1243. if (res)
  1244. {
  1245. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1246. sumr += u;
  1247. u = micros();
  1248. res = card.card.writeBlock(i, buff);
  1249. u = micros() - u;
  1250. if (res)
  1251. {
  1252. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1253. sumw += u;
  1254. }
  1255. else
  1256. {
  1257. printf_P(PSTR("writeBlock %4d error\n"), i);
  1258. break;
  1259. }
  1260. }
  1261. else
  1262. {
  1263. printf_P(PSTR("readBlock %4d error\n"), i);
  1264. break;
  1265. }
  1266. }
  1267. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1268. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1269. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1270. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1271. }
  1272. else
  1273. printf_P(PSTR("Card NG!\n"));
  1274. #endif //DEBUG_SD_SPEED_TEST
  1275. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1276. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1277. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1279. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1280. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1281. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1282. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1283. #ifdef SNMM
  1284. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1285. int _z = BOWDEN_LENGTH;
  1286. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1287. }
  1288. #endif
  1289. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1290. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1291. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1292. #if (LANG_MODE != 0) //secondary language support
  1293. #ifdef DEBUG_W25X20CL
  1294. W25X20CL_SPI_ENTER();
  1295. uint8_t uid[8]; // 64bit unique id
  1296. w25x20cl_rd_uid(uid);
  1297. puts_P(_n("W25X20CL UID="));
  1298. for (uint8_t i = 0; i < 8; i ++)
  1299. printf_P(PSTR("%02hhx"), uid[i]);
  1300. putchar('\n');
  1301. list_sec_lang_from_external_flash();
  1302. #endif //DEBUG_W25X20CL
  1303. // lang_reset();
  1304. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1305. lcd_language();
  1306. #ifdef DEBUG_SEC_LANG
  1307. uint16_t sec_lang_code = lang_get_code(1);
  1308. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1309. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1310. // lang_print_sec_lang(uartout);
  1311. #endif //DEBUG_SEC_LANG
  1312. #endif //(LANG_MODE != 0)
  1313. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1314. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1315. temp_cal_active = false;
  1316. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1317. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1318. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1319. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1320. int16_t z_shift = 0;
  1321. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1322. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1323. temp_cal_active = false;
  1324. }
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1326. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1327. }
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1329. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1330. }
  1331. check_babystep(); //checking if Z babystep is in allowed range
  1332. #ifdef UVLO_SUPPORT
  1333. setup_uvlo_interrupt();
  1334. #endif //UVLO_SUPPORT
  1335. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1336. setup_fan_interrupt();
  1337. #endif //DEBUG_DISABLE_FANCHECK
  1338. #ifdef FILAMENT_SENSOR
  1339. fsensor_setup_interrupt();
  1340. #endif //FILAMENT_SENSOR
  1341. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1342. #ifndef DEBUG_DISABLE_STARTMSGS
  1343. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1344. show_fw_version_warnings();
  1345. switch (hw_changed) {
  1346. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1347. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1348. case(0b01):
  1349. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1350. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1351. break;
  1352. case(0b10):
  1353. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1354. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1355. break;
  1356. case(0b11):
  1357. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1358. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1359. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1360. break;
  1361. default: break; //no change, show no message
  1362. }
  1363. if (!previous_settings_retrieved) {
  1364. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1365. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1366. }
  1367. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1368. lcd_wizard(0);
  1369. }
  1370. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1371. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1372. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1373. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1374. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1375. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1376. // Show the message.
  1377. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1378. }
  1379. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1380. // Show the message.
  1381. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1382. lcd_update_enable(true);
  1383. }
  1384. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1385. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1386. lcd_update_enable(true);
  1387. }
  1388. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1389. // Show the message.
  1390. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1391. }
  1392. }
  1393. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1394. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1395. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1396. update_current_firmware_version_to_eeprom();
  1397. lcd_selftest();
  1398. }
  1399. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1400. KEEPALIVE_STATE(IN_PROCESS);
  1401. #endif //DEBUG_DISABLE_STARTMSGS
  1402. lcd_update_enable(true);
  1403. lcd_clear();
  1404. lcd_update(2);
  1405. // Store the currently running firmware into an eeprom,
  1406. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1407. update_current_firmware_version_to_eeprom();
  1408. #ifdef TMC2130
  1409. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1410. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1411. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1412. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1413. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1414. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1415. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1416. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1417. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1418. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1419. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1420. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1421. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1422. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1423. #endif //TMC2130
  1424. #ifdef UVLO_SUPPORT
  1425. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1426. /*
  1427. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1428. else {
  1429. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1430. lcd_update_enable(true);
  1431. lcd_update(2);
  1432. lcd_setstatuspgm(_T(WELCOME_MSG));
  1433. }
  1434. */
  1435. manage_heater(); // Update temperatures
  1436. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1437. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1438. #endif
  1439. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1440. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1441. puts_P(_N("Automatic recovery!"));
  1442. #endif
  1443. recover_print(1);
  1444. }
  1445. else{
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. puts_P(_N("Normal recovery!"));
  1448. #endif
  1449. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1450. else {
  1451. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1452. lcd_update_enable(true);
  1453. lcd_update(2);
  1454. lcd_setstatuspgm(_T(WELCOME_MSG));
  1455. }
  1456. }
  1457. }
  1458. #endif //UVLO_SUPPORT
  1459. KEEPALIVE_STATE(NOT_BUSY);
  1460. #ifdef WATCHDOG
  1461. wdt_enable(WDTO_4S);
  1462. #endif //WATCHDOG
  1463. }
  1464. void trace();
  1465. #define CHUNK_SIZE 64 // bytes
  1466. #define SAFETY_MARGIN 1
  1467. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1468. int chunkHead = 0;
  1469. void serial_read_stream() {
  1470. setAllTargetHotends(0);
  1471. setTargetBed(0);
  1472. lcd_clear();
  1473. lcd_puts_P(PSTR(" Upload in progress"));
  1474. // first wait for how many bytes we will receive
  1475. uint32_t bytesToReceive;
  1476. // receive the four bytes
  1477. char bytesToReceiveBuffer[4];
  1478. for (int i=0; i<4; i++) {
  1479. int data;
  1480. while ((data = MYSERIAL.read()) == -1) {};
  1481. bytesToReceiveBuffer[i] = data;
  1482. }
  1483. // make it a uint32
  1484. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1485. // we're ready, notify the sender
  1486. MYSERIAL.write('+');
  1487. // lock in the routine
  1488. uint32_t receivedBytes = 0;
  1489. while (prusa_sd_card_upload) {
  1490. int i;
  1491. for (i=0; i<CHUNK_SIZE; i++) {
  1492. int data;
  1493. // check if we're not done
  1494. if (receivedBytes == bytesToReceive) {
  1495. break;
  1496. }
  1497. // read the next byte
  1498. while ((data = MYSERIAL.read()) == -1) {};
  1499. receivedBytes++;
  1500. // save it to the chunk
  1501. chunk[i] = data;
  1502. }
  1503. // write the chunk to SD
  1504. card.write_command_no_newline(&chunk[0]);
  1505. // notify the sender we're ready for more data
  1506. MYSERIAL.write('+');
  1507. // for safety
  1508. manage_heater();
  1509. // check if we're done
  1510. if(receivedBytes == bytesToReceive) {
  1511. trace(); // beep
  1512. card.closefile();
  1513. prusa_sd_card_upload = false;
  1514. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1515. }
  1516. }
  1517. }
  1518. #ifdef HOST_KEEPALIVE_FEATURE
  1519. /**
  1520. * Output a "busy" message at regular intervals
  1521. * while the machine is not accepting commands.
  1522. */
  1523. void host_keepalive() {
  1524. if (farm_mode) return;
  1525. long ms = millis();
  1526. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1527. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1528. switch (busy_state) {
  1529. case IN_HANDLER:
  1530. case IN_PROCESS:
  1531. SERIAL_ECHO_START;
  1532. SERIAL_ECHOLNPGM("busy: processing");
  1533. break;
  1534. case PAUSED_FOR_USER:
  1535. SERIAL_ECHO_START;
  1536. SERIAL_ECHOLNPGM("busy: paused for user");
  1537. break;
  1538. case PAUSED_FOR_INPUT:
  1539. SERIAL_ECHO_START;
  1540. SERIAL_ECHOLNPGM("busy: paused for input");
  1541. break;
  1542. default:
  1543. break;
  1544. }
  1545. }
  1546. prev_busy_signal_ms = ms;
  1547. }
  1548. #endif
  1549. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1550. // Before loop(), the setup() function is called by the main() routine.
  1551. void loop()
  1552. {
  1553. KEEPALIVE_STATE(NOT_BUSY);
  1554. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1555. {
  1556. is_usb_printing = true;
  1557. usb_printing_counter--;
  1558. _usb_timer = millis();
  1559. }
  1560. if (usb_printing_counter == 0)
  1561. {
  1562. is_usb_printing = false;
  1563. }
  1564. if (prusa_sd_card_upload)
  1565. {
  1566. //we read byte-by byte
  1567. serial_read_stream();
  1568. } else
  1569. {
  1570. get_command();
  1571. #ifdef SDSUPPORT
  1572. card.checkautostart(false);
  1573. #endif
  1574. if(buflen)
  1575. {
  1576. cmdbuffer_front_already_processed = false;
  1577. #ifdef SDSUPPORT
  1578. if(card.saving)
  1579. {
  1580. // Saving a G-code file onto an SD-card is in progress.
  1581. // Saving starts with M28, saving until M29 is seen.
  1582. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1583. card.write_command(CMDBUFFER_CURRENT_STRING);
  1584. if(card.logging)
  1585. process_commands();
  1586. else
  1587. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1588. } else {
  1589. card.closefile();
  1590. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1591. }
  1592. } else {
  1593. process_commands();
  1594. }
  1595. #else
  1596. process_commands();
  1597. #endif //SDSUPPORT
  1598. if (! cmdbuffer_front_already_processed && buflen)
  1599. {
  1600. // ptr points to the start of the block currently being processed.
  1601. // The first character in the block is the block type.
  1602. char *ptr = cmdbuffer + bufindr;
  1603. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1604. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1605. union {
  1606. struct {
  1607. char lo;
  1608. char hi;
  1609. } lohi;
  1610. uint16_t value;
  1611. } sdlen;
  1612. sdlen.value = 0;
  1613. {
  1614. // This block locks the interrupts globally for 3.25 us,
  1615. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1616. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1617. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1618. cli();
  1619. // Reset the command to something, which will be ignored by the power panic routine,
  1620. // so this buffer length will not be counted twice.
  1621. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1622. // Extract the current buffer length.
  1623. sdlen.lohi.lo = *ptr ++;
  1624. sdlen.lohi.hi = *ptr;
  1625. // and pass it to the planner queue.
  1626. planner_add_sd_length(sdlen.value);
  1627. sei();
  1628. }
  1629. }
  1630. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1631. cli();
  1632. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1633. // and one for each command to previous block in the planner queue.
  1634. planner_add_sd_length(1);
  1635. sei();
  1636. }
  1637. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1638. // this block's SD card length will not be counted twice as its command type has been replaced
  1639. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1640. cmdqueue_pop_front();
  1641. }
  1642. host_keepalive();
  1643. }
  1644. }
  1645. //check heater every n milliseconds
  1646. manage_heater();
  1647. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1648. checkHitEndstops();
  1649. lcd_update(0);
  1650. #ifdef FILAMENT_SENSOR
  1651. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1652. fsensor_update();
  1653. #endif //FILAMENT_SENSOR
  1654. #ifdef TMC2130
  1655. tmc2130_check_overtemp();
  1656. if (tmc2130_sg_crash)
  1657. {
  1658. uint8_t crash = tmc2130_sg_crash;
  1659. tmc2130_sg_crash = 0;
  1660. // crashdet_stop_and_save_print();
  1661. switch (crash)
  1662. {
  1663. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1664. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1665. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1666. }
  1667. }
  1668. #endif //TMC2130
  1669. mmu_loop();
  1670. }
  1671. #define DEFINE_PGM_READ_ANY(type, reader) \
  1672. static inline type pgm_read_any(const type *p) \
  1673. { return pgm_read_##reader##_near(p); }
  1674. DEFINE_PGM_READ_ANY(float, float);
  1675. DEFINE_PGM_READ_ANY(signed char, byte);
  1676. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1677. static const PROGMEM type array##_P[3] = \
  1678. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1679. static inline type array(int axis) \
  1680. { return pgm_read_any(&array##_P[axis]); } \
  1681. type array##_ext(int axis) \
  1682. { return pgm_read_any(&array##_P[axis]); }
  1683. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1684. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1685. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1686. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1687. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1688. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1689. static void axis_is_at_home(int axis) {
  1690. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1691. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1692. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1693. }
  1694. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1695. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1696. //! @return original feedmultiply
  1697. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1698. saved_feedrate = feedrate;
  1699. int l_feedmultiply = feedmultiply;
  1700. feedmultiply = 100;
  1701. previous_millis_cmd = millis();
  1702. enable_endstops(enable_endstops_now);
  1703. return l_feedmultiply;
  1704. }
  1705. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1706. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1707. enable_endstops(false);
  1708. #endif
  1709. feedrate = saved_feedrate;
  1710. feedmultiply = original_feedmultiply;
  1711. previous_millis_cmd = millis();
  1712. }
  1713. #ifdef ENABLE_AUTO_BED_LEVELING
  1714. #ifdef AUTO_BED_LEVELING_GRID
  1715. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1716. {
  1717. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1718. planeNormal.debug("planeNormal");
  1719. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1720. //bedLevel.debug("bedLevel");
  1721. //plan_bed_level_matrix.debug("bed level before");
  1722. //vector_3 uncorrected_position = plan_get_position_mm();
  1723. //uncorrected_position.debug("position before");
  1724. vector_3 corrected_position = plan_get_position();
  1725. // corrected_position.debug("position after");
  1726. current_position[X_AXIS] = corrected_position.x;
  1727. current_position[Y_AXIS] = corrected_position.y;
  1728. current_position[Z_AXIS] = corrected_position.z;
  1729. // put the bed at 0 so we don't go below it.
  1730. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. }
  1733. #else // not AUTO_BED_LEVELING_GRID
  1734. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1735. plan_bed_level_matrix.set_to_identity();
  1736. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1737. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1738. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1739. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1740. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1741. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1742. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1743. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1744. vector_3 corrected_position = plan_get_position();
  1745. current_position[X_AXIS] = corrected_position.x;
  1746. current_position[Y_AXIS] = corrected_position.y;
  1747. current_position[Z_AXIS] = corrected_position.z;
  1748. // put the bed at 0 so we don't go below it.
  1749. current_position[Z_AXIS] = zprobe_zoffset;
  1750. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1751. }
  1752. #endif // AUTO_BED_LEVELING_GRID
  1753. static void run_z_probe() {
  1754. plan_bed_level_matrix.set_to_identity();
  1755. feedrate = homing_feedrate[Z_AXIS];
  1756. // move down until you find the bed
  1757. float zPosition = -10;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1759. st_synchronize();
  1760. // we have to let the planner know where we are right now as it is not where we said to go.
  1761. zPosition = st_get_position_mm(Z_AXIS);
  1762. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1763. // move up the retract distance
  1764. zPosition += home_retract_mm(Z_AXIS);
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. // move back down slowly to find bed
  1768. feedrate = homing_feedrate[Z_AXIS]/4;
  1769. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1771. st_synchronize();
  1772. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1773. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. }
  1776. static void do_blocking_move_to(float x, float y, float z) {
  1777. float oldFeedRate = feedrate;
  1778. feedrate = homing_feedrate[Z_AXIS];
  1779. current_position[Z_AXIS] = z;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1781. st_synchronize();
  1782. feedrate = XY_TRAVEL_SPEED;
  1783. current_position[X_AXIS] = x;
  1784. current_position[Y_AXIS] = y;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1786. st_synchronize();
  1787. feedrate = oldFeedRate;
  1788. }
  1789. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1790. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1791. }
  1792. /// Probe bed height at position (x,y), returns the measured z value
  1793. static float probe_pt(float x, float y, float z_before) {
  1794. // move to right place
  1795. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1796. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1797. run_z_probe();
  1798. float measured_z = current_position[Z_AXIS];
  1799. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1800. SERIAL_PROTOCOLPGM(" x: ");
  1801. SERIAL_PROTOCOL(x);
  1802. SERIAL_PROTOCOLPGM(" y: ");
  1803. SERIAL_PROTOCOL(y);
  1804. SERIAL_PROTOCOLPGM(" z: ");
  1805. SERIAL_PROTOCOL(measured_z);
  1806. SERIAL_PROTOCOLPGM("\n");
  1807. return measured_z;
  1808. }
  1809. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1810. #ifdef LIN_ADVANCE
  1811. /**
  1812. * M900: Set and/or Get advance K factor and WH/D ratio
  1813. *
  1814. * K<factor> Set advance K factor
  1815. * R<ratio> Set ratio directly (overrides WH/D)
  1816. * W<width> H<height> D<diam> Set ratio from WH/D
  1817. */
  1818. inline void gcode_M900() {
  1819. st_synchronize();
  1820. const float newK = code_seen('K') ? code_value_float() : -1;
  1821. if (newK >= 0) extruder_advance_k = newK;
  1822. float newR = code_seen('R') ? code_value_float() : -1;
  1823. if (newR < 0) {
  1824. const float newD = code_seen('D') ? code_value_float() : -1,
  1825. newW = code_seen('W') ? code_value_float() : -1,
  1826. newH = code_seen('H') ? code_value_float() : -1;
  1827. if (newD >= 0 && newW >= 0 && newH >= 0)
  1828. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1829. }
  1830. if (newR >= 0) advance_ed_ratio = newR;
  1831. SERIAL_ECHO_START;
  1832. SERIAL_ECHOPGM("Advance K=");
  1833. SERIAL_ECHOLN(extruder_advance_k);
  1834. SERIAL_ECHOPGM(" E/D=");
  1835. const float ratio = advance_ed_ratio;
  1836. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1837. }
  1838. #endif // LIN_ADVANCE
  1839. bool check_commands() {
  1840. bool end_command_found = false;
  1841. while (buflen)
  1842. {
  1843. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1844. if (!cmdbuffer_front_already_processed)
  1845. cmdqueue_pop_front();
  1846. cmdbuffer_front_already_processed = false;
  1847. }
  1848. return end_command_found;
  1849. }
  1850. #ifdef TMC2130
  1851. bool calibrate_z_auto()
  1852. {
  1853. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1854. lcd_clear();
  1855. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1856. bool endstops_enabled = enable_endstops(true);
  1857. int axis_up_dir = -home_dir(Z_AXIS);
  1858. tmc2130_home_enter(Z_AXIS_MASK);
  1859. current_position[Z_AXIS] = 0;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. set_destination_to_current();
  1862. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1863. feedrate = homing_feedrate[Z_AXIS];
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. // current_position[axis] = 0;
  1867. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1868. tmc2130_home_exit();
  1869. enable_endstops(false);
  1870. current_position[Z_AXIS] = 0;
  1871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1872. set_destination_to_current();
  1873. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1874. feedrate = homing_feedrate[Z_AXIS] / 2;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. enable_endstops(endstops_enabled);
  1878. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1880. return true;
  1881. }
  1882. #endif //TMC2130
  1883. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1884. {
  1885. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1886. #define HOMEAXIS_DO(LETTER) \
  1887. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1888. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1889. {
  1890. int axis_home_dir = home_dir(axis);
  1891. feedrate = homing_feedrate[axis];
  1892. #ifdef TMC2130
  1893. tmc2130_home_enter(X_AXIS_MASK << axis);
  1894. #endif //TMC2130
  1895. // Move away a bit, so that the print head does not touch the end position,
  1896. // and the following movement to endstop has a chance to achieve the required velocity
  1897. // for the stall guard to work.
  1898. current_position[axis] = 0;
  1899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. set_destination_to_current();
  1901. // destination[axis] = 11.f;
  1902. destination[axis] = -3.f * axis_home_dir;
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1906. endstops_hit_on_purpose();
  1907. enable_endstops(false);
  1908. current_position[axis] = 0;
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. destination[axis] = 1. * axis_home_dir;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. // Now continue to move up to the left end stop with the collision detection enabled.
  1914. enable_endstops(true);
  1915. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. for (uint8_t i = 0; i < cnt; i++)
  1919. {
  1920. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1921. endstops_hit_on_purpose();
  1922. enable_endstops(false);
  1923. current_position[axis] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. destination[axis] = -10.f * axis_home_dir;
  1926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1927. st_synchronize();
  1928. endstops_hit_on_purpose();
  1929. // Now move left up to the collision, this time with a repeatable velocity.
  1930. enable_endstops(true);
  1931. destination[axis] = 11.f * axis_home_dir;
  1932. #ifdef TMC2130
  1933. feedrate = homing_feedrate[axis];
  1934. #else //TMC2130
  1935. feedrate = homing_feedrate[axis] / 2;
  1936. #endif //TMC2130
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. #ifdef TMC2130
  1940. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1941. if (pstep) pstep[i] = mscnt >> 4;
  1942. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1943. #endif //TMC2130
  1944. }
  1945. endstops_hit_on_purpose();
  1946. enable_endstops(false);
  1947. #ifdef TMC2130
  1948. uint8_t orig = tmc2130_home_origin[axis];
  1949. uint8_t back = tmc2130_home_bsteps[axis];
  1950. if (tmc2130_home_enabled && (orig <= 63))
  1951. {
  1952. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1953. if (back > 0)
  1954. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1955. }
  1956. else
  1957. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1958. tmc2130_home_exit();
  1959. #endif //TMC2130
  1960. axis_is_at_home(axis);
  1961. axis_known_position[axis] = true;
  1962. // Move from minimum
  1963. #ifdef TMC2130
  1964. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1965. #else //TMC2130
  1966. float dist = - axis_home_dir * 0.01f * 64;
  1967. #endif //TMC2130
  1968. current_position[axis] -= dist;
  1969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1970. current_position[axis] += dist;
  1971. destination[axis] = current_position[axis];
  1972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1973. st_synchronize();
  1974. feedrate = 0.0;
  1975. }
  1976. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1977. {
  1978. #ifdef TMC2130
  1979. FORCE_HIGH_POWER_START;
  1980. #endif
  1981. int axis_home_dir = home_dir(axis);
  1982. current_position[axis] = 0;
  1983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1984. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1985. feedrate = homing_feedrate[axis];
  1986. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1987. st_synchronize();
  1988. #ifdef TMC2130
  1989. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1990. FORCE_HIGH_POWER_END;
  1991. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1992. return;
  1993. }
  1994. #endif //TMC2130
  1995. current_position[axis] = 0;
  1996. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1997. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1999. st_synchronize();
  2000. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2001. feedrate = homing_feedrate[axis]/2 ;
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2006. FORCE_HIGH_POWER_END;
  2007. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2008. return;
  2009. }
  2010. #endif //TMC2130
  2011. axis_is_at_home(axis);
  2012. destination[axis] = current_position[axis];
  2013. feedrate = 0.0;
  2014. endstops_hit_on_purpose();
  2015. axis_known_position[axis] = true;
  2016. #ifdef TMC2130
  2017. FORCE_HIGH_POWER_END;
  2018. #endif
  2019. }
  2020. enable_endstops(endstops_enabled);
  2021. }
  2022. /**/
  2023. void home_xy()
  2024. {
  2025. set_destination_to_current();
  2026. homeaxis(X_AXIS);
  2027. homeaxis(Y_AXIS);
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. endstops_hit_on_purpose();
  2030. }
  2031. void refresh_cmd_timeout(void)
  2032. {
  2033. previous_millis_cmd = millis();
  2034. }
  2035. #ifdef FWRETRACT
  2036. void retract(bool retracting, bool swapretract = false) {
  2037. if(retracting && !retracted[active_extruder]) {
  2038. destination[X_AXIS]=current_position[X_AXIS];
  2039. destination[Y_AXIS]=current_position[Y_AXIS];
  2040. destination[Z_AXIS]=current_position[Z_AXIS];
  2041. destination[E_AXIS]=current_position[E_AXIS];
  2042. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2043. plan_set_e_position(current_position[E_AXIS]);
  2044. float oldFeedrate = feedrate;
  2045. feedrate=retract_feedrate*60;
  2046. retracted[active_extruder]=true;
  2047. prepare_move();
  2048. current_position[Z_AXIS]-=retract_zlift;
  2049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2050. prepare_move();
  2051. feedrate = oldFeedrate;
  2052. } else if(!retracting && retracted[active_extruder]) {
  2053. destination[X_AXIS]=current_position[X_AXIS];
  2054. destination[Y_AXIS]=current_position[Y_AXIS];
  2055. destination[Z_AXIS]=current_position[Z_AXIS];
  2056. destination[E_AXIS]=current_position[E_AXIS];
  2057. current_position[Z_AXIS]+=retract_zlift;
  2058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2059. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2060. plan_set_e_position(current_position[E_AXIS]);
  2061. float oldFeedrate = feedrate;
  2062. feedrate=retract_recover_feedrate*60;
  2063. retracted[active_extruder]=false;
  2064. prepare_move();
  2065. feedrate = oldFeedrate;
  2066. }
  2067. } //retract
  2068. #endif //FWRETRACT
  2069. void trace() {
  2070. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2071. tone(BEEPER, 440);
  2072. delay(25);
  2073. noTone(BEEPER);
  2074. delay(20);
  2075. }
  2076. /*
  2077. void ramming() {
  2078. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2079. if (current_temperature[0] < 230) {
  2080. //PLA
  2081. max_feedrate[E_AXIS] = 50;
  2082. //current_position[E_AXIS] -= 8;
  2083. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2084. //current_position[E_AXIS] += 8;
  2085. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2086. current_position[E_AXIS] += 5.4;
  2087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2088. current_position[E_AXIS] += 3.2;
  2089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2090. current_position[E_AXIS] += 3;
  2091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2092. st_synchronize();
  2093. max_feedrate[E_AXIS] = 80;
  2094. current_position[E_AXIS] -= 82;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2096. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2097. current_position[E_AXIS] -= 20;
  2098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2099. current_position[E_AXIS] += 5;
  2100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2101. current_position[E_AXIS] += 5;
  2102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2103. current_position[E_AXIS] -= 10;
  2104. st_synchronize();
  2105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2106. current_position[E_AXIS] += 10;
  2107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2108. current_position[E_AXIS] -= 10;
  2109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2110. current_position[E_AXIS] += 10;
  2111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 10;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2114. st_synchronize();
  2115. }
  2116. else {
  2117. //ABS
  2118. max_feedrate[E_AXIS] = 50;
  2119. //current_position[E_AXIS] -= 8;
  2120. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2121. //current_position[E_AXIS] += 8;
  2122. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2123. current_position[E_AXIS] += 3.1;
  2124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2125. current_position[E_AXIS] += 3.1;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2127. current_position[E_AXIS] += 4;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2129. st_synchronize();
  2130. //current_position[X_AXIS] += 23; //delay
  2131. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2132. //current_position[X_AXIS] -= 23; //delay
  2133. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2134. delay(4700);
  2135. max_feedrate[E_AXIS] = 80;
  2136. current_position[E_AXIS] -= 92;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2138. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2139. current_position[E_AXIS] -= 5;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2141. current_position[E_AXIS] += 5;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 5;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2145. st_synchronize();
  2146. current_position[E_AXIS] += 5;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2148. current_position[E_AXIS] -= 5;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 5;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2154. st_synchronize();
  2155. }
  2156. }
  2157. */
  2158. #ifdef TMC2130
  2159. void force_high_power_mode(bool start_high_power_section) {
  2160. uint8_t silent;
  2161. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2162. if (silent == 1) {
  2163. //we are in silent mode, set to normal mode to enable crash detection
  2164. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2165. st_synchronize();
  2166. cli();
  2167. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2168. update_mode_profile();
  2169. tmc2130_init();
  2170. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2171. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2172. st_reset_timer();
  2173. sei();
  2174. }
  2175. }
  2176. #endif //TMC2130
  2177. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2178. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2179. }
  2180. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2181. st_synchronize();
  2182. #if 0
  2183. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2184. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2185. #endif
  2186. // Flag for the display update routine and to disable the print cancelation during homing.
  2187. homing_flag = true;
  2188. // Which axes should be homed?
  2189. bool home_x = home_x_axis;
  2190. bool home_y = home_y_axis;
  2191. bool home_z = home_z_axis;
  2192. // Either all X,Y,Z codes are present, or none of them.
  2193. bool home_all_axes = home_x == home_y && home_x == home_z;
  2194. if (home_all_axes)
  2195. // No X/Y/Z code provided means to home all axes.
  2196. home_x = home_y = home_z = true;
  2197. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2198. if (home_all_axes) {
  2199. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2200. feedrate = homing_feedrate[Z_AXIS];
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2202. st_synchronize();
  2203. }
  2204. #ifdef ENABLE_AUTO_BED_LEVELING
  2205. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2206. #endif //ENABLE_AUTO_BED_LEVELING
  2207. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2208. // the planner will not perform any adjustments in the XY plane.
  2209. // Wait for the motors to stop and update the current position with the absolute values.
  2210. world2machine_revert_to_uncorrected();
  2211. // For mesh bed leveling deactivate the matrix temporarily.
  2212. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2213. // in a single axis only.
  2214. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2215. #ifdef MESH_BED_LEVELING
  2216. uint8_t mbl_was_active = mbl.active;
  2217. mbl.active = 0;
  2218. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2219. #endif
  2220. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2221. // consumed during the first movements following this statement.
  2222. if (home_z)
  2223. babystep_undo();
  2224. saved_feedrate = feedrate;
  2225. int l_feedmultiply = feedmultiply;
  2226. feedmultiply = 100;
  2227. previous_millis_cmd = millis();
  2228. enable_endstops(true);
  2229. memcpy(destination, current_position, sizeof(destination));
  2230. feedrate = 0.0;
  2231. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2232. if(home_z)
  2233. homeaxis(Z_AXIS);
  2234. #endif
  2235. #ifdef QUICK_HOME
  2236. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2237. if(home_x && home_y) //first diagonal move
  2238. {
  2239. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2240. int x_axis_home_dir = home_dir(X_AXIS);
  2241. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2242. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2243. feedrate = homing_feedrate[X_AXIS];
  2244. if(homing_feedrate[Y_AXIS]<feedrate)
  2245. feedrate = homing_feedrate[Y_AXIS];
  2246. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2247. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2248. } else {
  2249. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2250. }
  2251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2252. st_synchronize();
  2253. axis_is_at_home(X_AXIS);
  2254. axis_is_at_home(Y_AXIS);
  2255. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2256. destination[X_AXIS] = current_position[X_AXIS];
  2257. destination[Y_AXIS] = current_position[Y_AXIS];
  2258. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2259. feedrate = 0.0;
  2260. st_synchronize();
  2261. endstops_hit_on_purpose();
  2262. current_position[X_AXIS] = destination[X_AXIS];
  2263. current_position[Y_AXIS] = destination[Y_AXIS];
  2264. current_position[Z_AXIS] = destination[Z_AXIS];
  2265. }
  2266. #endif /* QUICK_HOME */
  2267. #ifdef TMC2130
  2268. if(home_x)
  2269. {
  2270. if (!calib)
  2271. homeaxis(X_AXIS);
  2272. else
  2273. tmc2130_home_calibrate(X_AXIS);
  2274. }
  2275. if(home_y)
  2276. {
  2277. if (!calib)
  2278. homeaxis(Y_AXIS);
  2279. else
  2280. tmc2130_home_calibrate(Y_AXIS);
  2281. }
  2282. #endif //TMC2130
  2283. if(home_x_axis && home_x_value != 0)
  2284. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2285. if(home_y_axis && home_y_value != 0)
  2286. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2287. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2288. #ifndef Z_SAFE_HOMING
  2289. if(home_z) {
  2290. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2291. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2292. feedrate = max_feedrate[Z_AXIS];
  2293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2294. st_synchronize();
  2295. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2296. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2297. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2298. {
  2299. homeaxis(X_AXIS);
  2300. homeaxis(Y_AXIS);
  2301. }
  2302. // 1st mesh bed leveling measurement point, corrected.
  2303. world2machine_initialize();
  2304. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2305. world2machine_reset();
  2306. if (destination[Y_AXIS] < Y_MIN_POS)
  2307. destination[Y_AXIS] = Y_MIN_POS;
  2308. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2309. feedrate = homing_feedrate[Z_AXIS]/10;
  2310. current_position[Z_AXIS] = 0;
  2311. enable_endstops(false);
  2312. #ifdef DEBUG_BUILD
  2313. SERIAL_ECHOLNPGM("plan_set_position()");
  2314. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2315. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2316. #endif
  2317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2318. #ifdef DEBUG_BUILD
  2319. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2320. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2321. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2322. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2323. #endif
  2324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2325. st_synchronize();
  2326. current_position[X_AXIS] = destination[X_AXIS];
  2327. current_position[Y_AXIS] = destination[Y_AXIS];
  2328. enable_endstops(true);
  2329. endstops_hit_on_purpose();
  2330. homeaxis(Z_AXIS);
  2331. #else // MESH_BED_LEVELING
  2332. homeaxis(Z_AXIS);
  2333. #endif // MESH_BED_LEVELING
  2334. }
  2335. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2336. if(home_all_axes) {
  2337. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2338. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2339. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2340. feedrate = XY_TRAVEL_SPEED/60;
  2341. current_position[Z_AXIS] = 0;
  2342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2344. st_synchronize();
  2345. current_position[X_AXIS] = destination[X_AXIS];
  2346. current_position[Y_AXIS] = destination[Y_AXIS];
  2347. homeaxis(Z_AXIS);
  2348. }
  2349. // Let's see if X and Y are homed and probe is inside bed area.
  2350. if(home_z) {
  2351. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2352. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2353. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2354. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2355. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2356. current_position[Z_AXIS] = 0;
  2357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2358. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2359. feedrate = max_feedrate[Z_AXIS];
  2360. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2361. st_synchronize();
  2362. homeaxis(Z_AXIS);
  2363. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2364. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2365. SERIAL_ECHO_START;
  2366. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2367. } else {
  2368. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2369. SERIAL_ECHO_START;
  2370. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2371. }
  2372. }
  2373. #endif // Z_SAFE_HOMING
  2374. #endif // Z_HOME_DIR < 0
  2375. if(home_z_axis && home_z_value != 0)
  2376. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2377. #ifdef ENABLE_AUTO_BED_LEVELING
  2378. if(home_z)
  2379. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2380. #endif
  2381. // Set the planner and stepper routine positions.
  2382. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2383. // contains the machine coordinates.
  2384. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2385. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2386. enable_endstops(false);
  2387. #endif
  2388. feedrate = saved_feedrate;
  2389. feedmultiply = l_feedmultiply;
  2390. previous_millis_cmd = millis();
  2391. endstops_hit_on_purpose();
  2392. #ifndef MESH_BED_LEVELING
  2393. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2394. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2395. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2396. lcd_adjust_z();
  2397. #endif
  2398. // Load the machine correction matrix
  2399. world2machine_initialize();
  2400. // and correct the current_position XY axes to match the transformed coordinate system.
  2401. world2machine_update_current();
  2402. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2403. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2404. {
  2405. if (! home_z && mbl_was_active) {
  2406. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2407. mbl.active = true;
  2408. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2409. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2410. }
  2411. }
  2412. else
  2413. {
  2414. st_synchronize();
  2415. homing_flag = false;
  2416. }
  2417. #endif
  2418. if (farm_mode) { prusa_statistics(20); };
  2419. homing_flag = false;
  2420. #if 0
  2421. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2422. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2423. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2424. #endif
  2425. }
  2426. void adjust_bed_reset()
  2427. {
  2428. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2429. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2430. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2431. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2432. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2433. }
  2434. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2435. {
  2436. bool final_result = false;
  2437. #ifdef TMC2130
  2438. FORCE_HIGH_POWER_START;
  2439. #endif // TMC2130
  2440. // Only Z calibration?
  2441. if (!onlyZ)
  2442. {
  2443. setTargetBed(0);
  2444. setAllTargetHotends(0);
  2445. adjust_bed_reset(); //reset bed level correction
  2446. }
  2447. // Disable the default update procedure of the display. We will do a modal dialog.
  2448. lcd_update_enable(false);
  2449. // Let the planner use the uncorrected coordinates.
  2450. mbl.reset();
  2451. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2452. // the planner will not perform any adjustments in the XY plane.
  2453. // Wait for the motors to stop and update the current position with the absolute values.
  2454. world2machine_revert_to_uncorrected();
  2455. // Reset the baby step value applied without moving the axes.
  2456. babystep_reset();
  2457. // Mark all axes as in a need for homing.
  2458. memset(axis_known_position, 0, sizeof(axis_known_position));
  2459. // Home in the XY plane.
  2460. //set_destination_to_current();
  2461. int l_feedmultiply = setup_for_endstop_move();
  2462. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2463. home_xy();
  2464. enable_endstops(false);
  2465. current_position[X_AXIS] += 5;
  2466. current_position[Y_AXIS] += 5;
  2467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2468. st_synchronize();
  2469. // Let the user move the Z axes up to the end stoppers.
  2470. #ifdef TMC2130
  2471. if (calibrate_z_auto())
  2472. {
  2473. #else //TMC2130
  2474. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2475. {
  2476. #endif //TMC2130
  2477. refresh_cmd_timeout();
  2478. #ifndef STEEL_SHEET
  2479. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2480. {
  2481. lcd_wait_for_cool_down();
  2482. }
  2483. #endif //STEEL_SHEET
  2484. if(!onlyZ)
  2485. {
  2486. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2487. #ifdef STEEL_SHEET
  2488. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2489. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2490. #endif //STEEL_SHEET
  2491. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2492. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2493. KEEPALIVE_STATE(IN_HANDLER);
  2494. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2495. lcd_set_cursor(0, 2);
  2496. lcd_print(1);
  2497. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2498. }
  2499. // Move the print head close to the bed.
  2500. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2501. bool endstops_enabled = enable_endstops(true);
  2502. #ifdef TMC2130
  2503. tmc2130_home_enter(Z_AXIS_MASK);
  2504. #endif //TMC2130
  2505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2506. st_synchronize();
  2507. #ifdef TMC2130
  2508. tmc2130_home_exit();
  2509. #endif //TMC2130
  2510. enable_endstops(endstops_enabled);
  2511. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2512. {
  2513. if (onlyZ)
  2514. {
  2515. clean_up_after_endstop_move(l_feedmultiply);
  2516. // Z only calibration.
  2517. // Load the machine correction matrix
  2518. world2machine_initialize();
  2519. // and correct the current_position to match the transformed coordinate system.
  2520. world2machine_update_current();
  2521. //FIXME
  2522. bool result = sample_mesh_and_store_reference();
  2523. if (result)
  2524. {
  2525. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2526. // Shipped, the nozzle height has been set already. The user can start printing now.
  2527. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2528. final_result = true;
  2529. // babystep_apply();
  2530. }
  2531. }
  2532. else
  2533. {
  2534. // Reset the baby step value and the baby step applied flag.
  2535. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2536. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2537. // Complete XYZ calibration.
  2538. uint8_t point_too_far_mask = 0;
  2539. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2540. clean_up_after_endstop_move(l_feedmultiply);
  2541. // Print head up.
  2542. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2544. st_synchronize();
  2545. //#ifndef NEW_XYZCAL
  2546. if (result >= 0)
  2547. {
  2548. #ifdef HEATBED_V2
  2549. sample_z();
  2550. #else //HEATBED_V2
  2551. point_too_far_mask = 0;
  2552. // Second half: The fine adjustment.
  2553. // Let the planner use the uncorrected coordinates.
  2554. mbl.reset();
  2555. world2machine_reset();
  2556. // Home in the XY plane.
  2557. int l_feedmultiply = setup_for_endstop_move();
  2558. home_xy();
  2559. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2560. clean_up_after_endstop_move(l_feedmultiply);
  2561. // Print head up.
  2562. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2564. st_synchronize();
  2565. // if (result >= 0) babystep_apply();
  2566. #endif //HEATBED_V2
  2567. }
  2568. //#endif //NEW_XYZCAL
  2569. lcd_update_enable(true);
  2570. lcd_update(2);
  2571. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2572. if (result >= 0)
  2573. {
  2574. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2575. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2576. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2577. final_result = true;
  2578. }
  2579. }
  2580. #ifdef TMC2130
  2581. tmc2130_home_exit();
  2582. #endif
  2583. }
  2584. else
  2585. {
  2586. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2587. final_result = false;
  2588. }
  2589. }
  2590. else
  2591. {
  2592. // Timeouted.
  2593. }
  2594. lcd_update_enable(true);
  2595. #ifdef TMC2130
  2596. FORCE_HIGH_POWER_END;
  2597. #endif // TMC2130
  2598. return final_result;
  2599. }
  2600. void gcode_M114()
  2601. {
  2602. SERIAL_PROTOCOLPGM("X:");
  2603. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" Y:");
  2605. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" Z:");
  2607. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" E:");
  2609. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2610. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2611. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2612. SERIAL_PROTOCOLPGM(" Y:");
  2613. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2614. SERIAL_PROTOCOLPGM(" Z:");
  2615. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2616. SERIAL_PROTOCOLPGM(" E:");
  2617. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2618. SERIAL_PROTOCOLLN("");
  2619. }
  2620. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2621. {
  2622. st_synchronize();
  2623. float lastpos[4];
  2624. if (farm_mode)
  2625. {
  2626. prusa_statistics(22);
  2627. }
  2628. //First backup current position and settings
  2629. int feedmultiplyBckp = feedmultiply;
  2630. float HotendTempBckp = degTargetHotend(active_extruder);
  2631. int fanSpeedBckp = fanSpeed;
  2632. lastpos[X_AXIS] = current_position[X_AXIS];
  2633. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2634. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2635. lastpos[E_AXIS] = current_position[E_AXIS];
  2636. //Retract E
  2637. current_position[E_AXIS] += e_shift;
  2638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2639. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2640. st_synchronize();
  2641. //Lift Z
  2642. current_position[Z_AXIS] += z_shift;
  2643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2644. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2645. st_synchronize();
  2646. //Move XY to side
  2647. current_position[X_AXIS] = x_position;
  2648. current_position[Y_AXIS] = y_position;
  2649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2650. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2651. st_synchronize();
  2652. //Beep, manage nozzle heater and wait for user to start unload filament
  2653. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2654. lcd_change_fil_state = 0;
  2655. // Unload filament
  2656. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2657. else unload_filament(); //unload filament for single material (used also in M702)
  2658. //finish moves
  2659. st_synchronize();
  2660. if (!mmu_enabled)
  2661. {
  2662. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2663. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2664. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2665. if (lcd_change_fil_state == 0)
  2666. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2667. lcd_update_enable(true);
  2668. }
  2669. if (mmu_enabled)
  2670. {
  2671. if (!automatic) {
  2672. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2673. mmu_M600_wait_and_beep();
  2674. if (saved_printing) {
  2675. lcd_clear();
  2676. lcd_set_cursor(0, 2);
  2677. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2678. mmu_command(MMU_CMD_R0);
  2679. manage_response(false, false);
  2680. }
  2681. }
  2682. mmu_M600_load_filament(automatic);
  2683. }
  2684. else
  2685. M600_load_filament();
  2686. if (!automatic) M600_check_state();
  2687. lcd_update_enable(true);
  2688. //Not let's go back to print
  2689. fanSpeed = fanSpeedBckp;
  2690. //Feed a little of filament to stabilize pressure
  2691. if (!automatic)
  2692. {
  2693. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2695. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2696. }
  2697. //Move XY back
  2698. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2699. FILAMENTCHANGE_XYFEED, active_extruder);
  2700. st_synchronize();
  2701. //Move Z back
  2702. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2703. FILAMENTCHANGE_ZFEED, active_extruder);
  2704. st_synchronize();
  2705. //Set E position to original
  2706. plan_set_e_position(lastpos[E_AXIS]);
  2707. memcpy(current_position, lastpos, sizeof(lastpos));
  2708. memcpy(destination, current_position, sizeof(current_position));
  2709. //Recover feed rate
  2710. feedmultiply = feedmultiplyBckp;
  2711. char cmd[9];
  2712. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2713. enquecommand(cmd);
  2714. lcd_setstatuspgm(_T(WELCOME_MSG));
  2715. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2716. }
  2717. void gcode_M701()
  2718. {
  2719. printf_P(PSTR("gcode_M701 begin\n"));
  2720. if (mmu_enabled)
  2721. {
  2722. extr_adj(tmp_extruder);//loads current extruder
  2723. mmu_extruder = tmp_extruder;
  2724. }
  2725. else
  2726. {
  2727. enable_z();
  2728. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2729. #ifdef FILAMENT_SENSOR
  2730. fsensor_oq_meassure_start(40);
  2731. #endif //FILAMENT_SENSOR
  2732. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2733. current_position[E_AXIS] += 40;
  2734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2735. st_synchronize();
  2736. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2737. current_position[E_AXIS] += 30;
  2738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2739. st_synchronize();
  2740. current_position[E_AXIS] += 25;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2742. st_synchronize();
  2743. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2744. delay_keep_alive(50);
  2745. noTone(BEEPER);
  2746. if (!farm_mode && loading_flag) {
  2747. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2748. while (!clean) {
  2749. lcd_update_enable(true);
  2750. lcd_update(2);
  2751. current_position[E_AXIS] += 25;
  2752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2753. st_synchronize();
  2754. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2755. }
  2756. }
  2757. lcd_update_enable(true);
  2758. lcd_update(2);
  2759. lcd_setstatuspgm(_T(WELCOME_MSG));
  2760. disable_z();
  2761. loading_flag = false;
  2762. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2763. #ifdef FILAMENT_SENSOR
  2764. if (mmu_enabled == false)
  2765. {
  2766. fsensor_oq_meassure_stop();
  2767. if (!fsensor_oq_result())
  2768. {
  2769. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2770. lcd_update_enable(true);
  2771. lcd_update(2);
  2772. if (disable)
  2773. fsensor_disable();
  2774. }
  2775. }
  2776. #endif //FILAMENT_SENSOR
  2777. }
  2778. }
  2779. /**
  2780. * @brief Get serial number from 32U2 processor
  2781. *
  2782. * Typical format of S/N is:CZPX0917X003XC13518
  2783. *
  2784. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2785. *
  2786. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2787. * reply is transmitted to serial port 1 character by character.
  2788. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2789. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2790. * in any case.
  2791. */
  2792. static void gcode_PRUSA_SN()
  2793. {
  2794. if (farm_mode) {
  2795. selectedSerialPort = 0;
  2796. putchar(';');
  2797. putchar('S');
  2798. int numbersRead = 0;
  2799. ShortTimer timeout;
  2800. timeout.start();
  2801. while (numbersRead < 19) {
  2802. while (MSerial.available() > 0) {
  2803. uint8_t serial_char = MSerial.read();
  2804. selectedSerialPort = 1;
  2805. putchar(serial_char);
  2806. numbersRead++;
  2807. selectedSerialPort = 0;
  2808. }
  2809. if (timeout.expired(100u)) break;
  2810. }
  2811. selectedSerialPort = 1;
  2812. putchar('\n');
  2813. #if 0
  2814. for (int b = 0; b < 3; b++) {
  2815. tone(BEEPER, 110);
  2816. delay(50);
  2817. noTone(BEEPER);
  2818. delay(50);
  2819. }
  2820. #endif
  2821. } else {
  2822. puts_P(_N("Not in farm mode."));
  2823. }
  2824. }
  2825. #ifdef BACKLASH_X
  2826. extern uint8_t st_backlash_x;
  2827. #endif //BACKLASH_X
  2828. #ifdef BACKLASH_Y
  2829. extern uint8_t st_backlash_y;
  2830. #endif //BACKLASH_Y
  2831. void process_commands()
  2832. {
  2833. if (!buflen) return; //empty command
  2834. #ifdef FILAMENT_RUNOUT_SUPPORT
  2835. SET_INPUT(FR_SENS);
  2836. #endif
  2837. #ifdef CMDBUFFER_DEBUG
  2838. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2839. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2840. SERIAL_ECHOLNPGM("");
  2841. SERIAL_ECHOPGM("In cmdqueue: ");
  2842. SERIAL_ECHO(buflen);
  2843. SERIAL_ECHOLNPGM("");
  2844. #endif /* CMDBUFFER_DEBUG */
  2845. unsigned long codenum; //throw away variable
  2846. char *starpos = NULL;
  2847. #ifdef ENABLE_AUTO_BED_LEVELING
  2848. float x_tmp, y_tmp, z_tmp, real_z;
  2849. #endif
  2850. // PRUSA GCODES
  2851. KEEPALIVE_STATE(IN_HANDLER);
  2852. #ifdef SNMM
  2853. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2854. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2855. int8_t SilentMode;
  2856. #endif
  2857. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2858. starpos = (strchr(strchr_pointer + 5, '*'));
  2859. if (starpos != NULL)
  2860. *(starpos) = '\0';
  2861. lcd_setstatus(strchr_pointer + 5);
  2862. }
  2863. #ifdef TMC2130
  2864. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2865. {
  2866. if(code_seen("CRASH_DETECTED"))
  2867. {
  2868. uint8_t mask = 0;
  2869. if (code_seen('X')) mask |= X_AXIS_MASK;
  2870. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2871. crashdet_detected(mask);
  2872. }
  2873. else if(code_seen("CRASH_RECOVER"))
  2874. crashdet_recover();
  2875. else if(code_seen("CRASH_CANCEL"))
  2876. crashdet_cancel();
  2877. }
  2878. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2879. {
  2880. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2881. {
  2882. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2883. axis = (axis == 'E')?3:(axis - 'X');
  2884. if (axis < 4)
  2885. {
  2886. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2887. tmc2130_set_wave(axis, 247, fac);
  2888. }
  2889. }
  2890. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2891. {
  2892. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2893. axis = (axis == 'E')?3:(axis - 'X');
  2894. if (axis < 4)
  2895. {
  2896. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2897. uint16_t res = tmc2130_get_res(axis);
  2898. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2899. }
  2900. }
  2901. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2902. {
  2903. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2904. axis = (axis == 'E')?3:(axis - 'X');
  2905. if (axis < 4)
  2906. {
  2907. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2908. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2909. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2910. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2911. char* str_end = 0;
  2912. if (CMDBUFFER_CURRENT_STRING[14])
  2913. {
  2914. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2915. if (str_end && *str_end)
  2916. {
  2917. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2918. if (str_end && *str_end)
  2919. {
  2920. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2921. if (str_end && *str_end)
  2922. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2923. }
  2924. }
  2925. }
  2926. tmc2130_chopper_config[axis].toff = chop0;
  2927. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2928. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2929. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2930. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2931. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2932. }
  2933. }
  2934. }
  2935. #ifdef BACKLASH_X
  2936. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2937. {
  2938. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2939. st_backlash_x = bl;
  2940. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2941. }
  2942. #endif //BACKLASH_X
  2943. #ifdef BACKLASH_Y
  2944. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2945. {
  2946. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2947. st_backlash_y = bl;
  2948. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2949. }
  2950. #endif //BACKLASH_Y
  2951. #endif //TMC2130
  2952. else if (code_seen("FSENSOR_RECOVER")) {
  2953. fsensor_restore_print_and_continue();
  2954. }
  2955. else if(code_seen("PRUSA")){
  2956. if (code_seen("Ping")) { //PRUSA Ping
  2957. if (farm_mode) {
  2958. PingTime = millis();
  2959. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2960. }
  2961. }
  2962. else if (code_seen("PRN")) {
  2963. printf_P(_N("%d"), status_number);
  2964. }else if (code_seen("FAN")) {
  2965. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2966. }else if (code_seen("fn")) {
  2967. if (farm_mode) {
  2968. printf_P(_N("%d"), farm_no);
  2969. }
  2970. else {
  2971. puts_P(_N("Not in farm mode."));
  2972. }
  2973. }
  2974. else if (code_seen("thx"))
  2975. {
  2976. no_response = false;
  2977. }
  2978. else if (code_seen("uvlo"))
  2979. {
  2980. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2981. enquecommand_P(PSTR("M24"));
  2982. }
  2983. else if (code_seen("MMURES"))
  2984. {
  2985. mmu_reset();
  2986. }
  2987. else if (code_seen("RESET")) {
  2988. // careful!
  2989. if (farm_mode) {
  2990. #ifdef WATCHDOG
  2991. boot_app_magic = BOOT_APP_MAGIC;
  2992. boot_app_flags = BOOT_APP_FLG_RUN;
  2993. wdt_enable(WDTO_15MS);
  2994. cli();
  2995. while(1);
  2996. #else //WATCHDOG
  2997. asm volatile("jmp 0x3E000");
  2998. #endif //WATCHDOG
  2999. }
  3000. else {
  3001. MYSERIAL.println("Not in farm mode.");
  3002. }
  3003. }else if (code_seen("fv")) {
  3004. // get file version
  3005. #ifdef SDSUPPORT
  3006. card.openFile(strchr_pointer + 3,true);
  3007. while (true) {
  3008. uint16_t readByte = card.get();
  3009. MYSERIAL.write(readByte);
  3010. if (readByte=='\n') {
  3011. break;
  3012. }
  3013. }
  3014. card.closefile();
  3015. #endif // SDSUPPORT
  3016. } else if (code_seen("M28")) {
  3017. trace();
  3018. prusa_sd_card_upload = true;
  3019. card.openFile(strchr_pointer+4,false);
  3020. } else if (code_seen("SN")) {
  3021. gcode_PRUSA_SN();
  3022. } else if(code_seen("Fir")){
  3023. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3024. } else if(code_seen("Rev")){
  3025. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3026. } else if(code_seen("Lang")) {
  3027. lang_reset();
  3028. } else if(code_seen("Lz")) {
  3029. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3030. } else if(code_seen("Beat")) {
  3031. // Kick farm link timer
  3032. kicktime = millis();
  3033. } else if(code_seen("FR")) {
  3034. // Factory full reset
  3035. factory_reset(0);
  3036. }
  3037. //else if (code_seen('Cal')) {
  3038. // lcd_calibration();
  3039. // }
  3040. }
  3041. else if (code_seen('^')) {
  3042. // nothing, this is a version line
  3043. } else if(code_seen('G'))
  3044. {
  3045. gcode_in_progress = (int)code_value();
  3046. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3047. switch (gcode_in_progress)
  3048. {
  3049. case 0: // G0 -> G1
  3050. case 1: // G1
  3051. if(Stopped == false) {
  3052. #ifdef FILAMENT_RUNOUT_SUPPORT
  3053. if(READ(FR_SENS)){
  3054. int feedmultiplyBckp=feedmultiply;
  3055. float target[4];
  3056. float lastpos[4];
  3057. target[X_AXIS]=current_position[X_AXIS];
  3058. target[Y_AXIS]=current_position[Y_AXIS];
  3059. target[Z_AXIS]=current_position[Z_AXIS];
  3060. target[E_AXIS]=current_position[E_AXIS];
  3061. lastpos[X_AXIS]=current_position[X_AXIS];
  3062. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3063. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3064. lastpos[E_AXIS]=current_position[E_AXIS];
  3065. //retract by E
  3066. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3068. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3070. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3071. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3073. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3075. //finish moves
  3076. st_synchronize();
  3077. //disable extruder steppers so filament can be removed
  3078. disable_e0();
  3079. disable_e1();
  3080. disable_e2();
  3081. delay(100);
  3082. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3083. uint8_t cnt=0;
  3084. int counterBeep = 0;
  3085. lcd_wait_interact();
  3086. while(!lcd_clicked()){
  3087. cnt++;
  3088. manage_heater();
  3089. manage_inactivity(true);
  3090. //lcd_update(0);
  3091. if(cnt==0)
  3092. {
  3093. #if BEEPER > 0
  3094. if (counterBeep== 500){
  3095. counterBeep = 0;
  3096. }
  3097. SET_OUTPUT(BEEPER);
  3098. if (counterBeep== 0){
  3099. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3100. WRITE(BEEPER,HIGH);
  3101. }
  3102. if (counterBeep== 20){
  3103. WRITE(BEEPER,LOW);
  3104. }
  3105. counterBeep++;
  3106. #else
  3107. #endif
  3108. }
  3109. }
  3110. WRITE(BEEPER,LOW);
  3111. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3113. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3115. lcd_change_fil_state = 0;
  3116. lcd_loading_filament();
  3117. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3118. lcd_change_fil_state = 0;
  3119. lcd_alright();
  3120. switch(lcd_change_fil_state){
  3121. case 2:
  3122. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3124. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3126. lcd_loading_filament();
  3127. break;
  3128. case 3:
  3129. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3130. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3131. lcd_loading_color();
  3132. break;
  3133. default:
  3134. lcd_change_success();
  3135. break;
  3136. }
  3137. }
  3138. target[E_AXIS]+= 5;
  3139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3140. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3142. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3143. //plan_set_e_position(current_position[E_AXIS]);
  3144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3145. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3146. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3147. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3148. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3149. plan_set_e_position(lastpos[E_AXIS]);
  3150. feedmultiply=feedmultiplyBckp;
  3151. char cmd[9];
  3152. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3153. enquecommand(cmd);
  3154. }
  3155. #endif
  3156. get_coordinates(); // For X Y Z E F
  3157. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3158. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3159. }
  3160. #ifdef FWRETRACT
  3161. if(autoretract_enabled)
  3162. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3163. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3164. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3165. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3166. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3167. retract(!retracted[active_extruder]);
  3168. return;
  3169. }
  3170. }
  3171. #endif //FWRETRACT
  3172. prepare_move();
  3173. //ClearToSend();
  3174. }
  3175. break;
  3176. case 2: // G2 - CW ARC
  3177. if(Stopped == false) {
  3178. get_arc_coordinates();
  3179. prepare_arc_move(true);
  3180. }
  3181. break;
  3182. case 3: // G3 - CCW ARC
  3183. if(Stopped == false) {
  3184. get_arc_coordinates();
  3185. prepare_arc_move(false);
  3186. }
  3187. break;
  3188. case 4: // G4 dwell
  3189. codenum = 0;
  3190. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3191. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3192. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3193. st_synchronize();
  3194. codenum += millis(); // keep track of when we started waiting
  3195. previous_millis_cmd = millis();
  3196. while(millis() < codenum) {
  3197. manage_heater();
  3198. manage_inactivity();
  3199. lcd_update(0);
  3200. }
  3201. break;
  3202. #ifdef FWRETRACT
  3203. case 10: // G10 retract
  3204. #if EXTRUDERS > 1
  3205. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3206. retract(true,retracted_swap[active_extruder]);
  3207. #else
  3208. retract(true);
  3209. #endif
  3210. break;
  3211. case 11: // G11 retract_recover
  3212. #if EXTRUDERS > 1
  3213. retract(false,retracted_swap[active_extruder]);
  3214. #else
  3215. retract(false);
  3216. #endif
  3217. break;
  3218. #endif //FWRETRACT
  3219. case 28: //G28 Home all Axis one at a time
  3220. {
  3221. long home_x_value = 0;
  3222. long home_y_value = 0;
  3223. long home_z_value = 0;
  3224. // Which axes should be homed?
  3225. bool home_x = code_seen(axis_codes[X_AXIS]);
  3226. home_x_value = code_value_long();
  3227. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3228. home_y_value = code_value_long();
  3229. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3230. home_z_value = code_value_long();
  3231. bool without_mbl = code_seen('W');
  3232. // calibrate?
  3233. bool calib = code_seen('C');
  3234. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3235. if ((home_x || home_y || without_mbl || home_z) == false) {
  3236. // Push the commands to the front of the message queue in the reverse order!
  3237. // There shall be always enough space reserved for these commands.
  3238. goto case_G80;
  3239. }
  3240. break;
  3241. }
  3242. #ifdef ENABLE_AUTO_BED_LEVELING
  3243. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3244. {
  3245. #if Z_MIN_PIN == -1
  3246. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3247. #endif
  3248. // Prevent user from running a G29 without first homing in X and Y
  3249. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3250. {
  3251. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3252. SERIAL_ECHO_START;
  3253. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3254. break; // abort G29, since we don't know where we are
  3255. }
  3256. st_synchronize();
  3257. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3258. //vector_3 corrected_position = plan_get_position_mm();
  3259. //corrected_position.debug("position before G29");
  3260. plan_bed_level_matrix.set_to_identity();
  3261. vector_3 uncorrected_position = plan_get_position();
  3262. //uncorrected_position.debug("position durring G29");
  3263. current_position[X_AXIS] = uncorrected_position.x;
  3264. current_position[Y_AXIS] = uncorrected_position.y;
  3265. current_position[Z_AXIS] = uncorrected_position.z;
  3266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3267. int l_feedmultiply = setup_for_endstop_move();
  3268. feedrate = homing_feedrate[Z_AXIS];
  3269. #ifdef AUTO_BED_LEVELING_GRID
  3270. // probe at the points of a lattice grid
  3271. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3272. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3273. // solve the plane equation ax + by + d = z
  3274. // A is the matrix with rows [x y 1] for all the probed points
  3275. // B is the vector of the Z positions
  3276. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3277. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3278. // "A" matrix of the linear system of equations
  3279. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3280. // "B" vector of Z points
  3281. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3282. int probePointCounter = 0;
  3283. bool zig = true;
  3284. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3285. {
  3286. int xProbe, xInc;
  3287. if (zig)
  3288. {
  3289. xProbe = LEFT_PROBE_BED_POSITION;
  3290. //xEnd = RIGHT_PROBE_BED_POSITION;
  3291. xInc = xGridSpacing;
  3292. zig = false;
  3293. } else // zag
  3294. {
  3295. xProbe = RIGHT_PROBE_BED_POSITION;
  3296. //xEnd = LEFT_PROBE_BED_POSITION;
  3297. xInc = -xGridSpacing;
  3298. zig = true;
  3299. }
  3300. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3301. {
  3302. float z_before;
  3303. if (probePointCounter == 0)
  3304. {
  3305. // raise before probing
  3306. z_before = Z_RAISE_BEFORE_PROBING;
  3307. } else
  3308. {
  3309. // raise extruder
  3310. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3311. }
  3312. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3313. eqnBVector[probePointCounter] = measured_z;
  3314. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3315. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3316. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3317. probePointCounter++;
  3318. xProbe += xInc;
  3319. }
  3320. }
  3321. clean_up_after_endstop_move(l_feedmultiply);
  3322. // solve lsq problem
  3323. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3324. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3325. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3326. SERIAL_PROTOCOLPGM(" b: ");
  3327. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3328. SERIAL_PROTOCOLPGM(" d: ");
  3329. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3330. set_bed_level_equation_lsq(plane_equation_coefficients);
  3331. free(plane_equation_coefficients);
  3332. #else // AUTO_BED_LEVELING_GRID not defined
  3333. // Probe at 3 arbitrary points
  3334. // probe 1
  3335. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3336. // probe 2
  3337. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3338. // probe 3
  3339. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3340. clean_up_after_endstop_move(l_feedmultiply);
  3341. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3342. #endif // AUTO_BED_LEVELING_GRID
  3343. st_synchronize();
  3344. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3345. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3346. // When the bed is uneven, this height must be corrected.
  3347. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3348. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3349. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3350. z_tmp = current_position[Z_AXIS];
  3351. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3352. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3354. }
  3355. break;
  3356. #ifndef Z_PROBE_SLED
  3357. case 30: // G30 Single Z Probe
  3358. {
  3359. st_synchronize();
  3360. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3361. int l_feedmultiply = setup_for_endstop_move();
  3362. feedrate = homing_feedrate[Z_AXIS];
  3363. run_z_probe();
  3364. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3365. SERIAL_PROTOCOLPGM(" X: ");
  3366. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3367. SERIAL_PROTOCOLPGM(" Y: ");
  3368. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3369. SERIAL_PROTOCOLPGM(" Z: ");
  3370. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3371. SERIAL_PROTOCOLPGM("\n");
  3372. clean_up_after_endstop_move(l_feedmultiply);
  3373. }
  3374. break;
  3375. #else
  3376. case 31: // dock the sled
  3377. dock_sled(true);
  3378. break;
  3379. case 32: // undock the sled
  3380. dock_sled(false);
  3381. break;
  3382. #endif // Z_PROBE_SLED
  3383. #endif // ENABLE_AUTO_BED_LEVELING
  3384. #ifdef MESH_BED_LEVELING
  3385. case 30: // G30 Single Z Probe
  3386. {
  3387. st_synchronize();
  3388. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3389. int l_feedmultiply = setup_for_endstop_move();
  3390. feedrate = homing_feedrate[Z_AXIS];
  3391. find_bed_induction_sensor_point_z(-10.f, 3);
  3392. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3393. clean_up_after_endstop_move(l_feedmultiply);
  3394. }
  3395. break;
  3396. case 75:
  3397. {
  3398. for (int i = 40; i <= 110; i++)
  3399. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3400. }
  3401. break;
  3402. case 76: //PINDA probe temperature calibration
  3403. {
  3404. #ifdef PINDA_THERMISTOR
  3405. if (true)
  3406. {
  3407. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3408. //we need to know accurate position of first calibration point
  3409. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3410. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3411. break;
  3412. }
  3413. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3414. {
  3415. // We don't know where we are! HOME!
  3416. // Push the commands to the front of the message queue in the reverse order!
  3417. // There shall be always enough space reserved for these commands.
  3418. repeatcommand_front(); // repeat G76 with all its parameters
  3419. enquecommand_front_P((PSTR("G28 W0")));
  3420. break;
  3421. }
  3422. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3423. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3424. if (result)
  3425. {
  3426. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3428. current_position[Z_AXIS] = 50;
  3429. current_position[Y_AXIS] = 180;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3431. st_synchronize();
  3432. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3433. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3434. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. st_synchronize();
  3437. gcode_G28(false, false, true);
  3438. }
  3439. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3440. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3441. current_position[Z_AXIS] = 100;
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3443. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3444. lcd_temp_cal_show_result(false);
  3445. break;
  3446. }
  3447. }
  3448. lcd_update_enable(true);
  3449. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3450. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3451. float zero_z;
  3452. int z_shift = 0; //unit: steps
  3453. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3454. if (start_temp < 35) start_temp = 35;
  3455. if (start_temp < current_temperature_pinda) start_temp += 5;
  3456. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3457. // setTargetHotend(200, 0);
  3458. setTargetBed(70 + (start_temp - 30));
  3459. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3460. custom_message_state = 1;
  3461. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3462. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3464. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3465. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3467. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3469. st_synchronize();
  3470. while (current_temperature_pinda < start_temp)
  3471. {
  3472. delay_keep_alive(1000);
  3473. serialecho_temperatures();
  3474. }
  3475. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3476. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3479. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3481. st_synchronize();
  3482. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3483. if (find_z_result == false) {
  3484. lcd_temp_cal_show_result(find_z_result);
  3485. break;
  3486. }
  3487. zero_z = current_position[Z_AXIS];
  3488. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3489. int i = -1; for (; i < 5; i++)
  3490. {
  3491. float temp = (40 + i * 5);
  3492. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3493. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3494. if (start_temp <= temp) break;
  3495. }
  3496. for (i++; i < 5; i++)
  3497. {
  3498. float temp = (40 + i * 5);
  3499. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3500. custom_message_state = i + 2;
  3501. setTargetBed(50 + 10 * (temp - 30) / 5);
  3502. // setTargetHotend(255, 0);
  3503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3505. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3506. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3508. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3510. st_synchronize();
  3511. while (current_temperature_pinda < temp)
  3512. {
  3513. delay_keep_alive(1000);
  3514. serialecho_temperatures();
  3515. }
  3516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3519. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. st_synchronize();
  3522. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3523. if (find_z_result == false) {
  3524. lcd_temp_cal_show_result(find_z_result);
  3525. break;
  3526. }
  3527. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3528. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3529. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3530. }
  3531. lcd_temp_cal_show_result(true);
  3532. break;
  3533. }
  3534. #endif //PINDA_THERMISTOR
  3535. setTargetBed(PINDA_MIN_T);
  3536. float zero_z;
  3537. int z_shift = 0; //unit: steps
  3538. int t_c; // temperature
  3539. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3540. // We don't know where we are! HOME!
  3541. // Push the commands to the front of the message queue in the reverse order!
  3542. // There shall be always enough space reserved for these commands.
  3543. repeatcommand_front(); // repeat G76 with all its parameters
  3544. enquecommand_front_P((PSTR("G28 W0")));
  3545. break;
  3546. }
  3547. puts_P(_N("PINDA probe calibration start"));
  3548. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3549. custom_message_state = 1;
  3550. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3551. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3552. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3553. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3555. st_synchronize();
  3556. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3557. delay_keep_alive(1000);
  3558. serialecho_temperatures();
  3559. }
  3560. //enquecommand_P(PSTR("M190 S50"));
  3561. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3562. delay_keep_alive(1000);
  3563. serialecho_temperatures();
  3564. }
  3565. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3566. current_position[Z_AXIS] = 5;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3569. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3571. st_synchronize();
  3572. find_bed_induction_sensor_point_z(-1.f);
  3573. zero_z = current_position[Z_AXIS];
  3574. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3575. for (int i = 0; i<5; i++) {
  3576. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3577. custom_message_state = i + 2;
  3578. t_c = 60 + i * 10;
  3579. setTargetBed(t_c);
  3580. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3581. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3582. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. while (degBed() < t_c) {
  3586. delay_keep_alive(1000);
  3587. serialecho_temperatures();
  3588. }
  3589. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3590. delay_keep_alive(1000);
  3591. serialecho_temperatures();
  3592. }
  3593. current_position[Z_AXIS] = 5;
  3594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3595. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3596. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. st_synchronize();
  3599. find_bed_induction_sensor_point_z(-1.f);
  3600. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3601. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3602. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3603. }
  3604. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3605. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3606. puts_P(_N("Temperature calibration done."));
  3607. disable_x();
  3608. disable_y();
  3609. disable_z();
  3610. disable_e0();
  3611. disable_e1();
  3612. disable_e2();
  3613. setTargetBed(0); //set bed target temperature back to 0
  3614. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3615. temp_cal_active = true;
  3616. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3617. lcd_update_enable(true);
  3618. lcd_update(2);
  3619. }
  3620. break;
  3621. #ifdef DIS
  3622. case 77:
  3623. {
  3624. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3625. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3626. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3627. float dimension_x = 40;
  3628. float dimension_y = 40;
  3629. int points_x = 40;
  3630. int points_y = 40;
  3631. float offset_x = 74;
  3632. float offset_y = 33;
  3633. if (code_seen('X')) dimension_x = code_value();
  3634. if (code_seen('Y')) dimension_y = code_value();
  3635. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3636. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3637. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3638. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3639. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3640. } break;
  3641. #endif
  3642. case 79: {
  3643. for (int i = 255; i > 0; i = i - 5) {
  3644. fanSpeed = i;
  3645. //delay_keep_alive(2000);
  3646. for (int j = 0; j < 100; j++) {
  3647. delay_keep_alive(100);
  3648. }
  3649. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3650. }
  3651. }break;
  3652. /**
  3653. * G80: Mesh-based Z probe, probes a grid and produces a
  3654. * mesh to compensate for variable bed height
  3655. *
  3656. * The S0 report the points as below
  3657. *
  3658. * +----> X-axis
  3659. * |
  3660. * |
  3661. * v Y-axis
  3662. *
  3663. */
  3664. case 80:
  3665. #ifdef MK1BP
  3666. break;
  3667. #endif //MK1BP
  3668. case_G80:
  3669. {
  3670. mesh_bed_leveling_flag = true;
  3671. static bool run = false;
  3672. #ifdef SUPPORT_VERBOSITY
  3673. int8_t verbosity_level = 0;
  3674. if (code_seen('V')) {
  3675. // Just 'V' without a number counts as V1.
  3676. char c = strchr_pointer[1];
  3677. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3678. }
  3679. #endif //SUPPORT_VERBOSITY
  3680. // Firstly check if we know where we are
  3681. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3682. // We don't know where we are! HOME!
  3683. // Push the commands to the front of the message queue in the reverse order!
  3684. // There shall be always enough space reserved for these commands.
  3685. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3686. repeatcommand_front(); // repeat G80 with all its parameters
  3687. enquecommand_front_P((PSTR("G28 W0")));
  3688. }
  3689. else {
  3690. mesh_bed_leveling_flag = false;
  3691. }
  3692. break;
  3693. }
  3694. bool temp_comp_start = true;
  3695. #ifdef PINDA_THERMISTOR
  3696. temp_comp_start = false;
  3697. #endif //PINDA_THERMISTOR
  3698. if (temp_comp_start)
  3699. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3700. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3701. temp_compensation_start();
  3702. run = true;
  3703. repeatcommand_front(); // repeat G80 with all its parameters
  3704. enquecommand_front_P((PSTR("G28 W0")));
  3705. }
  3706. else {
  3707. mesh_bed_leveling_flag = false;
  3708. }
  3709. break;
  3710. }
  3711. run = false;
  3712. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3713. mesh_bed_leveling_flag = false;
  3714. break;
  3715. }
  3716. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3717. unsigned int custom_message_type_old = custom_message_type;
  3718. unsigned int custom_message_state_old = custom_message_state;
  3719. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3720. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3721. lcd_update(1);
  3722. mbl.reset(); //reset mesh bed leveling
  3723. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3724. // consumed during the first movements following this statement.
  3725. babystep_undo();
  3726. // Cycle through all points and probe them
  3727. // First move up. During this first movement, the babystepping will be reverted.
  3728. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3730. // The move to the first calibration point.
  3731. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3732. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3733. #ifdef SUPPORT_VERBOSITY
  3734. if (verbosity_level >= 1)
  3735. {
  3736. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3737. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3738. }
  3739. #endif //SUPPORT_VERBOSITY
  3740. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3742. // Wait until the move is finished.
  3743. st_synchronize();
  3744. int mesh_point = 0; //index number of calibration point
  3745. int ix = 0;
  3746. int iy = 0;
  3747. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3748. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3749. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3750. #ifdef SUPPORT_VERBOSITY
  3751. if (verbosity_level >= 1) {
  3752. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3753. }
  3754. #endif // SUPPORT_VERBOSITY
  3755. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3756. const char *kill_message = NULL;
  3757. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3758. // Get coords of a measuring point.
  3759. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3760. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3761. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3762. float z0 = 0.f;
  3763. if (has_z && mesh_point > 0) {
  3764. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3765. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3766. //#if 0
  3767. #ifdef SUPPORT_VERBOSITY
  3768. if (verbosity_level >= 1) {
  3769. SERIAL_ECHOLNPGM("");
  3770. SERIAL_ECHOPGM("Bed leveling, point: ");
  3771. MYSERIAL.print(mesh_point);
  3772. SERIAL_ECHOPGM(", calibration z: ");
  3773. MYSERIAL.print(z0, 5);
  3774. SERIAL_ECHOLNPGM("");
  3775. }
  3776. #endif // SUPPORT_VERBOSITY
  3777. //#endif
  3778. }
  3779. // Move Z up to MESH_HOME_Z_SEARCH.
  3780. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3782. st_synchronize();
  3783. // Move to XY position of the sensor point.
  3784. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3785. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3786. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3787. #ifdef SUPPORT_VERBOSITY
  3788. if (verbosity_level >= 1) {
  3789. SERIAL_PROTOCOL(mesh_point);
  3790. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3791. }
  3792. #endif // SUPPORT_VERBOSITY
  3793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3794. st_synchronize();
  3795. // Go down until endstop is hit
  3796. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3797. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3798. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3799. break;
  3800. }
  3801. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3802. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3803. break;
  3804. }
  3805. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3806. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3807. break;
  3808. }
  3809. #ifdef SUPPORT_VERBOSITY
  3810. if (verbosity_level >= 10) {
  3811. SERIAL_ECHOPGM("X: ");
  3812. MYSERIAL.print(current_position[X_AXIS], 5);
  3813. SERIAL_ECHOLNPGM("");
  3814. SERIAL_ECHOPGM("Y: ");
  3815. MYSERIAL.print(current_position[Y_AXIS], 5);
  3816. SERIAL_PROTOCOLPGM("\n");
  3817. }
  3818. #endif // SUPPORT_VERBOSITY
  3819. float offset_z = 0;
  3820. #ifdef PINDA_THERMISTOR
  3821. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3822. #endif //PINDA_THERMISTOR
  3823. // #ifdef SUPPORT_VERBOSITY
  3824. /* if (verbosity_level >= 1)
  3825. {
  3826. SERIAL_ECHOPGM("mesh bed leveling: ");
  3827. MYSERIAL.print(current_position[Z_AXIS], 5);
  3828. SERIAL_ECHOPGM(" offset: ");
  3829. MYSERIAL.print(offset_z, 5);
  3830. SERIAL_ECHOLNPGM("");
  3831. }*/
  3832. // #endif // SUPPORT_VERBOSITY
  3833. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3834. custom_message_state--;
  3835. mesh_point++;
  3836. lcd_update(1);
  3837. }
  3838. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3839. #ifdef SUPPORT_VERBOSITY
  3840. if (verbosity_level >= 20) {
  3841. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3842. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3843. MYSERIAL.print(current_position[Z_AXIS], 5);
  3844. }
  3845. #endif // SUPPORT_VERBOSITY
  3846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3847. st_synchronize();
  3848. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3849. kill(kill_message);
  3850. SERIAL_ECHOLNPGM("killed");
  3851. }
  3852. clean_up_after_endstop_move(l_feedmultiply);
  3853. // SERIAL_ECHOLNPGM("clean up finished ");
  3854. bool apply_temp_comp = true;
  3855. #ifdef PINDA_THERMISTOR
  3856. apply_temp_comp = false;
  3857. #endif
  3858. if (apply_temp_comp)
  3859. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3860. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3861. // SERIAL_ECHOLNPGM("babystep applied");
  3862. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3863. #ifdef SUPPORT_VERBOSITY
  3864. if (verbosity_level >= 1) {
  3865. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3866. }
  3867. #endif // SUPPORT_VERBOSITY
  3868. for (uint8_t i = 0; i < 4; ++i) {
  3869. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3870. long correction = 0;
  3871. if (code_seen(codes[i]))
  3872. correction = code_value_long();
  3873. else if (eeprom_bed_correction_valid) {
  3874. unsigned char *addr = (i < 2) ?
  3875. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3876. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3877. correction = eeprom_read_int8(addr);
  3878. }
  3879. if (correction == 0)
  3880. continue;
  3881. float offset = float(correction) * 0.001f;
  3882. if (fabs(offset) > 0.101f) {
  3883. SERIAL_ERROR_START;
  3884. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3885. SERIAL_ECHO(offset);
  3886. SERIAL_ECHOLNPGM(" microns");
  3887. }
  3888. else {
  3889. switch (i) {
  3890. case 0:
  3891. for (uint8_t row = 0; row < 3; ++row) {
  3892. mbl.z_values[row][1] += 0.5f * offset;
  3893. mbl.z_values[row][0] += offset;
  3894. }
  3895. break;
  3896. case 1:
  3897. for (uint8_t row = 0; row < 3; ++row) {
  3898. mbl.z_values[row][1] += 0.5f * offset;
  3899. mbl.z_values[row][2] += offset;
  3900. }
  3901. break;
  3902. case 2:
  3903. for (uint8_t col = 0; col < 3; ++col) {
  3904. mbl.z_values[1][col] += 0.5f * offset;
  3905. mbl.z_values[0][col] += offset;
  3906. }
  3907. break;
  3908. case 3:
  3909. for (uint8_t col = 0; col < 3; ++col) {
  3910. mbl.z_values[1][col] += 0.5f * offset;
  3911. mbl.z_values[2][col] += offset;
  3912. }
  3913. break;
  3914. }
  3915. }
  3916. }
  3917. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3918. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3919. // SERIAL_ECHOLNPGM("Upsample finished");
  3920. mbl.active = 1; //activate mesh bed leveling
  3921. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3922. go_home_with_z_lift();
  3923. // SERIAL_ECHOLNPGM("Go home finished");
  3924. //unretract (after PINDA preheat retraction)
  3925. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3926. current_position[E_AXIS] += default_retraction;
  3927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3928. }
  3929. KEEPALIVE_STATE(NOT_BUSY);
  3930. // Restore custom message state
  3931. lcd_setstatuspgm(_T(WELCOME_MSG));
  3932. custom_message_type = custom_message_type_old;
  3933. custom_message_state = custom_message_state_old;
  3934. mesh_bed_leveling_flag = false;
  3935. mesh_bed_run_from_menu = false;
  3936. lcd_update(2);
  3937. }
  3938. break;
  3939. /**
  3940. * G81: Print mesh bed leveling status and bed profile if activated
  3941. */
  3942. case 81:
  3943. if (mbl.active) {
  3944. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3945. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3946. SERIAL_PROTOCOLPGM(",");
  3947. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3948. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3949. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3950. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3951. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3952. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3953. SERIAL_PROTOCOLPGM(" ");
  3954. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3955. }
  3956. SERIAL_PROTOCOLPGM("\n");
  3957. }
  3958. }
  3959. else
  3960. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3961. break;
  3962. #if 0
  3963. /**
  3964. * G82: Single Z probe at current location
  3965. *
  3966. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3967. *
  3968. */
  3969. case 82:
  3970. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3971. int l_feedmultiply = setup_for_endstop_move();
  3972. find_bed_induction_sensor_point_z();
  3973. clean_up_after_endstop_move(l_feedmultiply);
  3974. SERIAL_PROTOCOLPGM("Bed found at: ");
  3975. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3976. SERIAL_PROTOCOLPGM("\n");
  3977. break;
  3978. /**
  3979. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3980. */
  3981. case 83:
  3982. {
  3983. int babystepz = code_seen('S') ? code_value() : 0;
  3984. int BabyPosition = code_seen('P') ? code_value() : 0;
  3985. if (babystepz != 0) {
  3986. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3987. // Is the axis indexed starting with zero or one?
  3988. if (BabyPosition > 4) {
  3989. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3990. }else{
  3991. // Save it to the eeprom
  3992. babystepLoadZ = babystepz;
  3993. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3994. // adjust the Z
  3995. babystepsTodoZadd(babystepLoadZ);
  3996. }
  3997. }
  3998. }
  3999. break;
  4000. /**
  4001. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4002. */
  4003. case 84:
  4004. babystepsTodoZsubtract(babystepLoadZ);
  4005. // babystepLoadZ = 0;
  4006. break;
  4007. /**
  4008. * G85: Prusa3D specific: Pick best babystep
  4009. */
  4010. case 85:
  4011. lcd_pick_babystep();
  4012. break;
  4013. #endif
  4014. /**
  4015. * G86: Prusa3D specific: Disable babystep correction after home.
  4016. * This G-code will be performed at the start of a calibration script.
  4017. */
  4018. case 86:
  4019. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4020. break;
  4021. /**
  4022. * G87: Prusa3D specific: Enable babystep correction after home
  4023. * This G-code will be performed at the end of a calibration script.
  4024. */
  4025. case 87:
  4026. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4027. break;
  4028. /**
  4029. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4030. */
  4031. case 88:
  4032. break;
  4033. #endif // ENABLE_MESH_BED_LEVELING
  4034. case 90: // G90
  4035. relative_mode = false;
  4036. break;
  4037. case 91: // G91
  4038. relative_mode = true;
  4039. break;
  4040. case 92: // G92
  4041. if(!code_seen(axis_codes[E_AXIS]))
  4042. st_synchronize();
  4043. for(int8_t i=0; i < NUM_AXIS; i++) {
  4044. if(code_seen(axis_codes[i])) {
  4045. if(i == E_AXIS) {
  4046. current_position[i] = code_value();
  4047. plan_set_e_position(current_position[E_AXIS]);
  4048. }
  4049. else {
  4050. current_position[i] = code_value()+add_homing[i];
  4051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4052. }
  4053. }
  4054. }
  4055. break;
  4056. case 98: // G98 (activate farm mode)
  4057. farm_mode = 1;
  4058. PingTime = millis();
  4059. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4060. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4061. SilentModeMenu = SILENT_MODE_OFF;
  4062. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4063. break;
  4064. case 99: // G99 (deactivate farm mode)
  4065. farm_mode = 0;
  4066. lcd_printer_connected();
  4067. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4068. lcd_update(2);
  4069. break;
  4070. default:
  4071. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4072. }
  4073. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4074. gcode_in_progress = 0;
  4075. } // end if(code_seen('G'))
  4076. else if(code_seen('M'))
  4077. {
  4078. int index;
  4079. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4080. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4081. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4082. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4083. } else
  4084. {
  4085. mcode_in_progress = (int)code_value();
  4086. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4087. switch(mcode_in_progress)
  4088. {
  4089. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4090. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4091. {
  4092. char *src = strchr_pointer + 2;
  4093. codenum = 0;
  4094. bool hasP = false, hasS = false;
  4095. if (code_seen('P')) {
  4096. codenum = code_value(); // milliseconds to wait
  4097. hasP = codenum > 0;
  4098. }
  4099. if (code_seen('S')) {
  4100. codenum = code_value() * 1000; // seconds to wait
  4101. hasS = codenum > 0;
  4102. }
  4103. starpos = strchr(src, '*');
  4104. if (starpos != NULL) *(starpos) = '\0';
  4105. while (*src == ' ') ++src;
  4106. if (!hasP && !hasS && *src != '\0') {
  4107. lcd_setstatus(src);
  4108. } else {
  4109. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4110. }
  4111. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4112. st_synchronize();
  4113. previous_millis_cmd = millis();
  4114. if (codenum > 0){
  4115. codenum += millis(); // keep track of when we started waiting
  4116. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4117. while(millis() < codenum && !lcd_clicked()){
  4118. manage_heater();
  4119. manage_inactivity(true);
  4120. lcd_update(0);
  4121. }
  4122. KEEPALIVE_STATE(IN_HANDLER);
  4123. lcd_ignore_click(false);
  4124. }else{
  4125. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4126. while(!lcd_clicked()){
  4127. manage_heater();
  4128. manage_inactivity(true);
  4129. lcd_update(0);
  4130. }
  4131. KEEPALIVE_STATE(IN_HANDLER);
  4132. }
  4133. if (IS_SD_PRINTING)
  4134. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4135. else
  4136. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4137. }
  4138. break;
  4139. case 17:
  4140. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4141. enable_x();
  4142. enable_y();
  4143. enable_z();
  4144. enable_e0();
  4145. enable_e1();
  4146. enable_e2();
  4147. break;
  4148. #ifdef SDSUPPORT
  4149. case 20: // M20 - list SD card
  4150. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4151. card.ls();
  4152. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4153. break;
  4154. case 21: // M21 - init SD card
  4155. card.initsd();
  4156. break;
  4157. case 22: //M22 - release SD card
  4158. card.release();
  4159. break;
  4160. case 23: //M23 - Select file
  4161. starpos = (strchr(strchr_pointer + 4,'*'));
  4162. if(starpos!=NULL)
  4163. *(starpos)='\0';
  4164. card.openFile(strchr_pointer + 4,true);
  4165. break;
  4166. case 24: //M24 - Start SD print
  4167. if (!card.paused)
  4168. failstats_reset_print();
  4169. card.startFileprint();
  4170. starttime=millis();
  4171. break;
  4172. case 25: //M25 - Pause SD print
  4173. card.pauseSDPrint();
  4174. break;
  4175. case 26: //M26 - Set SD index
  4176. if(card.cardOK && code_seen('S')) {
  4177. card.setIndex(code_value_long());
  4178. }
  4179. break;
  4180. case 27: //M27 - Get SD status
  4181. card.getStatus();
  4182. break;
  4183. case 28: //M28 - Start SD write
  4184. starpos = (strchr(strchr_pointer + 4,'*'));
  4185. if(starpos != NULL){
  4186. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4187. strchr_pointer = strchr(npos,' ') + 1;
  4188. *(starpos) = '\0';
  4189. }
  4190. card.openFile(strchr_pointer+4,false);
  4191. break;
  4192. case 29: //M29 - Stop SD write
  4193. //processed in write to file routine above
  4194. //card,saving = false;
  4195. break;
  4196. case 30: //M30 <filename> Delete File
  4197. if (card.cardOK){
  4198. card.closefile();
  4199. starpos = (strchr(strchr_pointer + 4,'*'));
  4200. if(starpos != NULL){
  4201. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4202. strchr_pointer = strchr(npos,' ') + 1;
  4203. *(starpos) = '\0';
  4204. }
  4205. card.removeFile(strchr_pointer + 4);
  4206. }
  4207. break;
  4208. case 32: //M32 - Select file and start SD print
  4209. {
  4210. if(card.sdprinting) {
  4211. st_synchronize();
  4212. }
  4213. starpos = (strchr(strchr_pointer + 4,'*'));
  4214. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4215. if(namestartpos==NULL)
  4216. {
  4217. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4218. }
  4219. else
  4220. namestartpos++; //to skip the '!'
  4221. if(starpos!=NULL)
  4222. *(starpos)='\0';
  4223. bool call_procedure=(code_seen('P'));
  4224. if(strchr_pointer>namestartpos)
  4225. call_procedure=false; //false alert, 'P' found within filename
  4226. if( card.cardOK )
  4227. {
  4228. card.openFile(namestartpos,true,!call_procedure);
  4229. if(code_seen('S'))
  4230. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4231. card.setIndex(code_value_long());
  4232. card.startFileprint();
  4233. if(!call_procedure)
  4234. starttime=millis(); //procedure calls count as normal print time.
  4235. }
  4236. } break;
  4237. case 928: //M928 - Start SD write
  4238. starpos = (strchr(strchr_pointer + 5,'*'));
  4239. if(starpos != NULL){
  4240. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4241. strchr_pointer = strchr(npos,' ') + 1;
  4242. *(starpos) = '\0';
  4243. }
  4244. card.openLogFile(strchr_pointer+5);
  4245. break;
  4246. #endif //SDSUPPORT
  4247. case 31: //M31 take time since the start of the SD print or an M109 command
  4248. {
  4249. stoptime=millis();
  4250. char time[30];
  4251. unsigned long t=(stoptime-starttime)/1000;
  4252. int sec,min;
  4253. min=t/60;
  4254. sec=t%60;
  4255. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4256. SERIAL_ECHO_START;
  4257. SERIAL_ECHOLN(time);
  4258. lcd_setstatus(time);
  4259. autotempShutdown();
  4260. }
  4261. break;
  4262. case 42: //M42 -Change pin status via gcode
  4263. if (code_seen('S'))
  4264. {
  4265. int pin_status = code_value();
  4266. int pin_number = LED_PIN;
  4267. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4268. pin_number = code_value();
  4269. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4270. {
  4271. if (sensitive_pins[i] == pin_number)
  4272. {
  4273. pin_number = -1;
  4274. break;
  4275. }
  4276. }
  4277. #if defined(FAN_PIN) && FAN_PIN > -1
  4278. if (pin_number == FAN_PIN)
  4279. fanSpeed = pin_status;
  4280. #endif
  4281. if (pin_number > -1)
  4282. {
  4283. pinMode(pin_number, OUTPUT);
  4284. digitalWrite(pin_number, pin_status);
  4285. analogWrite(pin_number, pin_status);
  4286. }
  4287. }
  4288. break;
  4289. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4290. // Reset the baby step value and the baby step applied flag.
  4291. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4292. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4293. // Reset the skew and offset in both RAM and EEPROM.
  4294. reset_bed_offset_and_skew();
  4295. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4296. // the planner will not perform any adjustments in the XY plane.
  4297. // Wait for the motors to stop and update the current position with the absolute values.
  4298. world2machine_revert_to_uncorrected();
  4299. break;
  4300. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4301. {
  4302. int8_t verbosity_level = 0;
  4303. bool only_Z = code_seen('Z');
  4304. #ifdef SUPPORT_VERBOSITY
  4305. if (code_seen('V'))
  4306. {
  4307. // Just 'V' without a number counts as V1.
  4308. char c = strchr_pointer[1];
  4309. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4310. }
  4311. #endif //SUPPORT_VERBOSITY
  4312. gcode_M45(only_Z, verbosity_level);
  4313. }
  4314. break;
  4315. /*
  4316. case 46:
  4317. {
  4318. // M46: Prusa3D: Show the assigned IP address.
  4319. uint8_t ip[4];
  4320. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4321. if (hasIP) {
  4322. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4323. SERIAL_ECHO(int(ip[0]));
  4324. SERIAL_ECHOPGM(".");
  4325. SERIAL_ECHO(int(ip[1]));
  4326. SERIAL_ECHOPGM(".");
  4327. SERIAL_ECHO(int(ip[2]));
  4328. SERIAL_ECHOPGM(".");
  4329. SERIAL_ECHO(int(ip[3]));
  4330. SERIAL_ECHOLNPGM("");
  4331. } else {
  4332. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4333. }
  4334. break;
  4335. }
  4336. */
  4337. case 47:
  4338. // M47: Prusa3D: Show end stops dialog on the display.
  4339. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4340. lcd_diag_show_end_stops();
  4341. KEEPALIVE_STATE(IN_HANDLER);
  4342. break;
  4343. #if 0
  4344. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4345. {
  4346. // Disable the default update procedure of the display. We will do a modal dialog.
  4347. lcd_update_enable(false);
  4348. // Let the planner use the uncorrected coordinates.
  4349. mbl.reset();
  4350. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4351. // the planner will not perform any adjustments in the XY plane.
  4352. // Wait for the motors to stop and update the current position with the absolute values.
  4353. world2machine_revert_to_uncorrected();
  4354. // Move the print head close to the bed.
  4355. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4357. st_synchronize();
  4358. // Home in the XY plane.
  4359. set_destination_to_current();
  4360. int l_feedmultiply = setup_for_endstop_move();
  4361. home_xy();
  4362. int8_t verbosity_level = 0;
  4363. if (code_seen('V')) {
  4364. // Just 'V' without a number counts as V1.
  4365. char c = strchr_pointer[1];
  4366. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4367. }
  4368. bool success = scan_bed_induction_points(verbosity_level);
  4369. clean_up_after_endstop_move(l_feedmultiply);
  4370. // Print head up.
  4371. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4373. st_synchronize();
  4374. lcd_update_enable(true);
  4375. break;
  4376. }
  4377. #endif
  4378. // M48 Z-Probe repeatability measurement function.
  4379. //
  4380. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4381. //
  4382. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4383. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4384. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4385. // regenerated.
  4386. //
  4387. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4388. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4389. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4390. //
  4391. #ifdef ENABLE_AUTO_BED_LEVELING
  4392. #ifdef Z_PROBE_REPEATABILITY_TEST
  4393. case 48: // M48 Z-Probe repeatability
  4394. {
  4395. #if Z_MIN_PIN == -1
  4396. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4397. #endif
  4398. double sum=0.0;
  4399. double mean=0.0;
  4400. double sigma=0.0;
  4401. double sample_set[50];
  4402. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4403. double X_current, Y_current, Z_current;
  4404. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4405. if (code_seen('V') || code_seen('v')) {
  4406. verbose_level = code_value();
  4407. if (verbose_level<0 || verbose_level>4 ) {
  4408. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4409. goto Sigma_Exit;
  4410. }
  4411. }
  4412. if (verbose_level > 0) {
  4413. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4414. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4415. }
  4416. if (code_seen('n')) {
  4417. n_samples = code_value();
  4418. if (n_samples<4 || n_samples>50 ) {
  4419. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4420. goto Sigma_Exit;
  4421. }
  4422. }
  4423. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4424. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4425. Z_current = st_get_position_mm(Z_AXIS);
  4426. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4427. ext_position = st_get_position_mm(E_AXIS);
  4428. if (code_seen('X') || code_seen('x') ) {
  4429. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4430. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4431. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4432. goto Sigma_Exit;
  4433. }
  4434. }
  4435. if (code_seen('Y') || code_seen('y') ) {
  4436. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4437. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4438. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4439. goto Sigma_Exit;
  4440. }
  4441. }
  4442. if (code_seen('L') || code_seen('l') ) {
  4443. n_legs = code_value();
  4444. if ( n_legs==1 )
  4445. n_legs = 2;
  4446. if ( n_legs<0 || n_legs>15 ) {
  4447. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4448. goto Sigma_Exit;
  4449. }
  4450. }
  4451. //
  4452. // Do all the preliminary setup work. First raise the probe.
  4453. //
  4454. st_synchronize();
  4455. plan_bed_level_matrix.set_to_identity();
  4456. plan_buffer_line( X_current, Y_current, Z_start_location,
  4457. ext_position,
  4458. homing_feedrate[Z_AXIS]/60,
  4459. active_extruder);
  4460. st_synchronize();
  4461. //
  4462. // Now get everything to the specified probe point So we can safely do a probe to
  4463. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4464. // use that as a starting point for each probe.
  4465. //
  4466. if (verbose_level > 2)
  4467. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4468. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4469. ext_position,
  4470. homing_feedrate[X_AXIS]/60,
  4471. active_extruder);
  4472. st_synchronize();
  4473. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4474. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4475. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4476. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4477. //
  4478. // OK, do the inital probe to get us close to the bed.
  4479. // Then retrace the right amount and use that in subsequent probes
  4480. //
  4481. int l_feedmultiply = setup_for_endstop_move();
  4482. run_z_probe();
  4483. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4484. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4485. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4486. ext_position,
  4487. homing_feedrate[X_AXIS]/60,
  4488. active_extruder);
  4489. st_synchronize();
  4490. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4491. for( n=0; n<n_samples; n++) {
  4492. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4493. if ( n_legs) {
  4494. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4495. int rotational_direction, l;
  4496. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4497. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4498. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4499. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4500. //SERIAL_ECHOPAIR(" theta: ",theta);
  4501. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4502. //SERIAL_PROTOCOLLNPGM("");
  4503. for( l=0; l<n_legs-1; l++) {
  4504. if (rotational_direction==1)
  4505. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4506. else
  4507. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4508. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4509. if ( radius<0.0 )
  4510. radius = -radius;
  4511. X_current = X_probe_location + cos(theta) * radius;
  4512. Y_current = Y_probe_location + sin(theta) * radius;
  4513. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4514. X_current = X_MIN_POS;
  4515. if ( X_current>X_MAX_POS)
  4516. X_current = X_MAX_POS;
  4517. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4518. Y_current = Y_MIN_POS;
  4519. if ( Y_current>Y_MAX_POS)
  4520. Y_current = Y_MAX_POS;
  4521. if (verbose_level>3 ) {
  4522. SERIAL_ECHOPAIR("x: ", X_current);
  4523. SERIAL_ECHOPAIR("y: ", Y_current);
  4524. SERIAL_PROTOCOLLNPGM("");
  4525. }
  4526. do_blocking_move_to( X_current, Y_current, Z_current );
  4527. }
  4528. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4529. }
  4530. int l_feedmultiply = setup_for_endstop_move();
  4531. run_z_probe();
  4532. sample_set[n] = current_position[Z_AXIS];
  4533. //
  4534. // Get the current mean for the data points we have so far
  4535. //
  4536. sum=0.0;
  4537. for( j=0; j<=n; j++) {
  4538. sum = sum + sample_set[j];
  4539. }
  4540. mean = sum / (double (n+1));
  4541. //
  4542. // Now, use that mean to calculate the standard deviation for the
  4543. // data points we have so far
  4544. //
  4545. sum=0.0;
  4546. for( j=0; j<=n; j++) {
  4547. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4548. }
  4549. sigma = sqrt( sum / (double (n+1)) );
  4550. if (verbose_level > 1) {
  4551. SERIAL_PROTOCOL(n+1);
  4552. SERIAL_PROTOCOL(" of ");
  4553. SERIAL_PROTOCOL(n_samples);
  4554. SERIAL_PROTOCOLPGM(" z: ");
  4555. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4556. }
  4557. if (verbose_level > 2) {
  4558. SERIAL_PROTOCOL(" mean: ");
  4559. SERIAL_PROTOCOL_F(mean,6);
  4560. SERIAL_PROTOCOL(" sigma: ");
  4561. SERIAL_PROTOCOL_F(sigma,6);
  4562. }
  4563. if (verbose_level > 0)
  4564. SERIAL_PROTOCOLPGM("\n");
  4565. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4566. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4567. st_synchronize();
  4568. }
  4569. delay(1000);
  4570. clean_up_after_endstop_move(l_feedmultiply);
  4571. // enable_endstops(true);
  4572. if (verbose_level > 0) {
  4573. SERIAL_PROTOCOLPGM("Mean: ");
  4574. SERIAL_PROTOCOL_F(mean, 6);
  4575. SERIAL_PROTOCOLPGM("\n");
  4576. }
  4577. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4578. SERIAL_PROTOCOL_F(sigma, 6);
  4579. SERIAL_PROTOCOLPGM("\n\n");
  4580. Sigma_Exit:
  4581. break;
  4582. }
  4583. #endif // Z_PROBE_REPEATABILITY_TEST
  4584. #endif // ENABLE_AUTO_BED_LEVELING
  4585. case 73: //M73 show percent done and time remaining
  4586. if(code_seen('P')) print_percent_done_normal = code_value();
  4587. if(code_seen('R')) print_time_remaining_normal = code_value();
  4588. if(code_seen('Q')) print_percent_done_silent = code_value();
  4589. if(code_seen('S')) print_time_remaining_silent = code_value();
  4590. {
  4591. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4592. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4593. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4594. }
  4595. break;
  4596. case 104: // M104
  4597. {
  4598. uint8_t extruder;
  4599. if(setTargetedHotend(104,extruder)){
  4600. break;
  4601. }
  4602. if (code_seen('S'))
  4603. {
  4604. setTargetHotendSafe(code_value(), extruder);
  4605. }
  4606. setWatch();
  4607. break;
  4608. }
  4609. case 112: // M112 -Emergency Stop
  4610. kill(_n(""), 3);
  4611. break;
  4612. case 140: // M140 set bed temp
  4613. if (code_seen('S')) setTargetBed(code_value());
  4614. break;
  4615. case 105 : // M105
  4616. {
  4617. uint8_t extruder;
  4618. if(setTargetedHotend(105, extruder)){
  4619. break;
  4620. }
  4621. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4622. SERIAL_PROTOCOLPGM("ok T:");
  4623. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4624. SERIAL_PROTOCOLPGM(" /");
  4625. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4626. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4627. SERIAL_PROTOCOLPGM(" B:");
  4628. SERIAL_PROTOCOL_F(degBed(),1);
  4629. SERIAL_PROTOCOLPGM(" /");
  4630. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4631. #endif //TEMP_BED_PIN
  4632. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4633. SERIAL_PROTOCOLPGM(" T");
  4634. SERIAL_PROTOCOL(cur_extruder);
  4635. SERIAL_PROTOCOLPGM(":");
  4636. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4637. SERIAL_PROTOCOLPGM(" /");
  4638. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4639. }
  4640. #else
  4641. SERIAL_ERROR_START;
  4642. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4643. #endif
  4644. SERIAL_PROTOCOLPGM(" @:");
  4645. #ifdef EXTRUDER_WATTS
  4646. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4647. SERIAL_PROTOCOLPGM("W");
  4648. #else
  4649. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4650. #endif
  4651. SERIAL_PROTOCOLPGM(" B@:");
  4652. #ifdef BED_WATTS
  4653. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4654. SERIAL_PROTOCOLPGM("W");
  4655. #else
  4656. SERIAL_PROTOCOL(getHeaterPower(-1));
  4657. #endif
  4658. #ifdef PINDA_THERMISTOR
  4659. SERIAL_PROTOCOLPGM(" P:");
  4660. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4661. #endif //PINDA_THERMISTOR
  4662. #ifdef AMBIENT_THERMISTOR
  4663. SERIAL_PROTOCOLPGM(" A:");
  4664. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4665. #endif //AMBIENT_THERMISTOR
  4666. #ifdef SHOW_TEMP_ADC_VALUES
  4667. {float raw = 0.0;
  4668. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4669. SERIAL_PROTOCOLPGM(" ADC B:");
  4670. SERIAL_PROTOCOL_F(degBed(),1);
  4671. SERIAL_PROTOCOLPGM("C->");
  4672. raw = rawBedTemp();
  4673. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4674. SERIAL_PROTOCOLPGM(" Rb->");
  4675. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4676. SERIAL_PROTOCOLPGM(" Rxb->");
  4677. SERIAL_PROTOCOL_F(raw, 5);
  4678. #endif
  4679. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4680. SERIAL_PROTOCOLPGM(" T");
  4681. SERIAL_PROTOCOL(cur_extruder);
  4682. SERIAL_PROTOCOLPGM(":");
  4683. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4684. SERIAL_PROTOCOLPGM("C->");
  4685. raw = rawHotendTemp(cur_extruder);
  4686. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4687. SERIAL_PROTOCOLPGM(" Rt");
  4688. SERIAL_PROTOCOL(cur_extruder);
  4689. SERIAL_PROTOCOLPGM("->");
  4690. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4691. SERIAL_PROTOCOLPGM(" Rx");
  4692. SERIAL_PROTOCOL(cur_extruder);
  4693. SERIAL_PROTOCOLPGM("->");
  4694. SERIAL_PROTOCOL_F(raw, 5);
  4695. }}
  4696. #endif
  4697. SERIAL_PROTOCOLLN("");
  4698. KEEPALIVE_STATE(NOT_BUSY);
  4699. return;
  4700. break;
  4701. }
  4702. case 109:
  4703. {// M109 - Wait for extruder heater to reach target.
  4704. uint8_t extruder;
  4705. if(setTargetedHotend(109, extruder)){
  4706. break;
  4707. }
  4708. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4709. heating_status = 1;
  4710. if (farm_mode) { prusa_statistics(1); };
  4711. #ifdef AUTOTEMP
  4712. autotemp_enabled=false;
  4713. #endif
  4714. if (code_seen('S')) {
  4715. setTargetHotendSafe(code_value(), extruder);
  4716. CooldownNoWait = true;
  4717. } else if (code_seen('R')) {
  4718. setTargetHotendSafe(code_value(), extruder);
  4719. CooldownNoWait = false;
  4720. }
  4721. #ifdef AUTOTEMP
  4722. if (code_seen('S')) autotemp_min=code_value();
  4723. if (code_seen('B')) autotemp_max=code_value();
  4724. if (code_seen('F'))
  4725. {
  4726. autotemp_factor=code_value();
  4727. autotemp_enabled=true;
  4728. }
  4729. #endif
  4730. setWatch();
  4731. codenum = millis();
  4732. /* See if we are heating up or cooling down */
  4733. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4734. KEEPALIVE_STATE(NOT_BUSY);
  4735. cancel_heatup = false;
  4736. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4737. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4738. KEEPALIVE_STATE(IN_HANDLER);
  4739. heating_status = 2;
  4740. if (farm_mode) { prusa_statistics(2); };
  4741. //starttime=millis();
  4742. previous_millis_cmd = millis();
  4743. }
  4744. break;
  4745. case 190: // M190 - Wait for bed heater to reach target.
  4746. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4747. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4748. heating_status = 3;
  4749. if (farm_mode) { prusa_statistics(1); };
  4750. if (code_seen('S'))
  4751. {
  4752. setTargetBed(code_value());
  4753. CooldownNoWait = true;
  4754. }
  4755. else if (code_seen('R'))
  4756. {
  4757. setTargetBed(code_value());
  4758. CooldownNoWait = false;
  4759. }
  4760. codenum = millis();
  4761. cancel_heatup = false;
  4762. target_direction = isHeatingBed(); // true if heating, false if cooling
  4763. KEEPALIVE_STATE(NOT_BUSY);
  4764. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4765. {
  4766. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4767. {
  4768. if (!farm_mode) {
  4769. float tt = degHotend(active_extruder);
  4770. SERIAL_PROTOCOLPGM("T:");
  4771. SERIAL_PROTOCOL(tt);
  4772. SERIAL_PROTOCOLPGM(" E:");
  4773. SERIAL_PROTOCOL((int)active_extruder);
  4774. SERIAL_PROTOCOLPGM(" B:");
  4775. SERIAL_PROTOCOL_F(degBed(), 1);
  4776. SERIAL_PROTOCOLLN("");
  4777. }
  4778. codenum = millis();
  4779. }
  4780. manage_heater();
  4781. manage_inactivity();
  4782. lcd_update(0);
  4783. }
  4784. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4785. KEEPALIVE_STATE(IN_HANDLER);
  4786. heating_status = 4;
  4787. previous_millis_cmd = millis();
  4788. #endif
  4789. break;
  4790. #if defined(FAN_PIN) && FAN_PIN > -1
  4791. case 106: //M106 Fan On
  4792. if (code_seen('S')){
  4793. fanSpeed=constrain(code_value(),0,255);
  4794. }
  4795. else {
  4796. fanSpeed=255;
  4797. }
  4798. break;
  4799. case 107: //M107 Fan Off
  4800. fanSpeed = 0;
  4801. break;
  4802. #endif //FAN_PIN
  4803. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4804. case 80: // M80 - Turn on Power Supply
  4805. SET_OUTPUT(PS_ON_PIN); //GND
  4806. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4807. // If you have a switch on suicide pin, this is useful
  4808. // if you want to start another print with suicide feature after
  4809. // a print without suicide...
  4810. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4811. SET_OUTPUT(SUICIDE_PIN);
  4812. WRITE(SUICIDE_PIN, HIGH);
  4813. #endif
  4814. powersupply = true;
  4815. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4816. lcd_update(0);
  4817. break;
  4818. #endif
  4819. case 81: // M81 - Turn off Power Supply
  4820. disable_heater();
  4821. st_synchronize();
  4822. disable_e0();
  4823. disable_e1();
  4824. disable_e2();
  4825. finishAndDisableSteppers();
  4826. fanSpeed = 0;
  4827. delay(1000); // Wait a little before to switch off
  4828. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4829. st_synchronize();
  4830. suicide();
  4831. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4832. SET_OUTPUT(PS_ON_PIN);
  4833. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4834. #endif
  4835. powersupply = false;
  4836. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4837. lcd_update(0);
  4838. break;
  4839. case 82:
  4840. axis_relative_modes[3] = false;
  4841. break;
  4842. case 83:
  4843. axis_relative_modes[3] = true;
  4844. break;
  4845. case 18: //compatibility
  4846. case 84: // M84
  4847. if(code_seen('S')){
  4848. stepper_inactive_time = code_value() * 1000;
  4849. }
  4850. else
  4851. {
  4852. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4853. if(all_axis)
  4854. {
  4855. st_synchronize();
  4856. disable_e0();
  4857. disable_e1();
  4858. disable_e2();
  4859. finishAndDisableSteppers();
  4860. }
  4861. else
  4862. {
  4863. st_synchronize();
  4864. if (code_seen('X')) disable_x();
  4865. if (code_seen('Y')) disable_y();
  4866. if (code_seen('Z')) disable_z();
  4867. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4868. if (code_seen('E')) {
  4869. disable_e0();
  4870. disable_e1();
  4871. disable_e2();
  4872. }
  4873. #endif
  4874. }
  4875. }
  4876. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4877. print_time_remaining_init();
  4878. snmm_filaments_used = 0;
  4879. break;
  4880. case 85: // M85
  4881. if(code_seen('S')) {
  4882. max_inactive_time = code_value() * 1000;
  4883. }
  4884. break;
  4885. #ifdef SAFETYTIMER
  4886. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4887. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4888. if (code_seen('S')) {
  4889. safetytimer_inactive_time = code_value() * 1000;
  4890. safetyTimer.start();
  4891. }
  4892. break;
  4893. #endif
  4894. case 92: // M92
  4895. for(int8_t i=0; i < NUM_AXIS; i++)
  4896. {
  4897. if(code_seen(axis_codes[i]))
  4898. {
  4899. if(i == 3) { // E
  4900. float value = code_value();
  4901. if(value < 20.0) {
  4902. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4903. max_jerk[E_AXIS] *= factor;
  4904. max_feedrate[i] *= factor;
  4905. axis_steps_per_sqr_second[i] *= factor;
  4906. }
  4907. axis_steps_per_unit[i] = value;
  4908. }
  4909. else {
  4910. axis_steps_per_unit[i] = code_value();
  4911. }
  4912. }
  4913. }
  4914. break;
  4915. case 110: // M110 - reset line pos
  4916. if (code_seen('N'))
  4917. gcode_LastN = code_value_long();
  4918. break;
  4919. #ifdef HOST_KEEPALIVE_FEATURE
  4920. case 113: // M113 - Get or set Host Keepalive interval
  4921. if (code_seen('S')) {
  4922. host_keepalive_interval = (uint8_t)code_value_short();
  4923. // NOMORE(host_keepalive_interval, 60);
  4924. }
  4925. else {
  4926. SERIAL_ECHO_START;
  4927. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4928. SERIAL_PROTOCOLLN("");
  4929. }
  4930. break;
  4931. #endif
  4932. case 115: // M115
  4933. if (code_seen('V')) {
  4934. // Report the Prusa version number.
  4935. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4936. } else if (code_seen('U')) {
  4937. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4938. // pause the print and ask the user to upgrade the firmware.
  4939. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4940. } else {
  4941. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4942. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4943. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4944. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4945. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4946. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4947. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4948. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4949. SERIAL_ECHOPGM(" UUID:");
  4950. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4951. }
  4952. break;
  4953. /* case 117: // M117 display message
  4954. starpos = (strchr(strchr_pointer + 5,'*'));
  4955. if(starpos!=NULL)
  4956. *(starpos)='\0';
  4957. lcd_setstatus(strchr_pointer + 5);
  4958. break;*/
  4959. case 114: // M114
  4960. gcode_M114();
  4961. break;
  4962. case 120: // M120
  4963. enable_endstops(false) ;
  4964. break;
  4965. case 121: // M121
  4966. enable_endstops(true) ;
  4967. break;
  4968. case 119: // M119
  4969. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4970. SERIAL_PROTOCOLLN("");
  4971. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4972. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4973. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4974. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4975. }else{
  4976. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4977. }
  4978. SERIAL_PROTOCOLLN("");
  4979. #endif
  4980. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4981. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4982. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4983. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4984. }else{
  4985. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4986. }
  4987. SERIAL_PROTOCOLLN("");
  4988. #endif
  4989. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4990. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4991. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4992. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4993. }else{
  4994. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4995. }
  4996. SERIAL_PROTOCOLLN("");
  4997. #endif
  4998. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4999. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5000. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5001. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5002. }else{
  5003. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5004. }
  5005. SERIAL_PROTOCOLLN("");
  5006. #endif
  5007. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5008. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5009. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5010. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5011. }else{
  5012. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5013. }
  5014. SERIAL_PROTOCOLLN("");
  5015. #endif
  5016. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5017. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5018. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5019. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5020. }else{
  5021. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5022. }
  5023. SERIAL_PROTOCOLLN("");
  5024. #endif
  5025. break;
  5026. //TODO: update for all axis, use for loop
  5027. #ifdef BLINKM
  5028. case 150: // M150
  5029. {
  5030. byte red;
  5031. byte grn;
  5032. byte blu;
  5033. if(code_seen('R')) red = code_value();
  5034. if(code_seen('U')) grn = code_value();
  5035. if(code_seen('B')) blu = code_value();
  5036. SendColors(red,grn,blu);
  5037. }
  5038. break;
  5039. #endif //BLINKM
  5040. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5041. {
  5042. uint8_t extruder = active_extruder;
  5043. if(code_seen('T')) {
  5044. extruder = code_value();
  5045. if(extruder >= EXTRUDERS) {
  5046. SERIAL_ECHO_START;
  5047. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5048. break;
  5049. }
  5050. }
  5051. if(code_seen('D')) {
  5052. float diameter = (float)code_value();
  5053. if (diameter == 0.0) {
  5054. // setting any extruder filament size disables volumetric on the assumption that
  5055. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5056. // for all extruders
  5057. volumetric_enabled = false;
  5058. } else {
  5059. filament_size[extruder] = (float)code_value();
  5060. // make sure all extruders have some sane value for the filament size
  5061. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5062. #if EXTRUDERS > 1
  5063. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5064. #if EXTRUDERS > 2
  5065. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5066. #endif
  5067. #endif
  5068. volumetric_enabled = true;
  5069. }
  5070. } else {
  5071. //reserved for setting filament diameter via UFID or filament measuring device
  5072. break;
  5073. }
  5074. calculate_extruder_multipliers();
  5075. }
  5076. break;
  5077. case 201: // M201
  5078. for (int8_t i = 0; i < NUM_AXIS; i++)
  5079. {
  5080. if (code_seen(axis_codes[i]))
  5081. {
  5082. unsigned long val = code_value();
  5083. #ifdef TMC2130
  5084. unsigned long val_silent = val;
  5085. if ((i == X_AXIS) || (i == Y_AXIS))
  5086. {
  5087. if (val > NORMAL_MAX_ACCEL_XY)
  5088. val = NORMAL_MAX_ACCEL_XY;
  5089. if (val_silent > SILENT_MAX_ACCEL_XY)
  5090. val_silent = SILENT_MAX_ACCEL_XY;
  5091. }
  5092. max_acceleration_units_per_sq_second_normal[i] = val;
  5093. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5094. #else //TMC2130
  5095. max_acceleration_units_per_sq_second[i] = val;
  5096. #endif //TMC2130
  5097. }
  5098. }
  5099. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5100. reset_acceleration_rates();
  5101. break;
  5102. #if 0 // Not used for Sprinter/grbl gen6
  5103. case 202: // M202
  5104. for(int8_t i=0; i < NUM_AXIS; i++) {
  5105. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5106. }
  5107. break;
  5108. #endif
  5109. case 203: // M203 max feedrate mm/sec
  5110. for (int8_t i = 0; i < NUM_AXIS; i++)
  5111. {
  5112. if (code_seen(axis_codes[i]))
  5113. {
  5114. float val = code_value();
  5115. #ifdef TMC2130
  5116. float val_silent = val;
  5117. if ((i == X_AXIS) || (i == Y_AXIS))
  5118. {
  5119. if (val > NORMAL_MAX_FEEDRATE_XY)
  5120. val = NORMAL_MAX_FEEDRATE_XY;
  5121. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5122. val_silent = SILENT_MAX_FEEDRATE_XY;
  5123. }
  5124. max_feedrate_normal[i] = val;
  5125. max_feedrate_silent[i] = val_silent;
  5126. #else //TMC2130
  5127. max_feedrate[i] = val;
  5128. #endif //TMC2130
  5129. }
  5130. }
  5131. break;
  5132. case 204:
  5133. // M204 acclereration settings.
  5134. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5135. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5136. {
  5137. if(code_seen('S')) {
  5138. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5139. // and it is also generated by Slic3r to control acceleration per extrusion type
  5140. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5141. acceleration = code_value();
  5142. // Interpret the T value as retract acceleration in the old Marlin format.
  5143. if(code_seen('T'))
  5144. retract_acceleration = code_value();
  5145. } else {
  5146. // New acceleration format, compatible with the upstream Marlin.
  5147. if(code_seen('P'))
  5148. acceleration = code_value();
  5149. if(code_seen('R'))
  5150. retract_acceleration = code_value();
  5151. if(code_seen('T')) {
  5152. // Interpret the T value as the travel acceleration in the new Marlin format.
  5153. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5154. // travel_acceleration = code_value();
  5155. }
  5156. }
  5157. }
  5158. break;
  5159. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5160. {
  5161. if(code_seen('S')) minimumfeedrate = code_value();
  5162. if(code_seen('T')) mintravelfeedrate = code_value();
  5163. if(code_seen('B')) minsegmenttime = code_value() ;
  5164. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5165. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5166. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5167. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5168. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5169. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5170. }
  5171. break;
  5172. case 206: // M206 additional homing offset
  5173. for(int8_t i=0; i < 3; i++)
  5174. {
  5175. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5176. }
  5177. break;
  5178. #ifdef FWRETRACT
  5179. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5180. {
  5181. if(code_seen('S'))
  5182. {
  5183. retract_length = code_value() ;
  5184. }
  5185. if(code_seen('F'))
  5186. {
  5187. retract_feedrate = code_value()/60 ;
  5188. }
  5189. if(code_seen('Z'))
  5190. {
  5191. retract_zlift = code_value() ;
  5192. }
  5193. }break;
  5194. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5195. {
  5196. if(code_seen('S'))
  5197. {
  5198. retract_recover_length = code_value() ;
  5199. }
  5200. if(code_seen('F'))
  5201. {
  5202. retract_recover_feedrate = code_value()/60 ;
  5203. }
  5204. }break;
  5205. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5206. {
  5207. if(code_seen('S'))
  5208. {
  5209. int t= code_value() ;
  5210. switch(t)
  5211. {
  5212. case 0:
  5213. {
  5214. autoretract_enabled=false;
  5215. retracted[0]=false;
  5216. #if EXTRUDERS > 1
  5217. retracted[1]=false;
  5218. #endif
  5219. #if EXTRUDERS > 2
  5220. retracted[2]=false;
  5221. #endif
  5222. }break;
  5223. case 1:
  5224. {
  5225. autoretract_enabled=true;
  5226. retracted[0]=false;
  5227. #if EXTRUDERS > 1
  5228. retracted[1]=false;
  5229. #endif
  5230. #if EXTRUDERS > 2
  5231. retracted[2]=false;
  5232. #endif
  5233. }break;
  5234. default:
  5235. SERIAL_ECHO_START;
  5236. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5237. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5238. SERIAL_ECHOLNPGM("\"(1)");
  5239. }
  5240. }
  5241. }break;
  5242. #endif // FWRETRACT
  5243. #if EXTRUDERS > 1
  5244. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5245. {
  5246. uint8_t extruder;
  5247. if(setTargetedHotend(218, extruder)){
  5248. break;
  5249. }
  5250. if(code_seen('X'))
  5251. {
  5252. extruder_offset[X_AXIS][extruder] = code_value();
  5253. }
  5254. if(code_seen('Y'))
  5255. {
  5256. extruder_offset[Y_AXIS][extruder] = code_value();
  5257. }
  5258. SERIAL_ECHO_START;
  5259. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5260. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5261. {
  5262. SERIAL_ECHO(" ");
  5263. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5264. SERIAL_ECHO(",");
  5265. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5266. }
  5267. SERIAL_ECHOLN("");
  5268. }break;
  5269. #endif
  5270. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5271. {
  5272. if(code_seen('S'))
  5273. {
  5274. feedmultiply = code_value() ;
  5275. }
  5276. }
  5277. break;
  5278. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5279. {
  5280. if(code_seen('S'))
  5281. {
  5282. int tmp_code = code_value();
  5283. if (code_seen('T'))
  5284. {
  5285. uint8_t extruder;
  5286. if(setTargetedHotend(221, extruder)){
  5287. break;
  5288. }
  5289. extruder_multiply[extruder] = tmp_code;
  5290. }
  5291. else
  5292. {
  5293. extrudemultiply = tmp_code ;
  5294. }
  5295. }
  5296. calculate_extruder_multipliers();
  5297. }
  5298. break;
  5299. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5300. {
  5301. if(code_seen('P')){
  5302. int pin_number = code_value(); // pin number
  5303. int pin_state = -1; // required pin state - default is inverted
  5304. if(code_seen('S')) pin_state = code_value(); // required pin state
  5305. if(pin_state >= -1 && pin_state <= 1){
  5306. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5307. {
  5308. if (sensitive_pins[i] == pin_number)
  5309. {
  5310. pin_number = -1;
  5311. break;
  5312. }
  5313. }
  5314. if (pin_number > -1)
  5315. {
  5316. int target = LOW;
  5317. st_synchronize();
  5318. pinMode(pin_number, INPUT);
  5319. switch(pin_state){
  5320. case 1:
  5321. target = HIGH;
  5322. break;
  5323. case 0:
  5324. target = LOW;
  5325. break;
  5326. case -1:
  5327. target = !digitalRead(pin_number);
  5328. break;
  5329. }
  5330. while(digitalRead(pin_number) != target){
  5331. manage_heater();
  5332. manage_inactivity();
  5333. lcd_update(0);
  5334. }
  5335. }
  5336. }
  5337. }
  5338. }
  5339. break;
  5340. #if NUM_SERVOS > 0
  5341. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5342. {
  5343. int servo_index = -1;
  5344. int servo_position = 0;
  5345. if (code_seen('P'))
  5346. servo_index = code_value();
  5347. if (code_seen('S')) {
  5348. servo_position = code_value();
  5349. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5350. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5351. servos[servo_index].attach(0);
  5352. #endif
  5353. servos[servo_index].write(servo_position);
  5354. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5355. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5356. servos[servo_index].detach();
  5357. #endif
  5358. }
  5359. else {
  5360. SERIAL_ECHO_START;
  5361. SERIAL_ECHO("Servo ");
  5362. SERIAL_ECHO(servo_index);
  5363. SERIAL_ECHOLN(" out of range");
  5364. }
  5365. }
  5366. else if (servo_index >= 0) {
  5367. SERIAL_PROTOCOL(_T(MSG_OK));
  5368. SERIAL_PROTOCOL(" Servo ");
  5369. SERIAL_PROTOCOL(servo_index);
  5370. SERIAL_PROTOCOL(": ");
  5371. SERIAL_PROTOCOL(servos[servo_index].read());
  5372. SERIAL_PROTOCOLLN("");
  5373. }
  5374. }
  5375. break;
  5376. #endif // NUM_SERVOS > 0
  5377. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5378. case 300: // M300
  5379. {
  5380. int beepS = code_seen('S') ? code_value() : 110;
  5381. int beepP = code_seen('P') ? code_value() : 1000;
  5382. if (beepS > 0)
  5383. {
  5384. #if BEEPER > 0
  5385. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5386. tone(BEEPER, beepS);
  5387. delay(beepP);
  5388. noTone(BEEPER);
  5389. #endif
  5390. }
  5391. else
  5392. {
  5393. delay(beepP);
  5394. }
  5395. }
  5396. break;
  5397. #endif // M300
  5398. #ifdef PIDTEMP
  5399. case 301: // M301
  5400. {
  5401. if(code_seen('P')) Kp = code_value();
  5402. if(code_seen('I')) Ki = scalePID_i(code_value());
  5403. if(code_seen('D')) Kd = scalePID_d(code_value());
  5404. #ifdef PID_ADD_EXTRUSION_RATE
  5405. if(code_seen('C')) Kc = code_value();
  5406. #endif
  5407. updatePID();
  5408. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5409. SERIAL_PROTOCOL(" p:");
  5410. SERIAL_PROTOCOL(Kp);
  5411. SERIAL_PROTOCOL(" i:");
  5412. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5413. SERIAL_PROTOCOL(" d:");
  5414. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5415. #ifdef PID_ADD_EXTRUSION_RATE
  5416. SERIAL_PROTOCOL(" c:");
  5417. //Kc does not have scaling applied above, or in resetting defaults
  5418. SERIAL_PROTOCOL(Kc);
  5419. #endif
  5420. SERIAL_PROTOCOLLN("");
  5421. }
  5422. break;
  5423. #endif //PIDTEMP
  5424. #ifdef PIDTEMPBED
  5425. case 304: // M304
  5426. {
  5427. if(code_seen('P')) bedKp = code_value();
  5428. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5429. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5430. updatePID();
  5431. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5432. SERIAL_PROTOCOL(" p:");
  5433. SERIAL_PROTOCOL(bedKp);
  5434. SERIAL_PROTOCOL(" i:");
  5435. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5436. SERIAL_PROTOCOL(" d:");
  5437. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5438. SERIAL_PROTOCOLLN("");
  5439. }
  5440. break;
  5441. #endif //PIDTEMP
  5442. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5443. {
  5444. #ifdef CHDK
  5445. SET_OUTPUT(CHDK);
  5446. WRITE(CHDK, HIGH);
  5447. chdkHigh = millis();
  5448. chdkActive = true;
  5449. #else
  5450. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5451. const uint8_t NUM_PULSES=16;
  5452. const float PULSE_LENGTH=0.01524;
  5453. for(int i=0; i < NUM_PULSES; i++) {
  5454. WRITE(PHOTOGRAPH_PIN, HIGH);
  5455. _delay_ms(PULSE_LENGTH);
  5456. WRITE(PHOTOGRAPH_PIN, LOW);
  5457. _delay_ms(PULSE_LENGTH);
  5458. }
  5459. delay(7.33);
  5460. for(int i=0; i < NUM_PULSES; i++) {
  5461. WRITE(PHOTOGRAPH_PIN, HIGH);
  5462. _delay_ms(PULSE_LENGTH);
  5463. WRITE(PHOTOGRAPH_PIN, LOW);
  5464. _delay_ms(PULSE_LENGTH);
  5465. }
  5466. #endif
  5467. #endif //chdk end if
  5468. }
  5469. break;
  5470. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5471. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5472. {
  5473. float temp = .0;
  5474. if (code_seen('S')) temp=code_value();
  5475. set_extrude_min_temp(temp);
  5476. }
  5477. break;
  5478. #endif
  5479. case 303: // M303 PID autotune
  5480. {
  5481. float temp = 150.0;
  5482. int e=0;
  5483. int c=5;
  5484. if (code_seen('E')) e=code_value();
  5485. if (e<0)
  5486. temp=70;
  5487. if (code_seen('S')) temp=code_value();
  5488. if (code_seen('C')) c=code_value();
  5489. PID_autotune(temp, e, c);
  5490. }
  5491. break;
  5492. case 400: // M400 finish all moves
  5493. {
  5494. st_synchronize();
  5495. }
  5496. break;
  5497. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5498. {
  5499. //currently three different materials are needed (default, flex and PVA)
  5500. //add storing this information for different load/unload profiles etc. in the future
  5501. //firmware does not wait for "ok" from mmu
  5502. if (mmu_enabled)
  5503. {
  5504. uint8_t extruder = 255;
  5505. uint8_t filament = FILAMENT_UNDEFINED;
  5506. if(code_seen('E')) extruder = code_value();
  5507. if(code_seen('F')) filament = code_value();
  5508. mmu_set_filament_type(extruder, filament);
  5509. }
  5510. }
  5511. break;
  5512. case 500: // M500 Store settings in EEPROM
  5513. {
  5514. Config_StoreSettings(EEPROM_OFFSET);
  5515. }
  5516. break;
  5517. case 501: // M501 Read settings from EEPROM
  5518. {
  5519. Config_RetrieveSettings(EEPROM_OFFSET);
  5520. }
  5521. break;
  5522. case 502: // M502 Revert to default settings
  5523. {
  5524. Config_ResetDefault();
  5525. }
  5526. break;
  5527. case 503: // M503 print settings currently in memory
  5528. {
  5529. Config_PrintSettings();
  5530. }
  5531. break;
  5532. case 509: //M509 Force language selection
  5533. {
  5534. lang_reset();
  5535. SERIAL_ECHO_START;
  5536. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5537. }
  5538. break;
  5539. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5540. case 540:
  5541. {
  5542. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5543. }
  5544. break;
  5545. #endif
  5546. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5547. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5548. {
  5549. float value;
  5550. if (code_seen('Z'))
  5551. {
  5552. value = code_value();
  5553. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5554. {
  5555. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5556. SERIAL_ECHO_START;
  5557. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5558. SERIAL_PROTOCOLLN("");
  5559. }
  5560. else
  5561. {
  5562. SERIAL_ECHO_START;
  5563. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5564. SERIAL_ECHORPGM(MSG_Z_MIN);
  5565. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5566. SERIAL_ECHORPGM(MSG_Z_MAX);
  5567. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5568. SERIAL_PROTOCOLLN("");
  5569. }
  5570. }
  5571. else
  5572. {
  5573. SERIAL_ECHO_START;
  5574. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5575. SERIAL_ECHO(-zprobe_zoffset);
  5576. SERIAL_PROTOCOLLN("");
  5577. }
  5578. break;
  5579. }
  5580. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5581. #ifdef FILAMENTCHANGEENABLE
  5582. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5583. {
  5584. st_synchronize();
  5585. float x_position = current_position[X_AXIS];
  5586. float y_position = current_position[Y_AXIS];
  5587. float z_shift = 0;
  5588. float e_shift_init = 0;
  5589. float e_shift_late = 0;
  5590. bool automatic = false;
  5591. //Retract extruder
  5592. if(code_seen('E'))
  5593. {
  5594. e_shift_init = code_value();
  5595. }
  5596. else
  5597. {
  5598. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5599. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5600. #endif
  5601. }
  5602. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5603. if (code_seen('L'))
  5604. {
  5605. e_shift_late = code_value();
  5606. }
  5607. else
  5608. {
  5609. #ifdef FILAMENTCHANGE_FINALRETRACT
  5610. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5611. #endif
  5612. }
  5613. //Lift Z
  5614. if(code_seen('Z'))
  5615. {
  5616. z_shift = code_value();
  5617. }
  5618. else
  5619. {
  5620. #ifdef FILAMENTCHANGE_ZADD
  5621. z_shift= FILAMENTCHANGE_ZADD ;
  5622. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5623. #endif
  5624. }
  5625. //Move XY to side
  5626. if(code_seen('X'))
  5627. {
  5628. x_position = code_value();
  5629. }
  5630. else
  5631. {
  5632. #ifdef FILAMENTCHANGE_XPOS
  5633. x_position = FILAMENTCHANGE_XPOS;
  5634. #endif
  5635. }
  5636. if(code_seen('Y'))
  5637. {
  5638. y_position = code_value();
  5639. }
  5640. else
  5641. {
  5642. #ifdef FILAMENTCHANGE_YPOS
  5643. y_position = FILAMENTCHANGE_YPOS ;
  5644. #endif
  5645. }
  5646. if (mmu_enabled && code_seen("AUTO"))
  5647. automatic = true;
  5648. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5649. }
  5650. break;
  5651. #endif //FILAMENTCHANGEENABLE
  5652. case 601:
  5653. {
  5654. lcd_pause_print();
  5655. }
  5656. break;
  5657. case 602: {
  5658. lcd_resume_print();
  5659. }
  5660. break;
  5661. #ifdef PINDA_THERMISTOR
  5662. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5663. {
  5664. int set_target_pinda = 0;
  5665. if (code_seen('S')) {
  5666. set_target_pinda = code_value();
  5667. }
  5668. else {
  5669. break;
  5670. }
  5671. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5672. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5673. SERIAL_PROTOCOL(set_target_pinda);
  5674. SERIAL_PROTOCOLLN("");
  5675. codenum = millis();
  5676. cancel_heatup = false;
  5677. bool is_pinda_cooling = false;
  5678. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5679. is_pinda_cooling = true;
  5680. }
  5681. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5682. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5683. {
  5684. SERIAL_PROTOCOLPGM("P:");
  5685. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5686. SERIAL_PROTOCOLPGM("/");
  5687. SERIAL_PROTOCOL(set_target_pinda);
  5688. SERIAL_PROTOCOLLN("");
  5689. codenum = millis();
  5690. }
  5691. manage_heater();
  5692. manage_inactivity();
  5693. lcd_update(0);
  5694. }
  5695. LCD_MESSAGERPGM(_T(MSG_OK));
  5696. break;
  5697. }
  5698. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5699. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5700. uint8_t cal_status = calibration_status_pinda();
  5701. int16_t usteps = 0;
  5702. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5703. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5704. for (uint8_t i = 0; i < 6; i++)
  5705. {
  5706. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5707. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5708. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5709. SERIAL_PROTOCOLPGM(", ");
  5710. SERIAL_PROTOCOL(35 + (i * 5));
  5711. SERIAL_PROTOCOLPGM(", ");
  5712. SERIAL_PROTOCOL(usteps);
  5713. SERIAL_PROTOCOLPGM(", ");
  5714. SERIAL_PROTOCOL(mm * 1000);
  5715. SERIAL_PROTOCOLLN("");
  5716. }
  5717. }
  5718. else if (code_seen('!')) { // ! - Set factory default values
  5719. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5720. int16_t z_shift = 8; //40C - 20um - 8usteps
  5721. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5722. z_shift = 24; //45C - 60um - 24usteps
  5723. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5724. z_shift = 48; //50C - 120um - 48usteps
  5725. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5726. z_shift = 80; //55C - 200um - 80usteps
  5727. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5728. z_shift = 120; //60C - 300um - 120usteps
  5729. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5730. SERIAL_PROTOCOLLN("factory restored");
  5731. }
  5732. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5733. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5734. int16_t z_shift = 0;
  5735. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5736. SERIAL_PROTOCOLLN("zerorized");
  5737. }
  5738. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5739. int16_t usteps = code_value();
  5740. if (code_seen('I')) {
  5741. uint8_t index = code_value();
  5742. if (index < 5) {
  5743. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5744. SERIAL_PROTOCOLLN("OK");
  5745. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5746. for (uint8_t i = 0; i < 6; i++)
  5747. {
  5748. usteps = 0;
  5749. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5750. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5751. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5752. SERIAL_PROTOCOLPGM(", ");
  5753. SERIAL_PROTOCOL(35 + (i * 5));
  5754. SERIAL_PROTOCOLPGM(", ");
  5755. SERIAL_PROTOCOL(usteps);
  5756. SERIAL_PROTOCOLPGM(", ");
  5757. SERIAL_PROTOCOL(mm * 1000);
  5758. SERIAL_PROTOCOLLN("");
  5759. }
  5760. }
  5761. }
  5762. }
  5763. else {
  5764. SERIAL_PROTOCOLPGM("no valid command");
  5765. }
  5766. break;
  5767. #endif //PINDA_THERMISTOR
  5768. #ifdef LIN_ADVANCE
  5769. case 900: // M900: Set LIN_ADVANCE options.
  5770. gcode_M900();
  5771. break;
  5772. #endif
  5773. case 907: // M907 Set digital trimpot motor current using axis codes.
  5774. {
  5775. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5776. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5777. if(code_seen('B')) st_current_set(4,code_value());
  5778. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5779. #endif
  5780. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5781. if(code_seen('X')) st_current_set(0, code_value());
  5782. #endif
  5783. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5784. if(code_seen('Z')) st_current_set(1, code_value());
  5785. #endif
  5786. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5787. if(code_seen('E')) st_current_set(2, code_value());
  5788. #endif
  5789. }
  5790. break;
  5791. case 908: // M908 Control digital trimpot directly.
  5792. {
  5793. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5794. uint8_t channel,current;
  5795. if(code_seen('P')) channel=code_value();
  5796. if(code_seen('S')) current=code_value();
  5797. digitalPotWrite(channel, current);
  5798. #endif
  5799. }
  5800. break;
  5801. #ifdef TMC2130
  5802. case 910: // M910 TMC2130 init
  5803. {
  5804. tmc2130_init();
  5805. }
  5806. break;
  5807. case 911: // M911 Set TMC2130 holding currents
  5808. {
  5809. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5810. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5811. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5812. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5813. }
  5814. break;
  5815. case 912: // M912 Set TMC2130 running currents
  5816. {
  5817. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5818. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5819. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5820. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5821. }
  5822. break;
  5823. case 913: // M913 Print TMC2130 currents
  5824. {
  5825. tmc2130_print_currents();
  5826. }
  5827. break;
  5828. case 914: // M914 Set normal mode
  5829. {
  5830. tmc2130_mode = TMC2130_MODE_NORMAL;
  5831. update_mode_profile();
  5832. tmc2130_init();
  5833. }
  5834. break;
  5835. case 915: // M915 Set silent mode
  5836. {
  5837. tmc2130_mode = TMC2130_MODE_SILENT;
  5838. update_mode_profile();
  5839. tmc2130_init();
  5840. }
  5841. break;
  5842. case 916: // M916 Set sg_thrs
  5843. {
  5844. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5845. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5846. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5847. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5848. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5849. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5850. }
  5851. break;
  5852. case 917: // M917 Set TMC2130 pwm_ampl
  5853. {
  5854. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5855. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5856. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5857. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5858. }
  5859. break;
  5860. case 918: // M918 Set TMC2130 pwm_grad
  5861. {
  5862. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5863. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5864. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5865. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5866. }
  5867. break;
  5868. #endif //TMC2130
  5869. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5870. {
  5871. #ifdef TMC2130
  5872. if(code_seen('E'))
  5873. {
  5874. uint16_t res_new = code_value();
  5875. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5876. {
  5877. st_synchronize();
  5878. uint8_t axis = E_AXIS;
  5879. uint16_t res = tmc2130_get_res(axis);
  5880. tmc2130_set_res(axis, res_new);
  5881. if (res_new > res)
  5882. {
  5883. uint16_t fac = (res_new / res);
  5884. axis_steps_per_unit[axis] *= fac;
  5885. position[E_AXIS] *= fac;
  5886. }
  5887. else
  5888. {
  5889. uint16_t fac = (res / res_new);
  5890. axis_steps_per_unit[axis] /= fac;
  5891. position[E_AXIS] /= fac;
  5892. }
  5893. }
  5894. }
  5895. #else //TMC2130
  5896. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5897. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5898. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5899. if(code_seen('B')) microstep_mode(4,code_value());
  5900. microstep_readings();
  5901. #endif
  5902. #endif //TMC2130
  5903. }
  5904. break;
  5905. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5906. {
  5907. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5908. if(code_seen('S')) switch((int)code_value())
  5909. {
  5910. case 1:
  5911. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5912. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5913. break;
  5914. case 2:
  5915. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5916. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5917. break;
  5918. }
  5919. microstep_readings();
  5920. #endif
  5921. }
  5922. break;
  5923. case 701: //M701: load filament
  5924. {
  5925. if (mmu_enabled && code_seen('E'))
  5926. tmp_extruder = code_value();
  5927. gcode_M701();
  5928. }
  5929. break;
  5930. case 702:
  5931. {
  5932. if (mmu_enabled)
  5933. {
  5934. if (code_seen('U'))
  5935. extr_unload_used(); //unload all filaments which were used in current print
  5936. else if (code_seen('C'))
  5937. extr_unload(); //unload just current filament
  5938. else
  5939. extr_unload_all(); //unload all filaments
  5940. }
  5941. else
  5942. unload_filament();
  5943. }
  5944. break;
  5945. case 999: // M999: Restart after being stopped
  5946. Stopped = false;
  5947. lcd_reset_alert_level();
  5948. gcode_LastN = Stopped_gcode_LastN;
  5949. FlushSerialRequestResend();
  5950. break;
  5951. default:
  5952. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5953. }
  5954. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5955. mcode_in_progress = 0;
  5956. }
  5957. } // end if(code_seen('M')) (end of M codes)
  5958. else if(code_seen('T'))
  5959. {
  5960. int index;
  5961. st_synchronize();
  5962. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5963. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5964. SERIAL_ECHOLNPGM("Invalid T code.");
  5965. }
  5966. else {
  5967. if (*(strchr_pointer + index) == '?') {
  5968. tmp_extruder = choose_extruder_menu();
  5969. }
  5970. else {
  5971. tmp_extruder = code_value();
  5972. }
  5973. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5974. if (mmu_enabled)
  5975. {
  5976. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5977. manage_response(true, true);
  5978. mmu_command(MMU_CMD_C0);
  5979. mmu_extruder = tmp_extruder; //filament change is finished
  5980. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5981. {
  5982. mmu_load_to_nozzle();
  5983. }
  5984. }
  5985. else
  5986. {
  5987. #ifdef SNMM
  5988. #ifdef LIN_ADVANCE
  5989. if (mmu_extruder != tmp_extruder)
  5990. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5991. #endif
  5992. mmu_extruder = tmp_extruder;
  5993. delay(100);
  5994. disable_e0();
  5995. disable_e1();
  5996. disable_e2();
  5997. pinMode(E_MUX0_PIN, OUTPUT);
  5998. pinMode(E_MUX1_PIN, OUTPUT);
  5999. delay(100);
  6000. SERIAL_ECHO_START;
  6001. SERIAL_ECHO("T:");
  6002. SERIAL_ECHOLN((int)tmp_extruder);
  6003. switch (tmp_extruder) {
  6004. case 1:
  6005. WRITE(E_MUX0_PIN, HIGH);
  6006. WRITE(E_MUX1_PIN, LOW);
  6007. break;
  6008. case 2:
  6009. WRITE(E_MUX0_PIN, LOW);
  6010. WRITE(E_MUX1_PIN, HIGH);
  6011. break;
  6012. case 3:
  6013. WRITE(E_MUX0_PIN, HIGH);
  6014. WRITE(E_MUX1_PIN, HIGH);
  6015. break;
  6016. default:
  6017. WRITE(E_MUX0_PIN, LOW);
  6018. WRITE(E_MUX1_PIN, LOW);
  6019. break;
  6020. }
  6021. delay(100);
  6022. #else //SNMM
  6023. if (tmp_extruder >= EXTRUDERS) {
  6024. SERIAL_ECHO_START;
  6025. SERIAL_ECHOPGM("T");
  6026. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6027. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6028. }
  6029. else {
  6030. #if EXTRUDERS > 1
  6031. boolean make_move = false;
  6032. #endif
  6033. if (code_seen('F')) {
  6034. #if EXTRUDERS > 1
  6035. make_move = true;
  6036. #endif
  6037. next_feedrate = code_value();
  6038. if (next_feedrate > 0.0) {
  6039. feedrate = next_feedrate;
  6040. }
  6041. }
  6042. #if EXTRUDERS > 1
  6043. if (tmp_extruder != active_extruder) {
  6044. // Save current position to return to after applying extruder offset
  6045. memcpy(destination, current_position, sizeof(destination));
  6046. // Offset extruder (only by XY)
  6047. int i;
  6048. for (i = 0; i < 2; i++) {
  6049. current_position[i] = current_position[i] -
  6050. extruder_offset[i][active_extruder] +
  6051. extruder_offset[i][tmp_extruder];
  6052. }
  6053. // Set the new active extruder and position
  6054. active_extruder = tmp_extruder;
  6055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6056. // Move to the old position if 'F' was in the parameters
  6057. if (make_move && Stopped == false) {
  6058. prepare_move();
  6059. }
  6060. }
  6061. #endif
  6062. SERIAL_ECHO_START;
  6063. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6064. SERIAL_PROTOCOLLN((int)active_extruder);
  6065. }
  6066. #endif //SNMM
  6067. }
  6068. }
  6069. } // end if(code_seen('T')) (end of T codes)
  6070. else if (code_seen('D')) // D codes (debug)
  6071. {
  6072. switch((int)code_value())
  6073. {
  6074. #ifdef DEBUG_DCODES
  6075. case -1: // D-1 - Endless loop
  6076. dcode__1(); break;
  6077. case 0: // D0 - Reset
  6078. dcode_0(); break;
  6079. case 1: // D1 - Clear EEPROM
  6080. dcode_1(); break;
  6081. case 2: // D2 - Read/Write RAM
  6082. dcode_2(); break;
  6083. #endif //DEBUG_DCODES
  6084. #ifdef DEBUG_DCODE3
  6085. case 3: // D3 - Read/Write EEPROM
  6086. dcode_3(); break;
  6087. #endif //DEBUG_DCODE3
  6088. #ifdef DEBUG_DCODES
  6089. case 4: // D4 - Read/Write PIN
  6090. dcode_4(); break;
  6091. case 5: // D5 - Read/Write FLASH
  6092. // dcode_5(); break;
  6093. break;
  6094. case 6: // D6 - Read/Write external FLASH
  6095. dcode_6(); break;
  6096. case 7: // D7 - Read/Write Bootloader
  6097. dcode_7(); break;
  6098. case 8: // D8 - Read/Write PINDA
  6099. dcode_8(); break;
  6100. case 9: // D9 - Read/Write ADC
  6101. dcode_9(); break;
  6102. case 10: // D10 - XYZ calibration = OK
  6103. dcode_10(); break;
  6104. #ifdef TMC2130
  6105. case 2130: // D9125 - TMC2130
  6106. dcode_2130(); break;
  6107. #endif //TMC2130
  6108. #ifdef FILAMENT_SENSOR
  6109. case 9125: // D9125 - FILAMENT_SENSOR
  6110. dcode_9125(); break;
  6111. #endif //FILAMENT_SENSOR
  6112. #endif //DEBUG_DCODES
  6113. }
  6114. }
  6115. else
  6116. {
  6117. SERIAL_ECHO_START;
  6118. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6119. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6120. SERIAL_ECHOLNPGM("\"(2)");
  6121. }
  6122. KEEPALIVE_STATE(NOT_BUSY);
  6123. ClearToSend();
  6124. }
  6125. void FlushSerialRequestResend()
  6126. {
  6127. //char cmdbuffer[bufindr][100]="Resend:";
  6128. MYSERIAL.flush();
  6129. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6130. }
  6131. // Confirm the execution of a command, if sent from a serial line.
  6132. // Execution of a command from a SD card will not be confirmed.
  6133. void ClearToSend()
  6134. {
  6135. previous_millis_cmd = millis();
  6136. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6137. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6138. }
  6139. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6140. void update_currents() {
  6141. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6142. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6143. float tmp_motor[3];
  6144. //SERIAL_ECHOLNPGM("Currents updated: ");
  6145. if (destination[Z_AXIS] < Z_SILENT) {
  6146. //SERIAL_ECHOLNPGM("LOW");
  6147. for (uint8_t i = 0; i < 3; i++) {
  6148. st_current_set(i, current_low[i]);
  6149. /*MYSERIAL.print(int(i));
  6150. SERIAL_ECHOPGM(": ");
  6151. MYSERIAL.println(current_low[i]);*/
  6152. }
  6153. }
  6154. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6155. //SERIAL_ECHOLNPGM("HIGH");
  6156. for (uint8_t i = 0; i < 3; i++) {
  6157. st_current_set(i, current_high[i]);
  6158. /*MYSERIAL.print(int(i));
  6159. SERIAL_ECHOPGM(": ");
  6160. MYSERIAL.println(current_high[i]);*/
  6161. }
  6162. }
  6163. else {
  6164. for (uint8_t i = 0; i < 3; i++) {
  6165. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6166. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6167. st_current_set(i, tmp_motor[i]);
  6168. /*MYSERIAL.print(int(i));
  6169. SERIAL_ECHOPGM(": ");
  6170. MYSERIAL.println(tmp_motor[i]);*/
  6171. }
  6172. }
  6173. }
  6174. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6175. void get_coordinates()
  6176. {
  6177. bool seen[4]={false,false,false,false};
  6178. for(int8_t i=0; i < NUM_AXIS; i++) {
  6179. if(code_seen(axis_codes[i]))
  6180. {
  6181. bool relative = axis_relative_modes[i] || relative_mode;
  6182. destination[i] = (float)code_value();
  6183. if (i == E_AXIS) {
  6184. float emult = extruder_multiplier[active_extruder];
  6185. if (emult != 1.) {
  6186. if (! relative) {
  6187. destination[i] -= current_position[i];
  6188. relative = true;
  6189. }
  6190. destination[i] *= emult;
  6191. }
  6192. }
  6193. if (relative)
  6194. destination[i] += current_position[i];
  6195. seen[i]=true;
  6196. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6197. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6198. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6199. }
  6200. else destination[i] = current_position[i]; //Are these else lines really needed?
  6201. }
  6202. if(code_seen('F')) {
  6203. next_feedrate = code_value();
  6204. #ifdef MAX_SILENT_FEEDRATE
  6205. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6206. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6207. #endif //MAX_SILENT_FEEDRATE
  6208. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6209. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6210. {
  6211. // float e_max_speed =
  6212. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6213. }
  6214. }
  6215. }
  6216. void get_arc_coordinates()
  6217. {
  6218. #ifdef SF_ARC_FIX
  6219. bool relative_mode_backup = relative_mode;
  6220. relative_mode = true;
  6221. #endif
  6222. get_coordinates();
  6223. #ifdef SF_ARC_FIX
  6224. relative_mode=relative_mode_backup;
  6225. #endif
  6226. if(code_seen('I')) {
  6227. offset[0] = code_value();
  6228. }
  6229. else {
  6230. offset[0] = 0.0;
  6231. }
  6232. if(code_seen('J')) {
  6233. offset[1] = code_value();
  6234. }
  6235. else {
  6236. offset[1] = 0.0;
  6237. }
  6238. }
  6239. void clamp_to_software_endstops(float target[3])
  6240. {
  6241. #ifdef DEBUG_DISABLE_SWLIMITS
  6242. return;
  6243. #endif //DEBUG_DISABLE_SWLIMITS
  6244. world2machine_clamp(target[0], target[1]);
  6245. // Clamp the Z coordinate.
  6246. if (min_software_endstops) {
  6247. float negative_z_offset = 0;
  6248. #ifdef ENABLE_AUTO_BED_LEVELING
  6249. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6250. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6251. #endif
  6252. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6253. }
  6254. if (max_software_endstops) {
  6255. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6256. }
  6257. }
  6258. #ifdef MESH_BED_LEVELING
  6259. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6260. float dx = x - current_position[X_AXIS];
  6261. float dy = y - current_position[Y_AXIS];
  6262. float dz = z - current_position[Z_AXIS];
  6263. int n_segments = 0;
  6264. if (mbl.active) {
  6265. float len = abs(dx) + abs(dy);
  6266. if (len > 0)
  6267. // Split to 3cm segments or shorter.
  6268. n_segments = int(ceil(len / 30.f));
  6269. }
  6270. if (n_segments > 1) {
  6271. float de = e - current_position[E_AXIS];
  6272. for (int i = 1; i < n_segments; ++ i) {
  6273. float t = float(i) / float(n_segments);
  6274. if (saved_printing || (mbl.active == false)) return;
  6275. plan_buffer_line(
  6276. current_position[X_AXIS] + t * dx,
  6277. current_position[Y_AXIS] + t * dy,
  6278. current_position[Z_AXIS] + t * dz,
  6279. current_position[E_AXIS] + t * de,
  6280. feed_rate, extruder);
  6281. }
  6282. }
  6283. // The rest of the path.
  6284. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6285. current_position[X_AXIS] = x;
  6286. current_position[Y_AXIS] = y;
  6287. current_position[Z_AXIS] = z;
  6288. current_position[E_AXIS] = e;
  6289. }
  6290. #endif // MESH_BED_LEVELING
  6291. void prepare_move()
  6292. {
  6293. clamp_to_software_endstops(destination);
  6294. previous_millis_cmd = millis();
  6295. // Do not use feedmultiply for E or Z only moves
  6296. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6298. }
  6299. else {
  6300. #ifdef MESH_BED_LEVELING
  6301. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6302. #else
  6303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6304. #endif
  6305. }
  6306. for(int8_t i=0; i < NUM_AXIS; i++) {
  6307. current_position[i] = destination[i];
  6308. }
  6309. }
  6310. void prepare_arc_move(char isclockwise) {
  6311. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6312. // Trace the arc
  6313. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6314. // As far as the parser is concerned, the position is now == target. In reality the
  6315. // motion control system might still be processing the action and the real tool position
  6316. // in any intermediate location.
  6317. for(int8_t i=0; i < NUM_AXIS; i++) {
  6318. current_position[i] = destination[i];
  6319. }
  6320. previous_millis_cmd = millis();
  6321. }
  6322. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6323. #if defined(FAN_PIN)
  6324. #if CONTROLLERFAN_PIN == FAN_PIN
  6325. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6326. #endif
  6327. #endif
  6328. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6329. unsigned long lastMotorCheck = 0;
  6330. void controllerFan()
  6331. {
  6332. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6333. {
  6334. lastMotorCheck = millis();
  6335. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6336. #if EXTRUDERS > 2
  6337. || !READ(E2_ENABLE_PIN)
  6338. #endif
  6339. #if EXTRUDER > 1
  6340. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6341. || !READ(X2_ENABLE_PIN)
  6342. #endif
  6343. || !READ(E1_ENABLE_PIN)
  6344. #endif
  6345. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6346. {
  6347. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6348. }
  6349. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6350. {
  6351. digitalWrite(CONTROLLERFAN_PIN, 0);
  6352. analogWrite(CONTROLLERFAN_PIN, 0);
  6353. }
  6354. else
  6355. {
  6356. // allows digital or PWM fan output to be used (see M42 handling)
  6357. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6358. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6359. }
  6360. }
  6361. }
  6362. #endif
  6363. #ifdef TEMP_STAT_LEDS
  6364. static bool blue_led = false;
  6365. static bool red_led = false;
  6366. static uint32_t stat_update = 0;
  6367. void handle_status_leds(void) {
  6368. float max_temp = 0.0;
  6369. if(millis() > stat_update) {
  6370. stat_update += 500; // Update every 0.5s
  6371. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6372. max_temp = max(max_temp, degHotend(cur_extruder));
  6373. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6374. }
  6375. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6376. max_temp = max(max_temp, degTargetBed());
  6377. max_temp = max(max_temp, degBed());
  6378. #endif
  6379. if((max_temp > 55.0) && (red_led == false)) {
  6380. digitalWrite(STAT_LED_RED, 1);
  6381. digitalWrite(STAT_LED_BLUE, 0);
  6382. red_led = true;
  6383. blue_led = false;
  6384. }
  6385. if((max_temp < 54.0) && (blue_led == false)) {
  6386. digitalWrite(STAT_LED_RED, 0);
  6387. digitalWrite(STAT_LED_BLUE, 1);
  6388. red_led = false;
  6389. blue_led = true;
  6390. }
  6391. }
  6392. }
  6393. #endif
  6394. #ifdef SAFETYTIMER
  6395. /**
  6396. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6397. *
  6398. * Full screen blocking notification message is shown after heater turning off.
  6399. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6400. * damage print.
  6401. *
  6402. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6403. */
  6404. static void handleSafetyTimer()
  6405. {
  6406. #if (EXTRUDERS > 1)
  6407. #error Implemented only for one extruder.
  6408. #endif //(EXTRUDERS > 1)
  6409. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6410. {
  6411. safetyTimer.stop();
  6412. }
  6413. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6414. {
  6415. safetyTimer.start();
  6416. }
  6417. else if (safetyTimer.expired(safetytimer_inactive_time))
  6418. {
  6419. setTargetBed(0);
  6420. setAllTargetHotends(0);
  6421. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6422. }
  6423. }
  6424. #endif //SAFETYTIMER
  6425. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6426. {
  6427. #ifdef FILAMENT_SENSOR
  6428. if (mmu_enabled == false)
  6429. {
  6430. if (mcode_in_progress != 600) //M600 not in progress
  6431. {
  6432. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6433. {
  6434. if (fsensor_check_autoload())
  6435. {
  6436. fsensor_autoload_check_stop();
  6437. if (degHotend0() > EXTRUDE_MINTEMP)
  6438. {
  6439. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6440. tone(BEEPER, 1000);
  6441. delay_keep_alive(50);
  6442. noTone(BEEPER);
  6443. loading_flag = true;
  6444. enquecommand_front_P((PSTR("M701")));
  6445. }
  6446. else
  6447. {
  6448. lcd_update_enable(false);
  6449. lcd_clear();
  6450. lcd_set_cursor(0, 0);
  6451. lcd_puts_P(_T(MSG_ERROR));
  6452. lcd_set_cursor(0, 2);
  6453. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6454. delay(2000);
  6455. lcd_clear();
  6456. lcd_update_enable(true);
  6457. }
  6458. }
  6459. }
  6460. else
  6461. fsensor_autoload_check_stop();
  6462. }
  6463. }
  6464. #endif //FILAMENT_SENSOR
  6465. #ifdef SAFETYTIMER
  6466. handleSafetyTimer();
  6467. #endif //SAFETYTIMER
  6468. #if defined(KILL_PIN) && KILL_PIN > -1
  6469. static int killCount = 0; // make the inactivity button a bit less responsive
  6470. const int KILL_DELAY = 10000;
  6471. #endif
  6472. if(buflen < (BUFSIZE-1)){
  6473. get_command();
  6474. }
  6475. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6476. if(max_inactive_time)
  6477. kill(_n(""), 4);
  6478. if(stepper_inactive_time) {
  6479. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6480. {
  6481. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6482. disable_x();
  6483. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6484. disable_y();
  6485. disable_z();
  6486. disable_e0();
  6487. disable_e1();
  6488. disable_e2();
  6489. }
  6490. }
  6491. }
  6492. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6493. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6494. {
  6495. chdkActive = false;
  6496. WRITE(CHDK, LOW);
  6497. }
  6498. #endif
  6499. #if defined(KILL_PIN) && KILL_PIN > -1
  6500. // Check if the kill button was pressed and wait just in case it was an accidental
  6501. // key kill key press
  6502. // -------------------------------------------------------------------------------
  6503. if( 0 == READ(KILL_PIN) )
  6504. {
  6505. killCount++;
  6506. }
  6507. else if (killCount > 0)
  6508. {
  6509. killCount--;
  6510. }
  6511. // Exceeded threshold and we can confirm that it was not accidental
  6512. // KILL the machine
  6513. // ----------------------------------------------------------------
  6514. if ( killCount >= KILL_DELAY)
  6515. {
  6516. kill("", 5);
  6517. }
  6518. #endif
  6519. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6520. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6521. #endif
  6522. #ifdef EXTRUDER_RUNOUT_PREVENT
  6523. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6524. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6525. {
  6526. bool oldstatus=READ(E0_ENABLE_PIN);
  6527. enable_e0();
  6528. float oldepos=current_position[E_AXIS];
  6529. float oldedes=destination[E_AXIS];
  6530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6531. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6532. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6533. current_position[E_AXIS]=oldepos;
  6534. destination[E_AXIS]=oldedes;
  6535. plan_set_e_position(oldepos);
  6536. previous_millis_cmd=millis();
  6537. st_synchronize();
  6538. WRITE(E0_ENABLE_PIN,oldstatus);
  6539. }
  6540. #endif
  6541. #ifdef TEMP_STAT_LEDS
  6542. handle_status_leds();
  6543. #endif
  6544. check_axes_activity();
  6545. mmu_loop();
  6546. }
  6547. void kill(const char *full_screen_message, unsigned char id)
  6548. {
  6549. printf_P(_N("KILL: %d\n"), id);
  6550. //return;
  6551. cli(); // Stop interrupts
  6552. disable_heater();
  6553. disable_x();
  6554. // SERIAL_ECHOLNPGM("kill - disable Y");
  6555. disable_y();
  6556. disable_z();
  6557. disable_e0();
  6558. disable_e1();
  6559. disable_e2();
  6560. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6561. pinMode(PS_ON_PIN,INPUT);
  6562. #endif
  6563. SERIAL_ERROR_START;
  6564. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6565. if (full_screen_message != NULL) {
  6566. SERIAL_ERRORLNRPGM(full_screen_message);
  6567. lcd_display_message_fullscreen_P(full_screen_message);
  6568. } else {
  6569. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6570. }
  6571. // FMC small patch to update the LCD before ending
  6572. sei(); // enable interrupts
  6573. for ( int i=5; i--; lcd_update(0))
  6574. {
  6575. delay(200);
  6576. }
  6577. cli(); // disable interrupts
  6578. suicide();
  6579. while(1)
  6580. {
  6581. #ifdef WATCHDOG
  6582. wdt_reset();
  6583. #endif //WATCHDOG
  6584. /* Intentionally left empty */
  6585. } // Wait for reset
  6586. }
  6587. void Stop()
  6588. {
  6589. disable_heater();
  6590. if(Stopped == false) {
  6591. Stopped = true;
  6592. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6593. SERIAL_ERROR_START;
  6594. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6595. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6596. }
  6597. }
  6598. bool IsStopped() { return Stopped; };
  6599. #ifdef FAST_PWM_FAN
  6600. void setPwmFrequency(uint8_t pin, int val)
  6601. {
  6602. val &= 0x07;
  6603. switch(digitalPinToTimer(pin))
  6604. {
  6605. #if defined(TCCR0A)
  6606. case TIMER0A:
  6607. case TIMER0B:
  6608. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6609. // TCCR0B |= val;
  6610. break;
  6611. #endif
  6612. #if defined(TCCR1A)
  6613. case TIMER1A:
  6614. case TIMER1B:
  6615. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6616. // TCCR1B |= val;
  6617. break;
  6618. #endif
  6619. #if defined(TCCR2)
  6620. case TIMER2:
  6621. case TIMER2:
  6622. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6623. TCCR2 |= val;
  6624. break;
  6625. #endif
  6626. #if defined(TCCR2A)
  6627. case TIMER2A:
  6628. case TIMER2B:
  6629. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6630. TCCR2B |= val;
  6631. break;
  6632. #endif
  6633. #if defined(TCCR3A)
  6634. case TIMER3A:
  6635. case TIMER3B:
  6636. case TIMER3C:
  6637. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6638. TCCR3B |= val;
  6639. break;
  6640. #endif
  6641. #if defined(TCCR4A)
  6642. case TIMER4A:
  6643. case TIMER4B:
  6644. case TIMER4C:
  6645. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6646. TCCR4B |= val;
  6647. break;
  6648. #endif
  6649. #if defined(TCCR5A)
  6650. case TIMER5A:
  6651. case TIMER5B:
  6652. case TIMER5C:
  6653. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6654. TCCR5B |= val;
  6655. break;
  6656. #endif
  6657. }
  6658. }
  6659. #endif //FAST_PWM_FAN
  6660. //! @brief Get and validate extruder number
  6661. //!
  6662. //! If it is not specified, active_extruder is returned in parameter extruder.
  6663. //! @param [in] code M code number
  6664. //! @param [out] extruder
  6665. //! @return error
  6666. //! @retval true Invalid extruder specified in T code
  6667. //! @retval false Valid extruder specified in T code, or not specifiead
  6668. bool setTargetedHotend(int code, uint8_t &extruder)
  6669. {
  6670. extruder = active_extruder;
  6671. if(code_seen('T')) {
  6672. extruder = code_value();
  6673. if(extruder >= EXTRUDERS) {
  6674. SERIAL_ECHO_START;
  6675. switch(code){
  6676. case 104:
  6677. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6678. break;
  6679. case 105:
  6680. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6681. break;
  6682. case 109:
  6683. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6684. break;
  6685. case 218:
  6686. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6687. break;
  6688. case 221:
  6689. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6690. break;
  6691. }
  6692. SERIAL_PROTOCOLLN((int)extruder);
  6693. return true;
  6694. }
  6695. }
  6696. return false;
  6697. }
  6698. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6699. {
  6700. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6701. {
  6702. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6703. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6704. }
  6705. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6706. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6707. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6708. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6709. total_filament_used = 0;
  6710. }
  6711. float calculate_extruder_multiplier(float diameter) {
  6712. float out = 1.f;
  6713. if (volumetric_enabled && diameter > 0.f) {
  6714. float area = M_PI * diameter * diameter * 0.25;
  6715. out = 1.f / area;
  6716. }
  6717. if (extrudemultiply != 100)
  6718. out *= float(extrudemultiply) * 0.01f;
  6719. return out;
  6720. }
  6721. void calculate_extruder_multipliers() {
  6722. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6723. #if EXTRUDERS > 1
  6724. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6725. #if EXTRUDERS > 2
  6726. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6727. #endif
  6728. #endif
  6729. }
  6730. void delay_keep_alive(unsigned int ms)
  6731. {
  6732. for (;;) {
  6733. manage_heater();
  6734. // Manage inactivity, but don't disable steppers on timeout.
  6735. manage_inactivity(true);
  6736. lcd_update(0);
  6737. if (ms == 0)
  6738. break;
  6739. else if (ms >= 50) {
  6740. delay(50);
  6741. ms -= 50;
  6742. } else {
  6743. delay(ms);
  6744. ms = 0;
  6745. }
  6746. }
  6747. }
  6748. static void wait_for_heater(long codenum, uint8_t extruder) {
  6749. #ifdef TEMP_RESIDENCY_TIME
  6750. long residencyStart;
  6751. residencyStart = -1;
  6752. /* continue to loop until we have reached the target temp
  6753. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6754. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6755. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6756. #else
  6757. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6758. #endif //TEMP_RESIDENCY_TIME
  6759. if ((millis() - codenum) > 1000UL)
  6760. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6761. if (!farm_mode) {
  6762. SERIAL_PROTOCOLPGM("T:");
  6763. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6764. SERIAL_PROTOCOLPGM(" E:");
  6765. SERIAL_PROTOCOL((int)extruder);
  6766. #ifdef TEMP_RESIDENCY_TIME
  6767. SERIAL_PROTOCOLPGM(" W:");
  6768. if (residencyStart > -1)
  6769. {
  6770. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6771. SERIAL_PROTOCOLLN(codenum);
  6772. }
  6773. else
  6774. {
  6775. SERIAL_PROTOCOLLN("?");
  6776. }
  6777. }
  6778. #else
  6779. SERIAL_PROTOCOLLN("");
  6780. #endif
  6781. codenum = millis();
  6782. }
  6783. manage_heater();
  6784. manage_inactivity();
  6785. lcd_update(0);
  6786. #ifdef TEMP_RESIDENCY_TIME
  6787. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6788. or when current temp falls outside the hysteresis after target temp was reached */
  6789. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6790. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6791. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6792. {
  6793. residencyStart = millis();
  6794. }
  6795. #endif //TEMP_RESIDENCY_TIME
  6796. }
  6797. }
  6798. void check_babystep()
  6799. {
  6800. int babystep_z;
  6801. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6802. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6803. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6804. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6805. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6806. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6807. lcd_update_enable(true);
  6808. }
  6809. }
  6810. #ifdef DIS
  6811. void d_setup()
  6812. {
  6813. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6814. pinMode(D_DATA, INPUT_PULLUP);
  6815. pinMode(D_REQUIRE, OUTPUT);
  6816. digitalWrite(D_REQUIRE, HIGH);
  6817. }
  6818. float d_ReadData()
  6819. {
  6820. int digit[13];
  6821. String mergeOutput;
  6822. float output;
  6823. digitalWrite(D_REQUIRE, HIGH);
  6824. for (int i = 0; i<13; i++)
  6825. {
  6826. for (int j = 0; j < 4; j++)
  6827. {
  6828. while (digitalRead(D_DATACLOCK) == LOW) {}
  6829. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6830. bitWrite(digit[i], j, digitalRead(D_DATA));
  6831. }
  6832. }
  6833. digitalWrite(D_REQUIRE, LOW);
  6834. mergeOutput = "";
  6835. output = 0;
  6836. for (int r = 5; r <= 10; r++) //Merge digits
  6837. {
  6838. mergeOutput += digit[r];
  6839. }
  6840. output = mergeOutput.toFloat();
  6841. if (digit[4] == 8) //Handle sign
  6842. {
  6843. output *= -1;
  6844. }
  6845. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6846. {
  6847. output /= 10;
  6848. }
  6849. return output;
  6850. }
  6851. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6852. int t1 = 0;
  6853. int t_delay = 0;
  6854. int digit[13];
  6855. int m;
  6856. char str[3];
  6857. //String mergeOutput;
  6858. char mergeOutput[15];
  6859. float output;
  6860. int mesh_point = 0; //index number of calibration point
  6861. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6862. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6863. float mesh_home_z_search = 4;
  6864. float row[x_points_num];
  6865. int ix = 0;
  6866. int iy = 0;
  6867. const char* filename_wldsd = "wldsd.txt";
  6868. char data_wldsd[70];
  6869. char numb_wldsd[10];
  6870. d_setup();
  6871. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6872. // We don't know where we are! HOME!
  6873. // Push the commands to the front of the message queue in the reverse order!
  6874. // There shall be always enough space reserved for these commands.
  6875. repeatcommand_front(); // repeat G80 with all its parameters
  6876. enquecommand_front_P((PSTR("G28 W0")));
  6877. enquecommand_front_P((PSTR("G1 Z5")));
  6878. return;
  6879. }
  6880. unsigned int custom_message_type_old = custom_message_type;
  6881. unsigned int custom_message_state_old = custom_message_state;
  6882. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6883. custom_message_state = (x_points_num * y_points_num) + 10;
  6884. lcd_update(1);
  6885. mbl.reset();
  6886. babystep_undo();
  6887. card.openFile(filename_wldsd, false);
  6888. current_position[Z_AXIS] = mesh_home_z_search;
  6889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6890. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6891. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6892. int l_feedmultiply = setup_for_endstop_move(false);
  6893. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6894. SERIAL_PROTOCOL(x_points_num);
  6895. SERIAL_PROTOCOLPGM(",");
  6896. SERIAL_PROTOCOL(y_points_num);
  6897. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6898. SERIAL_PROTOCOL(mesh_home_z_search);
  6899. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6900. SERIAL_PROTOCOL(x_dimension);
  6901. SERIAL_PROTOCOLPGM(",");
  6902. SERIAL_PROTOCOL(y_dimension);
  6903. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6904. while (mesh_point != x_points_num * y_points_num) {
  6905. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6906. iy = mesh_point / x_points_num;
  6907. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6908. float z0 = 0.f;
  6909. current_position[Z_AXIS] = mesh_home_z_search;
  6910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6911. st_synchronize();
  6912. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6913. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6915. st_synchronize();
  6916. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6917. break;
  6918. card.closefile();
  6919. }
  6920. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6921. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6922. //strcat(data_wldsd, numb_wldsd);
  6923. //MYSERIAL.println(data_wldsd);
  6924. //delay(1000);
  6925. //delay(3000);
  6926. //t1 = millis();
  6927. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6928. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6929. memset(digit, 0, sizeof(digit));
  6930. //cli();
  6931. digitalWrite(D_REQUIRE, LOW);
  6932. for (int i = 0; i<13; i++)
  6933. {
  6934. //t1 = millis();
  6935. for (int j = 0; j < 4; j++)
  6936. {
  6937. while (digitalRead(D_DATACLOCK) == LOW) {}
  6938. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6939. bitWrite(digit[i], j, digitalRead(D_DATA));
  6940. }
  6941. //t_delay = (millis() - t1);
  6942. //SERIAL_PROTOCOLPGM(" ");
  6943. //SERIAL_PROTOCOL_F(t_delay, 5);
  6944. //SERIAL_PROTOCOLPGM(" ");
  6945. }
  6946. //sei();
  6947. digitalWrite(D_REQUIRE, HIGH);
  6948. mergeOutput[0] = '\0';
  6949. output = 0;
  6950. for (int r = 5; r <= 10; r++) //Merge digits
  6951. {
  6952. sprintf(str, "%d", digit[r]);
  6953. strcat(mergeOutput, str);
  6954. }
  6955. output = atof(mergeOutput);
  6956. if (digit[4] == 8) //Handle sign
  6957. {
  6958. output *= -1;
  6959. }
  6960. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6961. {
  6962. output *= 0.1;
  6963. }
  6964. //output = d_ReadData();
  6965. //row[ix] = current_position[Z_AXIS];
  6966. memset(data_wldsd, 0, sizeof(data_wldsd));
  6967. for (int i = 0; i <3; i++) {
  6968. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6969. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6970. strcat(data_wldsd, numb_wldsd);
  6971. strcat(data_wldsd, ";");
  6972. }
  6973. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6974. dtostrf(output, 8, 5, numb_wldsd);
  6975. strcat(data_wldsd, numb_wldsd);
  6976. //strcat(data_wldsd, ";");
  6977. card.write_command(data_wldsd);
  6978. //row[ix] = d_ReadData();
  6979. row[ix] = output; // current_position[Z_AXIS];
  6980. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6981. for (int i = 0; i < x_points_num; i++) {
  6982. SERIAL_PROTOCOLPGM(" ");
  6983. SERIAL_PROTOCOL_F(row[i], 5);
  6984. }
  6985. SERIAL_PROTOCOLPGM("\n");
  6986. }
  6987. custom_message_state--;
  6988. mesh_point++;
  6989. lcd_update(1);
  6990. }
  6991. card.closefile();
  6992. clean_up_after_endstop_move(l_feedmultiply);
  6993. }
  6994. #endif
  6995. void temp_compensation_start() {
  6996. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6997. custom_message_state = PINDA_HEAT_T + 1;
  6998. lcd_update(2);
  6999. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7000. current_position[E_AXIS] -= default_retraction;
  7001. }
  7002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7003. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7004. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7005. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7007. st_synchronize();
  7008. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7009. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7010. delay_keep_alive(1000);
  7011. custom_message_state = PINDA_HEAT_T - i;
  7012. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7013. else lcd_update(1);
  7014. }
  7015. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7016. custom_message_state = 0;
  7017. }
  7018. void temp_compensation_apply() {
  7019. int i_add;
  7020. int z_shift = 0;
  7021. float z_shift_mm;
  7022. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7023. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7024. i_add = (target_temperature_bed - 60) / 10;
  7025. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7026. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7027. }else {
  7028. //interpolation
  7029. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7030. }
  7031. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7033. st_synchronize();
  7034. plan_set_z_position(current_position[Z_AXIS]);
  7035. }
  7036. else {
  7037. //we have no temp compensation data
  7038. }
  7039. }
  7040. float temp_comp_interpolation(float inp_temperature) {
  7041. //cubic spline interpolation
  7042. int n, i, j;
  7043. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7044. int shift[10];
  7045. int temp_C[10];
  7046. n = 6; //number of measured points
  7047. shift[0] = 0;
  7048. for (i = 0; i < n; i++) {
  7049. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7050. temp_C[i] = 50 + i * 10; //temperature in C
  7051. #ifdef PINDA_THERMISTOR
  7052. temp_C[i] = 35 + i * 5; //temperature in C
  7053. #else
  7054. temp_C[i] = 50 + i * 10; //temperature in C
  7055. #endif
  7056. x[i] = (float)temp_C[i];
  7057. f[i] = (float)shift[i];
  7058. }
  7059. if (inp_temperature < x[0]) return 0;
  7060. for (i = n - 1; i>0; i--) {
  7061. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7062. h[i - 1] = x[i] - x[i - 1];
  7063. }
  7064. //*********** formation of h, s , f matrix **************
  7065. for (i = 1; i<n - 1; i++) {
  7066. m[i][i] = 2 * (h[i - 1] + h[i]);
  7067. if (i != 1) {
  7068. m[i][i - 1] = h[i - 1];
  7069. m[i - 1][i] = h[i - 1];
  7070. }
  7071. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7072. }
  7073. //*********** forward elimination **************
  7074. for (i = 1; i<n - 2; i++) {
  7075. temp = (m[i + 1][i] / m[i][i]);
  7076. for (j = 1; j <= n - 1; j++)
  7077. m[i + 1][j] -= temp*m[i][j];
  7078. }
  7079. //*********** backward substitution *********
  7080. for (i = n - 2; i>0; i--) {
  7081. sum = 0;
  7082. for (j = i; j <= n - 2; j++)
  7083. sum += m[i][j] * s[j];
  7084. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7085. }
  7086. for (i = 0; i<n - 1; i++)
  7087. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7088. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7089. b = s[i] / 2;
  7090. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7091. d = f[i];
  7092. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7093. }
  7094. return sum;
  7095. }
  7096. #ifdef PINDA_THERMISTOR
  7097. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7098. {
  7099. if (!temp_cal_active) return 0;
  7100. if (!calibration_status_pinda()) return 0;
  7101. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7102. }
  7103. #endif //PINDA_THERMISTOR
  7104. void long_pause() //long pause print
  7105. {
  7106. st_synchronize();
  7107. start_pause_print = millis();
  7108. //retract
  7109. current_position[E_AXIS] -= default_retraction;
  7110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7111. //lift z
  7112. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7113. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7115. //Move XY to side
  7116. current_position[X_AXIS] = X_PAUSE_POS;
  7117. current_position[Y_AXIS] = Y_PAUSE_POS;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7119. // Turn off the print fan
  7120. fanSpeed = 0;
  7121. st_synchronize();
  7122. }
  7123. void serialecho_temperatures() {
  7124. float tt = degHotend(active_extruder);
  7125. SERIAL_PROTOCOLPGM("T:");
  7126. SERIAL_PROTOCOL(tt);
  7127. SERIAL_PROTOCOLPGM(" E:");
  7128. SERIAL_PROTOCOL((int)active_extruder);
  7129. SERIAL_PROTOCOLPGM(" B:");
  7130. SERIAL_PROTOCOL_F(degBed(), 1);
  7131. SERIAL_PROTOCOLLN("");
  7132. }
  7133. extern uint32_t sdpos_atomic;
  7134. #ifdef UVLO_SUPPORT
  7135. void uvlo_()
  7136. {
  7137. unsigned long time_start = millis();
  7138. bool sd_print = card.sdprinting;
  7139. // Conserve power as soon as possible.
  7140. disable_x();
  7141. disable_y();
  7142. #ifdef TMC2130
  7143. tmc2130_set_current_h(Z_AXIS, 20);
  7144. tmc2130_set_current_r(Z_AXIS, 20);
  7145. tmc2130_set_current_h(E_AXIS, 20);
  7146. tmc2130_set_current_r(E_AXIS, 20);
  7147. #endif //TMC2130
  7148. // Indicate that the interrupt has been triggered.
  7149. // SERIAL_ECHOLNPGM("UVLO");
  7150. // Read out the current Z motor microstep counter. This will be later used
  7151. // for reaching the zero full step before powering off.
  7152. uint16_t z_microsteps = 0;
  7153. #ifdef TMC2130
  7154. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7155. #endif //TMC2130
  7156. // Calculate the file position, from which to resume this print.
  7157. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7158. {
  7159. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7160. sd_position -= sdlen_planner;
  7161. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7162. sd_position -= sdlen_cmdqueue;
  7163. if (sd_position < 0) sd_position = 0;
  7164. }
  7165. // Backup the feedrate in mm/min.
  7166. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7167. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7168. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7169. // are in action.
  7170. planner_abort_hard();
  7171. // Store the current extruder position.
  7172. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7173. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7174. // Clean the input command queue.
  7175. cmdqueue_reset();
  7176. card.sdprinting = false;
  7177. // card.closefile();
  7178. // Enable stepper driver interrupt to move Z axis.
  7179. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7180. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7181. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7182. sei();
  7183. plan_buffer_line(
  7184. current_position[X_AXIS],
  7185. current_position[Y_AXIS],
  7186. current_position[Z_AXIS],
  7187. current_position[E_AXIS] - default_retraction,
  7188. 95, active_extruder);
  7189. st_synchronize();
  7190. disable_e0();
  7191. plan_buffer_line(
  7192. current_position[X_AXIS],
  7193. current_position[Y_AXIS],
  7194. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7195. current_position[E_AXIS] - default_retraction,
  7196. 40, active_extruder);
  7197. st_synchronize();
  7198. disable_e0();
  7199. plan_buffer_line(
  7200. current_position[X_AXIS],
  7201. current_position[Y_AXIS],
  7202. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7203. current_position[E_AXIS] - default_retraction,
  7204. 40, active_extruder);
  7205. st_synchronize();
  7206. disable_e0();
  7207. disable_z();
  7208. // Move Z up to the next 0th full step.
  7209. // Write the file position.
  7210. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7211. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7212. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7213. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7214. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7215. // Scale the z value to 1u resolution.
  7216. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7217. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7218. }
  7219. // Read out the current Z motor microstep counter. This will be later used
  7220. // for reaching the zero full step before powering off.
  7221. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7222. // Store the current position.
  7223. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7224. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7225. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7226. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7227. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7228. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7229. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7230. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7231. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7232. #if EXTRUDERS > 1
  7233. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7234. #if EXTRUDERS > 2
  7235. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7236. #endif
  7237. #endif
  7238. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7239. // Finaly store the "power outage" flag.
  7240. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7241. st_synchronize();
  7242. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7243. disable_z();
  7244. // Increment power failure counter
  7245. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7246. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7247. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7248. #if 0
  7249. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7250. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7252. st_synchronize();
  7253. #endif
  7254. wdt_enable(WDTO_500MS);
  7255. WRITE(BEEPER,HIGH);
  7256. while(1)
  7257. ;
  7258. }
  7259. void uvlo_tiny()
  7260. {
  7261. uint16_t z_microsteps=0;
  7262. // Conserve power as soon as possible.
  7263. disable_x();
  7264. disable_y();
  7265. disable_e0();
  7266. #ifdef TMC2130
  7267. tmc2130_set_current_h(Z_AXIS, 20);
  7268. tmc2130_set_current_r(Z_AXIS, 20);
  7269. #endif //TMC2130
  7270. // Read out the current Z motor microstep counter
  7271. #ifdef TMC2130
  7272. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7273. #endif //TMC2130
  7274. planner_abort_hard();
  7275. sei();
  7276. plan_buffer_line(
  7277. current_position[X_AXIS],
  7278. current_position[Y_AXIS],
  7279. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7280. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7281. current_position[E_AXIS],
  7282. 40, active_extruder);
  7283. st_synchronize();
  7284. disable_z();
  7285. // Finaly store the "power outage" flag.
  7286. //if(sd_print)
  7287. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7288. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7289. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7290. // Increment power failure counter
  7291. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7292. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7293. wdt_enable(WDTO_500MS);
  7294. WRITE(BEEPER,HIGH);
  7295. while(1)
  7296. ;
  7297. }
  7298. #endif //UVLO_SUPPORT
  7299. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7300. void setup_fan_interrupt() {
  7301. //INT7
  7302. DDRE &= ~(1 << 7); //input pin
  7303. PORTE &= ~(1 << 7); //no internal pull-up
  7304. //start with sensing rising edge
  7305. EICRB &= ~(1 << 6);
  7306. EICRB |= (1 << 7);
  7307. //enable INT7 interrupt
  7308. EIMSK |= (1 << 7);
  7309. }
  7310. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7311. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7312. ISR(INT7_vect) {
  7313. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7314. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7315. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7316. t_fan_rising_edge = millis_nc();
  7317. }
  7318. else { //interrupt was triggered by falling edge
  7319. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7320. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7321. }
  7322. }
  7323. EICRB ^= (1 << 6); //change edge
  7324. }
  7325. #endif
  7326. #ifdef UVLO_SUPPORT
  7327. void setup_uvlo_interrupt() {
  7328. DDRE &= ~(1 << 4); //input pin
  7329. PORTE &= ~(1 << 4); //no internal pull-up
  7330. //sensing falling edge
  7331. EICRB |= (1 << 0);
  7332. EICRB &= ~(1 << 1);
  7333. //enable INT4 interrupt
  7334. EIMSK |= (1 << 4);
  7335. }
  7336. ISR(INT4_vect) {
  7337. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7338. SERIAL_ECHOLNPGM("INT4");
  7339. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7340. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7341. }
  7342. void recover_print(uint8_t automatic) {
  7343. char cmd[30];
  7344. lcd_update_enable(true);
  7345. lcd_update(2);
  7346. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7347. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7348. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7349. // Lift the print head, so one may remove the excess priming material.
  7350. if(!bTiny&&(current_position[Z_AXIS]<25))
  7351. enquecommand_P(PSTR("G1 Z25 F800"));
  7352. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7353. enquecommand_P(PSTR("G28 X Y"));
  7354. // Set the target bed and nozzle temperatures and wait.
  7355. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7356. enquecommand(cmd);
  7357. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7358. enquecommand(cmd);
  7359. enquecommand_P(PSTR("M83")); //E axis relative mode
  7360. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7361. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7362. if(automatic == 0){
  7363. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7364. }
  7365. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7366. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7367. // Restart the print.
  7368. restore_print_from_eeprom();
  7369. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7370. }
  7371. void recover_machine_state_after_power_panic(bool bTiny)
  7372. {
  7373. char cmd[30];
  7374. // 1) Recover the logical cordinates at the time of the power panic.
  7375. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7376. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7377. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7378. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7379. // The current position after power panic is moved to the next closest 0th full step.
  7380. if(bTiny)
  7381. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7382. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7383. else
  7384. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7385. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7386. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7387. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7388. sprintf_P(cmd, PSTR("G92 E"));
  7389. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7390. enquecommand(cmd);
  7391. }
  7392. memcpy(destination, current_position, sizeof(destination));
  7393. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7394. print_world_coordinates();
  7395. // 2) Initialize the logical to physical coordinate system transformation.
  7396. world2machine_initialize();
  7397. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7398. mbl.active = false;
  7399. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7400. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7401. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7402. // Scale the z value to 10u resolution.
  7403. int16_t v;
  7404. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7405. if (v != 0)
  7406. mbl.active = true;
  7407. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7408. }
  7409. if (mbl.active)
  7410. mbl.upsample_3x3();
  7411. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7412. // print_mesh_bed_leveling_table();
  7413. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7414. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7415. babystep_load();
  7416. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7418. // 6) Power up the motors, mark their positions as known.
  7419. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7420. axis_known_position[X_AXIS] = true; enable_x();
  7421. axis_known_position[Y_AXIS] = true; enable_y();
  7422. axis_known_position[Z_AXIS] = true; enable_z();
  7423. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7424. print_physical_coordinates();
  7425. // 7) Recover the target temperatures.
  7426. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7427. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7428. // 8) Recover extruder multipilers
  7429. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7430. #if EXTRUDERS > 1
  7431. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7432. #if EXTRUDERS > 2
  7433. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7434. #endif
  7435. #endif
  7436. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7437. }
  7438. void restore_print_from_eeprom() {
  7439. int feedrate_rec;
  7440. uint8_t fan_speed_rec;
  7441. char cmd[30];
  7442. char filename[13];
  7443. uint8_t depth = 0;
  7444. char dir_name[9];
  7445. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7446. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7447. SERIAL_ECHOPGM("Feedrate:");
  7448. MYSERIAL.println(feedrate_rec);
  7449. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7450. MYSERIAL.println(int(depth));
  7451. for (int i = 0; i < depth; i++) {
  7452. for (int j = 0; j < 8; j++) {
  7453. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7454. }
  7455. dir_name[8] = '\0';
  7456. MYSERIAL.println(dir_name);
  7457. strcpy(dir_names[i], dir_name);
  7458. card.chdir(dir_name);
  7459. }
  7460. for (int i = 0; i < 8; i++) {
  7461. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7462. }
  7463. filename[8] = '\0';
  7464. MYSERIAL.print(filename);
  7465. strcat_P(filename, PSTR(".gco"));
  7466. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7467. enquecommand(cmd);
  7468. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7469. SERIAL_ECHOPGM("Position read from eeprom:");
  7470. MYSERIAL.println(position);
  7471. // E axis relative mode.
  7472. enquecommand_P(PSTR("M83"));
  7473. // Move to the XY print position in logical coordinates, where the print has been killed.
  7474. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7475. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7476. strcat_P(cmd, PSTR(" F2000"));
  7477. enquecommand(cmd);
  7478. // Move the Z axis down to the print, in logical coordinates.
  7479. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7480. enquecommand(cmd);
  7481. // Unretract.
  7482. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7483. // Set the feedrate saved at the power panic.
  7484. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7485. enquecommand(cmd);
  7486. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7487. {
  7488. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7489. }
  7490. // Set the fan speed saved at the power panic.
  7491. strcpy_P(cmd, PSTR("M106 S"));
  7492. strcat(cmd, itostr3(int(fan_speed_rec)));
  7493. enquecommand(cmd);
  7494. // Set a position in the file.
  7495. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7496. enquecommand(cmd);
  7497. enquecommand_P(PSTR("G4 S0"));
  7498. enquecommand_P(PSTR("PRUSA uvlo"));
  7499. }
  7500. #endif //UVLO_SUPPORT
  7501. ////////////////////////////////////////////////////////////////////////////////
  7502. // save/restore printing
  7503. void stop_and_save_print_to_ram(float z_move, float e_move)
  7504. {
  7505. if (saved_printing) return;
  7506. #if 0
  7507. unsigned char nplanner_blocks;
  7508. #endif
  7509. unsigned char nlines;
  7510. uint16_t sdlen_planner;
  7511. uint16_t sdlen_cmdqueue;
  7512. cli();
  7513. if (card.sdprinting) {
  7514. #if 0
  7515. nplanner_blocks = number_of_blocks();
  7516. #endif
  7517. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7518. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7519. saved_sdpos -= sdlen_planner;
  7520. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7521. saved_sdpos -= sdlen_cmdqueue;
  7522. saved_printing_type = PRINTING_TYPE_SD;
  7523. }
  7524. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7525. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7526. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7527. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7528. saved_sdpos -= nlines;
  7529. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7530. saved_printing_type = PRINTING_TYPE_USB;
  7531. }
  7532. else {
  7533. //not sd printing nor usb printing
  7534. }
  7535. #if 0
  7536. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7537. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7538. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7539. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7540. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7541. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7542. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7543. {
  7544. card.setIndex(saved_sdpos);
  7545. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7546. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7547. MYSERIAL.print(char(card.get()));
  7548. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7549. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7550. MYSERIAL.print(char(card.get()));
  7551. SERIAL_ECHOLNPGM("End of command buffer");
  7552. }
  7553. {
  7554. // Print the content of the planner buffer, line by line:
  7555. card.setIndex(saved_sdpos);
  7556. int8_t iline = 0;
  7557. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7558. SERIAL_ECHOPGM("Planner line (from file): ");
  7559. MYSERIAL.print(int(iline), DEC);
  7560. SERIAL_ECHOPGM(", length: ");
  7561. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7562. SERIAL_ECHOPGM(", steps: (");
  7563. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7564. SERIAL_ECHOPGM(",");
  7565. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7566. SERIAL_ECHOPGM(",");
  7567. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7568. SERIAL_ECHOPGM(",");
  7569. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7570. SERIAL_ECHOPGM("), events: ");
  7571. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7572. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7573. MYSERIAL.print(char(card.get()));
  7574. }
  7575. }
  7576. {
  7577. // Print the content of the command buffer, line by line:
  7578. int8_t iline = 0;
  7579. union {
  7580. struct {
  7581. char lo;
  7582. char hi;
  7583. } lohi;
  7584. uint16_t value;
  7585. } sdlen_single;
  7586. int _bufindr = bufindr;
  7587. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7588. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7589. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7590. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7591. }
  7592. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7593. MYSERIAL.print(int(iline), DEC);
  7594. SERIAL_ECHOPGM(", type: ");
  7595. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7596. SERIAL_ECHOPGM(", len: ");
  7597. MYSERIAL.println(sdlen_single.value, DEC);
  7598. // Print the content of the buffer line.
  7599. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7600. SERIAL_ECHOPGM("Buffer line (from file): ");
  7601. MYSERIAL.println(int(iline), DEC);
  7602. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7603. MYSERIAL.print(char(card.get()));
  7604. if (-- _buflen == 0)
  7605. break;
  7606. // First skip the current command ID and iterate up to the end of the string.
  7607. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7608. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7609. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7610. // If the end of the buffer was empty,
  7611. if (_bufindr == sizeof(cmdbuffer)) {
  7612. // skip to the start and find the nonzero command.
  7613. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7614. }
  7615. }
  7616. }
  7617. #endif
  7618. #if 0
  7619. saved_feedrate2 = feedrate; //save feedrate
  7620. #else
  7621. // Try to deduce the feedrate from the first block of the planner.
  7622. // Speed is in mm/min.
  7623. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7624. #endif
  7625. planner_abort_hard(); //abort printing
  7626. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7627. saved_active_extruder = active_extruder; //save active_extruder
  7628. saved_extruder_temperature = degTargetHotend(active_extruder);
  7629. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7630. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7631. saved_fanSpeed = fanSpeed;
  7632. cmdqueue_reset(); //empty cmdqueue
  7633. card.sdprinting = false;
  7634. // card.closefile();
  7635. saved_printing = true;
  7636. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7637. st_reset_timer();
  7638. sei();
  7639. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7640. #if 1
  7641. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7642. char buf[48];
  7643. // First unretract (relative extrusion)
  7644. if(!saved_extruder_relative_mode){
  7645. strcpy_P(buf, PSTR("M83"));
  7646. enquecommand(buf, false);
  7647. }
  7648. //retract 45mm/s
  7649. strcpy_P(buf, PSTR("G1 E"));
  7650. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7651. strcat_P(buf, PSTR(" F"));
  7652. dtostrf(2700, 8, 3, buf + strlen(buf));
  7653. enquecommand(buf, false);
  7654. // Then lift Z axis
  7655. strcpy_P(buf, PSTR("G1 Z"));
  7656. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7657. strcat_P(buf, PSTR(" F"));
  7658. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7659. // At this point the command queue is empty.
  7660. enquecommand(buf, false);
  7661. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7662. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7663. repeatcommand_front();
  7664. #else
  7665. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7666. st_synchronize(); //wait moving
  7667. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7668. memcpy(destination, current_position, sizeof(destination));
  7669. #endif
  7670. }
  7671. }
  7672. void restore_print_from_ram_and_continue(float e_move)
  7673. {
  7674. if (!saved_printing) return;
  7675. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7676. // current_position[axis] = st_get_position_mm(axis);
  7677. active_extruder = saved_active_extruder; //restore active_extruder
  7678. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7679. heating_status = 1;
  7680. wait_for_heater(millis(),saved_active_extruder);
  7681. heating_status = 2;
  7682. feedrate = saved_feedrate2; //restore feedrate
  7683. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7684. fanSpeed = saved_fanSpeed;
  7685. float e = saved_pos[E_AXIS] - e_move;
  7686. plan_set_e_position(e);
  7687. //first move print head in XY to the saved position:
  7688. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7689. st_synchronize();
  7690. //then move Z
  7691. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7692. st_synchronize();
  7693. //and finaly unretract (35mm/s)
  7694. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7695. st_synchronize();
  7696. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7697. memcpy(destination, current_position, sizeof(destination));
  7698. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7699. card.setIndex(saved_sdpos);
  7700. sdpos_atomic = saved_sdpos;
  7701. card.sdprinting = true;
  7702. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7703. }
  7704. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7705. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7706. serial_count = 0;
  7707. FlushSerialRequestResend();
  7708. }
  7709. else {
  7710. //not sd printing nor usb printing
  7711. }
  7712. lcd_setstatuspgm(_T(WELCOME_MSG));
  7713. saved_printing = false;
  7714. }
  7715. void print_world_coordinates()
  7716. {
  7717. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7718. }
  7719. void print_physical_coordinates()
  7720. {
  7721. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7722. }
  7723. void print_mesh_bed_leveling_table()
  7724. {
  7725. SERIAL_ECHOPGM("mesh bed leveling: ");
  7726. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7727. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7728. MYSERIAL.print(mbl.z_values[y][x], 3);
  7729. SERIAL_ECHOPGM(" ");
  7730. }
  7731. SERIAL_ECHOLNPGM("");
  7732. }
  7733. uint16_t print_time_remaining() {
  7734. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7735. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7736. else print_t = print_time_remaining_silent;
  7737. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7738. return print_t;
  7739. }
  7740. uint8_t calc_percent_done()
  7741. {
  7742. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7743. uint8_t percent_done = 0;
  7744. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7745. percent_done = print_percent_done_normal;
  7746. }
  7747. else if (print_percent_done_silent <= 100) {
  7748. percent_done = print_percent_done_silent;
  7749. }
  7750. else {
  7751. percent_done = card.percentDone();
  7752. }
  7753. return percent_done;
  7754. }
  7755. static void print_time_remaining_init()
  7756. {
  7757. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7758. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7759. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7760. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7761. }
  7762. void M600_check_state()
  7763. {
  7764. //Wait for user to check the state
  7765. lcd_change_fil_state = 0;
  7766. while (lcd_change_fil_state != 1){
  7767. lcd_change_fil_state = 0;
  7768. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7769. lcd_alright();
  7770. KEEPALIVE_STATE(IN_HANDLER);
  7771. switch(lcd_change_fil_state){
  7772. // Filament failed to load so load it again
  7773. case 2:
  7774. if (mmu_enabled)
  7775. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7776. else
  7777. M600_load_filament_movements();
  7778. break;
  7779. // Filament loaded properly but color is not clear
  7780. case 3:
  7781. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7783. lcd_loading_color();
  7784. break;
  7785. // Everything good
  7786. default:
  7787. lcd_change_success();
  7788. break;
  7789. }
  7790. }
  7791. }
  7792. void M600_wait_for_user(float HotendTempBckp) {
  7793. //Beep, manage nozzle heater and wait for user to start unload filament
  7794. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7795. int counterBeep = 0;
  7796. unsigned long waiting_start_time = millis();
  7797. uint8_t wait_for_user_state = 0;
  7798. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7799. bool bFirst=true;
  7800. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7801. manage_heater();
  7802. manage_inactivity(true);
  7803. #if BEEPER > 0
  7804. if (counterBeep == 500) {
  7805. counterBeep = 0;
  7806. }
  7807. SET_OUTPUT(BEEPER);
  7808. if (counterBeep == 0) {
  7809. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7810. {
  7811. bFirst=false;
  7812. WRITE(BEEPER, HIGH);
  7813. }
  7814. }
  7815. if (counterBeep == 20) {
  7816. WRITE(BEEPER, LOW);
  7817. }
  7818. counterBeep++;
  7819. #endif //BEEPER > 0
  7820. switch (wait_for_user_state) {
  7821. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7822. delay_keep_alive(4);
  7823. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7824. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7825. wait_for_user_state = 1;
  7826. setAllTargetHotends(0);
  7827. st_synchronize();
  7828. disable_e0();
  7829. disable_e1();
  7830. disable_e2();
  7831. }
  7832. break;
  7833. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7834. delay_keep_alive(4);
  7835. if (lcd_clicked()) {
  7836. setTargetHotend(HotendTempBckp, active_extruder);
  7837. lcd_wait_for_heater();
  7838. wait_for_user_state = 2;
  7839. }
  7840. break;
  7841. case 2: //waiting for nozzle to reach target temperature
  7842. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7843. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7844. waiting_start_time = millis();
  7845. wait_for_user_state = 0;
  7846. }
  7847. else {
  7848. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7849. lcd_set_cursor(1, 4);
  7850. lcd_print(ftostr3(degHotend(active_extruder)));
  7851. }
  7852. break;
  7853. }
  7854. }
  7855. WRITE(BEEPER, LOW);
  7856. }
  7857. void M600_load_filament_movements()
  7858. {
  7859. #ifdef SNMM
  7860. display_loading();
  7861. do
  7862. {
  7863. current_position[E_AXIS] += 0.002;
  7864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7865. delay_keep_alive(2);
  7866. }
  7867. while (!lcd_clicked());
  7868. st_synchronize();
  7869. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7871. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7873. current_position[E_AXIS] += 40;
  7874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7875. current_position[E_AXIS] += 10;
  7876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7877. #else
  7878. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7880. #endif
  7881. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7883. lcd_loading_filament();
  7884. }
  7885. void M600_load_filament() {
  7886. //load filament for single material and SNMM
  7887. lcd_wait_interact();
  7888. //load_filament_time = millis();
  7889. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7890. #ifdef FILAMENT_SENSOR
  7891. fsensor_autoload_check_start();
  7892. #endif //FILAMENT_SENSOR
  7893. while(!lcd_clicked())
  7894. {
  7895. manage_heater();
  7896. manage_inactivity(true);
  7897. #ifdef FILAMENT_SENSOR
  7898. if (fsensor_check_autoload())
  7899. {
  7900. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7901. tone(BEEPER, 1000);
  7902. delay_keep_alive(50);
  7903. noTone(BEEPER);
  7904. break;
  7905. }
  7906. #endif //FILAMENT_SENSOR
  7907. }
  7908. #ifdef FILAMENT_SENSOR
  7909. fsensor_autoload_check_stop();
  7910. #endif //FILAMENT_SENSOR
  7911. KEEPALIVE_STATE(IN_HANDLER);
  7912. #ifdef FILAMENT_SENSOR
  7913. fsensor_oq_meassure_start(70);
  7914. #endif //FILAMENT_SENSOR
  7915. M600_load_filament_movements();
  7916. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7917. tone(BEEPER, 500);
  7918. delay_keep_alive(50);
  7919. noTone(BEEPER);
  7920. #ifdef FILAMENT_SENSOR
  7921. fsensor_oq_meassure_stop();
  7922. if (!fsensor_oq_result())
  7923. {
  7924. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7925. lcd_update_enable(true);
  7926. lcd_update(2);
  7927. if (disable)
  7928. fsensor_disable();
  7929. }
  7930. #endif //FILAMENT_SENSOR
  7931. lcd_update_enable(false);
  7932. }
  7933. #define FIL_LOAD_LENGTH 60