Marlin_main.cpp 305 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. static uint8_t tmp_extruder;
  422. bool extruder_under_pressure = true;
  423. bool Stopped=false;
  424. #if NUM_SERVOS > 0
  425. Servo servos[NUM_SERVOS];
  426. #endif
  427. bool CooldownNoWait = true;
  428. bool target_direction;
  429. //Insert variables if CHDK is defined
  430. #ifdef CHDK
  431. unsigned long chdkHigh = 0;
  432. boolean chdkActive = false;
  433. #endif
  434. // save/restore printing
  435. static uint32_t saved_sdpos = 0;
  436. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  437. static float saved_pos[4] = { 0, 0, 0, 0 };
  438. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  439. static float saved_feedrate2 = 0;
  440. static uint8_t saved_active_extruder = 0;
  441. static bool saved_extruder_under_pressure = false;
  442. static bool saved_extruder_relative_mode = false;
  443. //===========================================================================
  444. //=============================Routines======================================
  445. //===========================================================================
  446. void get_arc_coordinates();
  447. bool setTargetedHotend(int code);
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. bool filament_autoload_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. // printf("CRASH_DETECTED");
  576. /* while (!is_buffer_empty())
  577. {
  578. process_commands();
  579. cmdqueue_pop_front();
  580. }*/
  581. st_synchronize();
  582. static uint8_t crashDet_counter = 0;
  583. bool automatic_recovery_after_crash = true;
  584. if (crashDet_counter++ == 0) {
  585. crashDetTimer.start();
  586. }
  587. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  592. automatic_recovery_after_crash = false;
  593. crashDetTimer.stop();
  594. crashDet_counter = 0;
  595. }
  596. else {
  597. crashDetTimer.start();
  598. }
  599. lcd_update_enable(true);
  600. lcd_clear();
  601. lcd_update(2);
  602. if (mask & X_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  606. }
  607. if (mask & Y_AXIS_MASK)
  608. {
  609. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  610. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  611. }
  612. lcd_update_enable(true);
  613. lcd_update(2);
  614. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  615. gcode_G28(true, true, false); //home X and Y
  616. st_synchronize();
  617. if (automatic_recovery_after_crash) {
  618. enquecommand_P(PSTR("CRASH_RECOVER"));
  619. }else{
  620. HotendTempBckp = degTargetHotend(active_extruder);
  621. setTargetHotend(0, active_extruder);
  622. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  623. lcd_update_enable(true);
  624. if (yesno)
  625. {
  626. char cmd1[10];
  627. strcpy(cmd1, "M109 S");
  628. strcat(cmd1, ftostr3(HotendTempBckp));
  629. enquecommand(cmd1);
  630. enquecommand_P(PSTR("CRASH_RECOVER"));
  631. }
  632. else
  633. {
  634. enquecommand_P(PSTR("CRASH_CANCEL"));
  635. }
  636. }
  637. }
  638. void crashdet_recover()
  639. {
  640. crashdet_restore_print_and_continue();
  641. tmc2130_sg_stop_on_crash = true;
  642. }
  643. void crashdet_cancel()
  644. {
  645. tmc2130_sg_stop_on_crash = true;
  646. if (saved_printing_type == PRINTING_TYPE_SD) {
  647. lcd_print_stop();
  648. }else if(saved_printing_type == PRINTING_TYPE_USB){
  649. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  650. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  651. }
  652. }
  653. #endif //TMC2130
  654. void failstats_reset_print()
  655. {
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  660. }
  661. #ifdef MESH_BED_LEVELING
  662. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  663. #endif
  664. // Factory reset function
  665. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  666. // Level input parameter sets depth of reset
  667. // Quiet parameter masks all waitings for user interact.
  668. int er_progress = 0;
  669. void factory_reset(char level, bool quiet)
  670. {
  671. lcd_clear();
  672. int cursor_pos = 0;
  673. switch (level) {
  674. // Level 0: Language reset
  675. case 0:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. lang_reset();
  680. break;
  681. //Level 1: Reset statistics
  682. case 1:
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  687. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  696. lcd_menu_statistics();
  697. break;
  698. // Level 2: Prepare for shipping
  699. case 2:
  700. //lcd_puts_P(PSTR("Factory RESET"));
  701. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  702. // Force language selection at the next boot up.
  703. lang_reset();
  704. // Force the "Follow calibration flow" message at the next boot up.
  705. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  706. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  707. farm_no = 0;
  708. farm_mode = false;
  709. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  710. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  717. fsensor_enable();
  718. fautoload_set(true);
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. WRITE(BEEPER, HIGH);
  729. _delay_ms(100);
  730. WRITE(BEEPER, LOW);
  731. er_progress = 0;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_puts_at_P(3, 3, PSTR(" "));
  741. lcd_set_cursor(3, 3);
  742. lcd_print(er_progress);
  743. lcd_puts_P(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. FILE _uartout = {0};
  755. int uart_putchar(char c, FILE *stream)
  756. {
  757. MYSERIAL.write(c);
  758. return 0;
  759. }
  760. void lcd_splash()
  761. {
  762. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  763. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  764. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  765. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  766. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  767. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  768. }
  769. void factory_reset()
  770. {
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_clear();
  778. lcd_puts_P(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. // _delay_ms(100);
  793. /*
  794. #ifdef MESH_BED_LEVELING
  795. _delay_ms(2000);
  796. if (!READ(BTN_ENC))
  797. {
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. _delay_ms(200);
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. int _z = 0;
  806. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  807. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  809. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  810. }
  811. else
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. }
  817. #endif // mesh */
  818. }
  819. }
  820. else
  821. {
  822. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  823. }
  824. KEEPALIVE_STATE(IN_HANDLER);
  825. }
  826. void show_fw_version_warnings() {
  827. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  828. switch (FW_DEV_VERSION) {
  829. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  830. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  831. case(FW_VERSION_DEVEL):
  832. case(FW_VERSION_DEBUG):
  833. lcd_update_enable(false);
  834. lcd_clear();
  835. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  836. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  837. #else
  838. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  839. #endif
  840. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  841. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  842. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  843. lcd_wait_for_click();
  844. break;
  845. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  846. }
  847. lcd_update_enable(true);
  848. }
  849. uint8_t check_printer_version()
  850. {
  851. uint8_t version_changed = 0;
  852. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  853. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  854. if (printer_type != PRINTER_TYPE) {
  855. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  856. else version_changed |= 0b10;
  857. }
  858. if (motherboard != MOTHERBOARD) {
  859. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  860. else version_changed |= 0b01;
  861. }
  862. return version_changed;
  863. }
  864. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  865. {
  866. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  867. }
  868. #if (LANG_MODE != 0) //secondary language support
  869. #ifdef W25X20CL
  870. #include "bootapp.h" //bootloader support
  871. // language update from external flash
  872. #define LANGBOOT_BLOCKSIZE 0x1000
  873. #define LANGBOOT_RAMBUFFER 0x0800
  874. void update_sec_lang_from_external_flash()
  875. {
  876. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  877. {
  878. uint8_t lang = boot_reserved >> 4;
  879. uint8_t state = boot_reserved & 0xf;
  880. lang_table_header_t header;
  881. uint32_t src_addr;
  882. if (lang_get_header(lang, &header, &src_addr))
  883. {
  884. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  885. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  886. delay(100);
  887. boot_reserved = (state + 1) | (lang << 4);
  888. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  889. {
  890. cli();
  891. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  892. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  893. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  894. if (state == 0)
  895. {
  896. //TODO - check header integrity
  897. }
  898. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  899. }
  900. else
  901. {
  902. //TODO - check sec lang data integrity
  903. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  904. }
  905. }
  906. }
  907. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  908. }
  909. #ifdef DEBUG_W25X20CL
  910. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  911. {
  912. lang_table_header_t header;
  913. uint8_t count = 0;
  914. uint32_t addr = 0x00000;
  915. while (1)
  916. {
  917. printf_P(_n("LANGTABLE%d:"), count);
  918. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  919. if (header.magic != LANG_MAGIC)
  920. {
  921. printf_P(_n("NG!\n"));
  922. break;
  923. }
  924. printf_P(_n("OK\n"));
  925. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  926. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  927. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  928. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  929. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  930. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  931. addr += header.size;
  932. codes[count] = header.code;
  933. count ++;
  934. }
  935. return count;
  936. }
  937. void list_sec_lang_from_external_flash()
  938. {
  939. uint16_t codes[8];
  940. uint8_t count = lang_xflash_enum_codes(codes);
  941. printf_P(_n("XFlash lang count = %hhd\n"), count);
  942. }
  943. #endif //DEBUG_W25X20CL
  944. #endif //W25X20CL
  945. #endif //(LANG_MODE != 0)
  946. // "Setup" function is called by the Arduino framework on startup.
  947. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  948. // are initialized by the main() routine provided by the Arduino framework.
  949. void setup()
  950. {
  951. ultralcd_init();
  952. spi_init();
  953. lcd_splash();
  954. #ifdef W25X20CL
  955. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  956. // optiboot_w25x20cl_enter();
  957. #endif
  958. #if (LANG_MODE != 0) //secondary language support
  959. #ifdef W25X20CL
  960. if (w25x20cl_init())
  961. update_sec_lang_from_external_flash();
  962. else
  963. kill(_i("External SPI flash W25X20CL not responding."));
  964. #endif //W25X20CL
  965. #endif //(LANG_MODE != 0)
  966. setup_killpin();
  967. setup_powerhold();
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  971. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  973. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  974. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  975. if (farm_mode)
  976. {
  977. no_response = true; //we need confirmation by recieving PRUSA thx
  978. important_status = 8;
  979. prusa_statistics(8);
  980. selectedSerialPort = 1;
  981. #ifdef TMC2130
  982. //increased extruder current (PFW363)
  983. tmc2130_current_h[E_AXIS] = 36;
  984. tmc2130_current_r[E_AXIS] = 36;
  985. #endif //TMC2130
  986. //disabled filament autoload (PFW360)
  987. filament_autoload_enabled = false;
  988. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. uart2_init();
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1160. tmc2130_mode = TMC2130_MODE_NORMAL;
  1161. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1162. if (crashdet && !farm_mode)
  1163. {
  1164. crashdet_enable();
  1165. puts_P(_N("CrashDetect ENABLED!"));
  1166. }
  1167. else
  1168. {
  1169. crashdet_disable();
  1170. puts_P(_N("CrashDetect DISABLED"));
  1171. }
  1172. #ifdef TMC2130_LINEARITY_CORRECTION
  1173. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1174. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1175. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1176. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1177. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1178. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1179. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1181. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1182. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1183. #endif //TMC2130_LINEARITY_CORRECTION
  1184. #ifdef TMC2130_VARIABLE_RESOLUTION
  1185. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1186. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1187. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1188. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1189. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1192. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1197. #else //TMC2130_VARIABLE_RESOLUTION
  1198. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. #endif //TMC2130_VARIABLE_RESOLUTION
  1203. #endif //TMC2130
  1204. st_init(); // Initialize stepper, this enables interrupts!
  1205. #ifdef TMC2130
  1206. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef PAT9125
  1215. fsensor_init();
  1216. #endif //PAT9125
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == 0xFFFF) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef PAT9125
  1373. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1374. fsensor_setup_interrupt();
  1375. #endif //DEBUG_DISABLE_FSENSORCHECK
  1376. #endif //PAT9125
  1377. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1378. #ifndef DEBUG_DISABLE_STARTMSGS
  1379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1380. show_fw_version_warnings();
  1381. switch (hw_changed) {
  1382. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1383. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1384. case(0b01):
  1385. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. case(0b10):
  1389. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1390. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1391. break;
  1392. case(0b11):
  1393. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1394. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. default: break; //no change, show no message
  1398. }
  1399. if (!previous_settings_retrieved) {
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1401. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1402. }
  1403. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1404. lcd_wizard(0);
  1405. }
  1406. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1407. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1408. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1409. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1410. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1411. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1412. // Show the message.
  1413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1418. lcd_update_enable(true);
  1419. }
  1420. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1421. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1422. lcd_update_enable(true);
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1427. }
  1428. }
  1429. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1430. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1431. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1432. update_current_firmware_version_to_eeprom();
  1433. lcd_selftest();
  1434. }
  1435. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1436. KEEPALIVE_STATE(IN_PROCESS);
  1437. #endif //DEBUG_DISABLE_STARTMSGS
  1438. lcd_update_enable(true);
  1439. lcd_clear();
  1440. lcd_update(2);
  1441. // Store the currently running firmware into an eeprom,
  1442. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1443. update_current_firmware_version_to_eeprom();
  1444. #ifdef TMC2130
  1445. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1446. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1447. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1448. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1451. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1452. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1453. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1454. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1455. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1456. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1457. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1458. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1459. #endif //TMC2130
  1460. #ifdef UVLO_SUPPORT
  1461. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1462. /*
  1463. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1464. else {
  1465. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1466. lcd_update_enable(true);
  1467. lcd_update(2);
  1468. lcd_setstatuspgm(_T(WELCOME_MSG));
  1469. }
  1470. */
  1471. manage_heater(); // Update temperatures
  1472. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1473. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1474. #endif
  1475. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Automatic recovery!"));
  1478. #endif
  1479. recover_print(1);
  1480. }
  1481. else{
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. puts_P(_N("Normal recovery!"));
  1484. #endif
  1485. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1486. else {
  1487. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1488. lcd_update_enable(true);
  1489. lcd_update(2);
  1490. lcd_setstatuspgm(_T(WELCOME_MSG));
  1491. }
  1492. }
  1493. }
  1494. #endif //UVLO_SUPPORT
  1495. KEEPALIVE_STATE(NOT_BUSY);
  1496. #ifdef WATCHDOG
  1497. wdt_enable(WDTO_4S);
  1498. #endif //WATCHDOG
  1499. }
  1500. #ifdef PAT9125
  1501. void fsensor_init() {
  1502. int pat9125 = pat9125_init();
  1503. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1504. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1505. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1506. if (!pat9125)
  1507. {
  1508. fsensor = 0; //disable sensor
  1509. fsensor_not_responding = true;
  1510. }
  1511. else {
  1512. fsensor_not_responding = false;
  1513. }
  1514. puts_P(PSTR("FSensor "));
  1515. if (fsensor)
  1516. {
  1517. puts_P(PSTR("ENABLED\n"));
  1518. fsensor_enable();
  1519. }
  1520. else
  1521. {
  1522. puts_P(PSTR("DISABLED\n"));
  1523. fsensor_disable();
  1524. }
  1525. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1526. filament_autoload_enabled = false;
  1527. fsensor_disable();
  1528. #endif //DEBUG_DISABLE_FSENSORCHECK
  1529. }
  1530. #endif //PAT9125
  1531. void trace();
  1532. #define CHUNK_SIZE 64 // bytes
  1533. #define SAFETY_MARGIN 1
  1534. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1535. int chunkHead = 0;
  1536. int serial_read_stream() {
  1537. setTargetHotend(0, 0);
  1538. setTargetBed(0);
  1539. lcd_clear();
  1540. lcd_puts_P(PSTR(" Upload in progress"));
  1541. // first wait for how many bytes we will receive
  1542. uint32_t bytesToReceive;
  1543. // receive the four bytes
  1544. char bytesToReceiveBuffer[4];
  1545. for (int i=0; i<4; i++) {
  1546. int data;
  1547. while ((data = MYSERIAL.read()) == -1) {};
  1548. bytesToReceiveBuffer[i] = data;
  1549. }
  1550. // make it a uint32
  1551. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1552. // we're ready, notify the sender
  1553. MYSERIAL.write('+');
  1554. // lock in the routine
  1555. uint32_t receivedBytes = 0;
  1556. while (prusa_sd_card_upload) {
  1557. int i;
  1558. for (i=0; i<CHUNK_SIZE; i++) {
  1559. int data;
  1560. // check if we're not done
  1561. if (receivedBytes == bytesToReceive) {
  1562. break;
  1563. }
  1564. // read the next byte
  1565. while ((data = MYSERIAL.read()) == -1) {};
  1566. receivedBytes++;
  1567. // save it to the chunk
  1568. chunk[i] = data;
  1569. }
  1570. // write the chunk to SD
  1571. card.write_command_no_newline(&chunk[0]);
  1572. // notify the sender we're ready for more data
  1573. MYSERIAL.write('+');
  1574. // for safety
  1575. manage_heater();
  1576. // check if we're done
  1577. if(receivedBytes == bytesToReceive) {
  1578. trace(); // beep
  1579. card.closefile();
  1580. prusa_sd_card_upload = false;
  1581. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1582. return 0;
  1583. }
  1584. }
  1585. }
  1586. #ifdef HOST_KEEPALIVE_FEATURE
  1587. /**
  1588. * Output a "busy" message at regular intervals
  1589. * while the machine is not accepting commands.
  1590. */
  1591. void host_keepalive() {
  1592. if (farm_mode) return;
  1593. long ms = millis();
  1594. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1595. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1596. switch (busy_state) {
  1597. case IN_HANDLER:
  1598. case IN_PROCESS:
  1599. SERIAL_ECHO_START;
  1600. SERIAL_ECHOLNPGM("busy: processing");
  1601. break;
  1602. case PAUSED_FOR_USER:
  1603. SERIAL_ECHO_START;
  1604. SERIAL_ECHOLNPGM("busy: paused for user");
  1605. break;
  1606. case PAUSED_FOR_INPUT:
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLNPGM("busy: paused for input");
  1609. break;
  1610. default:
  1611. break;
  1612. }
  1613. }
  1614. prev_busy_signal_ms = ms;
  1615. }
  1616. #endif
  1617. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1618. // Before loop(), the setup() function is called by the main() routine.
  1619. void loop()
  1620. {
  1621. KEEPALIVE_STATE(NOT_BUSY);
  1622. bool stack_integrity = true;
  1623. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1624. {
  1625. is_usb_printing = true;
  1626. usb_printing_counter--;
  1627. _usb_timer = millis();
  1628. }
  1629. if (usb_printing_counter == 0)
  1630. {
  1631. is_usb_printing = false;
  1632. }
  1633. if (prusa_sd_card_upload)
  1634. {
  1635. //we read byte-by byte
  1636. serial_read_stream();
  1637. } else
  1638. {
  1639. get_command();
  1640. #ifdef SDSUPPORT
  1641. card.checkautostart(false);
  1642. #endif
  1643. if(buflen)
  1644. {
  1645. cmdbuffer_front_already_processed = false;
  1646. #ifdef SDSUPPORT
  1647. if(card.saving)
  1648. {
  1649. // Saving a G-code file onto an SD-card is in progress.
  1650. // Saving starts with M28, saving until M29 is seen.
  1651. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1652. card.write_command(CMDBUFFER_CURRENT_STRING);
  1653. if(card.logging)
  1654. process_commands();
  1655. else
  1656. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1657. } else {
  1658. card.closefile();
  1659. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1660. }
  1661. } else {
  1662. process_commands();
  1663. }
  1664. #else
  1665. process_commands();
  1666. #endif //SDSUPPORT
  1667. if (! cmdbuffer_front_already_processed && buflen)
  1668. {
  1669. // ptr points to the start of the block currently being processed.
  1670. // The first character in the block is the block type.
  1671. char *ptr = cmdbuffer + bufindr;
  1672. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1673. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1674. union {
  1675. struct {
  1676. char lo;
  1677. char hi;
  1678. } lohi;
  1679. uint16_t value;
  1680. } sdlen;
  1681. sdlen.value = 0;
  1682. {
  1683. // This block locks the interrupts globally for 3.25 us,
  1684. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1685. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1686. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1687. cli();
  1688. // Reset the command to something, which will be ignored by the power panic routine,
  1689. // so this buffer length will not be counted twice.
  1690. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1691. // Extract the current buffer length.
  1692. sdlen.lohi.lo = *ptr ++;
  1693. sdlen.lohi.hi = *ptr;
  1694. // and pass it to the planner queue.
  1695. planner_add_sd_length(sdlen.value);
  1696. sei();
  1697. }
  1698. }
  1699. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1700. cli();
  1701. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1702. // and one for each command to previous block in the planner queue.
  1703. planner_add_sd_length(1);
  1704. sei();
  1705. }
  1706. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1707. // this block's SD card length will not be counted twice as its command type has been replaced
  1708. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1709. cmdqueue_pop_front();
  1710. }
  1711. host_keepalive();
  1712. }
  1713. }
  1714. //check heater every n milliseconds
  1715. manage_heater();
  1716. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1717. checkHitEndstops();
  1718. lcd_update(0);
  1719. #ifdef PAT9125
  1720. fsensor_update();
  1721. #endif //PAT9125
  1722. #ifdef TMC2130
  1723. tmc2130_check_overtemp();
  1724. if (tmc2130_sg_crash)
  1725. {
  1726. uint8_t crash = tmc2130_sg_crash;
  1727. tmc2130_sg_crash = 0;
  1728. // crashdet_stop_and_save_print();
  1729. switch (crash)
  1730. {
  1731. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1732. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1733. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1734. }
  1735. }
  1736. #endif //TMC2130
  1737. }
  1738. #define DEFINE_PGM_READ_ANY(type, reader) \
  1739. static inline type pgm_read_any(const type *p) \
  1740. { return pgm_read_##reader##_near(p); }
  1741. DEFINE_PGM_READ_ANY(float, float);
  1742. DEFINE_PGM_READ_ANY(signed char, byte);
  1743. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1744. static const PROGMEM type array##_P[3] = \
  1745. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1746. static inline type array(int axis) \
  1747. { return pgm_read_any(&array##_P[axis]); } \
  1748. type array##_ext(int axis) \
  1749. { return pgm_read_any(&array##_P[axis]); }
  1750. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1751. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1752. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1753. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1754. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1755. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1756. static void axis_is_at_home(int axis) {
  1757. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1758. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1759. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1760. }
  1761. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1762. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1763. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1764. saved_feedrate = feedrate;
  1765. saved_feedmultiply = feedmultiply;
  1766. feedmultiply = 100;
  1767. previous_millis_cmd = millis();
  1768. enable_endstops(enable_endstops_now);
  1769. }
  1770. static void clean_up_after_endstop_move() {
  1771. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1772. enable_endstops(false);
  1773. #endif
  1774. feedrate = saved_feedrate;
  1775. feedmultiply = saved_feedmultiply;
  1776. previous_millis_cmd = millis();
  1777. }
  1778. #ifdef ENABLE_AUTO_BED_LEVELING
  1779. #ifdef AUTO_BED_LEVELING_GRID
  1780. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1781. {
  1782. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1783. planeNormal.debug("planeNormal");
  1784. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1785. //bedLevel.debug("bedLevel");
  1786. //plan_bed_level_matrix.debug("bed level before");
  1787. //vector_3 uncorrected_position = plan_get_position_mm();
  1788. //uncorrected_position.debug("position before");
  1789. vector_3 corrected_position = plan_get_position();
  1790. // corrected_position.debug("position after");
  1791. current_position[X_AXIS] = corrected_position.x;
  1792. current_position[Y_AXIS] = corrected_position.y;
  1793. current_position[Z_AXIS] = corrected_position.z;
  1794. // put the bed at 0 so we don't go below it.
  1795. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. }
  1798. #else // not AUTO_BED_LEVELING_GRID
  1799. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1800. plan_bed_level_matrix.set_to_identity();
  1801. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1802. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1803. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1804. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1805. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1806. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1807. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1808. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1809. vector_3 corrected_position = plan_get_position();
  1810. current_position[X_AXIS] = corrected_position.x;
  1811. current_position[Y_AXIS] = corrected_position.y;
  1812. current_position[Z_AXIS] = corrected_position.z;
  1813. // put the bed at 0 so we don't go below it.
  1814. current_position[Z_AXIS] = zprobe_zoffset;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. }
  1817. #endif // AUTO_BED_LEVELING_GRID
  1818. static void run_z_probe() {
  1819. plan_bed_level_matrix.set_to_identity();
  1820. feedrate = homing_feedrate[Z_AXIS];
  1821. // move down until you find the bed
  1822. float zPosition = -10;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // we have to let the planner know where we are right now as it is not where we said to go.
  1826. zPosition = st_get_position_mm(Z_AXIS);
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1828. // move up the retract distance
  1829. zPosition += home_retract_mm(Z_AXIS);
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. // move back down slowly to find bed
  1833. feedrate = homing_feedrate[Z_AXIS]/4;
  1834. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1836. st_synchronize();
  1837. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1838. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. }
  1841. static void do_blocking_move_to(float x, float y, float z) {
  1842. float oldFeedRate = feedrate;
  1843. feedrate = homing_feedrate[Z_AXIS];
  1844. current_position[Z_AXIS] = z;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. feedrate = XY_TRAVEL_SPEED;
  1848. current_position[X_AXIS] = x;
  1849. current_position[Y_AXIS] = y;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1851. st_synchronize();
  1852. feedrate = oldFeedRate;
  1853. }
  1854. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1855. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1856. }
  1857. /// Probe bed height at position (x,y), returns the measured z value
  1858. static float probe_pt(float x, float y, float z_before) {
  1859. // move to right place
  1860. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1861. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1862. run_z_probe();
  1863. float measured_z = current_position[Z_AXIS];
  1864. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1865. SERIAL_PROTOCOLPGM(" x: ");
  1866. SERIAL_PROTOCOL(x);
  1867. SERIAL_PROTOCOLPGM(" y: ");
  1868. SERIAL_PROTOCOL(y);
  1869. SERIAL_PROTOCOLPGM(" z: ");
  1870. SERIAL_PROTOCOL(measured_z);
  1871. SERIAL_PROTOCOLPGM("\n");
  1872. return measured_z;
  1873. }
  1874. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1875. #ifdef LIN_ADVANCE
  1876. /**
  1877. * M900: Set and/or Get advance K factor and WH/D ratio
  1878. *
  1879. * K<factor> Set advance K factor
  1880. * R<ratio> Set ratio directly (overrides WH/D)
  1881. * W<width> H<height> D<diam> Set ratio from WH/D
  1882. */
  1883. inline void gcode_M900() {
  1884. st_synchronize();
  1885. const float newK = code_seen('K') ? code_value_float() : -1;
  1886. if (newK >= 0) extruder_advance_k = newK;
  1887. float newR = code_seen('R') ? code_value_float() : -1;
  1888. if (newR < 0) {
  1889. const float newD = code_seen('D') ? code_value_float() : -1,
  1890. newW = code_seen('W') ? code_value_float() : -1,
  1891. newH = code_seen('H') ? code_value_float() : -1;
  1892. if (newD >= 0 && newW >= 0 && newH >= 0)
  1893. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1894. }
  1895. if (newR >= 0) advance_ed_ratio = newR;
  1896. SERIAL_ECHO_START;
  1897. SERIAL_ECHOPGM("Advance K=");
  1898. SERIAL_ECHOLN(extruder_advance_k);
  1899. SERIAL_ECHOPGM(" E/D=");
  1900. const float ratio = advance_ed_ratio;
  1901. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1902. }
  1903. #endif // LIN_ADVANCE
  1904. bool check_commands() {
  1905. bool end_command_found = false;
  1906. while (buflen)
  1907. {
  1908. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1909. if (!cmdbuffer_front_already_processed)
  1910. cmdqueue_pop_front();
  1911. cmdbuffer_front_already_processed = false;
  1912. }
  1913. return end_command_found;
  1914. }
  1915. #ifdef TMC2130
  1916. bool calibrate_z_auto()
  1917. {
  1918. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1919. lcd_clear();
  1920. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1921. bool endstops_enabled = enable_endstops(true);
  1922. int axis_up_dir = -home_dir(Z_AXIS);
  1923. tmc2130_home_enter(Z_AXIS_MASK);
  1924. current_position[Z_AXIS] = 0;
  1925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1926. set_destination_to_current();
  1927. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1928. feedrate = homing_feedrate[Z_AXIS];
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. // current_position[axis] = 0;
  1932. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. tmc2130_home_exit();
  1934. enable_endstops(false);
  1935. current_position[Z_AXIS] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. set_destination_to_current();
  1938. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1939. feedrate = homing_feedrate[Z_AXIS] / 2;
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. enable_endstops(endstops_enabled);
  1943. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. return true;
  1946. }
  1947. #endif //TMC2130
  1948. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1949. {
  1950. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1951. #define HOMEAXIS_DO(LETTER) \
  1952. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1953. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1954. {
  1955. int axis_home_dir = home_dir(axis);
  1956. feedrate = homing_feedrate[axis];
  1957. #ifdef TMC2130
  1958. tmc2130_home_enter(X_AXIS_MASK << axis);
  1959. #endif //TMC2130
  1960. // Move right a bit, so that the print head does not touch the left end position,
  1961. // and the following left movement has a chance to achieve the required velocity
  1962. // for the stall guard to work.
  1963. current_position[axis] = 0;
  1964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1965. set_destination_to_current();
  1966. // destination[axis] = 11.f;
  1967. destination[axis] = 3.f;
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1969. st_synchronize();
  1970. // Move left away from the possible collision with the collision detection disabled.
  1971. endstops_hit_on_purpose();
  1972. enable_endstops(false);
  1973. current_position[axis] = 0;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. destination[axis] = - 1.;
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. // Now continue to move up to the left end stop with the collision detection enabled.
  1979. enable_endstops(true);
  1980. destination[axis] = - 1.1 * max_length(axis);
  1981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1982. st_synchronize();
  1983. for (uint8_t i = 0; i < cnt; i++)
  1984. {
  1985. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1986. endstops_hit_on_purpose();
  1987. enable_endstops(false);
  1988. current_position[axis] = 0;
  1989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1990. destination[axis] = 10.f;
  1991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1992. st_synchronize();
  1993. endstops_hit_on_purpose();
  1994. // Now move left up to the collision, this time with a repeatable velocity.
  1995. enable_endstops(true);
  1996. destination[axis] = - 11.f;
  1997. #ifdef TMC2130
  1998. feedrate = homing_feedrate[axis];
  1999. #else //TMC2130
  2000. feedrate = homing_feedrate[axis] / 2;
  2001. #endif //TMC2130
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2006. if (pstep) pstep[i] = mscnt >> 4;
  2007. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2008. #endif //TMC2130
  2009. }
  2010. endstops_hit_on_purpose();
  2011. enable_endstops(false);
  2012. #ifdef TMC2130
  2013. uint8_t orig = tmc2130_home_origin[axis];
  2014. uint8_t back = tmc2130_home_bsteps[axis];
  2015. if (tmc2130_home_enabled && (orig <= 63))
  2016. {
  2017. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2018. if (back > 0)
  2019. tmc2130_do_steps(axis, back, 1, 1000);
  2020. }
  2021. else
  2022. tmc2130_do_steps(axis, 8, 2, 1000);
  2023. tmc2130_home_exit();
  2024. #endif //TMC2130
  2025. axis_is_at_home(axis);
  2026. axis_known_position[axis] = true;
  2027. // Move from minimum
  2028. #ifdef TMC2130
  2029. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2030. #else //TMC2130
  2031. float dist = 0.01f * 64;
  2032. #endif //TMC2130
  2033. current_position[axis] -= dist;
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. current_position[axis] += dist;
  2036. destination[axis] = current_position[axis];
  2037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2038. st_synchronize();
  2039. feedrate = 0.0;
  2040. }
  2041. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2042. {
  2043. #ifdef TMC2130
  2044. FORCE_HIGH_POWER_START;
  2045. #endif
  2046. int axis_home_dir = home_dir(axis);
  2047. current_position[axis] = 0;
  2048. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2049. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2050. feedrate = homing_feedrate[axis];
  2051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2052. st_synchronize();
  2053. #ifdef TMC2130
  2054. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2055. FORCE_HIGH_POWER_END;
  2056. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2057. return;
  2058. }
  2059. #endif //TMC2130
  2060. current_position[axis] = 0;
  2061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2062. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2064. st_synchronize();
  2065. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2066. feedrate = homing_feedrate[axis]/2 ;
  2067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2068. st_synchronize();
  2069. #ifdef TMC2130
  2070. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2071. FORCE_HIGH_POWER_END;
  2072. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2073. return;
  2074. }
  2075. #endif //TMC2130
  2076. axis_is_at_home(axis);
  2077. destination[axis] = current_position[axis];
  2078. feedrate = 0.0;
  2079. endstops_hit_on_purpose();
  2080. axis_known_position[axis] = true;
  2081. #ifdef TMC2130
  2082. FORCE_HIGH_POWER_END;
  2083. #endif
  2084. }
  2085. enable_endstops(endstops_enabled);
  2086. }
  2087. /**/
  2088. void home_xy()
  2089. {
  2090. set_destination_to_current();
  2091. homeaxis(X_AXIS);
  2092. homeaxis(Y_AXIS);
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. endstops_hit_on_purpose();
  2095. }
  2096. void refresh_cmd_timeout(void)
  2097. {
  2098. previous_millis_cmd = millis();
  2099. }
  2100. #ifdef FWRETRACT
  2101. void retract(bool retracting, bool swapretract = false) {
  2102. if(retracting && !retracted[active_extruder]) {
  2103. destination[X_AXIS]=current_position[X_AXIS];
  2104. destination[Y_AXIS]=current_position[Y_AXIS];
  2105. destination[Z_AXIS]=current_position[Z_AXIS];
  2106. destination[E_AXIS]=current_position[E_AXIS];
  2107. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2108. plan_set_e_position(current_position[E_AXIS]);
  2109. float oldFeedrate = feedrate;
  2110. feedrate=retract_feedrate*60;
  2111. retracted[active_extruder]=true;
  2112. prepare_move();
  2113. current_position[Z_AXIS]-=retract_zlift;
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. prepare_move();
  2116. feedrate = oldFeedrate;
  2117. } else if(!retracting && retracted[active_extruder]) {
  2118. destination[X_AXIS]=current_position[X_AXIS];
  2119. destination[Y_AXIS]=current_position[Y_AXIS];
  2120. destination[Z_AXIS]=current_position[Z_AXIS];
  2121. destination[E_AXIS]=current_position[E_AXIS];
  2122. current_position[Z_AXIS]+=retract_zlift;
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2125. plan_set_e_position(current_position[E_AXIS]);
  2126. float oldFeedrate = feedrate;
  2127. feedrate=retract_recover_feedrate*60;
  2128. retracted[active_extruder]=false;
  2129. prepare_move();
  2130. feedrate = oldFeedrate;
  2131. }
  2132. } //retract
  2133. #endif //FWRETRACT
  2134. void trace() {
  2135. tone(BEEPER, 440);
  2136. delay(25);
  2137. noTone(BEEPER);
  2138. delay(20);
  2139. }
  2140. /*
  2141. void ramming() {
  2142. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2143. if (current_temperature[0] < 230) {
  2144. //PLA
  2145. max_feedrate[E_AXIS] = 50;
  2146. //current_position[E_AXIS] -= 8;
  2147. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2148. //current_position[E_AXIS] += 8;
  2149. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5.4;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2152. current_position[E_AXIS] += 3.2;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2156. st_synchronize();
  2157. max_feedrate[E_AXIS] = 80;
  2158. current_position[E_AXIS] -= 82;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2160. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2161. current_position[E_AXIS] -= 20;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2163. current_position[E_AXIS] += 5;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2165. current_position[E_AXIS] += 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2167. current_position[E_AXIS] -= 10;
  2168. st_synchronize();
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2170. current_position[E_AXIS] += 10;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2172. current_position[E_AXIS] -= 10;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2174. current_position[E_AXIS] += 10;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 10;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2178. st_synchronize();
  2179. }
  2180. else {
  2181. //ABS
  2182. max_feedrate[E_AXIS] = 50;
  2183. //current_position[E_AXIS] -= 8;
  2184. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2185. //current_position[E_AXIS] += 8;
  2186. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2187. current_position[E_AXIS] += 3.1;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2189. current_position[E_AXIS] += 3.1;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2191. current_position[E_AXIS] += 4;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2193. st_synchronize();
  2194. //current_position[X_AXIS] += 23; //delay
  2195. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2196. //current_position[X_AXIS] -= 23; //delay
  2197. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2198. delay(4700);
  2199. max_feedrate[E_AXIS] = 80;
  2200. current_position[E_AXIS] -= 92;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2202. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2203. current_position[E_AXIS] -= 5;
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2205. current_position[E_AXIS] += 5;
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2207. current_position[E_AXIS] -= 5;
  2208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2209. st_synchronize();
  2210. current_position[E_AXIS] += 5;
  2211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2212. current_position[E_AXIS] -= 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2214. current_position[E_AXIS] += 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2216. current_position[E_AXIS] -= 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. st_synchronize();
  2219. }
  2220. }
  2221. */
  2222. #ifdef TMC2130
  2223. void force_high_power_mode(bool start_high_power_section) {
  2224. uint8_t silent;
  2225. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2226. if (silent == 1) {
  2227. //we are in silent mode, set to normal mode to enable crash detection
  2228. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2229. st_synchronize();
  2230. cli();
  2231. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2232. tmc2130_init();
  2233. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2234. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2235. st_reset_timer();
  2236. sei();
  2237. }
  2238. }
  2239. #endif //TMC2130
  2240. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2241. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2242. }
  2243. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2244. st_synchronize();
  2245. #if 0
  2246. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2247. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2248. #endif
  2249. // Flag for the display update routine and to disable the print cancelation during homing.
  2250. homing_flag = true;
  2251. // Which axes should be homed?
  2252. bool home_x = home_x_axis;
  2253. bool home_y = home_y_axis;
  2254. bool home_z = home_z_axis;
  2255. // Either all X,Y,Z codes are present, or none of them.
  2256. bool home_all_axes = home_x == home_y && home_x == home_z;
  2257. if (home_all_axes)
  2258. // No X/Y/Z code provided means to home all axes.
  2259. home_x = home_y = home_z = true;
  2260. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2261. if (home_all_axes) {
  2262. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2263. feedrate = homing_feedrate[Z_AXIS];
  2264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2265. st_synchronize();
  2266. }
  2267. #ifdef ENABLE_AUTO_BED_LEVELING
  2268. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2269. #endif //ENABLE_AUTO_BED_LEVELING
  2270. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2271. // the planner will not perform any adjustments in the XY plane.
  2272. // Wait for the motors to stop and update the current position with the absolute values.
  2273. world2machine_revert_to_uncorrected();
  2274. // For mesh bed leveling deactivate the matrix temporarily.
  2275. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2276. // in a single axis only.
  2277. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2278. #ifdef MESH_BED_LEVELING
  2279. uint8_t mbl_was_active = mbl.active;
  2280. mbl.active = 0;
  2281. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2282. #endif
  2283. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2284. // consumed during the first movements following this statement.
  2285. if (home_z)
  2286. babystep_undo();
  2287. saved_feedrate = feedrate;
  2288. saved_feedmultiply = feedmultiply;
  2289. feedmultiply = 100;
  2290. previous_millis_cmd = millis();
  2291. enable_endstops(true);
  2292. memcpy(destination, current_position, sizeof(destination));
  2293. feedrate = 0.0;
  2294. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2295. if(home_z)
  2296. homeaxis(Z_AXIS);
  2297. #endif
  2298. #ifdef QUICK_HOME
  2299. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2300. if(home_x && home_y) //first diagonal move
  2301. {
  2302. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2303. int x_axis_home_dir = home_dir(X_AXIS);
  2304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2305. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2306. feedrate = homing_feedrate[X_AXIS];
  2307. if(homing_feedrate[Y_AXIS]<feedrate)
  2308. feedrate = homing_feedrate[Y_AXIS];
  2309. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2310. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2311. } else {
  2312. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2313. }
  2314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2315. st_synchronize();
  2316. axis_is_at_home(X_AXIS);
  2317. axis_is_at_home(Y_AXIS);
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[X_AXIS] = current_position[X_AXIS];
  2320. destination[Y_AXIS] = current_position[Y_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2322. feedrate = 0.0;
  2323. st_synchronize();
  2324. endstops_hit_on_purpose();
  2325. current_position[X_AXIS] = destination[X_AXIS];
  2326. current_position[Y_AXIS] = destination[Y_AXIS];
  2327. current_position[Z_AXIS] = destination[Z_AXIS];
  2328. }
  2329. #endif /* QUICK_HOME */
  2330. #ifdef TMC2130
  2331. if(home_x)
  2332. {
  2333. if (!calib)
  2334. homeaxis(X_AXIS);
  2335. else
  2336. tmc2130_home_calibrate(X_AXIS);
  2337. }
  2338. if(home_y)
  2339. {
  2340. if (!calib)
  2341. homeaxis(Y_AXIS);
  2342. else
  2343. tmc2130_home_calibrate(Y_AXIS);
  2344. }
  2345. #endif //TMC2130
  2346. if(home_x_axis && home_x_value != 0)
  2347. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2348. if(home_y_axis && home_y_value != 0)
  2349. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2350. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2351. #ifndef Z_SAFE_HOMING
  2352. if(home_z) {
  2353. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2354. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2355. feedrate = max_feedrate[Z_AXIS];
  2356. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2357. st_synchronize();
  2358. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2359. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2360. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2361. {
  2362. homeaxis(X_AXIS);
  2363. homeaxis(Y_AXIS);
  2364. }
  2365. // 1st mesh bed leveling measurement point, corrected.
  2366. world2machine_initialize();
  2367. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2368. world2machine_reset();
  2369. if (destination[Y_AXIS] < Y_MIN_POS)
  2370. destination[Y_AXIS] = Y_MIN_POS;
  2371. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2372. feedrate = homing_feedrate[Z_AXIS]/10;
  2373. current_position[Z_AXIS] = 0;
  2374. enable_endstops(false);
  2375. #ifdef DEBUG_BUILD
  2376. SERIAL_ECHOLNPGM("plan_set_position()");
  2377. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2378. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2379. #endif
  2380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2381. #ifdef DEBUG_BUILD
  2382. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2383. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2384. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2385. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2386. #endif
  2387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2388. st_synchronize();
  2389. current_position[X_AXIS] = destination[X_AXIS];
  2390. current_position[Y_AXIS] = destination[Y_AXIS];
  2391. enable_endstops(true);
  2392. endstops_hit_on_purpose();
  2393. homeaxis(Z_AXIS);
  2394. #else // MESH_BED_LEVELING
  2395. homeaxis(Z_AXIS);
  2396. #endif // MESH_BED_LEVELING
  2397. }
  2398. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2399. if(home_all_axes) {
  2400. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2401. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2402. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2403. feedrate = XY_TRAVEL_SPEED/60;
  2404. current_position[Z_AXIS] = 0;
  2405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2406. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2407. st_synchronize();
  2408. current_position[X_AXIS] = destination[X_AXIS];
  2409. current_position[Y_AXIS] = destination[Y_AXIS];
  2410. homeaxis(Z_AXIS);
  2411. }
  2412. // Let's see if X and Y are homed and probe is inside bed area.
  2413. if(home_z) {
  2414. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2415. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2416. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2417. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2418. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2419. current_position[Z_AXIS] = 0;
  2420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2421. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2422. feedrate = max_feedrate[Z_AXIS];
  2423. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2424. st_synchronize();
  2425. homeaxis(Z_AXIS);
  2426. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2427. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2428. SERIAL_ECHO_START;
  2429. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2430. } else {
  2431. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2432. SERIAL_ECHO_START;
  2433. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2434. }
  2435. }
  2436. #endif // Z_SAFE_HOMING
  2437. #endif // Z_HOME_DIR < 0
  2438. if(home_z_axis && home_z_value != 0)
  2439. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2440. #ifdef ENABLE_AUTO_BED_LEVELING
  2441. if(home_z)
  2442. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2443. #endif
  2444. // Set the planner and stepper routine positions.
  2445. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2446. // contains the machine coordinates.
  2447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2448. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2449. enable_endstops(false);
  2450. #endif
  2451. feedrate = saved_feedrate;
  2452. feedmultiply = saved_feedmultiply;
  2453. previous_millis_cmd = millis();
  2454. endstops_hit_on_purpose();
  2455. #ifndef MESH_BED_LEVELING
  2456. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2457. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2458. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2459. lcd_adjust_z();
  2460. #endif
  2461. // Load the machine correction matrix
  2462. world2machine_initialize();
  2463. // and correct the current_position XY axes to match the transformed coordinate system.
  2464. world2machine_update_current();
  2465. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2466. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2467. {
  2468. if (! home_z && mbl_was_active) {
  2469. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2470. mbl.active = true;
  2471. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2472. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2473. }
  2474. }
  2475. else
  2476. {
  2477. st_synchronize();
  2478. homing_flag = false;
  2479. }
  2480. #endif
  2481. if (farm_mode) { prusa_statistics(20); };
  2482. homing_flag = false;
  2483. #if 0
  2484. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2485. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2486. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2487. #endif
  2488. }
  2489. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2490. {
  2491. bool final_result = false;
  2492. #ifdef TMC2130
  2493. FORCE_HIGH_POWER_START;
  2494. #endif // TMC2130
  2495. // Only Z calibration?
  2496. if (!onlyZ)
  2497. {
  2498. setTargetBed(0);
  2499. setTargetHotend0(0);
  2500. setTargetHotend1(0);
  2501. setTargetHotend2(0);
  2502. adjust_bed_reset(); //reset bed level correction
  2503. }
  2504. // Disable the default update procedure of the display. We will do a modal dialog.
  2505. lcd_update_enable(false);
  2506. // Let the planner use the uncorrected coordinates.
  2507. mbl.reset();
  2508. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2509. // the planner will not perform any adjustments in the XY plane.
  2510. // Wait for the motors to stop and update the current position with the absolute values.
  2511. world2machine_revert_to_uncorrected();
  2512. // Reset the baby step value applied without moving the axes.
  2513. babystep_reset();
  2514. // Mark all axes as in a need for homing.
  2515. memset(axis_known_position, 0, sizeof(axis_known_position));
  2516. // Home in the XY plane.
  2517. //set_destination_to_current();
  2518. setup_for_endstop_move();
  2519. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2520. home_xy();
  2521. enable_endstops(false);
  2522. current_position[X_AXIS] += 5;
  2523. current_position[Y_AXIS] += 5;
  2524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2525. st_synchronize();
  2526. // Let the user move the Z axes up to the end stoppers.
  2527. #ifdef TMC2130
  2528. if (calibrate_z_auto())
  2529. {
  2530. #else //TMC2130
  2531. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2532. {
  2533. #endif //TMC2130
  2534. refresh_cmd_timeout();
  2535. #ifndef STEEL_SHEET
  2536. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2537. {
  2538. lcd_wait_for_cool_down();
  2539. }
  2540. #endif //STEEL_SHEET
  2541. if(!onlyZ)
  2542. {
  2543. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2544. #ifdef STEEL_SHEET
  2545. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2546. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2547. #endif //STEEL_SHEET
  2548. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2549. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2550. KEEPALIVE_STATE(IN_HANDLER);
  2551. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2552. lcd_set_cursor(0, 2);
  2553. lcd_print(1);
  2554. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2555. }
  2556. // Move the print head close to the bed.
  2557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2558. bool endstops_enabled = enable_endstops(true);
  2559. #ifdef TMC2130
  2560. tmc2130_home_enter(Z_AXIS_MASK);
  2561. #endif //TMC2130
  2562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2563. st_synchronize();
  2564. #ifdef TMC2130
  2565. tmc2130_home_exit();
  2566. #endif //TMC2130
  2567. enable_endstops(endstops_enabled);
  2568. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2569. {
  2570. int8_t verbosity_level = 0;
  2571. if (code_seen('V'))
  2572. {
  2573. // Just 'V' without a number counts as V1.
  2574. char c = strchr_pointer[1];
  2575. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2576. }
  2577. if (onlyZ)
  2578. {
  2579. clean_up_after_endstop_move();
  2580. // Z only calibration.
  2581. // Load the machine correction matrix
  2582. world2machine_initialize();
  2583. // and correct the current_position to match the transformed coordinate system.
  2584. world2machine_update_current();
  2585. //FIXME
  2586. bool result = sample_mesh_and_store_reference();
  2587. if (result)
  2588. {
  2589. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2590. // Shipped, the nozzle height has been set already. The user can start printing now.
  2591. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2592. final_result = true;
  2593. // babystep_apply();
  2594. }
  2595. }
  2596. else
  2597. {
  2598. // Reset the baby step value and the baby step applied flag.
  2599. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2600. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2601. // Complete XYZ calibration.
  2602. uint8_t point_too_far_mask = 0;
  2603. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2604. clean_up_after_endstop_move();
  2605. // Print head up.
  2606. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2608. st_synchronize();
  2609. //#ifndef NEW_XYZCAL
  2610. if (result >= 0)
  2611. {
  2612. #ifdef HEATBED_V2
  2613. sample_z();
  2614. #else //HEATBED_V2
  2615. point_too_far_mask = 0;
  2616. // Second half: The fine adjustment.
  2617. // Let the planner use the uncorrected coordinates.
  2618. mbl.reset();
  2619. world2machine_reset();
  2620. // Home in the XY plane.
  2621. setup_for_endstop_move();
  2622. home_xy();
  2623. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2624. clean_up_after_endstop_move();
  2625. // Print head up.
  2626. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2628. st_synchronize();
  2629. // if (result >= 0) babystep_apply();
  2630. #endif //HEATBED_V2
  2631. }
  2632. //#endif //NEW_XYZCAL
  2633. lcd_update_enable(true);
  2634. lcd_update(2);
  2635. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2636. if (result >= 0)
  2637. {
  2638. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2639. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2640. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2641. final_result = true;
  2642. }
  2643. }
  2644. #ifdef TMC2130
  2645. tmc2130_home_exit();
  2646. #endif
  2647. }
  2648. else
  2649. {
  2650. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2651. final_result = false;
  2652. }
  2653. }
  2654. else
  2655. {
  2656. // Timeouted.
  2657. }
  2658. lcd_update_enable(true);
  2659. #ifdef TMC2130
  2660. FORCE_HIGH_POWER_END;
  2661. #endif // TMC2130
  2662. return final_result;
  2663. }
  2664. void gcode_M114()
  2665. {
  2666. SERIAL_PROTOCOLPGM("X:");
  2667. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2668. SERIAL_PROTOCOLPGM(" Y:");
  2669. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2670. SERIAL_PROTOCOLPGM(" Z:");
  2671. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2672. SERIAL_PROTOCOLPGM(" E:");
  2673. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2674. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2675. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" Y:");
  2677. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2678. SERIAL_PROTOCOLPGM(" Z:");
  2679. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" E:");
  2681. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2682. SERIAL_PROTOCOLLN("");
  2683. }
  2684. void gcode_M701()
  2685. {
  2686. #ifdef SNMM
  2687. extr_adj(snmm_extruder);//loads current extruder
  2688. #else
  2689. enable_z();
  2690. custom_message = true;
  2691. custom_message_type = 2;
  2692. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2693. current_position[E_AXIS] += 40;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2695. st_synchronize();
  2696. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2697. current_position[E_AXIS] += 30;
  2698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2699. st_synchronize();
  2700. current_position[E_AXIS] += 25;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2702. st_synchronize();
  2703. tone(BEEPER, 500);
  2704. delay_keep_alive(50);
  2705. noTone(BEEPER);
  2706. if (!farm_mode && loading_flag) {
  2707. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2708. while (!clean) {
  2709. lcd_update_enable(true);
  2710. lcd_update(2);
  2711. current_position[E_AXIS] += 25;
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2713. st_synchronize();
  2714. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2715. }
  2716. }
  2717. lcd_update_enable(true);
  2718. lcd_update(2);
  2719. lcd_setstatuspgm(_T(WELCOME_MSG));
  2720. disable_z();
  2721. loading_flag = false;
  2722. custom_message = false;
  2723. custom_message_type = 0;
  2724. #endif
  2725. }
  2726. /**
  2727. * @brief Get serial number from 32U2 processor
  2728. *
  2729. * Typical format of S/N is:CZPX0917X003XC13518
  2730. *
  2731. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2732. *
  2733. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2734. * reply is transmitted to serial port 1 character by character.
  2735. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2736. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2737. * in any case.
  2738. */
  2739. static void gcode_PRUSA_SN()
  2740. {
  2741. if (farm_mode) {
  2742. selectedSerialPort = 0;
  2743. putchar(';');
  2744. putchar('S');
  2745. int numbersRead = 0;
  2746. ShortTimer timeout;
  2747. timeout.start();
  2748. while (numbersRead < 19) {
  2749. while (MSerial.available() > 0) {
  2750. uint8_t serial_char = MSerial.read();
  2751. selectedSerialPort = 1;
  2752. putchar(serial_char);
  2753. numbersRead++;
  2754. selectedSerialPort = 0;
  2755. }
  2756. if (timeout.expired(100u)) break;
  2757. }
  2758. selectedSerialPort = 1;
  2759. putchar('\n');
  2760. #if 0
  2761. for (int b = 0; b < 3; b++) {
  2762. tone(BEEPER, 110);
  2763. delay(50);
  2764. noTone(BEEPER);
  2765. delay(50);
  2766. }
  2767. #endif
  2768. } else {
  2769. puts_P(_N("Not in farm mode."));
  2770. }
  2771. }
  2772. #ifdef BACKLASH_X
  2773. extern uint8_t st_backlash_x;
  2774. #endif //BACKLASH_X
  2775. #ifdef BACKLASH_Y
  2776. extern uint8_t st_backlash_y;
  2777. #endif //BACKLASH_Y
  2778. void process_commands()
  2779. {
  2780. if (!buflen) return; //empty command
  2781. #ifdef FILAMENT_RUNOUT_SUPPORT
  2782. SET_INPUT(FR_SENS);
  2783. #endif
  2784. #ifdef CMDBUFFER_DEBUG
  2785. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2786. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2787. SERIAL_ECHOLNPGM("");
  2788. SERIAL_ECHOPGM("In cmdqueue: ");
  2789. SERIAL_ECHO(buflen);
  2790. SERIAL_ECHOLNPGM("");
  2791. #endif /* CMDBUFFER_DEBUG */
  2792. unsigned long codenum; //throw away variable
  2793. char *starpos = NULL;
  2794. #ifdef ENABLE_AUTO_BED_LEVELING
  2795. float x_tmp, y_tmp, z_tmp, real_z;
  2796. #endif
  2797. // PRUSA GCODES
  2798. KEEPALIVE_STATE(IN_HANDLER);
  2799. #ifdef SNMM
  2800. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2801. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2802. int8_t SilentMode;
  2803. #endif
  2804. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2805. starpos = (strchr(strchr_pointer + 5, '*'));
  2806. if (starpos != NULL)
  2807. *(starpos) = '\0';
  2808. lcd_setstatus(strchr_pointer + 5);
  2809. }
  2810. #ifdef TMC2130
  2811. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2812. {
  2813. if(code_seen("CRASH_DETECTED"))
  2814. {
  2815. uint8_t mask = 0;
  2816. if (code_seen("X")) mask |= X_AXIS_MASK;
  2817. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2818. crashdet_detected(mask);
  2819. }
  2820. else if(code_seen("CRASH_RECOVER"))
  2821. crashdet_recover();
  2822. else if(code_seen("CRASH_CANCEL"))
  2823. crashdet_cancel();
  2824. }
  2825. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2826. {
  2827. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2828. {
  2829. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2830. axis = (axis == 'E')?3:(axis - 'X');
  2831. if (axis < 4)
  2832. {
  2833. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2834. tmc2130_set_wave(axis, 247, fac);
  2835. }
  2836. }
  2837. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2838. {
  2839. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2840. axis = (axis == 'E')?3:(axis - 'X');
  2841. if (axis < 4)
  2842. {
  2843. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2844. uint16_t res = tmc2130_get_res(axis);
  2845. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2846. }
  2847. }
  2848. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2849. {
  2850. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2851. axis = (axis == 'E')?3:(axis - 'X');
  2852. if (axis < 4)
  2853. {
  2854. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2855. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2856. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2857. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2858. char* str_end = 0;
  2859. if (CMDBUFFER_CURRENT_STRING[14])
  2860. {
  2861. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2862. if (str_end && *str_end)
  2863. {
  2864. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2865. if (str_end && *str_end)
  2866. {
  2867. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2868. if (str_end && *str_end)
  2869. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2870. }
  2871. }
  2872. }
  2873. tmc2130_chopper_config[axis].toff = chop0;
  2874. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2875. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2876. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2877. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2878. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2879. }
  2880. }
  2881. }
  2882. #ifdef BACKLASH_X
  2883. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2884. {
  2885. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2886. st_backlash_x = bl;
  2887. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2888. }
  2889. #endif //BACKLASH_X
  2890. #ifdef BACKLASH_Y
  2891. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2892. {
  2893. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2894. st_backlash_y = bl;
  2895. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2896. }
  2897. #endif //BACKLASH_Y
  2898. #endif //TMC2130
  2899. else if(code_seen("PRUSA")){
  2900. if (code_seen("Ping")) { //PRUSA Ping
  2901. if (farm_mode) {
  2902. PingTime = millis();
  2903. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2904. }
  2905. }
  2906. else if (code_seen("PRN")) {
  2907. printf_P(_N("%d"), status_number);
  2908. }else if (code_seen("FAN")) {
  2909. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2910. }else if (code_seen("fn")) {
  2911. if (farm_mode) {
  2912. printf_P(_N("%d"), farm_no);
  2913. }
  2914. else {
  2915. puts_P(_N("Not in farm mode."));
  2916. }
  2917. }
  2918. else if (code_seen("thx")) {
  2919. no_response = false;
  2920. } else if (code_seen("RESET")) {
  2921. // careful!
  2922. if (farm_mode) {
  2923. #ifdef WATCHDOG
  2924. boot_app_magic = BOOT_APP_MAGIC;
  2925. boot_app_flags = BOOT_APP_FLG_RUN;
  2926. wdt_enable(WDTO_15MS);
  2927. cli();
  2928. while(1);
  2929. #else //WATCHDOG
  2930. asm volatile("jmp 0x3E000");
  2931. #endif //WATCHDOG
  2932. }
  2933. else {
  2934. MYSERIAL.println("Not in farm mode.");
  2935. }
  2936. }else if (code_seen("fv")) {
  2937. // get file version
  2938. #ifdef SDSUPPORT
  2939. card.openFile(strchr_pointer + 3,true);
  2940. while (true) {
  2941. uint16_t readByte = card.get();
  2942. MYSERIAL.write(readByte);
  2943. if (readByte=='\n') {
  2944. break;
  2945. }
  2946. }
  2947. card.closefile();
  2948. #endif // SDSUPPORT
  2949. } else if (code_seen("M28")) {
  2950. trace();
  2951. prusa_sd_card_upload = true;
  2952. card.openFile(strchr_pointer+4,false);
  2953. } else if (code_seen("SN")) {
  2954. gcode_PRUSA_SN();
  2955. } else if(code_seen("Fir")){
  2956. SERIAL_PROTOCOLLN(FW_VERSION);
  2957. } else if(code_seen("Rev")){
  2958. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2959. } else if(code_seen("Lang")) {
  2960. lang_reset();
  2961. } else if(code_seen("Lz")) {
  2962. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2963. } else if(code_seen("Beat")) {
  2964. // Kick farm link timer
  2965. kicktime = millis();
  2966. } else if(code_seen("FR")) {
  2967. // Factory full reset
  2968. factory_reset(0,true);
  2969. }
  2970. //else if (code_seen('Cal')) {
  2971. // lcd_calibration();
  2972. // }
  2973. }
  2974. else if (code_seen('^')) {
  2975. // nothing, this is a version line
  2976. } else if(code_seen('G'))
  2977. {
  2978. switch((int)code_value())
  2979. {
  2980. case 0: // G0 -> G1
  2981. case 1: // G1
  2982. if(Stopped == false) {
  2983. #ifdef FILAMENT_RUNOUT_SUPPORT
  2984. if(READ(FR_SENS)){
  2985. feedmultiplyBckp=feedmultiply;
  2986. float target[4];
  2987. float lastpos[4];
  2988. target[X_AXIS]=current_position[X_AXIS];
  2989. target[Y_AXIS]=current_position[Y_AXIS];
  2990. target[Z_AXIS]=current_position[Z_AXIS];
  2991. target[E_AXIS]=current_position[E_AXIS];
  2992. lastpos[X_AXIS]=current_position[X_AXIS];
  2993. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2994. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2995. lastpos[E_AXIS]=current_position[E_AXIS];
  2996. //retract by E
  2997. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2999. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3001. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3002. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3004. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3005. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3006. //finish moves
  3007. st_synchronize();
  3008. //disable extruder steppers so filament can be removed
  3009. disable_e0();
  3010. disable_e1();
  3011. disable_e2();
  3012. delay(100);
  3013. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3014. uint8_t cnt=0;
  3015. int counterBeep = 0;
  3016. lcd_wait_interact();
  3017. while(!lcd_clicked()){
  3018. cnt++;
  3019. manage_heater();
  3020. manage_inactivity(true);
  3021. //lcd_update(0);
  3022. if(cnt==0)
  3023. {
  3024. #if BEEPER > 0
  3025. if (counterBeep== 500){
  3026. counterBeep = 0;
  3027. }
  3028. SET_OUTPUT(BEEPER);
  3029. if (counterBeep== 0){
  3030. WRITE(BEEPER,HIGH);
  3031. }
  3032. if (counterBeep== 20){
  3033. WRITE(BEEPER,LOW);
  3034. }
  3035. counterBeep++;
  3036. #else
  3037. #endif
  3038. }
  3039. }
  3040. WRITE(BEEPER,LOW);
  3041. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3043. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3045. lcd_change_fil_state = 0;
  3046. lcd_loading_filament();
  3047. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3048. lcd_change_fil_state = 0;
  3049. lcd_alright();
  3050. switch(lcd_change_fil_state){
  3051. case 2:
  3052. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3054. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3056. lcd_loading_filament();
  3057. break;
  3058. case 3:
  3059. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3061. lcd_loading_color();
  3062. break;
  3063. default:
  3064. lcd_change_success();
  3065. break;
  3066. }
  3067. }
  3068. target[E_AXIS]+= 5;
  3069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3070. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3072. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3073. //plan_set_e_position(current_position[E_AXIS]);
  3074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3075. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3076. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3077. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3078. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3079. plan_set_e_position(lastpos[E_AXIS]);
  3080. feedmultiply=feedmultiplyBckp;
  3081. char cmd[9];
  3082. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3083. enquecommand(cmd);
  3084. }
  3085. #endif
  3086. get_coordinates(); // For X Y Z E F
  3087. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3088. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3089. }
  3090. #ifdef FWRETRACT
  3091. if(autoretract_enabled)
  3092. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3093. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3094. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3095. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3096. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3097. retract(!retracted[active_extruder]);
  3098. return;
  3099. }
  3100. }
  3101. #endif //FWRETRACT
  3102. prepare_move();
  3103. //ClearToSend();
  3104. }
  3105. break;
  3106. case 2: // G2 - CW ARC
  3107. if(Stopped == false) {
  3108. get_arc_coordinates();
  3109. prepare_arc_move(true);
  3110. }
  3111. break;
  3112. case 3: // G3 - CCW ARC
  3113. if(Stopped == false) {
  3114. get_arc_coordinates();
  3115. prepare_arc_move(false);
  3116. }
  3117. break;
  3118. case 4: // G4 dwell
  3119. codenum = 0;
  3120. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3121. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3122. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3123. st_synchronize();
  3124. codenum += millis(); // keep track of when we started waiting
  3125. previous_millis_cmd = millis();
  3126. while(millis() < codenum) {
  3127. manage_heater();
  3128. manage_inactivity();
  3129. lcd_update(0);
  3130. }
  3131. break;
  3132. #ifdef FWRETRACT
  3133. case 10: // G10 retract
  3134. #if EXTRUDERS > 1
  3135. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3136. retract(true,retracted_swap[active_extruder]);
  3137. #else
  3138. retract(true);
  3139. #endif
  3140. break;
  3141. case 11: // G11 retract_recover
  3142. #if EXTRUDERS > 1
  3143. retract(false,retracted_swap[active_extruder]);
  3144. #else
  3145. retract(false);
  3146. #endif
  3147. break;
  3148. #endif //FWRETRACT
  3149. case 28: //G28 Home all Axis one at a time
  3150. {
  3151. long home_x_value = 0;
  3152. long home_y_value = 0;
  3153. long home_z_value = 0;
  3154. // Which axes should be homed?
  3155. bool home_x = code_seen(axis_codes[X_AXIS]);
  3156. home_x_value = code_value_long();
  3157. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3158. home_y_value = code_value_long();
  3159. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3160. home_z_value = code_value_long();
  3161. bool without_mbl = code_seen('W');
  3162. // calibrate?
  3163. bool calib = code_seen('C');
  3164. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3165. if ((home_x || home_y || without_mbl || home_z) == false) {
  3166. // Push the commands to the front of the message queue in the reverse order!
  3167. // There shall be always enough space reserved for these commands.
  3168. goto case_G80;
  3169. }
  3170. break;
  3171. }
  3172. #ifdef ENABLE_AUTO_BED_LEVELING
  3173. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3174. {
  3175. #if Z_MIN_PIN == -1
  3176. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3177. #endif
  3178. // Prevent user from running a G29 without first homing in X and Y
  3179. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3180. {
  3181. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3182. SERIAL_ECHO_START;
  3183. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3184. break; // abort G29, since we don't know where we are
  3185. }
  3186. st_synchronize();
  3187. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3188. //vector_3 corrected_position = plan_get_position_mm();
  3189. //corrected_position.debug("position before G29");
  3190. plan_bed_level_matrix.set_to_identity();
  3191. vector_3 uncorrected_position = plan_get_position();
  3192. //uncorrected_position.debug("position durring G29");
  3193. current_position[X_AXIS] = uncorrected_position.x;
  3194. current_position[Y_AXIS] = uncorrected_position.y;
  3195. current_position[Z_AXIS] = uncorrected_position.z;
  3196. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3197. setup_for_endstop_move();
  3198. feedrate = homing_feedrate[Z_AXIS];
  3199. #ifdef AUTO_BED_LEVELING_GRID
  3200. // probe at the points of a lattice grid
  3201. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3202. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3203. // solve the plane equation ax + by + d = z
  3204. // A is the matrix with rows [x y 1] for all the probed points
  3205. // B is the vector of the Z positions
  3206. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3207. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3208. // "A" matrix of the linear system of equations
  3209. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3210. // "B" vector of Z points
  3211. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3212. int probePointCounter = 0;
  3213. bool zig = true;
  3214. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3215. {
  3216. int xProbe, xInc;
  3217. if (zig)
  3218. {
  3219. xProbe = LEFT_PROBE_BED_POSITION;
  3220. //xEnd = RIGHT_PROBE_BED_POSITION;
  3221. xInc = xGridSpacing;
  3222. zig = false;
  3223. } else // zag
  3224. {
  3225. xProbe = RIGHT_PROBE_BED_POSITION;
  3226. //xEnd = LEFT_PROBE_BED_POSITION;
  3227. xInc = -xGridSpacing;
  3228. zig = true;
  3229. }
  3230. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3231. {
  3232. float z_before;
  3233. if (probePointCounter == 0)
  3234. {
  3235. // raise before probing
  3236. z_before = Z_RAISE_BEFORE_PROBING;
  3237. } else
  3238. {
  3239. // raise extruder
  3240. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3241. }
  3242. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3243. eqnBVector[probePointCounter] = measured_z;
  3244. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3245. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3246. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3247. probePointCounter++;
  3248. xProbe += xInc;
  3249. }
  3250. }
  3251. clean_up_after_endstop_move();
  3252. // solve lsq problem
  3253. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3254. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3255. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3256. SERIAL_PROTOCOLPGM(" b: ");
  3257. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3258. SERIAL_PROTOCOLPGM(" d: ");
  3259. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3260. set_bed_level_equation_lsq(plane_equation_coefficients);
  3261. free(plane_equation_coefficients);
  3262. #else // AUTO_BED_LEVELING_GRID not defined
  3263. // Probe at 3 arbitrary points
  3264. // probe 1
  3265. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3266. // probe 2
  3267. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3268. // probe 3
  3269. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3270. clean_up_after_endstop_move();
  3271. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3272. #endif // AUTO_BED_LEVELING_GRID
  3273. st_synchronize();
  3274. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3275. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3276. // When the bed is uneven, this height must be corrected.
  3277. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3278. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3279. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3280. z_tmp = current_position[Z_AXIS];
  3281. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3282. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3284. }
  3285. break;
  3286. #ifndef Z_PROBE_SLED
  3287. case 30: // G30 Single Z Probe
  3288. {
  3289. st_synchronize();
  3290. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3291. setup_for_endstop_move();
  3292. feedrate = homing_feedrate[Z_AXIS];
  3293. run_z_probe();
  3294. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3295. SERIAL_PROTOCOLPGM(" X: ");
  3296. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3297. SERIAL_PROTOCOLPGM(" Y: ");
  3298. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3299. SERIAL_PROTOCOLPGM(" Z: ");
  3300. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3301. SERIAL_PROTOCOLPGM("\n");
  3302. clean_up_after_endstop_move();
  3303. }
  3304. break;
  3305. #else
  3306. case 31: // dock the sled
  3307. dock_sled(true);
  3308. break;
  3309. case 32: // undock the sled
  3310. dock_sled(false);
  3311. break;
  3312. #endif // Z_PROBE_SLED
  3313. #endif // ENABLE_AUTO_BED_LEVELING
  3314. #ifdef MESH_BED_LEVELING
  3315. case 30: // G30 Single Z Probe
  3316. {
  3317. st_synchronize();
  3318. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3319. setup_for_endstop_move();
  3320. feedrate = homing_feedrate[Z_AXIS];
  3321. find_bed_induction_sensor_point_z(-10.f, 3);
  3322. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3323. clean_up_after_endstop_move();
  3324. }
  3325. break;
  3326. case 75:
  3327. {
  3328. for (int i = 40; i <= 110; i++)
  3329. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3330. }
  3331. break;
  3332. case 76: //PINDA probe temperature calibration
  3333. {
  3334. #ifdef PINDA_THERMISTOR
  3335. if (true)
  3336. {
  3337. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3338. //we need to know accurate position of first calibration point
  3339. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3340. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3341. break;
  3342. }
  3343. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3344. {
  3345. // We don't know where we are! HOME!
  3346. // Push the commands to the front of the message queue in the reverse order!
  3347. // There shall be always enough space reserved for these commands.
  3348. repeatcommand_front(); // repeat G76 with all its parameters
  3349. enquecommand_front_P((PSTR("G28 W0")));
  3350. break;
  3351. }
  3352. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3353. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3354. if (result)
  3355. {
  3356. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3358. current_position[Z_AXIS] = 50;
  3359. current_position[Y_AXIS] = 180;
  3360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3361. st_synchronize();
  3362. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3363. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3364. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3366. st_synchronize();
  3367. gcode_G28(false, false, true);
  3368. }
  3369. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3370. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3371. current_position[Z_AXIS] = 100;
  3372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3373. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3374. lcd_temp_cal_show_result(false);
  3375. break;
  3376. }
  3377. }
  3378. lcd_update_enable(true);
  3379. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3380. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3381. float zero_z;
  3382. int z_shift = 0; //unit: steps
  3383. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3384. if (start_temp < 35) start_temp = 35;
  3385. if (start_temp < current_temperature_pinda) start_temp += 5;
  3386. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3387. // setTargetHotend(200, 0);
  3388. setTargetBed(70 + (start_temp - 30));
  3389. custom_message = true;
  3390. custom_message_type = 4;
  3391. custom_message_state = 1;
  3392. custom_message = _T(MSG_TEMP_CALIBRATION);
  3393. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3395. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3396. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3398. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3400. st_synchronize();
  3401. while (current_temperature_pinda < start_temp)
  3402. {
  3403. delay_keep_alive(1000);
  3404. serialecho_temperatures();
  3405. }
  3406. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3407. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3409. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3410. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3412. st_synchronize();
  3413. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3414. if (find_z_result == false) {
  3415. lcd_temp_cal_show_result(find_z_result);
  3416. break;
  3417. }
  3418. zero_z = current_position[Z_AXIS];
  3419. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3420. int i = -1; for (; i < 5; i++)
  3421. {
  3422. float temp = (40 + i * 5);
  3423. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3424. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3425. if (start_temp <= temp) break;
  3426. }
  3427. for (i++; i < 5; i++)
  3428. {
  3429. float temp = (40 + i * 5);
  3430. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3431. custom_message_state = i + 2;
  3432. setTargetBed(50 + 10 * (temp - 30) / 5);
  3433. // setTargetHotend(255, 0);
  3434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3437. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3441. st_synchronize();
  3442. while (current_temperature_pinda < temp)
  3443. {
  3444. delay_keep_alive(1000);
  3445. serialecho_temperatures();
  3446. }
  3447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3449. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3450. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3452. st_synchronize();
  3453. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3454. if (find_z_result == false) {
  3455. lcd_temp_cal_show_result(find_z_result);
  3456. break;
  3457. }
  3458. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3459. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3460. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3461. }
  3462. lcd_temp_cal_show_result(true);
  3463. break;
  3464. }
  3465. #endif //PINDA_THERMISTOR
  3466. setTargetBed(PINDA_MIN_T);
  3467. float zero_z;
  3468. int z_shift = 0; //unit: steps
  3469. int t_c; // temperature
  3470. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3471. // We don't know where we are! HOME!
  3472. // Push the commands to the front of the message queue in the reverse order!
  3473. // There shall be always enough space reserved for these commands.
  3474. repeatcommand_front(); // repeat G76 with all its parameters
  3475. enquecommand_front_P((PSTR("G28 W0")));
  3476. break;
  3477. }
  3478. puts_P(_N("PINDA probe calibration start"));
  3479. custom_message = true;
  3480. custom_message_type = 4;
  3481. custom_message_state = 1;
  3482. custom_message = _T(MSG_TEMP_CALIBRATION);
  3483. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3484. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3485. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3487. st_synchronize();
  3488. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3489. delay_keep_alive(1000);
  3490. serialecho_temperatures();
  3491. }
  3492. //enquecommand_P(PSTR("M190 S50"));
  3493. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3494. delay_keep_alive(1000);
  3495. serialecho_temperatures();
  3496. }
  3497. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3498. current_position[Z_AXIS] = 5;
  3499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3500. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3501. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3503. st_synchronize();
  3504. find_bed_induction_sensor_point_z(-1.f);
  3505. zero_z = current_position[Z_AXIS];
  3506. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3507. for (int i = 0; i<5; i++) {
  3508. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3509. custom_message_state = i + 2;
  3510. t_c = 60 + i * 10;
  3511. setTargetBed(t_c);
  3512. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3513. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3514. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3516. st_synchronize();
  3517. while (degBed() < t_c) {
  3518. delay_keep_alive(1000);
  3519. serialecho_temperatures();
  3520. }
  3521. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3522. delay_keep_alive(1000);
  3523. serialecho_temperatures();
  3524. }
  3525. current_position[Z_AXIS] = 5;
  3526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3527. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3528. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3530. st_synchronize();
  3531. find_bed_induction_sensor_point_z(-1.f);
  3532. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3533. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3534. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3535. }
  3536. custom_message_type = 0;
  3537. custom_message = false;
  3538. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3539. puts_P(_N("Temperature calibration done."));
  3540. disable_x();
  3541. disable_y();
  3542. disable_z();
  3543. disable_e0();
  3544. disable_e1();
  3545. disable_e2();
  3546. setTargetBed(0); //set bed target temperature back to 0
  3547. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3548. temp_cal_active = true;
  3549. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3550. lcd_update_enable(true);
  3551. lcd_update(2);
  3552. }
  3553. break;
  3554. #ifdef DIS
  3555. case 77:
  3556. {
  3557. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3558. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3559. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3560. float dimension_x = 40;
  3561. float dimension_y = 40;
  3562. int points_x = 40;
  3563. int points_y = 40;
  3564. float offset_x = 74;
  3565. float offset_y = 33;
  3566. if (code_seen('X')) dimension_x = code_value();
  3567. if (code_seen('Y')) dimension_y = code_value();
  3568. if (code_seen('XP')) points_x = code_value();
  3569. if (code_seen('YP')) points_y = code_value();
  3570. if (code_seen('XO')) offset_x = code_value();
  3571. if (code_seen('YO')) offset_y = code_value();
  3572. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3573. } break;
  3574. #endif
  3575. case 79: {
  3576. for (int i = 255; i > 0; i = i - 5) {
  3577. fanSpeed = i;
  3578. //delay_keep_alive(2000);
  3579. for (int j = 0; j < 100; j++) {
  3580. delay_keep_alive(100);
  3581. }
  3582. fan_speed[1];
  3583. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3584. }
  3585. }break;
  3586. /**
  3587. * G80: Mesh-based Z probe, probes a grid and produces a
  3588. * mesh to compensate for variable bed height
  3589. *
  3590. * The S0 report the points as below
  3591. *
  3592. * +----> X-axis
  3593. * |
  3594. * |
  3595. * v Y-axis
  3596. *
  3597. */
  3598. case 80:
  3599. #ifdef MK1BP
  3600. break;
  3601. #endif //MK1BP
  3602. case_G80:
  3603. {
  3604. mesh_bed_leveling_flag = true;
  3605. int8_t verbosity_level = 0;
  3606. static bool run = false;
  3607. if (code_seen('V')) {
  3608. // Just 'V' without a number counts as V1.
  3609. char c = strchr_pointer[1];
  3610. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3611. }
  3612. // Firstly check if we know where we are
  3613. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3614. // We don't know where we are! HOME!
  3615. // Push the commands to the front of the message queue in the reverse order!
  3616. // There shall be always enough space reserved for these commands.
  3617. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3618. repeatcommand_front(); // repeat G80 with all its parameters
  3619. enquecommand_front_P((PSTR("G28 W0")));
  3620. }
  3621. else {
  3622. mesh_bed_leveling_flag = false;
  3623. }
  3624. break;
  3625. }
  3626. bool temp_comp_start = true;
  3627. #ifdef PINDA_THERMISTOR
  3628. temp_comp_start = false;
  3629. #endif //PINDA_THERMISTOR
  3630. if (temp_comp_start)
  3631. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3632. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3633. temp_compensation_start();
  3634. run = true;
  3635. repeatcommand_front(); // repeat G80 with all its parameters
  3636. enquecommand_front_P((PSTR("G28 W0")));
  3637. }
  3638. else {
  3639. mesh_bed_leveling_flag = false;
  3640. }
  3641. break;
  3642. }
  3643. run = false;
  3644. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3645. mesh_bed_leveling_flag = false;
  3646. break;
  3647. }
  3648. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3649. bool custom_message_old = custom_message;
  3650. unsigned int custom_message_type_old = custom_message_type;
  3651. unsigned int custom_message_state_old = custom_message_state;
  3652. custom_message = true;
  3653. custom_message_type = 1;
  3654. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3655. lcd_update(1);
  3656. mbl.reset(); //reset mesh bed leveling
  3657. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3658. // consumed during the first movements following this statement.
  3659. babystep_undo();
  3660. // Cycle through all points and probe them
  3661. // First move up. During this first movement, the babystepping will be reverted.
  3662. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3664. // The move to the first calibration point.
  3665. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3666. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3667. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3668. #ifdef SUPPORT_VERBOSITY
  3669. if (verbosity_level >= 1) {
  3670. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3671. }
  3672. #endif //SUPPORT_VERBOSITY
  3673. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3675. // Wait until the move is finished.
  3676. st_synchronize();
  3677. int mesh_point = 0; //index number of calibration point
  3678. int ix = 0;
  3679. int iy = 0;
  3680. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3681. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3682. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3683. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3684. #ifdef SUPPORT_VERBOSITY
  3685. if (verbosity_level >= 1) {
  3686. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3687. }
  3688. #endif // SUPPORT_VERBOSITY
  3689. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3690. const char *kill_message = NULL;
  3691. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3692. // Get coords of a measuring point.
  3693. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3694. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3695. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3696. float z0 = 0.f;
  3697. if (has_z && mesh_point > 0) {
  3698. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3699. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3700. //#if 0
  3701. #ifdef SUPPORT_VERBOSITY
  3702. if (verbosity_level >= 1) {
  3703. SERIAL_ECHOLNPGM("");
  3704. SERIAL_ECHOPGM("Bed leveling, point: ");
  3705. MYSERIAL.print(mesh_point);
  3706. SERIAL_ECHOPGM(", calibration z: ");
  3707. MYSERIAL.print(z0, 5);
  3708. SERIAL_ECHOLNPGM("");
  3709. }
  3710. #endif // SUPPORT_VERBOSITY
  3711. //#endif
  3712. }
  3713. // Move Z up to MESH_HOME_Z_SEARCH.
  3714. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3716. st_synchronize();
  3717. // Move to XY position of the sensor point.
  3718. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3719. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3720. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3721. #ifdef SUPPORT_VERBOSITY
  3722. if (verbosity_level >= 1) {
  3723. SERIAL_PROTOCOL(mesh_point);
  3724. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3725. }
  3726. #endif // SUPPORT_VERBOSITY
  3727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3728. st_synchronize();
  3729. // Go down until endstop is hit
  3730. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3731. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3732. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3733. break;
  3734. }
  3735. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3736. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3737. break;
  3738. }
  3739. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3740. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3741. break;
  3742. }
  3743. #ifdef SUPPORT_VERBOSITY
  3744. if (verbosity_level >= 10) {
  3745. SERIAL_ECHOPGM("X: ");
  3746. MYSERIAL.print(current_position[X_AXIS], 5);
  3747. SERIAL_ECHOLNPGM("");
  3748. SERIAL_ECHOPGM("Y: ");
  3749. MYSERIAL.print(current_position[Y_AXIS], 5);
  3750. SERIAL_PROTOCOLPGM("\n");
  3751. }
  3752. #endif // SUPPORT_VERBOSITY
  3753. float offset_z = 0;
  3754. #ifdef PINDA_THERMISTOR
  3755. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3756. #endif //PINDA_THERMISTOR
  3757. // #ifdef SUPPORT_VERBOSITY
  3758. /* if (verbosity_level >= 1)
  3759. {
  3760. SERIAL_ECHOPGM("mesh bed leveling: ");
  3761. MYSERIAL.print(current_position[Z_AXIS], 5);
  3762. SERIAL_ECHOPGM(" offset: ");
  3763. MYSERIAL.print(offset_z, 5);
  3764. SERIAL_ECHOLNPGM("");
  3765. }*/
  3766. // #endif // SUPPORT_VERBOSITY
  3767. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3768. custom_message_state--;
  3769. mesh_point++;
  3770. lcd_update(1);
  3771. }
  3772. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3773. #ifdef SUPPORT_VERBOSITY
  3774. if (verbosity_level >= 20) {
  3775. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3776. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3777. MYSERIAL.print(current_position[Z_AXIS], 5);
  3778. }
  3779. #endif // SUPPORT_VERBOSITY
  3780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3781. st_synchronize();
  3782. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3783. kill(kill_message);
  3784. SERIAL_ECHOLNPGM("killed");
  3785. }
  3786. clean_up_after_endstop_move();
  3787. // SERIAL_ECHOLNPGM("clean up finished ");
  3788. bool apply_temp_comp = true;
  3789. #ifdef PINDA_THERMISTOR
  3790. apply_temp_comp = false;
  3791. #endif
  3792. if (apply_temp_comp)
  3793. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3794. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3795. // SERIAL_ECHOLNPGM("babystep applied");
  3796. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3797. #ifdef SUPPORT_VERBOSITY
  3798. if (verbosity_level >= 1) {
  3799. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3800. }
  3801. #endif // SUPPORT_VERBOSITY
  3802. for (uint8_t i = 0; i < 4; ++i) {
  3803. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3804. long correction = 0;
  3805. if (code_seen(codes[i]))
  3806. correction = code_value_long();
  3807. else if (eeprom_bed_correction_valid) {
  3808. unsigned char *addr = (i < 2) ?
  3809. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3810. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3811. correction = eeprom_read_int8(addr);
  3812. }
  3813. if (correction == 0)
  3814. continue;
  3815. float offset = float(correction) * 0.001f;
  3816. if (fabs(offset) > 0.101f) {
  3817. SERIAL_ERROR_START;
  3818. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3819. SERIAL_ECHO(offset);
  3820. SERIAL_ECHOLNPGM(" microns");
  3821. }
  3822. else {
  3823. switch (i) {
  3824. case 0:
  3825. for (uint8_t row = 0; row < 3; ++row) {
  3826. mbl.z_values[row][1] += 0.5f * offset;
  3827. mbl.z_values[row][0] += offset;
  3828. }
  3829. break;
  3830. case 1:
  3831. for (uint8_t row = 0; row < 3; ++row) {
  3832. mbl.z_values[row][1] += 0.5f * offset;
  3833. mbl.z_values[row][2] += offset;
  3834. }
  3835. break;
  3836. case 2:
  3837. for (uint8_t col = 0; col < 3; ++col) {
  3838. mbl.z_values[1][col] += 0.5f * offset;
  3839. mbl.z_values[0][col] += offset;
  3840. }
  3841. break;
  3842. case 3:
  3843. for (uint8_t col = 0; col < 3; ++col) {
  3844. mbl.z_values[1][col] += 0.5f * offset;
  3845. mbl.z_values[2][col] += offset;
  3846. }
  3847. break;
  3848. }
  3849. }
  3850. }
  3851. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3852. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3853. // SERIAL_ECHOLNPGM("Upsample finished");
  3854. mbl.active = 1; //activate mesh bed leveling
  3855. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3856. go_home_with_z_lift();
  3857. // SERIAL_ECHOLNPGM("Go home finished");
  3858. //unretract (after PINDA preheat retraction)
  3859. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3860. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3862. }
  3863. KEEPALIVE_STATE(NOT_BUSY);
  3864. // Restore custom message state
  3865. lcd_setstatuspgm(_T(WELCOME_MSG));
  3866. custom_message = custom_message_old;
  3867. custom_message_type = custom_message_type_old;
  3868. custom_message_state = custom_message_state_old;
  3869. mesh_bed_leveling_flag = false;
  3870. mesh_bed_run_from_menu = false;
  3871. lcd_update(2);
  3872. }
  3873. break;
  3874. /**
  3875. * G81: Print mesh bed leveling status and bed profile if activated
  3876. */
  3877. case 81:
  3878. if (mbl.active) {
  3879. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3880. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3881. SERIAL_PROTOCOLPGM(",");
  3882. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3883. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3884. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3885. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3886. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3887. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3888. SERIAL_PROTOCOLPGM(" ");
  3889. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3890. }
  3891. SERIAL_PROTOCOLPGM("\n");
  3892. }
  3893. }
  3894. else
  3895. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3896. break;
  3897. #if 0
  3898. /**
  3899. * G82: Single Z probe at current location
  3900. *
  3901. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3902. *
  3903. */
  3904. case 82:
  3905. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3906. setup_for_endstop_move();
  3907. find_bed_induction_sensor_point_z();
  3908. clean_up_after_endstop_move();
  3909. SERIAL_PROTOCOLPGM("Bed found at: ");
  3910. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3911. SERIAL_PROTOCOLPGM("\n");
  3912. break;
  3913. /**
  3914. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3915. */
  3916. case 83:
  3917. {
  3918. int babystepz = code_seen('S') ? code_value() : 0;
  3919. int BabyPosition = code_seen('P') ? code_value() : 0;
  3920. if (babystepz != 0) {
  3921. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3922. // Is the axis indexed starting with zero or one?
  3923. if (BabyPosition > 4) {
  3924. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3925. }else{
  3926. // Save it to the eeprom
  3927. babystepLoadZ = babystepz;
  3928. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3929. // adjust the Z
  3930. babystepsTodoZadd(babystepLoadZ);
  3931. }
  3932. }
  3933. }
  3934. break;
  3935. /**
  3936. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3937. */
  3938. case 84:
  3939. babystepsTodoZsubtract(babystepLoadZ);
  3940. // babystepLoadZ = 0;
  3941. break;
  3942. /**
  3943. * G85: Prusa3D specific: Pick best babystep
  3944. */
  3945. case 85:
  3946. lcd_pick_babystep();
  3947. break;
  3948. #endif
  3949. /**
  3950. * G86: Prusa3D specific: Disable babystep correction after home.
  3951. * This G-code will be performed at the start of a calibration script.
  3952. */
  3953. case 86:
  3954. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3955. break;
  3956. /**
  3957. * G87: Prusa3D specific: Enable babystep correction after home
  3958. * This G-code will be performed at the end of a calibration script.
  3959. */
  3960. case 87:
  3961. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3962. break;
  3963. /**
  3964. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3965. */
  3966. case 88:
  3967. break;
  3968. #endif // ENABLE_MESH_BED_LEVELING
  3969. case 90: // G90
  3970. relative_mode = false;
  3971. break;
  3972. case 91: // G91
  3973. relative_mode = true;
  3974. break;
  3975. case 92: // G92
  3976. if(!code_seen(axis_codes[E_AXIS]))
  3977. st_synchronize();
  3978. for(int8_t i=0; i < NUM_AXIS; i++) {
  3979. if(code_seen(axis_codes[i])) {
  3980. if(i == E_AXIS) {
  3981. current_position[i] = code_value();
  3982. plan_set_e_position(current_position[E_AXIS]);
  3983. }
  3984. else {
  3985. current_position[i] = code_value()+add_homing[i];
  3986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3987. }
  3988. }
  3989. }
  3990. break;
  3991. case 98: // G98 (activate farm mode)
  3992. farm_mode = 1;
  3993. PingTime = millis();
  3994. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3995. SilentModeMenu = SILENT_MODE_OFF;
  3996. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3997. break;
  3998. case 99: // G99 (deactivate farm mode)
  3999. farm_mode = 0;
  4000. lcd_printer_connected();
  4001. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4002. lcd_update(2);
  4003. break;
  4004. default:
  4005. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4006. }
  4007. } // end if(code_seen('G'))
  4008. else if(code_seen('M'))
  4009. {
  4010. int index;
  4011. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4012. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4013. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4014. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4015. } else
  4016. switch((int)code_value())
  4017. {
  4018. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4019. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4020. {
  4021. char *src = strchr_pointer + 2;
  4022. codenum = 0;
  4023. bool hasP = false, hasS = false;
  4024. if (code_seen('P')) {
  4025. codenum = code_value(); // milliseconds to wait
  4026. hasP = codenum > 0;
  4027. }
  4028. if (code_seen('S')) {
  4029. codenum = code_value() * 1000; // seconds to wait
  4030. hasS = codenum > 0;
  4031. }
  4032. starpos = strchr(src, '*');
  4033. if (starpos != NULL) *(starpos) = '\0';
  4034. while (*src == ' ') ++src;
  4035. if (!hasP && !hasS && *src != '\0') {
  4036. lcd_setstatus(src);
  4037. } else {
  4038. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4039. }
  4040. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4041. st_synchronize();
  4042. previous_millis_cmd = millis();
  4043. if (codenum > 0){
  4044. codenum += millis(); // keep track of when we started waiting
  4045. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4046. while(millis() < codenum && !lcd_clicked()){
  4047. manage_heater();
  4048. manage_inactivity(true);
  4049. lcd_update(0);
  4050. }
  4051. KEEPALIVE_STATE(IN_HANDLER);
  4052. lcd_ignore_click(false);
  4053. }else{
  4054. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4055. while(!lcd_clicked()){
  4056. manage_heater();
  4057. manage_inactivity(true);
  4058. lcd_update(0);
  4059. }
  4060. KEEPALIVE_STATE(IN_HANDLER);
  4061. }
  4062. if (IS_SD_PRINTING)
  4063. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4064. else
  4065. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4066. }
  4067. break;
  4068. case 17:
  4069. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4070. enable_x();
  4071. enable_y();
  4072. enable_z();
  4073. enable_e0();
  4074. enable_e1();
  4075. enable_e2();
  4076. break;
  4077. #ifdef SDSUPPORT
  4078. case 20: // M20 - list SD card
  4079. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4080. card.ls();
  4081. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4082. break;
  4083. case 21: // M21 - init SD card
  4084. card.initsd();
  4085. break;
  4086. case 22: //M22 - release SD card
  4087. card.release();
  4088. break;
  4089. case 23: //M23 - Select file
  4090. starpos = (strchr(strchr_pointer + 4,'*'));
  4091. if(starpos!=NULL)
  4092. *(starpos)='\0';
  4093. card.openFile(strchr_pointer + 4,true);
  4094. break;
  4095. case 24: //M24 - Start SD print
  4096. if (!card.paused)
  4097. failstats_reset_print();
  4098. card.startFileprint();
  4099. starttime=millis();
  4100. break;
  4101. case 25: //M25 - Pause SD print
  4102. card.pauseSDPrint();
  4103. break;
  4104. case 26: //M26 - Set SD index
  4105. if(card.cardOK && code_seen('S')) {
  4106. card.setIndex(code_value_long());
  4107. }
  4108. break;
  4109. case 27: //M27 - Get SD status
  4110. card.getStatus();
  4111. break;
  4112. case 28: //M28 - Start SD write
  4113. starpos = (strchr(strchr_pointer + 4,'*'));
  4114. if(starpos != NULL){
  4115. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4116. strchr_pointer = strchr(npos,' ') + 1;
  4117. *(starpos) = '\0';
  4118. }
  4119. card.openFile(strchr_pointer+4,false);
  4120. break;
  4121. case 29: //M29 - Stop SD write
  4122. //processed in write to file routine above
  4123. //card,saving = false;
  4124. break;
  4125. case 30: //M30 <filename> Delete File
  4126. if (card.cardOK){
  4127. card.closefile();
  4128. starpos = (strchr(strchr_pointer + 4,'*'));
  4129. if(starpos != NULL){
  4130. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4131. strchr_pointer = strchr(npos,' ') + 1;
  4132. *(starpos) = '\0';
  4133. }
  4134. card.removeFile(strchr_pointer + 4);
  4135. }
  4136. break;
  4137. case 32: //M32 - Select file and start SD print
  4138. {
  4139. if(card.sdprinting) {
  4140. st_synchronize();
  4141. }
  4142. starpos = (strchr(strchr_pointer + 4,'*'));
  4143. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4144. if(namestartpos==NULL)
  4145. {
  4146. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4147. }
  4148. else
  4149. namestartpos++; //to skip the '!'
  4150. if(starpos!=NULL)
  4151. *(starpos)='\0';
  4152. bool call_procedure=(code_seen('P'));
  4153. if(strchr_pointer>namestartpos)
  4154. call_procedure=false; //false alert, 'P' found within filename
  4155. if( card.cardOK )
  4156. {
  4157. card.openFile(namestartpos,true,!call_procedure);
  4158. if(code_seen('S'))
  4159. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4160. card.setIndex(code_value_long());
  4161. card.startFileprint();
  4162. if(!call_procedure)
  4163. starttime=millis(); //procedure calls count as normal print time.
  4164. }
  4165. } break;
  4166. case 928: //M928 - Start SD write
  4167. starpos = (strchr(strchr_pointer + 5,'*'));
  4168. if(starpos != NULL){
  4169. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4170. strchr_pointer = strchr(npos,' ') + 1;
  4171. *(starpos) = '\0';
  4172. }
  4173. card.openLogFile(strchr_pointer+5);
  4174. break;
  4175. #endif //SDSUPPORT
  4176. case 31: //M31 take time since the start of the SD print or an M109 command
  4177. {
  4178. stoptime=millis();
  4179. char time[30];
  4180. unsigned long t=(stoptime-starttime)/1000;
  4181. int sec,min;
  4182. min=t/60;
  4183. sec=t%60;
  4184. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4185. SERIAL_ECHO_START;
  4186. SERIAL_ECHOLN(time);
  4187. lcd_setstatus(time);
  4188. autotempShutdown();
  4189. }
  4190. break;
  4191. #ifndef _DISABLE_M42_M226
  4192. case 42: //M42 -Change pin status via gcode
  4193. if (code_seen('S'))
  4194. {
  4195. int pin_status = code_value();
  4196. int pin_number = LED_PIN;
  4197. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4198. pin_number = code_value();
  4199. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4200. {
  4201. if (sensitive_pins[i] == pin_number)
  4202. {
  4203. pin_number = -1;
  4204. break;
  4205. }
  4206. }
  4207. #if defined(FAN_PIN) && FAN_PIN > -1
  4208. if (pin_number == FAN_PIN)
  4209. fanSpeed = pin_status;
  4210. #endif
  4211. if (pin_number > -1)
  4212. {
  4213. pinMode(pin_number, OUTPUT);
  4214. digitalWrite(pin_number, pin_status);
  4215. analogWrite(pin_number, pin_status);
  4216. }
  4217. }
  4218. break;
  4219. #endif //_DISABLE_M42_M226
  4220. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4221. // Reset the baby step value and the baby step applied flag.
  4222. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4223. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4224. // Reset the skew and offset in both RAM and EEPROM.
  4225. reset_bed_offset_and_skew();
  4226. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4227. // the planner will not perform any adjustments in the XY plane.
  4228. // Wait for the motors to stop and update the current position with the absolute values.
  4229. world2machine_revert_to_uncorrected();
  4230. break;
  4231. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4232. {
  4233. int8_t verbosity_level = 0;
  4234. bool only_Z = code_seen('Z');
  4235. #ifdef SUPPORT_VERBOSITY
  4236. if (code_seen('V'))
  4237. {
  4238. // Just 'V' without a number counts as V1.
  4239. char c = strchr_pointer[1];
  4240. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4241. }
  4242. #endif //SUPPORT_VERBOSITY
  4243. gcode_M45(only_Z, verbosity_level);
  4244. }
  4245. break;
  4246. /*
  4247. case 46:
  4248. {
  4249. // M46: Prusa3D: Show the assigned IP address.
  4250. uint8_t ip[4];
  4251. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4252. if (hasIP) {
  4253. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4254. SERIAL_ECHO(int(ip[0]));
  4255. SERIAL_ECHOPGM(".");
  4256. SERIAL_ECHO(int(ip[1]));
  4257. SERIAL_ECHOPGM(".");
  4258. SERIAL_ECHO(int(ip[2]));
  4259. SERIAL_ECHOPGM(".");
  4260. SERIAL_ECHO(int(ip[3]));
  4261. SERIAL_ECHOLNPGM("");
  4262. } else {
  4263. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4264. }
  4265. break;
  4266. }
  4267. */
  4268. case 47:
  4269. // M47: Prusa3D: Show end stops dialog on the display.
  4270. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4271. lcd_diag_show_end_stops();
  4272. KEEPALIVE_STATE(IN_HANDLER);
  4273. break;
  4274. #if 0
  4275. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4276. {
  4277. // Disable the default update procedure of the display. We will do a modal dialog.
  4278. lcd_update_enable(false);
  4279. // Let the planner use the uncorrected coordinates.
  4280. mbl.reset();
  4281. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4282. // the planner will not perform any adjustments in the XY plane.
  4283. // Wait for the motors to stop and update the current position with the absolute values.
  4284. world2machine_revert_to_uncorrected();
  4285. // Move the print head close to the bed.
  4286. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4287. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4288. st_synchronize();
  4289. // Home in the XY plane.
  4290. set_destination_to_current();
  4291. setup_for_endstop_move();
  4292. home_xy();
  4293. int8_t verbosity_level = 0;
  4294. if (code_seen('V')) {
  4295. // Just 'V' without a number counts as V1.
  4296. char c = strchr_pointer[1];
  4297. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4298. }
  4299. bool success = scan_bed_induction_points(verbosity_level);
  4300. clean_up_after_endstop_move();
  4301. // Print head up.
  4302. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4304. st_synchronize();
  4305. lcd_update_enable(true);
  4306. break;
  4307. }
  4308. #endif
  4309. // M48 Z-Probe repeatability measurement function.
  4310. //
  4311. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4312. //
  4313. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4314. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4315. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4316. // regenerated.
  4317. //
  4318. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4319. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4320. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4321. //
  4322. #ifdef ENABLE_AUTO_BED_LEVELING
  4323. #ifdef Z_PROBE_REPEATABILITY_TEST
  4324. case 48: // M48 Z-Probe repeatability
  4325. {
  4326. #if Z_MIN_PIN == -1
  4327. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4328. #endif
  4329. double sum=0.0;
  4330. double mean=0.0;
  4331. double sigma=0.0;
  4332. double sample_set[50];
  4333. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4334. double X_current, Y_current, Z_current;
  4335. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4336. if (code_seen('V') || code_seen('v')) {
  4337. verbose_level = code_value();
  4338. if (verbose_level<0 || verbose_level>4 ) {
  4339. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4340. goto Sigma_Exit;
  4341. }
  4342. }
  4343. if (verbose_level > 0) {
  4344. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4345. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4346. }
  4347. if (code_seen('n')) {
  4348. n_samples = code_value();
  4349. if (n_samples<4 || n_samples>50 ) {
  4350. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4351. goto Sigma_Exit;
  4352. }
  4353. }
  4354. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4355. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4356. Z_current = st_get_position_mm(Z_AXIS);
  4357. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4358. ext_position = st_get_position_mm(E_AXIS);
  4359. if (code_seen('X') || code_seen('x') ) {
  4360. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4361. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4362. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4363. goto Sigma_Exit;
  4364. }
  4365. }
  4366. if (code_seen('Y') || code_seen('y') ) {
  4367. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4368. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4369. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4370. goto Sigma_Exit;
  4371. }
  4372. }
  4373. if (code_seen('L') || code_seen('l') ) {
  4374. n_legs = code_value();
  4375. if ( n_legs==1 )
  4376. n_legs = 2;
  4377. if ( n_legs<0 || n_legs>15 ) {
  4378. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4379. goto Sigma_Exit;
  4380. }
  4381. }
  4382. //
  4383. // Do all the preliminary setup work. First raise the probe.
  4384. //
  4385. st_synchronize();
  4386. plan_bed_level_matrix.set_to_identity();
  4387. plan_buffer_line( X_current, Y_current, Z_start_location,
  4388. ext_position,
  4389. homing_feedrate[Z_AXIS]/60,
  4390. active_extruder);
  4391. st_synchronize();
  4392. //
  4393. // Now get everything to the specified probe point So we can safely do a probe to
  4394. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4395. // use that as a starting point for each probe.
  4396. //
  4397. if (verbose_level > 2)
  4398. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4399. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4400. ext_position,
  4401. homing_feedrate[X_AXIS]/60,
  4402. active_extruder);
  4403. st_synchronize();
  4404. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4405. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4406. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4407. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4408. //
  4409. // OK, do the inital probe to get us close to the bed.
  4410. // Then retrace the right amount and use that in subsequent probes
  4411. //
  4412. setup_for_endstop_move();
  4413. run_z_probe();
  4414. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4415. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4416. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4417. ext_position,
  4418. homing_feedrate[X_AXIS]/60,
  4419. active_extruder);
  4420. st_synchronize();
  4421. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4422. for( n=0; n<n_samples; n++) {
  4423. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4424. if ( n_legs) {
  4425. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4426. int rotational_direction, l;
  4427. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4428. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4429. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4430. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4431. //SERIAL_ECHOPAIR(" theta: ",theta);
  4432. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4433. //SERIAL_PROTOCOLLNPGM("");
  4434. for( l=0; l<n_legs-1; l++) {
  4435. if (rotational_direction==1)
  4436. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4437. else
  4438. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4439. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4440. if ( radius<0.0 )
  4441. radius = -radius;
  4442. X_current = X_probe_location + cos(theta) * radius;
  4443. Y_current = Y_probe_location + sin(theta) * radius;
  4444. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4445. X_current = X_MIN_POS;
  4446. if ( X_current>X_MAX_POS)
  4447. X_current = X_MAX_POS;
  4448. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4449. Y_current = Y_MIN_POS;
  4450. if ( Y_current>Y_MAX_POS)
  4451. Y_current = Y_MAX_POS;
  4452. if (verbose_level>3 ) {
  4453. SERIAL_ECHOPAIR("x: ", X_current);
  4454. SERIAL_ECHOPAIR("y: ", Y_current);
  4455. SERIAL_PROTOCOLLNPGM("");
  4456. }
  4457. do_blocking_move_to( X_current, Y_current, Z_current );
  4458. }
  4459. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4460. }
  4461. setup_for_endstop_move();
  4462. run_z_probe();
  4463. sample_set[n] = current_position[Z_AXIS];
  4464. //
  4465. // Get the current mean for the data points we have so far
  4466. //
  4467. sum=0.0;
  4468. for( j=0; j<=n; j++) {
  4469. sum = sum + sample_set[j];
  4470. }
  4471. mean = sum / (double (n+1));
  4472. //
  4473. // Now, use that mean to calculate the standard deviation for the
  4474. // data points we have so far
  4475. //
  4476. sum=0.0;
  4477. for( j=0; j<=n; j++) {
  4478. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4479. }
  4480. sigma = sqrt( sum / (double (n+1)) );
  4481. if (verbose_level > 1) {
  4482. SERIAL_PROTOCOL(n+1);
  4483. SERIAL_PROTOCOL(" of ");
  4484. SERIAL_PROTOCOL(n_samples);
  4485. SERIAL_PROTOCOLPGM(" z: ");
  4486. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4487. }
  4488. if (verbose_level > 2) {
  4489. SERIAL_PROTOCOL(" mean: ");
  4490. SERIAL_PROTOCOL_F(mean,6);
  4491. SERIAL_PROTOCOL(" sigma: ");
  4492. SERIAL_PROTOCOL_F(sigma,6);
  4493. }
  4494. if (verbose_level > 0)
  4495. SERIAL_PROTOCOLPGM("\n");
  4496. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4497. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4498. st_synchronize();
  4499. }
  4500. delay(1000);
  4501. clean_up_after_endstop_move();
  4502. // enable_endstops(true);
  4503. if (verbose_level > 0) {
  4504. SERIAL_PROTOCOLPGM("Mean: ");
  4505. SERIAL_PROTOCOL_F(mean, 6);
  4506. SERIAL_PROTOCOLPGM("\n");
  4507. }
  4508. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4509. SERIAL_PROTOCOL_F(sigma, 6);
  4510. SERIAL_PROTOCOLPGM("\n\n");
  4511. Sigma_Exit:
  4512. break;
  4513. }
  4514. #endif // Z_PROBE_REPEATABILITY_TEST
  4515. #endif // ENABLE_AUTO_BED_LEVELING
  4516. case 73: //M73 show percent done and time remaining
  4517. if(code_seen('P')) print_percent_done_normal = code_value();
  4518. if(code_seen('R')) print_time_remaining_normal = code_value();
  4519. if(code_seen('Q')) print_percent_done_silent = code_value();
  4520. if(code_seen('S')) print_time_remaining_silent = code_value();
  4521. {
  4522. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4523. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4524. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4525. }
  4526. break;
  4527. case 104: // M104
  4528. if(setTargetedHotend(104)){
  4529. break;
  4530. }
  4531. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4532. setWatch();
  4533. break;
  4534. case 112: // M112 -Emergency Stop
  4535. kill(_n(""), 3);
  4536. break;
  4537. case 140: // M140 set bed temp
  4538. if (code_seen('S')) setTargetBed(code_value());
  4539. break;
  4540. case 105 : // M105
  4541. if(setTargetedHotend(105)){
  4542. break;
  4543. }
  4544. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4545. SERIAL_PROTOCOLPGM("ok T:");
  4546. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4547. SERIAL_PROTOCOLPGM(" /");
  4548. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4549. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4550. SERIAL_PROTOCOLPGM(" B:");
  4551. SERIAL_PROTOCOL_F(degBed(),1);
  4552. SERIAL_PROTOCOLPGM(" /");
  4553. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4554. #endif //TEMP_BED_PIN
  4555. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4556. SERIAL_PROTOCOLPGM(" T");
  4557. SERIAL_PROTOCOL(cur_extruder);
  4558. SERIAL_PROTOCOLPGM(":");
  4559. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4560. SERIAL_PROTOCOLPGM(" /");
  4561. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4562. }
  4563. #else
  4564. SERIAL_ERROR_START;
  4565. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4566. #endif
  4567. SERIAL_PROTOCOLPGM(" @:");
  4568. #ifdef EXTRUDER_WATTS
  4569. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4570. SERIAL_PROTOCOLPGM("W");
  4571. #else
  4572. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4573. #endif
  4574. SERIAL_PROTOCOLPGM(" B@:");
  4575. #ifdef BED_WATTS
  4576. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4577. SERIAL_PROTOCOLPGM("W");
  4578. #else
  4579. SERIAL_PROTOCOL(getHeaterPower(-1));
  4580. #endif
  4581. #ifdef PINDA_THERMISTOR
  4582. SERIAL_PROTOCOLPGM(" P:");
  4583. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4584. #endif //PINDA_THERMISTOR
  4585. #ifdef AMBIENT_THERMISTOR
  4586. SERIAL_PROTOCOLPGM(" A:");
  4587. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4588. #endif //AMBIENT_THERMISTOR
  4589. #ifdef SHOW_TEMP_ADC_VALUES
  4590. {float raw = 0.0;
  4591. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4592. SERIAL_PROTOCOLPGM(" ADC B:");
  4593. SERIAL_PROTOCOL_F(degBed(),1);
  4594. SERIAL_PROTOCOLPGM("C->");
  4595. raw = rawBedTemp();
  4596. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4597. SERIAL_PROTOCOLPGM(" Rb->");
  4598. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4599. SERIAL_PROTOCOLPGM(" Rxb->");
  4600. SERIAL_PROTOCOL_F(raw, 5);
  4601. #endif
  4602. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4603. SERIAL_PROTOCOLPGM(" T");
  4604. SERIAL_PROTOCOL(cur_extruder);
  4605. SERIAL_PROTOCOLPGM(":");
  4606. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4607. SERIAL_PROTOCOLPGM("C->");
  4608. raw = rawHotendTemp(cur_extruder);
  4609. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4610. SERIAL_PROTOCOLPGM(" Rt");
  4611. SERIAL_PROTOCOL(cur_extruder);
  4612. SERIAL_PROTOCOLPGM("->");
  4613. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4614. SERIAL_PROTOCOLPGM(" Rx");
  4615. SERIAL_PROTOCOL(cur_extruder);
  4616. SERIAL_PROTOCOLPGM("->");
  4617. SERIAL_PROTOCOL_F(raw, 5);
  4618. }}
  4619. #endif
  4620. SERIAL_PROTOCOLLN("");
  4621. KEEPALIVE_STATE(NOT_BUSY);
  4622. return;
  4623. break;
  4624. case 109:
  4625. {// M109 - Wait for extruder heater to reach target.
  4626. if(setTargetedHotend(109)){
  4627. break;
  4628. }
  4629. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4630. heating_status = 1;
  4631. if (farm_mode) { prusa_statistics(1); };
  4632. #ifdef AUTOTEMP
  4633. autotemp_enabled=false;
  4634. #endif
  4635. if (code_seen('S')) {
  4636. setTargetHotend(code_value(), tmp_extruder);
  4637. CooldownNoWait = true;
  4638. } else if (code_seen('R')) {
  4639. setTargetHotend(code_value(), tmp_extruder);
  4640. CooldownNoWait = false;
  4641. }
  4642. #ifdef AUTOTEMP
  4643. if (code_seen('S')) autotemp_min=code_value();
  4644. if (code_seen('B')) autotemp_max=code_value();
  4645. if (code_seen('F'))
  4646. {
  4647. autotemp_factor=code_value();
  4648. autotemp_enabled=true;
  4649. }
  4650. #endif
  4651. setWatch();
  4652. codenum = millis();
  4653. /* See if we are heating up or cooling down */
  4654. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4655. KEEPALIVE_STATE(NOT_BUSY);
  4656. cancel_heatup = false;
  4657. wait_for_heater(codenum); //loops until target temperature is reached
  4658. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4659. KEEPALIVE_STATE(IN_HANDLER);
  4660. heating_status = 2;
  4661. if (farm_mode) { prusa_statistics(2); };
  4662. //starttime=millis();
  4663. previous_millis_cmd = millis();
  4664. }
  4665. break;
  4666. case 190: // M190 - Wait for bed heater to reach target.
  4667. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4668. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4669. heating_status = 3;
  4670. if (farm_mode) { prusa_statistics(1); };
  4671. if (code_seen('S'))
  4672. {
  4673. setTargetBed(code_value());
  4674. CooldownNoWait = true;
  4675. }
  4676. else if (code_seen('R'))
  4677. {
  4678. setTargetBed(code_value());
  4679. CooldownNoWait = false;
  4680. }
  4681. codenum = millis();
  4682. cancel_heatup = false;
  4683. target_direction = isHeatingBed(); // true if heating, false if cooling
  4684. KEEPALIVE_STATE(NOT_BUSY);
  4685. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4686. {
  4687. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4688. {
  4689. if (!farm_mode) {
  4690. float tt = degHotend(active_extruder);
  4691. SERIAL_PROTOCOLPGM("T:");
  4692. SERIAL_PROTOCOL(tt);
  4693. SERIAL_PROTOCOLPGM(" E:");
  4694. SERIAL_PROTOCOL((int)active_extruder);
  4695. SERIAL_PROTOCOLPGM(" B:");
  4696. SERIAL_PROTOCOL_F(degBed(), 1);
  4697. SERIAL_PROTOCOLLN("");
  4698. }
  4699. codenum = millis();
  4700. }
  4701. manage_heater();
  4702. manage_inactivity();
  4703. lcd_update(0);
  4704. }
  4705. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4706. KEEPALIVE_STATE(IN_HANDLER);
  4707. heating_status = 4;
  4708. previous_millis_cmd = millis();
  4709. #endif
  4710. break;
  4711. #if defined(FAN_PIN) && FAN_PIN > -1
  4712. case 106: //M106 Fan On
  4713. if (code_seen('S')){
  4714. fanSpeed=constrain(code_value(),0,255);
  4715. }
  4716. else {
  4717. fanSpeed=255;
  4718. }
  4719. break;
  4720. case 107: //M107 Fan Off
  4721. fanSpeed = 0;
  4722. break;
  4723. #endif //FAN_PIN
  4724. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4725. case 80: // M80 - Turn on Power Supply
  4726. SET_OUTPUT(PS_ON_PIN); //GND
  4727. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4728. // If you have a switch on suicide pin, this is useful
  4729. // if you want to start another print with suicide feature after
  4730. // a print without suicide...
  4731. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4732. SET_OUTPUT(SUICIDE_PIN);
  4733. WRITE(SUICIDE_PIN, HIGH);
  4734. #endif
  4735. powersupply = true;
  4736. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4737. lcd_update(0);
  4738. break;
  4739. #endif
  4740. case 81: // M81 - Turn off Power Supply
  4741. disable_heater();
  4742. st_synchronize();
  4743. disable_e0();
  4744. disable_e1();
  4745. disable_e2();
  4746. finishAndDisableSteppers();
  4747. fanSpeed = 0;
  4748. delay(1000); // Wait a little before to switch off
  4749. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4750. st_synchronize();
  4751. suicide();
  4752. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4753. SET_OUTPUT(PS_ON_PIN);
  4754. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4755. #endif
  4756. powersupply = false;
  4757. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4758. lcd_update(0);
  4759. break;
  4760. case 82:
  4761. axis_relative_modes[3] = false;
  4762. break;
  4763. case 83:
  4764. axis_relative_modes[3] = true;
  4765. break;
  4766. case 18: //compatibility
  4767. case 84: // M84
  4768. if(code_seen('S')){
  4769. stepper_inactive_time = code_value() * 1000;
  4770. }
  4771. else
  4772. {
  4773. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4774. if(all_axis)
  4775. {
  4776. st_synchronize();
  4777. disable_e0();
  4778. disable_e1();
  4779. disable_e2();
  4780. finishAndDisableSteppers();
  4781. }
  4782. else
  4783. {
  4784. st_synchronize();
  4785. if (code_seen('X')) disable_x();
  4786. if (code_seen('Y')) disable_y();
  4787. if (code_seen('Z')) disable_z();
  4788. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4789. if (code_seen('E')) {
  4790. disable_e0();
  4791. disable_e1();
  4792. disable_e2();
  4793. }
  4794. #endif
  4795. }
  4796. }
  4797. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4798. print_time_remaining_init();
  4799. snmm_filaments_used = 0;
  4800. break;
  4801. case 85: // M85
  4802. if(code_seen('S')) {
  4803. max_inactive_time = code_value() * 1000;
  4804. }
  4805. break;
  4806. #ifdef SAFETYTIMER
  4807. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4808. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4809. if (code_seen('S')) {
  4810. safetytimer_inactive_time = code_value() * 1000;
  4811. safetyTimer.start();
  4812. }
  4813. break;
  4814. #endif
  4815. case 92: // M92
  4816. for(int8_t i=0; i < NUM_AXIS; i++)
  4817. {
  4818. if(code_seen(axis_codes[i]))
  4819. {
  4820. if(i == 3) { // E
  4821. float value = code_value();
  4822. if(value < 20.0) {
  4823. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4824. max_jerk[E_AXIS] *= factor;
  4825. max_feedrate[i] *= factor;
  4826. axis_steps_per_sqr_second[i] *= factor;
  4827. }
  4828. axis_steps_per_unit[i] = value;
  4829. }
  4830. else {
  4831. axis_steps_per_unit[i] = code_value();
  4832. }
  4833. }
  4834. }
  4835. break;
  4836. case 110: // M110 - reset line pos
  4837. if (code_seen('N'))
  4838. gcode_LastN = code_value_long();
  4839. break;
  4840. #ifdef HOST_KEEPALIVE_FEATURE
  4841. case 113: // M113 - Get or set Host Keepalive interval
  4842. if (code_seen('S')) {
  4843. host_keepalive_interval = (uint8_t)code_value_short();
  4844. // NOMORE(host_keepalive_interval, 60);
  4845. }
  4846. else {
  4847. SERIAL_ECHO_START;
  4848. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4849. SERIAL_PROTOCOLLN("");
  4850. }
  4851. break;
  4852. #endif
  4853. case 115: // M115
  4854. if (code_seen('V')) {
  4855. // Report the Prusa version number.
  4856. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4857. } else if (code_seen('U')) {
  4858. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4859. // pause the print and ask the user to upgrade the firmware.
  4860. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4861. } else {
  4862. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4863. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4864. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4865. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4866. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4867. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4868. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4869. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4870. SERIAL_ECHOPGM(" UUID:");
  4871. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4872. }
  4873. break;
  4874. /* case 117: // M117 display message
  4875. starpos = (strchr(strchr_pointer + 5,'*'));
  4876. if(starpos!=NULL)
  4877. *(starpos)='\0';
  4878. lcd_setstatus(strchr_pointer + 5);
  4879. break;*/
  4880. case 114: // M114
  4881. gcode_M114();
  4882. break;
  4883. case 120: // M120
  4884. enable_endstops(false) ;
  4885. break;
  4886. case 121: // M121
  4887. enable_endstops(true) ;
  4888. break;
  4889. case 119: // M119
  4890. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4891. SERIAL_PROTOCOLLN("");
  4892. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4893. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4894. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4895. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4896. }else{
  4897. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4898. }
  4899. SERIAL_PROTOCOLLN("");
  4900. #endif
  4901. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4902. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4903. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4904. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4905. }else{
  4906. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4907. }
  4908. SERIAL_PROTOCOLLN("");
  4909. #endif
  4910. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4911. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4912. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4913. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4914. }else{
  4915. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4916. }
  4917. SERIAL_PROTOCOLLN("");
  4918. #endif
  4919. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4920. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4921. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4922. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4923. }else{
  4924. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4925. }
  4926. SERIAL_PROTOCOLLN("");
  4927. #endif
  4928. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4929. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4930. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4931. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4932. }else{
  4933. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4934. }
  4935. SERIAL_PROTOCOLLN("");
  4936. #endif
  4937. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4938. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4939. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4940. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4941. }else{
  4942. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4943. }
  4944. SERIAL_PROTOCOLLN("");
  4945. #endif
  4946. break;
  4947. //TODO: update for all axis, use for loop
  4948. #ifdef BLINKM
  4949. case 150: // M150
  4950. {
  4951. byte red;
  4952. byte grn;
  4953. byte blu;
  4954. if(code_seen('R')) red = code_value();
  4955. if(code_seen('U')) grn = code_value();
  4956. if(code_seen('B')) blu = code_value();
  4957. SendColors(red,grn,blu);
  4958. }
  4959. break;
  4960. #endif //BLINKM
  4961. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4962. {
  4963. tmp_extruder = active_extruder;
  4964. if(code_seen('T')) {
  4965. tmp_extruder = code_value();
  4966. if(tmp_extruder >= EXTRUDERS) {
  4967. SERIAL_ECHO_START;
  4968. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4969. break;
  4970. }
  4971. }
  4972. float area = .0;
  4973. if(code_seen('D')) {
  4974. float diameter = (float)code_value();
  4975. if (diameter == 0.0) {
  4976. // setting any extruder filament size disables volumetric on the assumption that
  4977. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4978. // for all extruders
  4979. volumetric_enabled = false;
  4980. } else {
  4981. filament_size[tmp_extruder] = (float)code_value();
  4982. // make sure all extruders have some sane value for the filament size
  4983. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4984. #if EXTRUDERS > 1
  4985. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4986. #if EXTRUDERS > 2
  4987. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4988. #endif
  4989. #endif
  4990. volumetric_enabled = true;
  4991. }
  4992. } else {
  4993. //reserved for setting filament diameter via UFID or filament measuring device
  4994. break;
  4995. }
  4996. calculate_extruder_multipliers();
  4997. }
  4998. break;
  4999. case 201: // M201
  5000. for(int8_t i=0; i < NUM_AXIS; i++)
  5001. {
  5002. if(code_seen(axis_codes[i]))
  5003. {
  5004. max_acceleration_units_per_sq_second[i] = code_value();
  5005. }
  5006. }
  5007. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5008. reset_acceleration_rates();
  5009. break;
  5010. #if 0 // Not used for Sprinter/grbl gen6
  5011. case 202: // M202
  5012. for(int8_t i=0; i < NUM_AXIS; i++) {
  5013. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5014. }
  5015. break;
  5016. #endif
  5017. case 203: // M203 max feedrate mm/sec
  5018. for(int8_t i=0; i < NUM_AXIS; i++) {
  5019. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5020. }
  5021. break;
  5022. case 204: // M204 acclereration S normal moves T filmanent only moves
  5023. {
  5024. if(code_seen('S')) acceleration = code_value() ;
  5025. if(code_seen('T')) retract_acceleration = code_value() ;
  5026. }
  5027. break;
  5028. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5029. {
  5030. if(code_seen('S')) minimumfeedrate = code_value();
  5031. if(code_seen('T')) mintravelfeedrate = code_value();
  5032. if(code_seen('B')) minsegmenttime = code_value() ;
  5033. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5034. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5035. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5036. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5037. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5038. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5039. }
  5040. break;
  5041. case 206: // M206 additional homing offset
  5042. for(int8_t i=0; i < 3; i++)
  5043. {
  5044. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5045. }
  5046. break;
  5047. #ifdef FWRETRACT
  5048. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5049. {
  5050. if(code_seen('S'))
  5051. {
  5052. retract_length = code_value() ;
  5053. }
  5054. if(code_seen('F'))
  5055. {
  5056. retract_feedrate = code_value()/60 ;
  5057. }
  5058. if(code_seen('Z'))
  5059. {
  5060. retract_zlift = code_value() ;
  5061. }
  5062. }break;
  5063. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5064. {
  5065. if(code_seen('S'))
  5066. {
  5067. retract_recover_length = code_value() ;
  5068. }
  5069. if(code_seen('F'))
  5070. {
  5071. retract_recover_feedrate = code_value()/60 ;
  5072. }
  5073. }break;
  5074. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5075. {
  5076. if(code_seen('S'))
  5077. {
  5078. int t= code_value() ;
  5079. switch(t)
  5080. {
  5081. case 0:
  5082. {
  5083. autoretract_enabled=false;
  5084. retracted[0]=false;
  5085. #if EXTRUDERS > 1
  5086. retracted[1]=false;
  5087. #endif
  5088. #if EXTRUDERS > 2
  5089. retracted[2]=false;
  5090. #endif
  5091. }break;
  5092. case 1:
  5093. {
  5094. autoretract_enabled=true;
  5095. retracted[0]=false;
  5096. #if EXTRUDERS > 1
  5097. retracted[1]=false;
  5098. #endif
  5099. #if EXTRUDERS > 2
  5100. retracted[2]=false;
  5101. #endif
  5102. }break;
  5103. default:
  5104. SERIAL_ECHO_START;
  5105. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5106. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5107. SERIAL_ECHOLNPGM("\"(1)");
  5108. }
  5109. }
  5110. }break;
  5111. #endif // FWRETRACT
  5112. #if EXTRUDERS > 1
  5113. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5114. {
  5115. if(setTargetedHotend(218)){
  5116. break;
  5117. }
  5118. if(code_seen('X'))
  5119. {
  5120. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5121. }
  5122. if(code_seen('Y'))
  5123. {
  5124. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5125. }
  5126. SERIAL_ECHO_START;
  5127. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5128. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5129. {
  5130. SERIAL_ECHO(" ");
  5131. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5132. SERIAL_ECHO(",");
  5133. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5134. }
  5135. SERIAL_ECHOLN("");
  5136. }break;
  5137. #endif
  5138. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5139. {
  5140. if(code_seen('S'))
  5141. {
  5142. feedmultiply = code_value() ;
  5143. }
  5144. }
  5145. break;
  5146. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5147. {
  5148. if(code_seen('S'))
  5149. {
  5150. int tmp_code = code_value();
  5151. if (code_seen('T'))
  5152. {
  5153. if(setTargetedHotend(221)){
  5154. break;
  5155. }
  5156. extruder_multiply[tmp_extruder] = tmp_code;
  5157. }
  5158. else
  5159. {
  5160. extrudemultiply = tmp_code ;
  5161. }
  5162. }
  5163. calculate_extruder_multipliers();
  5164. }
  5165. break;
  5166. #ifndef _DISABLE_M42_M226
  5167. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5168. {
  5169. if(code_seen('P')){
  5170. int pin_number = code_value(); // pin number
  5171. int pin_state = -1; // required pin state - default is inverted
  5172. if(code_seen('S')) pin_state = code_value(); // required pin state
  5173. if(pin_state >= -1 && pin_state <= 1){
  5174. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5175. {
  5176. if (sensitive_pins[i] == pin_number)
  5177. {
  5178. pin_number = -1;
  5179. break;
  5180. }
  5181. }
  5182. if (pin_number > -1)
  5183. {
  5184. int target = LOW;
  5185. st_synchronize();
  5186. pinMode(pin_number, INPUT);
  5187. switch(pin_state){
  5188. case 1:
  5189. target = HIGH;
  5190. break;
  5191. case 0:
  5192. target = LOW;
  5193. break;
  5194. case -1:
  5195. target = !digitalRead(pin_number);
  5196. break;
  5197. }
  5198. while(digitalRead(pin_number) != target){
  5199. manage_heater();
  5200. manage_inactivity();
  5201. lcd_update(0);
  5202. }
  5203. }
  5204. }
  5205. }
  5206. }
  5207. break;
  5208. #endif //_DISABLE_M42_M226
  5209. #if NUM_SERVOS > 0
  5210. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5211. {
  5212. int servo_index = -1;
  5213. int servo_position = 0;
  5214. if (code_seen('P'))
  5215. servo_index = code_value();
  5216. if (code_seen('S')) {
  5217. servo_position = code_value();
  5218. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5219. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5220. servos[servo_index].attach(0);
  5221. #endif
  5222. servos[servo_index].write(servo_position);
  5223. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5224. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5225. servos[servo_index].detach();
  5226. #endif
  5227. }
  5228. else {
  5229. SERIAL_ECHO_START;
  5230. SERIAL_ECHO("Servo ");
  5231. SERIAL_ECHO(servo_index);
  5232. SERIAL_ECHOLN(" out of range");
  5233. }
  5234. }
  5235. else if (servo_index >= 0) {
  5236. SERIAL_PROTOCOL(_T(MSG_OK));
  5237. SERIAL_PROTOCOL(" Servo ");
  5238. SERIAL_PROTOCOL(servo_index);
  5239. SERIAL_PROTOCOL(": ");
  5240. SERIAL_PROTOCOL(servos[servo_index].read());
  5241. SERIAL_PROTOCOLLN("");
  5242. }
  5243. }
  5244. break;
  5245. #endif // NUM_SERVOS > 0
  5246. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5247. case 300: // M300
  5248. {
  5249. int beepS = code_seen('S') ? code_value() : 110;
  5250. int beepP = code_seen('P') ? code_value() : 1000;
  5251. if (beepS > 0)
  5252. {
  5253. #if BEEPER > 0
  5254. tone(BEEPER, beepS);
  5255. delay(beepP);
  5256. noTone(BEEPER);
  5257. #endif
  5258. }
  5259. else
  5260. {
  5261. delay(beepP);
  5262. }
  5263. }
  5264. break;
  5265. #endif // M300
  5266. #ifdef PIDTEMP
  5267. case 301: // M301
  5268. {
  5269. if(code_seen('P')) Kp = code_value();
  5270. if(code_seen('I')) Ki = scalePID_i(code_value());
  5271. if(code_seen('D')) Kd = scalePID_d(code_value());
  5272. #ifdef PID_ADD_EXTRUSION_RATE
  5273. if(code_seen('C')) Kc = code_value();
  5274. #endif
  5275. updatePID();
  5276. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5277. SERIAL_PROTOCOL(" p:");
  5278. SERIAL_PROTOCOL(Kp);
  5279. SERIAL_PROTOCOL(" i:");
  5280. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5281. SERIAL_PROTOCOL(" d:");
  5282. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5283. #ifdef PID_ADD_EXTRUSION_RATE
  5284. SERIAL_PROTOCOL(" c:");
  5285. //Kc does not have scaling applied above, or in resetting defaults
  5286. SERIAL_PROTOCOL(Kc);
  5287. #endif
  5288. SERIAL_PROTOCOLLN("");
  5289. }
  5290. break;
  5291. #endif //PIDTEMP
  5292. #ifdef PIDTEMPBED
  5293. case 304: // M304
  5294. {
  5295. if(code_seen('P')) bedKp = code_value();
  5296. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5297. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5298. updatePID();
  5299. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5300. SERIAL_PROTOCOL(" p:");
  5301. SERIAL_PROTOCOL(bedKp);
  5302. SERIAL_PROTOCOL(" i:");
  5303. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5304. SERIAL_PROTOCOL(" d:");
  5305. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5306. SERIAL_PROTOCOLLN("");
  5307. }
  5308. break;
  5309. #endif //PIDTEMP
  5310. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5311. {
  5312. #ifdef CHDK
  5313. SET_OUTPUT(CHDK);
  5314. WRITE(CHDK, HIGH);
  5315. chdkHigh = millis();
  5316. chdkActive = true;
  5317. #else
  5318. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5319. const uint8_t NUM_PULSES=16;
  5320. const float PULSE_LENGTH=0.01524;
  5321. for(int i=0; i < NUM_PULSES; i++) {
  5322. WRITE(PHOTOGRAPH_PIN, HIGH);
  5323. _delay_ms(PULSE_LENGTH);
  5324. WRITE(PHOTOGRAPH_PIN, LOW);
  5325. _delay_ms(PULSE_LENGTH);
  5326. }
  5327. delay(7.33);
  5328. for(int i=0; i < NUM_PULSES; i++) {
  5329. WRITE(PHOTOGRAPH_PIN, HIGH);
  5330. _delay_ms(PULSE_LENGTH);
  5331. WRITE(PHOTOGRAPH_PIN, LOW);
  5332. _delay_ms(PULSE_LENGTH);
  5333. }
  5334. #endif
  5335. #endif //chdk end if
  5336. }
  5337. break;
  5338. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5339. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5340. {
  5341. float temp = .0;
  5342. if (code_seen('S')) temp=code_value();
  5343. set_extrude_min_temp(temp);
  5344. }
  5345. break;
  5346. #endif
  5347. case 303: // M303 PID autotune
  5348. {
  5349. float temp = 150.0;
  5350. int e=0;
  5351. int c=5;
  5352. if (code_seen('E')) e=code_value();
  5353. if (e<0)
  5354. temp=70;
  5355. if (code_seen('S')) temp=code_value();
  5356. if (code_seen('C')) c=code_value();
  5357. PID_autotune(temp, e, c);
  5358. }
  5359. break;
  5360. case 400: // M400 finish all moves
  5361. {
  5362. st_synchronize();
  5363. }
  5364. break;
  5365. case 500: // M500 Store settings in EEPROM
  5366. {
  5367. Config_StoreSettings(EEPROM_OFFSET);
  5368. }
  5369. break;
  5370. case 501: // M501 Read settings from EEPROM
  5371. {
  5372. Config_RetrieveSettings(EEPROM_OFFSET);
  5373. }
  5374. break;
  5375. case 502: // M502 Revert to default settings
  5376. {
  5377. Config_ResetDefault();
  5378. }
  5379. break;
  5380. case 503: // M503 print settings currently in memory
  5381. {
  5382. Config_PrintSettings();
  5383. }
  5384. break;
  5385. case 509: //M509 Force language selection
  5386. {
  5387. lang_reset();
  5388. SERIAL_ECHO_START;
  5389. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5390. }
  5391. break;
  5392. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5393. case 540:
  5394. {
  5395. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5396. }
  5397. break;
  5398. #endif
  5399. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5400. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5401. {
  5402. float value;
  5403. if (code_seen('Z'))
  5404. {
  5405. value = code_value();
  5406. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5407. {
  5408. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5409. SERIAL_ECHO_START;
  5410. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5411. SERIAL_PROTOCOLLN("");
  5412. }
  5413. else
  5414. {
  5415. SERIAL_ECHO_START;
  5416. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5417. SERIAL_ECHORPGM(MSG_Z_MIN);
  5418. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5419. SERIAL_ECHORPGM(MSG_Z_MAX);
  5420. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5421. SERIAL_PROTOCOLLN("");
  5422. }
  5423. }
  5424. else
  5425. {
  5426. SERIAL_ECHO_START;
  5427. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5428. SERIAL_ECHO(-zprobe_zoffset);
  5429. SERIAL_PROTOCOLLN("");
  5430. }
  5431. break;
  5432. }
  5433. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5434. #ifdef FILAMENTCHANGEENABLE
  5435. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5436. {
  5437. #ifdef PAT9125
  5438. bool old_fsensor_enabled = fsensor_enabled;
  5439. fsensor_enabled = false; //temporary solution for unexpected restarting
  5440. #endif //PAT9125
  5441. st_synchronize();
  5442. float target[4];
  5443. float lastpos[4];
  5444. if (farm_mode)
  5445. {
  5446. prusa_statistics(22);
  5447. }
  5448. feedmultiplyBckp=feedmultiply;
  5449. int8_t TooLowZ = 0;
  5450. float HotendTempBckp = degTargetHotend(active_extruder);
  5451. int fanSpeedBckp = fanSpeed;
  5452. target[X_AXIS]=current_position[X_AXIS];
  5453. target[Y_AXIS]=current_position[Y_AXIS];
  5454. target[Z_AXIS]=current_position[Z_AXIS];
  5455. target[E_AXIS]=current_position[E_AXIS];
  5456. lastpos[X_AXIS]=current_position[X_AXIS];
  5457. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5458. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5459. lastpos[E_AXIS]=current_position[E_AXIS];
  5460. //Restract extruder
  5461. if(code_seen('E'))
  5462. {
  5463. target[E_AXIS]+= code_value();
  5464. }
  5465. else
  5466. {
  5467. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5468. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5469. #endif
  5470. }
  5471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5472. //Lift Z
  5473. if(code_seen('Z'))
  5474. {
  5475. target[Z_AXIS]+= code_value();
  5476. }
  5477. else
  5478. {
  5479. #ifdef FILAMENTCHANGE_ZADD
  5480. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5481. if(target[Z_AXIS] < 10){
  5482. target[Z_AXIS]+= 10 ;
  5483. TooLowZ = 1;
  5484. }else{
  5485. TooLowZ = 0;
  5486. }
  5487. #endif
  5488. }
  5489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5490. //Move XY to side
  5491. if(code_seen('X'))
  5492. {
  5493. target[X_AXIS]+= code_value();
  5494. }
  5495. else
  5496. {
  5497. #ifdef FILAMENTCHANGE_XPOS
  5498. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5499. #endif
  5500. }
  5501. if(code_seen('Y'))
  5502. {
  5503. target[Y_AXIS]= code_value();
  5504. }
  5505. else
  5506. {
  5507. #ifdef FILAMENTCHANGE_YPOS
  5508. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5509. #endif
  5510. }
  5511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5512. st_synchronize();
  5513. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5514. uint8_t cnt = 0;
  5515. int counterBeep = 0;
  5516. fanSpeed = 0;
  5517. unsigned long waiting_start_time = millis();
  5518. uint8_t wait_for_user_state = 0;
  5519. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5520. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5521. //cnt++;
  5522. manage_heater();
  5523. manage_inactivity(true);
  5524. /*#ifdef SNMM
  5525. target[E_AXIS] += 0.002;
  5526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5527. #endif // SNMM*/
  5528. //if (cnt == 0)
  5529. {
  5530. #if BEEPER > 0
  5531. if (counterBeep == 500) {
  5532. counterBeep = 0;
  5533. }
  5534. SET_OUTPUT(BEEPER);
  5535. if (counterBeep == 0) {
  5536. WRITE(BEEPER, HIGH);
  5537. }
  5538. if (counterBeep == 20) {
  5539. WRITE(BEEPER, LOW);
  5540. }
  5541. counterBeep++;
  5542. #else
  5543. #endif
  5544. }
  5545. switch (wait_for_user_state) {
  5546. case 0:
  5547. delay_keep_alive(4);
  5548. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5549. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5550. wait_for_user_state = 1;
  5551. setTargetHotend0(0);
  5552. setTargetHotend1(0);
  5553. setTargetHotend2(0);
  5554. st_synchronize();
  5555. disable_e0();
  5556. disable_e1();
  5557. disable_e2();
  5558. }
  5559. break;
  5560. case 1:
  5561. delay_keep_alive(4);
  5562. if (lcd_clicked()) {
  5563. setTargetHotend(HotendTempBckp, active_extruder);
  5564. lcd_wait_for_heater();
  5565. wait_for_user_state = 2;
  5566. }
  5567. break;
  5568. case 2:
  5569. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5570. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5571. waiting_start_time = millis();
  5572. wait_for_user_state = 0;
  5573. }
  5574. else {
  5575. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5576. lcd_set_cursor(1, 4);
  5577. lcd_print(ftostr3(degHotend(active_extruder)));
  5578. }
  5579. break;
  5580. }
  5581. }
  5582. WRITE(BEEPER, LOW);
  5583. lcd_change_fil_state = 0;
  5584. // Unload filament
  5585. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5586. KEEPALIVE_STATE(IN_HANDLER);
  5587. custom_message = true;
  5588. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5589. if (code_seen('L'))
  5590. {
  5591. target[E_AXIS] += code_value();
  5592. }
  5593. else
  5594. {
  5595. #ifdef SNMM
  5596. #else
  5597. #ifdef FILAMENTCHANGE_FINALRETRACT
  5598. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5599. #endif
  5600. #endif // SNMM
  5601. }
  5602. #ifdef SNMM
  5603. target[E_AXIS] += 12;
  5604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5605. target[E_AXIS] += 6;
  5606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5607. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5609. st_synchronize();
  5610. target[E_AXIS] += (FIL_COOLING);
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5612. target[E_AXIS] += (FIL_COOLING*-1);
  5613. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5614. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5616. st_synchronize();
  5617. #else
  5618. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5619. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5620. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5621. st_synchronize();
  5622. #ifdef TMC2130
  5623. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5624. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5625. #else
  5626. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5627. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5628. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5629. #endif //TMC2130
  5630. target[E_AXIS] -= 45;
  5631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5632. st_synchronize();
  5633. target[E_AXIS] -= 15;
  5634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5635. st_synchronize();
  5636. target[E_AXIS] -= 20;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5638. st_synchronize();
  5639. #ifdef TMC2130
  5640. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5641. #else
  5642. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5643. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5644. else st_current_set(2, tmp_motor_loud[2]);
  5645. #endif //TMC2130
  5646. #endif // SNMM
  5647. //finish moves
  5648. st_synchronize();
  5649. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5650. //disable extruder steppers so filament can be removed
  5651. disable_e0();
  5652. disable_e1();
  5653. disable_e2();
  5654. delay(100);
  5655. WRITE(BEEPER, HIGH);
  5656. counterBeep = 0;
  5657. while(!lcd_clicked() && (counterBeep < 50)) {
  5658. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5659. delay_keep_alive(100);
  5660. counterBeep++;
  5661. }
  5662. WRITE(BEEPER, LOW);
  5663. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5664. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5665. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5666. //lcd_return_to_status();
  5667. lcd_update_enable(true);
  5668. //Wait for user to insert filament
  5669. lcd_wait_interact();
  5670. //load_filament_time = millis();
  5671. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5672. #ifdef PAT9125
  5673. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5674. #endif //PAT9125
  5675. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5676. while(!lcd_clicked())
  5677. {
  5678. manage_heater();
  5679. manage_inactivity(true);
  5680. #ifdef PAT9125
  5681. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5682. {
  5683. tone(BEEPER, 1000);
  5684. delay_keep_alive(50);
  5685. noTone(BEEPER);
  5686. break;
  5687. }
  5688. #endif //PAT9125
  5689. /*#ifdef SNMM
  5690. target[E_AXIS] += 0.002;
  5691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5692. #endif // SNMM*/
  5693. }
  5694. #ifdef PAT9125
  5695. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5696. #endif //PAT9125
  5697. //WRITE(BEEPER, LOW);
  5698. KEEPALIVE_STATE(IN_HANDLER);
  5699. #ifdef SNMM
  5700. display_loading();
  5701. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5702. do {
  5703. target[E_AXIS] += 0.002;
  5704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5705. delay_keep_alive(2);
  5706. } while (!lcd_clicked());
  5707. KEEPALIVE_STATE(IN_HANDLER);
  5708. /*if (millis() - load_filament_time > 2) {
  5709. load_filament_time = millis();
  5710. target[E_AXIS] += 0.001;
  5711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5712. }*/
  5713. //Filament inserted
  5714. //Feed the filament to the end of nozzle quickly
  5715. st_synchronize();
  5716. target[E_AXIS] += bowden_length[snmm_extruder];
  5717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5718. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5720. target[E_AXIS] += 40;
  5721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5722. target[E_AXIS] += 10;
  5723. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5724. #else
  5725. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5726. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5727. #endif // SNMM
  5728. //Extrude some filament
  5729. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5730. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5731. //Wait for user to check the state
  5732. lcd_change_fil_state = 0;
  5733. lcd_loading_filament();
  5734. tone(BEEPER, 500);
  5735. delay_keep_alive(50);
  5736. noTone(BEEPER);
  5737. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5738. lcd_change_fil_state = 0;
  5739. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5740. lcd_alright();
  5741. KEEPALIVE_STATE(IN_HANDLER);
  5742. switch(lcd_change_fil_state){
  5743. // Filament failed to load so load it again
  5744. case 2:
  5745. #ifdef SNMM
  5746. display_loading();
  5747. do {
  5748. target[E_AXIS] += 0.002;
  5749. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5750. delay_keep_alive(2);
  5751. } while (!lcd_clicked());
  5752. st_synchronize();
  5753. target[E_AXIS] += bowden_length[snmm_extruder];
  5754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5755. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5756. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5757. target[E_AXIS] += 40;
  5758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5759. target[E_AXIS] += 10;
  5760. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5761. #else
  5762. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5763. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5764. #endif
  5765. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5767. lcd_loading_filament();
  5768. break;
  5769. // Filament loaded properly but color is not clear
  5770. case 3:
  5771. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5773. lcd_loading_color();
  5774. break;
  5775. // Everything good
  5776. default:
  5777. lcd_change_success();
  5778. lcd_update_enable(true);
  5779. break;
  5780. }
  5781. }
  5782. //Not let's go back to print
  5783. fanSpeed = fanSpeedBckp;
  5784. //Feed a little of filament to stabilize pressure
  5785. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5786. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5787. //Retract
  5788. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5789. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5790. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5791. //Move XY back
  5792. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5793. //Move Z back
  5794. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5795. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5796. //Unretract
  5797. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5798. //Set E position to original
  5799. plan_set_e_position(lastpos[E_AXIS]);
  5800. //Recover feed rate
  5801. feedmultiply=feedmultiplyBckp;
  5802. char cmd[9];
  5803. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5804. enquecommand(cmd);
  5805. lcd_setstatuspgm(_T(WELCOME_MSG));
  5806. custom_message = false;
  5807. custom_message_type = 0;
  5808. #ifdef PAT9125
  5809. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5810. if (fsensor_M600)
  5811. {
  5812. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5813. st_synchronize();
  5814. while (!is_buffer_empty())
  5815. {
  5816. process_commands();
  5817. cmdqueue_pop_front();
  5818. }
  5819. KEEPALIVE_STATE(IN_HANDLER);
  5820. fsensor_enable();
  5821. fsensor_restore_print_and_continue();
  5822. }
  5823. #endif //PAT9125
  5824. }
  5825. break;
  5826. #endif //FILAMENTCHANGEENABLE
  5827. case 601: {
  5828. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5829. }
  5830. break;
  5831. case 602: {
  5832. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5833. }
  5834. break;
  5835. #ifdef PINDA_THERMISTOR
  5836. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5837. {
  5838. int set_target_pinda = 0;
  5839. if (code_seen('S')) {
  5840. set_target_pinda = code_value();
  5841. }
  5842. else {
  5843. break;
  5844. }
  5845. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5846. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5847. SERIAL_PROTOCOL(set_target_pinda);
  5848. SERIAL_PROTOCOLLN("");
  5849. codenum = millis();
  5850. cancel_heatup = false;
  5851. bool is_pinda_cooling = false;
  5852. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5853. is_pinda_cooling = true;
  5854. }
  5855. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5856. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5857. {
  5858. SERIAL_PROTOCOLPGM("P:");
  5859. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5860. SERIAL_PROTOCOLPGM("/");
  5861. SERIAL_PROTOCOL(set_target_pinda);
  5862. SERIAL_PROTOCOLLN("");
  5863. codenum = millis();
  5864. }
  5865. manage_heater();
  5866. manage_inactivity();
  5867. lcd_update(0);
  5868. }
  5869. LCD_MESSAGERPGM(_T(MSG_OK));
  5870. break;
  5871. }
  5872. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5873. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5874. uint8_t cal_status = calibration_status_pinda();
  5875. int16_t usteps = 0;
  5876. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5877. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5878. for (uint8_t i = 0; i < 6; i++)
  5879. {
  5880. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5881. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5882. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5883. SERIAL_PROTOCOLPGM(", ");
  5884. SERIAL_PROTOCOL(35 + (i * 5));
  5885. SERIAL_PROTOCOLPGM(", ");
  5886. SERIAL_PROTOCOL(usteps);
  5887. SERIAL_PROTOCOLPGM(", ");
  5888. SERIAL_PROTOCOL(mm * 1000);
  5889. SERIAL_PROTOCOLLN("");
  5890. }
  5891. }
  5892. else if (code_seen('!')) { // ! - Set factory default values
  5893. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5894. int16_t z_shift = 8; //40C - 20um - 8usteps
  5895. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5896. z_shift = 24; //45C - 60um - 24usteps
  5897. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5898. z_shift = 48; //50C - 120um - 48usteps
  5899. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5900. z_shift = 80; //55C - 200um - 80usteps
  5901. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5902. z_shift = 120; //60C - 300um - 120usteps
  5903. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5904. SERIAL_PROTOCOLLN("factory restored");
  5905. }
  5906. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5907. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5908. int16_t z_shift = 0;
  5909. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5910. SERIAL_PROTOCOLLN("zerorized");
  5911. }
  5912. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5913. int16_t usteps = code_value();
  5914. if (code_seen('I')) {
  5915. byte index = code_value();
  5916. if ((index >= 0) && (index < 5)) {
  5917. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5918. SERIAL_PROTOCOLLN("OK");
  5919. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5920. for (uint8_t i = 0; i < 6; i++)
  5921. {
  5922. usteps = 0;
  5923. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5924. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5925. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5926. SERIAL_PROTOCOLPGM(", ");
  5927. SERIAL_PROTOCOL(35 + (i * 5));
  5928. SERIAL_PROTOCOLPGM(", ");
  5929. SERIAL_PROTOCOL(usteps);
  5930. SERIAL_PROTOCOLPGM(", ");
  5931. SERIAL_PROTOCOL(mm * 1000);
  5932. SERIAL_PROTOCOLLN("");
  5933. }
  5934. }
  5935. }
  5936. }
  5937. else {
  5938. SERIAL_PROTOCOLPGM("no valid command");
  5939. }
  5940. break;
  5941. #endif //PINDA_THERMISTOR
  5942. #ifdef LIN_ADVANCE
  5943. case 900: // M900: Set LIN_ADVANCE options.
  5944. gcode_M900();
  5945. break;
  5946. #endif
  5947. case 907: // M907 Set digital trimpot motor current using axis codes.
  5948. {
  5949. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5950. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5951. if(code_seen('B')) st_current_set(4,code_value());
  5952. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5953. #endif
  5954. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5955. if(code_seen('X')) st_current_set(0, code_value());
  5956. #endif
  5957. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5958. if(code_seen('Z')) st_current_set(1, code_value());
  5959. #endif
  5960. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5961. if(code_seen('E')) st_current_set(2, code_value());
  5962. #endif
  5963. }
  5964. break;
  5965. case 908: // M908 Control digital trimpot directly.
  5966. {
  5967. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5968. uint8_t channel,current;
  5969. if(code_seen('P')) channel=code_value();
  5970. if(code_seen('S')) current=code_value();
  5971. digitalPotWrite(channel, current);
  5972. #endif
  5973. }
  5974. break;
  5975. #ifdef TMC2130
  5976. case 910: // M910 TMC2130 init
  5977. {
  5978. tmc2130_init();
  5979. }
  5980. break;
  5981. case 911: // M911 Set TMC2130 holding currents
  5982. {
  5983. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5984. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5985. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5986. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5987. }
  5988. break;
  5989. case 912: // M912 Set TMC2130 running currents
  5990. {
  5991. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5992. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5993. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5994. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5995. }
  5996. break;
  5997. case 913: // M913 Print TMC2130 currents
  5998. {
  5999. tmc2130_print_currents();
  6000. }
  6001. break;
  6002. case 914: // M914 Set normal mode
  6003. {
  6004. tmc2130_mode = TMC2130_MODE_NORMAL;
  6005. tmc2130_init();
  6006. }
  6007. break;
  6008. case 915: // M915 Set silent mode
  6009. {
  6010. tmc2130_mode = TMC2130_MODE_SILENT;
  6011. tmc2130_init();
  6012. }
  6013. break;
  6014. case 916: // M916 Set sg_thrs
  6015. {
  6016. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6017. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6018. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6019. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6020. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6021. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6022. }
  6023. break;
  6024. case 917: // M917 Set TMC2130 pwm_ampl
  6025. {
  6026. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6027. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6028. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6029. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6030. }
  6031. break;
  6032. case 918: // M918 Set TMC2130 pwm_grad
  6033. {
  6034. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6035. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6036. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6037. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6038. }
  6039. break;
  6040. #endif //TMC2130
  6041. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6042. {
  6043. #ifdef TMC2130
  6044. if(code_seen('E'))
  6045. {
  6046. uint16_t res_new = code_value();
  6047. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6048. {
  6049. st_synchronize();
  6050. uint8_t axis = E_AXIS;
  6051. uint16_t res = tmc2130_get_res(axis);
  6052. tmc2130_set_res(axis, res_new);
  6053. if (res_new > res)
  6054. {
  6055. uint16_t fac = (res_new / res);
  6056. axis_steps_per_unit[axis] *= fac;
  6057. position[E_AXIS] *= fac;
  6058. }
  6059. else
  6060. {
  6061. uint16_t fac = (res / res_new);
  6062. axis_steps_per_unit[axis] /= fac;
  6063. position[E_AXIS] /= fac;
  6064. }
  6065. }
  6066. }
  6067. #else //TMC2130
  6068. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6069. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6070. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6071. if(code_seen('B')) microstep_mode(4,code_value());
  6072. microstep_readings();
  6073. #endif
  6074. #endif //TMC2130
  6075. }
  6076. break;
  6077. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6078. {
  6079. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6080. if(code_seen('S')) switch((int)code_value())
  6081. {
  6082. case 1:
  6083. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6084. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6085. break;
  6086. case 2:
  6087. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6088. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6089. break;
  6090. }
  6091. microstep_readings();
  6092. #endif
  6093. }
  6094. break;
  6095. case 701: //M701: load filament
  6096. {
  6097. gcode_M701();
  6098. }
  6099. break;
  6100. case 702:
  6101. {
  6102. #ifdef SNMM
  6103. if (code_seen('U')) {
  6104. extr_unload_used(); //unload all filaments which were used in current print
  6105. }
  6106. else if (code_seen('C')) {
  6107. extr_unload(); //unload just current filament
  6108. }
  6109. else {
  6110. extr_unload_all(); //unload all filaments
  6111. }
  6112. #else
  6113. #ifdef PAT9125
  6114. bool old_fsensor_enabled = fsensor_enabled;
  6115. fsensor_enabled = false;
  6116. #endif //PAT9125
  6117. custom_message = true;
  6118. custom_message_type = 2;
  6119. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6120. // extr_unload2();
  6121. current_position[E_AXIS] -= 45;
  6122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6123. st_synchronize();
  6124. current_position[E_AXIS] -= 15;
  6125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6126. st_synchronize();
  6127. current_position[E_AXIS] -= 20;
  6128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6129. st_synchronize();
  6130. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6131. //disable extruder steppers so filament can be removed
  6132. disable_e0();
  6133. disable_e1();
  6134. disable_e2();
  6135. delay(100);
  6136. WRITE(BEEPER, HIGH);
  6137. uint8_t counterBeep = 0;
  6138. while (!lcd_clicked() && (counterBeep < 50)) {
  6139. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6140. delay_keep_alive(100);
  6141. counterBeep++;
  6142. }
  6143. WRITE(BEEPER, LOW);
  6144. st_synchronize();
  6145. while (lcd_clicked()) delay_keep_alive(100);
  6146. lcd_update_enable(true);
  6147. lcd_setstatuspgm(_T(WELCOME_MSG));
  6148. custom_message = false;
  6149. custom_message_type = 0;
  6150. #ifdef PAT9125
  6151. fsensor_enabled = old_fsensor_enabled;
  6152. #endif //PAT9125
  6153. #endif
  6154. }
  6155. break;
  6156. case 999: // M999: Restart after being stopped
  6157. Stopped = false;
  6158. lcd_reset_alert_level();
  6159. gcode_LastN = Stopped_gcode_LastN;
  6160. FlushSerialRequestResend();
  6161. break;
  6162. default:
  6163. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6164. }
  6165. } // end if(code_seen('M')) (end of M codes)
  6166. else if(code_seen('T'))
  6167. {
  6168. int index;
  6169. st_synchronize();
  6170. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6171. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6172. SERIAL_ECHOLNPGM("Invalid T code.");
  6173. }
  6174. else {
  6175. if (*(strchr_pointer + index) == '?') {
  6176. tmp_extruder = choose_extruder_menu();
  6177. }
  6178. else {
  6179. tmp_extruder = code_value();
  6180. }
  6181. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6182. #ifdef SNMM_V2
  6183. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6184. switch (tmp_extruder)
  6185. {
  6186. case 1:
  6187. fprintf_P(uart2io, PSTR("T1\n"));
  6188. break;
  6189. case 2:
  6190. fprintf_P(uart2io, PSTR("T2\n"));
  6191. break;
  6192. case 3:
  6193. fprintf_P(uart2io, PSTR("T3\n"));
  6194. break;
  6195. case 4:
  6196. fprintf_P(uart2io, PSTR("T4\n"));
  6197. break;
  6198. default:
  6199. fprintf_P(uart2io, PSTR("T0\n"));
  6200. break;
  6201. }
  6202. // get response
  6203. uart2_rx_clr();
  6204. while (!uart2_rx_ok())
  6205. {
  6206. //printf_P(PSTR("waiting..\n"));
  6207. delay_keep_alive(100);
  6208. }
  6209. #endif
  6210. #ifdef SNMM
  6211. #ifdef LIN_ADVANCE
  6212. if (snmm_extruder != tmp_extruder)
  6213. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6214. #endif
  6215. snmm_extruder = tmp_extruder;
  6216. delay(100);
  6217. disable_e0();
  6218. disable_e1();
  6219. disable_e2();
  6220. pinMode(E_MUX0_PIN, OUTPUT);
  6221. pinMode(E_MUX1_PIN, OUTPUT);
  6222. delay(100);
  6223. SERIAL_ECHO_START;
  6224. SERIAL_ECHO("T:");
  6225. SERIAL_ECHOLN((int)tmp_extruder);
  6226. switch (tmp_extruder) {
  6227. case 1:
  6228. WRITE(E_MUX0_PIN, HIGH);
  6229. WRITE(E_MUX1_PIN, LOW);
  6230. break;
  6231. case 2:
  6232. WRITE(E_MUX0_PIN, LOW);
  6233. WRITE(E_MUX1_PIN, HIGH);
  6234. break;
  6235. case 3:
  6236. WRITE(E_MUX0_PIN, HIGH);
  6237. WRITE(E_MUX1_PIN, HIGH);
  6238. break;
  6239. default:
  6240. WRITE(E_MUX0_PIN, LOW);
  6241. WRITE(E_MUX1_PIN, LOW);
  6242. break;
  6243. }
  6244. delay(100);
  6245. #else
  6246. if (tmp_extruder >= EXTRUDERS) {
  6247. SERIAL_ECHO_START;
  6248. SERIAL_ECHOPGM("T");
  6249. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6250. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6251. }
  6252. else {
  6253. boolean make_move = false;
  6254. if (code_seen('F')) {
  6255. make_move = true;
  6256. next_feedrate = code_value();
  6257. if (next_feedrate > 0.0) {
  6258. feedrate = next_feedrate;
  6259. }
  6260. }
  6261. #if EXTRUDERS > 1
  6262. if (tmp_extruder != active_extruder) {
  6263. // Save current position to return to after applying extruder offset
  6264. memcpy(destination, current_position, sizeof(destination));
  6265. // Offset extruder (only by XY)
  6266. int i;
  6267. for (i = 0; i < 2; i++) {
  6268. current_position[i] = current_position[i] -
  6269. extruder_offset[i][active_extruder] +
  6270. extruder_offset[i][tmp_extruder];
  6271. }
  6272. // Set the new active extruder and position
  6273. active_extruder = tmp_extruder;
  6274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6275. // Move to the old position if 'F' was in the parameters
  6276. if (make_move && Stopped == false) {
  6277. prepare_move();
  6278. }
  6279. }
  6280. #endif
  6281. SERIAL_ECHO_START;
  6282. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6283. SERIAL_PROTOCOLLN((int)active_extruder);
  6284. }
  6285. #endif
  6286. }
  6287. } // end if(code_seen('T')) (end of T codes)
  6288. #ifdef DEBUG_DCODES
  6289. else if (code_seen('D')) // D codes (debug)
  6290. {
  6291. switch((int)code_value())
  6292. {
  6293. case -1: // D-1 - Endless loop
  6294. dcode__1(); break;
  6295. case 0: // D0 - Reset
  6296. dcode_0(); break;
  6297. case 1: // D1 - Clear EEPROM
  6298. dcode_1(); break;
  6299. case 2: // D2 - Read/Write RAM
  6300. dcode_2(); break;
  6301. case 3: // D3 - Read/Write EEPROM
  6302. dcode_3(); break;
  6303. case 4: // D4 - Read/Write PIN
  6304. dcode_4(); break;
  6305. case 5: // D5 - Read/Write FLASH
  6306. // dcode_5(); break;
  6307. break;
  6308. case 6: // D6 - Read/Write external FLASH
  6309. dcode_6(); break;
  6310. case 7: // D7 - Read/Write Bootloader
  6311. dcode_7(); break;
  6312. case 8: // D8 - Read/Write PINDA
  6313. dcode_8(); break;
  6314. case 9: // D9 - Read/Write ADC
  6315. dcode_9(); break;
  6316. case 10: // D10 - XYZ calibration = OK
  6317. dcode_10(); break;
  6318. #ifdef TMC2130
  6319. case 2130: // D9125 - TMC2130
  6320. dcode_2130(); break;
  6321. #endif //TMC2130
  6322. #ifdef PAT9125
  6323. case 9125: // D9125 - PAT9125
  6324. dcode_9125(); break;
  6325. #endif //PAT9125
  6326. }
  6327. }
  6328. #endif //DEBUG_DCODES
  6329. else
  6330. {
  6331. SERIAL_ECHO_START;
  6332. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6333. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6334. SERIAL_ECHOLNPGM("\"(2)");
  6335. }
  6336. KEEPALIVE_STATE(NOT_BUSY);
  6337. ClearToSend();
  6338. }
  6339. void FlushSerialRequestResend()
  6340. {
  6341. //char cmdbuffer[bufindr][100]="Resend:";
  6342. MYSERIAL.flush();
  6343. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6344. }
  6345. // Confirm the execution of a command, if sent from a serial line.
  6346. // Execution of a command from a SD card will not be confirmed.
  6347. void ClearToSend()
  6348. {
  6349. previous_millis_cmd = millis();
  6350. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6351. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6352. }
  6353. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6354. void update_currents() {
  6355. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6356. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6357. float tmp_motor[3];
  6358. //SERIAL_ECHOLNPGM("Currents updated: ");
  6359. if (destination[Z_AXIS] < Z_SILENT) {
  6360. //SERIAL_ECHOLNPGM("LOW");
  6361. for (uint8_t i = 0; i < 3; i++) {
  6362. st_current_set(i, current_low[i]);
  6363. /*MYSERIAL.print(int(i));
  6364. SERIAL_ECHOPGM(": ");
  6365. MYSERIAL.println(current_low[i]);*/
  6366. }
  6367. }
  6368. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6369. //SERIAL_ECHOLNPGM("HIGH");
  6370. for (uint8_t i = 0; i < 3; i++) {
  6371. st_current_set(i, current_high[i]);
  6372. /*MYSERIAL.print(int(i));
  6373. SERIAL_ECHOPGM(": ");
  6374. MYSERIAL.println(current_high[i]);*/
  6375. }
  6376. }
  6377. else {
  6378. for (uint8_t i = 0; i < 3; i++) {
  6379. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6380. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6381. st_current_set(i, tmp_motor[i]);
  6382. /*MYSERIAL.print(int(i));
  6383. SERIAL_ECHOPGM(": ");
  6384. MYSERIAL.println(tmp_motor[i]);*/
  6385. }
  6386. }
  6387. }
  6388. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6389. void get_coordinates()
  6390. {
  6391. bool seen[4]={false,false,false,false};
  6392. for(int8_t i=0; i < NUM_AXIS; i++) {
  6393. if(code_seen(axis_codes[i]))
  6394. {
  6395. bool relative = axis_relative_modes[i] || relative_mode;
  6396. destination[i] = (float)code_value();
  6397. if (i == E_AXIS) {
  6398. float emult = extruder_multiplier[active_extruder];
  6399. if (emult != 1.) {
  6400. if (! relative) {
  6401. destination[i] -= current_position[i];
  6402. relative = true;
  6403. }
  6404. destination[i] *= emult;
  6405. }
  6406. }
  6407. if (relative)
  6408. destination[i] += current_position[i];
  6409. seen[i]=true;
  6410. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6411. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6412. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6413. }
  6414. else destination[i] = current_position[i]; //Are these else lines really needed?
  6415. }
  6416. if(code_seen('F')) {
  6417. next_feedrate = code_value();
  6418. #ifdef MAX_SILENT_FEEDRATE
  6419. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6420. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6421. #endif //MAX_SILENT_FEEDRATE
  6422. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6423. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6424. {
  6425. // float e_max_speed =
  6426. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6427. }
  6428. }
  6429. }
  6430. void get_arc_coordinates()
  6431. {
  6432. #ifdef SF_ARC_FIX
  6433. bool relative_mode_backup = relative_mode;
  6434. relative_mode = true;
  6435. #endif
  6436. get_coordinates();
  6437. #ifdef SF_ARC_FIX
  6438. relative_mode=relative_mode_backup;
  6439. #endif
  6440. if(code_seen('I')) {
  6441. offset[0] = code_value();
  6442. }
  6443. else {
  6444. offset[0] = 0.0;
  6445. }
  6446. if(code_seen('J')) {
  6447. offset[1] = code_value();
  6448. }
  6449. else {
  6450. offset[1] = 0.0;
  6451. }
  6452. }
  6453. void clamp_to_software_endstops(float target[3])
  6454. {
  6455. #ifdef DEBUG_DISABLE_SWLIMITS
  6456. return;
  6457. #endif //DEBUG_DISABLE_SWLIMITS
  6458. world2machine_clamp(target[0], target[1]);
  6459. // Clamp the Z coordinate.
  6460. if (min_software_endstops) {
  6461. float negative_z_offset = 0;
  6462. #ifdef ENABLE_AUTO_BED_LEVELING
  6463. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6464. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6465. #endif
  6466. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6467. }
  6468. if (max_software_endstops) {
  6469. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6470. }
  6471. }
  6472. #ifdef MESH_BED_LEVELING
  6473. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6474. float dx = x - current_position[X_AXIS];
  6475. float dy = y - current_position[Y_AXIS];
  6476. float dz = z - current_position[Z_AXIS];
  6477. int n_segments = 0;
  6478. if (mbl.active) {
  6479. float len = abs(dx) + abs(dy);
  6480. if (len > 0)
  6481. // Split to 3cm segments or shorter.
  6482. n_segments = int(ceil(len / 30.f));
  6483. }
  6484. if (n_segments > 1) {
  6485. float de = e - current_position[E_AXIS];
  6486. for (int i = 1; i < n_segments; ++ i) {
  6487. float t = float(i) / float(n_segments);
  6488. if (saved_printing || (mbl.active == false)) return;
  6489. plan_buffer_line(
  6490. current_position[X_AXIS] + t * dx,
  6491. current_position[Y_AXIS] + t * dy,
  6492. current_position[Z_AXIS] + t * dz,
  6493. current_position[E_AXIS] + t * de,
  6494. feed_rate, extruder);
  6495. }
  6496. }
  6497. // The rest of the path.
  6498. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6499. current_position[X_AXIS] = x;
  6500. current_position[Y_AXIS] = y;
  6501. current_position[Z_AXIS] = z;
  6502. current_position[E_AXIS] = e;
  6503. }
  6504. #endif // MESH_BED_LEVELING
  6505. void prepare_move()
  6506. {
  6507. clamp_to_software_endstops(destination);
  6508. previous_millis_cmd = millis();
  6509. // Do not use feedmultiply for E or Z only moves
  6510. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6511. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6512. }
  6513. else {
  6514. #ifdef MESH_BED_LEVELING
  6515. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6516. #else
  6517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6518. #endif
  6519. }
  6520. for(int8_t i=0; i < NUM_AXIS; i++) {
  6521. current_position[i] = destination[i];
  6522. }
  6523. }
  6524. void prepare_arc_move(char isclockwise) {
  6525. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6526. // Trace the arc
  6527. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6528. // As far as the parser is concerned, the position is now == target. In reality the
  6529. // motion control system might still be processing the action and the real tool position
  6530. // in any intermediate location.
  6531. for(int8_t i=0; i < NUM_AXIS; i++) {
  6532. current_position[i] = destination[i];
  6533. }
  6534. previous_millis_cmd = millis();
  6535. }
  6536. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6537. #if defined(FAN_PIN)
  6538. #if CONTROLLERFAN_PIN == FAN_PIN
  6539. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6540. #endif
  6541. #endif
  6542. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6543. unsigned long lastMotorCheck = 0;
  6544. void controllerFan()
  6545. {
  6546. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6547. {
  6548. lastMotorCheck = millis();
  6549. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6550. #if EXTRUDERS > 2
  6551. || !READ(E2_ENABLE_PIN)
  6552. #endif
  6553. #if EXTRUDER > 1
  6554. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6555. || !READ(X2_ENABLE_PIN)
  6556. #endif
  6557. || !READ(E1_ENABLE_PIN)
  6558. #endif
  6559. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6560. {
  6561. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6562. }
  6563. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6564. {
  6565. digitalWrite(CONTROLLERFAN_PIN, 0);
  6566. analogWrite(CONTROLLERFAN_PIN, 0);
  6567. }
  6568. else
  6569. {
  6570. // allows digital or PWM fan output to be used (see M42 handling)
  6571. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6572. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6573. }
  6574. }
  6575. }
  6576. #endif
  6577. #ifdef TEMP_STAT_LEDS
  6578. static bool blue_led = false;
  6579. static bool red_led = false;
  6580. static uint32_t stat_update = 0;
  6581. void handle_status_leds(void) {
  6582. float max_temp = 0.0;
  6583. if(millis() > stat_update) {
  6584. stat_update += 500; // Update every 0.5s
  6585. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6586. max_temp = max(max_temp, degHotend(cur_extruder));
  6587. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6588. }
  6589. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6590. max_temp = max(max_temp, degTargetBed());
  6591. max_temp = max(max_temp, degBed());
  6592. #endif
  6593. if((max_temp > 55.0) && (red_led == false)) {
  6594. digitalWrite(STAT_LED_RED, 1);
  6595. digitalWrite(STAT_LED_BLUE, 0);
  6596. red_led = true;
  6597. blue_led = false;
  6598. }
  6599. if((max_temp < 54.0) && (blue_led == false)) {
  6600. digitalWrite(STAT_LED_RED, 0);
  6601. digitalWrite(STAT_LED_BLUE, 1);
  6602. red_led = false;
  6603. blue_led = true;
  6604. }
  6605. }
  6606. }
  6607. #endif
  6608. #ifdef SAFETYTIMER
  6609. /**
  6610. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6611. *
  6612. * Full screen blocking notification message is shown after heater turning off.
  6613. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6614. * damage print.
  6615. *
  6616. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6617. */
  6618. static void handleSafetyTimer()
  6619. {
  6620. #if (EXTRUDERS > 1)
  6621. #error Implemented only for one extruder.
  6622. #endif //(EXTRUDERS > 1)
  6623. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6624. {
  6625. safetyTimer.stop();
  6626. }
  6627. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6628. {
  6629. safetyTimer.start();
  6630. }
  6631. else if (safetyTimer.expired(safetytimer_inactive_time))
  6632. {
  6633. setTargetBed(0);
  6634. setTargetHotend(0, 0);
  6635. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6636. }
  6637. }
  6638. #endif //SAFETYTIMER
  6639. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6640. {
  6641. #ifdef PAT9125
  6642. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6643. {
  6644. if (fsensor_autoload_enabled)
  6645. {
  6646. if (fsensor_check_autoload())
  6647. {
  6648. if (degHotend0() > EXTRUDE_MINTEMP)
  6649. {
  6650. fsensor_autoload_check_stop();
  6651. tone(BEEPER, 1000);
  6652. delay_keep_alive(50);
  6653. noTone(BEEPER);
  6654. loading_flag = true;
  6655. enquecommand_front_P((PSTR("M701")));
  6656. }
  6657. else
  6658. {
  6659. lcd_update_enable(false);
  6660. lcd_clear();
  6661. lcd_set_cursor(0, 0);
  6662. lcd_puts_P(_T(MSG_ERROR));
  6663. lcd_set_cursor(0, 2);
  6664. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6665. delay(2000);
  6666. lcd_clear();
  6667. lcd_update_enable(true);
  6668. }
  6669. }
  6670. }
  6671. else
  6672. fsensor_autoload_check_start();
  6673. }
  6674. else
  6675. if (fsensor_autoload_enabled)
  6676. fsensor_autoload_check_stop();
  6677. #endif //PAT9125
  6678. #ifdef SAFETYTIMER
  6679. handleSafetyTimer();
  6680. #endif //SAFETYTIMER
  6681. #if defined(KILL_PIN) && KILL_PIN > -1
  6682. static int killCount = 0; // make the inactivity button a bit less responsive
  6683. const int KILL_DELAY = 10000;
  6684. #endif
  6685. if(buflen < (BUFSIZE-1)){
  6686. get_command();
  6687. }
  6688. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6689. if(max_inactive_time)
  6690. kill(_n(""), 4);
  6691. if(stepper_inactive_time) {
  6692. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6693. {
  6694. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6695. disable_x();
  6696. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6697. disable_y();
  6698. disable_z();
  6699. disable_e0();
  6700. disable_e1();
  6701. disable_e2();
  6702. }
  6703. }
  6704. }
  6705. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6706. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6707. {
  6708. chdkActive = false;
  6709. WRITE(CHDK, LOW);
  6710. }
  6711. #endif
  6712. #if defined(KILL_PIN) && KILL_PIN > -1
  6713. // Check if the kill button was pressed and wait just in case it was an accidental
  6714. // key kill key press
  6715. // -------------------------------------------------------------------------------
  6716. if( 0 == READ(KILL_PIN) )
  6717. {
  6718. killCount++;
  6719. }
  6720. else if (killCount > 0)
  6721. {
  6722. killCount--;
  6723. }
  6724. // Exceeded threshold and we can confirm that it was not accidental
  6725. // KILL the machine
  6726. // ----------------------------------------------------------------
  6727. if ( killCount >= KILL_DELAY)
  6728. {
  6729. kill("", 5);
  6730. }
  6731. #endif
  6732. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6733. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6734. #endif
  6735. #ifdef EXTRUDER_RUNOUT_PREVENT
  6736. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6737. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6738. {
  6739. bool oldstatus=READ(E0_ENABLE_PIN);
  6740. enable_e0();
  6741. float oldepos=current_position[E_AXIS];
  6742. float oldedes=destination[E_AXIS];
  6743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6744. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6745. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6746. current_position[E_AXIS]=oldepos;
  6747. destination[E_AXIS]=oldedes;
  6748. plan_set_e_position(oldepos);
  6749. previous_millis_cmd=millis();
  6750. st_synchronize();
  6751. WRITE(E0_ENABLE_PIN,oldstatus);
  6752. }
  6753. #endif
  6754. #ifdef TEMP_STAT_LEDS
  6755. handle_status_leds();
  6756. #endif
  6757. check_axes_activity();
  6758. }
  6759. void kill(const char *full_screen_message, unsigned char id)
  6760. {
  6761. printf_P(_N("KILL: %d\n"), id);
  6762. //return;
  6763. cli(); // Stop interrupts
  6764. disable_heater();
  6765. disable_x();
  6766. // SERIAL_ECHOLNPGM("kill - disable Y");
  6767. disable_y();
  6768. disable_z();
  6769. disable_e0();
  6770. disable_e1();
  6771. disable_e2();
  6772. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6773. pinMode(PS_ON_PIN,INPUT);
  6774. #endif
  6775. SERIAL_ERROR_START;
  6776. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6777. if (full_screen_message != NULL) {
  6778. SERIAL_ERRORLNRPGM(full_screen_message);
  6779. lcd_display_message_fullscreen_P(full_screen_message);
  6780. } else {
  6781. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6782. }
  6783. // FMC small patch to update the LCD before ending
  6784. sei(); // enable interrupts
  6785. for ( int i=5; i--; lcd_update(0))
  6786. {
  6787. delay(200);
  6788. }
  6789. cli(); // disable interrupts
  6790. suicide();
  6791. while(1)
  6792. {
  6793. #ifdef WATCHDOG
  6794. wdt_reset();
  6795. #endif //WATCHDOG
  6796. /* Intentionally left empty */
  6797. } // Wait for reset
  6798. }
  6799. void Stop()
  6800. {
  6801. disable_heater();
  6802. if(Stopped == false) {
  6803. Stopped = true;
  6804. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6805. SERIAL_ERROR_START;
  6806. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6807. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6808. }
  6809. }
  6810. bool IsStopped() { return Stopped; };
  6811. #ifdef FAST_PWM_FAN
  6812. void setPwmFrequency(uint8_t pin, int val)
  6813. {
  6814. val &= 0x07;
  6815. switch(digitalPinToTimer(pin))
  6816. {
  6817. #if defined(TCCR0A)
  6818. case TIMER0A:
  6819. case TIMER0B:
  6820. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6821. // TCCR0B |= val;
  6822. break;
  6823. #endif
  6824. #if defined(TCCR1A)
  6825. case TIMER1A:
  6826. case TIMER1B:
  6827. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6828. // TCCR1B |= val;
  6829. break;
  6830. #endif
  6831. #if defined(TCCR2)
  6832. case TIMER2:
  6833. case TIMER2:
  6834. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6835. TCCR2 |= val;
  6836. break;
  6837. #endif
  6838. #if defined(TCCR2A)
  6839. case TIMER2A:
  6840. case TIMER2B:
  6841. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6842. TCCR2B |= val;
  6843. break;
  6844. #endif
  6845. #if defined(TCCR3A)
  6846. case TIMER3A:
  6847. case TIMER3B:
  6848. case TIMER3C:
  6849. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6850. TCCR3B |= val;
  6851. break;
  6852. #endif
  6853. #if defined(TCCR4A)
  6854. case TIMER4A:
  6855. case TIMER4B:
  6856. case TIMER4C:
  6857. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6858. TCCR4B |= val;
  6859. break;
  6860. #endif
  6861. #if defined(TCCR5A)
  6862. case TIMER5A:
  6863. case TIMER5B:
  6864. case TIMER5C:
  6865. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6866. TCCR5B |= val;
  6867. break;
  6868. #endif
  6869. }
  6870. }
  6871. #endif //FAST_PWM_FAN
  6872. bool setTargetedHotend(int code){
  6873. tmp_extruder = active_extruder;
  6874. if(code_seen('T')) {
  6875. tmp_extruder = code_value();
  6876. if(tmp_extruder >= EXTRUDERS) {
  6877. SERIAL_ECHO_START;
  6878. switch(code){
  6879. case 104:
  6880. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6881. break;
  6882. case 105:
  6883. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6884. break;
  6885. case 109:
  6886. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6887. break;
  6888. case 218:
  6889. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6890. break;
  6891. case 221:
  6892. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6893. break;
  6894. }
  6895. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6896. return true;
  6897. }
  6898. }
  6899. return false;
  6900. }
  6901. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6902. {
  6903. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6904. {
  6905. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6906. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6907. }
  6908. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6909. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6910. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6911. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6912. total_filament_used = 0;
  6913. }
  6914. float calculate_extruder_multiplier(float diameter) {
  6915. float out = 1.f;
  6916. if (volumetric_enabled && diameter > 0.f) {
  6917. float area = M_PI * diameter * diameter * 0.25;
  6918. out = 1.f / area;
  6919. }
  6920. if (extrudemultiply != 100)
  6921. out *= float(extrudemultiply) * 0.01f;
  6922. return out;
  6923. }
  6924. void calculate_extruder_multipliers() {
  6925. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6926. #if EXTRUDERS > 1
  6927. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6928. #if EXTRUDERS > 2
  6929. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6930. #endif
  6931. #endif
  6932. }
  6933. void delay_keep_alive(unsigned int ms)
  6934. {
  6935. for (;;) {
  6936. manage_heater();
  6937. // Manage inactivity, but don't disable steppers on timeout.
  6938. manage_inactivity(true);
  6939. lcd_update(0);
  6940. if (ms == 0)
  6941. break;
  6942. else if (ms >= 50) {
  6943. delay(50);
  6944. ms -= 50;
  6945. } else {
  6946. delay(ms);
  6947. ms = 0;
  6948. }
  6949. }
  6950. }
  6951. void wait_for_heater(long codenum) {
  6952. #ifdef TEMP_RESIDENCY_TIME
  6953. long residencyStart;
  6954. residencyStart = -1;
  6955. /* continue to loop until we have reached the target temp
  6956. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6957. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6958. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6959. #else
  6960. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6961. #endif //TEMP_RESIDENCY_TIME
  6962. if ((millis() - codenum) > 1000UL)
  6963. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6964. if (!farm_mode) {
  6965. SERIAL_PROTOCOLPGM("T:");
  6966. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6967. SERIAL_PROTOCOLPGM(" E:");
  6968. SERIAL_PROTOCOL((int)tmp_extruder);
  6969. #ifdef TEMP_RESIDENCY_TIME
  6970. SERIAL_PROTOCOLPGM(" W:");
  6971. if (residencyStart > -1)
  6972. {
  6973. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6974. SERIAL_PROTOCOLLN(codenum);
  6975. }
  6976. else
  6977. {
  6978. SERIAL_PROTOCOLLN("?");
  6979. }
  6980. }
  6981. #else
  6982. SERIAL_PROTOCOLLN("");
  6983. #endif
  6984. codenum = millis();
  6985. }
  6986. manage_heater();
  6987. manage_inactivity();
  6988. lcd_update(0);
  6989. #ifdef TEMP_RESIDENCY_TIME
  6990. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6991. or when current temp falls outside the hysteresis after target temp was reached */
  6992. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6993. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6994. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6995. {
  6996. residencyStart = millis();
  6997. }
  6998. #endif //TEMP_RESIDENCY_TIME
  6999. }
  7000. }
  7001. void check_babystep() {
  7002. int babystep_z;
  7003. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7004. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7005. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7006. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7007. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7008. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7009. lcd_update_enable(true);
  7010. }
  7011. }
  7012. #ifdef DIS
  7013. void d_setup()
  7014. {
  7015. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7016. pinMode(D_DATA, INPUT_PULLUP);
  7017. pinMode(D_REQUIRE, OUTPUT);
  7018. digitalWrite(D_REQUIRE, HIGH);
  7019. }
  7020. float d_ReadData()
  7021. {
  7022. int digit[13];
  7023. String mergeOutput;
  7024. float output;
  7025. digitalWrite(D_REQUIRE, HIGH);
  7026. for (int i = 0; i<13; i++)
  7027. {
  7028. for (int j = 0; j < 4; j++)
  7029. {
  7030. while (digitalRead(D_DATACLOCK) == LOW) {}
  7031. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7032. bitWrite(digit[i], j, digitalRead(D_DATA));
  7033. }
  7034. }
  7035. digitalWrite(D_REQUIRE, LOW);
  7036. mergeOutput = "";
  7037. output = 0;
  7038. for (int r = 5; r <= 10; r++) //Merge digits
  7039. {
  7040. mergeOutput += digit[r];
  7041. }
  7042. output = mergeOutput.toFloat();
  7043. if (digit[4] == 8) //Handle sign
  7044. {
  7045. output *= -1;
  7046. }
  7047. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7048. {
  7049. output /= 10;
  7050. }
  7051. return output;
  7052. }
  7053. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7054. int t1 = 0;
  7055. int t_delay = 0;
  7056. int digit[13];
  7057. int m;
  7058. char str[3];
  7059. //String mergeOutput;
  7060. char mergeOutput[15];
  7061. float output;
  7062. int mesh_point = 0; //index number of calibration point
  7063. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7064. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7065. float mesh_home_z_search = 4;
  7066. float row[x_points_num];
  7067. int ix = 0;
  7068. int iy = 0;
  7069. char* filename_wldsd = "wldsd.txt";
  7070. char data_wldsd[70];
  7071. char numb_wldsd[10];
  7072. d_setup();
  7073. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7074. // We don't know where we are! HOME!
  7075. // Push the commands to the front of the message queue in the reverse order!
  7076. // There shall be always enough space reserved for these commands.
  7077. repeatcommand_front(); // repeat G80 with all its parameters
  7078. enquecommand_front_P((PSTR("G28 W0")));
  7079. enquecommand_front_P((PSTR("G1 Z5")));
  7080. return;
  7081. }
  7082. bool custom_message_old = custom_message;
  7083. unsigned int custom_message_type_old = custom_message_type;
  7084. unsigned int custom_message_state_old = custom_message_state;
  7085. custom_message = true;
  7086. custom_message_type = 1;
  7087. custom_message_state = (x_points_num * y_points_num) + 10;
  7088. lcd_update(1);
  7089. mbl.reset();
  7090. babystep_undo();
  7091. card.openFile(filename_wldsd, false);
  7092. current_position[Z_AXIS] = mesh_home_z_search;
  7093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7094. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7095. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7096. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7097. setup_for_endstop_move(false);
  7098. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7099. SERIAL_PROTOCOL(x_points_num);
  7100. SERIAL_PROTOCOLPGM(",");
  7101. SERIAL_PROTOCOL(y_points_num);
  7102. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7103. SERIAL_PROTOCOL(mesh_home_z_search);
  7104. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7105. SERIAL_PROTOCOL(x_dimension);
  7106. SERIAL_PROTOCOLPGM(",");
  7107. SERIAL_PROTOCOL(y_dimension);
  7108. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7109. while (mesh_point != x_points_num * y_points_num) {
  7110. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7111. iy = mesh_point / x_points_num;
  7112. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7113. float z0 = 0.f;
  7114. current_position[Z_AXIS] = mesh_home_z_search;
  7115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7116. st_synchronize();
  7117. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7118. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7120. st_synchronize();
  7121. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7122. break;
  7123. card.closefile();
  7124. }
  7125. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7126. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7127. //strcat(data_wldsd, numb_wldsd);
  7128. //MYSERIAL.println(data_wldsd);
  7129. //delay(1000);
  7130. //delay(3000);
  7131. //t1 = millis();
  7132. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7133. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7134. memset(digit, 0, sizeof(digit));
  7135. //cli();
  7136. digitalWrite(D_REQUIRE, LOW);
  7137. for (int i = 0; i<13; i++)
  7138. {
  7139. //t1 = millis();
  7140. for (int j = 0; j < 4; j++)
  7141. {
  7142. while (digitalRead(D_DATACLOCK) == LOW) {}
  7143. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7144. bitWrite(digit[i], j, digitalRead(D_DATA));
  7145. }
  7146. //t_delay = (millis() - t1);
  7147. //SERIAL_PROTOCOLPGM(" ");
  7148. //SERIAL_PROTOCOL_F(t_delay, 5);
  7149. //SERIAL_PROTOCOLPGM(" ");
  7150. }
  7151. //sei();
  7152. digitalWrite(D_REQUIRE, HIGH);
  7153. mergeOutput[0] = '\0';
  7154. output = 0;
  7155. for (int r = 5; r <= 10; r++) //Merge digits
  7156. {
  7157. sprintf(str, "%d", digit[r]);
  7158. strcat(mergeOutput, str);
  7159. }
  7160. output = atof(mergeOutput);
  7161. if (digit[4] == 8) //Handle sign
  7162. {
  7163. output *= -1;
  7164. }
  7165. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7166. {
  7167. output *= 0.1;
  7168. }
  7169. //output = d_ReadData();
  7170. //row[ix] = current_position[Z_AXIS];
  7171. memset(data_wldsd, 0, sizeof(data_wldsd));
  7172. for (int i = 0; i <3; i++) {
  7173. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7174. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7175. strcat(data_wldsd, numb_wldsd);
  7176. strcat(data_wldsd, ";");
  7177. }
  7178. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7179. dtostrf(output, 8, 5, numb_wldsd);
  7180. strcat(data_wldsd, numb_wldsd);
  7181. //strcat(data_wldsd, ";");
  7182. card.write_command(data_wldsd);
  7183. //row[ix] = d_ReadData();
  7184. row[ix] = output; // current_position[Z_AXIS];
  7185. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7186. for (int i = 0; i < x_points_num; i++) {
  7187. SERIAL_PROTOCOLPGM(" ");
  7188. SERIAL_PROTOCOL_F(row[i], 5);
  7189. }
  7190. SERIAL_PROTOCOLPGM("\n");
  7191. }
  7192. custom_message_state--;
  7193. mesh_point++;
  7194. lcd_update(1);
  7195. }
  7196. card.closefile();
  7197. }
  7198. #endif
  7199. void temp_compensation_start() {
  7200. custom_message = true;
  7201. custom_message_type = 5;
  7202. custom_message_state = PINDA_HEAT_T + 1;
  7203. lcd_update(2);
  7204. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7205. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7206. }
  7207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7208. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7209. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7210. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7212. st_synchronize();
  7213. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7214. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7215. delay_keep_alive(1000);
  7216. custom_message_state = PINDA_HEAT_T - i;
  7217. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7218. else lcd_update(1);
  7219. }
  7220. custom_message_type = 0;
  7221. custom_message_state = 0;
  7222. custom_message = false;
  7223. }
  7224. void temp_compensation_apply() {
  7225. int i_add;
  7226. int compensation_value;
  7227. int z_shift = 0;
  7228. float z_shift_mm;
  7229. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7230. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7231. i_add = (target_temperature_bed - 60) / 10;
  7232. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7233. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7234. }else {
  7235. //interpolation
  7236. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7237. }
  7238. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7240. st_synchronize();
  7241. plan_set_z_position(current_position[Z_AXIS]);
  7242. }
  7243. else {
  7244. //we have no temp compensation data
  7245. }
  7246. }
  7247. float temp_comp_interpolation(float inp_temperature) {
  7248. //cubic spline interpolation
  7249. int n, i, j, k;
  7250. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7251. int shift[10];
  7252. int temp_C[10];
  7253. n = 6; //number of measured points
  7254. shift[0] = 0;
  7255. for (i = 0; i < n; i++) {
  7256. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7257. temp_C[i] = 50 + i * 10; //temperature in C
  7258. #ifdef PINDA_THERMISTOR
  7259. temp_C[i] = 35 + i * 5; //temperature in C
  7260. #else
  7261. temp_C[i] = 50 + i * 10; //temperature in C
  7262. #endif
  7263. x[i] = (float)temp_C[i];
  7264. f[i] = (float)shift[i];
  7265. }
  7266. if (inp_temperature < x[0]) return 0;
  7267. for (i = n - 1; i>0; i--) {
  7268. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7269. h[i - 1] = x[i] - x[i - 1];
  7270. }
  7271. //*********** formation of h, s , f matrix **************
  7272. for (i = 1; i<n - 1; i++) {
  7273. m[i][i] = 2 * (h[i - 1] + h[i]);
  7274. if (i != 1) {
  7275. m[i][i - 1] = h[i - 1];
  7276. m[i - 1][i] = h[i - 1];
  7277. }
  7278. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7279. }
  7280. //*********** forward elimination **************
  7281. for (i = 1; i<n - 2; i++) {
  7282. temp = (m[i + 1][i] / m[i][i]);
  7283. for (j = 1; j <= n - 1; j++)
  7284. m[i + 1][j] -= temp*m[i][j];
  7285. }
  7286. //*********** backward substitution *********
  7287. for (i = n - 2; i>0; i--) {
  7288. sum = 0;
  7289. for (j = i; j <= n - 2; j++)
  7290. sum += m[i][j] * s[j];
  7291. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7292. }
  7293. for (i = 0; i<n - 1; i++)
  7294. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7295. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7296. b = s[i] / 2;
  7297. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7298. d = f[i];
  7299. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7300. }
  7301. return sum;
  7302. }
  7303. #ifdef PINDA_THERMISTOR
  7304. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7305. {
  7306. if (!temp_cal_active) return 0;
  7307. if (!calibration_status_pinda()) return 0;
  7308. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7309. }
  7310. #endif //PINDA_THERMISTOR
  7311. void long_pause() //long pause print
  7312. {
  7313. st_synchronize();
  7314. //save currently set parameters to global variables
  7315. saved_feedmultiply = feedmultiply;
  7316. HotendTempBckp = degTargetHotend(active_extruder);
  7317. fanSpeedBckp = fanSpeed;
  7318. start_pause_print = millis();
  7319. //save position
  7320. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7321. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7322. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7323. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7324. //retract
  7325. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7327. //lift z
  7328. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7329. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7331. //set nozzle target temperature to 0
  7332. setTargetHotend0(0);
  7333. setTargetHotend1(0);
  7334. setTargetHotend2(0);
  7335. //Move XY to side
  7336. current_position[X_AXIS] = X_PAUSE_POS;
  7337. current_position[Y_AXIS] = Y_PAUSE_POS;
  7338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7339. // Turn off the print fan
  7340. fanSpeed = 0;
  7341. st_synchronize();
  7342. }
  7343. void serialecho_temperatures() {
  7344. float tt = degHotend(active_extruder);
  7345. SERIAL_PROTOCOLPGM("T:");
  7346. SERIAL_PROTOCOL(tt);
  7347. SERIAL_PROTOCOLPGM(" E:");
  7348. SERIAL_PROTOCOL((int)active_extruder);
  7349. SERIAL_PROTOCOLPGM(" B:");
  7350. SERIAL_PROTOCOL_F(degBed(), 1);
  7351. SERIAL_PROTOCOLLN("");
  7352. }
  7353. extern uint32_t sdpos_atomic;
  7354. #ifdef UVLO_SUPPORT
  7355. void uvlo_()
  7356. {
  7357. unsigned long time_start = millis();
  7358. bool sd_print = card.sdprinting;
  7359. // Conserve power as soon as possible.
  7360. disable_x();
  7361. disable_y();
  7362. #ifdef TMC2130
  7363. tmc2130_set_current_h(Z_AXIS, 20);
  7364. tmc2130_set_current_r(Z_AXIS, 20);
  7365. tmc2130_set_current_h(E_AXIS, 20);
  7366. tmc2130_set_current_r(E_AXIS, 20);
  7367. #endif //TMC2130
  7368. // Indicate that the interrupt has been triggered.
  7369. // SERIAL_ECHOLNPGM("UVLO");
  7370. // Read out the current Z motor microstep counter. This will be later used
  7371. // for reaching the zero full step before powering off.
  7372. uint16_t z_microsteps = 0;
  7373. #ifdef TMC2130
  7374. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7375. #endif //TMC2130
  7376. // Calculate the file position, from which to resume this print.
  7377. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7378. {
  7379. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7380. sd_position -= sdlen_planner;
  7381. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7382. sd_position -= sdlen_cmdqueue;
  7383. if (sd_position < 0) sd_position = 0;
  7384. }
  7385. // Backup the feedrate in mm/min.
  7386. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7387. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7388. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7389. // are in action.
  7390. planner_abort_hard();
  7391. // Store the current extruder position.
  7392. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7393. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7394. // Clean the input command queue.
  7395. cmdqueue_reset();
  7396. card.sdprinting = false;
  7397. // card.closefile();
  7398. // Enable stepper driver interrupt to move Z axis.
  7399. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7400. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7401. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7402. sei();
  7403. plan_buffer_line(
  7404. current_position[X_AXIS],
  7405. current_position[Y_AXIS],
  7406. current_position[Z_AXIS],
  7407. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7408. 95, active_extruder);
  7409. st_synchronize();
  7410. disable_e0();
  7411. plan_buffer_line(
  7412. current_position[X_AXIS],
  7413. current_position[Y_AXIS],
  7414. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7415. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7416. 40, active_extruder);
  7417. st_synchronize();
  7418. disable_e0();
  7419. plan_buffer_line(
  7420. current_position[X_AXIS],
  7421. current_position[Y_AXIS],
  7422. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7423. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7424. 40, active_extruder);
  7425. st_synchronize();
  7426. disable_e0();
  7427. disable_z();
  7428. // Move Z up to the next 0th full step.
  7429. // Write the file position.
  7430. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7431. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7432. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7433. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7434. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7435. // Scale the z value to 1u resolution.
  7436. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7437. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7438. }
  7439. // Read out the current Z motor microstep counter. This will be later used
  7440. // for reaching the zero full step before powering off.
  7441. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7442. // Store the current position.
  7443. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7444. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7445. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7446. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7447. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7448. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7449. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7450. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7451. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7452. #if EXTRUDERS > 1
  7453. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7454. #if EXTRUDERS > 2
  7455. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7456. #endif
  7457. #endif
  7458. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7459. // Finaly store the "power outage" flag.
  7460. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7461. st_synchronize();
  7462. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7463. disable_z();
  7464. // Increment power failure counter
  7465. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7466. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7467. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7468. #if 0
  7469. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7470. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7472. st_synchronize();
  7473. #endif
  7474. cli();
  7475. volatile unsigned int ppcount = 0;
  7476. SET_OUTPUT(BEEPER);
  7477. WRITE(BEEPER, HIGH);
  7478. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7479. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7480. }
  7481. WRITE(BEEPER, LOW);
  7482. while(1){
  7483. #if 1
  7484. WRITE(BEEPER, LOW);
  7485. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7486. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7487. }
  7488. #endif
  7489. };
  7490. }
  7491. #endif //UVLO_SUPPORT
  7492. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7493. void setup_fan_interrupt() {
  7494. //INT7
  7495. DDRE &= ~(1 << 7); //input pin
  7496. PORTE &= ~(1 << 7); //no internal pull-up
  7497. //start with sensing rising edge
  7498. EICRB &= ~(1 << 6);
  7499. EICRB |= (1 << 7);
  7500. //enable INT7 interrupt
  7501. EIMSK |= (1 << 7);
  7502. }
  7503. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7504. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7505. ISR(INT7_vect) {
  7506. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7507. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7508. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7509. t_fan_rising_edge = millis_nc();
  7510. }
  7511. else { //interrupt was triggered by falling edge
  7512. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7513. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7514. }
  7515. }
  7516. EICRB ^= (1 << 6); //change edge
  7517. }
  7518. #endif
  7519. #ifdef UVLO_SUPPORT
  7520. void setup_uvlo_interrupt() {
  7521. DDRE &= ~(1 << 4); //input pin
  7522. PORTE &= ~(1 << 4); //no internal pull-up
  7523. //sensing falling edge
  7524. EICRB |= (1 << 0);
  7525. EICRB &= ~(1 << 1);
  7526. //enable INT4 interrupt
  7527. EIMSK |= (1 << 4);
  7528. }
  7529. ISR(INT4_vect) {
  7530. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7531. SERIAL_ECHOLNPGM("INT4");
  7532. if (IS_SD_PRINTING) uvlo_();
  7533. }
  7534. void recover_print(uint8_t automatic) {
  7535. char cmd[30];
  7536. lcd_update_enable(true);
  7537. lcd_update(2);
  7538. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7539. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7540. // Lift the print head, so one may remove the excess priming material.
  7541. if (current_position[Z_AXIS] < 25)
  7542. enquecommand_P(PSTR("G1 Z25 F800"));
  7543. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7544. enquecommand_P(PSTR("G28 X Y"));
  7545. // Set the target bed and nozzle temperatures and wait.
  7546. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7547. enquecommand(cmd);
  7548. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7549. enquecommand(cmd);
  7550. enquecommand_P(PSTR("M83")); //E axis relative mode
  7551. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7552. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7553. if(automatic == 0){
  7554. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7555. }
  7556. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7557. // Mark the power panic status as inactive.
  7558. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7559. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7560. delay_keep_alive(1000);
  7561. }*/
  7562. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7563. // Restart the print.
  7564. restore_print_from_eeprom();
  7565. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7566. }
  7567. void recover_machine_state_after_power_panic()
  7568. {
  7569. char cmd[30];
  7570. // 1) Recover the logical cordinates at the time of the power panic.
  7571. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7572. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7573. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7574. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7575. // The current position after power panic is moved to the next closest 0th full step.
  7576. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7577. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7578. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7579. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7580. sprintf_P(cmd, PSTR("G92 E"));
  7581. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7582. enquecommand(cmd);
  7583. }
  7584. memcpy(destination, current_position, sizeof(destination));
  7585. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7586. print_world_coordinates();
  7587. // 2) Initialize the logical to physical coordinate system transformation.
  7588. world2machine_initialize();
  7589. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7590. mbl.active = false;
  7591. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7592. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7593. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7594. // Scale the z value to 10u resolution.
  7595. int16_t v;
  7596. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7597. if (v != 0)
  7598. mbl.active = true;
  7599. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7600. }
  7601. if (mbl.active)
  7602. mbl.upsample_3x3();
  7603. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7604. // print_mesh_bed_leveling_table();
  7605. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7606. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7607. babystep_load();
  7608. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7610. // 6) Power up the motors, mark their positions as known.
  7611. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7612. axis_known_position[X_AXIS] = true; enable_x();
  7613. axis_known_position[Y_AXIS] = true; enable_y();
  7614. axis_known_position[Z_AXIS] = true; enable_z();
  7615. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7616. print_physical_coordinates();
  7617. // 7) Recover the target temperatures.
  7618. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7619. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7620. // 8) Recover extruder multipilers
  7621. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7622. #if EXTRUDERS > 1
  7623. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7624. #if EXTRUDERS > 2
  7625. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7626. #endif
  7627. #endif
  7628. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7629. }
  7630. void restore_print_from_eeprom() {
  7631. float x_rec, y_rec, z_pos;
  7632. int feedrate_rec;
  7633. uint8_t fan_speed_rec;
  7634. char cmd[30];
  7635. char* c;
  7636. char filename[13];
  7637. uint8_t depth = 0;
  7638. char dir_name[9];
  7639. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7640. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7641. SERIAL_ECHOPGM("Feedrate:");
  7642. MYSERIAL.println(feedrate_rec);
  7643. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7644. MYSERIAL.println(int(depth));
  7645. for (int i = 0; i < depth; i++) {
  7646. for (int j = 0; j < 8; j++) {
  7647. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7648. }
  7649. dir_name[8] = '\0';
  7650. MYSERIAL.println(dir_name);
  7651. strcpy(dir_names[i], dir_name);
  7652. card.chdir(dir_name);
  7653. }
  7654. for (int i = 0; i < 8; i++) {
  7655. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7656. }
  7657. filename[8] = '\0';
  7658. MYSERIAL.print(filename);
  7659. strcat_P(filename, PSTR(".gco"));
  7660. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7661. enquecommand(cmd);
  7662. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7663. SERIAL_ECHOPGM("Position read from eeprom:");
  7664. MYSERIAL.println(position);
  7665. // E axis relative mode.
  7666. enquecommand_P(PSTR("M83"));
  7667. // Move to the XY print position in logical coordinates, where the print has been killed.
  7668. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7669. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7670. strcat_P(cmd, PSTR(" F2000"));
  7671. enquecommand(cmd);
  7672. // Move the Z axis down to the print, in logical coordinates.
  7673. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7674. enquecommand(cmd);
  7675. // Unretract.
  7676. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7677. // Set the feedrate saved at the power panic.
  7678. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7679. enquecommand(cmd);
  7680. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7681. {
  7682. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7683. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7684. }
  7685. // Set the fan speed saved at the power panic.
  7686. strcpy_P(cmd, PSTR("M106 S"));
  7687. strcat(cmd, itostr3(int(fan_speed_rec)));
  7688. enquecommand(cmd);
  7689. // Set a position in the file.
  7690. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7691. enquecommand(cmd);
  7692. // Start SD print.
  7693. enquecommand_P(PSTR("M24"));
  7694. }
  7695. #endif //UVLO_SUPPORT
  7696. ////////////////////////////////////////////////////////////////////////////////
  7697. // save/restore printing
  7698. void stop_and_save_print_to_ram(float z_move, float e_move)
  7699. {
  7700. if (saved_printing) return;
  7701. unsigned char nplanner_blocks;
  7702. unsigned char nlines;
  7703. uint16_t sdlen_planner;
  7704. uint16_t sdlen_cmdqueue;
  7705. cli();
  7706. if (card.sdprinting) {
  7707. nplanner_blocks = number_of_blocks();
  7708. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7709. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7710. saved_sdpos -= sdlen_planner;
  7711. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7712. saved_sdpos -= sdlen_cmdqueue;
  7713. saved_printing_type = PRINTING_TYPE_SD;
  7714. }
  7715. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7716. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7717. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7718. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7719. saved_sdpos -= nlines;
  7720. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7721. saved_printing_type = PRINTING_TYPE_USB;
  7722. }
  7723. else {
  7724. //not sd printing nor usb printing
  7725. }
  7726. #if 0
  7727. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7728. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7729. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7730. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7731. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7732. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7733. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7734. {
  7735. card.setIndex(saved_sdpos);
  7736. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7737. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7738. MYSERIAL.print(char(card.get()));
  7739. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7740. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7741. MYSERIAL.print(char(card.get()));
  7742. SERIAL_ECHOLNPGM("End of command buffer");
  7743. }
  7744. {
  7745. // Print the content of the planner buffer, line by line:
  7746. card.setIndex(saved_sdpos);
  7747. int8_t iline = 0;
  7748. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7749. SERIAL_ECHOPGM("Planner line (from file): ");
  7750. MYSERIAL.print(int(iline), DEC);
  7751. SERIAL_ECHOPGM(", length: ");
  7752. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7753. SERIAL_ECHOPGM(", steps: (");
  7754. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7755. SERIAL_ECHOPGM(",");
  7756. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7757. SERIAL_ECHOPGM(",");
  7758. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7759. SERIAL_ECHOPGM(",");
  7760. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7761. SERIAL_ECHOPGM("), events: ");
  7762. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7763. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7764. MYSERIAL.print(char(card.get()));
  7765. }
  7766. }
  7767. {
  7768. // Print the content of the command buffer, line by line:
  7769. int8_t iline = 0;
  7770. union {
  7771. struct {
  7772. char lo;
  7773. char hi;
  7774. } lohi;
  7775. uint16_t value;
  7776. } sdlen_single;
  7777. int _bufindr = bufindr;
  7778. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7779. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7780. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7781. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7782. }
  7783. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7784. MYSERIAL.print(int(iline), DEC);
  7785. SERIAL_ECHOPGM(", type: ");
  7786. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7787. SERIAL_ECHOPGM(", len: ");
  7788. MYSERIAL.println(sdlen_single.value, DEC);
  7789. // Print the content of the buffer line.
  7790. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7791. SERIAL_ECHOPGM("Buffer line (from file): ");
  7792. MYSERIAL.println(int(iline), DEC);
  7793. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7794. MYSERIAL.print(char(card.get()));
  7795. if (-- _buflen == 0)
  7796. break;
  7797. // First skip the current command ID and iterate up to the end of the string.
  7798. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7799. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7800. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7801. // If the end of the buffer was empty,
  7802. if (_bufindr == sizeof(cmdbuffer)) {
  7803. // skip to the start and find the nonzero command.
  7804. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7805. }
  7806. }
  7807. }
  7808. #endif
  7809. #if 0
  7810. saved_feedrate2 = feedrate; //save feedrate
  7811. #else
  7812. // Try to deduce the feedrate from the first block of the planner.
  7813. // Speed is in mm/min.
  7814. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7815. #endif
  7816. planner_abort_hard(); //abort printing
  7817. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7818. saved_active_extruder = active_extruder; //save active_extruder
  7819. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7820. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7821. cmdqueue_reset(); //empty cmdqueue
  7822. card.sdprinting = false;
  7823. // card.closefile();
  7824. saved_printing = true;
  7825. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7826. st_reset_timer();
  7827. sei();
  7828. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7829. #if 1
  7830. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7831. char buf[48];
  7832. // First unretract (relative extrusion)
  7833. if(!saved_extruder_relative_mode){
  7834. strcpy_P(buf, PSTR("M83"));
  7835. enquecommand(buf, false);
  7836. }
  7837. //retract 45mm/s
  7838. strcpy_P(buf, PSTR("G1 E"));
  7839. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7840. strcat_P(buf, PSTR(" F"));
  7841. dtostrf(2700, 8, 3, buf + strlen(buf));
  7842. enquecommand(buf, false);
  7843. // Then lift Z axis
  7844. strcpy_P(buf, PSTR("G1 Z"));
  7845. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7846. strcat_P(buf, PSTR(" F"));
  7847. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7848. // At this point the command queue is empty.
  7849. enquecommand(buf, false);
  7850. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7851. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7852. repeatcommand_front();
  7853. #else
  7854. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7855. st_synchronize(); //wait moving
  7856. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7857. memcpy(destination, current_position, sizeof(destination));
  7858. #endif
  7859. }
  7860. }
  7861. void restore_print_from_ram_and_continue(float e_move)
  7862. {
  7863. if (!saved_printing) return;
  7864. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7865. // current_position[axis] = st_get_position_mm(axis);
  7866. active_extruder = saved_active_extruder; //restore active_extruder
  7867. feedrate = saved_feedrate2; //restore feedrate
  7868. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7869. float e = saved_pos[E_AXIS] - e_move;
  7870. plan_set_e_position(e);
  7871. //first move print head in XY to the saved position:
  7872. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7873. st_synchronize();
  7874. //then move Z
  7875. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7876. st_synchronize();
  7877. //and finaly unretract (35mm/s)
  7878. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7879. st_synchronize();
  7880. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7881. memcpy(destination, current_position, sizeof(destination));
  7882. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7883. card.setIndex(saved_sdpos);
  7884. sdpos_atomic = saved_sdpos;
  7885. card.sdprinting = true;
  7886. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7887. }
  7888. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7889. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7890. serial_count = 0;
  7891. FlushSerialRequestResend();
  7892. }
  7893. else {
  7894. //not sd printing nor usb printing
  7895. }
  7896. lcd_setstatuspgm(_T(WELCOME_MSG));
  7897. saved_printing = false;
  7898. }
  7899. void print_world_coordinates()
  7900. {
  7901. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7902. }
  7903. void print_physical_coordinates()
  7904. {
  7905. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7906. }
  7907. void print_mesh_bed_leveling_table()
  7908. {
  7909. SERIAL_ECHOPGM("mesh bed leveling: ");
  7910. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7911. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7912. MYSERIAL.print(mbl.z_values[y][x], 3);
  7913. SERIAL_ECHOPGM(" ");
  7914. }
  7915. SERIAL_ECHOLNPGM("");
  7916. }
  7917. uint16_t print_time_remaining() {
  7918. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7919. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7920. else print_t = print_time_remaining_silent;
  7921. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7922. return print_t;
  7923. }
  7924. uint8_t print_percent_done() {
  7925. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7926. uint8_t percent_done = 0;
  7927. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7928. percent_done = print_percent_done_normal;
  7929. }
  7930. else if (print_percent_done_silent <= 100) {
  7931. percent_done = print_percent_done_silent;
  7932. }
  7933. else {
  7934. percent_done = card.percentDone();
  7935. }
  7936. return percent_done;
  7937. }
  7938. static void print_time_remaining_init() {
  7939. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7940. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7941. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7942. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7943. }
  7944. #define FIL_LOAD_LENGTH 60